WO2014112447A1 - Electrostatic atomizer and method for controlling electrostatic atomizer - Google Patents
Electrostatic atomizer and method for controlling electrostatic atomizer Download PDFInfo
- Publication number
- WO2014112447A1 WO2014112447A1 PCT/JP2014/050372 JP2014050372W WO2014112447A1 WO 2014112447 A1 WO2014112447 A1 WO 2014112447A1 JP 2014050372 W JP2014050372 W JP 2014050372W WO 2014112447 A1 WO2014112447 A1 WO 2014112447A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- spray
- tip
- electrostatic spraying
- voltage
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
- B05B5/0255—Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
- B05B5/053—Arrangements for supplying power, e.g. charging power
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B5/00—Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
- B05B5/025—Discharge apparatus, e.g. electrostatic spray guns
- B05B5/057—Arrangements for discharging liquids or other fluent material without using a gun or nozzle
Definitions
- the present invention relates to an electrostatic spraying device having excellent spray stability and a method for controlling the electrostatic spraying device.
- a spraying apparatus that ejects liquid in a container from a nozzle has been applied to a wide range of fields.
- an electrostatic spraying device that atomizes and sprays a liquid by electrohydrodynamics (EHD) is known.
- EHD electrohydrodynamics
- This electrostatic spraying device forms an electric field in the vicinity of the tip of the nozzle, and uses the electric field to atomize and spray the liquid at the tip of the nozzle.
- Patent Document 1 is known as a document disclosing such an electrostatic spraying device.
- Patent Document 1 has room for improvement in the following points.
- the electrostatic spraying device of Patent Document 1 includes a spray electrode and a reference electrode, and each of the spray electrode and the reference electrode is adjacent to a dielectric material.
- the spray electrode is a conduit for spraying liquid, and has a shape in which a tip portion is cut at a certain angle so as to provide a focus point of an electric field between the spray electrode and the reference electrode. Thereby, the spray electrode becomes sharper toward the tip.
- the spray electrode and the reference electrode are electrically connected by the droplet, and the spray electrode and the reference electrode are connected by the droplet. Leakage current may occur between the reference electrode and the reference electrode. If leakage current occurs, the amount of liquid sprayed from the electrostatic spray device may become unstable.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide an electrostatic spraying device having excellent spray stability and a control method for the electrostatic spraying device.
- an electrostatic spraying device includes a first electrode that sprays a substance and has a pointed tip that defines a spraying direction of the substance, Based on the second electrode to which a voltage is applied between the first electrode, the current control means for controlling the current value in the second electrode to a predetermined range, and the current value controlled by the current control means, Voltage applying means for applying a voltage between the first electrode and the second electrode, wherein the tip of the first electrode is at a position off the axis of the first electrode, and When viewed from the axial center of the first electrode, the first electrode is located on the opposite side to the side on which the second electrode is located.
- an electrostatic spraying device control method includes: the electrostatic spraying device sprays a substance and defines a spray direction of the substance.
- an electric field is formed between the first electrode and the second electrode by applying a voltage between the first electrode and the second electrode.
- the first electrode is positively charged and the second electrode is negatively charged (or vice versa).
- the first electrode sprays a positively charged droplet.
- the second electrode is ionized negatively by ionizing air in the vicinity of the electrode.
- the negatively charged air moves away from the second electrode due to the electric field formed between the electrodes and the repulsive force between the negatively charged air particles. This movement generates a flow of air (hereinafter sometimes referred to as an ion flow), and the positively charged droplets are sprayed away from the electrostatic spraying device by the ion flow.
- the spray substance is sprayed in the direction of the second electrode, that is, in the direction of the electrostatic spraying device to generate a spray back, and the spraying material may adhere to the electrostatic spraying device.
- the first electrode and the second electrode are electrically connected by the droplet, and the liquid Leakage current may be generated between the first electrode and the second electrode due to the droplet.
- the amount of liquid sprayed from the electrostatic spraying device may become unstable due to the occurrence of leakage current.
- the electrostatic spraying device even when the position of the pointed tip that defines the spraying direction of the substance of the first electrode with respect to the second electrode is changed,
- the current value in the second electrode is controlled within a predetermined range by the current control means.
- a voltage is applied between the first electrode and the second electrode based on the current value controlled by the current control means. That is, by controlling the current value in the second electrode within a predetermined range, the voltage value applied between the first electrode and the second electrode is stabilized, and as a result, the first electrode and the second electrode The electric field strength during is also stable.
- the electrostatic spraying device control method
- the electrostatic spraying device can suppress the spray back to the device itself and suppress the occurrence of leakage current between the first electrode and the second electrode. . Therefore, the electrostatic spray device according to one embodiment of the present invention can maintain spray stability regardless of the position of the tip of the first electrode with respect to the second electrode.
- the distal end portion of the first electrode is located at a position off the axis of the first electrode and from the axis of the first electrode.
- the second electrode is located on the opposite side of the side where the second electrode is located.
- the electrostatic spraying device can spray the substance in a direction away from the first electrode, and reduce spray back to a region between the first electrode and the second electrode. It becomes possible.
- the electrostatic spraying device can further increase the stability of spraying.
- the electrostatic spraying device sprays a substance and a voltage is applied between the first electrode having a pointed tip that defines the spraying direction of the substance and the first electrode.
- Voltage applying means for applying a voltage to the first electrode, the tip of the first electrode is at a position off the axis of the first electrode, and viewed from the axis of the first electrode, It is the structure located in the opposite side to the side in which the said 2nd electrode is located.
- the electrostatic spraying device sprays a substance and has a first electrode having a pointed tip that defines the spraying direction of the substance, A current control step for controlling the current value in the second electrode to a predetermined range, and a current value controlled in the current control step.
- the electrostatic spraying device and the control method for the electrostatic spraying device according to the present invention have an effect of providing an electrostatic spraying device having excellent spray stability.
- FIG. 5 is a top view of first to fourth positions of a tip portion of a spray electrode with respect to a reference electrode. It is a perspective view which shows a mode that the front-end
- FIG. 1 Spray over time when the tip of the spray electrode is provided at the positions of point a (0 °), point b (90 °), point c (180 °), and point d (270 °) shown in FIG. It is a graph which shows transition of quantity. It is the schematic for demonstrating the spraying direction when the front-end
- FIG. 1 is a diagram for explaining a main configuration of the electrostatic spraying apparatus 100.
- the electrostatic spraying device 100 is a device used for spraying aromatic oil, agricultural chemicals, pharmaceuticals, agricultural chemicals, insecticides, air cleaning agents, etc., and at least a spray electrode (first electrode) 1 and a reference An electrode (second electrode) 2, a power supply device 3, and a dielectric 10 are provided.
- the electrostatic spraying device 100 may be realized by a configuration in which the power supply device 3 is provided outside and connected to the power supply device 3.
- the spray electrode 1 has a conductive conduit such as a metallic capillary (for example, 304 type stainless steel) and a tip 5 that is a tip.
- the spray electrode 1 is connected to the reference electrode 2 via the power supply device 3.
- a spray substance is sprayed from the tip 5.
- the spray electrode 1 has an inclined surface 9 that is inclined with respect to the axial center of the spray electrode 1, and the tip is narrower and sharper toward the tip.
- the spray direction of a spray substance is prescribed
- the reference electrode 2 is made of a conductive rod such as a metal pin (for example, a 304 type steel pin).
- the spray electrode 1 and the reference electrode 2 are spaced apart from each other at a predetermined interval and are arranged in parallel to each other. Further, the spray electrode 1 and the reference electrode 2 are arranged, for example, at an interval of 8 mm from each other.
- the power supply device 3 applies a high voltage between the spray electrode 1 and the reference electrode 2.
- the power supply device 3 applies a high voltage of 1-30 kV (eg, 3-7 kV) between the spray electrode 1 and the reference electrode 2.
- a high voltage is applied, an electric field is formed between the electrodes, and an electric dipole is generated inside the dielectric 10.
- the spray electrode 1 is positively charged and the reference electrode 2 is negatively charged (or vice versa).
- negative dipoles are generated on the surface of the dielectric 10 closest to the positive spray electrode 1, and positive dipoles are generated on the surface of the dielectric 10 closest to the negative reference electrode 2.
- the charge generated in the reference electrode 2 is a charge having a polarity opposite to the polarity of the spray substance.
- the charge of the spray material is balanced by the charge generated at the reference electrode 2. Therefore, the electrostatic spraying device 100 can achieve spray stability by current feedback control based on the principle of charge balance. Details thereof will be described later.
- the dielectric 10 is made of a dielectric material such as nylon 6, nylon 11, nylon 12, nylon 66, or a polyacetyl-polytetrafluoroethylene mixture.
- the dielectric 10 supports the spray electrode 1 at the spray electrode mounting portion 6 and supports the reference electrode 2 at the reference electrode mounting portion 7.
- FIG. 2 is a view for explaining the external appearance of the electrostatic spraying device 100.
- the electrostatic spraying device 100 has a rectangular shape (may have other shapes).
- a spray electrode 1 and a reference electrode 2 are disposed on one surface of the apparatus.
- the spray electrode 1 is located in the vicinity of the reference electrode 2.
- An annular opening 11 is formed so as to surround the spray electrode 1
- an annular opening 12 is formed so as to surround the reference electrode 2.
- a voltage is applied between the spray electrode 1 and the reference electrode 2, whereby an electric field is formed between the spray electrode 1 and the reference electrode 2.
- a positively charged droplet is sprayed from the spray electrode 1.
- the reference electrode 2 is negatively charged by ionizing air in the vicinity of the electrode.
- the negatively charged air moves away from the reference electrode 2 due to the electric field formed between the electrodes and the repulsive force between the negatively charged air particles. This movement generates a flow of air (hereinafter also referred to as an ion flow), and positively charged droplets are sprayed in a direction away from the electrostatic spraying device 100 by the ion flow.
- a flow of air hereinafter also referred to as an ion flow
- FIG. 3 shows an example of a configuration diagram of the power supply device 3.
- the power source device 3 includes a power source 21, a high voltage generator (voltage applying means) 22, a monitoring circuit 23 that monitors the output voltage in the currents of the spray electrode 1 and the reference electrode 2, and the current value of the reference electrode 1 as a predetermined value.
- the control circuit 24 includes a microprocessor 241 that may be designed to further adjust the output voltage and spray time based on other feedback information 25.
- the feedback information 25 includes environmental conditions (temperature, humidity, and / or atmospheric pressure), liquid amount, arbitrary settings by the user, and the like.
- the power source 21 can be a well-known power source, and includes a main power source or one or more batteries.
- the power source 21 is preferably a low voltage power source or a direct current (DC) power source.
- one battery is formed by combining one or more voltaic batteries. Suitable batteries include AA batteries and AA batteries. The number of batteries depends on the required voltage level and the power consumption of the power source.
- the high voltage generator 22 includes an oscillator 221, a transformer 222, and a converter circuit 223.
- the oscillator 221 converts direct current into alternating current, and the transformer 222 is driven with alternating current.
- a converter circuit 223 is connected to the transformer 222.
- the converter circuit 223 includes a charge pump and a rectifier circuit.
- the converter circuit 223 generates a desired voltage and converts alternating current into direct current.
- a typical converter circuit is a Cockloft-Walton circuit.
- the monitoring circuit 23 includes a current feedback circuit 231 and may include a voltage feedback circuit 232 depending on applications.
- the current feedback circuit 231 measures the current value of the reference electrode 2. Since the electrostatic spray device 100 is charge-balanced, the current at the tip of the spray electrode 1 can be accurately monitored by measuring and referring to the current value of the reference electrode 2. According to this method, there is no need to provide an expensive, complicated and confusing measuring means at the tip of the spray electrode 1, and it is not necessary to estimate the contribution of the discharge (corona) current to the measuring current.
- the current feedback circuit 231 may include any conventional current measuring device such as a current transformer.
- the current in the reference electrode 2 is measured by measuring the voltage in a set resistor (feedback resistor) connected in series with the reference electrode 2.
- the measured voltage in the set register is read using an analog to digital (A / D) converter.
- a / D converter is a part of a microprocessor.
- a suitable microprocessor with an analog-to-digital converter is a PIC16F18 ** family of microprocessors from Microchip. The digital information is processed by the microprocessor to provide output to the control circuit 24.
- the voltage measured by the set register is compared with a predetermined constant reference voltage value using a comparator.
- the comparator requires very low current (generally nanoamperes or less) and has a fast response speed.
- the microprocessor 241 incorporates a comparator for that purpose.
- the above-mentioned PIC16F1824 of the microchip family provides a suitable comparator having a very low input current value and a constant reference voltage.
- the reference voltage value input to the comparator is set using a D / A converter included in the microprocessor 241 and a selectable reference voltage value is prepared. In normal operation, the circuit can detect whether the measured current is higher or lower than the required value determined by the magnitude of the reference voltage and the feedback resistor and provides that information to the control circuit 24.
- the monitoring circuit 23 is also provided with a voltage feedback circuit 232 and measures the voltage applied to the spray electrode 1.
- the applied voltage is monitored directly by measuring the voltage at the junction of the two resistors forming a voltage divider connecting the two electrodes.
- the applied voltage is monitored by measuring the voltage generated at a node in the Cockloft-Walton circuit using similar voltage divider principles.
- the feedback information is processed through an A / D exchanger or by comparing the feedback signal with a reference voltage value using a comparator.
- the control circuit 24 acquires information indicating the current value of the reference electrode 2 from the monitoring circuit 23, and compares the current value of the reference electrode 2 with a predetermined current value (for example, 0.867 ⁇ A). Then, if the current value of the reference electrode 2 is not a predetermined current value, the control circuit 24 controls the current value of the reference electrode 2 so as to be a predetermined current value.
- the control circuit 24 controls the current value of the reference electrode 2 to a predetermined current value, and then sets the amplitude, frequency, or duty cycle of the oscillator 221 and the voltage on / off time (or a combination thereof). By controlling, the output voltage of the high voltage generator 22 is controlled.
- control circuit 24 sets the current value of the reference electrode 2 to a certain width instead of the “predetermined current value”. Control may be performed so as to be within a predetermined range ( ⁇ 5%).
- feedback information 25 may be input to the microprocessor 241 because it is necessary to compensate the voltage or duty cycle / spray interval based on the atmospheric temperature, humidity, atmospheric pressure, liquid amount of the sprayed substance, and the like.
- the information is given as analog information or digital information and is processed by the microprocessor 241.
- the microprocessor 241 can perform compensation to increase the quality and stability of the spray by changing either the spray interval, the time to turn on the spray, or the applied voltage.
- the power supply device 3 includes a temperature detection element such as a thermistor used for temperature compensation.
- the power supply device 3 changes a spray space
- the spray interval is the total power on / off time.
- the spray interval can be changed by software built into the microprocessor 241 of the power supply and increases from the set point when the temperature rises and decreases from the set point when the temperature falls.
- the increase and decrease of the spray interval is preferably according to a predetermined index determined by the characteristics of the substance to be sprayed.
- the compensation change amount of the spray interval may be limited so that the spray interval changes only between 0-60 ° C. (eg, 10-45 ° C.). For this reason, extreme temperatures recorded by the temperature sensing element are considered erroneous and are not considered, and for high and low temperatures, an acceptable but not optimal spray interval is set.
- the on / off interval of the spray interval may be adjusted to make the spray interval constant, and the spray time may be increased or decreased within the spray interval when the temperature rises or falls.
- the power supply device 3 may further include an inspection circuit that detects the characteristics of the substance to be sprayed and generates characteristic information indicating the characteristics of the substance.
- the characteristic information generated by the inspection circuit is supplied to the control circuit 24.
- the control circuit 24 uses this characteristic information to compensate at least one voltage control signal.
- the voltage control signal is a signal generated based on the detection result of ambient environmental conditions (for example, temperature, humidity and / or atmospheric pressure, and / or spray amount), and adjusts the output voltage or spray time. It is a signal for.
- the power supply device 3 may include a pressure sensor in order to monitor the ambient pressure (atmospheric pressure).
- the internal configuration of the power supply device 3 has been described above. However, the above description is an example of the power supply device 3, and the power supply device 3 may be realized by other configurations as long as it has the above function.
- FIG. 4 is a view for explaining the first position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2.
