WO2014112300A1 - Waste heat utilization device - Google Patents

Waste heat utilization device Download PDF

Info

Publication number
WO2014112300A1
WO2014112300A1 PCT/JP2013/084573 JP2013084573W WO2014112300A1 WO 2014112300 A1 WO2014112300 A1 WO 2014112300A1 JP 2013084573 W JP2013084573 W JP 2013084573W WO 2014112300 A1 WO2014112300 A1 WO 2014112300A1
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
waste heat
radiator
heat utilization
utilization apparatus
Prior art date
Application number
PCT/JP2013/084573
Other languages
French (fr)
Japanese (ja)
Inventor
文彦 石黒
井口 雅夫
英文 森
榎島 史修
和雄 片山
尚也 横町
高三 正己
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2014112300A1 publication Critical patent/WO2014112300A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine

Definitions

  • the present invention relates to a waste heat utilization apparatus.
  • Patent Document 1 discloses a conventional waste heat utilization device. This waste heat utilization device is used in a drive system, and includes a Rankine cycle for circulating a working fluid, setting means, and control means, and is mounted on a vehicle.
  • the drive system includes an engine that is an internal combustion engine and a coolant circuit that can circulate coolant for the engine.
  • the Rankine cycle has a working fluid flow path, a pump, a boiler, an expander, a radiator, a reservoir, a recovery path, a supply path, and first and second solenoid valves.
  • the working fluid can flow through the working fluid flow path. A certain amount of working fluid is stored in the reservoir.
  • the pump, boiler, expander, and radiator are connected by a working fluid flow path, and the working fluid can be circulated in the order of the pump, boiler, expander, and radiator.
  • a generator is connected to the expander.
  • each end of the collection path and the supply path is connected to the reservoir.
  • the other end side of the recovery path is connected to the working fluid path upstream of the pump and downstream of the boiler.
  • the other end of the supply path is connected to the working fluid path downstream of the expander and upstream of the radiator.
  • the first solenoid valve is provided in the recovery path, and the second solenoid valve is provided in the supply path.
  • this waste heat utilization apparatus it is possible to cool the coolant and heat the working fluid by exchanging heat between the coolant and the working fluid in the boiler. And a generator is act
  • the pressure energy of the working fluid can be recovered as electric power in the Rankine cycle.
  • the ECU of the vehicle sets a cooling request amount for the coolant.
  • the ECU controls the first electromagnetic valve to close and the second on-off valve to open.
  • the working fluid stored in the reservoir flows into the working fluid flow path via the supply path, and the flow rate of the working fluid circulating in the Rankine cycle increases.
  • the ECU controls the first electromagnetic valve to open and the second on-off valve to close.
  • the flow volume of the working fluid which circulates in a Rankine cycle reduces, and it can suppress that a cooling fluid is cooled more than necessary in a boiler.
  • the present invention has been made in view of the above-described conventional situation, and solves the problem of providing a waste heat utilization apparatus capable of realizing energy recovery and suitable cooling of a heat medium while simplifying the configuration. It is an issue that should be done.
  • the drive system includes an internal combustion engine, and a heat medium flow path that is connected to the internal combustion engine and through which a heat medium for the internal combustion engine can flow.
  • the Rankine cycle includes a working fluid flow path through which the working fluid can flow.
  • a pump for circulating the working fluid along the working fluid flow path A boiler that is connected downstream of the pump by the working fluid flow path and connected to the heat medium flow path, performs heat exchange between the working fluid and the heat medium, and cools the heat medium; An expander connected by the working fluid flow path downstream of the boiler and expanding the working fluid; A radiator that is connected by the working fluid flow path downstream of the expander and upstream of the pump, and that radiates heat of the working fluid by a cooling medium;
  • the radiator includes a radiator inlet that allows the working fluid to flow therein, a radiator outlet that allows the working fluid to flow out from the interior, and between the radiator inlet and the radiator outlet.
  • a heat dissipating part located, Between the radiator inlet and the pump, a differential pressure adjusting means capable of adjusting the pressure difference of the working fluid is provided between the upstream and the downstream of the pump, Setting means for setting a target physical quantity for cooling the heat medium; Control means for controlling the differential pressure adjusting means so that the pressure of the working fluid upstream of the differential pressure adjusting means increases when the heat dissipation amount of the working fluid in the heat radiating portion is insufficient based on the target physical quantity. It is characterized by having.
  • the heat medium can be cooled and the working fluid can be heated by heat exchange between the heat medium and the working fluid in the boiler. And in a Rankine cycle, it is possible to collect
  • the setting means sets a target physical quantity for cooling the heat medium. And based on this target physical quantity, when the heat dissipation amount of the working fluid in the heat radiating portion is insufficient, that is, when the cooling amount of the working fluid in the heat radiating portion is insufficient, the control means controls the working fluid upstream of the differential pressure adjusting means.
  • the differential pressure adjusting means is controlled so that the pressure increases. That is, the pressure difference between the working fluid upstream of the differential pressure adjusting means and the working fluid downstream of the differential pressure adjusting means is adjusted to be large. Thereby, in a Rankine cycle, the pressure of the working fluid which distribute
  • a sub-cooling region for radiating the liquid-phase working fluid can be formed in addition to the capacitor region for radiating the gas-phase working fluid.
  • the condenser region the condensing latent heat of the working fluid is radiated at a constant condensation temperature, whereby the gas phase working fluid is liquefied.
  • the working fluid is dissipated in the capacitor region.
  • the liquid-phase working fluid that has passed through the capacitor region flows into the subcool region.
  • the working fluid radiates sensible heat while lowering the temperature in the subcool region. In this way, the working fluid is dissipated in the subcool region.
  • the differential pressure adjusting means that is, when the pressure of the working fluid flowing through the radiator increases, the temperature of the working fluid becomes high.
  • the temperature difference between the condensation temperature in the capacitor region and the temperature of the cooling medium and the temperature difference between the average temperature in the subcool region and the temperature of the cooling medium become large.
  • the pressure of the working fluid is high, the heat radiation amount of the working fluid in the entire heat radiating portion is increased as compared with the case where the pressure of the working fluid is low. Thereby, the temperature of the working fluid flowing out from the outlet of the subcool region, that is, the radiator outlet is lowered.
  • the differential pressure adjusting means is controlled so that the pressure of the working fluid upstream of the differential pressure adjusting means decreases. That is, adjustment is performed so that the pressure difference between the working fluid upstream of the differential pressure adjusting means and the working fluid downstream of the differential pressure adjusting means becomes small or the pressure difference becomes zero.
  • the amount of cooling of the working fluid in the heat radiating section can be adjusted according to the target physical quantity simply by adjusting the pressure difference of the working fluid upstream and downstream of the differential pressure adjusting means. It is. For this reason, in this waste heat utilization apparatus, it is possible to suppress suitably the complication of a Rankine cycle.
  • waste heat utilization apparatus of the present invention it is possible to realize energy recovery and suitable cooling of the heat medium while simplifying the configuration.
  • these engines may be hybrid engines combining motors. Furthermore, these engines may be air-cooled or water-cooled.
  • an intake system fluid sucked into the internal combustion engine can be employed.
  • the intake system fluid refers to pressurized air compressed by a supercharger, recirculated exhaust gas recirculated to an internal combustion engine, or the like.
  • coolant such as water and LLC (Long Life Coolant), lubricating oil or the like can be used as a heat medium.
  • cooling medium for example, water or LLC other than the heat medium other than air can be employed.
  • differential pressure adjusting means for example, an opening adjusting means capable of adjusting the opening of the working fluid path can be employed.
  • an opening adjustment means for example, a variable throttle valve or the like can be employed.
  • the Rankine cycle may have a gas-liquid separator that is connected by a working fluid flow path downstream of the radiator and upstream of the pump and that can separate the working fluid.
  • voltage adjustment means is integrally provided with the working fluid flow path between a heat radiator and a gas-liquid separator, or a gas-liquid separator.
  • the gas-liquid separator can be further integrated with the radiator.
  • the gas-liquid separator may have a receiver case in which a receiver inlet and a receiver outlet are formed. Further, a liquid receiving chamber for storing a working fluid in a liquid state may be formed in the receiver case. Furthermore, a working fluid flow path can be connected to each of the receiver inlet and the receiver outlet. And it is preferable that the differential pressure
  • the Rankine cycle may have a supercooler connected by a working fluid flow path downstream of the radiator and upstream of the pump, and capable of supercooling the working fluid.
  • voltage adjustment means is provided between the heat radiator and the subcooler.
  • the radiator and the supercooler may be integrated. As described above, when the radiator and the supercooler are integrated, a portion where the working fluid reaches from the radiator to the supercooler becomes a working fluid flow path.
  • the supercooler is preferably connected by a working fluid flow path downstream of the gas-liquid separator and upstream of the pump.
  • the differential pressure adjusting means is preferably provided in the working fluid flow path between the radiator and the gas-liquid separator. In this case, it becomes possible to supercool the liquid-phase working fluid in the supercooler. For this reason, it becomes possible to cool a working fluid suitably to a supercooled state, and it becomes possible to suppress generation
  • the gas-liquid separator and the supercooler may be integrated. Further, the radiator, the supercooler, and the gas-liquid separator may be integrated. In these cases, the gas-liquid separator may be integrated with the differential pressure adjusting means.
  • the radiator includes, for example, a gas-liquid separation unit capable of gas-liquid separation of the working fluid that has passed through the heat radiation unit, and a supercooling of the working fluid located downstream of the gas-liquid separation unit. It can have a possible supercooling part integrally. And it is also preferable that the differential pressure adjusting means is provided in the gas-liquid separator.
  • the radiator has the gas-liquid separator and the supercooling unit in addition to the radiator inlet, the radiator outlet and the radiator, the gas-liquid separator or the It is possible to achieve the same effect as when a supercooler is provided.
  • the target physical quantity may be a cooling requirement amount required by the drive system.
  • the control means preferably controls the differential pressure adjusting means so that the pressure of the working fluid upstream of the differential pressure adjusting means increases when the required cooling amount is large.
  • the control means controls the differential pressure adjusting means, and controls the pressure of the working fluid upstream of the differential pressure adjusting means. increase.
  • circulates the inside of a radiator rises, the cooling amount of the working fluid in a thermal radiation part becomes large.
  • the heat medium can sufficiently dissipate heat to the working fluid, and the required cooling amount can be satisfied.
  • the required cooling amount is small, it is possible to increase the recoverable energy by suppressing the cooling amount of the working fluid in the heat radiating unit.
  • the setting means can set the required cooling amount required by the drive system by various means.
  • the setting means can set the required cooling amount based on the output of the internal combustion engine.
  • the internal combustion engine may be a vehicle engine.
  • the setting means can set the required cooling amount based on the accelerator opening of the vehicle or the accelerator opening and the rotational speed of the vehicle engine.
  • the setting means may include a first temperature detection means provided in the heat medium flow path or the boiler and capable of detecting the temperature of the heat medium flowing through the boiler. Then, the setting means can set the required cooling amount based on the detection value detected by the first temperature detection means.
  • the first temperature detection means is provided in the heat medium flow path, it is possible to detect the temperature of the working fluid flowing into the boiler.
  • the first temperature detecting means is provided in the boiler, the temperature of the working fluid circulating in the boiler can be detected.
  • the setting means may include second temperature detection means provided in the heat medium flow path and capable of detecting the temperature of the heat medium flowing out from the boiler. Then, the setting means can set the required cooling amount based on the detection value detected by the second temperature detection means.
  • the setting means may include a first pressure detection means provided in the heat medium flow path or the boiler and capable of detecting the pressure of the heat medium flowing through the boiler. Then, the setting means can set the required cooling amount based on the detection value detected by the first pressure detection means. Similar to the first temperature detecting means, if the first pressure detecting means is provided in the heat medium flow path, the pressure of the working fluid flowing into the boiler can be detected, and if the first pressure detecting means is provided in the boiler, the boiler is detected. It is possible to detect the pressure of the working fluid that circulates.
  • the setting means can accurately set the required cooling amount required by the drive system.
  • the target physical quantity may be a coolable quantity that allows the working fluid to cool the heat medium.
  • the control means preferably controls the differential pressure adjusting means so that the pressure of the working fluid upstream of the differential pressure adjusting means increases when the coolable amount is small.
  • control means when the temperature of the working fluid is not lowered to such an extent that the heat medium can be cooled to a predetermined temperature in the heat exchange in the boiler, that is, when the cooling amount of the working fluid to the heat medium is small.
  • the cooling amount of the working fluid in the heat radiating portion is increased, and the temperature of the working fluid when flowing into the boiler is lowered.
  • the setting means can be set by various means also about the coolable amount that the working fluid can cool the heat medium.
  • the setting means may set the coolable amount based on the temperature of the working fluid from the radiator outlet to the working fluid inlet in the boiler.
  • the setting means may include third temperature detection means provided in the Rankine cycle and capable of detecting the temperature of the working fluid flowing into the boiler.
  • a setting means sets the cooling possible amount with respect to a thermal medium based on the detected value which the 3rd temperature detection means detected.
  • the setting means may include second pressure detection means provided in the Rankine cycle and capable of detecting the pressure of the working fluid from the downstream of the differential pressure adjusting means to the upstream of the pump. Then, the setting means can set the coolable amount based on the detection value detected by the second pressure detection means.
  • the setting means can accurately set the coolable amount by which the working fluid can cool the heat medium.
  • waste heat utilization apparatus of the present invention it is possible to realize energy recovery and suitable cooling of the heat medium while simplifying the configuration.
  • FIG. 1 is a schematic structural diagram showing a waste heat utilization apparatus of Example 1.
  • FIG. It is sectional drawing which concerns on the waste heat utilization apparatus of Example 1, and shows the state in which the capacitor
  • FIG. It is a Mollier diagram which shows the driving
  • FIG. 3 is a schematic structural diagram showing a waste heat utilization apparatus of Example 2. It is a Mollier diagram which shows the driving
  • FIG. 10 is a cross-sectional view illustrating a radiator unit according to an eighth embodiment.
  • Embodiments 1 to 8 embodying the present invention will be described below with reference to the drawings.
  • the waste heat heat utilization devices of Examples 1 to 8 are all mounted on a vehicle.
  • the waste heat utilization apparatus of the first embodiment is used in a drive system 1 and includes a Rankine cycle 3, a variable throttle valve 5, and a controller 7.
  • the variable throttle valve 5 corresponds to the differential pressure adjusting means in the present invention
  • the controller 7 corresponds to the setting means and the control means.
  • the drive system 1 has an engine 9 as an internal combustion engine, a turbocharger 11, and pipes 13 to 17.
  • the engine 9 is a diesel engine.
  • the engine 9 is formed with an exhaust port 9a for exhausting exhaust and an intake port 9b for sucking in pressurized air described later.
  • This pressurized air is an intake system fluid and corresponds to a heat medium in the present invention.
  • a gasoline engine may be used as the engine 9 instead of the diesel engine.
  • the turbocharger 11 is operated by the exhaust gas discharged from the engine 9 and supplies the engine 9 with pressurized air obtained by pressurizing air outside the vehicle.
  • the pipe 13 has one end connected to the exhaust port 9a of the engine 9 and the other end connected to the turbocharger 11. By circulating this pipe 13, it is possible to guide the exhaust discharged from the engine 9 to the turbocharger 11.
  • the pipe 14 has one end connected to the turbocharger 11 and the other end connected to a pressurized air inlet 23a of a boiler 23 described later.
  • One end of the pipe 15 is connected to the pressurized air outlet 23 b of the boiler 23, and the other end is connected to the intake port 9 b of the engine 9.
  • the turbocharger 11 is connected to one end sides of the pipes 16 and 17.
  • the other end side of the pipe 16 is connected to a muffler (not shown).
  • the other end side of the pipe 17 opens to an outside air introduction portion of the vehicle (not shown).
  • the pipe 16 communicates with the pipe 13 via the turbocharger 11.
  • the pipe 17 communicates with the pipe 14 via the turbocharger 11.
  • the piping 14 is provided with a first temperature sensor 19 and a first pressure sensor 21. Each of the first temperature sensor 19 and the first pressure sensor 21 is electrically connected to the controller 7.
  • the first temperature sensor 19 detects the temperature of the pressurized air flowing through the pipe 14, that is, the temperature of the pressurized air flowing into the boiler 23, and transmits the detected value to the controller 7.
  • the first temperature sensor 19 corresponds to the first temperature detecting means in the present invention.
  • the first pressure sensor 21 detects the pressure of the pressurized air flowing into the boiler 23 based on the pressure of the pressurized air flowing through the pipe 14, and transmits the detected value to the controller 7.
  • the first pressure sensor 21 corresponds to the first pressure detection means in the present invention.
  • the piping 15 is provided with a second temperature sensor 22.
  • the second temperature sensor 22 is also electrically connected to the controller 7.
  • the second temperature sensor 22 detects the temperature of the pressurized air flowing through the pipe 15, that is, the temperature of the pressurized air that has flowed out of the boiler 23, and transmits the detected value to the controller 7.
  • the second temperature sensor 22 corresponds to the second temperature detection means in the present invention.
  • Rankine cycle 3 includes an electric pump P1, a boiler 23, an expander 25, a radiator 27, a gas-liquid separator 29, and pipes 31 to 35 as working fluid paths.
  • An HFC 134a as a working fluid can flow through the pipes 31 to 35.
  • the electric pump P1 is electrically connected to the controller 7.
  • a discharge port 101 and a suction port 102 are formed in the electric pump P1.
  • the boiler 23 has a pressurized air inlet 23a through which pressurized air flows in, a pressurized air outlet 23b through which pressurized air flows out, a working fluid inlet 23c through which the working fluid flows in, and a working fluid out.
  • a working fluid outlet 23d is formed.
  • a heat radiating plate 23e is provided inside the boiler 23. The interior of the boiler 23 is partitioned into a first passage 23f and a second passage 23g by the heat radiating plate 23e.
  • the first passage 23f communicates with the pressurized air inlet 23a and the pressurized air outlet 23b at both ends, respectively, so that the pressurized air can flow therethrough.
  • the second passage 23g communicates with the working fluid inlet 23c and the working fluid outlet 23d at both ends, respectively, so that the working fluid can flow therethrough.
  • the pressurized air in the first passage 23f and the working fluid in the second passage 23g exchange heat through the heat radiating plate 23e, thereby cooling the pressurized air and heating the working fluid. It is possible to do. That is, the boiler 23 also functions as a cooler for the pressurized air.
  • the expander 25 is formed with an inlet 25a through which a working fluid flows and an outlet 25b through which the working fluid flows out.
  • the expander 25 generates a rotational driving force by expanding the working fluid heated through the boiler 23.
  • a known generator (not shown) is connected to the expander 25. The generator generates power by the rotational driving force of the expander 25 and charges the battery (not shown) with electric power.
  • the radiator 27 includes first and second heads 271 and 273 extending vertically in the vertical direction and a heat radiating portion 275 extending horizontally with respect to the first and second heads 271 and 273.
  • the heat radiating portion 275 is constituted by a plurality of tubes communicating with the first head 271 and the second head 273.
  • heat dissipating fins are provided between the tubes.
  • the working fluid when flowing through the heat radiating portion 275, the working fluid is radiated to the air passing through the heat radiator 27.
  • the air passing through the radiator 27 corresponds to the cooling medium in the present invention. Thereby, the radiator 27 cools the working fluid.
  • the first head 271 of the radiator 27 is formed with a radiator inlet 27a through which a working fluid flows.
  • the second head 273 is formed with a radiator outlet 27b through which the working fluid flows out from the inside.
  • an electric fan 27 c is provided in the vicinity of the radiator 27.
  • the electric fan 27 c is electrically connected to the controller 7.
  • the gas-liquid separator 29 has a cylindrical receiver case 290 as shown in FIG.
  • the receiver case 290 is formed with a receiver inlet 29a at a position upstream of the working fluid in the circulation direction of the working fluid, which will be described later.
  • Outflow port 29b is formed.
  • a liquid receiving chamber 29c is formed in the receiver case 290.
  • the gas-liquid separator 29 separates the working fluid flowing in from the receiver inlet 29a into gas and liquid.
  • the gas-liquid separator 29 stores the working fluid in a liquid state in the liquid receiving chamber 29c, and causes the stored working fluid in a liquid state to flow out from the receiver outlet 29b in order.
  • the electric pump P1, the boiler 23, the expander 25, the radiator 27, and the gas-liquid separator 29 are connected by pipes 31 to 35.
  • the discharge port 101 of the electric pump P1 and the working fluid inlet 23c of the boiler 23 are connected by a pipe 31.
  • the working fluid outlet 23 d of the boiler 23 and the inlet 25 a of the expander 25 are connected by a pipe 32.
  • An outlet 25 b of the expander 25 and a radiator inlet 27 a of the radiator 27 are connected by a pipe 33.
  • a radiator outlet 27 b of the radiator 27 and a receiver inlet 29 a of the gas-liquid separator 29 are connected by a pipe 34.
  • the receiver outlet 29b of the gas-liquid separator 29 and the suction port 102 of the electric pump P1 are connected by a pipe 35.
  • the working fluid circulates in the pipes 31 to 35 by operating the electric pump P1. Specifically, the working fluid circulates in the order from the discharge port 101 of the electric pump P1 through the boiler 23, the expander 25, the radiator 27, and the gas-liquid separator 29 to the suction port 102 of the electric pump P1.
  • the variable throttle valve 5 is provided in the pipe 34.
  • the variable throttle valve 5 is electrically connected to the controller 7.
  • the variable throttle valve 5 can adjust the pressure of the working fluid flowing between the outlet 25b of the expander 25 and the variable throttle valve 5 by adjusting the opening of the variable throttle valve 5 itself. Thereby, the variable throttle valve 5 can adjust the pressure difference of the working fluid between its upstream and downstream.
  • the piping 31 is provided with a third temperature sensor 37.
  • the third temperature sensor 37 is electrically connected to the controller 7.
  • the third temperature sensor 37 detects the temperature of the working fluid flowing through the pipe 31, that is, the temperature of the working fluid flowing into the boiler 23, and transmits the detected value to the controller 7.
  • the third temperature sensor 37 corresponds to the third temperature detecting means in the present invention. Note that the third temperature sensor 37 may be provided in the pipe 34 or the pipe 35.
  • a second pressure sensor 39 is provided at a position downstream of the variable throttle valve 5 in the pipe 34.
  • the second pressure sensor 39 is also electrically connected to the controller 7.
  • the second pressure sensor 39 detects the pressure of the working fluid from the downstream of the variable throttle valve 5 to the upstream of the electric pump P1, based on the pressure of the working fluid flowing downstream from the variable throttle valve 5 in the pipe 34. The detected value is transmitted to the controller 7.
  • the second pressure sensor 39 corresponds to the second pressure detecting means in the present invention.
  • the second pressure sensor 39 can also be provided in the pipe 35.
  • the controller 7 controls each operation of the electric pump P1 and the electric fan 27c. Further, the controller 7 is configured to be able to detect the accelerator opening of the vehicle based on a signal received from the ECU or the like (not shown) of the vehicle, and can detect the output of the engine 9 based on the accelerator opening. It has become. The controller 7 may detect the output of the engine 9 based on the accelerator opening and the rotational speed of the engine 9.
  • the controller 7 stores a control map for adjusting the opening degree of the variable throttle valve 5.
  • the controller 7 stores a threshold for the temperature of the pressurized air and the working fluid, and a threshold for the pressure of the pressurized air and the working fluid, in addition to the threshold for the output of the engine 9. Then, the controller 7 detects the detected output of the engine 9, the detection values by the first to third temperature sensors 19, 22, and 37, the detection values by the first and second pressure sensors 21, 39, and each threshold value stored in advance. Thus, it is possible to set a target physical quantity for cooling the pressurized air.
  • the controller 7 requests the cooling request amount requested by the drive system 1. In other words, it is possible to set the required cooling amount for the pressurized air.
  • the controller 7 can set the coolable amount of the working fluid with respect to the pressurized air.
  • the controller 7 controls the variable throttle valve 5 based on the set target physical quantity so that the opening degree is decreased when the heat dissipation amount of the working fluid in the heat dissipation portion 275 of the radiator 27 is insufficient. Specifically, in addition to the output of the engine 9, each threshold value stored in advance by the controller 7 for each detected value by the first to third temperature sensors 19, 22, 37 and the first and second pressure sensors 21, 39 is set. If it exceeds, the controller 7 will judge that the thermal radiation amount of the working fluid in the thermal radiation part 275 is insufficient. Thereby, the controller 7 controls so that the opening degree of the variable throttle valve 5 decreases.
  • the waste heat heat utilization device configured in this way operates as follows by driving the vehicle.
  • the engine 9 When the vehicle is driven, the engine 9 is operated in the drive system 1, and the exhaust discharged from the exhaust port 9 a flows through the pipe 13 and reaches the turbocharger 11. As a result, the turbocharger 11 is operated, and the air outside the vehicle flowing in from the pipe 17 is sucked into the turbocharger 11 and compressed. At this time, the exhaust gas that has reached the turbocharger 11 is discharged from the pipe 16 through the muffler to the outside of the vehicle. The air compressed by the turbocharger 11 flows through the pipe 14 as pressurized air. The pressurized air flows into the boiler 23 from the pressurized air inlet 23a and flows through the first passage 23f. At this time, the first temperature sensor 19 detects the temperature of the working fluid flowing through the pipe 14 and transmits the detected value to the controller 7. Similarly, the first pressure sensor 21 detects the pressure of the working fluid flowing through the pipe 14 and transmits the detected value to the controller 7.
  • the controller 7 operates the electric pump P1 and the electric fan 27c.
  • the temperature of the working fluid does not become a big problem with respect to the required cooling amount for the pressurized air and the coolable amount of the working fluid for the pressurized air in the waste heat heat utilization device.
  • the controller 7 has a pressure difference between the working fluid upstream of the variable throttle valve 5 and the working fluid downstream of the variable throttle valve 5 so that the flow rate of the working fluid flowing through the pipe 34 is maximized.
  • the opening degree of the variable throttle valve 5 is controlled so as to decrease. For this reason, the condensing pressure of the working fluid passing through the radiator 27 is minimized.
  • the working fluid is discharged from the discharge port 101 of the electric pump P1, and flows through the second passage 23g from the working fluid inflow passage 23c of the boiler 23 via the pipe 31.
  • the third temperature sensor 37 detects the temperature of the working fluid flowing through the pipe 31 and transmits the detected value to the controller 7.
  • the working fluid flowing through the second passage 23g exchanges heat with the pressurized air flowing through the first passage 23f.
  • the pressurized air is cooled and the working fluid is heated. Since the pressurized air becomes high temperature by being compressed, the working fluid is suitably heated.
  • the pressurized air cooled in the boiler 23 flows out from the pressurized air outlet 23b in a state where the density is increased, and flows through the pipe 15.
  • the second temperature sensor 22 detects the temperature of the working fluid flowing through the pipe 15 and transmits the detected value to the controller 7.
  • the pressurized air flowing through the pipe 15 is supplied to the engine 9 from the intake port 9 b of the engine 9.
  • the output of the engine 9 can be increased.
  • the working fluid heated in the boiler 23 flows out from the working fluid outflow passage 23d in a high-temperature and high-pressure state, and reaches the inside of the expander 25 from the inlet 25a of the expander 25 through the pipe 32.
  • the high-temperature and high-pressure working fluid is expanded and depressurized.
  • the generator connected to the expander 25 generates electric power by the pressure energy at this time.
  • the pressure energy of the working fluid can be recovered as electric power.
  • the working fluid depressurized in the expander 25 flows out from the outlet 25b and reaches the first head 271 from the radiator inlet 27a of the radiator 27 via the pipe 33 as shown in FIG. Then, the working fluid in the first head 271 circulates in each tube as the heat radiating unit 275 toward the second head 273.
  • the working fluid that has flowed into the first head 271 is in the gas phase.
  • the working fluid that circulates in the heat radiating unit 275 is cooled by dissipating heat to the air around the radiator 27, that is, the ambient air blown by the electric fan 27c.
  • a part of the working fluid flowing through the heat radiating portion 275 changes from the gas phase to the liquid phase, and the liquid phase working fluid is cooled.
  • the heat radiating portion 275 can be formed with a capacitor region 275a that radiates heat of a gas-phase working fluid and a subcool region 275b that radiates heat of a liquid-phase working fluid. In the subcool region 275b, the working fluid is supercooled.
  • the capacitor region 275a that radiates the gas-phase working fluid is increased in the heat radiating portion 275, and the liquid-phase working fluid is radiated.
  • the subcool region 275b is reduced.
  • the working fluid that has finished radiating heat in the heat radiating portion 275 flows out of the radiator outlet 27b and circulates in the pipe 34.
  • the second pressure sensor 39 detects the pressure of the working fluid flowing through the pipe 34 and transmits the detected value to the controller 7.
  • the working fluid flowing through the pipe 34 reaches the receiver chamber 29c from the receiver inlet 29a of the gas-liquid separator 29.
  • the working fluid is gas-liquid separated in the liquid receiving chamber 29c.
  • the liquid-phase working fluid flows out from the receiver outlet 29b, and is sucked into the electric pump P1 from the suction port 102 via the pipe 35. Then, the working fluid is discharged from the discharge port 101 to the pipe 31 again.
  • the working fluid in the Rankine cycle 3 in a state where the opening degree control of the variable throttle valve 5 is performed so that the flow rate of the working fluid flowing through the pipe 34 becomes maximum is approximately the Mollier shown in FIG. It changes like a diagram. That is, the working fluid discharged by the electric pump P1 changes its pressure and enthalpy in the order of A ⁇ B ⁇ C ⁇ D ⁇ D ′ ⁇ A.
  • a region between the point D and the point D ′ is the condensation region X1 in the heat dissipation portion 275.
  • a portion between the point D ′ and the point A is a supercooling region Y1 in the heat dissipation portion 275.
  • the heat radiation amount of the working fluid in the heat radiating section 275 that is, the cooling amount of the working fluid in the heat radiating section 275
  • the target physical quantity for cooling the pressurized air refers to the required cooling amount for the pressurized air and the coolable amount of the working fluid for the pressurized air.
  • the controller 7 sets the required cooling amount for the pressurized air to a predetermined value.
  • the controller 7 can satisfy the set required cooling amount.
  • the opening degree of the variable throttle valve 5 is adjusted.
  • the controller 7 increases the pressure of the working fluid upstream of the variable throttle valve 5 and increases the pressure difference between the working fluid upstream of the variable throttle valve 5 and the working fluid downstream of the variable throttle valve 5.
  • the controller 7 performs control so that the opening degree of the variable throttle valve 5 decreases based on the control map, and the working fluid that circulates from the outlet 25b of the expander 25 to the variable throttle valve 5. Increase the condensation pressure.
  • the controller 7 adjusts the opening degree of the variable throttle valve 5 in accordance with the set required cooling amount for the pressurized air. For this reason, the amount of increase in the condensing pressure of the working fluid is appropriately adjusted in accordance with the set required cooling amount.
  • the subcool region 275b occupies about half of the heat radiating portion 275. That is, the subcool region 275b is increased and the capacitor region 275a is decreased in the heat dissipating part 275, compared to the case where the opening degree of the variable throttle valve 5 is maximum.
  • the working fluid in the Rankine cycle 3 changes approximately as shown in the Mollier diagram shown in FIG. That is, the working fluid discharged by the electric pump P1 changes its pressure and enthalpy in the order of A ⁇ B ⁇ C ⁇ E ⁇ E ′ ⁇ F ⁇ A.
  • the point E and the point E ′ is a condensation region X2 in the heat radiating unit 275 when the opening degree of the variable throttle valve 5 is reduced.
  • the condensation pressure in the condensation region X2 and the supercooling region Y2 is higher than the condensation pressure in the condensation region X1 and the supercooling region Y1 shown in FIG. For this reason, in the state where the opening degree of the variable throttle valve 5 is decreased, the cooling amount in the heat radiating unit 275 can be increased as compared with the case where the opening degree of the variable throttle valve 5 is the maximum. Thereby, in the state where the opening degree of the variable throttle valve 5 is decreased, the temperature of the working fluid flowing into the boiler 23 is lowered, and in the boiler 23, the pressurized air can radiate heat to the low-temperature working fluid. It becomes. That is, it becomes possible to satisfy the set cooling request amount. In this way, in this waste heat utilization apparatus, even when the required cooling amount for the pressurized air is large, the working fluid can be cooled so as to satisfy it, and the output of the engine 9 can be improved. Become.
  • the opening of the variable throttle valve 5 when the opening of the variable throttle valve 5 is reduced, the pressure at the point E is higher than the point D shown in FIG. That is, in the state in which the pressure of the working fluid in the Rankine cycle 3 is increased, as shown in FIG. 5, the pressure change from the point C to the point E in the working fluid becomes small. For this reason, compared with the case where the opening degree of the variable throttle valve 5 is the maximum, the amount of electric power that can be recovered in the Rankine cycle 3 is reduced. In addition, as the condensing pressure of the working fluid is increased in this way, the pressure of the working fluid flowing out from the radiator 27 (pressure at the point F in FIG. 5) is also larger than when the opening of the variable throttle valve 5 is maximum. Become high.
  • the controller 7 can perform the cooling that is insufficient. It is determined that the amount should be increased to a predetermined size. That is, when the coolable amount of the working fluid with respect to the pressurized air is small, the controller 7 performs control so that the opening degree of the variable throttle valve 5 decreases.
  • the condensation pressure in the heat radiating unit 275 increases as in the case where the required cooling amount for the pressurized air is large, and the working fluid is cooled.
  • the amount increases.
  • the temperature of the working fluid is lowered to such an extent that the pressurized air can be cooled to a predetermined temperature by heat exchange in the boiler 23.
  • the pressurized air can be suitably cooled by heat exchange in the boiler 23.
  • the controller 7 adjusts the opening degree of the pipe 34 by the variable throttle valve 5 and only adjusts the pressure difference of the working fluid upstream and downstream of the variable throttle valve 5. It is possible to adjust the cooling amount of the working fluid in the radiator 27 according to the required cooling amount and the cooling possible amount. For this reason, in this waste heat utilization apparatus, complication of Rankine cycle 3 can be suppressed suitably. It becomes.
  • waste heat utilization apparatus of the first embodiment it is possible to achieve power recovery and suitable pressurized air cooling while simplifying the configuration.
  • the working fluid can be caused to flow into the electric pump P1 in the liquid phase state by the gas-liquid separator 29. For this reason, in this waste heat utilization apparatus, in Rankine cycle 5, it becomes possible to circulate a working fluid suitably along piping 31-35, and it becomes possible to perform heat exchange in boiler 23 suitably. Yes.
  • the controller 7 is based on the detection values of the first to third temperature sensors 19, 22, 37 and the first and second pressure sensors 21, 39 in addition to the output of the engine 9. It is possible to accurately set the cooling requirement amount and the cooling possible amount.
  • the waste heat utilization apparatus of the second embodiment includes a Rankine cycle 3a as shown in FIG. 6 instead of the Rankine cycle 3 in the waste heat utilization apparatus of the first embodiment.
  • Rankine cycle 3 a further includes a supercooler 43 and a pipe 36 as a working fluid path in addition to the components of Rankine cycle 3.
  • the supercooler 43 includes first and second heads 431 and 433 extending vertically in the vertical direction, and a supercooling unit 435 extending horizontally with respect to the first and second heads 431 and 433. have.
  • the supercooling unit 435 is also configured by a plurality of tubes communicating with the first head 431 and the second head 433. Further, similarly to the radiator 27, in the supercooling section 435, heat radiation fins are provided between the tubes.
  • the first head 431 of the supercooler 43 is formed with a supercooler inlet 43a through which a working fluid flows.
  • the second head 433 is formed with a subcooler outlet 43b through which the working fluid flows out from the inside.
  • an electric fan 43 c is provided in the vicinity of the supercooler 43.
  • the electric fan 43 c is electrically connected to the controller 7.
  • the receiver outlet 29b of the gas-liquid separator 29 and the supercooler inlet 43a of the supercooler 43 are connected by a pipe 35. Further, the subcooler outlet 43b of the supercooler 43 and the suction port 102 of the electric pump P1 are connected by a pipe 36. That is, in the Rankine cycle 3a, the supercooler 43 is provided at a position downstream of the gas-liquid separator 29 and upstream of the electric pump P1 in the direction of circulation of the working fluid.
  • the controller 7 controls the operation of the electric fan 43c in addition to each control in the waste heat utilization apparatus of the first embodiment.
  • Other configurations of the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the first embodiment, and the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the working fluid cooled by the radiator 27 can be supercooled by the supercooling part 435 of the supercooler 43.
  • the supercooler 43 since the supercooler 43 is located downstream of the gas-liquid separator 29, the working fluid flowing into the supercooling unit 435 becomes a liquid phase. For this reason, the working fluid can be suitably cooled to the supercooled state in the supercooler 43.
  • the Rankine cycle 3a it is possible to secure a larger amount of the supercooling region Y3 than the supercooling region Y1 in the Rankine cycle 3 shown in FIG.
  • the Rankine cycle 3 and the Rankine cycle 3a are the same about the condensation region X1 of the working fluid.
  • the controller 7 performs control so that the opening degree of the variable throttle valve 5 is decreased, so that the working fluid changes approximately as shown in the Mollier diagram shown in FIG. That is, by performing supercooling by the supercooler 43, the working fluid in the Rankine cycle 3a changes its pressure and enthalpy in the order of A ⁇ B ⁇ C ⁇ E ⁇ E ′ ⁇ F ⁇ G ⁇ A. .
  • the working fluid when the working fluid is supercooled by the supercooler 43, a change in the enthalpy of the working fluid occurs between the point G and the point A.
  • the temperature of the working fluid can be suitably reduced.
  • production of the cavitation in the electric pump P1 can be suppressed suitably.
  • Other operations in the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the first embodiment.
  • the waste heat utilization apparatus of the third embodiment is configured by integrating the variable throttle valve 5 and the gas-liquid separator 29 as shown in FIG. Specifically, the variable throttle valve 5 and the gas-liquid separator 29 are integrated by arranging the variable throttle valve 5 in the receiver case 290.
  • the variable throttle valve 5 can adjust the pressure difference of the working fluid between its upstream and downstream by adjusting the opening degree downstream of the receiver inlet 29a.
  • the second pressure sensor 39 is provided in the receiver case 290.
  • the second pressure sensor 39 is downstream of the variable throttle valve 5 based on the pressure of the working fluid flowing downstream of the variable throttle valve 5 in the pipe 34, that is, downstream of the receiver inlet 29 a in the pipe 34.
  • To the upstream of the electric pump P ⁇ b> 1 is detected, and the detected value is transmitted to the controller 7.
  • the second pressure sensor 39 can be provided in the pipe 35.
  • Other configurations in this embodiment are the same as those of the waste heat utilization apparatus of the first embodiment.
  • the receiver case 290 is formed to have a certain volume, it is possible to secure a space for further providing the variable throttle valve 5 while forming the liquid receiving chamber 29c therein. For this reason, by providing the variable throttle valve 5 in the receiver case 290, the variable throttle valve 5 and the gas-liquid separator 29 can be easily integrated. For this reason, in this waste heat utilization apparatus, the mounting property to a vehicle is improving. Other operations in the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the first embodiment.
  • Example 4 As shown in FIG. 10, the waste heat utilization apparatus of the fourth embodiment integrates the radiator 27 and the gas-liquid separator 29 in the Rankine cycle 3, and further, the gas-liquid separator 29 and the variable throttle valve 5. Are integrated.
  • the second head 273 and the receiver case 290 of the radiator 27 are disposed adjacent to each other, and the radiator 27 and the receiver case 290 are connected and integrated by a connection path 45.
  • One end side of the connecting path 45 is connected to the radiator outlet 27 b of the second head 273, and the other end side is connected to the receiver inlet 29 a of the receiver case 290 and extends into the receiver case 290.
  • the connection path 45 constitutes a part of the working fluid path.
  • the piping 34 is not provided in the Rankine cycle 3 in this waste heat utilization apparatus.
  • variable throttle valve 5 and the gas-liquid separator 29 are integrated by arranging the variable throttle valve 5 in the receiver case 290.
  • the radiator 27, the variable throttle valve 5, and the gas-liquid separator 29 are integrated.
  • the variable throttle valve 5 adjusts the pressure difference of the working fluid between its upstream and downstream by adjusting the opening degree downstream of the receiver inlet 29a.
  • the second pressure sensor 39 is provided in the pipe 35. As a result, the second pressure sensor 39 detects the pressure of the working fluid from the downstream of the variable throttle valve 5 to the upstream of the electric pump P1 based on the pressure of the working fluid flowing downstream from the receiver outlet 29b. The detected value is transmitted to the controller 7.
  • the second pressure sensor 39 in the receiver case 290, the downstream of the variable throttle valve 5 and the upstream of the electric pump P1 based on the pressure of the working fluid that circulates downstream of the receiver inlet 29a in the connection path 45.
  • the pressure of the working fluid up to may be detected.
  • Other configurations in this embodiment are the same as those of the waste heat utilization apparatus of the first embodiment.
  • the radiator 27, the variable throttle valve 5, and the gas-liquid separator 29 are integrated, so that the mountability to the vehicle is further improved as compared with the waste heat utilization device of the third embodiment. Is possible. Other operations in the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the first embodiment.
  • the waste heat utilization apparatus of the fifth embodiment is configured by integrating the variable throttle valve 5 and the gas-liquid separator 29 as shown in FIG.
  • the integration of the variable throttle valve 5 and the gas-liquid separator 29 is the same as the waste heat utilization apparatus of the third embodiment, and is realized by arranging the variable throttle valve 5 in the receiver case 290.
  • the second pressure sensor 39 is provided in the receiver case 290.
  • the second pressure sensor 39 may be provided in the pipe 35 or the pipe 36.
  • Other configurations of the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the second embodiment.
  • variable throttle valve 5 and the gas-liquid separator 29 are integrated, so that even when the supercooler 43 is provided, the Rankine cycle 3a is preferably prevented from becoming complicated. It becomes possible to do. For this reason, also in this waste heat utilization apparatus, the mounting property to a vehicle is improving. Other operations in the waste heat utilization apparatus are the same as those in the waste heat utilization apparatus of the second embodiment.
  • the waste heat utilization apparatus of the sixth embodiment is formed by integrating the radiator 27 and the supercooler 43, and the variable throttle valve 5 and the gas-liquid separator 29.
  • the radiator 27 and the supercooler 43 are integrated with each other by integrating the first head 271 of the radiator 27 and the second head 433 of the supercooler 43 and the second of the radiator 27. This is realized by integrating the head 273 and the first head 431 of the subcooler 43.
  • the radiator 27 and the supercooler 43 and the gas-liquid separator 29 are connected by the pipe 34 and the pipe 35 as in the waste heat utilization apparatus of the second embodiment.
  • variable throttle valve 5 and the gas-liquid separator 29 in this waste heat utilization device and the arrangement of the second pressure sensor 39 are the same as in the waste heat utilization device of the fifth embodiment.
  • Other configurations of the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the second embodiment.
  • Example 7 As shown in FIG. 13, in the Rankine cycle 3a, the waste heat utilization apparatus of Example 7 integrates the supercooler 43 and the gas-liquid separator 29, and further, the gas-liquid separator 29 and the variable throttle valve 5 are integrated. And integrated.
  • the first head 431 and the receiver case 290 of the supercooler 43 are disposed adjacent to each other, and the supercooler 43 and the receiver case 290 are connected and integrated by the connection path 47.
  • One end side of the connection path 47 is connected to the subcooler inlet 43 a of the first head 431, and the other end is connected to the receiver outlet 29 b of the receiver case 290 and extends into the receiver case 290.
  • the connecting path 47 also constitutes a part of the working fluid path.
  • the piping 35 is not provided in the Rankine cycle 3a.
  • variable throttle valve 5 and the gas-liquid separator 29 are the same as in the waste heat utilization apparatus of the fifth embodiment. Thereby, in this waste heat utilization apparatus, the supercooler 43, the variable throttle valve 5, and the gas-liquid separator 29 are integrated. Other configurations of the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the second embodiment.
  • the supercooler 43, the variable throttle valve 5, and the gas-liquid separator 29 are integrated, so that the mountability on the vehicle is high.
  • Other operations in the waste heat utilization apparatus are the same as those in the waste heat utilization apparatus of the second embodiment.
  • the waste heat utilization apparatus according to the eighth embodiment includes a Rankine cycle 3b as shown in FIG. 14 instead of the Rankine cycle 3 in the waste heat utilization apparatus according to the first embodiment.
  • Rankine cycle 3 b has a radiator unit 49 instead of radiator 27 in Rankine cycle 3.
  • this Rankine cycle 3 b has a pipe 55 instead of the pipes 34 and 35 in the Rankine cycle 3.
  • the radiator unit 49 corresponds to the radiator in the present invention.
  • the pipe 55 also corresponds to a working fluid path.
  • the radiator unit 49 includes first and second heads 491 and 493 that extend vertically in the vertical direction, a heat radiating unit 495 and a supercooling unit 497 that extend horizontally in the left and right direction, and a gas-liquid separation unit 499. And an upstream connection path 501 and a downstream connection path 503.
  • the heat radiating part 495 and the supercooling part 497 are configured by a plurality of tubes communicating with the first head 491 and the second head 493, respectively.
  • fins for heat radiation are provided between the tubes constituting the heat radiation part 495 and between the tubes constituting the supercooling part 497.
  • the first head 491 is formed with a radiator inlet 49a through which the working fluid flows in and a radiator outlet 49b through which the working fluid flows out from the inside.
  • a first partition wall 49c is formed to be separated from the side.
  • the second head 493 is formed with an upstream side connection port 49d, a downstream side connection port 49e, and a second partition wall 49f that divides the inside into an upstream side and a downstream side of the working fluid.
  • the gas-liquid separator 499 is provided adjacent to the second head 493.
  • the gas-liquid separator 499 is formed in a cylindrical shape, and a liquid receiving chamber 51 is formed therein.
  • the gas-liquid separation unit 499 is formed with a receiver inflow port 53a through which the working fluid flows in and a receiver outflow port 53b through which the liquid working fluid flows out from the inside.
  • the gas-liquid separator 499 and the second head 493 are integrally connected by the upstream connection path 501 and the downstream connection path 503.
  • One end of the upstream connection path 501 is connected to the upstream connection port 49 d of the second head 493, and the other end is connected to the receiver inlet 53 a of the gas-liquid separator 499 and extends into the liquid receiving chamber 51.
  • One end side of the downstream side connection path 503 is connected to the receiver outlet 53 b of the gas-liquid separation unit 499, and the other end side is connected to the downstream side connection port 49 e of the second head 493.
  • variable throttle valve 5 is provided in the gas-liquid separator 499.
  • the gas-liquid separation part 499, by extension, the radiator unit 49 and the variable throttle valve 5 are integrated.
  • the variable throttle valve 5 adjusts the pressure difference of the working fluid between its upstream and downstream by adjusting the opening degree downstream of the receiver inlet 53a.
  • an electric fan 49g is provided in the vicinity of the radiator unit 49.
  • the electric fan 49g is electrically connected to the controller 7. Further, in this Rankine cycle 3 b, the outlet 25 b of the expander 25 and the radiator inlet 49 a of the radiator unit 49 are connected by a pipe 33.
  • the radiator outlet 49b of the radiator unit 49 and the suction port 102 of the electric pump P1 are connected by a pipe 55.
  • the second pressure sensor 39 is provided in the pipe 55.
  • the second pressure sensor 39 detects the pressure of the working fluid from the downstream of the variable throttle valve 5 to the upstream of the electric pump P ⁇ b> 1 based on the pressure of the working fluid flowing through the pipe 55, and sends the detected value to the controller 7. To send.
  • the second pressure sensor 39 may be provided in the gas / liquid separator 499.
  • Other configurations of the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the first embodiment.
  • the working fluid that has passed through the expander 25 flows into the first head 491 of the radiator unit 49 from the radiator inlet 49a. Then, the working fluid flows through the heat radiating unit 495 and reaches the second head 493. At this time, the working fluid flowing through the heat radiating unit 495 is cooled by heat exchange with the surrounding air blown by the electric fan 49g.
  • a capacitor region 495a and a subcool region 495b can be formed in the heat dissipation portion 495.
  • the ratio of the condenser region 495a and the subcool region 495b in the heat radiating unit 495 can be adjusted by adjusting the opening of the variable throttle valve 5 by the controller 7 in accordance with the required cooling amount and the cooling possible amount. It is.
  • the working fluid that has reached the second head 493 flows into the gas-liquid separator 499 via the upstream connection path 501 and is gas-liquid separated. Then, the liquid working fluid is stored in the liquid receiving chamber 51. In addition, the working fluid in the liquid receiving chamber 51 flows through the downstream connection path 503 and flows into the second head 493 again from the downstream connection port 49e. The working fluid flows through the supercooling unit 497 and reaches the first head 491 while being supercooled by the surrounding air blown by the electric fan 49g. Then, the working fluid flows out from the radiator outlet 49b, flows through the pipe 55, and is sucked into the electric pump P1 through the suction port 102.
  • the first partition 49c is formed in the first head 491
  • the second partition 49f is formed in the second head 493.
  • the radiator unit 49 includes the gas-liquid separator 499 and the supercooling unit 497 in addition to the heat radiator 495, so that the gas-liquid separator 29 and the supercooler 43 are separately provided. Without providing, it is possible to achieve the same effect as the waste heat utilization apparatus of the second embodiment.
  • the variable throttle valve 5 is provided in the gas-liquid separation unit 499 in addition to the heat radiation unit 495, the gas-liquid separation unit 499, and the supercooling unit 497 being integrated.
  • the Rankine cycle As compared with the case where the radiator 27, the variable throttle valve 5, the gas-liquid separator 29, and the supercooler 43 are individually provided as in the waste heat utilization apparatus of the second embodiment, the Rankine cycle. It is possible to suppress complication of the configuration of 3b. For this reason, this waste heat utilization apparatus is also highly mounted on a vehicle. Other operations in the waste heat utilization apparatus are the same as those in the waste heat utilization apparatus of the second embodiment.
  • the controller 7 adjusts the cooling amount of the working fluid based on the required cooling amount or the coolable amount, but instead, the working fluid is based only on either the required cooling amount or the coolable amount.
  • the amount of cooling may be adjusted.
  • first temperature sensor 19 and the first pressure sensor 21 may be provided for the first passage 23 f of the boiler 23.
  • the first temperature sensor 19 can detect the temperature of the pressurized air flowing through the first passage 23f.
  • the first pressure sensor 21 can detect the pressure of the pressurized air flowing through the first passage 23f.
  • controller 7 is configured to set the required cooling amount based on any one of the output of the engine 9, the detected value by the first and second temperature sensors 19 and 22, and the detected value by the first pressure sensor 21. You may do it. Furthermore, the controller 7 may be configured to set the required cooling amount based on a detection value arbitrarily selected from these.
  • controller 7 may be configured to set the coolable amount based on either the detection value by the third temperature sensor 37 or the detection value by the second pressure sensor 39.
  • the drive system 1 may be configured such that a part of the exhaust discharged from the engine 9 is recirculated to the engine 9 as recirculated exhaust, and heat may be exchanged between the recirculated exhaust and the working fluid in the boiler 23.
  • the heat radiating part 495 and the supercooling part 497 are formed with the same size, but not limited to this, the heat radiating part 495 and the supercooling part 497 are different in size. It may be formed.
  • the present invention can be used not only for waste heat utilization devices mounted on transport vehicles such as trucks and buses and vehicles such as passenger cars, but also for stationary waste heat utilization devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Provided is a waste heat utilization device capable of, while having a simple configuration, recovering energy and cooling a heat medium on the basis of a target physical amount by which the heat medium should be cooled. This waste heat utilization device, which is used in a drive system (1), is equipped with a Rankine cycle (3), a variable throttle valve (5), and a controller (7). In the drive system (1), pressurized air can be supplied to an engine (9). The Rankine cycle (3) has a boiler (23), a heat radiator (27), and the like, and circulates a working fluid. Furthermore, the Rankine cycle (3) is provided with the variable throttle valve (5) and the like. With this waste heat utilization device, when a large amount of cooling is requested for the pressurized air, for example, the controller (7) controls the variable throttle valve (5) so as to reduce the degree of opening. Thus, in a heat radiation unit (275) in the heat radiator (27) the temperature difference between the working fluid and the surrounding air becomes large, due to the rise in the temperature of the working fluid in conjunction with the rise in the condensation pressure of the working fluid. Therefore, the cooling capacity of the working fluid in the radiator (27) increases.

Description

廃熱利用装置Waste heat utilization equipment
 本発明は廃熱利用装置に関する。 The present invention relates to a waste heat utilization apparatus.
 特許文献1に従来の廃熱利用装置が開示されている。この廃熱利用装置は、駆動系に用いられ、作動流体を循環させるランキンサイクルと、設定手段と、制御手段とを備えており、車両に搭載されている。駆動系は、内燃機関であるエンジンと、エンジン用の冷却液が循環可能な冷却液回路とを有している。 Patent Document 1 discloses a conventional waste heat utilization device. This waste heat utilization device is used in a drive system, and includes a Rankine cycle for circulating a working fluid, setting means, and control means, and is mounted on a vehicle. The drive system includes an engine that is an internal combustion engine and a coolant circuit that can circulate coolant for the engine.
 ランキンサイクルは、作動流体流路、ポンプ、ボイラ、膨張機、放熱器、貯留器、回収路、供給路及び第1、2電磁弁を有している。作動流体流路には作動流体が流通可能となっている。また、貯留器には一定量の作動流体が貯留されている。 The Rankine cycle has a working fluid flow path, a pump, a boiler, an expander, a radiator, a reservoir, a recovery path, a supply path, and first and second solenoid valves. The working fluid can flow through the working fluid flow path. A certain amount of working fluid is stored in the reservoir.
 ポンプ、ボイラ、膨張機及び放熱器は作動流体流路によって接続されており、作動流体は、ポンプ、ボイラ、膨張機及び放熱器の順で循環可能である。また、膨張機には発電機が接続されている。 The pump, boiler, expander, and radiator are connected by a working fluid flow path, and the working fluid can be circulated in the order of the pump, boiler, expander, and radiator. A generator is connected to the expander.
 一方、貯留器には回収路及び供給路の各一端側が接続されている。回収路の他端側は、ポンプの上流かつボイラの下流において、作動流体路と接続されている。供給路の他端側は、膨張機の下流かつ放熱器の上流において、作動流体路と接続されている。また、第1電磁弁は回収路に設けられ、第2電磁弁は供給路に設けられている。 On the other hand, each end of the collection path and the supply path is connected to the reservoir. The other end side of the recovery path is connected to the working fluid path upstream of the pump and downstream of the boiler. The other end of the supply path is connected to the working fluid path downstream of the expander and upstream of the radiator. The first solenoid valve is provided in the recovery path, and the second solenoid valve is provided in the supply path.
 この廃熱利用装置では、ボイラにおいて冷却液と作動流体とが熱交換を行うことにより、冷却液の冷却と作動流体の加熱とを行うことが可能である。そして、高温の作動流体が膨張機で膨張及び減圧させる際の圧力エネルギーにより、発電機が作動される。こうして、廃熱利用装置では、ランキンサイクルにおいて、作動流体の圧力エネルギーを電力として回収することが可能となっている。 In this waste heat utilization apparatus, it is possible to cool the coolant and heat the working fluid by exchanging heat between the coolant and the working fluid in the boiler. And a generator is act | operated by the pressure energy at the time of a hot working fluid expanding and decompressing with an expander. Thus, in the waste heat utilization apparatus, the pressure energy of the working fluid can be recovered as electric power in the Rankine cycle.
 さらに、この廃熱利用装置では、車両のECUが冷却液に対する冷却要求量を設定する。ここで、冷却液に対する冷却要求量が大きい場合、ECUは、第1電磁弁を閉制御し、第2開閉弁を開制御する。このため、貯留器に貯留されている作動流体が供給路を経て作動流体流路に流入し、ランキンサイクルにおいて循環する作動流体の流量が増大する。これにより、この廃熱利用装置では、ボイラにおいて冷却液が作動流体に対して好適に放熱を行うことが可能となる。 Furthermore, in this waste heat utilization apparatus, the ECU of the vehicle sets a cooling request amount for the coolant. Here, when the required cooling amount for the coolant is large, the ECU controls the first electromagnetic valve to close and the second on-off valve to open. For this reason, the working fluid stored in the reservoir flows into the working fluid flow path via the supply path, and the flow rate of the working fluid circulating in the Rankine cycle increases. Thereby, in this waste heat utilization apparatus, in a boiler, it becomes possible for a cooling fluid to radiate heat suitably to a working fluid.
 一方、冷却液に対する冷却要求量が小さい場合、ECUは、第1電磁弁を開制御し、第2開閉弁を閉制御する。これにより、ランキンサイクルでは、ポンプから吐出された作動流体の一部が回収路を経て貯留器に貯留される。このため、この廃熱利用装置では、ランキンサイクルにおいて循環する作動流体の流量が減少し、ボイラにおいて冷却液が必要以上に冷却されることを抑制できる。 On the other hand, when the required cooling amount for the coolant is small, the ECU controls the first electromagnetic valve to open and the second on-off valve to close. Thus, in the Rankine cycle, a part of the working fluid discharged from the pump is stored in the reservoir through the recovery path. For this reason, in this waste heat utilization apparatus, the flow volume of the working fluid which circulates in a Rankine cycle reduces, and it can suppress that a cooling fluid is cooled more than necessary in a boiler.
 こうして、この廃熱利用装置では、電力の回収を行いつつ、設定した冷却要求量に応じた冷却液の冷却を行うことが可能である。 Thus, in this waste heat utilization apparatus, it is possible to cool the coolant according to the set cooling request amount while collecting power.
特開2008-231981号公報JP 2008-231981
 しかし、上記従来の廃熱利用装置では、ポンプ、ボイラ、膨張機及び放熱器が接続された作動流体流路の回路に対し、貯留器、回収路、供給路及び第1、2電磁弁を別途設ける必要がある。このため、この廃熱利用装置では、構成の複雑化が不可避となっている。 However, in the above-described conventional waste heat utilization apparatus, a reservoir, a recovery path, a supply path, and first and second electromagnetic valves are separately provided for a working fluid flow path circuit to which a pump, boiler, expander, and radiator are connected. It is necessary to provide it. For this reason, in this waste heat utilization apparatus, complication of composition is inevitable.
 本発明は、上記従来の実情に鑑みてなされたものであって、構成を簡素化しつつ、エネルギーの回収と、好適な熱媒体の冷却とを実現可能な廃熱利用装置を提供することを解決すべき課題としている。 The present invention has been made in view of the above-described conventional situation, and solves the problem of providing a waste heat utilization apparatus capable of realizing energy recovery and suitable cooling of a heat medium while simplifying the configuration. It is an issue that should be done.
 駆動系に用いられ、作動流体を循環させるランキンサイクルを備えた廃熱利用装置において、
 前記駆動系は、内燃機関と、前記内燃機関に接続され、前記内燃機関に対する熱媒体が流通可能な熱媒体流路とを有し、
 前記ランキンサイクルは、前記作動流体を流通可能な作動流体流路と、
 前記作動流体流路に沿って前記作動流体を循環させるポンプと、
 前記ポンプの下流で前記作動流体流路によって接続されるとともに前記熱媒体流路と接続され、前記作動流体と前記熱媒体とで熱交換を行い、前記熱媒体を冷却可能なボイラと、
 前記ボイラの下流で前記作動流体流路によって接続され、前記作動流体を膨張させる膨張機と、
 前記膨張機の下流かつ前記ポンプの上流で前記作動流体流路によって接続され、冷却媒体により前記作動流体の放熱を行う放熱器とを有し、
 前記放熱器には、内部に前記作動流体を流入させる放熱器流入口と、前記内部から前記作動流体を流出させる放熱器流出口と、前記放熱器流入口と前記放熱器流出口との間に位置する放熱部とが設けられ、
 前記放熱器流入口と前記ポンプとの間には、自身の上流と下流とで、前記作動流体の圧力差を調整可能な差圧調整手段が設けられ、
 前記熱媒体を冷却すべき目標物理量を設定する設定手段と、
 前記目標物理量に基づき、前記放熱部における前記作動流体の放熱量が不足する場合に、前記差圧調整手段の上流の前記作動流体の圧力が増加するように前記差圧調整手段を制御する制御手段とを備えていることを特徴とする。
In a waste heat utilization device equipped with a Rankine cycle that circulates a working fluid used in a drive system,
The drive system includes an internal combustion engine, and a heat medium flow path that is connected to the internal combustion engine and through which a heat medium for the internal combustion engine can flow.
The Rankine cycle includes a working fluid flow path through which the working fluid can flow.
A pump for circulating the working fluid along the working fluid flow path;
A boiler that is connected downstream of the pump by the working fluid flow path and connected to the heat medium flow path, performs heat exchange between the working fluid and the heat medium, and cools the heat medium;
An expander connected by the working fluid flow path downstream of the boiler and expanding the working fluid;
A radiator that is connected by the working fluid flow path downstream of the expander and upstream of the pump, and that radiates heat of the working fluid by a cooling medium;
The radiator includes a radiator inlet that allows the working fluid to flow therein, a radiator outlet that allows the working fluid to flow out from the interior, and between the radiator inlet and the radiator outlet. A heat dissipating part located,
Between the radiator inlet and the pump, a differential pressure adjusting means capable of adjusting the pressure difference of the working fluid is provided between the upstream and the downstream of the pump,
Setting means for setting a target physical quantity for cooling the heat medium;
Control means for controlling the differential pressure adjusting means so that the pressure of the working fluid upstream of the differential pressure adjusting means increases when the heat dissipation amount of the working fluid in the heat radiating portion is insufficient based on the target physical quantity. It is characterized by having.
 本発明の廃熱利用装置では、ボイラにおける熱媒体と作動流体との熱交換により、熱媒体の冷却が可能であるとともに、作動流体の加熱が可能である。そして、ランキンサイクルでは、高温の作動流体が膨張機で膨張及び減圧される際の圧力エネルギーを回収することが可能である。なお、回収可能なエネルギーとしては、例えば、作動流体の圧力エネルギーを基に発電した電力や内燃機関に回生される動力等が挙げられる。 In the waste heat utilization apparatus of the present invention, the heat medium can be cooled and the working fluid can be heated by heat exchange between the heat medium and the working fluid in the boiler. And in a Rankine cycle, it is possible to collect | recover the pressure energy at the time of a hot working fluid being expanded and pressure-reduced with an expander. Examples of recoverable energy include power generated based on the pressure energy of the working fluid, power regenerated by the internal combustion engine, and the like.
 また、この廃熱利用装置では、設定手段が熱媒体を冷却すべき目標物理量を設定する。そして、この目標物理量に基づき、放熱部における作動流体の放熱量が不足、すなわち、放熱部での作動流体の冷却量が不足する場合に、制御手段は、差圧調整手段の上流の作動流体の圧力が増加するように差圧調整手段を制御する。つまり、差圧調整手段の上流の作動流体と、差圧調整手段の下流の作動流体とにおける圧力差が大きくなるように調整する。これにより、ランキンサイクルでは、膨張機の出口から差圧調整手段までの間において作動流体流路を流通する作動流体の圧力が上昇する。 In this waste heat utilization apparatus, the setting means sets a target physical quantity for cooling the heat medium. And based on this target physical quantity, when the heat dissipation amount of the working fluid in the heat radiating portion is insufficient, that is, when the cooling amount of the working fluid in the heat radiating portion is insufficient, the control means controls the working fluid upstream of the differential pressure adjusting means. The differential pressure adjusting means is controlled so that the pressure increases. That is, the pressure difference between the working fluid upstream of the differential pressure adjusting means and the working fluid downstream of the differential pressure adjusting means is adjusted to be large. Thereby, in a Rankine cycle, the pressure of the working fluid which distribute | circulates a working fluid flow path between the exit of an expander and a differential pressure | voltage adjustment means rises.
 そして、放熱器の放熱部では、気相の作動流体の放熱を行うコンデンサ領域の他、液相の作動流体の放熱を行うサブクール領域が形成され得る。具体的には、コンデンサ領域では、一定の凝縮温度で作動流体の凝縮潜熱が放熱されることで、気相の作動流体が液化される。こうして、コンデンサ領域における作動流体の放熱が行われる。一方、サブクール領域には、コンデンサ領域を経た液相の作動流体が流入する。そして、この作動流体は、サブクール領域において温度を低下させつつ顕熱が放熱される。こうして、サブクール領域における作動流体の放熱が行われる。 Further, in the heat radiating portion of the radiator, a sub-cooling region for radiating the liquid-phase working fluid can be formed in addition to the capacitor region for radiating the gas-phase working fluid. Specifically, in the condenser region, the condensing latent heat of the working fluid is radiated at a constant condensation temperature, whereby the gas phase working fluid is liquefied. Thus, the working fluid is dissipated in the capacitor region. On the other hand, the liquid-phase working fluid that has passed through the capacitor region flows into the subcool region. The working fluid radiates sensible heat while lowering the temperature in the subcool region. In this way, the working fluid is dissipated in the subcool region.
 ここで、上記のように差圧調整手段によって作動流体の圧力が上昇、つまり、放熱器内を流通する作動流体の圧力が上昇すれば、作動流体の温度が高温となる。このため、上記のような放熱部での放熱形態においては、コンデンサ領域の凝縮温度と冷却媒体の温度との温度差及びサブクール領域の平均温度と冷却媒体の温度との温度差が大きくなる。このため、作動流体の圧力が高い場合は、作動流体の圧力が低い場合よりも、放熱部全体の作動流体の放熱量が増加する。これにより、サブクール領域の出口、すなわち、放熱器流出口から流出する作動流体の温度が低下する。 Here, as described above, when the pressure of the working fluid increases by the differential pressure adjusting means, that is, when the pressure of the working fluid flowing through the radiator increases, the temperature of the working fluid becomes high. For this reason, in the heat radiation mode in the heat radiation part as described above, the temperature difference between the condensation temperature in the capacitor region and the temperature of the cooling medium and the temperature difference between the average temperature in the subcool region and the temperature of the cooling medium become large. For this reason, when the pressure of the working fluid is high, the heat radiation amount of the working fluid in the entire heat radiating portion is increased as compared with the case where the pressure of the working fluid is low. Thereby, the temperature of the working fluid flowing out from the outlet of the subcool region, that is, the radiator outlet is lowered.
 このため、この廃熱利用装置では、設定された目標物理量に対し、放熱部における作動流体の冷却量が不足している場合、差圧調整手段の上流の作動流体の圧力が増加するように差圧調整手段を制御することで、放熱部において作動流体を十分に冷却することが可能となる。こうして、この廃熱利用装置では、目標物理量に対する放熱部での作動流体の冷却量の不足を解消することができ、ボイラでの熱交換によって熱媒体を好適に冷却することが可能となる。なお、この場合、膨張機の下流からポンプの上流までの作動流体の圧力である凝縮圧力が上昇するため、ランキンサイクルで回収可能となるエネルギーの量は減少する。 For this reason, in this waste heat utilization apparatus, when the cooling amount of the working fluid in the heat radiating part is insufficient with respect to the set target physical quantity, the difference is such that the pressure of the working fluid upstream of the differential pressure adjusting means increases. By controlling the pressure adjusting means, the working fluid can be sufficiently cooled in the heat radiating section. In this way, in this waste heat utilization apparatus, the shortage of the cooling amount of the working fluid in the heat radiating unit with respect to the target physical quantity can be solved, and the heat medium can be suitably cooled by heat exchange in the boiler. In this case, since the condensation pressure that is the pressure of the working fluid from the downstream of the expander to the upstream of the pump increases, the amount of energy that can be recovered in the Rankine cycle decreases.
 一方、目標物理量に対し、放熱部における作動流体の冷却量が超過している場合や、廃熱利用装置の始動直後等で、目標物理量に対し、作動流体の冷却量が問題とならない場合には、差圧調整手段の上流の作動流体の圧力が低下するように差圧調整手段の制御を行う。つまり、差圧調整手段の上流の作動流体と、差圧調整手段の下流の作動流体とにおける圧力差が小さくなる又は圧力差がゼロとなるように調整する。これにより、ランキンサイクルでは、膨張機の出口から差圧調整手段までの間において作動流体流路を流通する作動流体の圧力が低下する。この場合には、放熱部における作動流体の冷却量が小さい場合とは反対に、放熱部の作動流体と冷却媒体との温度差が小さくなり、放熱量が小さくなるため、放熱部において作動流体が必要以上に冷却されなくなる。この結果、この廃熱利用装置では、ボイラに流入する際の作動流体の温度が必要以上に低下せず、ボイラでの熱交換による熱媒体の冷却を抑制することが可能となる。 On the other hand, if the cooling amount of the working fluid in the heat dissipation part exceeds the target physical quantity, or if the cooling amount of the working fluid does not matter against the target physical quantity immediately after the start of the waste heat utilization device The differential pressure adjusting means is controlled so that the pressure of the working fluid upstream of the differential pressure adjusting means decreases. That is, adjustment is performed so that the pressure difference between the working fluid upstream of the differential pressure adjusting means and the working fluid downstream of the differential pressure adjusting means becomes small or the pressure difference becomes zero. Thereby, in a Rankine cycle, the pressure of the working fluid which distribute | circulates a working fluid flow path between the exit of an expander and a differential pressure | voltage adjustment means falls. In this case, contrary to the case where the cooling amount of the working fluid in the heat radiating portion is small, the temperature difference between the working fluid in the heat radiating portion and the cooling medium is small, and the heat radiating amount is small. It will not be cooled more than necessary. As a result, in this waste heat utilization apparatus, the temperature of the working fluid when flowing into the boiler does not decrease more than necessary, and cooling of the heat medium due to heat exchange in the boiler can be suppressed.
 このように、この廃熱利用装置では、差圧調整手段の上流と下流とで作動流体の圧力差を調整するだけで、目標物理量に応じた放熱部での作動流体の冷却量の調整が可能である。このため、この廃熱利用装置では、ランキンサイクルの複雑化を好適に抑制することが可能である。 In this way, in this waste heat utilization device, the amount of cooling of the working fluid in the heat radiating section can be adjusted according to the target physical quantity simply by adjusting the pressure difference of the working fluid upstream and downstream of the differential pressure adjusting means. It is. For this reason, in this waste heat utilization apparatus, it is possible to suppress suitably the complication of a Rankine cycle.
 したがって、本発明の廃熱利用装置によれば、構成を簡素化しつつ、エネルギーの回収と、好適な熱媒体の冷却とを実現可能である。 Therefore, according to the waste heat utilization apparatus of the present invention, it is possible to realize energy recovery and suitable cooling of the heat medium while simplifying the configuration.
 内燃機関としては、ガソリンエンジンやディーゼルエンジン等の他、種々の形式のエンジンを採用することができる。また、これらのエンジンはモータを組み合わせたハイブリッドエンジンでも良い。さらに、これらのエンジンは空冷式でも水冷式でも良い。 As the internal combustion engine, various types of engines other than gasoline engines and diesel engines can be adopted. These engines may be hybrid engines combining motors. Furthermore, these engines may be air-cooled or water-cooled.
 熱媒体としては、例えば、内燃機関へ吸入される吸気系流体を採用することができる。この吸気系流体とは、過給器によって圧縮された加圧空気や内燃機関に還流される還流排気等を指す。また、水やLLC(ロングライフクーラント)等の冷却液の他、潤滑油等を熱媒体として採用することもできる。 As the heat medium, for example, an intake system fluid sucked into the internal combustion engine can be employed. The intake system fluid refers to pressurized air compressed by a supercharger, recirculated exhaust gas recirculated to an internal combustion engine, or the like. In addition to coolant such as water and LLC (Long Life Coolant), lubricating oil or the like can be used as a heat medium.
 冷却媒体としては、例えば空気の他、熱媒体とは別の水やLLC等を採用することができる。 As the cooling medium, for example, water or LLC other than the heat medium other than air can be employed.
 差圧調整手段としては、例えば、作動流体路の開度を調整可能な開度調整手段等を採用することができる。このような開度調整手段としては、例えば、可変絞り弁等を採用することができる。 As the differential pressure adjusting means, for example, an opening adjusting means capable of adjusting the opening of the working fluid path can be employed. As such an opening adjustment means, for example, a variable throttle valve or the like can be employed.
 本発明の廃熱利用装置において、ランキンサイクルは、放熱器の下流かつポンプの上流で作動流体流路によって接続され、作動流体を気液分離可能な気液分離器を有し得る。そして、差圧調整手段は、放熱器と気液分離器との間の作動流体流路又は気液分離器と一体に設けられていることが好ましい。 In the waste heat utilization apparatus of the present invention, the Rankine cycle may have a gas-liquid separator that is connected by a working fluid flow path downstream of the radiator and upstream of the pump and that can separate the working fluid. And it is preferable that the differential pressure | voltage adjustment means is integrally provided with the working fluid flow path between a heat radiator and a gas-liquid separator, or a gas-liquid separator.
 この場合、ランキンサイクルでは、作動流体が液相の状態でポンプに流入することとなる。このため、ランキンサイクルにおいて、作動流体流路に沿って作動流体を好適に循環させることが可能となり、ボイラでの熱交換を好適に行うことが可能となる。このため、この廃熱利用装置では、ランキンサイクルにおける作動流体の圧力エネルギーの回収を好適に行うことが可能となる。 In this case, in the Rankine cycle, the working fluid flows into the pump in a liquid phase state. For this reason, in a Rankine cycle, it becomes possible to circulate a working fluid suitably along a working fluid flow path, and it becomes possible to perform heat exchange with a boiler suitably. For this reason, in this waste heat utilization apparatus, it becomes possible to suitably collect the pressure energy of the working fluid in the Rankine cycle.
 ここで、差圧調整手段が気液分離器と一体である場合、この気液分離器を更に放熱器と一体にすることも可能である。 Here, when the differential pressure adjusting means is integrated with the gas-liquid separator, the gas-liquid separator can be further integrated with the radiator.
 気液分離器は、レシーバ流入口及びレシーバ流出口が形成されたレシーバケースを有し得る。また、レシーバケース内には液状態の作動流体を貯留する受液室が形成され得る。さらに、レシーバ流入口及びレシーバ流出口にはそれぞれ作動流体流路が接続され得る。そして、差圧調整手段はレシーバケース内に設けられていることが好ましい。 The gas-liquid separator may have a receiver case in which a receiver inlet and a receiver outlet are formed. Further, a liquid receiving chamber for storing a working fluid in a liquid state may be formed in the receiver case. Furthermore, a working fluid flow path can be connected to each of the receiver inlet and the receiver outlet. And it is preferable that the differential pressure | voltage adjustment means is provided in the receiver case.
 レシーバケースであれば、受液室を形成しつつ、差圧調整手段を更に設けるための空間を確保し易い。このため、レシーバケース内に差圧調整手段を設けることにより、差圧調整手段と気液分離器とを容易に一体化することが可能となる。 If it is a receiver case, it is easy to ensure a space for further providing a differential pressure adjusting means while forming a liquid receiving chamber. For this reason, by providing the differential pressure adjusting means in the receiver case, the differential pressure adjusting means and the gas-liquid separator can be easily integrated.
 また、ランキンサイクルは、放熱器の下流かつポンプの上流で作動流体流路によって接続され、作動流体を過冷却可能な過冷却器を有し得る。そして、差圧調整手段は放熱器と過冷却器との間に設けられていることが好ましい。この場合、過冷却器によって過冷却状態まで冷却された作動流体がポンプに流入するため、ポンプでのキャビテーションの発生を抑制することが可能となる。なお、放熱器と過冷却器とを一体としても良い。このように、放熱器と過冷却器とを一体とした場合、放熱器から過冷却器まで作動流体が至る部分が作動流体流路となる。 Also, the Rankine cycle may have a supercooler connected by a working fluid flow path downstream of the radiator and upstream of the pump, and capable of supercooling the working fluid. And it is preferable that the differential pressure | voltage adjustment means is provided between the heat radiator and the subcooler. In this case, since the working fluid cooled to the supercooled state by the supercooler flows into the pump, the occurrence of cavitation in the pump can be suppressed. Note that the radiator and the supercooler may be integrated. As described above, when the radiator and the supercooler are integrated, a portion where the working fluid reaches from the radiator to the supercooler becomes a working fluid flow path.
 ここで、ランキンサイクルに気液分離器が設けられている場合、過冷却器は気液分離器の下流かつポンプの上流で作動流体流路によって接続されていることが好ましい。また、差圧調整手段は、放熱器と気液分離器との間の作動流体流路に設けられていることが好ましい。この場合、過冷却器において液相の作動流体を過冷却することが可能となる。このため、過冷却状態まで作動流体を好適に冷却することが可能となり、ポンプでのキャビテーションの発生をより好適に抑制することが可能となる。 Here, when a gas-liquid separator is provided in the Rankine cycle, the supercooler is preferably connected by a working fluid flow path downstream of the gas-liquid separator and upstream of the pump. The differential pressure adjusting means is preferably provided in the working fluid flow path between the radiator and the gas-liquid separator. In this case, it becomes possible to supercool the liquid-phase working fluid in the supercooler. For this reason, it becomes possible to cool a working fluid suitably to a supercooled state, and it becomes possible to suppress generation | occurrence | production of the cavitation in a pump more suitably.
 このように、ランキンサイクルに気液分離器が設けられている場合には、気液分離器と過冷却器とを一体としても良い。また、放熱器と過冷却器と気液分離器とを一体としても良い。これらの際、気液分離器を差圧調整手段と一体化しても良い。 Thus, when the gas-liquid separator is provided in the Rankine cycle, the gas-liquid separator and the supercooler may be integrated. Further, the radiator, the supercooler, and the gas-liquid separator may be integrated. In these cases, the gas-liquid separator may be integrated with the differential pressure adjusting means.
 また、本発明の廃熱利用装置において、放熱器は、例えば、放熱部を経た作動流体を気液分離可能な気液分離部と、気液分離部の下流に位置して作動流体を過冷却可能な過冷却部とを一体に有し得る。そして、差圧調整手段は気液分離部に設けられていることも好ましい。 In the waste heat utilization apparatus of the present invention, the radiator includes, for example, a gas-liquid separation unit capable of gas-liquid separation of the working fluid that has passed through the heat radiation unit, and a supercooling of the working fluid located downstream of the gas-liquid separation unit. It can have a possible supercooling part integrally. And it is also preferable that the differential pressure adjusting means is provided in the gas-liquid separator.
 このように、放熱器が放熱器流入口、放熱器流出口及び放熱部の他に、気液分離部と過冷却部とを一体に有している場合も、ランキンサイクルにおいて気液分離器や過冷却器が設けられている場合と同様の効果を奏することが可能である。 As described above, when the radiator has the gas-liquid separator and the supercooling unit in addition to the radiator inlet, the radiator outlet and the radiator, the gas-liquid separator or the It is possible to achieve the same effect as when a supercooler is provided.
 本発明の廃熱利用装置において、目標物理量は、駆動系が要求する冷却要求量であり得る。そして、制御手段は、冷却要求量が大きい場合、差圧調整手段の上流の作動流体の圧力が増加するように差圧調整手段を制御することが好ましい。 In the waste heat utilization apparatus of the present invention, the target physical quantity may be a cooling requirement amount required by the drive system. The control means preferably controls the differential pressure adjusting means so that the pressure of the working fluid upstream of the differential pressure adjusting means increases when the required cooling amount is large.
 この場合、冷却要求量が大きく、放熱器での作動流体の冷却量が不足する状態になれば、制御手段が差圧調整手段の制御を行い、差圧調整手段の上流の作動流体の圧力を増加させる。これにより、放熱器内を流通する作動流体の圧力が上昇するため、放熱部での作動流体の冷却量が大きくなる。このため、ボイラにおいて熱媒体は作動流体に対して十分に放熱を行うことが可能となり、冷却要求量を満たすことが可能となる。一方、冷却要求量が小さい場合には、放熱部での作動流体の冷却量を抑制することで、回収可能なエネルギーを増大させることが可能となる。 In this case, if the required cooling amount is large and the cooling amount of the working fluid in the radiator becomes insufficient, the control means controls the differential pressure adjusting means, and controls the pressure of the working fluid upstream of the differential pressure adjusting means. increase. Thereby, since the pressure of the working fluid which distribute | circulates the inside of a radiator rises, the cooling amount of the working fluid in a thermal radiation part becomes large. For this reason, in the boiler, the heat medium can sufficiently dissipate heat to the working fluid, and the required cooling amount can be satisfied. On the other hand, when the required cooling amount is small, it is possible to increase the recoverable energy by suppressing the cooling amount of the working fluid in the heat radiating unit.
 本発明の廃熱利用装置において、設定手段は、駆動系が要求する冷却要求量について、種々の手段によって設定することが可能である。例えば、設定手段は、内燃機関の出力に基づき、冷却要求量を設定し得る。特に、内燃機関は車両用エンジンであり得る。そして、設定手段は、車両のアクセル開度又はアクセル開度及び車両用エンジンの回転数に基づき冷却要求量を設定し得る。 In the waste heat utilization apparatus of the present invention, the setting means can set the required cooling amount required by the drive system by various means. For example, the setting means can set the required cooling amount based on the output of the internal combustion engine. In particular, the internal combustion engine may be a vehicle engine. The setting means can set the required cooling amount based on the accelerator opening of the vehicle or the accelerator opening and the rotational speed of the vehicle engine.
 また、設定手段は、熱媒体流路又はボイラに設けられ、ボイラを流通する熱媒体の温度を検出可能な第1温度検出手段を有し得る。そして、設定手段は、第1温度検出手段が検出した検出値に基づき、冷却要求量を設定し得る。ここで、熱媒体流路に第1温度検出手段を設けた場合には、ボイラに流入する作動流体の温度を検出することが可能となる。一方、ボイラに第1温度検出手段を設けた場合には、ボイラを流通している作動流体の温度を検出することが可能となる。 Further, the setting means may include a first temperature detection means provided in the heat medium flow path or the boiler and capable of detecting the temperature of the heat medium flowing through the boiler. Then, the setting means can set the required cooling amount based on the detection value detected by the first temperature detection means. Here, when the first temperature detection means is provided in the heat medium flow path, it is possible to detect the temperature of the working fluid flowing into the boiler. On the other hand, when the first temperature detecting means is provided in the boiler, the temperature of the working fluid circulating in the boiler can be detected.
 また、設定手段は、熱媒体流路に設けられ、ボイラから流出した熱媒体の温度を検出可能な第2温度検出手段を有し得る。そして、設定手段は、第2温度検出手段が検出した検出値に基づき、冷却要求量を設定し得る。 Further, the setting means may include second temperature detection means provided in the heat medium flow path and capable of detecting the temperature of the heat medium flowing out from the boiler. Then, the setting means can set the required cooling amount based on the detection value detected by the second temperature detection means.
 また、設定手段は、熱媒体流路又はボイラに設けられ、ボイラを流通する熱媒体の圧力を検出可能な第1圧力検出手段を有し得る。そして、設定手段は、第1圧力検出手段が検出した検出値に基づき、冷却要求量を設定し得る。上記の第1温度検出手段と同様、熱媒体流路に第1圧力検出手段を設ければ、ボイラに流入する作動流体の圧力を検出でき、ボイラに第1圧力検出手段を設ければ、ボイラを流通している作動流体の圧力を検出できる。 Further, the setting means may include a first pressure detection means provided in the heat medium flow path or the boiler and capable of detecting the pressure of the heat medium flowing through the boiler. Then, the setting means can set the required cooling amount based on the detection value detected by the first pressure detection means. Similar to the first temperature detecting means, if the first pressure detecting means is provided in the heat medium flow path, the pressure of the working fluid flowing into the boiler can be detected, and if the first pressure detecting means is provided in the boiler, the boiler is detected. It is possible to detect the pressure of the working fluid that circulates.
 これらの場合、設定手段は駆動系が要求する冷却要求量を正確に設定することが可能となる。 In these cases, the setting means can accurately set the required cooling amount required by the drive system.
 本発明の廃熱利用装置において、目標物理量は、作動流体が熱媒体を冷却可能な冷却可能量であり得る。そして、制御手段は、冷却可能量が小さい場合、差圧調整手段の上流の作動流体の圧力が増加するように差圧調整手段を制御することも好ましい。 In the waste heat utilization apparatus of the present invention, the target physical quantity may be a coolable quantity that allows the working fluid to cool the heat medium. The control means preferably controls the differential pressure adjusting means so that the pressure of the working fluid upstream of the differential pressure adjusting means increases when the coolable amount is small.
 この場合、ボイラでの熱交換において所定の温度まで熱媒体を冷却し得る程度に作動流体の温度が低下していない状態、すなわち、作動流体の熱媒体に対する冷却可能量が小さい場合に、制御手段は差圧調整手段の制御を行い、差圧調整手段の上流の作動流体の圧力を増加させる。これにより、放熱部での作動流体の冷却量が大きくなり、ボイラに流入する際の作動流体の温度が低下する。こうして、この廃熱利用装置では、熱媒体に対する冷却可能量を大きくすることが可能となり、ボイラにおける熱交換によって熱媒体を好適に冷却させることが可能となる。一方、作動流体の熱媒体に対する冷却可能量が大きい場合には、放熱部での作動流体の冷却量を抑制することで、回収可能なエネルギーを増大させることが可能となる。 In this case, the control means when the temperature of the working fluid is not lowered to such an extent that the heat medium can be cooled to a predetermined temperature in the heat exchange in the boiler, that is, when the cooling amount of the working fluid to the heat medium is small. Controls the differential pressure adjusting means and increases the pressure of the working fluid upstream of the differential pressure adjusting means. Thereby, the cooling amount of the working fluid in the heat radiating portion is increased, and the temperature of the working fluid when flowing into the boiler is lowered. Thus, in this waste heat utilization apparatus, it is possible to increase the amount of cooling possible for the heat medium, and it is possible to suitably cool the heat medium by heat exchange in the boiler. On the other hand, when the coolable amount of the working fluid with respect to the heat medium is large, the recoverable energy can be increased by suppressing the cooling amount of the working fluid in the heat radiating unit.
 設定手段は、作動流体が熱媒体を冷却可能な冷却可能量についても、種々の手段によって設定することが可能である。例えば、設定手段は、放熱器流出口からボイラにおける作動流体の入口までの作動流体の温度に基づき、冷却可能量を設定し得る。特にこの場合には、設定手段は、ランキンサイクルに設けられ、ボイラに流入する作動流体の温度を検出可能な第3温度検出手段を有し得る。そして、設定手段は、第3温度検出手段が検出した検出値に基づき、熱媒体に対する冷却可能量を設定することが好ましい。 The setting means can be set by various means also about the coolable amount that the working fluid can cool the heat medium. For example, the setting means may set the coolable amount based on the temperature of the working fluid from the radiator outlet to the working fluid inlet in the boiler. Particularly in this case, the setting means may include third temperature detection means provided in the Rankine cycle and capable of detecting the temperature of the working fluid flowing into the boiler. And it is preferable that a setting means sets the cooling possible amount with respect to a thermal medium based on the detected value which the 3rd temperature detection means detected.
 また、設定手段は、ランキンサイクルに設けられ、差圧調整手段の下流からポンプの上流までの作動流体の圧力を検出可能な第2圧力検出手段を有し得る。そして、設定手段は、第2圧力検出手段が検出した検出値に基づき、冷却可能量を設定し得る。 Further, the setting means may include second pressure detection means provided in the Rankine cycle and capable of detecting the pressure of the working fluid from the downstream of the differential pressure adjusting means to the upstream of the pump. Then, the setting means can set the coolable amount based on the detection value detected by the second pressure detection means.
 これらの場合、作動流体が熱媒体を冷却可能な冷却可能量について、設定手段は正確に設定することが可能となる。 In these cases, the setting means can accurately set the coolable amount by which the working fluid can cool the heat medium.
 本発明の廃熱利用装置によれば、構成を簡素化しつつ、エネルギーの回収と、好適な熱媒体の冷却とを実現可能である。 According to the waste heat utilization apparatus of the present invention, it is possible to realize energy recovery and suitable cooling of the heat medium while simplifying the configuration.
実施例1の廃熱利用装置を示す模式構造図である。1 is a schematic structural diagram showing a waste heat utilization apparatus of Example 1. FIG. 実施例1の廃熱利用装置に係り、放熱部においてコンデンサ領域が増大し、サブクール領域が減少している状態を示す断面図である。It is sectional drawing which concerns on the waste heat utilization apparatus of Example 1, and shows the state in which the capacitor | condenser area | region increased and the subcool area | region decreased in the thermal radiation part. 実施例1の廃熱利用装置に係り、放熱部においてコンデンサ領域が増大し、サブクール領域が減少している状態での運転状態を示すモリエル線図である。It is a Mollier diagram which shows the driving | running state in the state which concerns on the waste heat utilization apparatus of Example 1, and the capacitor | condenser area | region increased and the subcool area | region decreased in the thermal radiation part. 実施例1の廃熱利用装置に係り、放熱部においてサブクール領域が増大し、コンデンサ領域が減少している状態を示す断面図である。It is sectional drawing which shows the state which concerns on the waste heat utilization apparatus of Example 1, and the subcool area | region increased and the capacitor | condenser area | region decreased in the thermal radiation part. 実施例1の廃熱利用装置に係り、放熱部においてサブクール領域が増大し、コンデンサ領域が減少している状態での運転状態を示すモリエル線図である。It is a Mollier diagram which shows the driving | running state in the state which concerns on the waste heat utilization apparatus of Example 1, and the subcool area | region increased and the capacitor | condenser area | region decreased in the thermal radiation part. 実施例2の廃熱利用装置を示す模式構造図である。FIG. 3 is a schematic structural diagram showing a waste heat utilization apparatus of Example 2. 実施例2の廃熱利用装置に係り、放熱部においてコンデンサ領域が増大し、サブクール領域が減少している状態での運転状態を示すモリエル線図である。It is a Mollier diagram which shows the driving | running state in the state which concerns on the waste heat utilization apparatus of Example 2, and the capacitor | condenser area | region increased and the subcooling area | region decreased in the thermal radiation part. 実施例2の廃熱利用装置に係り、放熱部においてサブクール領域が増大し、コンデンサ領域が減少している状態での運転状態を示すモリエル線図である。It is a Mollier diagram which shows the driving | running state in the state which concerns on the waste heat utilization apparatus of Example 2, and the subcool area | region increased and the capacitor | condenser area | region decreased in the thermal radiation part. 実施例3の廃熱利用装置に係り、放熱器、気液分離器及び可変絞り弁等を示す断面図である。It is sectional drawing which concerns on the waste-heat utilization apparatus of Example 3, and shows a radiator, a gas-liquid separator, a variable throttle valve, etc. 実施例4の廃熱利用装置に係り、放熱器、気液分離器及び可変絞り弁等を示す断面図である。It is sectional drawing which concerns on the waste heat utilization apparatus of Example 4, and shows a radiator, a gas-liquid separator, a variable throttle valve, etc. 実施例5の廃熱利用装置に係り、放熱器、気液分離器、可変絞り弁及び過冷却器等を示す断面図である。It is sectional drawing which concerns on the waste-heat utilization apparatus of Example 5, and shows a radiator, a gas-liquid separator, a variable throttle valve, a subcooler, etc. 実施例6の廃熱利用装置に係り、放熱器、気液分離器、可変絞り弁及び過冷却器等を示す断面図である。It is sectional drawing which concerns on the waste-heat utilization apparatus of Example 6, and shows a radiator, a gas-liquid separator, a variable throttle valve, a subcooler, etc. 実施例7の廃熱利用装置に係り、放熱器、気液分離器、可変絞り弁及び過冷却器等を示す断面図である。It is sectional drawing which concerns on the waste-heat utilization apparatus of Example 7, and shows a radiator, a gas-liquid separator, a variable throttle valve, a subcooler, etc. 実施例8の廃熱利用装置を示す模式構造図である。It is a schematic structure figure which shows the waste heat utilization apparatus of Example 8. 実施例8に係り、放熱器ユニットを示す断面図である。FIG. 10 is a cross-sectional view illustrating a radiator unit according to an eighth embodiment.
 以下、本発明を具体化した実施例1~8を図面を参照しつつ説明する。実施例1~8の廃熱熱利用装置は、いずれも車両に搭載されている。 Embodiments 1 to 8 embodying the present invention will be described below with reference to the drawings. The waste heat heat utilization devices of Examples 1 to 8 are all mounted on a vehicle.
(実施例1)
 図1に示すように、実施例1の廃熱利用装置は、駆動系1に用いられており、ランキンサイクル3と、可変絞り弁5と、コントローラ7とを備えている。この廃熱利用装置において、可変絞り弁5が本発明における差圧調整手段に相当しており、コントローラ7が設定手段及び制御手段に相当している。
(Example 1)
As shown in FIG. 1, the waste heat utilization apparatus of the first embodiment is used in a drive system 1 and includes a Rankine cycle 3, a variable throttle valve 5, and a controller 7. In this waste heat utilization apparatus, the variable throttle valve 5 corresponds to the differential pressure adjusting means in the present invention, and the controller 7 corresponds to the setting means and the control means.
 駆動系1は、内燃機関としてのエンジン9と、ターボチャージャ11と、配管13~17とを有している。エンジン9はディーゼルエンジンである。このエンジン9には、排気を排出する排気口9aと、後述する加圧空気を吸入する吸気口9bとが形成されている。この加圧空気は、吸気系流体であり、本発明における熱媒体に相当する。なお、ディーゼルエンジンに換えて、ガソリンエンジンをエンジン9として採用しても良い。 The drive system 1 has an engine 9 as an internal combustion engine, a turbocharger 11, and pipes 13 to 17. The engine 9 is a diesel engine. The engine 9 is formed with an exhaust port 9a for exhausting exhaust and an intake port 9b for sucking in pressurized air described later. This pressurized air is an intake system fluid and corresponds to a heat medium in the present invention. A gasoline engine may be used as the engine 9 instead of the diesel engine.
 ターボチャージャ11は、エンジン9から排出された排気によって作動され、エンジン9に対し、車外の空気を加圧した加圧空気を供給する。 The turbocharger 11 is operated by the exhaust gas discharged from the engine 9 and supplies the engine 9 with pressurized air obtained by pressurizing air outside the vehicle.
 配管13は、一端側がエンジン9の排気口9aに接続されており、他端側がターボチャージャ11に接続されている。この配管13を流通させることで、エンジン9から排出された排気をターボチャージャ11まで導くことが可能となっている。 The pipe 13 has one end connected to the exhaust port 9a of the engine 9 and the other end connected to the turbocharger 11. By circulating this pipe 13, it is possible to guide the exhaust discharged from the engine 9 to the turbocharger 11.
 配管14は一端側がターボチャージャ11に接続されており、他端側が後述するボイラ23の加圧空気流入口23aに接続されている。配管15は一端側がボイラ23の加圧空気流出口23bに接続されており、他端側がエンジン9の吸気口9bに接続されている。これらの配管14、15を流通させることで、ターボチャージャ11で圧縮された加圧空気をボイラ23、更にはエンジン9に導くことが可能となっている。つまり、これらの配管14、15が本発明における熱媒体流路に相当する。 The pipe 14 has one end connected to the turbocharger 11 and the other end connected to a pressurized air inlet 23a of a boiler 23 described later. One end of the pipe 15 is connected to the pressurized air outlet 23 b of the boiler 23, and the other end is connected to the intake port 9 b of the engine 9. By circulating these pipes 14 and 15, the compressed air compressed by the turbocharger 11 can be guided to the boiler 23 and further to the engine 9. That is, these pipes 14 and 15 correspond to the heat medium flow path in the present invention.
 また、ターボチャージャ11には、配管16、17の各一端側が接続されている。配管16の他端側は、図示しないマフラと接続されている。配管17の他端側は図示しない車両の外気導入部に開口している。配管16は、ターボチャージャ11を介して配管13と連通している。同様に、配管17は、ターボチャージャ11を介して配管14と連通している。 The turbocharger 11 is connected to one end sides of the pipes 16 and 17. The other end side of the pipe 16 is connected to a muffler (not shown). The other end side of the pipe 17 opens to an outside air introduction portion of the vehicle (not shown). The pipe 16 communicates with the pipe 13 via the turbocharger 11. Similarly, the pipe 17 communicates with the pipe 14 via the turbocharger 11.
 配管14には、第1温度センサ19及び第1圧力センサ21が設けられている。これらの第1温度センサ19及び第1圧力センサ21は、それぞれコントローラ7に電気的に接続されている。 The piping 14 is provided with a first temperature sensor 19 and a first pressure sensor 21. Each of the first temperature sensor 19 and the first pressure sensor 21 is electrically connected to the controller 7.
 第1温度センサ19は、配管14を流通する加圧空気の温度、すなわち、ボイラ23に流入する加圧空気の温度を検出し、その検出値をコントローラ7に向けて発信する。この第1温度センサ19が本発明における第1温度検出手段に相当する。 The first temperature sensor 19 detects the temperature of the pressurized air flowing through the pipe 14, that is, the temperature of the pressurized air flowing into the boiler 23, and transmits the detected value to the controller 7. The first temperature sensor 19 corresponds to the first temperature detecting means in the present invention.
 第1圧力センサ21は、配管14を流通する加圧空気の圧力を基にボイラ23に流入する加圧空気の圧力を検出し、その検出値をコントローラ7に向けて発信する。この第1圧力センサ21が本発明における第1圧力検出手段に相当する。 The first pressure sensor 21 detects the pressure of the pressurized air flowing into the boiler 23 based on the pressure of the pressurized air flowing through the pipe 14, and transmits the detected value to the controller 7. The first pressure sensor 21 corresponds to the first pressure detection means in the present invention.
 配管15には、第2温度センサ22が設けられている。この第2温度センサ22もコントローラ7に電気的に接続されている。第2温度センサ22は、配管15を流通する加圧空気の温度、すなわち、ボイラ23から流出した加圧空気の温度を検出し、その検出値をコントローラ7に向けて発信する。この第2温度センサ22が本発明における第2温度検出手段に相当する。 The piping 15 is provided with a second temperature sensor 22. The second temperature sensor 22 is also electrically connected to the controller 7. The second temperature sensor 22 detects the temperature of the pressurized air flowing through the pipe 15, that is, the temperature of the pressurized air that has flowed out of the boiler 23, and transmits the detected value to the controller 7. The second temperature sensor 22 corresponds to the second temperature detection means in the present invention.
 ランキンサイクル3は、電動ポンプP1と、ボイラ23と、膨張機25と、放熱器27と、気液分離器29と、作動流体路としての配管31~35とを有している。配管31~35には、作動流体としてのHFC134aが流通可能となっている。 Rankine cycle 3 includes an electric pump P1, a boiler 23, an expander 25, a radiator 27, a gas-liquid separator 29, and pipes 31 to 35 as working fluid paths. An HFC 134a as a working fluid can flow through the pipes 31 to 35.
 電動ポンプP1は、コントローラ7に電気的に接続されている。この電動ポンプP1には、吐出口101と吸入口102とが形成されている。 The electric pump P1 is electrically connected to the controller 7. A discharge port 101 and a suction port 102 are formed in the electric pump P1.
 ボイラ23には、加圧空気を流入させる加圧空気流入口23aと、加圧空気を流出させる加圧空気流出口23bと、作動流体を流入させる作動流体流入口23cと、作動流体を流出させる作動流体流出口23dとが形成されている。また、ボイラ23の内部には放熱板23eが設けられている。この放熱板23eにより、ボイラ23の内部は、第1通路23fと第2通路23gとに区画されている。 The boiler 23 has a pressurized air inlet 23a through which pressurized air flows in, a pressurized air outlet 23b through which pressurized air flows out, a working fluid inlet 23c through which the working fluid flows in, and a working fluid out. A working fluid outlet 23d is formed. A heat radiating plate 23e is provided inside the boiler 23. The interior of the boiler 23 is partitioned into a first passage 23f and a second passage 23g by the heat radiating plate 23e.
 第1通路23fは、両端側でそれぞれ加圧空気流入口23aと加圧空気流出口23bとに連通しており、加圧空気が流通可能となっている。また、第2通路23gは、両端側でそれぞれ作動流体流入口23cと作動流体流出口23dとに連通しており、作動流体が流通可能となっている。このボイラ23では、第1通路23f内の加圧空気と、第2通路23g内の作動流体とが放熱板23eを介して熱交換を行うことで、加圧空気の冷却と作動流体の加熱とを行うことが可能となっている。つまり、このボイラ23は、加圧空気に対する冷却器としても機能する。 The first passage 23f communicates with the pressurized air inlet 23a and the pressurized air outlet 23b at both ends, respectively, so that the pressurized air can flow therethrough. Further, the second passage 23g communicates with the working fluid inlet 23c and the working fluid outlet 23d at both ends, respectively, so that the working fluid can flow therethrough. In the boiler 23, the pressurized air in the first passage 23f and the working fluid in the second passage 23g exchange heat through the heat radiating plate 23e, thereby cooling the pressurized air and heating the working fluid. It is possible to do. That is, the boiler 23 also functions as a cooler for the pressurized air.
 膨張機25には、その内部に作動流体を流入させる流入口25aと、作動流体を流出させる流出口25bとが形成されている。膨張機25では、ボイラ23を経て加熱された作動流体を膨張させることにより回転駆動力を発生させる。この膨張機25には図示しない公知の発電機が接続されている。発電機は膨張機25の回転駆動力によって発電を行い、図示しないバッテリに電力を充電する。 The expander 25 is formed with an inlet 25a through which a working fluid flows and an outlet 25b through which the working fluid flows out. The expander 25 generates a rotational driving force by expanding the working fluid heated through the boiler 23. A known generator (not shown) is connected to the expander 25. The generator generates power by the rotational driving force of the expander 25 and charges the battery (not shown) with electric power.
 図2に示すように、放熱器27は、上下方向で垂直に延びる第1、2ヘッド271、273と、第1、2ヘッド271、273に対して水平に延びる放熱部275とを有している。この放熱部275は、第1ヘッド271と第2ヘッド273とに連通する複数のチューブによって構成されている。また、図示を省略しているものの、放熱部275において、各チューブ同士の間には放熱用のフィンが設けられている。この放熱器27では、放熱部275を流通する際、作動流体に放熱器27を通過する空気に放熱させる。この放熱器27を通過する空気が本発明における冷却媒体に相当する。これにより、放熱器27では作動流体の冷却を行う。 As shown in FIG. 2, the radiator 27 includes first and second heads 271 and 273 extending vertically in the vertical direction and a heat radiating portion 275 extending horizontally with respect to the first and second heads 271 and 273. Yes. The heat radiating portion 275 is constituted by a plurality of tubes communicating with the first head 271 and the second head 273. Although not shown in the figure, in the heat dissipating part 275, heat dissipating fins are provided between the tubes. In this heat radiator 27, when flowing through the heat radiating portion 275, the working fluid is radiated to the air passing through the heat radiator 27. The air passing through the radiator 27 corresponds to the cooling medium in the present invention. Thereby, the radiator 27 cools the working fluid.
 放熱器27の第1ヘッド271には、内部に作動流体を流入させる放熱器流入口27aが形成されている。第2ヘッド273には、内部から作動流体を流出させる放熱器流出口27bが形成されている。また、図1に示すように、放熱器27の近傍には電動ファン27cが設けられている。この電動ファン27cはコントローラ7に電気的に接続されている。 The first head 271 of the radiator 27 is formed with a radiator inlet 27a through which a working fluid flows. The second head 273 is formed with a radiator outlet 27b through which the working fluid flows out from the inside. Further, as shown in FIG. 1, an electric fan 27 c is provided in the vicinity of the radiator 27. The electric fan 27 c is electrically connected to the controller 7.
 気液分離器29は、後述する図9に示すように、筒状のレシーバケース290を有している。このレシーバケース290には、自身に対して後述する作動流体の循環方向の上流となる位置にレシーバ流入口29aが形成されており、自身に対して作動流体の循環方向の下流となる位置にレシーバ流出口29bが形成されている。また、レシーバケース290内には受液室29cが形成されている。気液分離器29は、レシーバ流入口29aから流入した作動流体を気体と液体とに分離させる。そして、気液分離器29は、液状態となった作動流体を受液室29c内に貯留するとともに、貯留した液状態の作動流体をレシーバ流出口29bから順に流出させる。 The gas-liquid separator 29 has a cylindrical receiver case 290 as shown in FIG. The receiver case 290 is formed with a receiver inlet 29a at a position upstream of the working fluid in the circulation direction of the working fluid, which will be described later. Outflow port 29b is formed. A liquid receiving chamber 29c is formed in the receiver case 290. The gas-liquid separator 29 separates the working fluid flowing in from the receiver inlet 29a into gas and liquid. The gas-liquid separator 29 stores the working fluid in a liquid state in the liquid receiving chamber 29c, and causes the stored working fluid in a liquid state to flow out from the receiver outlet 29b in order.
 図1に示すように、これらの電動ポンプP1、ボイラ23、膨張機25、放熱器27及び気液分離器29は、配管31~35によって接続されている。具体的には、電動ポンプP1の吐出口101とボイラ23の作動流体流入口23cとが配管31によって接続されている。ボイラ23の作動流体流出口23dと膨張機25の流入口25aとが配管32によって接続されている。膨張機25の流出口25bと放熱器27の放熱器流入口27aとが配管33によって接続されている。放熱器27の放熱器流出口27bと気液分離器29のレシーバ流入口29aとが配管34によって接続されている。そして、気液分離器29のレシーバ流出口29bと電動ポンプP1の吸入口102とが配管35によって接続されている。 As shown in FIG. 1, the electric pump P1, the boiler 23, the expander 25, the radiator 27, and the gas-liquid separator 29 are connected by pipes 31 to 35. Specifically, the discharge port 101 of the electric pump P1 and the working fluid inlet 23c of the boiler 23 are connected by a pipe 31. The working fluid outlet 23 d of the boiler 23 and the inlet 25 a of the expander 25 are connected by a pipe 32. An outlet 25 b of the expander 25 and a radiator inlet 27 a of the radiator 27 are connected by a pipe 33. A radiator outlet 27 b of the radiator 27 and a receiver inlet 29 a of the gas-liquid separator 29 are connected by a pipe 34. The receiver outlet 29b of the gas-liquid separator 29 and the suction port 102 of the electric pump P1 are connected by a pipe 35.
 このランキンサイクル3では、電動ポンプP1を作動させることにより、作動流体が配管31~35内を循環する。具体的には、作動流体は、電動ポンプP1の吐出口101からボイラ23、膨張機25、放熱器27及び気液分離器29を経て、電動ポンプP1の吸入口102に至る順で循環する。 In the Rankine cycle 3, the working fluid circulates in the pipes 31 to 35 by operating the electric pump P1. Specifically, the working fluid circulates in the order from the discharge port 101 of the electric pump P1 through the boiler 23, the expander 25, the radiator 27, and the gas-liquid separator 29 to the suction port 102 of the electric pump P1.
 可変絞り弁5は配管34に設けられている。この可変絞り弁5はコントローラ7に電気的に接続されている。可変絞り弁5は、自身の開度を調整することにより、膨張機25の流出口25bから可変絞り弁5までの間を流通する作動流体の圧力を調整することが可能である。これにより、可変絞り弁5は、自身の上流と下流とで作動流体の圧力差を調整することが可能である。 The variable throttle valve 5 is provided in the pipe 34. The variable throttle valve 5 is electrically connected to the controller 7. The variable throttle valve 5 can adjust the pressure of the working fluid flowing between the outlet 25b of the expander 25 and the variable throttle valve 5 by adjusting the opening of the variable throttle valve 5 itself. Thereby, the variable throttle valve 5 can adjust the pressure difference of the working fluid between its upstream and downstream.
 配管31には、第3温度センサ37が設けられている。この第3温度センサ37は、コントローラ7に電気的に接続されている。第3温度センサ37は、配管31を流通する作動流体の温度、すなわち、ボイラ23に流入する作動流体の温度を検出し、その検出値をコントローラ7に向けて発信する。この第3温度センサ37が本発明における第3温度検出手段に相当する。なお、第3温度センサ37は、配管34又は配管35に設けることもできる。 The piping 31 is provided with a third temperature sensor 37. The third temperature sensor 37 is electrically connected to the controller 7. The third temperature sensor 37 detects the temperature of the working fluid flowing through the pipe 31, that is, the temperature of the working fluid flowing into the boiler 23, and transmits the detected value to the controller 7. The third temperature sensor 37 corresponds to the third temperature detecting means in the present invention. Note that the third temperature sensor 37 may be provided in the pipe 34 or the pipe 35.
 また、配管34において可変絞り弁5よりも下流となる位置には、第2圧力センサ39が設けられている。この第2圧力センサ39もコントローラ7に電気的に接続されている。第2圧力センサ39は、配管34において可変絞り弁5よりも下流を流通する作動流体の圧力を基に、可変絞り弁5の下流から電動ポンプP1の上流までの作動流体の圧力を検出し、その検出値をコントローラ7に向けて発信する。この第2圧力センサ39が本発明における第2圧力検出手段に相当する。なお、第2圧力センサ39は、配管35に設けることもできる。 Further, a second pressure sensor 39 is provided at a position downstream of the variable throttle valve 5 in the pipe 34. The second pressure sensor 39 is also electrically connected to the controller 7. The second pressure sensor 39 detects the pressure of the working fluid from the downstream of the variable throttle valve 5 to the upstream of the electric pump P1, based on the pressure of the working fluid flowing downstream from the variable throttle valve 5 in the pipe 34. The detected value is transmitted to the controller 7. The second pressure sensor 39 corresponds to the second pressure detecting means in the present invention. The second pressure sensor 39 can also be provided in the pipe 35.
 コントローラ7は、電動ポンプP1及び電動ファン27cの各作動制御を行う。また、コントローラ7は、車両のECU等(図示略)から受信した信号によって車両のアクセル開度を検知可能に構成されており、このアクセル開度に基づき、エンジン9の出力を検出することが可能となっている。なお、コントローラ7は、アクセル開度とエンジン9の回転数とによって、エンジン9の出力を検出しても良い。 The controller 7 controls each operation of the electric pump P1 and the electric fan 27c. Further, the controller 7 is configured to be able to detect the accelerator opening of the vehicle based on a signal received from the ECU or the like (not shown) of the vehicle, and can detect the output of the engine 9 based on the accelerator opening. It has become. The controller 7 may detect the output of the engine 9 based on the accelerator opening and the rotational speed of the engine 9.
 さらに、コントローラ7は、可変絞り弁5の開度を調整するための制御マップを記憶している。また、コントローラ7は、エンジン9の出力における閾値の他、加圧空気及び作動流体の温度に対する閾値、加圧空気及び作動流体の圧力に対する閾値をそれぞれ記憶している。そして、コントローラ7は、検出したエンジン9の出力、第1~3温度センサ19、22、37による検出値及び第1、2圧力センサ21、39による検出値と、予め記憶している各閾値との比較により、加圧空気を冷却すべき目標物理量を設定することが可能となっている。より具体的には、エンジン9の出力、第1、2温度センサ19、22による検出値及び第1圧力センサ21による検出値に基づくことで、コントーラ7は、駆動系1が要求する冷却要求量、つまり、加圧空気に対する冷却要求量を設定することが可能である。一方、第3温度センサ37による検出値及び第2圧力センサ39による検出値に基づくことで、コントーラ7は、作動流体の加圧空気に対する冷却可能量を設定することが可能である。 Furthermore, the controller 7 stores a control map for adjusting the opening degree of the variable throttle valve 5. The controller 7 stores a threshold for the temperature of the pressurized air and the working fluid, and a threshold for the pressure of the pressurized air and the working fluid, in addition to the threshold for the output of the engine 9. Then, the controller 7 detects the detected output of the engine 9, the detection values by the first to third temperature sensors 19, 22, and 37, the detection values by the first and second pressure sensors 21, 39, and each threshold value stored in advance. Thus, it is possible to set a target physical quantity for cooling the pressurized air. More specifically, based on the output of the engine 9, the detection values by the first and second temperature sensors 19 and 22, and the detection value by the first pressure sensor 21, the controller 7 requests the cooling request amount requested by the drive system 1. In other words, it is possible to set the required cooling amount for the pressurized air. On the other hand, based on the detection value by the third temperature sensor 37 and the detection value by the second pressure sensor 39, the controller 7 can set the coolable amount of the working fluid with respect to the pressurized air.
 そして、コントローラ7は、設定した上記の目標物理量に基づき、放熱器27の放熱部275における作動流体の放熱量が不足する場合に、開度が減少するように可変絞り弁5の制御を行う。具体的には、エンジン9の出力の他、第1~3温度センサ19、22、37及び第1、2圧力センサ21、39による各検出値について、コントローラ7が予め記憶している各閾値を上回れば、コントーラ7は、放熱部275における作動流体の放熱量が不足していると判断する。これにより、コントーラ7は、可変絞り弁5の開度が減少するように制御を行う。 The controller 7 controls the variable throttle valve 5 based on the set target physical quantity so that the opening degree is decreased when the heat dissipation amount of the working fluid in the heat dissipation portion 275 of the radiator 27 is insufficient. Specifically, in addition to the output of the engine 9, each threshold value stored in advance by the controller 7 for each detected value by the first to third temperature sensors 19, 22, 37 and the first and second pressure sensors 21, 39 is set. If it exceeds, the controller 7 will judge that the thermal radiation amount of the working fluid in the thermal radiation part 275 is insufficient. Thereby, the controller 7 controls so that the opening degree of the variable throttle valve 5 decreases.
 このように構成された廃熱熱利用装置では、車両を駆動させることにより以下のように作動する。 The waste heat heat utilization device configured in this way operates as follows by driving the vehicle.
 車両が駆動されることにより、駆動系1ではエンジン9が作動し、排気口9aから排出された排気が配管13を流通してターボチャージャ11に至る。これにより、ターボチャージャ11が作動され、配管17から流入した車外の空気がターボチャージャ11に吸引されて圧縮される。この際、ターボチャージャ11に至った排気は、配管16からマフラを経て車外に排出される。ターボチャージャ11によって圧縮された空気は加圧空気として配管14を流通する。そして、加圧空気は加圧空気流入口23aよりボイラ23内に流入し、第1通路23fを流通する。この際、第1温度センサ19は、配管14を流通する作動流体の温度を検出して、その検出値をコントローラ7に向けて発信する。同様に、第1圧力センサ21は、配管14を流通する作動流体の圧力を検出して、その検出値をコントローラ7に向けて発信する。 When the vehicle is driven, the engine 9 is operated in the drive system 1, and the exhaust discharged from the exhaust port 9 a flows through the pipe 13 and reaches the turbocharger 11. As a result, the turbocharger 11 is operated, and the air outside the vehicle flowing in from the pipe 17 is sucked into the turbocharger 11 and compressed. At this time, the exhaust gas that has reached the turbocharger 11 is discharged from the pipe 16 through the muffler to the outside of the vehicle. The air compressed by the turbocharger 11 flows through the pipe 14 as pressurized air. The pressurized air flows into the boiler 23 from the pressurized air inlet 23a and flows through the first passage 23f. At this time, the first temperature sensor 19 detects the temperature of the working fluid flowing through the pipe 14 and transmits the detected value to the controller 7. Similarly, the first pressure sensor 21 detects the pressure of the working fluid flowing through the pipe 14 and transmits the detected value to the controller 7.
 また、車両の駆動開始とともに、コントローラ7は電動ポンプP1及び電動ファン27cを作動させる。ここで、車両の駆動直後は、廃熱熱利用装置において、加圧空気に対する冷却要求量や作動流体の加圧空気に対する冷却可能量に対し、作動動流体の温度が大きな問題とならない。このため、コントローラ7は、配管34を流通する作動流体の流量が最大となるように、すなわち、可変絞り弁5の上流の作動流体と、可変絞り弁5の下流の作動流体とにおける圧力差が小さくなるように可変絞り弁5の開度制御を行う。このため、放熱器27を通過する作動流体の凝縮圧力が最小となる。 Also, with the start of driving of the vehicle, the controller 7 operates the electric pump P1 and the electric fan 27c. Here, immediately after the vehicle is driven, the temperature of the working fluid does not become a big problem with respect to the required cooling amount for the pressurized air and the coolable amount of the working fluid for the pressurized air in the waste heat heat utilization device. For this reason, the controller 7 has a pressure difference between the working fluid upstream of the variable throttle valve 5 and the working fluid downstream of the variable throttle valve 5 so that the flow rate of the working fluid flowing through the pipe 34 is maximized. The opening degree of the variable throttle valve 5 is controlled so as to decrease. For this reason, the condensing pressure of the working fluid passing through the radiator 27 is minimized.
 これらにより、ランキンサイクル3では、電動ポンプP1の吐出口101から作動流体が吐出され、配管31を経て、ボイラ23の作動流体流入路23cから第2通路23gを流通する。第3温度センサ37は、配管31を流通する作動流体の温度を検出して、その検出値をコントローラ7に向けて発信する。 Thus, in the Rankine cycle 3, the working fluid is discharged from the discharge port 101 of the electric pump P1, and flows through the second passage 23g from the working fluid inflow passage 23c of the boiler 23 via the pipe 31. The third temperature sensor 37 detects the temperature of the working fluid flowing through the pipe 31 and transmits the detected value to the controller 7.
 第2通路23g内を流通する作動流体は、第1通路23fを流通する加圧空気との間で熱交換を行う。これにより、加圧空気の冷却が行われるとともに、作動流体の加熱が行われる。加圧空気は、圧縮されることによって高温となっているため、作動流体は好適に加熱される。 The working fluid flowing through the second passage 23g exchanges heat with the pressurized air flowing through the first passage 23f. Thus, the pressurized air is cooled and the working fluid is heated. Since the pressurized air becomes high temperature by being compressed, the working fluid is suitably heated.
 ボイラ23において冷却された加圧空気は、その密度が高くなった状態で加圧空気流出口23bから流出し、配管15を流通する。この際、第2温度センサ22は、配管15を流通する作動流体の温度を検出して、その検出値をコントローラ7に向けて発信する。そして、配管15を流通する加圧空気は、エンジン9の吸気口9bからエンジン9に供給される。このように、この廃熱利用装置では、密度が高い状態で加圧空気をエンジン9に供給できるため、エンジン9の出力を高くすることができる。 The pressurized air cooled in the boiler 23 flows out from the pressurized air outlet 23b in a state where the density is increased, and flows through the pipe 15. At this time, the second temperature sensor 22 detects the temperature of the working fluid flowing through the pipe 15 and transmits the detected value to the controller 7. The pressurized air flowing through the pipe 15 is supplied to the engine 9 from the intake port 9 b of the engine 9. Thus, in this waste heat utilization apparatus, since pressurized air can be supplied to the engine 9 in a high density state, the output of the engine 9 can be increased.
 一方、ボイラ23において加熱された作動流体は、高温高圧の状態で作動流体流出路23dから流出し、配管32を経て膨張機25の流入口25aから膨張機25内へ至る。そして、膨張機25内において、高温高圧の作動流体は膨張し、減圧される。この際の圧力エネルギーにより、膨張機25に接続された発電機は発電を行う。こうして、この熱利用装置におけるランキンサイクル3では、作動流体の圧力エネルギーを電力として回収することができる。 On the other hand, the working fluid heated in the boiler 23 flows out from the working fluid outflow passage 23d in a high-temperature and high-pressure state, and reaches the inside of the expander 25 from the inlet 25a of the expander 25 through the pipe 32. In the expander 25, the high-temperature and high-pressure working fluid is expanded and depressurized. The generator connected to the expander 25 generates electric power by the pressure energy at this time. Thus, in the Rankine cycle 3 in this heat utilization apparatus, the pressure energy of the working fluid can be recovered as electric power.
 膨張機25内で減圧された作動流体は流出口25bから流出し、図2に示すように、配管33を経て放熱器27の放熱器流入口27aから第1ヘッド271内へ至る。そして、第1ヘッド271内の作動流体は、第2ヘッド273に向かって、放熱部275である各チューブ内を流通する。なお、第1ヘッド271内に流入した作動流体は気相である。 The working fluid depressurized in the expander 25 flows out from the outlet 25b and reaches the first head 271 from the radiator inlet 27a of the radiator 27 via the pipe 33 as shown in FIG. Then, the working fluid in the first head 271 circulates in each tube as the heat radiating unit 275 toward the second head 273. The working fluid that has flowed into the first head 271 is in the gas phase.
 放熱部275を流通する作動流体は、放熱器27の周りの空気、つまり、電動ファン27cで送風された周囲の空気に放熱を行うことで冷却される。これにより、図2中のドットハッチングで示すように、放熱部275を流通する作動流体の一部が気相から液相に変化し、液相の作動流体が冷却される。つまり、放熱部275には、気相の作動流体の放熱を行うコンデンサ領域275aと、液相の作動流体の放熱を行うサブクール領域275bとが形成され得る。このサブクール領域275bでは、作動流体の過冷却が行われる。そして、放熱器27を通過する作動流体の凝縮圧力が最小となる状態では、放熱部275において、気相の作動流体の放熱を行うコンデンサ領域275aが増大し、液相の作動流体の放熱を行うサブクール領域275bが減少した状態となる。放熱部275での放熱を終えた作動流体は放熱器流出口27bから流出して、配管34内を流通する。また、第2圧力センサ39は、配管34を流通する作動流体の圧力を検出して、その検出値をコントローラ7に向けて発信する。 The working fluid that circulates in the heat radiating unit 275 is cooled by dissipating heat to the air around the radiator 27, that is, the ambient air blown by the electric fan 27c. As a result, as indicated by dot hatching in FIG. 2, a part of the working fluid flowing through the heat radiating portion 275 changes from the gas phase to the liquid phase, and the liquid phase working fluid is cooled. That is, the heat radiating portion 275 can be formed with a capacitor region 275a that radiates heat of a gas-phase working fluid and a subcool region 275b that radiates heat of a liquid-phase working fluid. In the subcool region 275b, the working fluid is supercooled. In a state where the condensation pressure of the working fluid passing through the radiator 27 is minimized, the capacitor region 275a that radiates the gas-phase working fluid is increased in the heat radiating portion 275, and the liquid-phase working fluid is radiated. The subcool region 275b is reduced. The working fluid that has finished radiating heat in the heat radiating portion 275 flows out of the radiator outlet 27b and circulates in the pipe 34. The second pressure sensor 39 detects the pressure of the working fluid flowing through the pipe 34 and transmits the detected value to the controller 7.
 配管34を流通する作動流体は、気液分離器29のレシーバ流入口29aから、受液室29c内に至る。この受液室29c内において作動流体は気液分離される。そして、液相の作動流体はレシーバ流出口29bから流出し、配管35を経て、吸入口102から電動ポンプP1内に吸入される。そして、作動流体は、再び吐出口101から配管31へ吐出されることとなる。 The working fluid flowing through the pipe 34 reaches the receiver chamber 29c from the receiver inlet 29a of the gas-liquid separator 29. The working fluid is gas-liquid separated in the liquid receiving chamber 29c. The liquid-phase working fluid flows out from the receiver outlet 29b, and is sucked into the electric pump P1 from the suction port 102 via the pipe 35. Then, the working fluid is discharged from the discharge port 101 to the pipe 31 again.
 このように、配管34を流通する作動流体の流量が最大となるように、可変絞り弁5の開度制御が行われている状態でのランキンサイクル3における作動流体は、おおよそ図3に示すモリエル線図のよう変化する。すなわち、電動ポンプP1によって吐出された作動流体は、A→B→C→D→D’→Aの順でその圧力及びエンタルピを変化させる。ここで、D点とD’点との間が放熱部275における凝縮領域X1となる。そして、D’点とA点との間が放熱部275における過冷却領域Y1となる。また、この状態でのランキンサイクル3は、作動流体におけるC点からD点への圧力変化、つまり、膨張機25における減圧及び膨張時の作動流体の圧力エネルギーが大きい。このため、ランキンサイクル3では、効率良く電力の回収を行うことが可能となっている。 As described above, the working fluid in the Rankine cycle 3 in a state where the opening degree control of the variable throttle valve 5 is performed so that the flow rate of the working fluid flowing through the pipe 34 becomes maximum is approximately the Mollier shown in FIG. It changes like a diagram. That is, the working fluid discharged by the electric pump P1 changes its pressure and enthalpy in the order of A → B → C → D → D ′ → A. Here, a region between the point D and the point D ′ is the condensation region X1 in the heat dissipation portion 275. A portion between the point D ′ and the point A is a supercooling region Y1 in the heat dissipation portion 275. In the Rankine cycle 3 in this state, the pressure change from the point C to the point D in the working fluid, that is, the pressure energy of the working fluid during decompression and expansion in the expander 25 is large. For this reason, in Rankine cycle 3, it is possible to efficiently recover power.
 この廃熱利用装置では、加圧空気を冷却すべき目標物理量に基づき、放熱部275における作動流体の放熱量、すなわち、放熱部275での作動流体の冷却量を調整することが可能である。この加圧空気を冷却すべき目標物理量とは、具体的には、加圧空気に対する冷却要求量と、作動流体の加圧空気に対する冷却可能量とを指す。以下、冷却要求量に基づいて作動流体の冷却量を調整する場合と、冷却可能量に応じて作動流体の冷却量を調整する場合とに分けて説明する。 In this waste heat utilization apparatus, it is possible to adjust the heat radiation amount of the working fluid in the heat radiating section 275, that is, the cooling amount of the working fluid in the heat radiating section 275, based on the target physical quantity for cooling the pressurized air. Specifically, the target physical quantity for cooling the pressurized air refers to the required cooling amount for the pressurized air and the coolable amount of the working fluid for the pressurized air. Hereinafter, the case where the amount of cooling of the working fluid is adjusted based on the required cooling amount and the case where the amount of cooling of the working fluid is adjusted according to the coolable amount will be described separately.
<冷却要求量に基づいて作動流体の冷却量を調整する場合>
 エンジン9に対する出力要求が大きく、車両のアクセルの開度が増大することで、コントローラ7が検出するエンジン9の出力が上昇する。また、エンジン9に対する出力要求が大きくなることで、ターボチャージャ11において空気がより高圧に圧縮される。このため、配管14を流通する加圧空気の温度と圧力とが上昇する。また、ボイラ23に流入する際の加圧空気の温度が高いため、ボイラ23から流出する際の加圧空気の温度も上昇する。この結果、配管15を流通する加圧空気の温度も上昇する。これらのため、エンジン9の出力の他、第1、2温度センサ19、22及び第1圧力センサ21による各検出値がコントローラ7に記憶されている各閾値を上回ることとなる。これにより、コントローラ7は、加圧空気に対する冷却要求量を所定の値に設定する。ここで、加圧空気に対する冷却要求量が大きく、放熱部275における作動流体の冷却量が不足している状態にあれば、コントローラ7は、設定した冷却要求量を満たすことが可能となるように、可変絞り弁5の開度を調整する。これにより、コントローラ7は、可変絞り弁5の上流の作動流体の圧力を増加させ、可変絞り弁5の上流の作動流体と、可変絞り弁5の下流の作動流体とにおける圧力差を大きくさせる。
<When adjusting the cooling amount of the working fluid based on the required cooling amount>
When the output request to the engine 9 is large and the accelerator opening of the vehicle increases, the output of the engine 9 detected by the controller 7 increases. Further, as the output demand for the engine 9 increases, the air is compressed to a higher pressure in the turbocharger 11. For this reason, the temperature and pressure of the pressurized air flowing through the pipe 14 rise. Moreover, since the temperature of the pressurized air when flowing into the boiler 23 is high, the temperature of the pressurized air when flowing out from the boiler 23 also rises. As a result, the temperature of the pressurized air flowing through the pipe 15 also increases. For these reasons, in addition to the output of the engine 9, the detection values by the first, second temperature sensors 19, 22 and the first pressure sensor 21 exceed the threshold values stored in the controller 7. As a result, the controller 7 sets the required cooling amount for the pressurized air to a predetermined value. Here, if the required cooling amount for the pressurized air is large and the cooling amount of the working fluid in the heat radiating unit 275 is insufficient, the controller 7 can satisfy the set required cooling amount. Then, the opening degree of the variable throttle valve 5 is adjusted. As a result, the controller 7 increases the pressure of the working fluid upstream of the variable throttle valve 5 and increases the pressure difference between the working fluid upstream of the variable throttle valve 5 and the working fluid downstream of the variable throttle valve 5.
 具体的には、コントローラ7は、制御マップに基づき、可変絞り弁5の開度が減少するように制御を行い、膨張機25の流出口25bから可変絞り弁5までの間を流通する作動流体の凝縮圧力を上昇させる。ここで、コントローラ7は、設定された加圧空気に対する冷却要求量に合わせて可変絞り弁5の開度調整を行う。このため、設定された冷却要求量に合わせて作動流体の凝縮圧力の上昇量は適宜調整される。 Specifically, the controller 7 performs control so that the opening degree of the variable throttle valve 5 decreases based on the control map, and the working fluid that circulates from the outlet 25b of the expander 25 to the variable throttle valve 5. Increase the condensation pressure. Here, the controller 7 adjusts the opening degree of the variable throttle valve 5 in accordance with the set required cooling amount for the pressurized air. For this reason, the amount of increase in the condensing pressure of the working fluid is appropriately adjusted in accordance with the set required cooling amount.
 このように、作動流体の圧力が上昇することで、図4に示すように、放熱器27では、放熱部275の約半分をサブクール領域275bが占めることとなる。つまり、可変絞り弁5の開度が最大の場合よりも、放熱部275においてサブクール領域275bが増大してコンデンサ領域275aが減少することとなる。 Thus, as the pressure of the working fluid rises, as shown in FIG. 4, in the radiator 27, the subcool region 275b occupies about half of the heat radiating portion 275. That is, the subcool region 275b is increased and the capacitor region 275a is decreased in the heat dissipating part 275, compared to the case where the opening degree of the variable throttle valve 5 is maximum.
 このように、コントローラ7が可変絞り弁5の開度が減少するように制御を行うことで、ランキンサイクル3における作動流体は、おおよそ図5に示すモリエル線図のように変化することとなる。すなわち、電動ポンプP1によって吐出された作動流体は、A→B→C→E→E’→F→Aの順でその圧力及びエンタルピを変化させる。ここで、E点とE’点との間が可変絞り弁5の開度が減少した際の放熱部275における凝縮領域X2となる。そして、E’点とF点との間が可変絞り弁5の開度が減少した際の放熱部275における過冷却領域Y2となる。 Thus, when the controller 7 performs control so that the opening degree of the variable throttle valve 5 is decreased, the working fluid in the Rankine cycle 3 changes approximately as shown in the Mollier diagram shown in FIG. That is, the working fluid discharged by the electric pump P1 changes its pressure and enthalpy in the order of A → B → C → E → E ′ → F → A. Here, between the point E and the point E ′ is a condensation region X2 in the heat radiating unit 275 when the opening degree of the variable throttle valve 5 is reduced. And between E 'point and F point becomes the supercooling area | region Y2 in the thermal radiation part 275 when the opening degree of the variable throttle valve 5 reduces.
 この凝縮領域X2及び過冷却領域Y2の凝縮圧力は、図3に示す凝縮領域X1及び過冷却領域Y1の凝縮圧力よりも高い。このため、可変絞り弁5の開度が減少した状態では、可変絞り弁5の開度が最大の場合と比較して、放熱部275における冷却量を大きくすることが可能となる。これにより、可変絞り弁5の開度が減少した状態では、ボイラ23に流入する作動流体の温度が低下し、ボイラ23において、加圧空気は低温の作動流体に対して放熱を行うことが可能となる。つまり、設定された冷却要求量を満たすことが可能となる。こうして、この廃熱利用装置では、加圧空気に対する冷却要求量が大きい場合であっても、それを満たすように作動流体を冷却することが可能となり、エンジン9の出力を向上させることが可能となる。 The condensation pressure in the condensation region X2 and the supercooling region Y2 is higher than the condensation pressure in the condensation region X1 and the supercooling region Y1 shown in FIG. For this reason, in the state where the opening degree of the variable throttle valve 5 is decreased, the cooling amount in the heat radiating unit 275 can be increased as compared with the case where the opening degree of the variable throttle valve 5 is the maximum. Thereby, in the state where the opening degree of the variable throttle valve 5 is decreased, the temperature of the working fluid flowing into the boiler 23 is lowered, and in the boiler 23, the pressurized air can radiate heat to the low-temperature working fluid. It becomes. That is, it becomes possible to satisfy the set cooling request amount. In this way, in this waste heat utilization apparatus, even when the required cooling amount for the pressurized air is large, the working fluid can be cooled so as to satisfy it, and the output of the engine 9 can be improved. Become.
 ここで、可変絞り弁5の開度が減少した状態では、E点における圧力が図3に示すD点よりも高い値となる。つまり、ランキンサイクル3における作動流体の圧力が上昇した状態では、図5に示すように、作動流体におけるC点からE点への圧力変化が小さくなる。このため、可変絞り弁5の開度が最大の場合と比較して、ランキンサイクル3で回収可能となる電力の量は減少する。また、このように作動流体の凝縮圧力が高くなることで、放熱器27から流出した作動流体の圧力(図5におけるF点における圧力)についても、可変絞り弁5の開度が最大の場合より高い状態となる。しかし、このような場合であっても、気液分離器29を経ることにより、作動流体の圧力はF点からA点へまで低下する。このため、電動ポンプP1の吸入口102に吸入される際の作動流体の圧力は、可変絞り弁5の開度が最大の場合とほぼ同等となる。このように、電動ポンプP1の吸入口102に吸入される際の作動流体が可変絞り弁5の開度によって変化し難いため、この廃熱利用装置では、電動ポンプP1の筐体の薄肉化やシール圧力を低く抑えることが可能となっている。 Here, when the opening of the variable throttle valve 5 is reduced, the pressure at the point E is higher than the point D shown in FIG. That is, in the state in which the pressure of the working fluid in the Rankine cycle 3 is increased, as shown in FIG. 5, the pressure change from the point C to the point E in the working fluid becomes small. For this reason, compared with the case where the opening degree of the variable throttle valve 5 is the maximum, the amount of electric power that can be recovered in the Rankine cycle 3 is reduced. In addition, as the condensing pressure of the working fluid is increased in this way, the pressure of the working fluid flowing out from the radiator 27 (pressure at the point F in FIG. 5) is also larger than when the opening of the variable throttle valve 5 is maximum. Become high. However, even in such a case, the pressure of the working fluid decreases from the F point to the A point through the gas-liquid separator 29. For this reason, the pressure of the working fluid when sucked into the suction port 102 of the electric pump P1 is almost the same as that when the opening of the variable throttle valve 5 is maximum. As described above, since the working fluid when sucked into the suction port 102 of the electric pump P1 is unlikely to change depending on the opening of the variable throttle valve 5, in this waste heat utilization device, the casing of the electric pump P1 is made thinner. It is possible to keep the sealing pressure low.
<冷却可能量に基づいて作動流体の冷却量を調整する場合>
 ボイラ23での熱交換において所定の温度まで加圧空気を冷却し得る程度に作動流体の温度が低下していない状態、すなわち、作動流体の温度が高く、作動流体の加圧空気に対する冷却可能量が小さい場合、第3温度センサ37及び第2圧力センサ39による各検出値がコントローラ7に記憶されている各閾値を上回ることとなる。これにより、コントローラ7は、作動流体の加圧空気に対する冷却可能量を所定の値に設定する。ここで、放熱部275における作動流体の冷却量が不足していることで、作動流体の加圧空気に対する冷却可能量が不足している状態にあれば、コントローラ7は、不足している冷却可能量について、所定の大きさとなるまで増大すべきと判断する。すなわち、作動流体の加圧空気に対する冷却可能量が小さい場合、コントローラ7は、可変絞り弁5の開度が減少するように制御を行う。
<When adjusting the cooling amount of the working fluid based on the cooling possible amount>
A state in which the temperature of the working fluid is not lowered to such an extent that the pressurized air can be cooled to a predetermined temperature in the heat exchange in the boiler 23, that is, the working fluid has a high temperature and can be cooled with respect to the pressurized air. Is small, each detected value by the third temperature sensor 37 and the second pressure sensor 39 exceeds each threshold value stored in the controller 7. Thereby, the controller 7 sets the cooling possible amount with respect to the pressurized air of a working fluid to a predetermined value. Here, if the cooling amount of the working fluid in the heat radiating unit 275 is insufficient, and the cooling amount for the pressurized air of the working fluid is insufficient, the controller 7 can perform the cooling that is insufficient. It is determined that the amount should be increased to a predetermined size. That is, when the coolable amount of the working fluid with respect to the pressurized air is small, the controller 7 performs control so that the opening degree of the variable throttle valve 5 decreases.
 可変絞り弁5の開度が減少するようにコントローラ7が制御を行うことで、上記の加圧空気に対する冷却要求量が大きい場合と同様、放熱部275における凝縮圧力が増大し、作動流体の冷却量が大きくなる。これにより、ボイラ23における熱交換で加圧空気を所定の温度まで冷却可能な程度にまで、作動流体の温度を低下させる。このため、作動流体の加圧空気に対する冷却可能量を増大させることが可能となる。こうして、この廃熱利用装置では、ボイラ23における熱交換によって加圧空気を好適に冷却させることが可能となる。 By controlling the controller 7 so that the opening degree of the variable throttle valve 5 is decreased, the condensation pressure in the heat radiating unit 275 increases as in the case where the required cooling amount for the pressurized air is large, and the working fluid is cooled. The amount increases. Thereby, the temperature of the working fluid is lowered to such an extent that the pressurized air can be cooled to a predetermined temperature by heat exchange in the boiler 23. For this reason, it becomes possible to increase the coolable amount of the working fluid with respect to the pressurized air. Thus, in this waste heat utilization apparatus, the pressurized air can be suitably cooled by heat exchange in the boiler 23.
 これらのように、この廃熱利用装置では、コントローラ7が可変絞り弁5によって配管34の開度を調整し、可変絞り弁5の上流と下流とで作動流体の圧力差を調整するだけで、冷却要求量や冷却可能量に応じた放熱器27での作動流体の冷却量の調整が可能である。このため、この廃熱利用装置では、ランキンサイクル3の複雑化を好適に抑制することが可能となっている。
となる。
As described above, in this waste heat utilization apparatus, the controller 7 adjusts the opening degree of the pipe 34 by the variable throttle valve 5 and only adjusts the pressure difference of the working fluid upstream and downstream of the variable throttle valve 5. It is possible to adjust the cooling amount of the working fluid in the radiator 27 according to the required cooling amount and the cooling possible amount. For this reason, in this waste heat utilization apparatus, complication of Rankine cycle 3 can be suppressed suitably.
It becomes.
 したがって、実施例1の廃熱利用装置によれば、構成を簡素化しつつ、電力の回収と、好適な加圧空気の冷却とを実現可能である。 Therefore, according to the waste heat utilization apparatus of the first embodiment, it is possible to achieve power recovery and suitable pressurized air cooling while simplifying the configuration.
 また、この廃熱利用装置では、気液分離器29により、液相の状態で作動流体を電動ポンプP1に流入させることが可能となっている。このため、この廃熱利用装置では、ランキンサイクル5において、配管31~35に沿って作動流体を好適に循環させることが可能となり、ボイラ23での熱交換を好適に行うことが可能となっている。 Further, in this waste heat utilization apparatus, the working fluid can be caused to flow into the electric pump P1 in the liquid phase state by the gas-liquid separator 29. For this reason, in this waste heat utilization apparatus, in Rankine cycle 5, it becomes possible to circulate a working fluid suitably along piping 31-35, and it becomes possible to perform heat exchange in boiler 23 suitably. Yes.
 さらに、この廃熱利用装置では、エンジン9の出力の他、第1~3温度センサ19、22、37及び第1、2圧力センサ21、39による各検出値に基づくことで、コントローラ7は、冷却要求量や冷却可能量を正確に設定することが可能となっている。 Furthermore, in this waste heat utilization apparatus, the controller 7 is based on the detection values of the first to third temperature sensors 19, 22, 37 and the first and second pressure sensors 21, 39 in addition to the output of the engine 9. It is possible to accurately set the cooling requirement amount and the cooling possible amount.
(実施例2)
 実施例2の廃熱利用装置は、実施例1の廃熱利用装置におけるランキンサイクル3に換えて、図6に示すように、ランキンサイクル3aを備えている。
(Example 2)
The waste heat utilization apparatus of the second embodiment includes a Rankine cycle 3a as shown in FIG. 6 instead of the Rankine cycle 3 in the waste heat utilization apparatus of the first embodiment.
 ランキンサイクル3aは、ランキンサイクル3の各構成に加えて、過冷却器43と、作動流体路としての配管36とを更に有している。過冷却器43は、後述の図11に示すように、上下方向で垂直に延びる第1、2ヘッド431、433と、第1、2ヘッド431、433に対して水平に延びる過冷却部435とを有している。この過冷却部435も、第1ヘッド431と第2ヘッド433とに連通する複数のチューブによって構成されている。また、放熱器27と同様、過冷却部435において、各チューブ同士の間には放熱用のフィンが設けられている。 Rankine cycle 3 a further includes a supercooler 43 and a pipe 36 as a working fluid path in addition to the components of Rankine cycle 3. As shown in FIG. 11 described later, the supercooler 43 includes first and second heads 431 and 433 extending vertically in the vertical direction, and a supercooling unit 435 extending horizontally with respect to the first and second heads 431 and 433. have. The supercooling unit 435 is also configured by a plurality of tubes communicating with the first head 431 and the second head 433. Further, similarly to the radiator 27, in the supercooling section 435, heat radiation fins are provided between the tubes.
 過冷却器43の第1ヘッド431には、内部に作動流体を流入させる過冷却器流入口43aが形成されている。第2ヘッド433には、内部から作動流体を流出させる過冷却器流出口43bが形成されている。また、図6に示すように、過冷却器43の近傍には電動ファン43cが設けられている。この電動ファン43cはコントローラ7に電気的に接続されている。 The first head 431 of the supercooler 43 is formed with a supercooler inlet 43a through which a working fluid flows. The second head 433 is formed with a subcooler outlet 43b through which the working fluid flows out from the inside. Further, as shown in FIG. 6, an electric fan 43 c is provided in the vicinity of the supercooler 43. The electric fan 43 c is electrically connected to the controller 7.
 このランキンサイクル3aでは、気液分離器29のレシーバ流出口29bと過冷却器43の過冷却器流入口43aとが配管35によって接続されている。また、過冷却器43の過冷却器流出口43bと電動ポンプP1の吸入口102とが配管36によって接続されている。つまり、このランキンサイクル3aにおいて、過冷却器43は、作動流体の循環方向で気液分離器29の下流かつ電動ポンプP1の上流となる位置に設けられている。 In this Rankine cycle 3a, the receiver outlet 29b of the gas-liquid separator 29 and the supercooler inlet 43a of the supercooler 43 are connected by a pipe 35. Further, the subcooler outlet 43b of the supercooler 43 and the suction port 102 of the electric pump P1 are connected by a pipe 36. That is, in the Rankine cycle 3a, the supercooler 43 is provided at a position downstream of the gas-liquid separator 29 and upstream of the electric pump P1 in the direction of circulation of the working fluid.
 コントローラ7は、実施例1の廃熱利用装置における各制御に加えて、電動ファン43cの作動制御を行う。この廃熱利用装置における他の構成は実施例1の廃熱利用装置と同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。 The controller 7 controls the operation of the electric fan 43c in addition to each control in the waste heat utilization apparatus of the first embodiment. Other configurations of the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the first embodiment, and the same components are denoted by the same reference numerals, and detailed description thereof is omitted.
 この廃熱利用装置では、放熱器27によって冷却された作動流体を過冷却器43の過冷却部435によって過冷却することが可能である。ここで、ランキンサイクル3aにおいて、過冷却器43は気液分離器29の下流に位置しているため、過冷却部435に流入する作動流体は液相となる。このため、過冷却器43において作動流体を過冷却状態まで好適に冷却することが可能となる。 In this waste heat utilization device, the working fluid cooled by the radiator 27 can be supercooled by the supercooling part 435 of the supercooler 43. Here, in the Rankine cycle 3a, since the supercooler 43 is located downstream of the gas-liquid separator 29, the working fluid flowing into the supercooling unit 435 becomes a liquid phase. For this reason, the working fluid can be suitably cooled to the supercooled state in the supercooler 43.
 具体的には、図7に示すように、配管34を流通する作動流体の流量が最大となるように、可変絞り弁5の開度制御が行われている状態でのD’点とAとの間隔が実施例1の廃熱利用装置におけるランキンサイクル3よりも大きくなる。つまり、ランキンサイクル3aでは過冷却領域Y3について、図3に示すランキンサイクル3における過冷却領域Y1よりも、多く確保することが可能となっている。なお、作動流体の凝縮領域X1については、ランキンサイクル3もランキンサイクル3aも同様である。 Specifically, as shown in FIG. 7, point D ′ and A in a state in which the opening control of the variable throttle valve 5 is performed so that the flow rate of the working fluid flowing through the pipe 34 is maximized. Is larger than the Rankine cycle 3 in the waste heat utilization apparatus of the first embodiment. In other words, in the Rankine cycle 3a, it is possible to secure a larger amount of the supercooling region Y3 than the supercooling region Y1 in the Rankine cycle 3 shown in FIG. In addition, the Rankine cycle 3 and the Rankine cycle 3a are the same about the condensation region X1 of the working fluid.
 また、このランキンサイクル3aでは、コントローラ7が可変絞り弁5の開度が減少するように制御を行うことで、作動流体は、おおよそ図8に示すモリエル線図のように変化することとなる。つまり、過冷却器43による過冷却が行われることで、このランキンサイクル3aにおいて作動流体は、A→B→C→E→E’→F→G→Aの順でその圧力及びエンタルピを変化させる。ここで、作動流体が過冷却器43で過冷却されることにより、G点からA点までの間において、作動流体のエンタルピの変化が生じることとなる。 Further, in this Rankine cycle 3a, the controller 7 performs control so that the opening degree of the variable throttle valve 5 is decreased, so that the working fluid changes approximately as shown in the Mollier diagram shown in FIG. That is, by performing supercooling by the supercooler 43, the working fluid in the Rankine cycle 3a changes its pressure and enthalpy in the order of A → B → C → E → E ′ → F → G → A. . Here, when the working fluid is supercooled by the supercooler 43, a change in the enthalpy of the working fluid occurs between the point G and the point A.
 これらのように、この廃熱利用装置におけるランキンサイクル3aでは、作動流体の温度を好適に低下させることが可能となる。これにより、この廃熱利用装置では、電動ポンプP1でのキャビテーションの発生を好適に抑制することが可能となっている。この廃熱利用装置における他の作用は、実施例1の廃熱利用装置と同様である。 As described above, in the Rankine cycle 3a in this waste heat utilization apparatus, the temperature of the working fluid can be suitably reduced. Thereby, in this waste heat utilization apparatus, generation | occurrence | production of the cavitation in the electric pump P1 can be suppressed suitably. Other operations in the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the first embodiment.
(実施例3)
 実施例3の廃熱利用装置は、ランキンサイクル3において、図9に示すように、可変絞り弁5と気液分離器29とを一体化して構成している。具体的には、可変絞り弁5がレシーバケース290内に配置されることにより、可変絞り弁5と気液分離器29とが一体化されている。そして、可変絞り弁5は、レシーバ流入口29aよりも下流側で、開度を調整することにより、自身の上流と下流とで作動流体の圧力差を調整することが可能である。
(Example 3)
In the Rankine cycle 3, the waste heat utilization apparatus of the third embodiment is configured by integrating the variable throttle valve 5 and the gas-liquid separator 29 as shown in FIG. Specifically, the variable throttle valve 5 and the gas-liquid separator 29 are integrated by arranging the variable throttle valve 5 in the receiver case 290. The variable throttle valve 5 can adjust the pressure difference of the working fluid between its upstream and downstream by adjusting the opening degree downstream of the receiver inlet 29a.
 また、第2圧力センサ39は、レシーバケース290に設けられている。これにより、第2圧力センサ39は、配管34において可変絞り弁5よりも下流、すなわち、配管34においてレシーバ流入口29aよりも下流を流通する作動流体の圧力を基に、可変絞り弁5の下流から電動ポンプP1の上流までの作動流体の圧力を検出し、その検出値をコントローラ7に向けて発信する。なお、この実施例においても、第2圧力センサ39を配管35に設けることもできる。この実施例における他の構成は、実施例1の廃熱利用装置と同様である。 The second pressure sensor 39 is provided in the receiver case 290. As a result, the second pressure sensor 39 is downstream of the variable throttle valve 5 based on the pressure of the working fluid flowing downstream of the variable throttle valve 5 in the pipe 34, that is, downstream of the receiver inlet 29 a in the pipe 34. To the upstream of the electric pump P <b> 1 is detected, and the detected value is transmitted to the controller 7. Also in this embodiment, the second pressure sensor 39 can be provided in the pipe 35. Other configurations in this embodiment are the same as those of the waste heat utilization apparatus of the first embodiment.
 レシーバケース290は一定の大きさの容積を有するように形成されているため、内部に受液室29cを形成しつつ、可変絞り弁5を更に設けるための空間を確保することができる。このため、レシーバケース290内に可変絞り弁5を設けることにより、可変絞り弁5と気液分離器29とを容易に一体化させることが可能となっている。このため、この廃熱利用装置では、車両への搭載性が向上している。この廃熱利用装置における他の作用は、実施例1の廃熱利用装置と同様である。 Since the receiver case 290 is formed to have a certain volume, it is possible to secure a space for further providing the variable throttle valve 5 while forming the liquid receiving chamber 29c therein. For this reason, by providing the variable throttle valve 5 in the receiver case 290, the variable throttle valve 5 and the gas-liquid separator 29 can be easily integrated. For this reason, in this waste heat utilization apparatus, the mounting property to a vehicle is improving. Other operations in the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the first embodiment.
(実施例4)
 実施例4の廃熱利用装置は、ランキンサイクル3において、図10に示すように、放熱器27と気液分離器29とを一体化しつつ、さらに、気液分離器29と可変絞り弁5とを一体化して構成している。
Example 4
As shown in FIG. 10, the waste heat utilization apparatus of the fourth embodiment integrates the radiator 27 and the gas-liquid separator 29 in the Rankine cycle 3, and further, the gas-liquid separator 29 and the variable throttle valve 5. Are integrated.
 具体的には、放熱器27の第2ヘッド273とレシーバケース290とを隣接して配置するとともに、連結路45によって、放熱器27とレシーバケース290とを連結して一体化させている。この連結路45の一端側は、第2ヘッド273の放熱器流出口27bに接続されており、他端側は、レシーバケース290のレシーバ流入口29aに接続されて、レシーバケース290内に延びている。連結路45は作動流体路の一部を構成している。なお、連結路45によって、第2ヘッド273とレシーバケース290とが連結されるため、この廃熱利用装置では、ランキンサイクル3に配管34が設けられていない。 Specifically, the second head 273 and the receiver case 290 of the radiator 27 are disposed adjacent to each other, and the radiator 27 and the receiver case 290 are connected and integrated by a connection path 45. One end side of the connecting path 45 is connected to the radiator outlet 27 b of the second head 273, and the other end side is connected to the receiver inlet 29 a of the receiver case 290 and extends into the receiver case 290. Yes. The connection path 45 constitutes a part of the working fluid path. In addition, since the 2nd head 273 and the receiver case 290 are connected by the connection path 45, the piping 34 is not provided in the Rankine cycle 3 in this waste heat utilization apparatus.
 また、実施例3の廃熱利用装置と同様、可変絞り弁5がレシーバケース290内に配置されることにより、可変絞り弁5と気液分離器29とが一体化されている。こうして、この廃熱利用装置では、放熱器27と可変絞り弁5と気液分離器29とが一体化されている。 Further, similarly to the waste heat utilization apparatus of the third embodiment, the variable throttle valve 5 and the gas-liquid separator 29 are integrated by arranging the variable throttle valve 5 in the receiver case 290. Thus, in the waste heat utilization apparatus, the radiator 27, the variable throttle valve 5, and the gas-liquid separator 29 are integrated.
 可変絞り弁5は、レシーバ流入口29aよりも下流側で、開度を調整することにより、自身の上流と下流とで作動流体の圧力差を調整する。また、第2圧力センサ39は、配管35に設けられている。これにより、第2圧力センサ39は、レシーバ流出口29bよりも下流を流通する作動流体の圧力を基に、可変絞り弁5の下流から電動ポンプP1の上流までの作動流体の圧力を検出して、その検出値をコントローラ7に向けて発信する。なお、第2圧力センサ39をレシーバケース290に設けることにより、連結路45においてレシーバ流入口29aよりも下流を流通する作動流体の圧力を基に、可変絞り弁5の下流から電動ポンプP1の上流までの作動流体の圧力を検出しても良い。この実施例における他の構成は、実施例1の廃熱利用装置と同様である。 The variable throttle valve 5 adjusts the pressure difference of the working fluid between its upstream and downstream by adjusting the opening degree downstream of the receiver inlet 29a. The second pressure sensor 39 is provided in the pipe 35. As a result, the second pressure sensor 39 detects the pressure of the working fluid from the downstream of the variable throttle valve 5 to the upstream of the electric pump P1 based on the pressure of the working fluid flowing downstream from the receiver outlet 29b. The detected value is transmitted to the controller 7. In addition, by providing the second pressure sensor 39 in the receiver case 290, the downstream of the variable throttle valve 5 and the upstream of the electric pump P1 based on the pressure of the working fluid that circulates downstream of the receiver inlet 29a in the connection path 45. The pressure of the working fluid up to may be detected. Other configurations in this embodiment are the same as those of the waste heat utilization apparatus of the first embodiment.
 この廃熱利用装置では、放熱器27と可変絞り弁5と気液分離器29とが一体化されることにより、実施例3の廃熱利用装置よりも更に車両への搭載性を向上させることが可能となっている。この廃熱利用装置における他の作用は、実施例1の廃熱利用装置と同様である。 In this waste heat utilization device, the radiator 27, the variable throttle valve 5, and the gas-liquid separator 29 are integrated, so that the mountability to the vehicle is further improved as compared with the waste heat utilization device of the third embodiment. Is possible. Other operations in the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the first embodiment.
(実施例5)
 実施例5の廃熱利用装置は、ランキンサイクル3aにおいて、図11に示すように、可変絞り弁5と気液分離器29とを一体化して構成している。可変絞り弁5と気液分離器29とを一体化については、実施例3の廃熱利用装置と同様であり、可変絞り弁5がレシーバケース290内に配置することによって実現している。また、この廃熱利用装置において、第2圧力センサ39は、レシーバケース290に設けられている。なお、第2圧力センサ39は、配管35又は配管36に設けられても良い。この廃熱利用装置における他の構成は、実施例2の廃熱利用装置と同様である。
(Example 5)
In the Rankine cycle 3a, the waste heat utilization apparatus of the fifth embodiment is configured by integrating the variable throttle valve 5 and the gas-liquid separator 29 as shown in FIG. The integration of the variable throttle valve 5 and the gas-liquid separator 29 is the same as the waste heat utilization apparatus of the third embodiment, and is realized by arranging the variable throttle valve 5 in the receiver case 290. In the waste heat utilization apparatus, the second pressure sensor 39 is provided in the receiver case 290. Note that the second pressure sensor 39 may be provided in the pipe 35 or the pipe 36. Other configurations of the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the second embodiment.
 この廃熱利用装置では、可変絞り弁5と気液分離器29とが一体化されることにより、過冷却器43を設ける場合であっても、ランキンサイクル3aが複雑化することを好適に抑制することが可能となる。このため、この廃熱利用装置でも、車両への搭載性が向上している。この廃熱利用装置における他の作用は、実施例2の廃熱利用装置と同様である。 In this waste heat utilization apparatus, the variable throttle valve 5 and the gas-liquid separator 29 are integrated, so that even when the supercooler 43 is provided, the Rankine cycle 3a is preferably prevented from becoming complicated. It becomes possible to do. For this reason, also in this waste heat utilization apparatus, the mounting property to a vehicle is improving. Other operations in the waste heat utilization apparatus are the same as those in the waste heat utilization apparatus of the second embodiment.
(実施例6)
 実施例6の廃熱利用装置は、ランキンサイクル3aにおいて、図12に示すように、放熱器27と過冷却器43とを一体化して形成するとともに、可変絞り弁5と気液分離器29とを一体化して形成することにより構成している。放熱器27と過冷却器43との一体化は、具体的には、放熱器27の第1ヘッド271と過冷却器43の第2ヘッド433とを一体化するとともに、放熱器27の第2ヘッド273と過冷却器43の第1ヘッド431とを一体化することによって実現している。これらの放熱器27及び過冷却器43と、気液分離器29との接続は、実施例2の廃熱利用装置と同様に、配管34及び配管35によって行っている。
(Example 6)
As shown in FIG. 12, in the Rankine cycle 3a, the waste heat utilization apparatus of the sixth embodiment is formed by integrating the radiator 27 and the supercooler 43, and the variable throttle valve 5 and the gas-liquid separator 29. Are formed integrally. Specifically, the radiator 27 and the supercooler 43 are integrated with each other by integrating the first head 271 of the radiator 27 and the second head 433 of the supercooler 43 and the second of the radiator 27. This is realized by integrating the head 273 and the first head 431 of the subcooler 43. The radiator 27 and the supercooler 43 and the gas-liquid separator 29 are connected by the pipe 34 and the pipe 35 as in the waste heat utilization apparatus of the second embodiment.
 この廃熱利用装置における可変絞り弁5と気液分離器29との一体化と、第2圧力センサ39の配置とについては、実施例5の廃熱利用装置と同様である。また、この廃熱利用装置における他の構成は、実施例2の廃熱利用装置と同様である。 The integration of the variable throttle valve 5 and the gas-liquid separator 29 in this waste heat utilization device and the arrangement of the second pressure sensor 39 are the same as in the waste heat utilization device of the fifth embodiment. Other configurations of the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the second embodiment.
 この廃熱利用装置では、可変絞り弁5と気液分離器29との一体化に加えて、放熱器27と過冷却器43とについても一体化されている。このため、この廃熱利用装置では車両への搭載性がより高くなっている。この廃熱利用装置における他の作用は、実施例2の廃熱利用装置と同様である。 In this waste heat utilization apparatus, in addition to the integration of the variable throttle valve 5 and the gas-liquid separator 29, the radiator 27 and the supercooler 43 are also integrated. For this reason, in this waste heat utilization apparatus, the mounting property to a vehicle is higher. Other operations in the waste heat utilization apparatus are the same as those in the waste heat utilization apparatus of the second embodiment.
(実施例7)
 実施例7の廃熱利用装置は、ランキンサイクル3aにおいて、図13に示すように、過冷却器43と気液分離器29とを一体化しつつ、さらに、気液分離器29と可変絞り弁5とを一体化して構成している。
(Example 7)
As shown in FIG. 13, in the Rankine cycle 3a, the waste heat utilization apparatus of Example 7 integrates the supercooler 43 and the gas-liquid separator 29, and further, the gas-liquid separator 29 and the variable throttle valve 5 are integrated. And integrated.
 具体的には、過冷却器43の第1ヘッド431とレシーバケース290とを隣接して配置するとともに、連結路47によって、過冷却器43とレシーバケース290とを連結して一体化させている。この連結路47の一端側は、第1ヘッド431の過冷却器流入口43aに接続されており、他端側は、レシーバケース290のレシーバ流出口29bに接続されて、レシーバケース290内に延びている。連結路47も作動流体路の一部を構成している。なお、連結路47によって、第1ヘッド431とレシーバケース290とが連結されるため、この廃熱利用装置では、ランキンサイクル3aに配管35が設けられていない。 Specifically, the first head 431 and the receiver case 290 of the supercooler 43 are disposed adjacent to each other, and the supercooler 43 and the receiver case 290 are connected and integrated by the connection path 47. . One end side of the connection path 47 is connected to the subcooler inlet 43 a of the first head 431, and the other end is connected to the receiver outlet 29 b of the receiver case 290 and extends into the receiver case 290. ing. The connecting path 47 also constitutes a part of the working fluid path. In addition, since the 1st head 431 and the receiver case 290 are connected by the connection path 47, in this waste heat utilization apparatus, the piping 35 is not provided in the Rankine cycle 3a.
 可変絞り弁5と気液分離器29とを一体化と、第2圧力センサ39の配置とについては、実施例5の廃熱利用装置と同様である。これにより、この廃熱利用装置では、過冷却器43と可変絞り弁5と気液分離器29とが一体化されている。この廃熱利用装置における他の構成は、実施例2の廃熱利用装置と同様である。 The integration of the variable throttle valve 5 and the gas-liquid separator 29 and the arrangement of the second pressure sensor 39 are the same as in the waste heat utilization apparatus of the fifth embodiment. Thereby, in this waste heat utilization apparatus, the supercooler 43, the variable throttle valve 5, and the gas-liquid separator 29 are integrated. Other configurations of the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the second embodiment.
 この廃熱利用装置では、過冷却器43と可変絞り弁5と気液分離器29とを一体化することにより、車両への搭載性が高くなっている。この廃熱利用装置における他の作用は、実施例2の廃熱利用装置と同様である。 In this waste heat utilization device, the supercooler 43, the variable throttle valve 5, and the gas-liquid separator 29 are integrated, so that the mountability on the vehicle is high. Other operations in the waste heat utilization apparatus are the same as those in the waste heat utilization apparatus of the second embodiment.
(実施例8)
 実施例8の廃熱利用装置は、実施例1の廃熱利用装置におけるランキンサイクル3に換えて、図14に示すように、ランキンサイクル3bを備えている。
(Example 8)
The waste heat utilization apparatus according to the eighth embodiment includes a Rankine cycle 3b as shown in FIG. 14 instead of the Rankine cycle 3 in the waste heat utilization apparatus according to the first embodiment.
 ランキンサイクル3bは、ランキンサイクル3における放熱器27に換えて、放熱器ユニット49を有している。また、このランキンサイクル3bでは、ランキンサイクル3における配管34、35に換えて、配管55を有している。放熱器ユニット49は本発明における放熱器に相当する。また、配管55も作動流体路に相当する。 Rankine cycle 3 b has a radiator unit 49 instead of radiator 27 in Rankine cycle 3. In addition, this Rankine cycle 3 b has a pipe 55 instead of the pipes 34 and 35 in the Rankine cycle 3. The radiator unit 49 corresponds to the radiator in the present invention. The pipe 55 also corresponds to a working fluid path.
 図15に示すように、放熱器ユニット49は、上下方向で垂直に延びる第1、2ヘッド491、493と、左右方向で水平に延びる放熱部495及び過冷却部497と、気液分離部499と、上流側接続路501と下流側接続路503とを有している。放熱部495及び過冷却部497は、それぞれ第1ヘッド491と第2ヘッド493とに連通する複数のチューブによって構成されている。また、図示を省略するものの、放熱部495を構成する各チューブ同士の間と、過冷却部497を構成する各チューブ同士の間とには放熱用のフィンが設けられている。 As shown in FIG. 15, the radiator unit 49 includes first and second heads 491 and 493 that extend vertically in the vertical direction, a heat radiating unit 495 and a supercooling unit 497 that extend horizontally in the left and right direction, and a gas-liquid separation unit 499. And an upstream connection path 501 and a downstream connection path 503. The heat radiating part 495 and the supercooling part 497 are configured by a plurality of tubes communicating with the first head 491 and the second head 493, respectively. Although not shown in the figure, fins for heat radiation are provided between the tubes constituting the heat radiation part 495 and between the tubes constituting the supercooling part 497.
 第1ヘッド491には、内部に作動流体を流入させる放熱器流入口49aと、内部から作動流体を流出させる放熱器流出口49bとが形成されている他、内部を作動流体の上流側と下流側とに隔てる第1隔壁49cが形成されている。また、第2ヘッド493には、上流側連結口49dと、下流側連結口49eと、内部を作動流体の上流側と下流側とに隔てる第2隔壁49fとが形成されている。 The first head 491 is formed with a radiator inlet 49a through which the working fluid flows in and a radiator outlet 49b through which the working fluid flows out from the inside. A first partition wall 49c is formed to be separated from the side. Further, the second head 493 is formed with an upstream side connection port 49d, a downstream side connection port 49e, and a second partition wall 49f that divides the inside into an upstream side and a downstream side of the working fluid.
 気液分離部499は、第2ヘッド493に隣接して設けられている。この気液分離部499は、筒状に形成されており、内部に受液室51が形成されている。また、気液分離部499には、内部に作動流体を流入させるレシーバ流入口53aと、内部から液状態の作動流体を流出させるレシーバ流出口53bとが形成されている。 The gas-liquid separator 499 is provided adjacent to the second head 493. The gas-liquid separator 499 is formed in a cylindrical shape, and a liquid receiving chamber 51 is formed therein. The gas-liquid separation unit 499 is formed with a receiver inflow port 53a through which the working fluid flows in and a receiver outflow port 53b through which the liquid working fluid flows out from the inside.
 気液分離部499と第2ヘッド493とは、上流側接続路501及び下流側接続路503によって一体に連結されている。上流側接続路501は、一端側が第2ヘッド493の上流側連結口49dに接続されており、他端側が気液分離部499のレシーバ流入口53aに接続されて、受液室51内に延びている。下流側接続路503は、一端側が気液分離部499のレシーバ流出口53bに接続されており、他端側が第2ヘッド493の下流側連結口49eに接続されている。 The gas-liquid separator 499 and the second head 493 are integrally connected by the upstream connection path 501 and the downstream connection path 503. One end of the upstream connection path 501 is connected to the upstream connection port 49 d of the second head 493, and the other end is connected to the receiver inlet 53 a of the gas-liquid separator 499 and extends into the liquid receiving chamber 51. ing. One end side of the downstream side connection path 503 is connected to the receiver outlet 53 b of the gas-liquid separation unit 499, and the other end side is connected to the downstream side connection port 49 e of the second head 493.
 また、気液分離部499内には、可変絞り弁5が設けられている。これにより、この廃熱利用装置では、気液分離部499、ひいては、放熱器ユニット49と可変絞り弁5とが一体化されている。可変絞り弁5は、レシーバ流入口53aよりも下流側で、開度を調整することにより、自身の上流と下流とで作動流体の圧力差を調整する。 Further, a variable throttle valve 5 is provided in the gas-liquid separator 499. Thereby, in this waste heat utilization apparatus, the gas-liquid separation part 499, by extension, the radiator unit 49 and the variable throttle valve 5 are integrated. The variable throttle valve 5 adjusts the pressure difference of the working fluid between its upstream and downstream by adjusting the opening degree downstream of the receiver inlet 53a.
 図14に示すように、放熱器ユニット49の近傍には電動ファン49gが設けられている。この電動ファン49gはコントローラ7に電気的に接続されている。また、このランキンサイクル3bでは、膨張機25の流出口25bと放熱器ユニット49の放熱器流入口49aとが配管33によって接続されている。そして、放熱器ユニット49の放熱器流出口49bと電動ポンプP1の吸入口102とが配管55によって接続されている。 As shown in FIG. 14, an electric fan 49g is provided in the vicinity of the radiator unit 49. The electric fan 49g is electrically connected to the controller 7. Further, in this Rankine cycle 3 b, the outlet 25 b of the expander 25 and the radiator inlet 49 a of the radiator unit 49 are connected by a pipe 33. The radiator outlet 49b of the radiator unit 49 and the suction port 102 of the electric pump P1 are connected by a pipe 55.
 配管55には、第2圧力センサ39が設けられている。第2圧力センサ39は、配管55を流通する作動流体の圧力を基に、可変絞り弁5の下流から電動ポンプP1の上流までの作動流体の圧力を検出し、その検出値をコントローラ7に向けて発信する。この第2圧力センサ39は、気液分離部499に設けても良い。この廃熱利用装置における他の構成は、実施例1の廃熱利用装置と同様である。 The second pressure sensor 39 is provided in the pipe 55. The second pressure sensor 39 detects the pressure of the working fluid from the downstream of the variable throttle valve 5 to the upstream of the electric pump P <b> 1 based on the pressure of the working fluid flowing through the pipe 55, and sends the detected value to the controller 7. To send. The second pressure sensor 39 may be provided in the gas / liquid separator 499. Other configurations of the waste heat utilization apparatus are the same as those of the waste heat utilization apparatus of the first embodiment.
 この廃熱利用装置におけるランキンサイクル3bでは、図15に示すように、膨張機25を経た作動流体が放熱器流入口49aから放熱器ユニット49の第1ヘッド491内に流入する。そして、この作動流体は、放熱部495を流通して第2ヘッド493に至る。この際、放熱部495を流通する作動流体は、電動ファン49gによって送風された周囲の空気と熱交換により冷却される。ここで、実施例1等の廃熱利用装置と同様、放熱部495には、コンデンサ領域495aと、サブクール領域495bとが形成され得る。そして、冷却要求量や冷却可能量に応じて、コントローラ7によって可変絞り弁5の開度を調整することにより、放熱部495におけるコンデンサ領域495aと、サブクール領域495bとの割合を調整することが可能である。 In the Rankine cycle 3b in this waste heat utilization apparatus, as shown in FIG. 15, the working fluid that has passed through the expander 25 flows into the first head 491 of the radiator unit 49 from the radiator inlet 49a. Then, the working fluid flows through the heat radiating unit 495 and reaches the second head 493. At this time, the working fluid flowing through the heat radiating unit 495 is cooled by heat exchange with the surrounding air blown by the electric fan 49g. Here, similarly to the waste heat utilization apparatus of the first embodiment or the like, a capacitor region 495a and a subcool region 495b can be formed in the heat dissipation portion 495. The ratio of the condenser region 495a and the subcool region 495b in the heat radiating unit 495 can be adjusted by adjusting the opening of the variable throttle valve 5 by the controller 7 in accordance with the required cooling amount and the cooling possible amount. It is.
 第2ヘッド493に至った作動流体は、上流側連結路501を経て気液分離部499内に流入し、気液分離される。そして、液状態の作動流体は、受液室51内に貯留される。また、受液室51内の作動流体は、下流側連結路503を流通して下流側連結口49eから再び第2ヘッド493内に流入する。この作動流体は過冷却部497を流通し、電動ファン49gによって送風された周囲の空気によって過冷却されつつ第1ヘッド491に至る。そして、作動流体は、放熱器流出口49bから流出して、配管55を流通して吸入口102から電動ポンプP1内に吸入される。 The working fluid that has reached the second head 493 flows into the gas-liquid separator 499 via the upstream connection path 501 and is gas-liquid separated. Then, the liquid working fluid is stored in the liquid receiving chamber 51. In addition, the working fluid in the liquid receiving chamber 51 flows through the downstream connection path 503 and flows into the second head 493 again from the downstream connection port 49e. The working fluid flows through the supercooling unit 497 and reaches the first head 491 while being supercooled by the surrounding air blown by the electric fan 49g. Then, the working fluid flows out from the radiator outlet 49b, flows through the pipe 55, and is sucked into the electric pump P1 through the suction port 102.
 ここで、この放熱器ユニット49では、第1ヘッド491に第1隔壁49cが形成されているとともに、第2ヘッド493に第2隔壁49fが形成されている。このため、放熱器ユニット49では、放熱器流入口49aから流入した作動流体が放熱部495、気液分離部499及び過冷却部497を経ずに放熱器流出口49bから流出することはない。また、気液分離部499を経て第2ヘッド493に流入した作動流体が再び放熱部495を流通することもない。 Here, in this radiator unit 49, the first partition 49c is formed in the first head 491, and the second partition 49f is formed in the second head 493. For this reason, in the radiator unit 49, the working fluid flowing in from the radiator inlet 49a does not flow out of the radiator outlet 49b without passing through the radiator 495, the gas-liquid separator 499, and the supercooling part 497. Further, the working fluid that has flowed into the second head 493 through the gas-liquid separation unit 499 does not flow through the heat dissipation unit 495 again.
 このように、この放熱器ユニット49では、放熱部495の他に気液分離部499と過冷却部497とを一体に有しているため、別途に気液分離器29や過冷却器43を設けることなく、実施例2の廃熱利用装置と同様の効果を奏することが可能となっている。 As described above, the radiator unit 49 includes the gas-liquid separator 499 and the supercooling unit 497 in addition to the heat radiator 495, so that the gas-liquid separator 29 and the supercooler 43 are separately provided. Without providing, it is possible to achieve the same effect as the waste heat utilization apparatus of the second embodiment.
 また、この放熱器ユニット49では、放熱部495と気液分離部499と過冷却部497とが一体であることに加えて、気液分離部499部に可変絞り弁5が設けられている。このため、実施例2の廃熱利用装置のように、放熱器27と、可変絞り弁5と、気液分離器29と、過冷却器43とを個別に設ける場合と比較して、ランキンサイクル3bの構成の複雑化を抑制することが可能となっている。このため、この廃熱利用装置も車両への搭載性が高くなっている。この廃熱利用装置における他の作用は実施例2の廃熱利用装置と同様である。 Further, in the radiator unit 49, the variable throttle valve 5 is provided in the gas-liquid separation unit 499 in addition to the heat radiation unit 495, the gas-liquid separation unit 499, and the supercooling unit 497 being integrated. For this reason, as compared with the case where the radiator 27, the variable throttle valve 5, the gas-liquid separator 29, and the supercooler 43 are individually provided as in the waste heat utilization apparatus of the second embodiment, the Rankine cycle. It is possible to suppress complication of the configuration of 3b. For this reason, this waste heat utilization apparatus is also highly mounted on a vehicle. Other operations in the waste heat utilization apparatus are the same as those in the waste heat utilization apparatus of the second embodiment.
 以上において、本発明を実施例1~8に即して説明したが、本発明は上記実施例1~8に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。 In the above, the present invention has been described with reference to the first to eighth embodiments. However, the present invention is not limited to the first to eighth embodiments, and can be appropriately modified and applied without departing from the spirit of the present invention. Needless to say.
 例えば、コントローラ7は、冷却要求量や冷却可能量に基づいて作動流体の冷却量を調整しているが、これに換えて、冷却要求量又は冷却可能量のいずれか一方のみに基づいて作動流体の冷却量を調整しても良い。 For example, the controller 7 adjusts the cooling amount of the working fluid based on the required cooling amount or the coolable amount, but instead, the working fluid is based only on either the required cooling amount or the coolable amount. The amount of cooling may be adjusted.
 また、ボイラ23の第1通路23fに対して第1温度センサ19や第1圧力センサ21を設けても良い。この場合、第1温度センサ19は第1通路23f内を流通する加圧空気の温度を検出することが可能となる。また、第1圧力センサ21は第1通路23f内を流通する加圧空気の圧力を検出することが可能となる。 Further, the first temperature sensor 19 and the first pressure sensor 21 may be provided for the first passage 23 f of the boiler 23. In this case, the first temperature sensor 19 can detect the temperature of the pressurized air flowing through the first passage 23f. Further, the first pressure sensor 21 can detect the pressure of the pressurized air flowing through the first passage 23f.
 さらに、コントローラ7は、エンジン9の出力、第1、2温度センサ19、22による検出値及び第1圧力センサ21による検出値のいずれか一つに基づいて、冷却要求量を設定するように構成しても良い。さらに、これらのうちで任意に選択した検出値に基づいて、冷却要求量を設定するようにコントローラ7を構成しても良い。 Further, the controller 7 is configured to set the required cooling amount based on any one of the output of the engine 9, the detected value by the first and second temperature sensors 19 and 22, and the detected value by the first pressure sensor 21. You may do it. Furthermore, the controller 7 may be configured to set the required cooling amount based on a detection value arbitrarily selected from these.
 同様に、コントローラ7は、第3温度センサ37による検出値又は第2圧力センサ39による検出値のいずれかに基づいて、冷却可能量を設定するように構成しても良い。 Similarly, the controller 7 may be configured to set the coolable amount based on either the detection value by the third temperature sensor 37 or the detection value by the second pressure sensor 39.
 また、駆動系1について、エンジン9から排出された排気の一部を還流排気としてエンジン9に還流させる構成とし、ボイラ23において、還流排気と作動流体とで熱交換させても良い。 Further, the drive system 1 may be configured such that a part of the exhaust discharged from the engine 9 is recirculated to the engine 9 as recirculated exhaust, and heat may be exchanged between the recirculated exhaust and the working fluid in the boiler 23.
 さらに、実施例8における放熱器ユニット49では、放熱部495と過冷却部497とを同一の大きさで形成しているが、これに限らず、放熱部495と過冷却部497とを異なる大きさで形成しても良い。 Further, in the radiator unit 49 in the eighth embodiment, the heat radiating part 495 and the supercooling part 497 are formed with the same size, but not limited to this, the heat radiating part 495 and the supercooling part 497 are different in size. It may be formed.
 本発明は、トラックやバス等の運送車両や乗用自動車等の車両に搭載される廃熱利用装置の他、定置式の廃熱利用装置等に利用可能である。 The present invention can be used not only for waste heat utilization devices mounted on transport vehicles such as trucks and buses and vehicles such as passenger cars, but also for stationary waste heat utilization devices.
 1…駆動系
 3、3a、3b…ランキンサイクル
 5…可変絞り弁(差圧調整手段)
 7…コントローラ(設定手段、制御手段)
 14、15…配管(熱媒体流路)
 19…第1温度センサ(第1温度検出手段)
 21…第1圧力センサ(第1圧力検出手段)
 22…第2温度センサ(第2温度検出手段)
 23…ボイラ
 25…膨張機
 27…放熱器
 27a…放熱器流入口
 27b…放熱器流出口
 29…気液分離器
 29a…レシーバ流入口
 29b…レシーバ流出口
 29c…貯留室
 31~36…配管(作動流体流路)
 37…第3温度センサ(第3温度検出手段)
 39…第2圧力センサ(第2圧力検出手段)
 43…過冷却器
 49…放熱器ユニット(放熱器)
 49a…放熱器流入口
 49b…放熱器流出口
 55…配管(作動流体流路)
 290…レシーバケース
 275…放熱部
 495…放熱部
 497…過冷却部
 499…気液分離部
 P1…電動ポンプ(ポンプ)
DESCRIPTION OF SYMBOLS 1 ... Drive system 3, 3a, 3b ... Rankine cycle 5 ... Variable throttle valve (differential pressure adjustment means)
7: Controller (setting means, control means)
14, 15 ... Piping (heat medium flow path)
19 ... 1st temperature sensor (1st temperature detection means)
21 ... 1st pressure sensor (1st pressure detection means)
22 ... 2nd temperature sensor (2nd temperature detection means)
DESCRIPTION OF SYMBOLS 23 ... Boiler 25 ... Expander 27 ... Radiator 27a ... Radiator inlet 27b ... Radiator outlet 29 ... Gas-liquid separator 29a ... Receiver inlet 29b ... Receiver outlet 29c ... Reservoir 31-36 ... Piping (operation) Fluid flow path)
37 ... Third temperature sensor (third temperature detecting means)
39: Second pressure sensor (second pressure detecting means)
43 ... Supercooler 49 ... Heatsink unit (heatsink)
49a ... Radiator inlet 49b ... Radiator outlet 55 ... Piping (working fluid flow path)
290 ... Receiver case 275 ... Heat radiation part 495 ... Heat radiation part 497 ... Supercooling part 499 ... Gas-liquid separation part P1 ... Electric pump (pump)

Claims (15)

  1.  駆動系に用いられ、作動流体を循環させるランキンサイクルを備えた廃熱利用装置において、
     前記駆動系は、内燃機関と、前記内燃機関に接続され、前記内燃機関に対する熱媒体が流通可能な熱媒体流路とを有し、
     前記ランキンサイクルは、前記作動流体を流通可能な作動流体流路と、
     前記作動流体流路に沿って前記作動流体を循環させるポンプと、
     前記ポンプの下流で前記作動流体流路によって接続されるとともに前記熱媒体流路と接続され、前記作動流体と前記熱媒体とで熱交換を行い、前記熱媒体を冷却可能なボイラと、
     前記ボイラの下流で前記作動流体流路によって接続され、前記作動流体を膨張させる膨張機と、
     前記膨張機の下流かつ前記ポンプの上流で前記作動流体流路によって接続され、冷却媒体により前記作動流体の放熱を行う放熱器とを有し、
     前記放熱器には、内部に前記作動流体を流入させる放熱器流入口と、前記内部から前記作動流体を流出させる放熱器流出口と、前記放熱器流入口と前記放熱器流出口との間に位置する放熱部とが設けられ、
     前記放熱器流入口と前記ポンプとの間には、自身の上流と下流とで、前記作動流体の圧力差を調整可能な差圧調整手段が設けられ、
     前記熱媒体を冷却すべき目標物理量を設定する設定手段と、
     前記目標物理量に基づき、前記放熱部における前記作動流体の放熱量が不足する場合に、前記差圧調整手段の上流の前記作動流体の圧力が増加するように前記差圧調整手段を制御する制御手段とを備えていることを特徴とする廃熱利用装置。
    In a waste heat utilization device equipped with a Rankine cycle that circulates a working fluid used in a drive system,
    The drive system includes an internal combustion engine, and a heat medium flow path that is connected to the internal combustion engine and through which a heat medium for the internal combustion engine can flow.
    The Rankine cycle includes a working fluid flow path through which the working fluid can flow.
    A pump for circulating the working fluid along the working fluid flow path;
    A boiler that is connected downstream of the pump by the working fluid flow path and connected to the heat medium flow path, exchanges heat between the working fluid and the heat medium, and cools the heat medium;
    An expander connected by the working fluid flow path downstream of the boiler and expanding the working fluid;
    A radiator that is connected by the working fluid flow path downstream of the expander and upstream of the pump and that radiates heat of the working fluid by a cooling medium;
    The radiator includes a radiator inlet that allows the working fluid to flow therein, a radiator outlet that allows the working fluid to flow out from the interior, and between the radiator inlet and the radiator outlet. A heat dissipating part located,
    Between the radiator inlet and the pump, there is provided a differential pressure adjusting means capable of adjusting the pressure difference of the working fluid between its upstream and downstream,
    Setting means for setting a target physical quantity for cooling the heat medium;
    Control means for controlling the differential pressure adjusting means so that the pressure of the working fluid upstream of the differential pressure adjusting means increases when the heat dissipation amount of the working fluid in the heat radiating portion is insufficient based on the target physical quantity. And a waste heat utilization device.
  2.  前記ランキンサイクルは、前記放熱器の下流かつ前記ポンプの上流で前記作動流体流路によって接続され、前記作動流体を気液分離可能な気液分離器を有し、
     前記差圧調整手段は、前記放熱器と前記気液分離器との間の前記作動流体流路又は前記気液分離器と一体に設けられている請求項1記載の廃熱利用装置。
    The Rankine cycle has a gas-liquid separator that is connected by the working fluid flow path downstream of the radiator and upstream of the pump, and capable of gas-liquid separation of the working fluid,
    The waste heat utilization apparatus according to claim 1, wherein the differential pressure adjusting means is provided integrally with the working fluid flow path between the radiator and the gas-liquid separator or with the gas-liquid separator.
  3.  前記気液分離器は、レシーバ流入口及びレシーバ流出口が形成されたレシーバケースを有し、
     前記レシーバケース内には液状態の前記作動流体を貯留する受液室が形成され、
     前記レシーバ流入口及び前記レシーバ流出口にはそれぞれ前記作動流体流路が接続され、
     前記差圧調整手段は前記レシーバケース内に設けられている請求項2記載の廃熱利用装置。
    The gas-liquid separator has a receiver case in which a receiver inlet and a receiver outlet are formed,
    A liquid receiving chamber for storing the working fluid in a liquid state is formed in the receiver case,
    The working fluid flow path is connected to the receiver inlet and the receiver outlet, respectively.
    The waste heat utilization apparatus according to claim 2, wherein the differential pressure adjusting means is provided in the receiver case.
  4.  前記ランキンサイクルは、前記放熱器の下流かつ前記ポンプの上流で前記作動流体流路によって接続され、前記作動流体を過冷却可能な過冷却器を有し、
     前記差圧調整手段は、前記放熱器と前記過冷却器との間の前記作動流体流路に設けられている請求項1又は2記載の廃熱利用装置。
    The Rankine cycle has a supercooler connected by the working fluid flow path downstream of the radiator and upstream of the pump, and capable of supercooling the working fluid,
    The waste heat utilization apparatus according to claim 1 or 2, wherein the differential pressure adjusting means is provided in the working fluid flow path between the radiator and the supercooler.
  5.  前記ランキンサイクルは、前記気液分離器の下流かつ前記ポンプの上流で前記作動流体流路によって接続され、前記作動流体を過冷却可能な過冷却器を有し、
     前記差圧調整手段は、前記放熱器と前記気液分離器との間の前記作動流体流路に設けられている請求項2又は3記載の廃熱利用装置。
    The Rankine cycle has a supercooler connected by the working fluid flow path downstream of the gas-liquid separator and upstream of the pump, and capable of supercooling the working fluid,
    The waste heat utilization apparatus according to claim 2 or 3, wherein the differential pressure adjusting means is provided in the working fluid flow path between the radiator and the gas-liquid separator.
  6.  前記目標物理量は、前記駆動系が要求する冷却要求量であり、
     前記制御手段は、前記冷却要求量が大きい場合、前記差圧調整手段の上流の前記作動流体の圧力が増加するように前記差圧調整手段を制御する請求項1乃至5のいずれか1項記載の廃熱利用装置。
    The target physical quantity is a cooling request quantity required by the drive system,
    The said control means controls the said differential pressure | voltage adjustment means so that the pressure of the said working fluid upstream of the said differential pressure | voltage adjustment means may increase, when the said cooling required amount is large. Waste heat utilization equipment.
  7.  前記設定手段は、前記内燃機関の出力に基づき、前記冷却要求量を設定する請求項6記載の廃熱利用装置。 The waste heat utilization apparatus according to claim 6, wherein the setting means sets the required cooling amount based on an output of the internal combustion engine.
  8.  前記内燃機関は車両用エンジンであり、
     前記設定手段は、車両のアクセル開度又は前記アクセル開度及び前記車両用エンジンの回転数に基づき前記冷却要求量を設定する請求項7記載の廃熱利用装置
    The internal combustion engine is a vehicle engine;
    The waste heat utilization apparatus according to claim 7, wherein the setting means sets the required cooling amount based on an accelerator opening degree of the vehicle or the accelerator opening degree and a rotational speed of the vehicle engine.
  9.  前記設定手段は、前記熱媒体流路又は前記ボイラに設けられ、前記ボイラを流通する前記熱媒体の温度を検出可能な第1温度検出手段を有し、
     前記設定手段は、前記第1温度検出手段が検出した検出値に基づき、前記冷却要求量を設定する請求項6記載の廃熱利用装置。
    The setting means includes first temperature detection means provided in the heat medium flow path or the boiler and capable of detecting the temperature of the heat medium flowing through the boiler,
    The waste heat utilization apparatus according to claim 6, wherein the setting unit sets the required cooling amount based on a detection value detected by the first temperature detection unit.
  10.  前記設定手段は、前記熱媒体流路に設けられ、前記ボイラから流出した前記熱媒体の温度を検出可能な第2温度検出手段を有し、
     前記設定手段は、前記第2温度検出手段が検出した検出値に基づき、前記冷却要求量を設定する請求項6記載の廃熱利用装置。
    The setting means includes second temperature detection means provided in the heat medium flow path and capable of detecting the temperature of the heat medium flowing out of the boiler,
    The waste heat utilization apparatus according to claim 6, wherein the setting unit sets the cooling request amount based on a detection value detected by the second temperature detection unit.
  11.  前記設定手段は、前記熱媒体流路又は前記ボイラに設けられ、前記ボイラを流通する前記熱媒体の圧力を検出可能な第1圧力検出手段を有し、
     前記設定手段は、前記第1圧力検出手段が検出した検出値に基づき、前記冷却要求量を設定する請求項6記載の廃熱利用装置。
    The setting means includes first pressure detection means provided in the heat medium flow path or the boiler and capable of detecting the pressure of the heat medium flowing through the boiler,
    The waste heat utilization apparatus according to claim 6, wherein the setting unit sets the required cooling amount based on a detection value detected by the first pressure detection unit.
  12.  前記目標物理量は、前記作動流体が前記熱媒体を冷却可能な冷却可能量であり、
     前記制御手段は、前記冷却可能量が小さい場合、前記差圧調整手段の上流の前記作動流体の圧力が増加するように前記差圧調整手段を制御する請求項1乃至5のいずれか1項記載の廃熱利用装置。
    The target physical quantity is a chillable amount by which the working fluid can cool the heat medium,
    The said control means controls the said differential pressure | voltage adjustment means so that the pressure of the said working fluid upstream of the said differential pressure | voltage adjustment means may increase, when the said cooling possible amount is small. Waste heat utilization equipment.
  13.  前記設定手段は、前記放熱器流出口から前記ボイラにおける前記作動流体の入口までの前記作動流体の温度に基づき、前記冷却可能量を設定する請求項12記載の廃熱利用装置。 The waste heat utilization apparatus according to claim 12, wherein the setting means sets the coolable amount based on a temperature of the working fluid from the radiator outlet to the inlet of the working fluid in the boiler.
  14.  前記設定手段は、前記ランキンサイクルに設けられ、前記ボイラに流入する前記作動流体の温度を検出可能な第3温度検出手段を有し、
     前記設定手段は、前記第3温度検出手段が検出した検出値に基づき、前記冷却可能量を設定する請求項13記載の廃熱利用装置。
    The setting means includes third temperature detection means provided in the Rankine cycle and capable of detecting the temperature of the working fluid flowing into the boiler.
    The waste heat utilization apparatus according to claim 13, wherein the setting means sets the coolable amount based on a detection value detected by the third temperature detection means.
  15.  前記設定手段は、前記ランキンサイクルに設けられ、前記差圧調整手段の下流から前記ポンプの上流までの前記作動流体の圧力を検出可能な第2圧力検出手段を有し、
     前記設定手段は、前記第2圧力検出手段が検出した検出値に基づき、前記冷却可能量を設定する請求項12記載の廃熱利用装置。
    The setting means includes second pressure detection means provided in the Rankine cycle and capable of detecting the pressure of the working fluid from the downstream of the differential pressure adjusting means to the upstream of the pump.
    The waste heat utilization apparatus according to claim 12, wherein the setting means sets the coolable amount based on a detection value detected by the second pressure detection means.
PCT/JP2013/084573 2013-01-15 2013-12-25 Waste heat utilization device WO2014112300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-004999 2013-01-15
JP2013004999A JP2016040490A (en) 2013-01-15 2013-01-15 Waste heat utilization device

Publications (1)

Publication Number Publication Date
WO2014112300A1 true WO2014112300A1 (en) 2014-07-24

Family

ID=51209402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084573 WO2014112300A1 (en) 2013-01-15 2013-12-25 Waste heat utilization device

Country Status (2)

Country Link
JP (1) JP2016040490A (en)
WO (1) WO2014112300A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146742A (en) * 1974-05-17 1975-11-25
JP2006188156A (en) * 2005-01-06 2006-07-20 Denso Corp Vapor compressing type refrigerator
JP2011241744A (en) * 2010-05-18 2011-12-01 Mitsubishi Heavy Ind Ltd Supercharging device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146742A (en) * 1974-05-17 1975-11-25
JP2006188156A (en) * 2005-01-06 2006-07-20 Denso Corp Vapor compressing type refrigerator
JP2011241744A (en) * 2010-05-18 2011-12-01 Mitsubishi Heavy Ind Ltd Supercharging device of internal combustion engine

Also Published As

Publication number Publication date
JP2016040490A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
US20130067910A1 (en) Waste heat recovery system
JP5748000B2 (en) Cooling device for electrical equipment
US9925845B2 (en) Heat exchange system
CN103154488B (en) Apparatus for utilizing waste heat from internal combustion engine
US9316141B2 (en) Engine energy management system
KR101933166B1 (en) Vehicle air conditioning system and method for controlling the vehicle air conditioning system for the temperature control of a vehicle battery
JP5618009B2 (en) Waste heat utilization equipment
JP5737424B2 (en) Cooling device for electrical equipment
JP5621721B2 (en) Rankine cycle
KR20130012986A (en) Cooling module and control method thereof
WO2019039990A1 (en) A cooling arrangement for a hybrid vehicle comprising an electric drive unit, a combustion engine and a whr system
JP2009166529A (en) Vehicular condenser
JP5669778B2 (en) Cooling device and vehicle including the same
JP2011084102A (en) Cooling device for vehicle
JP2014029232A (en) Cooling device
WO2018047535A1 (en) Instrument temperature adjustment device
KR102371426B1 (en) Cooling module
JP2009204204A (en) Waste heat regeneration system
JP2012247120A (en) Combined heat exchanger system
JP2016060287A (en) Vehicle cooling system
EP2829700B1 (en) Engine energy-management system
WO2014112300A1 (en) Waste heat utilization device
JP2013011258A (en) Rankine cycle
JP2013044239A (en) Exhaust heat recovery system for vehicle
JP2012245866A (en) Combined heat exchanger system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP