WO2014111017A1 - 一种冷热外平衡机组 - Google Patents

一种冷热外平衡机组 Download PDF

Info

Publication number
WO2014111017A1
WO2014111017A1 PCT/CN2014/070665 CN2014070665W WO2014111017A1 WO 2014111017 A1 WO2014111017 A1 WO 2014111017A1 CN 2014070665 W CN2014070665 W CN 2014070665W WO 2014111017 A1 WO2014111017 A1 WO 2014111017A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
cold
source side
balancer
water
Prior art date
Application number
PCT/CN2014/070665
Other languages
English (en)
French (fr)
Inventor
巢民强
Original Assignee
深圳市庄合智能产业科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市庄合智能产业科技有限公司 filed Critical 深圳市庄合智能产业科技有限公司
Publication of WO2014111017A1 publication Critical patent/WO2014111017A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Definitions

  • the present invention belongs to the field of new energy and energy conservation and environmental protection, and particularly relates to the field of cold and heat external balance units, and more particularly to a method for separating and balancing the cooling amount and heat in the system, without any external
  • the balance is balanced by the external balancer, and the cooling and heat balance of the output balance is synchronized, and the cold and heat balance unit without energy waste is operated.
  • the "Twelfth Five-Year Plan for the Development of Strategic Emerging Industries” states that the development of nuclear power, wind power, solar photovoltaic and thermal utilization, shale, biomass power, geothermal and geothermal energy, which are mature in technology and competitive in the market, are accelerated.
  • New energy sources such as biogas
  • new technologies such as solar photovoltaic and thermal power generation, biomass gasification, biofuels, and marine energy, which are basically mature in technology and have great potential for development, and the implementation of new energy integration and demonstration projects.
  • the proportion of new energy in total energy consumption will increase to 4.5%, and the annual carbon dioxide emissions will be reduced by more than 400 million tons.
  • the object of the present invention is to provide a cold and heat external balance unit.
  • the cold source side cooling capacity may be in air or water or refrigerant through heat exchangers such as finned radiators, water circulation heat dissipation or external cold balancers.
  • the medium is transferred to the cold terminal for efficient use; during cooling, the heat on the heat source side may be transferred to the hot terminal in air or water or in a refrigerant through a heat exchanger such as a finned radiator, a water circulation heat sink or an external heat balancer.
  • the aim is to solve: 1. The heat and cold demand of the system that needs heat and the amount of cooling at the same time; 2.
  • the system requires only the heat and cooling capacity, but the adjacent other systems need the demand of cold heat; 3. Recycling in any hot and cold end Cold heat to the unit, to achieve reciprocal use of cold and heat cycles.
  • the invention can double the efficiency of cold and heat use of the unit, realize zero emission and save investment cost, and can be widely applied to various industries, and has far-reaching wide social value and economic value.
  • a cold and heat external balance unit characterized in that: the compressor 1 is connected in series with a heat source side heat exchanger 2, a thermal expansion valve 3, a cold source side heat exchanger 4, and a gas-liquid separator 5 in series, the heat source The water side inlet of the side heat exchanger 2 is connected in series with the first circulating water pump 10, and the heat source side heat exchanger 2 is connected in series with the heat source side heat balancer 6, the heat source side heat balancer 6 and the second electromagnetic valve 8, the first The one-way valve 9 is connected in series, the heat source side heat balancer 6 is connected in parallel with the first electromagnetic valve 7, and the water source side inlet of the cold source side heat exchanger 4 is connected in series with the second circulating water pump 15, and the cold source side is exchanged.
  • the heat exchanger 4 is connected in series with the cold source side cold balancer 11 , and the cold source side cold balancer 11 is connected in series with the third electromagnetic valve 12 and the second check valve 13 , and the cold source side cold balancer 1 1 It is connected in parallel with the fourth solenoid valve 14.
  • the heat source side heat exchanger 2 uses a plate heat exchanger for cold water heat exchange, a tube type heat exchanger, and a shell and tube heat exchanger.
  • the heat source side heat balancer 6 adopts a plate heat exchanger for cold water heat exchange, a tube type heat exchanger, a shell and tube heat exchanger, a cooling tower, a buried pipe, and a steam generator.
  • the above-mentioned cold source side heat exchanger 4 employs a plate heat exchanger for cold water heat exchange, a tube type heat exchanger, and a shell and tube heat exchanger.
  • the above-mentioned cold source side cold balancer 11 adopts a plate heat exchanger for cold water heat exchange, a sleeve type heat exchanger, a shell and tube type heat exchanger, an ice storage device, a cold storage, and a buried pipe.
  • the heat source side heat exchanger 2 is connected to the heat source side water supply pipe, the heat source side first circulating water pump 10, the heat source side return water main pipe, and the corresponding heat source side application heat balance device.
  • the heat source side heat balancer 6 is connected to a heat source side heat balancer water supply pipe and a heat source side heat balancer balance device.
  • the above-mentioned cold source side heat exchanger 4 is connected to the cold source side water supply pipe, the cold source side second circulating water pump 15, the cold source side return water main pipe, and the corresponding cold source side application heat balance device.
  • the above-mentioned cold source side cold balancer 11 is connected to a cold source side cold balancer water supply pipe and a cold source side cold balance balance device.
  • the circulating water source used in the heat source side heat exchanger 2 includes water in a common pipeline, water drawn from a well, a lake or a river, or water circulating in an underground coil, and may be other suitable heating. Refrigeration working fluid.
  • the circulating water source used in the heat source side heat balancer 6 includes water in a common pipeline, water extracted from a well, a lake or a river, or water circulating in an underground coil, and may be other suitable heating and cooling. Working quality.
  • the present invention places the cold source side and the heat source side heat exchanger in the same system, and the heat source side heat exchanger and the heat source side heat balancer are connected in series through the water path or the cooling and heating working medium, and are cold.
  • the source side heat exchanger and the cold source side cold balancer are connected in series by a water circuit or a cooling and heating working medium, and the cold source side and the heat source side heat exchanger and the balancer are connected with an end device for connecting heat or cooling correspondingly,
  • the cold source side is used for the cooling end such as room cooling
  • the heat source side heat can be used for heating ends such as domestic hot water through a water storage tank or a steam generator, etc.
  • the heat source side is used for The heating end is used for the purpose of raising the temperature, and the heat on the cold source side can be applied by ice storage or cold storage.
  • the heat is more matched, the cooling capacity and heat are fully utilized, and the cold and heat balance is not wasted, which can achieve the best state of utilization of the unit, maximize the energy efficiency ratio, and reduce the initial investment. Cost, efficient and environmentally friendly.
  • FIG. 1 is a schematic diagram of a system according to an embodiment of the present invention.
  • the compressor 1 is sequentially connected in series with the heat source side heat exchanger 2, the thermal expansion valve 3, the cold source side heat exchanger 4, and the gas-liquid separator 5, and the heat source side heat exchange is performed.
  • the water side inlet of the device 2 is connected in series with the first circulating water pump 10
  • the heat source side heat exchanger 2 is connected in series with the heat source side heat balancer 6, the heat source side heat balancer 6 and the second electromagnetic valve 8, the first check valve 9 is connected in series
  • the heat source side heat balancer 6 is connected in parallel with the first electromagnetic valve 7
  • the water side inlet of the cold source side heat exchanger 4 is connected in series with the second circulating water pump 15, the cold source side heat exchanger 4 Connected in series with the cold source side cold balancer 11
  • the cold source side cold balancer 1 1 is connected in series with the third electromagnetic valve 12 and the second check valve 13 3
  • the cold The source side cold balancer 11 is connected in parallel with the fourth solenoid valve 14, and the entire system can complete the cooling and heating and
  • the heat source side heat exchanger 2 adopts a plate heat exchanger, a casing heat exchanger and a shell and tube heat exchanger for cold water heat exchange.
  • the heat source side heat exchanger 2 is connected to the heat source side water supply pipe, the heat source side first circulating water pump 10, the heat source side return water main pipe and the corresponding heat source side application heat balance device to the end system to form a water path system for heat exchange.
  • the heat source side heat balancer 6 uses a plate heat exchanger, a tube type heat exchanger, a shell and tube heat exchanger, a cooling tower, a buried pipe, and a steam generator for cold water heat exchange.
  • the heat source side heat balancer 6 is connected to the heat source side heat balancer water supply pipe, the heat source side heat balancer third circulating water pump 16, the heat source side heat balancer return water main pipe and the corresponding heat source side heat balancer applying heat balance device to the end system to form a waterway
  • the system performs heat exchange.
  • the cold source side heat exchanger 4 adopts a plate heat exchanger, a casing heat exchanger and a shell and tube heat exchanger for cold water heat exchange.
  • the cold source side heat exchanger 4 exchanges heat with the water source system in the cold source side water supply pipe and the cold source side system.
  • the cold source side cold balancer 11 adopts a plate heat exchanger for cold water heat exchange, a sleeve heat exchanger, a shell and tube heat exchanger, an ice storage device, a cold storage, and a buried pipe. .
  • a heat balance device is connected to the end system to form a waterway system for heat exchange.
  • the circulating water source used by the heat source side heat exchanger 2 includes water in a common pipeline, water extracted from a water well, a lake or a river, or water circulating in an underground coil.
  • the circulating water source used by the heat source side heat balancer 6 includes water in a common pipeline, water extracted from a water well, a lake or a river, or water circulating in an underground coil, or may be Other suitable heating and cooling refrigerants.
  • the heat source side heat exchanger 2 is a plate heat exchanger
  • the heat source side heat balancer 6 is a water plate heat exchanger.
  • the cold source side heat exchanger 4 is a plate heat exchanger.
  • the cold source side cold balancer 1 1 is a water plate type heat exchanger, and may be other suitable heating and cooling working medium.
  • the compressor 1 compresses the refrigerant into the heat source side heat exchanger 2
  • the first circulating water pump 10 and the first electromagnetic valve 7 are opened, the cooling water exchanges heat with the refrigerant, the water temperature rises, and the required heat is supplied, the refrigerant
  • the condensing temperature is lowered, the refrigerant is condensed by the heat source side heat exchanger 2, and then enters the thermal expansion valve 3, thawed by the thermal expansion valve 3, and the refrigerant enters the cold source side heat exchanger 4 for evaporation after throttling, and the second circulating water pump 15
  • the fourth solenoid valve 14 is opened, the chilled water exchanges heat with the refrigerant, the water temperature is lowered, the required cooling capacity is provided, and the heat absorption temperature of the refrigerant rises, and the refrigerant enters through the connection pipe between the cold source side heat exchanger 4 and the gas-liquid separator 5 In the gas-liquid separator 5, the refrigerant passes through the gas
  • the first circulating water pump 10 and the second circulating water pump 15 are turned on, and the third circulating water pump 16 and the fourth circulating water pump 17 are turned off.
  • the compressor 1 compresses the refrigerant into the heat source side heat exchanger 2, and the first circulating water pump 10, the third circulating water pump 16, and the second electromagnetic valve 8 are opened, the first electromagnetic valve 7 is closed, and the cooling water and the refrigerant are cooled.
  • the heat exchange is performed, the water temperature rises, the required heat is supplied, the condensation temperature of the refrigerant is lowered, the refrigerant is condensed by the heat source side heat exchanger 2, and then enters the thermal expansion valve 3, and the cooling water in the heat source side heat exchanger 2 enters the heat source side heat balancer 6 Further cooling, the refrigerant is throttled by the thermal expansion valve 3, and after the throttling, the refrigerant enters the cold source side heat exchanger 4 to evaporate, and the third circulating water pump 15 and the fourth electromagnetic valve 14 are opened, and the chilled water exchanges heat with the refrigerant, and the water temperature is lowered.
  • the system Providing the required cooling capacity, the evaporation heat absorption temperature of the refrigerant rises, and the refrigerant enters the gas-liquid separator 5 through the connection pipe between the cold source side heat exchanger 4 and the gas-liquid separator 5, and the refrigerant passes through the gas-liquid separator 5 and returns.
  • compressor 1 the system enters the next cycle.
  • the first circulating water pump 10 In the operating condition, the first circulating water pump 10, the second circulating water pump 15, the third circulating water pump 16 are turned on, and the fourth circulating water pump 17 is turned off.
  • the compressor 1 compresses the refrigerant into the heat source side heat exchanger 2
  • the first circulating water pump 10 and the first electromagnetic valve 7 are opened, the cooling water exchanges heat with the refrigerant, the water temperature rises, and the required heat is supplied, the refrigerant
  • the condensing temperature is lowered, the refrigerant is condensed by the heat source side heat exchanger 2, and then enters the thermal expansion valve 3, thawed by the thermal expansion valve 3, and the refrigerant enters the cold source side heat exchanger 4 for evaporation after throttling, and the second circulating water pump 15
  • the fourth circulating water pump 17, the third electromagnetic valve 12, and the fourth electromagnetic valve 14 are opened, the chilled water exchanges heat with the refrigerant, the water temperature is lowered, and the required cooling amount is provided, and the chilled water passes through the cold source side heat exchanger 4 and enters the cold source.
  • the side cold balancer 11 is further frozen, and the refrigerant evaporating heat absorption temperature rises, and enters the gas-liquid separator 5 through the connection pipe between the cold source side heat exchanger 4 and the gas-liquid separator 5, and the refrigerant passes through the gas-liquid separator 5 and then returns.
  • compressor 1 the system enters the next cycle.
  • the first solenoid valve 7, the third solenoid valve 12, and the fourth solenoid valve 14 are opened, and the second solenoid valve 8 is closed.
  • the first circulating water pump 10 In the operating condition, the first circulating water pump 10, the second circulating water pump 15, the fourth circulating water pump 17 are turned on, and the third circulating water pump 16 is turned off.
  • the compressor 1 compresses the refrigerant into the heat source side heat exchanger 2, and the first circulating water pump 10, the third circulating water pump 16, and the second electromagnetic valve 8 are opened, the first electromagnetic valve 7 is closed, and the cooling water and the refrigerant are cooled.
  • the heat exchange is performed, the water temperature rises, the required heat is supplied, the condensation temperature of the refrigerant is lowered, the refrigerant is condensed by the heat source side heat exchanger 2, and then enters the thermal expansion valve 3, and the cooling water in the heat source side heat exchanger 2 enters the heat source side heat balancer 6 Further cooling, the refrigerant is throttled by the thermal expansion valve 3, and the refrigerant enters the cold source side heat exchanger 4 for evaporation after the throttling, the second circulating water pump 15, the fourth circulating water pump 17, the third electromagnetic valve 12, and the fourth electromagnetic valve 14 Open, the chilled water exchanges heat with the refrigerant, the water temperature is lowered, and the required cooling capacity is provided.
  • the chilled water passes through the cold source side heat exchanger 4 and then enters the cold source side cold balancer 1 1 to be further frozen, and the temperature of the refrigerant evaporating heat rises.
  • the refrigerant enters the gas-liquid separator 5 through the connection pipe between the cold source side heat exchanger 4 and the gas-liquid separator 5, and the refrigerant passes through the gas-liquid separator 5 and returns to the compressor 1, and the system enters A loop.
  • the first circulating water pump 10 In the operating condition, the first circulating water pump 10, the second circulating water pump 15, the third circulating water pump 16, and the fourth circulating water pump 17 are turned on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

一种冷热外平衡机组,包括用管道串联连接的压缩机(1)、热源侧换热器(2)、热力膨胀阀(3)、冷源侧换热器(4)、汽液分离器(5)。热源侧换热器(2)与热平衡侧热平衡器(6)串联连接,冷源侧换热器(4)与冷源测冷平衡器(11)串联连接。在制热时,冷源测的冷量通过外冷平衡器等换热装置、经空气或水等冷媒传递到用冷终端,从而得到有效利用;在制冷时,热源侧的热量通过外热平衡器等换热装置、经空气或水等冷媒传递到用热终端,从而得到有效利用。冷热平衡系统中的冷量和热量分离并平衡循环,在与外系统无换热的状态下,通过外平衡器的平衡,同步输出循环平衡的冷量和热量,因此运行中无能量浪费。

Description

一种冷热外平衡机组 技术领域
[0001]本发明属于新能源与节能环保领域, 尤其涉及一种冷热外平衡机组领 域, 更具体地说, 是一种涉及将系统中的冷量和热量分离并平衡循环, 在无 与外界外系统换热的状态下, 通过外平衡器平衡, 同步输出循环平衡的冷量 和热量, 运行中无能量浪费的冷热平衡机组。
[0002] 背景技术
《 "十二五" 国家战略性新兴产业发展规划》 中指出, 加快发展技术成熟、 市场竟争力强的核电、 风电、 太阳能光伏和热利用、 页岩石、 生物质发电、 地热和地温能、 沼气等新能源、 积极推进技术基本成熟、 开发潜力大的新型 太阳能光伏和热发电、 生物质气化、 生物燃料、 海洋能等可再生能源技术的 产业化, 实施新能源集成利用示范重大工程。 到 2015年, 新能源占能源消费 总量的比例提高到 4. 5%, 减少二氧化碳年排放量 4亿吨以上。 到 2015年, 我 国节能潜力超过 4亿吨标准煤, 可带动上万亿元投资, 节能服务业总产值可 突破 3000亿元。但是,新能源应用也面临节约成本和保护环境的问题。因此, 认清能源的本质是解决如何最有效地用物理或化学的方式供应冷热电三种基 本物质, 已成为新能源和节能环保技术和产业发展的关键。
[0003]传统热力和空调设备在供热或制冷时, 都只单向制热或制冷。 在制热 时, 置换出的冷量不但未得到有效利用还需要配置多种装置和适宜环境来排 放; 在制冷时, 置换出的冷量不但未得到有效利用还需要配置多种装置和适 宜环境来排放。 这样就出现了在工业、 商业、 国防、 种植养殖业和居民生活 中普遍现象: 一方面在制热热时流失大量的废冷冷需要耗资处置, 另一方面 同时还需要耗费能源制冷热。 如能有效利用流失的冷热能量, 量应用于工业 生产及日常生活, 可以成倍提高能源使用效率, 大大降低能源使用成本和生 态环境损害。
[ 0004]发明内容
本发明的目的在于提供一种冷热外平衡机组, 在制热时, 冷源侧的冷量可能 通过翅片散热器、 水路循环散热或外冷平衡器等换热装置在空气或水中或冷 媒中传递到用冷的终端得到有效利用; 在制冷时, 热源侧的热量可能通过翅 片散热器、 水路循环散热或外热平衡器等换热装置在空气或水中或冷媒中传 递到用热的终端得到有效利用。 旨在解决: 1、 需要热量亦同时需要冷量的系 统冷热需求; 2、 只需要热冷量的系统, 但相邻其他系统需要冷热量的需求; 3、 在任意用热冷端回收冷热量至本机组, 实现冷热循环往复利用。 本发明可 以成倍提高机组冷热量使用效率, 实现零排放, 节省投资成本, 可广泛应用 于各行各业, 具有深远广泛社会价值和经济价值。
[ 0005]本发明是这样实现的
一种冷热外平衡机组, 其特征在于: 压缩机 1用管道依次与热源侧换热器 2、 热力膨胀阀 3、 冷源侧换热器 4、 气液分离器 5串联连接, 所述热源侧换热器 2水侧进口与第一循环水泵 10串联连接, 所述热源侧换热器 2与热源侧热平 衡器 6串联连接, 所述热源侧热平衡器 6与第二电磁阀 8、 第一单向阀 9串联 连接, 所述热源侧热平衡器 6与第一电磁阀 7并联连接, 所述冷源侧换热器 4 水侧进口与第二循环水泵 15串联连接, 所述冷源侧换热器 4与冷源侧冷平衡 器 11 串联连接, 所述冷源侧冷平衡器 11与第三电磁阀 12、 第二单向阀 1 3串 联连接, 所述冷源侧冷平衡器 1 1与第四电磁阀 14并联连接。
[ 0006]上述热源侧换热器 2采用冷水换热的板式换热器、 套管式换热器、 壳 管式换热器 上述热源侧热平衡器 6 采用冷水换热的板式换热器、 套管式换热器、 壳管式 换热器、 冷却塔、 地埋管、 蒸汽发生器。
[ 0007]上述冷源侧换热器 4采用冷水换热的板式换热器、 套管式换热器、 壳 管式换热器。
[ 0008]上述冷源侧冷平衡器 11采用冷水换热的板式换热器、 套管式换热器、 壳管式换热器、 冰蓄冷装置、 冷库、 地埋管。
[ 0009]上述热源侧换热器 2连接热源侧供水管、 热源侧第一循环水泵 10、 热 源侧回水干管和相应热源侧应用热平衡设备。
[ 0010]上述热源侧热平衡器 6连接热源侧热平衡器供水管、 热源侧热平衡器 衡设备。
[ 0011]上述冷源侧换热器 4连接冷源侧供水管、 冷源侧第二循环水泵 15、 冷 源侧回水干管和相应冷源侧应用热平衡设备。
[ 0012]上述冷源侧冷平衡器 11连接冷源侧冷平衡器供水管、冷源侧冷平衡器 衡设备。
[ 0013]上述热源侧换热器 2使用的循环水源包含共用管路中的水、 从水井、 湖泊或河流中抽取的水或地下盘管中循环流动的水, 也可以是其他合适的制 热制冷工质。
[ 0014]上述热源侧热平衡器 6使用的循环水源包含共用管路中的水、从水井、 湖泊或河流中抽取的水或地下盘管中循环流动的水, 也可以是其他合适的制 热制冷工质。
[ 0015] 采用上述技术方案, 本发明将冷源侧和热源侧换热器置于同一个系统 中, 热源侧换热器和热源侧热平衡器通过水路或制冷制热工质串联连接, 冷 源侧换热器和冷源侧冷平衡器通过水路或制冷制热工质串联连接, 冷源侧和 热源侧换热器及平衡器需与连接相应使用热量或冷量的末端设备, 用于制冷 时, 冷源侧用于制冷末端如房间制冷, 同时热源侧的热量可通过储水箱或蒸 汽发生器等设备用于制热末端如生活热水等, 用于制热时, 热源侧用于制热 末端以达到升高温度的目的, 同时冷源侧的热量可通过冰蓄冷或冷库等加以 应用,上述制冷或制热时, 当冷量负荷不够或多余或者热量负荷不够多余时, 开启水路制冷制热工质侧冷源侧冷平衡器或热源侧热平衡器, 水路制冷制热 工质侧冷源侧冷平衡器和热源侧热平衡器通过其相应末端系统平衡冷热量, 使系统制冷制热更加匹配, 冷量和热量都得到充分利用, 冷热平衡无浪费, 可达到机组利用的最佳状态, 最大程度的提高能效比, 降低初期投资成本, 高效环保。
[ 0016] 附图说明
图 1是本发明实施例提供的系统原理图。
[ 0017] 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施 例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
[ 0018]请参照图 1 ,其压缩机 1用管道依次与热源侧换热器 2、热力膨胀阀 3、 冷源侧换热器 4、 气液分离器 5串联连接, 所述热源侧换热器 2水侧进口与第 一循环水泵 10串联连接,所述热源侧换热器 2与热源侧热平衡器 6串联连接, 所述热源侧热平衡器 6与第二电磁阀 8、 第一单向阀 9串联连接, 所述热源侧 热平衡器 6与第一电磁阀 7并联连接, 所述冷源侧换热器 4水侧进口与第二 循环水泵 15串联连接,所述冷源侧换热器 4与冷源侧冷平衡器 11串联连接, 所述冷源侧冷平衡器 1 1与第三电磁阀 12、 第二单向阀 1 3串联连接, 所述冷 源侧冷平衡器 11与第四电磁阀 14并联连接, 整个系统可完成制冷制热并且 冷热量都可通过末端设备平衡使用的机组。
[0019]请参阅图 1 , 所述热源侧换热器 2采用冷水换热的板式换热器、 套管 式换热器、 壳管式换热器。 所述热源侧换热器 2 , 其与热源侧供水管、 热源侧 第一循环水泵 10、 热源侧回水干管和相应热源侧应用热平衡设备连接到末端 系统中组成水路系统进行热量交换。
[0020]请参阅图 1 , 所述热源侧热平衡器 6采用冷水换热的板式换热器、 套 管式换热器、 壳管式换热器、 冷却塔、 地埋管、 蒸汽发生器。 所述热源侧热 平衡器 6 , 其与热源侧热平衡器供水管、 热源侧热平衡器第三循环水泵 16、 热源侧热平衡器回水干管和相应热源侧热平衡器应用热平衡设备连接到末端 系统中组成水路系统进行热量交换。
[0021]请参阅图 1 , 所述冷源侧换热器 4采用冷水换热的板式换热器、 套管 式换热器、 壳管式换热器。 所述冷源侧换热器 4 , 其与冷源侧供水管、 冷源侧 系统中组成水路系统进行热量交换。
[0022]请参阅图 1 , 所述冷源侧冷平衡器 11采用冷水换热的板式换热器、 套 管式换热器、 壳管式换热器、 冰蓄冷装置、 冷库、 地埋管。 所述冷源侧冷平 衡器 11 , 其与冷源侧冷平衡器供水管、 冷源侧冷平衡器第四循环水泵 17、 冷 源侧冷平衡器回水干管和相应冷源侧冷平衡器应用热平衡设备连接到末端系 统中组成水路系统进行热量交换。
[0023]请参阅图 1 , 所述热源侧换热器 2使用的循环水源包含共用管路中的 水、 从水井、 湖泊或河流中抽取的水或地下盘管中循环流动的水。 [ 0024]请参阅图 1 , 所述热源侧热平衡器 6使用的循环水源包含共用管路中 的水、 从水井、 湖泊或河流中抽取的水或地下盘管中循环流动的水, 也可以 是其他合适的制热制冷工质。
[ 0025] 本实施例具有以下四种工况, 在这四种工作状态中, 所述热源侧换热 器 2为板式换热器, 所述热源侧热平衡器 6为水水板式换热器, 所述冷源侧 换热器 4为板式换热器。 所述冷源侧冷平衡器 1 1为水水板式换热器, 也可以 是其他合适的制热制冷工质。
[ 0026]
1外热平衡器未开启工况:
请参阅图 1 ,压缩机 1压缩冷媒进入到热源侧换热器 2中,第一循环水泵 10、 第一电磁阀 7 开启, 冷却水与冷媒进行热交换, 水温上升, 提供所需热量, 冷媒冷凝温度降低, 冷媒经过热源侧换热器 2冷凝后进入热力膨胀阀 3 中, 通过热力膨胀阀 3节流, 节流后冷媒进入冷源侧换热器 4 中蒸发, 第二循环 水泵 15、 第四电磁阀 14开启, 冷冻水与冷媒进行热交换, 水温降低, 提供所 需冷量, 冷媒蒸发吸热温度上升, 冷媒通过冷源侧换热器 4 与气液分离器 5 间连接管进入气液分离器 5中, 冷媒通过气液分离器 5后回到压缩机 1 中, 系统进入到下一个循环。
[ 0027] 所述工况中, 第一电磁阀 7、 第四电磁阀 14开启, 第二电磁阀 8、 第 三电磁阀 12关闭。
[ 0028]所述工况中, 第一循环水泵 10、 第二循环水泵 15开启, 第三循环水 泵 16、 第四循环水泵 17关闭。
[ 0029]
2热源侧外热平衡器开启工况: 请参阅图 1 ,压缩机 1压缩冷媒进入到热源侧换热器 2中,第一循环水泵 10、 第三循环水泵 16、 第二电磁阀 8开启, 第一电磁阀 7关闭, 冷却水与冷媒进 行热交换, 水温上升, 提供所需热量, 冷媒冷凝温度降低, 冷媒经过热源侧 换热器 2冷凝后进入热力膨胀阀 3中, 热源侧换热器 2中冷却水进入热源侧 热平衡器 6 中进一步冷却, 冷媒通过热力膨胀阀 3节流, 节流后冷媒进入冷 源侧换热器 4中蒸发, 第三循环水泵 15、 第四电磁阀 14开启, 冷冻水与冷媒 进行热交换, 水温降低, 提供所需冷量, 冷媒蒸发吸热温度上升, 冷媒通过 冷源侧换热器 4与气液分离器 5间连接管进入气液分离器 5 中, 冷媒通过气 液分离器 5后回到压缩机 1中, 系统进入到下一个循环。
[ 0030] 所述工况中, 第一电磁阀 7、 第二电磁阀 8、 第四电磁阀 14开启, 第 三电磁阀 12关闭。
[ 0031] 所述工况中, 第一循环水泵 10、 第二循环水泵 15、 第三循环水泵 16 开启, 第四循环水泵 17关闭。
[ 0032] 3冷源侧外冷平衡器开启工况:
请参阅图 1 ,压缩机 1压缩冷媒进入到热源侧换热器 2中,第一循环水泵 10、 第一电磁阀 7 开启, 冷却水与冷媒进行热交换, 水温上升, 提供所需热量, 冷媒冷凝温度降低, 冷媒经过热源侧换热器 2冷凝后进入热力膨胀阀 3 中, 通过热力膨胀阀 3节流, 节流后冷媒进入冷源侧换热器 4 中蒸发, 第二循环 水泵 15、 第四循环水泵 17、 第三电磁阀 12、 第四电磁阀 14开启, 冷冻水与 冷媒进行热交换, 水温降低, 提供所需冷量, 冷冻水通过冷源侧换热器 4后 进入冷源侧冷平衡器 11中进一步冷冻, 冷媒蒸发吸热温度上升, 通过冷源侧 换热器 4与气液分离器 5间连接管进入气液分离器 5 中, 冷媒通过气液分离 器 5后回到压缩机 1中, 系统进入到下一个循环。 [ 0033]所述工况中, 第一电磁阀 7、 第三电磁阀 12、 第四电磁阀 14开启, 第 二电磁阀 8关闭。
[ 0034] 所述工况中, 第一循环水泵 10、 第二循环水泵 15、 第四循环水泵 17 开启, 第三循环水泵 16关闭。
[ 0035] 4热源侧外热平衡器及冷源侧外冷平衡器开启工况:
请参阅图 1 ,压缩机 1压缩冷媒进入到热源侧换热器 2中,第一循环水泵 10、 第三循环水泵 16、 第二电磁阀 8开启, 第一电磁阀 7关闭, 冷却水与冷媒进 行热交换, 水温上升, 提供所需热量, 冷媒冷凝温度降低, 冷媒经过热源侧 换热器 2冷凝后进入热力膨胀阀 3中, 热源侧换热器 2中冷却水进入热源侧 热平衡器 6 中进一步冷却, 冷媒通过热力膨胀阀 3节流, 节流后冷媒进入冷 源侧换热器 4中蒸发, 第二循环水泵 15、 第四循环水泵 17、 第三电磁阀 12、 第四电磁阀 14 开启, 冷冻水与冷媒进行热交换, 水温降低, 提供所需冷量, 冷冻水通过冷源侧换热器 4后进入冷源侧冷平衡器 1 1中进一步冷冻, 冷媒蒸 发吸热温度上升, 通过冷源侧换热器 4与气液分离器 5 间连接管进入气液分 离器 5 中, 冷媒通过气液分离器 5后回到压缩机 1 中, 系统进入到下一个循 环。
[ 0036]所述工况中, 第一电磁阀 7、 第二电磁阀 8、 第三电磁阀 12、 第四电 磁阀 14开启。
[ 0037] 所述工况中,第一循环水泵 10、第二循环水泵 15、第三循环水泵 16、 第四循环水泵 17开启。
[ 0038] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在 本发明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在 本发明的保护范围之内。

Claims

权利要求书
1. 一种冷热外平衡机组, 其特征在于: 压缩机(1 )用管道依次与热源侧换热 器(2) 、 热力膨胀阀 (3) 、 冷源侧换热器(4) 、 气液分离器(5) 串联连 接, 所述热源侧换热器(2)水侧进口与第一循环水泵(10) 串联连接, 所述 热源侧换热器(2)与热源侧热平衡器(6) 串联连接, 所述热源侧热平衡器
(6)与第二电磁阀 (8) 、 第一单向阀 (9) 串联连接, 所述热源侧热平衡器 ( 6 )与第一电磁阀 ( 7 )并联连接, 所述冷源侧换热器( 4 )水侧进口与第二 循环水泵(15 ) 串联连接, 所述冷源侧换热器(4) 与冷源侧冷平衡器(11 ) 串联连接,所述冷源侧冷平衡器( 11 )与第三电磁阀( 12 )、第二单向阀( 13 ) 串联连接, 所述冷源侧冷平衡器(11 ) 与第四电磁阀 (14)并联连接。
2. 如权利要求 1所述的一种冷热外平衡机组, 其特征在于: 所述热源侧换热 器采用冷水换热的板式换热器、 套管式换热器、 壳管式换热器。
3. 如权利要求 1所述的一种冷热外平衡机组, 其特征在于: 所述热源侧热平 衡器采用水水换热的板式换热器、 套管式换热器、 壳管式换热器、 冷却塔、 地埋管、 蒸汽发生器。
4. 如权利要求 1所述的一种冷热外平衡机组, 其特征在于: 所述冷源侧换热 器采用冷水换热的板式换热器、 套管式换热器、 壳管式换热器。
5. 如权利要求 1所述的一种冷热外平衡机组, 其特征在于: 所述冷源侧冷平 衡器采用水水换热的板式换热器、 套管式换热器、 壳管式换热器、 冰蓄冷装 置、 冷库、 地埋管。
6. 如权利要求 2所述的一种冷热外平衡机组, 其特征在于: 所述热源侧换热 器连接热源侧供水管、 热源侧第一循环水泵、 热源侧回水干管和相应热源侧 应用热平衡设备。
7. 如权利要求 3所述的一种冷热外平衡机组, 其特征在于: 所述热源侧热平 衡器连接热源侧热平衡器供水管、 热源侧热平衡器第三循环水泵、 热源侧热 平衡器回水千管…和相: L热源 热平衡器 用热平 4 If设
8. 如权利要求 4所述的一种冷热外平衡机组, 其特征在于: 所述冷源侧换热 器连接冷源侧供水管、 冷源侧第二循环水泵、 冷源侧回水干管和相应冷源侧 应用热平衡设备。
9. 如权利要求 5所述的一种冷热外平衡机组, 其特征在于: 所述冷源侧冷平 衡器连接冷源侧冷平衡器供水管、 冷源侧冷平衡器第四循环水泵、 冷源侧冷
10. 如权利要求 2所述的一种冷热外平衡机组, 其特征在于: 所述热源侧换热 器使用的循环水源包含共用管路中的水、 从水井、 湖泊或河流中抽取的水或 地下盘管中循环流动的水; 也可以是其他制冷制热工质。
11. 如权利要求 3所述的一种冷热外平衡机组, 其特征在于: 所述热源侧热平 衡器使用的循环水源包含共用管路中的水、 从水井、 湖泊或河流中抽取的水 或地下盘管中循环流动的水; 也可以是其他制冷制热工质。
PCT/CN2014/070665 2013-01-21 2014-01-15 一种冷热外平衡机组 WO2014111017A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2013100255858A CN103090592A (zh) 2013-01-21 2013-01-21 一种冷热外平衡机组
CN201310025585.8 2013-01-21

Publications (1)

Publication Number Publication Date
WO2014111017A1 true WO2014111017A1 (zh) 2014-07-24

Family

ID=48203484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070665 WO2014111017A1 (zh) 2013-01-21 2014-01-15 一种冷热外平衡机组

Country Status (2)

Country Link
CN (1) CN103090592A (zh)
WO (1) WO2014111017A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075848A (zh) * 2013-01-21 2013-05-01 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热平衡系统
CN103090592A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种冷热外平衡机组
CN103090587A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热外平衡系统
CN103075842A (zh) * 2013-01-21 2013-05-01 深圳市庄合地能产业科技有限公司 一种冷热平衡机组
CN103542603A (zh) * 2013-11-06 2014-01-29 巢民强 一种分布式复合智慧能源系统
CN108895691B (zh) * 2018-08-14 2023-09-26 中节能城市节能研究院有限公司 一种制冷过冷循环与蓄冷循环联合供能装置及方法
CN108899612A (zh) * 2018-08-15 2018-11-27 江西新电汽车空调系统有限公司 一种为新能源车用锂电池制冷及加热的集成模块
CN112303827B (zh) * 2020-10-30 2022-05-20 青岛海尔空调电子有限公司 组合式空调系统的控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745768A (en) * 1987-08-27 1988-05-24 The Brooklyn Union Gas Company Combustion-powered refrigeration with decreased fuel consumption
JP2004325048A (ja) * 2003-04-30 2004-11-18 Tokyo Gas Co Ltd 低温水製造装置
CN101963412A (zh) * 2010-10-18 2011-02-02 河南科技大学 太阳能与电能联合工作复合式热泵系统及制冷制热方法
US20110173998A1 (en) * 2008-10-03 2011-07-21 Tony Coleman Process and apparatus for cooling
JP2012145309A (ja) * 2011-01-14 2012-08-02 Mitsubishi Heavy Ind Ltd 熱源システム
CN102679476A (zh) * 2011-03-14 2012-09-19 杨贻方 一种高效制冷空调
CN103075848A (zh) * 2013-01-21 2013-05-01 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热平衡系统
CN103090591A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热内平衡系统
CN103090592A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种冷热外平衡机组
CN103090587A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热外平衡系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006023006A (ja) * 2004-07-07 2006-01-26 Sanyo Electric Co Ltd 冷凍設備
CN102278836B (zh) * 2011-05-18 2013-06-19 巢民强 一种分置式水/地能冷暖生活热水一体中央空调机组

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745768A (en) * 1987-08-27 1988-05-24 The Brooklyn Union Gas Company Combustion-powered refrigeration with decreased fuel consumption
JP2004325048A (ja) * 2003-04-30 2004-11-18 Tokyo Gas Co Ltd 低温水製造装置
US20110173998A1 (en) * 2008-10-03 2011-07-21 Tony Coleman Process and apparatus for cooling
CN101963412A (zh) * 2010-10-18 2011-02-02 河南科技大学 太阳能与电能联合工作复合式热泵系统及制冷制热方法
JP2012145309A (ja) * 2011-01-14 2012-08-02 Mitsubishi Heavy Ind Ltd 熱源システム
CN102679476A (zh) * 2011-03-14 2012-09-19 杨贻方 一种高效制冷空调
CN103075848A (zh) * 2013-01-21 2013-05-01 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热平衡系统
CN103090591A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热内平衡系统
CN103090592A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种冷热外平衡机组
CN103090587A (zh) * 2013-01-21 2013-05-08 深圳市庄合地能产业科技有限公司 一种溴化锂机组与冷库结合使用的冷热外平衡系统

Also Published As

Publication number Publication date
CN103090592A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
WO2014111012A1 (zh) 一种溴化锂机组与冷库结合使用的冷热内平衡系统
WO2014111017A1 (zh) 一种冷热外平衡机组
WO2014111061A1 (zh) 一种冷热内平衡机组
WO2014111011A1 (zh) 一种溴化锂机组与冷库结合使用的冷热平衡系统
WO2014111014A1 (zh) 一种溴化锂机组与冷库结合使用的冷热外平衡系统
CN102155813A (zh) 空调机组冷凝热驱动的热化学吸附制冷装置
CN102705927B (zh) 一种冰蓄冷蓄热超低温热泵空调
WO2014111020A1 (zh) 一种冷热平衡机组
CN102563947A (zh) 一种热管热泵组合型制冷装置
CN104633977A (zh) 一种多用途能量平衡机组
CN103278000A (zh) 基于热管与热泵的干燥系统及其使用方法
CN103090486A (zh) 一种热平衡一体机
CN100447502C (zh) 两级热管废热溴化锂制冷机发生器
CN203837330U (zh) Co2热泵热交换增焓装置
CN202660808U (zh) 一种新型的热管热泵组合型制冷装置
CN110762898A (zh) 一种基于水源热泵机组的空压站余热回收系统
CN204963288U (zh) 一种使用太阳能和水源的溴化锂吸收式制热、制冷装置
CN210663445U (zh) 一种耦合地源热泵和吸收式制冷功能的实验台
CN103196225A (zh) 水源热泵余热回收装置
CN203024403U (zh) 能回收污水余热的热泵热水器
CN203231585U (zh) 一种直热式空气源热泵
CN203550140U (zh) 高效全热回收中央空调
CN103411346B (zh) 超高温吸收式溴化锂热泵
CN103363635A (zh) 一种水冷中央空调废热回收装置及方法
CN206877263U (zh) 一种双温冷源双回路热管循环系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740766

Country of ref document: EP

Kind code of ref document: A1