- FIG. 5 is a view for explaining the second position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2.
- FIG. 6 is a view for explaining the third position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2.
- FIG. 7 is a view for explaining the fourth position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2.
- FIG. 8 is a top view of the first to fourth positions of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2.
- the tip 5 of the spray electrode 1 is located closest to the reference electrode 2 as compared to the position of the tip 5 shown in FIGS. 5 to 7 (position indicated by a point a in FIG. 8).
- the point a is represented as 0 °. This defines the position of the point a as 0 ° with the axis P of the spray electrode 1 as a reference.
- the tip portion 5 of the spray electrode 1 is located in the middle of the position of the tip portion 5 shown in FIGS. 4 and 6 (the position indicated by the point b in FIG. 8). This indicates that the position rotated by 90 ° from the point a with respect to the axis P of the spray electrode 1 is the point b.
- the tip 5 of the spray electrode 1 is located farthest from the reference electrode 2 compared to the position of the tip 5 shown in FIGS. 4, 5, and 7 (indicated by a point c in FIG. 8). Position).
- the point c is represented as 180 °. This indicates that the position rotated by 180 ° from the point a with respect to the axis P of the spray electrode 1 is the point c.
- the tip 5 of the spray electrode 1 is located in the middle of the position of the tip 5 shown in FIGS. 4 and 6 (the position indicated by the point d in FIG. 8). This indicates that the position rotated by 270 ° from the point a with respect to the axis P of the spray electrode 1 is the point d.
- FIGS. 9 to 11 are perspective views showing how the position of the tip 5 of the spray electrode 1 with respect to the reference electrode 2 is changed.
- FIG. 9 is a perspective view showing a state in which the tip portion 5 of the spray electrode 1 is located at a position corresponding to the point b in FIG.
- FIG. 10 is a perspective view showing a state where the tip portion 5 of the spray electrode 1 is located at a position corresponding to the point c in FIG.
- FIG. 11 is a perspective view showing a state where the tip portion 5 of the spray electrode 1 is located at a position corresponding to the point d in FIG. 9 to 11, the reference electrode 2 is not shown, but is located on the right side of the drawing.
- the arrangement of the spray electrode 1 can also be expressed as follows. That is, at the position indicated by the point c in FIG. 8, the tip portion 5 of the spray electrode 1 is located on the opposite side to the side where the reference electrode 2 is located when viewed from the axial center of the spray electrode 1. Further, at the positions indicated by points a, b, and d in FIG. 8 (or the positions excluding the point c when making a round with the points a to b to c to d to a), the tip 5 of the spray electrode 1 is In addition, the spray electrode 1 and the reference electrode 2 are deviated from the line connecting the respective axis centers.
- the spray electrode 1 it is of course possible to change the position of the tip 5 of the spray electrode 1 with respect to the reference electrode 2 also in the conventional electrostatic spraying apparatus.
- the electric field strength of the electric field formed between the spray electrode and the reference electrode is weakened by the tip of the spray electrode being moved away from the reference electrode.
- the spray substance is sprayed in the direction of the reference electrode, that is, the direction of the electrostatic spraying device, and spray back occurs, and the spraying material may adhere to the electrostatic spraying device.
- the spray electrode and the reference electrode are electrically connected by the droplet, and the spray electrode and the reference electrode are connected by the droplet.
- Leakage current may occur between the reference electrode and the reference electrode.
- the amount of liquid sprayed from the electrostatic spraying device may become unstable due to the occurrence of leakage current.
- the electrostatic spraying device 100 even if the tip portion 5 of the spray electrode 1 is changed to a position away from the reference electrode 2, the current control is performed by the power supply device 3 and the reference is performed. The current value of the electrode 2 is kept constant. Thereby, the voltage applied between the spray electrode 1 and the reference electrode 2 is increased (voltage application step), and the electric field strength between the spray electrode 1 and the reference electrode 2 can be maintained. As a result, the spray back to the electrostatic spraying apparatus 100 is suppressed, and a situation in which a leakage current is generated between the spray electrode 1 and the reference electrode 2 can be avoided.
- the electrostatic spraying device 100 even if the tip 5 of the spray electrode 1 is changed to a position approaching the reference electrode 2, the current value of the reference electrode 2 is kept constant by receiving current control from the power supply device 3. Kept. Thereby, the voltage applied between the spray electrode 1 and the reference electrode 2 becomes weak, and the electric field strength between the spray electrode 1 and the reference electrode 2 can be maintained. As a result, the electrostatic spraying device 100 can maintain spray stability.
- the electrostatic spraying device 100 can maintain spray stability regardless of the position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2.
- FIG. 12 shows the case where the tip 5 of the spray electrode 1 is provided at the positions of point a (0 °), point b (90 °), point c (180 °), and point d (270 °) shown in FIG.
- the horizontal axis indicates the elapsed time (days)
- the vertical axis indicates the spray amount (g / day).
- One sample when provided at (0 °) was subjected to a spraying experiment. The result of the spray experiment is shown in FIG.
- the current value of the reference electrode 2 is kept constant by receiving the current control by the power supply device 3. By being. That is, since the current value of the reference electrode 2 is kept constant, the voltage applied between the spray electrode 1 and the reference electrode 2 is controlled, and the electric field strength between the spray electrode 1 and the reference electrode 2 is maintained. By being done.
- the electrostatic spraying device 100 can appropriately change the arrangement of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2 and can maintain the spray stability. Compared with, the stability of spraying can be improved.
- FIG. 13 is a schematic view for explaining the spray direction when the tip portion 5 of the spray electrode 1 is positioned on the reference electrode 2 side.
- FIG. 14 is a schematic diagram for explaining the spray direction when the tip 5 of the spray electrode 1 is located on the side opposite to the reference electrode 2.
- the spray electrode 1 has an inclined surface 9 that is inclined with respect to the axial center of the spray electrode 1, and becomes thinner toward the tip.
- the inclination is formed in the upper left direction of the drawing (direction approaching the reference electrode 2).
- the liquid is sprayed from the spray electrode 1 along the slope, that is, in the direction of the reference electrode 2.
- the inclination is formed in the upper right direction of the drawing (a direction far from the reference electrode 2).
- the liquid is sprayed from the spray electrode 1 along the slope, that is, in the direction opposite to the reference electrode 2.
- the direction in which the liquid is sprayed is defined by the shape of the tip portion 5 of the spray electrode 1 (more specifically, the tilt direction of the tilted surface 9).
- the reference electrode 2 is located on the right side of each drawing.
- FIG. 15 is a diagram showing the spray direction of the liquid when the tip 5 of the spray electrode 1 is located at a position corresponding to the point a in FIG. It can be seen that the electric field reflected in white in the figure is in the direction of the reference electrode 2.
- FIG. 16 is a diagram showing the spraying direction of the liquid when the tip 5 of the spray electrode 1 is located at a position corresponding to the point b in FIG. It can be seen that the focus of the electric field reflected in white in the figure is directed downward (direction perpendicular to the line segment connecting the spray electrode 1 and the reference electrode 2).
- FIG. 17 is a diagram showing the spray direction of the liquid when the tip 5 of the spray electrode 1 is located at a position corresponding to the point c in FIG. It can be seen that the electric field reflected in white in the figure is in the opposite direction to the reference electrode 2.
- FIG. 18 is a diagram showing a liquid spraying direction when the tip 5 of the spray electrode 1 is located at a position corresponding to the point d in FIG. It can be seen that the focus of the electric field reflected in white in the figure is directed upward (direction perpendicular to the line segment connecting the spray electrode 1 and the reference electrode 2).
- the direction in which the liquid is sprayed is defined by the shape of the tip portion 5 of the spray electrode 1, specifically, the inclination direction of the inclined surface 9.
- FIG. 19 shows a front view of the electrostatic spraying device 100 erected with respect to the ground.
- the lower side is the direction of gravity.
- the electrostatic spraying device 100 has a spray electrode 1 and a reference electrode 2 disposed on one surface thereof. As shown in the figure, the spray electrode 1 is located in the vicinity of the reference electrode 2. An annular opening 11 is formed so as to surround the spray electrode 1, and an annular opening 12 is formed so as to surround the reference electrode 2. A voltage is applied between the spray electrode 1 and the reference electrode 2, whereby an electric field is formed between the spray electrode 1 and the reference electrode 2. A positively charged droplet is sprayed from the spray electrode 1.
- the reference electrode 2 is negatively charged by ionizing air in the vicinity of the electrode. The negatively charged air moves away from the reference electrode 2 due to the electric field formed between the electrodes and the repulsive force between the negatively charged air particles. This movement generates an ion flow, and droplets positively charged by the ion flow are sprayed away from the electrostatic spraying device 100.
- the tip 5 of the spray electrode 1 is located at the positions indicated by the points a, b, c, and d in FIG. The position at which the spray substance is sprayed back is shown.
- the spray substance is sprayed from the spray electrode 1 toward the reference electrode 2. Therefore, if the lower side of the drawing is the lower side (the direction of gravity), the region La to be sprayed back is the lower side between the spray electrode 1 and the reference electrode 2.
- the direction in which the liquid is sprayed is defined by the shape of the tip portion 5 of the spray electrode 1 (more specifically, the inclination direction of the inclined surface 9 (not shown)). Therefore, similarly to the region La, the region Lb, the region Lc, and the region L are determined by the inclination direction of the inclined surface 9 of the distal end portion 5 of the spray electrode 1. Therefore, the region Lb is located below the spray electrode 1, and the region Lc is located on the opposite side of the reference electrode 2 when viewed from the spray electrode 1. The region Ld is located above the spray electrode 1 (in the direction opposite to gravity).
- the electrostatic spraying device 100 is used for spraying aromatic oil, agricultural chemicals, pharmaceuticals, agricultural chemicals, insecticides, air cleaning chemicals, and the like. Therefore, the relative position between the tip 5 of the spray electrode 1 and the reference electrode 2 may be appropriately changed when there is a suitable direction for the spraying direction of the substance depending on the application. Thereby, a spray substance is sprayed in a more suitable direction, and the spray most suitable for the use of the electrostatic spraying apparatus 100 can be realized.
- the current value of the reference electrode 2 is kept constant by receiving the current control by the power supply device 3. Since the current value of the reference electrode 2 is kept constant, the voltage applied between the spray electrode 1 and the reference electrode 2 is controlled, and the electric field strength between the spray electrode 1 and the reference electrode 2 is maintained. Is done.
- the electrostatic spraying device 100 can appropriately change the arrangement of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2 and can maintain the spray stability.
- the electrostatic spraying device 100 can improve the stability of spraying compared with the conventional electrostatic spraying device.
- the spray electrode 1 and the reference electrode 2 are electrically connected by the droplet, and the liquid A leakage current may be generated between the spray electrode 1 and the reference electrode 2 due to the droplets.
- spray back occurs in the direction of the region Lc from the viewpoint of suppressing the occurrence of leakage current.
- the substance sprayed from the spray electrode 1 flies farthest from the reference electrode 2 when the tip 5 of the spray electrode 1 is positioned at the point c. For this reason, when the tip part 5 of the spray electrode 1 is located at the position of the point c, it can be said that wetting is most easily controlled on the surface of the apparatus.
- the tip 5 of the spray electrode 1 is positioned between the point b and the point c and between the point c and the point d, for example, between the region Lb and the region Lc and between the region Lc and the region Ld. It is also possible to limit the area where spray back can occur. In addition, it can be said that the tip portion 5 of the spray electrode 1 may be positioned at the point a if there is no operational problem with the occurrence of spray back in the region La.
- the electrostatic spraying device 100 can position the tip of the spray electrode 1 that defines the spraying direction of the substance at any position in order to maintain the stability of spraying. Effects that cannot be achieved by the electrospraying device can be realized.
- FIG. 20 is a diagram for comparing and explaining the spray electrode 1 according to the present embodiment and the spray electrode 15 according to another embodiment.
- Each of the spray electrode 1 and the spray electrode 15 has an inclined surface 9 that is inclined with respect to the axis of the spray electrode, and the tip becomes narrower and sharper toward the tip. And the spray direction of a spray substance is prescribed
- the spray electrode 1 is inclined with respect to the axial center of the spray electrode 1 and defines the shape of the tip portion of the spray electrode 1 when the sprayed electrode 1 is sprayed upward.
- the contact 16 between the lower end of 9 and the outer surface of the spray electrode 1 has an acute angle. Therefore, when a voltage is applied between the spray electrode 1 and the reference electrode 2, the electric field focal point is formed at the contact 16, and thus an electric field may be formed between the reference electrode 2 and the contact 16. is there. Thereby, it is necessary to consider the case where the substance is sprayed from the contact point 16 instead of the front end portion 5 and a suitable substance spray from the electrostatic spraying device 100 is obstructed.
- the spray electrode 15 is inclined with respect to the axial center of the spray electrode 15 and defines the shape of the distal end portion of the spray electrode 15 when the sprayed electrode 15 is sprayed on the material spray side.
- the contact 17 between the lower end of 9 and the outer surface of the spray electrode 15 has a curved surface (curved surface portion). Therefore, when a voltage is applied between the spray electrode 15 and the reference electrode 2, the electric field focal point is not formed at the contact point 17, and the electric field is generated between the reference electrode 2 and the tip 5 of the spray electrode 15. Is formed. Thereby, a substance is sprayed from the front-end
- the electrostatic spraying device 100 uses the spray electrode 1, when the tip 5 is positioned at the point c in FIG. 8, a voltage is applied between the spray electrode 1 and the reference electrode 2 and the contact 16. It is considered that the focus of the electric field is easily formed. Therefore, it can be said that it is effective to use the spray electrode 15 when positioning the tip of the spray electrode at the point c in FIG.
- FIG. 21 is a diagram for explaining the housing surface of the electrostatic spraying device 100.
- the lower side of the drawing is the direction of gravity.
- the electrostatic spraying apparatus 100 is in a standing state.
- the electrostatic spraying device 100 shown in FIG. An annular opening 11 formed so as to surround the spray electrode 1 and an annular opening 12 formed so as to surround the reference electrode 2 are formed on the surface 30 of the electrostatic spraying apparatus 100 on the liquid spray side. And are formed.
- a groove 34a, a groove 34b, and a groove 34c are formed on the surface 30.
- the groove 34b and the groove 34c are formed to extend in the longitudinal direction (the vertical direction in the drawing) of the electrostatic spraying device 100, and are connected to each other via the groove 34a.
- the groove 34a is formed to extend in the short direction (left and right direction in the drawing) of the electrostatic spraying apparatus 100, and connects the groove 34b and the groove 34c via the groove 34a.
- the groove 34a, the groove 34b, and the groove 34c intersect in a substantially vertical direction.
- the groove 34b and the groove 34c are not essential, and only the groove 34a may be formed.
- a liquid recovery part 35a, a liquid recovery part 35b, and a liquid recovery part 35c are formed in the groove 34a.
- the liquid recovery part 35a is located at the center of the groove 34a extending in the horizontal direction, and the liquid recovery part 35b and the liquid recovery part 35c are located at both ends of the groove 34a.
- each of the liquid recovery part 35a, the liquid recovery part 35b, and the liquid recovery part 35c is formed in a trapezoidal shape, for example, and the shorter one of the upper and lower bases is located on the lower side in the gravity direction ( Hereinafter, this shape may be referred to as an inverted trapezoid).
- the liquid recovery part 35a, the liquid recovery part 35b, and the liquid recovery part 35c may be formed in the groove 34a with an inclination, for example, so as to easily recover the liquid inside the electrostatic spraying device 100. .
- the groove 34a is formed with a length of 26 mm and a height of 1 mm, for example.
- the liquid recovery part 35a is formed with an upper base of 6 mm, a lower and lower part of 4 mm, and a height of 1.6 mm.
- the liquid recovery part 35b and the liquid recovery part 35c are formed with an upper base of 5 mm, a lower and lower part of 3 mm, and a height of 1.6 mm.
- these numerical values are examples, and are not limited to these numerical values.
- the spray electrode 1 is connected to the electric conductor 38, and a voltage is applied from the power supply device 3 (not shown) through the electric conductor 38.
- the reference electrode 2 is connected to the electrical conductor 39, and a voltage is applied from the power supply device 3 (not shown) via the electrical conductor 39.
- the electric conductor 38 and / or the electric conductor 39 may be coated with a material having water / oil repellency.
- the spray electrode 1 and / or the reference electrode 2 may be attached with an O-ring made of chemically resistant silicon, fluorine rubber, resin, or the like.
- the electrostatic spraying apparatus 100 has the above-described configuration, thereby providing the following effects.
- a liquid recovery part 35a, a liquid recovery part 35b, and a liquid recovery part 35c are formed in the groove 34a. For this reason, when the liquid flows into the groove 34a, the liquid can smoothly enter the liquid recovery part 35a, the liquid recovery part 35b, and the liquid recovery part 35c. Even when the electrostatic spraying device 100 is tilted left and right, since the liquid recovery part 35b and the liquid recovery part 35c are formed at both ends of the groove 34a, the liquid is recovered from the liquid recovery part 35b and the liquid recovery part. The part 35c can be entered.
- the liquid that has entered the groove 34a has high viscosity and / or low volatility, the liquid can smoothly enter the liquid recovery unit 35a, the liquid recovery unit 35b, and the liquid recovery unit 35c. It can be recovered in the electrostatic spraying device 100.
- the liquid recovery portion 35 is formed in the groove 34 located in the vicinity of the position. By doing so, the sprayed liquid can be quickly recovered.
- the position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2 can be changed as appropriate according to the position of the liquid recovery unit 35, thereby increasing the degree of freedom in device design. Is possible.
- the tip of the first electrode may be positioned farthest from the second electrode when viewed from the axial center of the first electrode.
- the electrostatic spraying apparatus which concerns on 1 aspect of this invention sprays a substance in the direction furthest away from the said 1st electrode, and sprays back to the area
- the electrostatic spraying apparatus which concerns on 1 aspect of this invention can improve the stability of spraying.
- the first electrode is inclined with respect to the axis of the first electrode when the side on which the substance is sprayed is the upper side in the first electrode.
- the lower end portion of the inclined surface may include a curved surface portion.
- the electrostatic spraying device Since the focal point of the electric field is likely to be formed at the corner, the electrostatic spraying device according to one embodiment of the present invention has the above-described configuration, so that a voltage is applied between the first electrode and the second electrode. Sometimes, the focal point of the electric field is not formed on the curved surface portion, and an electric field is formed between the tip portion of the first electrode and the second electrode. Therefore, in the electrostatic spraying device according to one embodiment of the present invention, the stability of spraying can be improved by spraying a substance from the tip of the first electrode.
- the present invention can be used in an electrostatic spraying apparatus that sprays aromatic oil, chemicals for agricultural products, pharmaceuticals, agricultural chemicals, insecticides, air cleaning chemicals, and the like.
Landscapes
- Electrostatic Spraying Apparatus (AREA)
Abstract
An electrostatic atomizer (100) is provided with a spray electrode (1), a reference electrode (2), a control circuit (24), and a high-voltage device (22). A voltage is applied between the spray electrode (1) and the reference electrode (2). The control circuit (24) controls the amount of current flowing through the reference electrode (2) so as to keep said amount of current within a prescribed range. The high-voltage device (22) applies a voltage between the spray electrode (1) and the reference electrode (2) on the basis of the controlled current amount.
Description
本発明は、噴霧安定性に優れた静電噴霧装置、および静電噴霧装置の制御方法に関する。
The present invention relates to an electrostatic spraying device having excellent spray stability and a method for controlling the electrostatic spraying device.
従来から、容器内の液体をノズルから噴射する噴霧装置が幅広い分野に適用されている。この種の噴霧装置として、電気流体力学(EHD:Electro Hydrodynamics)により液体を霧化して噴霧する静電噴霧装置が知られている。この静電噴霧装置は、ノズルの先端近傍に電場を形成し、その電場を利用してノズルの先端の液体を霧化して噴射するものである。そのような静電噴霧装置を開示する文献として、特許文献1が知られている。
Conventionally, a spraying apparatus that ejects liquid in a container from a nozzle has been applied to a wide range of fields. As this type of spraying device, an electrostatic spraying device that atomizes and sprays a liquid by electrohydrodynamics (EHD) is known. This electrostatic spraying device forms an electric field in the vicinity of the tip of the nozzle, and uses the electric field to atomize and spray the liquid at the tip of the nozzle. Patent Document 1 is known as a document disclosing such an electrostatic spraying device.
しかしながら、特許文献1の技術には次のような点で改善の余地がある。
However, the technique of Patent Document 1 has room for improvement in the following points.
特許文献1の静電噴霧装置はスプレー電極と基準電極とを備え、スプレー電極および基準電極はそれぞれ、誘電体物質に隣接する。スプレー電極は、液体を噴霧する導管であり、基準電極との間に電場の焦点(focus point)をもたらすように先端部分が一定の角度で切り取られた形状となっている。これにより、スプレー電極は、先端に向かうほど鋭くなっている。そして、特許文献1の図4(a)には、スプレー電極の先端部を基準電極から最も離した位置に位置決めした構成が開示されている。
The electrostatic spraying device of Patent Document 1 includes a spray electrode and a reference electrode, and each of the spray electrode and the reference electrode is adjacent to a dielectric material. The spray electrode is a conduit for spraying liquid, and has a shape in which a tip portion is cut at a certain angle so as to provide a focus point of an electric field between the spray electrode and the reference electrode. Thereby, the spray electrode becomes sharper toward the tip. And the structure which positioned the front-end | tip part of the spray electrode in the position most distant from the reference | standard electrode is disclosed by FIG. 4 (a) of patent document 1. FIG.
この点、特許文献1の図4(a)では、スプレー電極の先端部が基準電極から離れることにより、スプレー電極と基準電極との間の電場が弱くなる、つまり、電場力線の数が少なくなる。これにより、噴霧物質は、基準電極の方向、つまり、装置自身の方向に噴霧され(以下、この現象をスプレーバックと称することもある)、静電噴霧装置に噴霧物質が付着することが考えられる。
In this regard, in FIG. 4A of Patent Document 1, the electric field between the spray electrode and the reference electrode is weakened because the tip of the spray electrode is separated from the reference electrode, that is, the number of electric field force lines is small. Become. As a result, the spray substance is sprayed in the direction of the reference electrode, that is, the direction of the apparatus itself (hereinafter, this phenomenon may be referred to as spray back), and the spray substance may adhere to the electrostatic spray apparatus. .
そして、静電噴霧装置の運転中にスプレー電極と基準電極との間に液滴が付着すると、その液滴によって、スプレー電極と基準電極とが電気的に接続し、その液滴によってスプレー電極と基準電極との間に漏れ電流が発生することがある。漏れ電流が発生すると、静電噴霧装置から噴霧される液量が不安定になるケースも考えられる。
When a droplet adheres between the spray electrode and the reference electrode during operation of the electrostatic spraying device, the spray electrode and the reference electrode are electrically connected by the droplet, and the spray electrode and the reference electrode are connected by the droplet. Leakage current may occur between the reference electrode and the reference electrode. If leakage current occurs, the amount of liquid sprayed from the electrostatic spray device may become unstable.
本発明は、上記の問題を解決するためになされたものであり、その目的は、噴霧安定性に優れた静電噴霧装置、および静電噴霧装置の制御方法を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide an electrostatic spraying device having excellent spray stability and a control method for the electrostatic spraying device.
上記の課題を解決するために、本発明の一態様に係る静電噴霧装置は、物質を噴霧し、かつ、当該物質の噴霧方向を規定する尖状の先端部を有する第1電極と、上記第1電極との間で電圧が印加される第2電極と、上記第2電極における電流値を所定の範囲に制御する電流制御手段と、上記電流制御手段により制御された電流値に基づいて、上記第1電極と上記第2電極との間に電圧を印加する電圧印加手段と、を備え、上記第1電極の上記先端部は、上記第1電極の軸心から外れた位置にあり、かつ、上記第1電極の軸心から視て、上記第2電極が位置する側とは反対側に位置することを特徴としている。
In order to solve the above problems, an electrostatic spraying device according to one embodiment of the present invention includes a first electrode that sprays a substance and has a pointed tip that defines a spraying direction of the substance, Based on the second electrode to which a voltage is applied between the first electrode, the current control means for controlling the current value in the second electrode to a predetermined range, and the current value controlled by the current control means, Voltage applying means for applying a voltage between the first electrode and the second electrode, wherein the tip of the first electrode is at a position off the axis of the first electrode, and When viewed from the axial center of the first electrode, the first electrode is located on the opposite side to the side on which the second electrode is located.
また、上記の課題を解決するために、本発明の一態様に係る静電噴霧装置の制御方法は、上記静電噴霧装置は、物質を噴霧し、かつ、当該物質の噴霧方向を規定する尖状の先端部を有する第1電極と、上記第1電極との間で電圧が印加される第2電極と、を備え、上記第2電極における電流値を所定の範囲に制御する電流制御ステップと、上記電流制御ステップにて制御された電流値に基づいて、上記第1電極と上記第2電極との間に電圧を印加する電圧印加ステップと、を含み、上記第1電極の上記先端部は、上記第1電極の軸心から外れた位置にあり、かつ、上記第1電極の軸心から視て、上記第2電極が位置する側とは反対側に位置することを特徴としている。
In order to solve the above-described problem, an electrostatic spraying device control method according to an aspect of the present invention includes: the electrostatic spraying device sprays a substance and defines a spray direction of the substance. A current control step for controlling a current value in the second electrode to a predetermined range, comprising: a first electrode having a shape-like tip portion; and a second electrode to which a voltage is applied between the first electrode and the second electrode. A voltage applying step of applying a voltage between the first electrode and the second electrode based on the current value controlled in the current control step, wherein the tip portion of the first electrode is The second electrode is located at a position deviated from the axis of the first electrode, and is located on the opposite side to the side where the second electrode is located as viewed from the axis of the first electrode.
静電噴霧装置では、第1電極と第2電極との間に電圧が印加されることで、第1電極と第2電極との間に電場が形成される。このとき、第1電極は正に帯電し、第2電極は負に帯電する(その逆でもよい)。これにより、第1電極は正帯電した液滴を噴霧する。また、第2電極は電極近傍の空気をイオン化して負帯電させる。負帯電した空気は、電極間に形成された電場と負帯電された空気粒子間の反発力とによって第2電極から遠ざかる動きをする。この動きが空気の流れ(以下、イオン流と称する場合もある)を生み、このイオン流によって正帯電した液滴が静電噴霧装置から離れる方向へと噴霧される。
In the electrostatic spraying device, an electric field is formed between the first electrode and the second electrode by applying a voltage between the first electrode and the second electrode. At this time, the first electrode is positively charged and the second electrode is negatively charged (or vice versa). As a result, the first electrode sprays a positively charged droplet. The second electrode is ionized negatively by ionizing air in the vicinity of the electrode. The negatively charged air moves away from the second electrode due to the electric field formed between the electrodes and the repulsive force between the negatively charged air particles. This movement generates a flow of air (hereinafter sometimes referred to as an ion flow), and the positively charged droplets are sprayed away from the electrostatic spraying device by the ion flow.
このとき、従来の静電噴霧装置では、物質の噴霧方向を規定する第1電極の尖状の先端部の位置が第2電極に対して変更された場合、例えば、第1電極の先端部が第2電極から遠ざかる場合、第1電極と第2電極との間の電場強度が弱くなる。これにより、噴霧物質は、第2電極の方向、つまり、静電噴霧装置の方向に噴霧されてスプレーバックが発生し、静電噴霧装置に噴霧物質が付着することもある。その場合、静電噴霧装置の運転中に第1電極と第2電極との間に液滴が付着すると、その液滴によって、第1電極と第2電極とが電気的に接続し、その液滴によって第1電極と第2電極との間に漏れ電流が発生することがある。その結果、漏れ電流が発生することで静電噴霧装置から噴霧される液量が不安定になることもある。
At this time, in the conventional electrostatic spraying device, when the position of the pointed tip of the first electrode that defines the spraying direction of the substance is changed with respect to the second electrode, for example, the tip of the first electrode When moving away from the second electrode, the electric field strength between the first electrode and the second electrode becomes weak. As a result, the spray substance is sprayed in the direction of the second electrode, that is, in the direction of the electrostatic spraying device to generate a spray back, and the spraying material may adhere to the electrostatic spraying device. In that case, when a droplet adheres between the first electrode and the second electrode during operation of the electrostatic spraying device, the first electrode and the second electrode are electrically connected by the droplet, and the liquid Leakage current may be generated between the first electrode and the second electrode due to the droplet. As a result, the amount of liquid sprayed from the electrostatic spraying device may become unstable due to the occurrence of leakage current.
これに対して、本発明の一態様に係る静電噴霧装置では、第1電極の物質の噴霧方向を規定する尖状の先端部の第2電極に対する位置が変更された場合であっても、第2電極における電流値が電流制御手段によって所定の範囲内に制御される。そして、電流制御手段により制御された電流値に基づいて、第1電極と第2電極との間に電圧が印加される。つまり、第2電極における電流値を所定の範囲内に制御することで、第1電極と第2電極との間に印加される電圧値が安定し、その結果、第1電極と第2電極との間の電場強度も安定する。
On the other hand, in the electrostatic spraying device according to one aspect of the present invention, even when the position of the pointed tip that defines the spraying direction of the substance of the first electrode with respect to the second electrode is changed, The current value in the second electrode is controlled within a predetermined range by the current control means. Then, a voltage is applied between the first electrode and the second electrode based on the current value controlled by the current control means. That is, by controlling the current value in the second electrode within a predetermined range, the voltage value applied between the first electrode and the second electrode is stabilized, and as a result, the first electrode and the second electrode The electric field strength during is also stable.
したがって、本発明の一態様に係る静電噴霧装置(制御方法)は、自装置へのスプレーバックを抑制し、第1電極と第2電極との間の漏れ電流の発生を抑制することができる。それゆえ、本発明の一態様に係る静電噴霧装置は、第2電極に対する第1電極の先端部の位置にかかわらず、噴霧安定性を保つことができる。
Therefore, the electrostatic spraying device (control method) according to one embodiment of the present invention can suppress the spray back to the device itself and suppress the occurrence of leakage current between the first electrode and the second electrode. . Therefore, the electrostatic spray device according to one embodiment of the present invention can maintain spray stability regardless of the position of the tip of the first electrode with respect to the second electrode.
加えて、本発明の一態様に係る静電噴霧装置では、上記第1電極の上記先端部は、上記第1電極の軸心から外れた位置にあり、かつ、上記第1電極の軸心から視て、上記第2電極が位置する側とは反対側に位置する構成である。
In addition, in the electrostatic spraying device according to one aspect of the present invention, the distal end portion of the first electrode is located at a position off the axis of the first electrode and from the axis of the first electrode. As viewed, the second electrode is located on the opposite side of the side where the second electrode is located.
これにより、本発明の一態様に係る静電噴霧装置は、上記第1電極から離れる方向に物質を噴霧し、第1電極と第2電極との間の領域へのスプレーバックを低減することが可能となる。これにより、本発明の一態様に係る静電噴霧装置は、さらに噴霧の安定性を高めることができる。
Accordingly, the electrostatic spraying device according to one embodiment of the present invention can spray the substance in a direction away from the first electrode, and reduce spray back to a region between the first electrode and the second electrode. It becomes possible. Thus, the electrostatic spraying device according to one embodiment of the present invention can further increase the stability of spraying.
本発明に係る静電噴霧装置は、物質を噴霧し、かつ、当該物質の噴霧方向を規定する尖状の先端部を有する第1電極と、上記第1電極との間で電圧が印加される第2電極と、上記第2電極における電流値を所定の範囲に制御する電流制御手段と、上記電流制御手段により制御された電流値に基づいて、上記第1電極と上記第2電極との間に電圧を印加する電圧印加手段と、を備え、上記第1電極の上記先端部は、上記第1電極の軸心から外れた位置にあり、かつ、上記第1電極の軸心から視て、上記第2電極が位置する側とは反対側に位置する構成である。
The electrostatic spraying device according to the present invention sprays a substance and a voltage is applied between the first electrode having a pointed tip that defines the spraying direction of the substance and the first electrode. A second electrode; current control means for controlling a current value in the second electrode to a predetermined range; and a current value controlled by the current control means between the first electrode and the second electrode. Voltage applying means for applying a voltage to the first electrode, the tip of the first electrode is at a position off the axis of the first electrode, and viewed from the axis of the first electrode, It is the structure located in the opposite side to the side in which the said 2nd electrode is located.
また、本発明に係る静電噴霧装置の制御方法では、上記静電噴霧装置は、物質を噴霧し、かつ、当該物質の噴霧方向を規定する尖状の先端部を有する第1電極と、上記第1電極との間で電圧が印加される第2電極と、を備え、上記第2電極における電流値を所定の範囲に制御する電流制御ステップと、上記電流制御ステップにて制御された電流値に基づいて、上記第1電極と上記第2電極との間に電圧を印加する電圧印加ステップと、を含み、上記第1電極の上記先端部は、上記第1電極の軸心から外れた位置にあり、かつ、上記第1電極の軸心から視て、上記第2電極が位置する側とは反対側に位置する構成である。
Further, in the method for controlling an electrostatic spraying device according to the present invention, the electrostatic spraying device sprays a substance and has a first electrode having a pointed tip that defines the spraying direction of the substance, A current control step for controlling the current value in the second electrode to a predetermined range, and a current value controlled in the current control step. A voltage applying step of applying a voltage between the first electrode and the second electrode, wherein the tip end portion of the first electrode deviates from the axis of the first electrode. And is located on the side opposite to the side where the second electrode is located when viewed from the axial center of the first electrode.
それゆえ、本発明に係る静電噴霧装置、および静電噴霧装置の制御方法は、噴霧安定性に優れた静電噴霧装置を提供することができるという効果を奏する。
Therefore, the electrostatic spraying device and the control method for the electrostatic spraying device according to the present invention have an effect of providing an electrostatic spraying device having excellent spray stability.
以下、図面を参照しつつ、本実施の形態に係る静電噴霧装置100等について説明する。以下の説明では、同一の部品および構成要素には同一の符号を付している。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
Hereinafter, the electrostatic spraying apparatus 100 and the like according to the present embodiment will be described with reference to the drawings. In the following description, the same parts and components are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
〔静電噴霧装置100の要部構成について〕
まず、静電噴霧装置100の要部構成を図1により説明する。図1は、静電噴霧装置100の要部構成を説明するための図である。 [Regarding Configuration of Main Parts of Electrostatic Spraying Device 100]
First, the principal part structure of theelectrostatic spraying apparatus 100 is demonstrated with reference to FIG. FIG. 1 is a diagram for explaining a main configuration of the electrostatic spraying apparatus 100.
まず、静電噴霧装置100の要部構成を図1により説明する。図1は、静電噴霧装置100の要部構成を説明するための図である。 [Regarding Configuration of Main Parts of Electrostatic Spraying Device 100]
First, the principal part structure of the
静電噴霧装置100は、芳香油、農産物用化学物質、医薬品、農薬、殺虫剤、空気清浄化薬剤等の噴霧等に用いられる装置であり、少なくとも、スプレー電極(第1電極)1と、基準電極(第2電極)2と、電源装置3と、誘電体10とを備える。なお、静電噴霧装置100は、電源装置3を外部に設け、その電源装置3と接続される構成で実現されてもよい。
The electrostatic spraying device 100 is a device used for spraying aromatic oil, agricultural chemicals, pharmaceuticals, agricultural chemicals, insecticides, air cleaning agents, etc., and at least a spray electrode (first electrode) 1 and a reference An electrode (second electrode) 2, a power supply device 3, and a dielectric 10 are provided. The electrostatic spraying device 100 may be realized by a configuration in which the power supply device 3 is provided outside and connected to the power supply device 3.
スプレー電極1は、金属性キャピラリ(例えば、304型ステンレス鋼など)等の導電性導管と、先端部である先端部5とを有する。スプレー電極1は、電源装置3を介して基準電極2と接続される。先端部5からは噴霧物質が噴霧される。スプレー電極1は、スプレー電極1の軸心に対して傾斜する傾斜面9を有し、先端部に向かうほど先端が細く、尖った形状である。そして、その尖状形状により噴霧物質の噴霧方向が規定される(詳細は後述)。
The spray electrode 1 has a conductive conduit such as a metallic capillary (for example, 304 type stainless steel) and a tip 5 that is a tip. The spray electrode 1 is connected to the reference electrode 2 via the power supply device 3. A spray substance is sprayed from the tip 5. The spray electrode 1 has an inclined surface 9 that is inclined with respect to the axial center of the spray electrode 1, and the tip is narrower and sharper toward the tip. And the spray direction of a spray substance is prescribed | regulated by the pointed shape (details are mentioned later).
基準電極2は、金属ピン(例えば、304型スチールピンなど)等の導電性ロッドからなる。スプレー電極1および基準電極2は、一定の間隔をあけて離間し、互いに平行に配置されている。また、スプレー電極1および基準電極2は、例えば、互いに8mmの間隔をあけて配置される。
The reference electrode 2 is made of a conductive rod such as a metal pin (for example, a 304 type steel pin). The spray electrode 1 and the reference electrode 2 are spaced apart from each other at a predetermined interval and are arranged in parallel to each other. Further, the spray electrode 1 and the reference electrode 2 are arranged, for example, at an interval of 8 mm from each other.
電源装置3は、スプレー電極1と基準電極2との間に高電圧を印加する。例えば、電源装置3は、スプレー電極1と基準電極2との間に1-30kVの間の高電圧(例えば、3-7kV)を印加する。高電圧が印加されると電極間に電場が形成され、誘電体10の内部に電気双極子が生じる。このとき、スプレー電極1は正に帯電し、基準電極2は負に帯電する(その逆でもよい)。そして、負の双極子が正のスプレー電極1に最も近い誘電体10の表面に生じ、正の双極子が負の基準電極2に最も近い誘電体10の表面に生じ、帯電したガスおよび物質種が、スプレー電極1および基準電極2によって放出される。ここで、上述したように、基準電極2において生成される電荷は、噴霧物質の極性とは逆の極性の電荷である。したがって、噴霧物質の電荷は、基準電極2において生成される電荷によって平衡化される。それゆえ、静電噴霧装置100は、電荷平衡の原理に基づき、電流のフィードバック制御によって、噴霧の安定性を図ることができる。その詳細については後述する。
The power supply device 3 applies a high voltage between the spray electrode 1 and the reference electrode 2. For example, the power supply device 3 applies a high voltage of 1-30 kV (eg, 3-7 kV) between the spray electrode 1 and the reference electrode 2. When a high voltage is applied, an electric field is formed between the electrodes, and an electric dipole is generated inside the dielectric 10. At this time, the spray electrode 1 is positively charged and the reference electrode 2 is negatively charged (or vice versa). Then, negative dipoles are generated on the surface of the dielectric 10 closest to the positive spray electrode 1, and positive dipoles are generated on the surface of the dielectric 10 closest to the negative reference electrode 2. Are emitted by the spray electrode 1 and the reference electrode 2. Here, as described above, the charge generated in the reference electrode 2 is a charge having a polarity opposite to the polarity of the spray substance. Thus, the charge of the spray material is balanced by the charge generated at the reference electrode 2. Therefore, the electrostatic spraying device 100 can achieve spray stability by current feedback control based on the principle of charge balance. Details thereof will be described later.
誘電体10は、例えばナイロン6、ナイロン11、ナイロン12、ナイロン66またはポリアセチル-ポリテトラフルオロエチレン混合物などの誘電体材料からなる。誘電体10は、スプレー電極1をスプレー電極取付部6において支持し、基準電極2を基準電極取付部7において支持する。
The dielectric 10 is made of a dielectric material such as nylon 6, nylon 11, nylon 12, nylon 66, or a polyacetyl-polytetrafluoroethylene mixture. The dielectric 10 supports the spray electrode 1 at the spray electrode mounting portion 6 and supports the reference electrode 2 at the reference electrode mounting portion 7.
次に、静電噴霧装置100の外観を図2により説明する。図2は、静電噴霧装置100の外観を説明するための図である。
Next, the external appearance of the electrostatic spraying device 100 will be described with reference to FIG. FIG. 2 is a view for explaining the external appearance of the electrostatic spraying device 100.
図示するように、静電噴霧装置100は、直方形状である(その他の形状であってもよい)。その装置の一面に、スプレー電極1および基準電極2が配設されている。図示するように、スプレー電極1は、基準電極2の近傍に位置する。また、スプレー電極1を取り囲むように環状の開口11が、基準電極2を取り囲むように環状の開口12が、それぞれ形成されている。スプレー電極1と基準電極2との間には電圧が印加され、それによりスプレー電極1と基準電極2との間に電場が形成される。スプレー電極1からは正帯電した液滴が噴霧される。基準電極2は、電極近傍の空気をイオン化して負帯電させる。そして、負帯電した空気は、電極間に形成された電場と負帯電された空気粒子間の反発力とによって基準電極2から遠ざかる動きをする。この動きが空気の流れ(以下、イオン流と称する場合もある)を生み、このイオン流によって正帯電した液滴が静電噴霧装置100から離れる方向へと噴霧される。
As shown in the figure, the electrostatic spraying device 100 has a rectangular shape (may have other shapes). A spray electrode 1 and a reference electrode 2 are disposed on one surface of the apparatus. As shown in the figure, the spray electrode 1 is located in the vicinity of the reference electrode 2. An annular opening 11 is formed so as to surround the spray electrode 1, and an annular opening 12 is formed so as to surround the reference electrode 2. A voltage is applied between the spray electrode 1 and the reference electrode 2, whereby an electric field is formed between the spray electrode 1 and the reference electrode 2. A positively charged droplet is sprayed from the spray electrode 1. The reference electrode 2 is negatively charged by ionizing air in the vicinity of the electrode. The negatively charged air moves away from the reference electrode 2 due to the electric field formed between the electrodes and the repulsive force between the negatively charged air particles. This movement generates a flow of air (hereinafter also referred to as an ion flow), and positively charged droplets are sprayed in a direction away from the electrostatic spraying device 100 by the ion flow.
〔電源装置3について〕
図3は、電源装置3の構成図の一例を示す。電源装置3は、電源21と、高電圧発生装置(電圧印加手段)22と、スプレー電極1および基準電極2の電流における出力電圧を監視する監視回路23と、基準電極1の電流値を所定の値(所定の範囲)に制御(電流制御ステップ)した状態で高電圧発生装置22の出力電圧が所望の値となるように高電圧発生装置22を制御する制御回路(電流制御手段)24とを備える。様々な用途に対応するために、制御回路24はマイクロプロセッサ241を備え、そのマイクロプロセッサ241は、他のフィードバック情報25に基づいて、出力電圧およびスプレー時間をさらに調整できるように設計されていてもよい。フィードバック情報25には、環境条件(気温、湿度、および/または、大気圧)、液体量、ユーザによる任意の設定などが含まれる。 [About power supply 3]
FIG. 3 shows an example of a configuration diagram of the power supply device 3. The power source device 3 includes apower source 21, a high voltage generator (voltage applying means) 22, a monitoring circuit 23 that monitors the output voltage in the currents of the spray electrode 1 and the reference electrode 2, and the current value of the reference electrode 1 as a predetermined value. A control circuit (current control means) 24 for controlling the high voltage generator 22 so that the output voltage of the high voltage generator 22 becomes a desired value in a state where the value (predetermined range) is controlled (current control step). Prepare. To accommodate a variety of applications, the control circuit 24 includes a microprocessor 241 that may be designed to further adjust the output voltage and spray time based on other feedback information 25. Good. The feedback information 25 includes environmental conditions (temperature, humidity, and / or atmospheric pressure), liquid amount, arbitrary settings by the user, and the like.
図3は、電源装置3の構成図の一例を示す。電源装置3は、電源21と、高電圧発生装置(電圧印加手段)22と、スプレー電極1および基準電極2の電流における出力電圧を監視する監視回路23と、基準電極1の電流値を所定の値(所定の範囲)に制御(電流制御ステップ)した状態で高電圧発生装置22の出力電圧が所望の値となるように高電圧発生装置22を制御する制御回路(電流制御手段)24とを備える。様々な用途に対応するために、制御回路24はマイクロプロセッサ241を備え、そのマイクロプロセッサ241は、他のフィードバック情報25に基づいて、出力電圧およびスプレー時間をさらに調整できるように設計されていてもよい。フィードバック情報25には、環境条件(気温、湿度、および/または、大気圧)、液体量、ユーザによる任意の設定などが含まれる。 [About power supply 3]
FIG. 3 shows an example of a configuration diagram of the power supply device 3. The power source device 3 includes a
電源21は周知の電源を用いることができ、主電源または1つ以上のバッテリーを含む。この電源21は、低電圧電源、直流(DC)電源が好ましく、例えば、1つ以上のボルタ電池を組み合わせて1つの電池を構成する。好適な電池には単3電池、単1電池が含まれる。電池の個数は、必要な電圧レベルと電源の消費電力とによって決まる。
The power source 21 can be a well-known power source, and includes a main power source or one or more batteries. The power source 21 is preferably a low voltage power source or a direct current (DC) power source. For example, one battery is formed by combining one or more voltaic batteries. Suitable batteries include AA batteries and AA batteries. The number of batteries depends on the required voltage level and the power consumption of the power source.
高電圧発生装置22は、発振器221と、変圧器222と、コンバータ回路223とを備える。発振器221は直流を交流に変換し、変圧器222は交流で駆動する。この変圧器222にコンバータ回路223が接続される。通常、コンバータ回路223は、チャージポンプと整流回路とを備える。コンバータ回路223は、所望の電圧を生成し、交流を直流に変換する。典型的なコンバータ回路は、コックロフト・ウォルトン回路である。
The high voltage generator 22 includes an oscillator 221, a transformer 222, and a converter circuit 223. The oscillator 221 converts direct current into alternating current, and the transformer 222 is driven with alternating current. A converter circuit 223 is connected to the transformer 222. Usually, the converter circuit 223 includes a charge pump and a rectifier circuit. The converter circuit 223 generates a desired voltage and converts alternating current into direct current. A typical converter circuit is a Cockloft-Walton circuit.
監視回路23は、電流フィードバック回路231を備え、用途によっては、電圧フィードバック回路232を備えてもよい。電流フィードバック回路231は、基準電極2の電流値を測定する。静電噴霧装置100は電荷平衡されるため、基準電極2の電流値を測定し、参照することにより、スプレー電極1の先端部での電流を正確に監視することができる。この方法によれば、高価で、複雑で、混乱を生じさせる測定手段をスプレー電極1の先端部に設ける必要はなく、また、測定電流に対する放電(コロナ)電流の寄与を推定する必要もない。電流フィードバック回路231は、例えば変流器などの従来のいかなる電流測定装置を含んでもよい。
The monitoring circuit 23 includes a current feedback circuit 231 and may include a voltage feedback circuit 232 depending on applications. The current feedback circuit 231 measures the current value of the reference electrode 2. Since the electrostatic spray device 100 is charge-balanced, the current at the tip of the spray electrode 1 can be accurately monitored by measuring and referring to the current value of the reference electrode 2. According to this method, there is no need to provide an expensive, complicated and confusing measuring means at the tip of the spray electrode 1, and it is not necessary to estimate the contribution of the discharge (corona) current to the measuring current. The current feedback circuit 231 may include any conventional current measuring device such as a current transformer.
好ましい実施形態において、基準電極2における電流は、基準電極2と直列に接続されたセットレジスタ(フィードバック抵抗器)における電圧を測定することにより測定される。ある実施形態において、セットレジスタにおける測定電圧は、アナログ・デジタル(A/D)変換器を用いて読み取られる。なお、一般的に、アナログ・デジタル変換器は、マイクロプロセッサの一部である。アナログ・デジタル変換器を備えた好適なマイクロプロセッサは、Microchip社製のPIC16F18**ファミリー製品のマイクロプロセッサである。デジタル情報は、制御回路24に出力を供給するためにマイクロプロセッサにより処理される。
In a preferred embodiment, the current in the reference electrode 2 is measured by measuring the voltage in a set resistor (feedback resistor) connected in series with the reference electrode 2. In some embodiments, the measured voltage in the set register is read using an analog to digital (A / D) converter. In general, an analog / digital converter is a part of a microprocessor. A suitable microprocessor with an analog-to-digital converter is a PIC16F18 ** family of microprocessors from Microchip. The digital information is processed by the microprocessor to provide output to the control circuit 24.
好ましい実施形態において、セットレジスタで測定された電圧は、比較器を用いて、所定の一定基準電圧値と比較される。比較器は、極めて低い電流(一般に、ナノアンペアかそれ以下)しか必要とせず、かつ、応答速度が速い。多くの場合、マイクロプロセッサ241には、その目的のために比較器が組み込まれている。例えば、上述したマイクロチップファミリーのPIC16F1824は、入力電流値が極めて低く、かつ一定の基準電圧を有する好適な比較器を提供する。比較器に入力される基準電圧値は、このマイクロプロセッサ241に含まれるD/A変換器を用いて設定され、選択可能な基準電圧値が用意されている。通常動作では、この回路は、基準電圧の大きさおよびフィードバック抵抗器によって決定される要求値よりも測定電流が高いか低いかを検出することができ、その情報を制御回路24に供給する。
In a preferred embodiment, the voltage measured by the set register is compared with a predetermined constant reference voltage value using a comparator. The comparator requires very low current (generally nanoamperes or less) and has a fast response speed. In many cases, the microprocessor 241 incorporates a comparator for that purpose. For example, the above-mentioned PIC16F1824 of the microchip family provides a suitable comparator having a very low input current value and a constant reference voltage. The reference voltage value input to the comparator is set using a D / A converter included in the microprocessor 241 and a selectable reference voltage value is prepared. In normal operation, the circuit can detect whether the measured current is higher or lower than the required value determined by the magnitude of the reference voltage and the feedback resistor and provides that information to the control circuit 24.
正確な電圧値が要求される用途において、監視回路23はまた、電圧フィードバック回路232を備え、スプレー電極1に印加される電圧を測定する。一般に、印加電圧は、2つの電極を接続する分圧器を形成する2つの抵抗器の接合部における電圧を測定することによって直接監視される。あるいは、印加電圧は、同様の分圧器の原理を用いて、コックロフト・ウォルトン回路内のノードで生成される電圧を測定することによって監視される。同様に、電流フィードバックに関して、フィードバック情報は、A/D交換器を介して、あるいは、比較器を用いてフィードバック信号を基準電圧値と比較することによって、処理される。
In applications where an accurate voltage value is required, the monitoring circuit 23 is also provided with a voltage feedback circuit 232 and measures the voltage applied to the spray electrode 1. In general, the applied voltage is monitored directly by measuring the voltage at the junction of the two resistors forming a voltage divider connecting the two electrodes. Alternatively, the applied voltage is monitored by measuring the voltage generated at a node in the Cockloft-Walton circuit using similar voltage divider principles. Similarly, for current feedback, the feedback information is processed through an A / D exchanger or by comparing the feedback signal with a reference voltage value using a comparator.
制御回路24は、監視回路23から基準電極2の電流値を示す情報を取得し、基準電極2の電流値と所定の電流値(例えば、0.867μA)とを比較する。そして、制御回路24は、基準電極2の電流値が所定の電流値でなければ、所定の電流値となるように基準電極2の電流値を制御する。そして、制御回路24は、基準電極2の電流値を所定の電流値に制御したうえで、発振器221の振幅の大きさ、周波数、またはデューティーサイクル、電圧のオンーオフ時間(あるいは、これらの組み合わせ)を制御することによって、高電圧発生装置22の出力電圧を制御する。なお、電源装置3のユニットごとの製造誤差、もしくは電流値の測定誤差などを考慮して、制御回路24は、基準電極2の電流値を、「所定の電流値」ではなく、一定の幅を有する所定の範囲(±5%)内に収まるように制御してもよい。
The control circuit 24 acquires information indicating the current value of the reference electrode 2 from the monitoring circuit 23, and compares the current value of the reference electrode 2 with a predetermined current value (for example, 0.867 μA). Then, if the current value of the reference electrode 2 is not a predetermined current value, the control circuit 24 controls the current value of the reference electrode 2 so as to be a predetermined current value. The control circuit 24 controls the current value of the reference electrode 2 to a predetermined current value, and then sets the amplitude, frequency, or duty cycle of the oscillator 221 and the voltage on / off time (or a combination thereof). By controlling, the output voltage of the high voltage generator 22 is controlled. In consideration of a manufacturing error for each unit of the power supply device 3 or a measurement error of the current value, the control circuit 24 sets the current value of the reference electrode 2 to a certain width instead of the “predetermined current value”. Control may be performed so as to be within a predetermined range (± 5%).
大気温度、湿度、大気圧、噴霧物質の液体量などに基づいて電圧またはデューティーサイクル/スプレー間隔を補償する必要から、マイクロプロセッサ241に他の入力(フィードバック情報25)が入力されてもよい。その情報は、アナログ情報またはデジタル情報として与えられ、マイクロプロセッサ241により処理される。マイクロプロセッサ241は、入力情報に基づいて、スプレー間隔、スプレーをオンにする時間、または印加電圧の何れかを変更することよってスプレーの品質および安定性を高めるための補償を行うことができる。
Other input (feedback information 25) may be input to the microprocessor 241 because it is necessary to compensate the voltage or duty cycle / spray interval based on the atmospheric temperature, humidity, atmospheric pressure, liquid amount of the sprayed substance, and the like. The information is given as analog information or digital information and is processed by the microprocessor 241. Based on the input information, the microprocessor 241 can perform compensation to increase the quality and stability of the spray by changing either the spray interval, the time to turn on the spray, or the applied voltage.
一例として、電源装置3は、温度補償のために使用されるサーミスタなどの温度検知素子を備える。ある実施形態において、電源装置3は、温度検知素子により検知された温度の変化に従ってスプレー間隔を変化させる。スプレー間隔は、電源のオン、オフ時間の総計である。例えば、電源がスプレーを35秒間オンとし(その間、電源は第1電極と第2電極との間に高電圧を印加する)、145秒間オフとする(その間、電源は第1電極と第2電極との間に高電圧を印加しない)周期的なスプレー間隔の場合、そのスプレー間隔は35+145=180秒である。スプレー間隔は、電源のマイクロプロセッサ241に内蔵されたソフトウエアにより変更することができ、温度が上昇すると設定点から増加し、温度が低下すると設定点から減少する。スプレー間隔の増加および短縮は、噴霧される物質の特性によって定まる所定の指標に従うことが好ましい。便宜上、スプレー間隔の補償変化量は、スプレー間隔が0-60℃(例えば、10-45℃)の間でのみ変化するよう制限されていてもよい。そのため、温度検知素子によって記録された極端な温度は誤りとみなされ、考慮されず、高温および低温に対しては、最適ではないものの容認しうるスプレー間隔が設定される。あるいは、スプレー間隔のオン、オフ間隔は、スプレー間隔を一定にするように調整され、気温が上下したときにスプレー間隔内でスプレー時間を増減させてもよい。
As an example, the power supply device 3 includes a temperature detection element such as a thermistor used for temperature compensation. In a certain embodiment, the power supply device 3 changes a spray space | interval according to the change of the temperature detected by the temperature detection element. The spray interval is the total power on / off time. For example, the power supply turns on the spray for 35 seconds (while the power supply applies a high voltage between the first electrode and the second electrode), and turns off for 145 seconds (while the power supply turns on the first electrode and the second electrode) In the case of a periodic spray interval (with no high voltage applied between them), the spray interval is 35 + 145 = 180 seconds. The spray interval can be changed by software built into the microprocessor 241 of the power supply and increases from the set point when the temperature rises and decreases from the set point when the temperature falls. The increase and decrease of the spray interval is preferably according to a predetermined index determined by the characteristics of the substance to be sprayed. For convenience, the compensation change amount of the spray interval may be limited so that the spray interval changes only between 0-60 ° C. (eg, 10-45 ° C.). For this reason, extreme temperatures recorded by the temperature sensing element are considered erroneous and are not considered, and for high and low temperatures, an acceptable but not optimal spray interval is set. Alternatively, the on / off interval of the spray interval may be adjusted to make the spray interval constant, and the spray time may be increased or decreased within the spray interval when the temperature rises or falls.
なお、電源装置3は、噴霧される物質の特性を検出し、当該物質の特性を示す特性情報を生成する検査回路をさらに備えてもよい。検査回路が生成した特性情報は、制御回路24に供給される。制御回路24は、この特性情報を用いて、少なくとも1つの電圧制御信号を補償する。上記電圧制御信号とは、周囲の環境条件(例えば、温度、湿度および/または大気圧、および/または噴霧量)の検出結果に基づいて生成された信号であり、出力電圧またはスプレー時間を調整するための信号である。電源装置3は、周囲の圧力(大気圧)を監視するために、圧力センサを備えていてもよい。
The power supply device 3 may further include an inspection circuit that detects the characteristics of the substance to be sprayed and generates characteristic information indicating the characteristics of the substance. The characteristic information generated by the inspection circuit is supplied to the control circuit 24. The control circuit 24 uses this characteristic information to compensate at least one voltage control signal. The voltage control signal is a signal generated based on the detection result of ambient environmental conditions (for example, temperature, humidity and / or atmospheric pressure, and / or spray amount), and adjusts the output voltage or spray time. It is a signal for. The power supply device 3 may include a pressure sensor in order to monitor the ambient pressure (atmospheric pressure).
以上、電源装置3の内部構成について説明した。しかしながら、上記説明は電源装置3の一例であって、電源装置3は、上記の機能を有するのであれば、他の構成により実現されてもよい。
The internal configuration of the power supply device 3 has been described above. However, the above description is an example of the power supply device 3, and the power supply device 3 may be realized by other configurations as long as it has the above function.
〔スプレー電極1の配置について〕
静電噴霧装置100では、基準電極2に対するスプレー電極1の配置を適宜変更することができる。そのことを図4~図8により説明する。 [Disposition of spray electrode 1]
In theelectrostatic spraying apparatus 100, the arrangement of the spray electrode 1 with respect to the reference electrode 2 can be changed as appropriate. This will be described with reference to FIGS.
静電噴霧装置100では、基準電極2に対するスプレー電極1の配置を適宜変更することができる。そのことを図4~図8により説明する。 [Disposition of spray electrode 1]
In the
図4は、基準電極2に対するスプレー電極1の先端部5の第1の位置を説明するための図である。図5は、基準電極2に対するスプレー電極1の先端部5の第2の位置を説明するための図である。図6は、基準電極2に対するスプレー電極1の先端部5の第3の位置を説明するための図である。図7は、基準電極2に対するスプレー電極1の先端部5の第4の位置を説明するための図である。図8は、基準電極2に対するスプレー電極1の先端部5の第1~4の位置を上面視した図である。
FIG. 4 is a view for explaining the first position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2. FIG. 5 is a view for explaining the second position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2. FIG. 6 is a view for explaining the third position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2. FIG. 7 is a view for explaining the fourth position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2. FIG. 8 is a top view of the first to fourth positions of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2.
図4では、スプレー電極1の先端部5は、図5~図7に記載の先端部5の位置と比べて、基準電極2に最も近い位置にある(図8の点aで示される位置)。図8では、点aを0°として表している。これは、スプレー電極1の軸心Pを基準として、点aの位置を0°と規定したものである。
In FIG. 4, the tip 5 of the spray electrode 1 is located closest to the reference electrode 2 as compared to the position of the tip 5 shown in FIGS. 5 to 7 (position indicated by a point a in FIG. 8). . In FIG. 8, the point a is represented as 0 °. This defines the position of the point a as 0 ° with the axis P of the spray electrode 1 as a reference.
図5では、スプレー電極1の先端部5は、図4、図6に記載の先端部5の位置の中間に位置する(図8の点bで示される位置)。これは、スプレー電極1の軸心Pを基準にして、点aから90°回転した位置が点bであることを示す。
In FIG. 5, the tip portion 5 of the spray electrode 1 is located in the middle of the position of the tip portion 5 shown in FIGS. 4 and 6 (the position indicated by the point b in FIG. 8). This indicates that the position rotated by 90 ° from the point a with respect to the axis P of the spray electrode 1 is the point b.
図6では、スプレー電極1の先端部5は、図4、図5、図7に記載の先端部5の位置と比べて、基準電極2に最も遠い位置にある(図8の点cで示される位置)。図8では、点cを180°として表している。これは、スプレー電極1の軸心Pを基準にして、点aから180°回転した位置が点cであることを示す。
In FIG. 6, the tip 5 of the spray electrode 1 is located farthest from the reference electrode 2 compared to the position of the tip 5 shown in FIGS. 4, 5, and 7 (indicated by a point c in FIG. 8). Position). In FIG. 8, the point c is represented as 180 °. This indicates that the position rotated by 180 ° from the point a with respect to the axis P of the spray electrode 1 is the point c.
図7では、スプレー電極1の先端部5は、図4、図6に記載の先端部5の位置の中間に位置する(図8の点dで示される位置)。これは、スプレー電極1の軸心Pを基準にして、点aから270°回転した位置が点dであることを示す。
7, the tip 5 of the spray electrode 1 is located in the middle of the position of the tip 5 shown in FIGS. 4 and 6 (the position indicated by the point d in FIG. 8). This indicates that the position rotated by 270 ° from the point a with respect to the axis P of the spray electrode 1 is the point d.
ここで、図9~図11は、基準電極2に対するスプレー電極1の先端部5の位置を変更した様子を斜視図で示す。このうち、図9は、図8の点bに対応する位置にスプレー電極1の先端部5が位置する様子を示す斜視図である。図10は、図8の点cに対応する位置にスプレー電極1の先端部5が位置する様子を示す斜視図である。図11は、図8の点dに対応する位置にスプレー電極1の先端部5が位置する様子を示す斜視図である。図9~図11において、基準電極2は、不図示であるが、図面右側に位置する。
Here, FIGS. 9 to 11 are perspective views showing how the position of the tip 5 of the spray electrode 1 with respect to the reference electrode 2 is changed. Among these, FIG. 9 is a perspective view showing a state in which the tip portion 5 of the spray electrode 1 is located at a position corresponding to the point b in FIG. FIG. 10 is a perspective view showing a state where the tip portion 5 of the spray electrode 1 is located at a position corresponding to the point c in FIG. FIG. 11 is a perspective view showing a state where the tip portion 5 of the spray electrode 1 is located at a position corresponding to the point d in FIG. 9 to 11, the reference electrode 2 is not shown, but is located on the right side of the drawing.
ここで、スプレー電極1の配置を次のように表現することもできる。つまり、図8の点cで示される位置では、スプレー電極1の先端部5は、スプレー電極1の軸心から視て、基準電極2が位置する側とは反対側に位置する。また、図8の点a、b、dで示される位置(または、点a~b~c~d~aと一周するうえで、点cを除く位置)では、スプレー電極1の先端部5は、スプレー電極1および基準電極2のそれぞれの軸心を結ぶ線上から外れている。
Here, the arrangement of the spray electrode 1 can also be expressed as follows. That is, at the position indicated by the point c in FIG. 8, the tip portion 5 of the spray electrode 1 is located on the opposite side to the side where the reference electrode 2 is located when viewed from the axial center of the spray electrode 1. Further, at the positions indicated by points a, b, and d in FIG. 8 (or the positions excluding the point c when making a round with the points a to b to c to d to a), the tip 5 of the spray electrode 1 is In addition, the spray electrode 1 and the reference electrode 2 are deviated from the line connecting the respective axis centers.
〔スプレー電極1の配置を変更することの効果について〕
上述したように、静電噴霧装置100では、基準電極2に対するスプレー電極1の先端部5の配置を適宜変更することができる。 [Effect of changing the arrangement of the spray electrode 1]
As described above, in theelectrostatic spraying device 100, the arrangement of the tip portion 5 of the spray electrode 1 relative to the reference electrode 2 can be changed as appropriate.
上述したように、静電噴霧装置100では、基準電極2に対するスプレー電極1の先端部5の配置を適宜変更することができる。 [Effect of changing the arrangement of the spray electrode 1]
As described above, in the
ここで、従来の静電噴霧装置においても、基準電極2に対するスプレー電極1の先端部5の位置を変更することも勿論可能である。しかしながら、その場合、スプレー電極の先端部が基準電極から遠ざかることにより、スプレー電極と基準電極との間に形成される電場の電場強度が弱くなる。これにより、噴霧物質は、基準電極の方向、つまり、静電噴霧装置の方向に噴霧されてスプレーバックが発生し、静電噴霧装置に噴霧物質が付着することもありえる。
Here, it is of course possible to change the position of the tip 5 of the spray electrode 1 with respect to the reference electrode 2 also in the conventional electrostatic spraying apparatus. However, in that case, the electric field strength of the electric field formed between the spray electrode and the reference electrode is weakened by the tip of the spray electrode being moved away from the reference electrode. As a result, the spray substance is sprayed in the direction of the reference electrode, that is, the direction of the electrostatic spraying device, and spray back occurs, and the spraying material may adhere to the electrostatic spraying device.
そして、静電噴霧装置の運転中にスプレー電極と基準電極との間に液滴が付着すると、その液滴によって、スプレー電極と基準電極とが電気的に接続し、その液滴によってスプレー電極と基準電極との間に漏れ電流が発生することがある。その結果、漏れ電流が発生することで静電噴霧装置から噴霧される液量が不安定になることもある。
When a droplet adheres between the spray electrode and the reference electrode during operation of the electrostatic spraying device, the spray electrode and the reference electrode are electrically connected by the droplet, and the spray electrode and the reference electrode are connected by the droplet. Leakage current may occur between the reference electrode and the reference electrode. As a result, the amount of liquid sprayed from the electrostatic spraying device may become unstable due to the occurrence of leakage current.
また、従来の静電噴霧装置において、スプレー電極の先端部を基準電極の側に近づけた場合には、スプレー電極と基準電極との間に形成される電場の電場強度が強くなり、結果として噴霧の状態に変化が生じ、安定的な噴霧を実現することができなくなる。
Further, in the conventional electrostatic spraying device, when the tip of the spray electrode is brought close to the reference electrode side, the electric field strength of the electric field formed between the spray electrode and the reference electrode is increased, resulting in the spraying. The state changes, and stable spraying cannot be realized.
これに対して、本実施の形態に係る静電噴霧装置100では、スプレー電極1の先端部5が基準電極2から遠ざかる位置に変更されたとしても、電源装置3による電流制御を受けて、基準電極2の電流値が一定に保たれる。これにより、スプレー電極1と基準電極2との間に印加される電圧が高くなり(電圧印加ステップ)、スプレー電極1と基準電極2との間の電場強度を維持することができる。その結果、静電噴霧装置100へのスプレーバックが抑制されて、スプレー電極1と基準電極2との間に漏れ電流が発生する事態を避けることができる。
On the other hand, in the electrostatic spraying device 100 according to the present embodiment, even if the tip portion 5 of the spray electrode 1 is changed to a position away from the reference electrode 2, the current control is performed by the power supply device 3 and the reference is performed. The current value of the electrode 2 is kept constant. Thereby, the voltage applied between the spray electrode 1 and the reference electrode 2 is increased (voltage application step), and the electric field strength between the spray electrode 1 and the reference electrode 2 can be maintained. As a result, the spray back to the electrostatic spraying apparatus 100 is suppressed, and a situation in which a leakage current is generated between the spray electrode 1 and the reference electrode 2 can be avoided.
同様に、静電噴霧装置100では、スプレー電極1の先端部5が基準電極2に近づく位置に変更されたとしても、電源装置3による電流制御を受けて、基準電極2の電流値が一定に保たれる。これにより、スプレー電極1と基準電極2との間に印加される電圧が弱くなり、スプレー電極1と基準電極2との間の電場強度を維持することができる。その結果、静電噴霧装置100は、噴霧安定性を保つことができる。
Similarly, in the electrostatic spraying device 100, even if the tip 5 of the spray electrode 1 is changed to a position approaching the reference electrode 2, the current value of the reference electrode 2 is kept constant by receiving current control from the power supply device 3. Kept. Thereby, the voltage applied between the spray electrode 1 and the reference electrode 2 becomes weak, and the electric field strength between the spray electrode 1 and the reference electrode 2 can be maintained. As a result, the electrostatic spraying device 100 can maintain spray stability.
このように、静電噴霧装置100は、基準電極2に対するスプレー電極1の先端部5の位置にかかわらず、噴霧安定性を保つことが可能である。
As described above, the electrostatic spraying device 100 can maintain spray stability regardless of the position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2.
〔静電噴霧装置100による噴霧安定性について〕
そこで、静電噴霧装置100による噴霧安定性を図12により説明する。図12は、スプレー電極1の先端部5を図8に示す点a(0°)、点b(90°)、点c(180°)、および点d(270°)の位置に設けたときの時間経過に伴う噴霧量の推移を示すグラフである。このグラフにおいて、横軸は経過時間(日)を、縦軸は噴霧量(g/日)を示す。また、スプレー電極1の先端部5を図8に示す点b(90°)、点c(180°)、および点d(270°)の位置に設けたときのサンプルを2つずつ、点a(0°)に設けたときのサンプルを1つ、噴霧実験に供した。その噴霧実験の結果が図12に示されている。 [About spray stability by electrostatic spraying apparatus 100]
Therefore, the spray stability by theelectrostatic spray apparatus 100 will be described with reference to FIG. FIG. 12 shows the case where the tip 5 of the spray electrode 1 is provided at the positions of point a (0 °), point b (90 °), point c (180 °), and point d (270 °) shown in FIG. It is a graph which shows transition of the spraying quantity with time progress of. In this graph, the horizontal axis indicates the elapsed time (days), and the vertical axis indicates the spray amount (g / day). Further, two samples when the tip 5 of the spray electrode 1 is provided at the positions of point b (90 °), point c (180 °), and point d (270 °) shown in FIG. One sample when provided at (0 °) was subjected to a spraying experiment. The result of the spray experiment is shown in FIG.
そこで、静電噴霧装置100による噴霧安定性を図12により説明する。図12は、スプレー電極1の先端部5を図8に示す点a(0°)、点b(90°)、点c(180°)、および点d(270°)の位置に設けたときの時間経過に伴う噴霧量の推移を示すグラフである。このグラフにおいて、横軸は経過時間(日)を、縦軸は噴霧量(g/日)を示す。また、スプレー電極1の先端部5を図8に示す点b(90°)、点c(180°)、および点d(270°)の位置に設けたときのサンプルを2つずつ、点a(0°)に設けたときのサンプルを1つ、噴霧実験に供した。その噴霧実験の結果が図12に示されている。 [About spray stability by electrostatic spraying apparatus 100]
Therefore, the spray stability by the
このグラフによると、スプレー電極1の先端部5を点a~dに設けたとき、何れの位置においても時間の経過とともに噴霧量が増加し、噴霧の安定性が保たれていることが分かる。
According to this graph, it can be seen that when the tip 5 of the spray electrode 1 is provided at the points a to d, the spray amount increases with the passage of time and the spray stability is maintained at any position.
これは、上述したように、スプレー電極1の先端部5と基準電極2との相対位置が変化したとしても、電源装置3による電流制御を受けて、基準電極2の電流値が一定に保たれることによる。つまり、基準電極2の電流値が一定に保たれるため、スプレー電極1と基準電極2との間に印加される電圧が制御され、スプレー電極1と基準電極2との間の電場強度が維持されることによる。
As described above, even if the relative position between the tip 5 of the spray electrode 1 and the reference electrode 2 is changed, the current value of the reference electrode 2 is kept constant by receiving the current control by the power supply device 3. By being. That is, since the current value of the reference electrode 2 is kept constant, the voltage applied between the spray electrode 1 and the reference electrode 2 is controlled, and the electric field strength between the spray electrode 1 and the reference electrode 2 is maintained. By being done.
このように、静電噴霧装置100は、基準電極2に対するスプレー電極1の先端部5の配置を適宜変更することができ、かつ、噴霧の安定性を保つことができ、従来の静電噴霧装置に比べて、噴霧の安定性を高めることができる。
As described above, the electrostatic spraying device 100 can appropriately change the arrangement of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2 and can maintain the spray stability. Compared with, the stability of spraying can be improved.
〔スプレー電極1からの噴霧方向、およびスプレーバックについて〕
次に、スプレー電極1からの噴霧方向、およびスプレーバックについて図13等を用いて説明する。 [Spray direction fromspray electrode 1 and spray back]
Next, the spray direction from thespray electrode 1 and the spray back will be described with reference to FIG.
次に、スプレー電極1からの噴霧方向、およびスプレーバックについて図13等を用いて説明する。 [Spray direction from
Next, the spray direction from the
図13は、スプレー電極1の先端部5が基準電極2側に位置するときの噴霧方向を説明するための概略図である。また、図14は、スプレー電極1の先端部5が基準電極2とは反対側に位置するときの噴霧方向を説明するための概略図である。
FIG. 13 is a schematic view for explaining the spray direction when the tip portion 5 of the spray electrode 1 is positioned on the reference electrode 2 side. FIG. 14 is a schematic diagram for explaining the spray direction when the tip 5 of the spray electrode 1 is located on the side opposite to the reference electrode 2.
図13および図14に示すように、スプレー電極1は、スプレー電極1の軸心に対して傾斜する傾斜面9を有し、先端に向かうほど細くなっている。そして、図13では、その傾斜は、図面左斜め上方向(基準電極2に近づく方向)に向かって形成されている。このとき、斜面に沿って、つまり、基準電極2の方向に向かってスプレー電極1から液体が噴霧される。図14では、上記傾斜は、図面右斜め上方向(基準電極2から遠のく方向)に向かって形成されている。このとき、斜面に沿って、つまり、基準電極2とは反対の方向に向かってスプレー電極1から液体が噴霧される。このように、液体が噴霧される方向は、スプレー電極1の先端部5の形状(より具体的には、傾斜面9の傾斜方向)により規定される。
As shown in FIGS. 13 and 14, the spray electrode 1 has an inclined surface 9 that is inclined with respect to the axial center of the spray electrode 1, and becomes thinner toward the tip. In FIG. 13, the inclination is formed in the upper left direction of the drawing (direction approaching the reference electrode 2). At this time, the liquid is sprayed from the spray electrode 1 along the slope, that is, in the direction of the reference electrode 2. In FIG. 14, the inclination is formed in the upper right direction of the drawing (a direction far from the reference electrode 2). At this time, the liquid is sprayed from the spray electrode 1 along the slope, that is, in the direction opposite to the reference electrode 2. Thus, the direction in which the liquid is sprayed is defined by the shape of the tip portion 5 of the spray electrode 1 (more specifically, the tilt direction of the tilted surface 9).
これは、形状変化が存在し、かつ、液体移動が生じやすいスプレー電極1の先端部5の頂部に電場の焦点(focal point)が形成され、その電場の焦点は、先端部5の傾斜面に対して垂直な面に対して垂直な方向に形成されることによる。
This is because a focal point of the electric field is formed at the top of the tip 5 of the spray electrode 1 where there is a change in shape and liquid movement is likely to occur, and the focus of the electric field is on the inclined surface of the tip 5. In contrast, it is formed in a direction perpendicular to a plane perpendicular to the surface.
次に、液体が噴霧される様子を図15~図18により説明する。なお、図中不図示であるが、基準電極2は、各図の右側に位置する。
Next, how the liquid is sprayed will be described with reference to FIGS. Although not shown in the drawings, the reference electrode 2 is located on the right side of each drawing.
図15は、図8の点aに対応する位置にスプレー電極1の先端部5が位置する場合の液体の噴霧方向を示す図である。図中の白色に映る電場の焦点が基準電極2の方向を向いていることが分かる。
FIG. 15 is a diagram showing the spray direction of the liquid when the tip 5 of the spray electrode 1 is located at a position corresponding to the point a in FIG. It can be seen that the electric field reflected in white in the figure is in the direction of the reference electrode 2.
図16は、図8の点bに対応する位置にスプレー電極1の先端部5が位置する場合の液体の噴霧方向を示す図である。図中の白色に映る電場の焦点が下方向(スプレー電極1と基準電極2とを結ぶ線分に垂直な方向)を向いていることが分かる。
FIG. 16 is a diagram showing the spraying direction of the liquid when the tip 5 of the spray electrode 1 is located at a position corresponding to the point b in FIG. It can be seen that the focus of the electric field reflected in white in the figure is directed downward (direction perpendicular to the line segment connecting the spray electrode 1 and the reference electrode 2).
図17は、図8の点cに対応する位置にスプレー電極1の先端部5が位置する場合の液体の噴霧方向を示す図である。図中の白色に映る電場の焦点が基準電極2とは反対の方向を向いていることが分かる。
FIG. 17 is a diagram showing the spray direction of the liquid when the tip 5 of the spray electrode 1 is located at a position corresponding to the point c in FIG. It can be seen that the electric field reflected in white in the figure is in the opposite direction to the reference electrode 2.
図18は、図8の点dに対応する位置にスプレー電極1の先端部5が位置する場合の液体の噴霧方向を示す図である。図中の白色に映る電場の焦点が上方向(スプレー電極1と基準電極2とを結ぶ線分に垂直な方向)を向いていることが分かる。
FIG. 18 is a diagram showing a liquid spraying direction when the tip 5 of the spray electrode 1 is located at a position corresponding to the point d in FIG. It can be seen that the focus of the electric field reflected in white in the figure is directed upward (direction perpendicular to the line segment connecting the spray electrode 1 and the reference electrode 2).
このように、図15等からも、液体が噴霧される方向はスプレー電極1の先端部5の形状、具体的には傾斜面9の傾斜方向により規定されることが確認された。
Thus, also from FIG. 15 and the like, it was confirmed that the direction in which the liquid is sprayed is defined by the shape of the tip portion 5 of the spray electrode 1, specifically, the inclination direction of the inclined surface 9.
ここで、図15等により液体の噴霧方向を説明したが、次に、スプレーバックが発生しうる位置を図19により説明する。図19は、地面に対して起立した静電噴霧装置100の正面図を示す。図中、下側が重力方向である。
Here, the spraying direction of the liquid has been described with reference to FIG. 15 and the like. Next, positions where spray back can occur will be described with reference to FIG. FIG. 19 shows a front view of the electrostatic spraying device 100 erected with respect to the ground. In the figure, the lower side is the direction of gravity.
静電噴霧装置100は、その一面に、スプレー電極1および基準電極2が配設されている。図示するように、スプレー電極1は、基準電極2の近傍に位置する。また、スプレー電極1を取り囲むように環状の開口11が、基準電極2を取り囲むように環状の開口12が、それぞれ形成されている。スプレー電極1と基準電極2との間には電圧が印加され、それによりスプレー電極1と基準電極2との間に電場が形成される。スプレー電極1からは正帯電した液滴が噴霧される。基準電極2は、電極近傍の空気をイオン化して負帯電させる。そして、負帯電した空気は、電極間に形成された電場と負帯電された空気粒子間の反発力とによって基準電極2から遠ざかる動きをする。この動きがイオン流を生み、イオン流によって正帯電した液滴が静電噴霧装置100から離れる方向へと噴霧される。
The electrostatic spraying device 100 has a spray electrode 1 and a reference electrode 2 disposed on one surface thereof. As shown in the figure, the spray electrode 1 is located in the vicinity of the reference electrode 2. An annular opening 11 is formed so as to surround the spray electrode 1, and an annular opening 12 is formed so as to surround the reference electrode 2. A voltage is applied between the spray electrode 1 and the reference electrode 2, whereby an electric field is formed between the spray electrode 1 and the reference electrode 2. A positively charged droplet is sprayed from the spray electrode 1. The reference electrode 2 is negatively charged by ionizing air in the vicinity of the electrode. The negatively charged air moves away from the reference electrode 2 due to the electric field formed between the electrodes and the repulsive force between the negatively charged air particles. This movement generates an ion flow, and droplets positively charged by the ion flow are sprayed away from the electrostatic spraying device 100.
ここで、図中の領域La、領域Lb、領域Lc、領域Ldはそれぞれ、スプレー電極1の先端部5が、図8の点a、点b、点c、点dで示される位置にある場合における噴霧物質がスプレーバックされた位置を示す。
Here, in the area La, area Lb, area Lc, and area Ld in the figure, the tip 5 of the spray electrode 1 is located at the positions indicated by the points a, b, c, and d in FIG. The position at which the spray substance is sprayed back is shown.
図13を用いて説明したように、スプレー電極1の先端部5が図8の点aの位置にある場合、噴霧物質は、スプレー電極1から基準電極2の方向へ噴霧される。したがって、図面下側を下方(重力方向)とすると、スプレーバックされる領域Laは、スプレー電極1と基準電極2との間の下方側になる。
As described with reference to FIG. 13, when the tip 5 of the spray electrode 1 is at the position of point a in FIG. 8, the spray substance is sprayed from the spray electrode 1 toward the reference electrode 2. Therefore, if the lower side of the drawing is the lower side (the direction of gravity), the region La to be sprayed back is the lower side between the spray electrode 1 and the reference electrode 2.
上述したように、液体が噴霧される方向は、スプレー電極1の先端部5の形状(より具体的には、不図示の傾斜面9の傾斜方向)により規定される。そのため、領域Laと同様に、領域Lb、領域Lc、および領域Lは、スプレー電極1の先端部5の傾斜面9の傾斜方向)によって定まる。そのため、領域Lbはスプレー電極1の下方に位置し、領域Lcは、スプレー電極1から視て基準電極2の反対側に位置する。また、領域Ldは、スプレー電極1の上側(重力と反対方向)に位置する。
As described above, the direction in which the liquid is sprayed is defined by the shape of the tip portion 5 of the spray electrode 1 (more specifically, the inclination direction of the inclined surface 9 (not shown)). Therefore, similarly to the region La, the region Lb, the region Lc, and the region L are determined by the inclination direction of the inclined surface 9 of the distal end portion 5 of the spray electrode 1. Therefore, the region Lb is located below the spray electrode 1, and the region Lc is located on the opposite side of the reference electrode 2 when viewed from the spray electrode 1. The region Ld is located above the spray electrode 1 (in the direction opposite to gravity).
ここで、静電噴霧装置100は、芳香油、農産物用化学物質、医薬品、農薬、殺虫剤、空気清浄化薬剤等の噴霧等に用いられる。そのため、その用途に応じて物質の噴霧方向に好適な方向が存在する場合に、スプレー電極1の先端部5と基準電極2との相対位置を適宜変更すればよい。これにより、より好適な方向へ噴霧物質が噴霧され、静電噴霧装置100の用途に最も適した噴霧を実現することができる。
Here, the electrostatic spraying device 100 is used for spraying aromatic oil, agricultural chemicals, pharmaceuticals, agricultural chemicals, insecticides, air cleaning chemicals, and the like. Therefore, the relative position between the tip 5 of the spray electrode 1 and the reference electrode 2 may be appropriately changed when there is a suitable direction for the spraying direction of the substance depending on the application. Thereby, a spray substance is sprayed in a more suitable direction, and the spray most suitable for the use of the electrostatic spraying apparatus 100 can be realized.
しかも、このとき、スプレー電極1の先端部5と基準電極2との相対位置が変化したとしても、電源装置3による電流制御を受けて、基準電極2の電流値が一定に保たれる。そして、基準電極2の電流値が一定に保たれるため、スプレー電極1と基準電極2との間に印加される電圧が制御され、スプレー電極1と基準電極2との間の電場強度が維持される。
Moreover, at this time, even if the relative position between the tip portion 5 of the spray electrode 1 and the reference electrode 2 changes, the current value of the reference electrode 2 is kept constant by receiving the current control by the power supply device 3. Since the current value of the reference electrode 2 is kept constant, the voltage applied between the spray electrode 1 and the reference electrode 2 is controlled, and the electric field strength between the spray electrode 1 and the reference electrode 2 is maintained. Is done.
これにより、静電噴霧装置100は、基準電極2に対するスプレー電極1の先端部5の配置を適宜変更することができ、かつ、噴霧の安定性を保つことができる。このように、静電噴霧装置100は、従来の静電噴霧装置に比べて、噴霧の安定性を高めることができる。
Thereby, the electrostatic spraying device 100 can appropriately change the arrangement of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2 and can maintain the spray stability. Thus, the electrostatic spraying device 100 can improve the stability of spraying compared with the conventional electrostatic spraying device.
なお、静電噴霧装置100の運転中にスプレー電極1と基準電極2との間に液滴が付着すると、その液滴によって、スプレー電極1と基準電極2とが電気的に接続し、その液滴によってスプレー電極1と基準電極2との間に漏れ電流が発生することがある。
In addition, when a droplet adheres between the spray electrode 1 and the reference electrode 2 during operation of the electrostatic spraying apparatus 100, the spray electrode 1 and the reference electrode 2 are electrically connected by the droplet, and the liquid A leakage current may be generated between the spray electrode 1 and the reference electrode 2 due to the droplets.
そのため、領域Lcの方向においてスプレーバックが生ずることが、漏れ電流の発生抑制という観点において好ましい。また、点cの位置にスプレー電極1の先端部5が位置する場合に、スプレー電極1から噴霧された物質が基準電極2から最も遠くに飛ぶことが確認された。このため、点cの位置にスプレー電極1の先端部5が位置する場合に、装置表面の濡れを最も制御しやすいと言える。
Therefore, it is preferable that spray back occurs in the direction of the region Lc from the viewpoint of suppressing the occurrence of leakage current. In addition, it was confirmed that the substance sprayed from the spray electrode 1 flies farthest from the reference electrode 2 when the tip 5 of the spray electrode 1 is positioned at the point c. For this reason, when the tip part 5 of the spray electrode 1 is located at the position of the point c, it can be said that wetting is most easily controlled on the surface of the apparatus.
ただし、例えば点bから点cの間、および、点cから点dの間にスプレー電極1の先端部5を位置決めしたとしても、領域Lbから領域Lcの間、および、領域Lcから領域Ldの間にスプレーバックが生じうる領域を限定することもできる。また、領域Laにスプレーバックが生じることに運転上の支障がなければ、スプレー電極1の先端部5を点aに位置決めしたとしてもよいと言える。
However, even if the tip 5 of the spray electrode 1 is positioned between the point b and the point c and between the point c and the point d, for example, between the region Lb and the region Lc and between the region Lc and the region Ld. It is also possible to limit the area where spray back can occur. In addition, it can be said that the tip portion 5 of the spray electrode 1 may be positioned at the point a if there is no operational problem with the occurrence of spray back in the region La.
このことから、静電噴霧装置100は、噴霧の安定性を保つうえで、物質の噴霧方向を規定するスプレー電極1の先端部を何れの位置に位置決めすることもでき、その点で従来の静電噴霧装置には奏しえない効果を実現することができる。
From this, the electrostatic spraying device 100 can position the tip of the spray electrode 1 that defines the spraying direction of the substance at any position in order to maintain the stability of spraying. Effects that cannot be achieved by the electrospraying device can be realized.
〔スプレー電極の他の実施例について〕
次に、スプレー電極1の変形例を図により説明する。図20は、本実施の形態に係るスプレー電極1と、他の実施形態に係るスプレー電極15とを比較して説明するための図である。 [Other Examples of Spray Electrode]
Next, a modified example of thespray electrode 1 will be described with reference to the drawings. FIG. 20 is a diagram for comparing and explaining the spray electrode 1 according to the present embodiment and the spray electrode 15 according to another embodiment.
次に、スプレー電極1の変形例を図により説明する。図20は、本実施の形態に係るスプレー電極1と、他の実施形態に係るスプレー電極15とを比較して説明するための図である。 [Other Examples of Spray Electrode]
Next, a modified example of the
スプレー電極1およびスプレー電極15は何れも、スプレー電極の軸心に対して傾斜する傾斜面9を有し、先端部に向かうほど先端が細く、尖った形状となる。そして、その形状により噴霧物質の噴霧方向が規定される。
Each of the spray electrode 1 and the spray electrode 15 has an inclined surface 9 that is inclined with respect to the axis of the spray electrode, and the tip becomes narrower and sharper toward the tip. And the spray direction of a spray substance is prescribed | regulated by the shape.
このとき、スプレー電極1の物質が噴霧される側を上側としたときに、スプレー電極1では、スプレー電極1の軸心に対して傾斜し、スプレー電極1の先端部の形状を規定する傾斜面9の下端とスプレー電極1の外表面との接点16は鋭角となる。そのため、スプレー電極1と基準電極2との間に電圧が印加されると、接点16に電場の焦点が形成され、それにより基準電極2と接点16との間に電場が形成される可能性もある。それにより、物質は、先端部5ではなく、接点16から噴霧され、静電噴霧装置100からの好適な物質噴霧が阻害される場合も考えておく必要がある。
At this time, the spray electrode 1 is inclined with respect to the axial center of the spray electrode 1 and defines the shape of the tip portion of the spray electrode 1 when the sprayed electrode 1 is sprayed upward. The contact 16 between the lower end of 9 and the outer surface of the spray electrode 1 has an acute angle. Therefore, when a voltage is applied between the spray electrode 1 and the reference electrode 2, the electric field focal point is formed at the contact 16, and thus an electric field may be formed between the reference electrode 2 and the contact 16. is there. Thereby, it is necessary to consider the case where the substance is sprayed from the contact point 16 instead of the front end portion 5 and a suitable substance spray from the electrostatic spraying device 100 is obstructed.
この点、スプレー電極15の物質が噴霧される側を上側としたときに、スプレー電極15では、スプレー電極15の軸心に対して傾斜し、スプレー電極15の先端部の形状を規定する傾斜面9の下端とスプレー電極15の外表面との接点17は曲面(曲面部)を有する。そのため、スプレー電極15と基準電極2との間に電圧が印加されると、接点17に電場の焦点が形成されることはなく、基準電極2とスプレー電極15の先端部5との間に電場が形成される。それにより、物質は、先端部5から噴霧され、静電噴霧装置100からの好適な物質噴霧を担保することができる。
In this regard, the spray electrode 15 is inclined with respect to the axial center of the spray electrode 15 and defines the shape of the distal end portion of the spray electrode 15 when the sprayed electrode 15 is sprayed on the material spray side. The contact 17 between the lower end of 9 and the outer surface of the spray electrode 15 has a curved surface (curved surface portion). Therefore, when a voltage is applied between the spray electrode 15 and the reference electrode 2, the electric field focal point is not formed at the contact point 17, and the electric field is generated between the reference electrode 2 and the tip 5 of the spray electrode 15. Is formed. Thereby, a substance is sprayed from the front-end | tip part 5, and the suitable substance spray from the electrostatic spraying apparatus 100 can be ensured.
なお、静電噴霧装置100がスプレー電極1を用いる場合、図8の点cに先端部5が位置決めされているときに、スプレー電極1と基準電極2との間に電圧が印加されて接点16に電場の焦点が形成されやすいと考えられる。そのため、スプレー電極の先端部を図8の点cに位置決めする場合には、スプレー電極15を用いることが有効と言える。
When the electrostatic spraying device 100 uses the spray electrode 1, when the tip 5 is positioned at the point c in FIG. 8, a voltage is applied between the spray electrode 1 and the reference electrode 2 and the contact 16. It is considered that the focus of the electric field is easily formed. Therefore, it can be said that it is effective to use the spray electrode 15 when positioning the tip of the spray electrode at the point c in FIG.
〔物質の回収溝について〕
次に、静電噴霧装置100に形成された溝34および液体回収部(物質回収部)35を図21により説明する。図21は、静電噴霧装置100の筐体表面を説明するための図である。なお、図面下側が重力方向である。また、図21では、静電噴霧装置100は起立した状態である。 [About the material collection groove]
Next, the groove 34 and the liquid recovery part (substance recovery part) 35 formed in theelectrostatic spraying device 100 will be described with reference to FIG. FIG. 21 is a diagram for explaining the housing surface of the electrostatic spraying device 100. The lower side of the drawing is the direction of gravity. Moreover, in FIG. 21, the electrostatic spraying apparatus 100 is in a standing state.
次に、静電噴霧装置100に形成された溝34および液体回収部(物質回収部)35を図21により説明する。図21は、静電噴霧装置100の筐体表面を説明するための図である。なお、図面下側が重力方向である。また、図21では、静電噴霧装置100は起立した状態である。 [About the material collection groove]
Next, the groove 34 and the liquid recovery part (substance recovery part) 35 formed in the
図21に示す静電噴霧装置100は、略直方形状である。液体が噴霧される側の静電噴霧装置100の表面30には、スプレー電極1を取り巻くように形成された円環状の開口11と、基準電極2を取り巻くように形成された円環状の開口12とが形成されている。
The electrostatic spraying device 100 shown in FIG. An annular opening 11 formed so as to surround the spray electrode 1 and an annular opening 12 formed so as to surround the reference electrode 2 are formed on the surface 30 of the electrostatic spraying apparatus 100 on the liquid spray side. And are formed.
さらに、表面30には、溝34a、溝34b、および溝34cが形成されている。溝34bおよび溝34cは、静電噴霧装置100の長手方向(図面上下方向)に延在して形成されており、溝34aを介して互いに接続される。溝34aは、静電噴霧装置100の短手方向(図面左右方向)に延在して形成されており、溝34aを介して溝34bおよび溝34cを接続する。図21では、溝34aと溝34bおよび溝34cとは略垂直方向に交差する。なお、溝34bおよび溝34cは必須ではなく、溝34aのみが形成されていてもよい。
Furthermore, a groove 34a, a groove 34b, and a groove 34c are formed on the surface 30. The groove 34b and the groove 34c are formed to extend in the longitudinal direction (the vertical direction in the drawing) of the electrostatic spraying device 100, and are connected to each other via the groove 34a. The groove 34a is formed to extend in the short direction (left and right direction in the drawing) of the electrostatic spraying apparatus 100, and connects the groove 34b and the groove 34c via the groove 34a. In FIG. 21, the groove 34a, the groove 34b, and the groove 34c intersect in a substantially vertical direction. The groove 34b and the groove 34c are not essential, and only the groove 34a may be formed.
さらに、溝34aには、液体回収部35a、液体回収部35b、および液体回収部35cが形成されている。液体回収部35aは、水平方向に延在する溝34aの中央部に位置し、液体回収部35bおよび液体回収部35cは、溝34aの両端に位置する。さらに、液体回収部35a、液体回収部35b、および液体回収部35cはそれぞれ、例えば台形状に形成され、かつ、上底および下底のうち長さの短い方が重力方向下側に位置する(以下、この形状を逆台形と称することもある)。なお、液体回収部35a、液体回収部35b、および液体回収部35cは、静電噴霧装置100の内部に液体を回収しやすいように、例えば傾斜が付けられて溝34aに形成されていてもよい。
Furthermore, a liquid recovery part 35a, a liquid recovery part 35b, and a liquid recovery part 35c are formed in the groove 34a. The liquid recovery part 35a is located at the center of the groove 34a extending in the horizontal direction, and the liquid recovery part 35b and the liquid recovery part 35c are located at both ends of the groove 34a. Furthermore, each of the liquid recovery part 35a, the liquid recovery part 35b, and the liquid recovery part 35c is formed in a trapezoidal shape, for example, and the shorter one of the upper and lower bases is located on the lower side in the gravity direction ( Hereinafter, this shape may be referred to as an inverted trapezoid). In addition, the liquid recovery part 35a, the liquid recovery part 35b, and the liquid recovery part 35c may be formed in the groove 34a with an inclination, for example, so as to easily recover the liquid inside the electrostatic spraying device 100. .
ここで、溝34aは、例えば、長さ26mm、高さ1mmで形成される。また、液体回収部35aは、上底が6mm、下低が4mm、高さ1.6mmで形成される。また、液体回収部35bおよび液体回収部35cは、上底が5mm、下低が3mm、高さ1.6mmで形成される。ただし、これらの数値は、一例であって、これらの数値に限定されるものではない。
Here, the groove 34a is formed with a length of 26 mm and a height of 1 mm, for example. The liquid recovery part 35a is formed with an upper base of 6 mm, a lower and lower part of 4 mm, and a height of 1.6 mm. The liquid recovery part 35b and the liquid recovery part 35c are formed with an upper base of 5 mm, a lower and lower part of 3 mm, and a height of 1.6 mm. However, these numerical values are examples, and are not limited to these numerical values.
ここで、図示するように、スプレー電極1は、電気伝導体38に接続し、図示しない電源装置3から電気伝導体38を介して電圧が印加される。基準電極2は、電気伝導体39に接続し、図示しない電源装置3から電気伝導体39を介して電圧が印加される。このとき、電気伝導体38、および/または電気伝導体39は、撥水・撥油性能を有するものでコーティングされていてよい。また、スプレー電極1、および/または、基準電極2には、耐薬品性のあるシリコンやフッ素ゴム、樹脂等などからなるOリングが取り付けられてもよい。
Here, as shown in the drawing, the spray electrode 1 is connected to the electric conductor 38, and a voltage is applied from the power supply device 3 (not shown) through the electric conductor 38. The reference electrode 2 is connected to the electrical conductor 39, and a voltage is applied from the power supply device 3 (not shown) via the electrical conductor 39. At this time, the electric conductor 38 and / or the electric conductor 39 may be coated with a material having water / oil repellency. The spray electrode 1 and / or the reference electrode 2 may be attached with an O-ring made of chemically resistant silicon, fluorine rubber, resin, or the like.
静電噴霧装置100は、上記の構成を備えることで、以下の効果を奏する。
The electrostatic spraying apparatus 100 has the above-described configuration, thereby providing the following effects.
具体的には、静電噴霧装置100の表面30には、溝34aに、液体回収部35a、液体回収部35b、および液体回収部35cが形成されている。このため、溝34aに液体が流入すると、その液体を、液体回収部35a、液体回収部35b、および液体回収部35cにスムーズに進入させることができる。また、静電噴霧装置100が左右に傾いた場合であっても、溝34aの両端に液体回収部35bおよび液体回収部35cが形成されているため、その液体を、液体回収部35bおよび液体回収部35cに進入させることができる。
Specifically, on the surface 30 of the electrostatic spraying apparatus 100, a liquid recovery part 35a, a liquid recovery part 35b, and a liquid recovery part 35c are formed in the groove 34a. For this reason, when the liquid flows into the groove 34a, the liquid can smoothly enter the liquid recovery part 35a, the liquid recovery part 35b, and the liquid recovery part 35c. Even when the electrostatic spraying device 100 is tilted left and right, since the liquid recovery part 35b and the liquid recovery part 35c are formed at both ends of the groove 34a, the liquid is recovered from the liquid recovery part 35b and the liquid recovery part. The part 35c can be entered.
これにより、溝34aに進入してきた液体が高粘度、および/または、低揮発性であっても、その液体を、スムーズに液体回収部35a、液体回収部35b、および液体回収部35cに進入させ、静電噴霧装置100の内部に回収することができる。
As a result, even if the liquid that has entered the groove 34a has high viscosity and / or low volatility, the liquid can smoothly enter the liquid recovery unit 35a, the liquid recovery unit 35b, and the liquid recovery unit 35c. It can be recovered in the electrostatic spraying device 100.
それゆえ、基準電極2に対するスプレー電極1の先端部5の位置に応じてスプレーバックが生じやすい位置(領域)が変化したとしても、その位置の近辺に位置する溝34に液体回収部35を形成することで、スプレーバックした液体を迅速に回収することができる。言い換えれば、静電噴霧装置100では、液体回収部35の位置に応じて、基準電極2に対するスプレー電極1の先端部5の位置を適宜変更することができるため、装置設計における自由度を高めることが可能である。
Therefore, even if the position (region) where spray back is likely to occur is changed according to the position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2, the liquid recovery portion 35 is formed in the groove 34 located in the vicinity of the position. By doing so, the sprayed liquid can be quickly recovered. In other words, in the electrostatic spraying device 100, the position of the tip portion 5 of the spray electrode 1 with respect to the reference electrode 2 can be changed as appropriate according to the position of the liquid recovery unit 35, thereby increasing the degree of freedom in device design. Is possible.
〔3.補足〕
本発明は、以下のように構成することもできる。 [3. Supplement)
The present invention can also be configured as follows.
本発明は、以下のように構成することもできる。 [3. Supplement)
The present invention can also be configured as follows.
本発明の一態様に係る静電噴霧装置では、上記第1電極の先端部は、上記第1電極の軸心から視て、上記第2電極から最も遠くに位置する構成であってもよい。
In the electrostatic spraying device according to one aspect of the present invention, the tip of the first electrode may be positioned farthest from the second electrode when viewed from the axial center of the first electrode.
上記の構成によれば、本発明の一態様に係る静電噴霧装置は、上記第1電極から最も離れる方向に物質を噴霧し、第1電極と第2電極との間の領域へのスプレーバックを低減することが可能となる。これにより、本発明の一態様に係る静電噴霧装置は、噴霧の安定性を高めることができる。
According to said structure, the electrostatic spraying apparatus which concerns on 1 aspect of this invention sprays a substance in the direction furthest away from the said 1st electrode, and sprays back to the area | region between a 1st electrode and a 2nd electrode. Can be reduced. Thereby, the electrostatic spraying apparatus which concerns on 1 aspect of this invention can improve the stability of spraying.
また、本発明の一態様に係る静電噴霧装置は、上記第1電極において上記物質を噴霧する側を上側としたときに、上記第1電極は、上記第1電極の軸心に対して傾斜する傾斜面を含み、上記傾斜面の下側端部は曲面部を有する構成であってもよい。
In the electrostatic spraying device according to one aspect of the present invention, the first electrode is inclined with respect to the axis of the first electrode when the side on which the substance is sprayed is the upper side in the first electrode. The lower end portion of the inclined surface may include a curved surface portion.
電場の焦点は角部に形成されやすいことから、本発明の一態様に係る静電噴霧装置は、上記の構成を備えることで、第1電極と第2電極との間に電圧が印加されたときに、電場の焦点が曲面部では形成されず、第1電極の先端部と第2電極との間に電場が形成される。それゆえ、本発明の一態様に係る静電噴霧装置では、第1電極の先端部から物質を噴霧させて、噴霧の安定性を高めることができる。
Since the focal point of the electric field is likely to be formed at the corner, the electrostatic spraying device according to one embodiment of the present invention has the above-described configuration, so that a voltage is applied between the first electrode and the second electrode. Sometimes, the focal point of the electric field is not formed on the curved surface portion, and an electric field is formed between the tip portion of the first electrode and the second electrode. Therefore, in the electrostatic spraying device according to one embodiment of the present invention, the stability of spraying can be improved by spraying a substance from the tip of the first electrode.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
本発明は、芳香油、農産物用化学物質、医薬品、農薬、殺虫剤、空気清浄化薬剤等を噴霧する静電噴霧装置に利用することができる。
The present invention can be used in an electrostatic spraying apparatus that sprays aromatic oil, chemicals for agricultural products, pharmaceuticals, agricultural chemicals, insecticides, air cleaning chemicals, and the like.
1、15 スプレー電極(第1電極)
2 基準電極(第2電極)
3 電源装置
5 先端部
6 スプレー電極取付部
7 基準電極取付部
9 傾斜面
10 誘電体
11、12 開口
16、17 接点
21 電源
22 高電圧発生装置(電圧印加手段)
23 監視回路
24 制御回路(電流制御手段)
25 フィードバック情報
30 表面
35 液体回収部
38、39 電気伝導体
100 静電噴霧装置
221 発振器
222 変圧器
223 コンバータ回路
231 電流フィードバック回路
232 電圧フィードバック回路
241 マイクロプロセッサ
L、La~Ld 領域
P 軸心
1,15 Spray electrode (first electrode)
2 Reference electrode (second electrode)
3power supply device 5 tip 6 spray electrode mounting portion 7 reference electrode mounting portion 9 inclined surface 10 dielectric 11, 12 opening 16, 17 contact 21 power supply 22 high voltage generator (voltage applying means)
23monitoring circuit 24 control circuit (current control means)
25Feedback information 30 Surface 35 Liquid recovery unit 38, 39 Electrical conductor 100 Electrostatic spraying device 221 Oscillator 222 Transformer 223 Converter circuit 231 Current feedback circuit 232 Voltage feedback circuit 241 Microprocessor L, La to Ld Region P Axis center
2 基準電極(第2電極)
3 電源装置
5 先端部
6 スプレー電極取付部
7 基準電極取付部
9 傾斜面
10 誘電体
11、12 開口
16、17 接点
21 電源
22 高電圧発生装置(電圧印加手段)
23 監視回路
24 制御回路(電流制御手段)
25 フィードバック情報
30 表面
35 液体回収部
38、39 電気伝導体
100 静電噴霧装置
221 発振器
222 変圧器
223 コンバータ回路
231 電流フィードバック回路
232 電圧フィードバック回路
241 マイクロプロセッサ
L、La~Ld 領域
P 軸心
1,15 Spray electrode (first electrode)
2 Reference electrode (second electrode)
3
23
25
Claims (4)
- 物質を噴霧し、かつ、当該物質の噴霧方向を規定する尖状の先端部を有する第1電極と、
上記第1電極との間で電圧が印加される第2電極と、
上記第2電極における電流値を所定の範囲に制御する電流制御手段と、
上記電流制御手段により制御された電流値に基づいて、上記第1電極と上記第2電極との間に電圧を印加する電圧印加手段と、を備え、
上記第1電極の上記先端部は、上記第1電極の軸心から外れた位置にあり、かつ、上記第1電極の軸心から視て、上記第2電極が位置する側とは反対側に位置することを特徴とする静電噴霧装置。 A first electrode having a pointed tip that sprays a substance and defines a spray direction of the substance;
A second electrode to which a voltage is applied between the first electrode;
Current control means for controlling the current value in the second electrode to a predetermined range;
Voltage application means for applying a voltage between the first electrode and the second electrode based on the current value controlled by the current control means,
The tip of the first electrode is at a position deviated from the axis of the first electrode, and is opposite to the side where the second electrode is located as viewed from the axis of the first electrode. An electrostatic spraying device characterized by being positioned. - 上記第1電極の先端部は、上記第1電極の軸心から視て、上記第2電極から最も遠くに位置することを特徴とする請求項1に記載の静電噴霧装置。 The electrostatic spraying device according to claim 1, wherein the tip of the first electrode is located farthest from the second electrode when viewed from the axial center of the first electrode.
- 上記第1電極において上記物質を噴霧する側を上側としたときに、
上記第1電極は、上記第1電極の軸心に対して傾斜する傾斜面を含み、
上記傾斜面の下側端部は曲面部を有することを特徴とする請求項1または2に記載の静電噴霧装置。 When the side spraying the substance in the first electrode is the upper side,
The first electrode includes an inclined surface that is inclined with respect to the axis of the first electrode,
The electrostatic spraying device according to claim 1, wherein the lower end portion of the inclined surface has a curved surface portion. - 静電噴霧装置の制御方法であって、
上記静電噴霧装置は、物質を噴霧し、かつ、当該物質の噴霧方向を規定する尖状の先端部を有する第1電極と、上記第1電極との間で電圧が印加される第2電極と、を備え、
上記第2電極における電流値を所定の範囲に制御する電流制御ステップと、
上記電流制御ステップにて制御された電流値に基づいて、上記第1電極と上記第2電極との間に電圧を印加する電圧印加ステップと、を含み、
上記第1電極の上記先端部は、上記第1電極の軸心から外れた位置にあり、かつ、上記第1電極の軸心から視て、上記第2電極が位置する側とは反対側に位置することを特徴とする制御方法。 A method for controlling an electrostatic spraying device, comprising:
The electrostatic spraying device sprays a substance, and a second electrode to which a voltage is applied between the first electrode having a pointed tip that defines the spraying direction of the substance and the first electrode And comprising
A current control step of controlling the current value in the second electrode to a predetermined range;
A voltage applying step of applying a voltage between the first electrode and the second electrode based on the current value controlled in the current control step,
The tip of the first electrode is at a position deviated from the axis of the first electrode, and is opposite to the side where the second electrode is located as viewed from the axis of the first electrode. A control method characterized by being positioned.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-004946 | 2013-01-15 | ||
JP2013004946 | 2013-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014112447A1 true WO2014112447A1 (en) | 2014-07-24 |
Family
ID=51209537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050372 WO2014112447A1 (en) | 2013-01-15 | 2014-01-10 | Electrostatic atomizer and method for controlling electrostatic atomizer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014112447A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018043735A1 (en) * | 2016-09-05 | 2018-03-08 | 住友化学株式会社 | Electrostatic spraying device |
WO2020080347A1 (en) * | 2018-10-17 | 2020-04-23 | 住友化学株式会社 | Electrostatic spraying apparatus |
EP3731971A4 (en) * | 2017-12-29 | 2021-09-29 | Sanotech 360, Llc | Electrostatic sprayer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04215864A (en) * | 1990-05-18 | 1992-08-06 | Ransburg Automot Kk | Electrostatic coating device |
US5927618A (en) * | 1993-09-02 | 1999-07-27 | The Procter & Gamble Company | Electrostatic spraying device |
US6302331B1 (en) * | 1999-04-23 | 2001-10-16 | Battelle Pulmonary Therapeutics, Inc. | Directionally controlled EHD aerosol sprayer |
WO2004089552A2 (en) * | 2003-04-07 | 2004-10-21 | Aerstream Technology Limited | Spray electrode |
JP2013027832A (en) * | 2011-07-29 | 2013-02-07 | Sumitomo Chemical Co Ltd | Electrostatic atomizer and electrostatic atomization method using the electrostatic atomizer |
WO2014030681A1 (en) * | 2012-08-24 | 2014-02-27 | 住友化学株式会社 | Electrostatic spray device |
-
2014
- 2014-01-10 WO PCT/JP2014/050372 patent/WO2014112447A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04215864A (en) * | 1990-05-18 | 1992-08-06 | Ransburg Automot Kk | Electrostatic coating device |
US5927618A (en) * | 1993-09-02 | 1999-07-27 | The Procter & Gamble Company | Electrostatic spraying device |
US6302331B1 (en) * | 1999-04-23 | 2001-10-16 | Battelle Pulmonary Therapeutics, Inc. | Directionally controlled EHD aerosol sprayer |
WO2004089552A2 (en) * | 2003-04-07 | 2004-10-21 | Aerstream Technology Limited | Spray electrode |
JP2013027832A (en) * | 2011-07-29 | 2013-02-07 | Sumitomo Chemical Co Ltd | Electrostatic atomizer and electrostatic atomization method using the electrostatic atomizer |
WO2014030681A1 (en) * | 2012-08-24 | 2014-02-27 | 住友化学株式会社 | Electrostatic spray device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018043735A1 (en) * | 2016-09-05 | 2018-03-08 | 住友化学株式会社 | Electrostatic spraying device |
CN109641223A (en) * | 2016-09-05 | 2019-04-16 | 住友化学株式会社 | Electrostatic atomizer |
JPWO2018043735A1 (en) * | 2016-09-05 | 2019-06-24 | 住友化学株式会社 | Electrostatic sprayer |
US10994292B2 (en) | 2016-09-05 | 2021-05-04 | Sumitomo Chemical Company, Limited | Electrostatic spraying device |
JP6994463B2 (en) | 2016-09-05 | 2022-01-14 | 住友化学株式会社 | Electrostatic spray device |
EP3731971A4 (en) * | 2017-12-29 | 2021-09-29 | Sanotech 360, Llc | Electrostatic sprayer |
WO2020080347A1 (en) * | 2018-10-17 | 2020-04-23 | 住友化学株式会社 | Electrostatic spraying apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9937508B2 (en) | Electrostatic spraying device and method for controlling electrostatic spraying device | |
KR101942124B1 (en) | Electrostatic atomizer, and method for electrostatically atomizing by use of the same | |
US9937507B2 (en) | Electrostatic spraying apparatus, and current control method for electrostatic spraying apparatus | |
WO2014112447A1 (en) | Electrostatic atomizer and method for controlling electrostatic atomizer | |
AU2017319627B2 (en) | Electrostatic spraying device | |
WO2012043231A1 (en) | Static spraying appratus | |
WO2014112515A1 (en) | Electrostatic atomizer | |
JP2014176833A (en) | Electrostatic spray device | |
JP2014233667A (en) | Electrostatic sprayer and control method for the same | |
TW201829069A (en) | Electrostatic spray device, information processing terminal, abnormality notification method, and computer-readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14740924 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14740924 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |