WO2014110795A1 - 发现参考信号的发送和检测方法及装置 - Google Patents

发现参考信号的发送和检测方法及装置 Download PDF

Info

Publication number
WO2014110795A1
WO2014110795A1 PCT/CN2013/070688 CN2013070688W WO2014110795A1 WO 2014110795 A1 WO2014110795 A1 WO 2014110795A1 CN 2013070688 W CN2013070688 W CN 2013070688W WO 2014110795 A1 WO2014110795 A1 WO 2014110795A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency resource
time
information
sequence
reference signal
Prior art date
Application number
PCT/CN2013/070688
Other languages
English (en)
French (fr)
Inventor
官磊
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP19182565.2A priority Critical patent/EP3641208B1/en
Priority to CN202310788815.XA priority patent/CN116865923A/zh
Priority to EP22175271.0A priority patent/EP4113886B1/en
Priority to PT138714845T priority patent/PT2941061T/pt
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13871484.5A priority patent/EP2941061B1/en
Priority to CN201910307684.2A priority patent/CN110113128B/zh
Priority to EP23185194.0A priority patent/EP4280485A3/en
Priority to CN201811343492.9A priority patent/CN109194437B/zh
Priority to PCT/CN2013/070688 priority patent/WO2014110795A1/zh
Priority to CN201380001061.3A priority patent/CN104521294B/zh
Priority to CN201811343327.3A priority patent/CN109194457B/zh
Publication of WO2014110795A1 publication Critical patent/WO2014110795A1/zh
Priority to US14/801,165 priority patent/US9813212B2/en
Priority to US15/784,863 priority patent/US10270577B2/en
Priority to US16/279,204 priority patent/US11025389B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0093Neighbour cell search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a method and apparatus for transmitting and detecting a reference signal. Background technique
  • a user equipment In the current Long Term Evolution (LTE) system, a user equipment (User Equipment, hereinafter referred to as UE) detects a primary synchronization signal (Primary Synchronization Signal) transmitted by an Evolved Node B (hereinafter referred to as PSS and Secondary Synchronization Signal (SSS), the eNB synchronizes with the eNB and identifies the physical cell, and then reads the system broadcast message sent by the eNB, initiates random access to the eNB, and finally establishes a radio resource with the eNB.
  • the control Radio Resource Control, hereinafter referred to as RRC
  • RRC Radio Resource Control
  • Both the UE in the RRC connected state and the UE in the RRC idle state need to perform Radio Resource Management (RRM) measurement by using a cell-specific reference signal (CRS) to ensure the UE's Mobility performance to enable proper cell handover, cell selection or cell reselection.
  • RRM Radio Resource Management
  • CRS cell-specific reference signal
  • the transmission periods of PSS, SSS, and CRS are relatively short, and the transmission period is usually about 5 ms. Even if there is no UE that needs to be served, the eNB transmits the synchronization signal and the reference signal with the shorter transmission period. This results in the power efficiency of the eNB not being 4 ⁇ high.
  • the base station can be turned off for a long period of time, for example, the power amplifier of the base station can be turned off for a long time, compared to the existing 5 ms.
  • the reason why the base station can be turned off for a long time is because the DRS needs to be sent even if it is in a state of being closed for a long time, so that the UE can discover and/or measure the cell under the jurisdiction of the base station, that is, the period of the DRS is higher than that of the above CRS.
  • the existing reference signal is long, such as a period of several hundred milliseconds or even a few seconds.
  • Embodiments of the present invention provide a method and apparatus for transmitting and detecting a reference signal to implement transmission and detection of a discovery reference signal.
  • an embodiment of the present invention provides a method for detecting a reference signal, including: acquiring, by a user equipment, configuration information of a discovery reference signal, where the configuration information includes time-frequency resource information and sequence information of a discovery reference signal, where The frequency resource information indicates at least one candidate time-frequency resource location of the discovery reference signal, the sequence information indicates at least one candidate sequence of the discovery reference signal; the user equipment receives the first discovery reference signal sent by the base station; The time-frequency resource information determines a candidate time-frequency resource location of the discovery reference signal, determines a candidate sequence of the discovery reference signal according to the sequence information, and detects a candidate sequence of the discovery reference signal by using the candidate time-frequency resource location Determining an actual time-frequency resource location of the first discovery reference signal, and/or determining an actual sequence corresponding to the first discovery reference signal.
  • the determining, by the time-frequency resource information, the candidate time-frequency resource location including determining a first time-frequency resource location and a second time-frequency resource location, where the first The time-frequency resource location and the second time-frequency resource location do not completely overlap;
  • the determining the candidate sequence according to the sequence information includes determining the first sequence and the second sequence;
  • the configuration information further includes: matching the candidate time-frequency resource location and the candidate sequence
  • the method includes: determining, according to the correspondence, a candidate sequence corresponding to each candidate time-frequency resource location, including The first time-frequency resource location corresponds to the first sequence, and the second time-frequency resource location corresponds to the second sequence;
  • the detecting, at the candidate time-frequency resource location, the candidate sequence of the discovery reference signal includes: A first sequence is detected at a frequency resource location and a second sequence is detected at a second time-frequency resource location.
  • the time-frequency resource information indicates at least a first time-frequency resource location of the discovery reference signal and a second time-frequency resource location, where a minimum interval of resource elements in the first time-frequency resource location is different from a minimum interval of resource elements in the second time-frequency resource location, and/or the first
  • the resource unit in the time-frequency resource location partially overlaps the resource unit in the second time-frequency resource location; wherein the resource unit is a sub-carrier, a resource block, a symbol, a subframe, or a radio frame.
  • the configuration information further includes the first information, and the first information
  • the power level information includes a switch information or a transmit power value of the cell.
  • the configuration information further includes: finding a time-frequency resource location of the reference signal and/or a second correspondence between the sequence and the cell identification information; the method further comprising: determining, according to the determined actual time-frequency resource location and/or the actual sequence, and the second correspondence, the base station transmitting the first discovery reference signal The cell identification information corresponding to the cell under the jurisdiction.
  • the configuration information further includes: a different value of the first information, and a second a third correspondence of the information, where the first information includes at least one of the following: power level information of the cell, carrier type information, duplex mode information, random access configuration information, and CRS and CSI-RS
  • the configuration information includes one of the following information: a scrambling code and a time-frequency resource location, a 4th code and a sequence, and a time-frequency resource location and a sequence, where the scrambling code is Generating a scrambling code used by the sequence of reference signals; the method further comprising: determining the actual scrambling code and the actual time-frequency resource according to the determined actual scrambling code, the actual time-frequency resource location, and the third correspondence relationship Determining the first information corresponding to the location; or determining the actual according to the determined actual scrambling code, the actual sequence, and the third correspondence
  • the first information includes at least one of the following: power level information of the cell, carrier type information, duplex mode information, random access configuration information
  • the method further includes: determining a cell in an open state, by using Determining, by the ratio of the received power of the discovery reference signal of the first cell to the total received power of the discovery reference signal of the cell in the open state, the reference cell receiving quality of the first cell, where the first cell is sent a cell under the jurisdiction of the base station of the first discovery reference signal.
  • the method further includes: receiving power of the discovery reference signal by using the first cell Determining a reference signal reception quality of the first cell, where the first cell is transmitting the first, the ratio of the received power of the other discovery reference signals except the second discovery reference signal a cell to which the base station of the reference signal is located; the second discovery reference signal includes: a discovery reference signal of a cell other than the first cell in a closed state, or includes: a discovery of a cell in a closed state
  • the third time-frequency resource location includes: the actual time-frequency resource location; or: the time-frequency resource location indicated by the base station, the user equipment-defined time-frequency resource location, or a predefined Time-frequency resource location.
  • the embodiment of the present invention provides a method for transmitting a discovery reference signal, including: acquiring, by a network side device, configuration information of a discovery reference signal, where the configuration information includes time-frequency resource information and sequence information of a discovery reference signal, where The time-frequency resource information indicates at least one candidate time-frequency resource location of the discovery reference signal, the sequence information indicating at least one candidate sequence of the discovery reference signal; the network-side device selecting an actual time from the candidate time-frequency resource locations a frequency resource location, and selecting an actual sequence from the candidate sequences; the network side device generates a first discovery reference signal, and sends the first discovery reference signal by using the actual time-frequency resource location and an actual sequence.
  • the time-frequency resource information indicates at least a first time-frequency resource location and a second time-frequency resource location of the discovery reference signal
  • the first time-frequency resource location is The minimum interval of the resource unit is different from the minimum interval of the resource unit in the second time-frequency resource location, and/or the resource unit in the first time-frequency resource location and the second time-frequency resource location
  • the resource units in the portion are partially overlapped; wherein the resource unit is a subcarrier, a resource block, a symbol, a subframe, or a radio frame.
  • the method further includes: determining, by the network side device, a value of the first information, where The first information includes at least one of the following information: power level information of the cell, carrier type information, duplex mode information, random access configuration information, and cell-specific reference signal CRS and small The configuration information of the area-specific reference signal CSI-RS; the network side device selecting an actual time-frequency resource location from the candidate time-frequency resource locations, the method includes: determining, according to the determined value and the first correspondence, the actual a time-frequency resource location, where the first correspondence includes: a correspondence between different values of the first information and different time-frequency resource locations; and/or, the network-side device selects from the candidate sequence
  • An actual sequence includes: determining the actual sequence according to the determined value and the second correspondence, where the first correspondence includes: a correspondence between different values of the first information and different sequences.
  • the method further includes: determining an actual scrambling code according to the determined value and the third correspondence, where The third correspondence includes: a correspondence between different values of the first information and a scrambling code used by different sequences, where the actual scrambling code is: a scrambling code used by the actual sequence; The scrambling code scrambles the actual sequence.
  • the power level information includes a switch information or a transmit power value of the cell.
  • the embodiment of the present invention provides a discovery reference signal detecting apparatus, where the discovery reference signal detecting apparatus is a user equipment, and includes: an acquiring module, configured to acquire configuration information of a discovery reference signal, where the configuration information includes a discovery reference Time-frequency resource information and sequence information of the signal, the time-frequency resource information indicating at least one candidate time-frequency resource location of the discovery reference signal, the sequence information indicating at least one candidate sequence of the discovery reference signal; and a receiving module, configured to receive a first discovery reference signal sent by the base station, where the processing module is configured to determine, according to the time-frequency resource information acquired by the acquiring module, a candidate time-frequency resource location of the discovery reference signal, according to the sequence acquired by the acquiring module Determining a candidate sequence of the discovery reference signal, and determining, by detecting, on the candidate time-frequency resource location, a candidate sequence of the discovery reference signal, determining an actual time-frequency resource location of the first discovery reference signal received by the receiving module And/or, determining the first discovery parameter
  • the processing module is configured to determine a candidate time-frequency resource location of the discovery reference signal according to the time-frequency resource information, and determine a candidate sequence of the discovery reference signal according to the sequence information.
  • the method includes: determining, according to the time-frequency resource information, a first time-frequency resource location and a second time-frequency resource location, where the first time-frequency resource location and the second time-frequency resource location do not completely overlap; determining according to the sequence information a first sequence and a second sequence; the configuration information further includes Corresponding relationship between the candidate time-frequency resource location and the candidate sequence; correspondingly, the processing module is configured to detect the candidate sequence of the discovery reference signal at the candidate time-frequency resource location, including: determining, according to the correspondence relationship, each The candidate sequence corresponding to the candidate time-frequency resource location includes: the first time-frequency resource location corresponds to the first sequence, the second time-frequency resource location corresponds to the second sequence; the first time-frequency resource location detects the first sequence, and the second sequence The second sequence
  • the time-frequency resource information indicates at least a first time-frequency resource location of the discovery reference signal and a second time-frequency resource location, where a minimum interval of resource elements in the first time-frequency resource location is different from a minimum interval of resource elements in the second time-frequency resource location, and/or the first
  • the resource unit in the time-frequency resource location partially overlaps the resource unit in the second time-frequency resource location; wherein the resource unit is a sub-carrier, a resource block, a symbol, a subframe, or a radio frame.
  • the configuration information further includes the first information, and the first information a first correspondence between different values and different time-frequency resource locations and/or different sequences, where the first information includes at least one of the following information: power level information of the cell, carrier type information, duplex mode information, random Accessing the configuration information and the configuration information of the cell-specific reference signal CRS and the channel state information reference signal CSI-RS; the processing module is further configured to: determine, according to the determined actual time-frequency resource location and the first correspondence, Determining a value of the first information corresponding to the actual time-frequency resource location; and/or determining a value of the first information corresponding to the actual sequence according to the determined actual sequence and the first correspondence.
  • the power level information includes a switch information or a transmit power value of the cell.
  • the configuration information further includes: finding a time-frequency resource location of the reference signal and/or a second correspondence between the sequence and the cell identification information; the processing module is further configured to: determine to send the first discovery reference according to the determined actual time-frequency resource location and/or the actual sequence, and the second correspondence The cell identification information corresponding to the cell under the jurisdiction of the base station of the signal.
  • the configuration information further includes: a different value of the first information, and a second a third correspondence of the information, where the first information includes at least one of the following information The power level information of the cell, the carrier type information, the duplex mode information, the random access configuration information, and the configuration information of the CRS and the CSI-RS, the second information includes one of the following information: a scrambling code and a time-frequency a resource location, a 4 code and a sequence, and a time-frequency resource location and a sequence, wherein the scrambling code is a scrambling code used to discover a sequence of reference signals; the processing module is further configured to: Determining, according to the determined actual scrambling code, the actual time-frequency resource location, and the third correspondence, the value of the first information corresponding to the actual scrambling code and the actual time-frequency resource location; or, according to the determined actual Determining, by the scrambling
  • the processing module is further configured to: determine a cell that is in an on state, Determining a reference signal received quality of the first cell, where the first cell is a transmitting station, and a ratio of a received power of a discovery reference signal of a cell to a total received power of a discovery reference signal of the cell in an open state.
  • the cell under the jurisdiction of the base station that first discovers the reference signal.
  • the processing module is further configured to: use the discovery reference signal of the first cell Determining a reference signal reception quality of the first cell, where the first cell is a transmission, and a ratio of received power to a received power of a discovery reference signal other than the second discovery reference signal at a third time-frequency resource location
  • the second discovery reference signal of the first discovery reference signal includes: a discovery reference signal of a cell other than the first cell that is in a closed state, or includes: a discovery reference signal of the cell;
  • the third time-frequency resource location includes: the actual time-frequency resource location; or: the time-frequency resource location indicated by the base station, the user-defined time-frequency resource location, or Predefined time-frequency resource location.
  • an embodiment of the present invention provides a device for transmitting a reference signal, where the device for transmitting a reference signal is a network side device, and includes: an acquiring module, configured to acquire configuration information of a discovery reference signal, and the configuration information And including time-frequency resource information and sequence information of the discovery reference signal, where the time-frequency resource information indicates at least one candidate time-frequency resource location of the discovery reference signal, the sequence information indicating at least one candidate sequence of the discovery reference signal; Used to get from the above Selecting an actual time-frequency resource location from the candidate time-frequency resource locations obtained by the module, and selecting an actual sequence from the candidate sequences acquired by the acquiring module; generating a module, configured to generate a first discovery reference signal; And a module, configured to send, by using the actual time-frequency resource location and the actual sequence selected by the selection module, the first discovery reference signal generated by the generating module.
  • the time-frequency resource information indicates at least a first time-frequency resource location and a second time-frequency resource location of the discovery reference signal
  • the first time-frequency resource location is The minimum interval of the resource unit is different from the minimum interval of the resource unit in the second time-frequency resource location, and/or the resource unit in the first time-frequency resource location and the second time-frequency resource location
  • the resource units in the portion are partially overlapped; wherein the resource unit is a subcarrier, a resource block, a symbol, a subframe, or a radio frame.
  • the second possible implementation manner of the fourth aspect further includes: a determining module, configured to determine a value of the first information, where the The information includes at least one of the following information: power level information of the cell, carrier type information, duplex mode information, random access configuration information, and configuration information of the cell-specific reference signal CRS and the cell-specific reference signal CSI-RS;
  • the selecting module is specifically configured to: determine the actual time-frequency resource location according to the value determined by the determining module and the first correspondence, where the first correspondence includes: different values of the first information Corresponding relationship with different time-frequency resource locations; and/or, determining the actual sequence according to the determined value and the second correspondence, where the first correspondence includes: different values of the first information Correspondence with different sequences.
  • the selecting module is further configured to: determine, according to the determining module, a third correspondence Determining an actual scrambling code, where the third correspondence includes: a correspondence between different values of the first information and scrambling codes used by different sequences, where the actual scrambling code is: used by the actual sequence
  • the scrambling code further includes: a scrambling module, configured to scramble the actual sequence using the actual scrambling code.
  • the power level information includes a switch information or a transmit power value of the cell.
  • the method and device for transmitting and detecting a discovery reference signal may complete transmission of a discovery reference signal, and obtain time-frequency resource information and sequence information in configuration information of the discovery reference signal, which may be used for each cell.
  • the reference signal is found to be detected.
  • FIG. 1 is a flowchart of a method for transmitting a discovery reference signal according to a first embodiment of the present invention
  • FIG. 2 is a flowchart of a method for detecting a reference signal according to a second embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a device for detecting a reference signal according to Embodiment 4 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 1 is a flowchart of a method for transmitting a discovery reference signal according to Embodiment 1 of the present invention.
  • a method for transmitting a discovery reference signal in the embodiment is a discovery reference signal sending device configured in a network side device. Execution body, the method can include:
  • the network side device acquires configuration information of the discovery reference signal, where the configuration information includes time-frequency resource information and sequence information of the discovery reference signal, where the time-frequency resource information indicates at least one candidate time-frequency resource location of the discovery reference signal, and the sequence information indicates the discovery. At least one candidate sequence of the reference signal.
  • the network side device may be a base station, and the base station may obtain the configuration information of the DRS in a pre-configured manner, where the configuration information of the DRS includes the time-frequency resource information of the DRS and the sequence information of the DRS.
  • the time-frequency resource information may indicate multiple candidate time-frequency resource locations of the DRS
  • the sequence information may indicate multiple candidate sequences of the DRS.
  • the multiple candidate time-frequency resource locations of the DRS may be frames, subframes, slots or symbols in the time domain, and frequency bands, resource blocks, resource units, etc. in the frequency domain; multiple candidate sequences of the DRS may be used.
  • Pseudo-random sequences such as Gold sequences, etc., or can be used Zadoff-Chu sequences, such as CAZAC sequences.
  • the embodiment of the present invention does not limit the sequence form of the DRS.
  • the network side device selects an actual time-frequency resource location from the candidate time-frequency resource locations, and selects an actual sequence from the candidate sequences. That is, the network side device can select the actual time frequency resource location and the actual sequence required.
  • the network side device generates a first discovery reference signal, and sends the first discovery reference signal by using an actual time-frequency resource location and an actual sequence. In other words, the network side device generates a first discovery reference signal to be transmitted, and transmits the first discovery reference signal on the selected actual time-frequency resource location and the selected actual sequence.
  • the transmission period of the DRS is long, for example, the transmission period is 500 ms, and the user equipment does not need to detect the DRS every subframe.
  • the base station may configure the detection time of the DRS of the neighboring cell for the user equipment by using RRC signaling, for example, detecting the DRS when the modulo 500 is equal to 0, that is, starting from the start time, there is no 500 frames.
  • the DRS is detected once, and in each detection, the DRS may be detected according to the time-frequency resource location, such as a subframe, a time slot or a symbol, and a frequency band, a resource block or a resource unit, etc.; for the RRC idle state user equipment, the base station may
  • the cell broadcast signaling is used to notify the user equipment of the DRS detection time of the current serving cell and/or the neighboring cell; or, in a predefined manner, for example, in the case that the frame number of each cell is synchronized, the DRS transmission of each cell
  • the time can be a time when the modulo 500 is equal to 0, and the transmission period is also constant, for example, 500 ms.
  • the time and period at which the user equipment detects the DRS of each cell can be predefined to be synchronized with the DRS transmission time and period of each cell.
  • the embodiment of the present invention does not limit the manner in which the configuration information of the DRS is sent and configured.
  • the manner of configuring the time and/or period of detecting the DRS is not limited thereto.
  • the base station sends the DRS by using the actual time-frequency resource and the actual sequence selected from the candidate time-frequency resource information and the candidate sequence information indicated in the configuration information of the DRS, so that the user equipment can The DRS of the cell is detected.
  • the time-frequency resource information indicates at least the first time-frequency resource location and the second time-frequency resource location of the discovery reference signal, and the minimum interval of the resource unit in the first time-frequency resource location and the second time-frequency resource location
  • the minimum interval of the resource unit is different, and/or the resource unit in the first time-frequency resource location partially overlaps the resource unit in the second time-frequency resource location; wherein, the resource unit is a sub-carrier, a resource block, a symbol, a sub- Frame or radio frame. That is to say, the resource units occupied by the plurality of time-frequency resource locations may adopt a partially overlapping division manner, for example, the following embodiment A and the implementation manner. B:
  • Embodiment A The first time-frequency resource location occupies resource elements 0 and 1 on an Orthogonal Frequency Division Multiplexing (OFDM) symbol in one physical resource block, and the second time-frequency resource location occupies The resource elements 0 and 2 on the OFDM symbol in the physical resource block occupy the resource units 1 and 2 on the OFDM symbol in the physical resource block.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Embodiment B The first time-frequency resource location occupies OFDM symbols 0 and 1 in one subframe, the second time-frequency resource location occupies OFDM symbols 0 and 2 in the subframe, and the third time-frequency resource location occupies the sub-frame OFDM symbols 1 and 2 within the frame.
  • the partial overlapping division manner of the resource units occupied by the plurality of time-frequency resource locations may also be combined with the implementation manners A and B, that is, different time-frequency resource locations are partially overlapped and symbolized on the symbols in the subframe.
  • the embodiment of the present invention is not limited thereto.
  • the partial overlapping manner of the resource units occupied by the multiple time-frequency resource locations may be such that the time-frequency resource multiplexing rate of the DRS is increased by overlapping the resources of different DRSs, and the overlapping of multiple time-frequency resource locations may be avoided.
  • it plays the role of interference randomization, and can also improve the accuracy of radio resource management measurement by partially overlapping resource design in the presence and absence of a cell.
  • the method further includes: determining, by the network side device, the value of the first information, where the first information includes at least one of the following information: power level information of the cell, carrier type information, duplex mode information, and random access configuration Configuration information of the information and the cell-specific reference signal CRS and the cell-specific reference signal channel state information reference signal (CSI-RS); the network side device selects an actual time-frequency from the candidate time-frequency resource locations.
  • the first information includes at least one of the following information: power level information of the cell, carrier type information, duplex mode information, and random access configuration Configuration information of the information and the cell-specific reference signal CRS and the cell-specific reference signal channel state information reference signal (CSI-RS)
  • the network side device selects an actual time-frequency from the candidate time-frequency resource locations.
  • the resource location includes: determining an actual time-frequency resource location according to the determined value and the first correspondence, where the first correspondence includes: a correspondence between different values of the first information and different time-frequency resource locations; and Or, the network side device selects an actual sequence from the candidate sequence, and includes: determining an actual sequence according to the determined value and the second correspondence, where the first correspondence includes: different values of the first information and different sequences Correspondence relationship.
  • the method further includes: determining an actual scrambling code according to the determined value and the third correspondence, where the third correspondence includes: different values of the first information and different sequences used Corresponding relationship of the scrambling code, the actual scrambling code is: the scrambling code used by the actual sequence; the actual sequence is scrambled using the actual scrambling code.
  • the power level information includes a switch information or a transmit power value of the cell.
  • the carrier type information may indicate that the carrier is a backward compatible carrier and a non-backward compatible new carrier;
  • the duplex mode information may include Frequency Division Duplexing (FDD) and Time Division Duplex (Time). Division Duplexing (hereinafter referred to as TDD);
  • the random access configuration information includes preamble sequence information and/or time-frequency resource information of the physical random access channel, and the preamble sequence information may include a root sequence index, a cyclic prefix, etc.;
  • CRS and CSI-RS The configuration information includes multiple time-frequency resource configurations of the CRS and the CSI-RS, and may also be a resource configuration combination of the CRS and the CSI-RS; whether the information that the cell can be triggered by the UE triggers the information that the UE acquires the information.
  • the same cell can also correspond to different configuration information, and the different configuration information can carry other information of some of the cells.
  • the power level information may include switch information or a transmission power value of the cell.
  • the zero power information and the non-zero power information may respectively indicate that the cell is in a closed state and an open state;
  • the transmit power value may be represented by multiple power levels, such as high, medium, and low, and may also use specific Power values, such as 10 watts, 5 watts, 1 watt or 0 watts, are indicated, and other similar power-related states and power values are not excluded.
  • the power level information may be carried by at least one of a sequence of a DRS, a 4th code corresponding to the sequence, time-frequency resource location information, and a combination of time-frequency resource information and sequence information.
  • a sequence carrying switch information Taking the sequence carrying switch information as an example, if the DRS sequence 1 and the DRS sequence 2 correspond to the current cell at the same time, if the UE detects the DRS sequence 1 and considers that the current cell is in the on state, then the UE can receive the other of the current cell. Configuration information, such as broadcast information, to camp on the current cell or perform normal data transmission on the current cell; if the UE detects the DRS sequence 2, it considers that the current cell is in the off state, then the UE may not select the current cell.
  • the UE can also send signaling to trigger the current cell to be turned on, for example, with the uplink corresponding to the DRS sequence 2 sent by the current cell. Send a sequence to trigger.
  • the user equipment detects the switch information of the cell carried in the DRS of the currently camped or accessed cell, the state of the currently accessed cell is changed from being turned on to being If the user equipment is off, the user equipment may initiate a cell reselection process or a handover process, or the user equipment may trigger measurement of the neighboring cell and camp or access the neighboring cell to perform cell reselection or handover as soon as possible.
  • the UE detects the switch or the power level of the currently detected cell by using the DRS, and can quickly obtain the information of the currently detected cell, and then perform a corresponding mobility process, such as timely cell reselection or handover, thereby improving the UE's mobility.
  • a corresponding mobility process such as timely cell reselection or handover
  • the base station when the base station changes the DRS configuration information to change the current cell from the on state to the off state, the base station delays the time interval, and then the current cell is closed, and other current state changes are similarly processed. In this way, during this time interval, it can be ensured that the UE camping on or accessing the base station has sufficient time for timely cell reselection or handover, and does not cause UE mobility due to sudden shutdown or power reduction of the base station. Performance is degraded, such as not being able to re-select to camp on a suitable cell or to switch to a suitable cell. Specifically, if the base station does not give the time interval before the shutdown, the UE is likely to miss the paging message during the reselection or handover process, causing the UE to experience a drop.
  • the user equipment can also obtain the path loss value of the base station by detecting the value of the transmit power carried in the DRS sent by the base station. Specifically, the user equipment can use the transmit power value carried in the DRS and the received power value of the DRS. The difference, the path loss value is known.
  • the UE may also report the path loss value to the base station, where the base station adjusts the transmit power of the DRS sent to the user equipment. In this way, the transmission power of the UE and the base station can be optimized, so that the UE can transmit information using appropriate power without causing large uplink interference to the periphery, and the base station can use the appropriate power to transmit information to the UE, which does not cause peripherals. Large downlink interference.
  • the configuration information includes a correspondence between the discovery reference signal and the cell identification information, so that the user equipment determines the cell identity information corresponding to the currently detected cell according to the detected discovery reference signal and the corresponding relationship.
  • a configuration information of the DRS may correspond to one physical cell identifier, and may be a physical cell identifier corresponding to a time-frequency resource location and/or sequence of the DRS. For example, if it is necessary to distinguish 504 physical cells, one method is to use 504 DRS sequences respectively corresponding to 504 physical cell identifiers, and the other method may be two DRS time-frequency resource locations and each time-frequency resource location. 252 DRS sequences are combined to correspond to 504 physical cell identifiers respectively. Another method may be that the DRSs in the two main DRS sequences may include multiple time-frequency resource locations and multiple sequences, so that more than 504 types can be identified.
  • the physical cell, the way to identify the physical cell is not limited to this.
  • the multiple configuration information of the DRS may correspond to one physical cell identifier, and may be the physical cell identifier corresponding to the time-frequency resource location and/or sequence of the DRS. For example, two DRS sequences may be used to correspond to one physical cell identifier; or two DRS sequences may be used to correspond to one physical cell identifier; or DRS sequences in different arrangements may be used to correspond to one physical cell identifier; Use different time-frequency resource locations to correspond to one physical cell identifier and so on. If the multiple configuration information of the DRS corresponds to one physical cell identifier, the two types of configuration information of the DRS may be used to identify the switch of the base station of the current physical cell. Information and transmission power values and other information.
  • the configuration information further includes a combination relationship between the time-frequency resource information and the sequence information.
  • the combination of the time-frequency resource information and the sequence information can also constitute a factor corresponding to the specific content. That is, not only different contents are associated with different sequences, but also different combinations of time-frequency resource information and sequence information are set. For example, the same sequence corresponding to different time-frequency resource locations may correspond to different cell identifiers.
  • the combination relationship may be: all the DRS sequences of the cells are mapped to the resource locations, that is, one resource location and different DRSs. The sequence is combined; if the time-frequency resource information of the DRS includes more than one time-frequency resource location, the first time-frequency resource location may be combined with the first DRS sequence, and the second time-frequency resource location may be combined with the second DRS.
  • the sequence combination wherein the first time-frequency resource location and the second time-frequency resource location are different, but the first DRS sequence and the second DRS sequence may be the same or different.
  • sequence information further includes a scrambling code corresponding to the sequence.
  • sequence information of the DRS may further include multiple scrambling codes for the DRS sequence, and the scrambling code may perform scrambling processing on the DRS sequence, and the scrambling process may use an exclusive OR method or other manner, and the scrambling code may be The cell identity is generated as a parameter. Different scrambling methods of a sequence can also correspond to different information content.
  • the time-frequency resource information includes a time-frequency resource location
  • the time-frequency resource location is a set radio frame label, a subframe label, a symbol label, a sub-carrier label, or a resource block label.
  • the location of the DRS in the radio frame or subframe may be fixed, such as a fixed frame, a subframe, a slot or an OFDM symbol; and the frequency domain location may also be fixed, such as fixed on a fixed physical resource block. Resource unit. For example, sending a DRS to occupy one subframe, the DRS can occupy one subframe.
  • the DRS occupies two subframes in one radio frame, the DRS A fixed location within the two subframes may be occupied, such as a fixed resource unit on the 1st and 20FDM symbols of the first subframe, and a fixed resource unit on the 3rd and 40FDM symbols of the second subframe, respectively.
  • the embodiment of the present invention does not limit the specific location of the time-frequency resource location.
  • the DRS corresponding to the multiple time-frequency resource locations may correspond to multiple cells, or may correspond to the same 'zone.
  • the multiple time-frequency resource locations may be a combination of multiple resource elements on one OFDM symbol, for example, the first time-frequency resource location is an odd resource unit on one OFDM symbol within one physical resource block, and the second time-frequency resource location is An even number of resource elements on the OFDM symbol within the physical resource block.
  • the method for transmitting the discovery reference signal may send the DRS according to the time-frequency resource information and the sequence information in the configuration information of the DRS.
  • the user equipment may determine the current relationship between the detected DRS and the cell identifier information.
  • the cell identifier information corresponding to the detected cell the user equipment may also perform the reference signal reception quality measurement of the currently detected cell by using the detected DRS; and further enable the user equipment to pass the detected power level information carried in the DRS.
  • the reference signal reception quality measurement result of the currently detected cell is accurately obtained.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 2 is a flowchart of a method for detecting a discovery reference signal according to Embodiment 2 of the present invention. As shown in FIG. 2, the method for detecting a discovery reference signal in this embodiment is performed by using a discovery reference signal detecting device configured in a user equipment.
  • the subject, the method can include:
  • the user equipment acquires configuration information of the discovery reference signal, where the configuration information includes time-frequency resource information and sequence information of the discovery reference signal, where the time-frequency resource information indicates at least one candidate time-frequency resource location of the discovery reference signal, and the sequence information indicates the discovery reference. At least one candidate sequence of signals.
  • the user equipment such as a mobile phone or a tablet computer, can obtain the configuration information of the DRS in a pre-configured manner, or can be obtained from the base station through RRC signaling, cell broadcast signaling, or a handover command.
  • the configuration information of the DRS includes time-frequency resource information of the DRS and sequence information of the DRS. Therefore, the configuration information can also be understood as a transmission parameter of the DRS, such as a sequence used for transmitting the DRS and time-frequency resource information.
  • the time-frequency resource information of the DRS may be used to indicate one or more candidate time-frequency resource locations of the DRS, and the candidate time-frequency resource location may represent at least one of a frame, a subframe, a time slot, and a symbol in the time domain. And at least one of a frequency band, a resource block, and a resource unit; the sequence information of the DRS may be used to indicate at least one candidate sequence of the DRS, and the candidate sequence of the DRS may use a pseudo-random sequence ⁇ ij, such as Gold sequences, etc., or Zadoff-Chu sequences, such as CAZAC sequences, etc., can be used.
  • the embodiment of the present invention does not limit the sequence form of the DRS.
  • the user equipment receives the first discovery reference signal sent by the base station.
  • the transmission period of the DRS is long, for example, the transmission period is 500 ms, and the user equipment does not need to detect the DRS every subframe.
  • the detection time of the DRS of the current serving cell or the neighboring cell may be configured for the user equipment by using RRC signaling, for example, when the modulo 500 is equal to 0, the DRS is detected, that is, from the start time, The DRS is detected every 500 frames, and in each detection, the DRS can be detected according to the above-mentioned time-frequency resource location, such as a subframe, a time slot or a symbol, and a frequency band, a resource block or a resource unit, etc.; for the RRC idle state user equipment
  • the cell broadcast signaling may be used to notify the user equipment of the DRS detection time of the current serving cell and/or the neighboring cell; or, in a predefined manner, for example, in the case that the frame number of each cell is synchronized, each cell
  • the DRS transmission time may be
  • the time and period at which the user equipment detects the DRS of each cell may be predefined to be synchronized with the DRS transmission time and period of each cell.
  • the embodiment of the present invention does not limit the manner in which the configuration information of the DRS is sent and configured.
  • the manner of configuring the time and/or period of detecting the DRS is not limited thereto.
  • the user equipment determines a candidate time-frequency resource location of the discovery reference signal according to the time-frequency resource information, determines a candidate sequence of the discovery reference signal according to the sequence information, and detects the candidate sequence of the discovery reference signal by using the candidate time-frequency resource location, Determining an actual time-frequency resource location of the first discovery reference signal, and/or determining an actual sequence corresponding to the first discovery reference signal.
  • the user equipment can detect the DRS by using the time-frequency resource location included in the time-frequency resource information learned from the configuration information of the DRS, and the sequence included in the sequence information. Since the DRS includes two information of the time-frequency resource location and the sequence, after determining the time-frequency resource location and the sequence, it is determined that the DRS is detected.
  • the actual time-frequency resource location for the first discovery reference signal can be fixed, that is, known, by detecting the sequence of discovery reference signals at the time-frequency resource location, only the actual sequence needs to be determined. The case where only the actual time-frequency resource location is determined is similar, and will not be described again. Of course, it is also possible to detect the sequence of the discovery reference signal at the location of the time-frequency resource. Actual time-frequency resource location and actual sequence.
  • the cell identifier corresponding to the DRS can be determined. For example, different sequences may correspond to different cell identities.
  • the user equipment can detect the DRS of each cell by acquiring the time-frequency resource information and the sequence information in the configuration information of the DRS.
  • determining the candidate time-frequency resource location according to the time-frequency resource information, including determining the first time-frequency resource location and the second time-frequency resource location, where the first time-frequency resource location and the second time-frequency resource location do not completely overlap;
  • the information determining the candidate sequence includes determining the first sequence and the second sequence; the first sequence may be the same or different; the configuration information further includes a correspondence between the candidate time-frequency resource location and the candidate sequence; correspondingly, at the candidate time-frequency resource location
  • the method includes: determining, according to the correspondence, a candidate sequence ⁇ ij corresponding to each candidate time-frequency resource location, where the first time-frequency resource location corresponds to the first sequence, and the second time-frequency resource location corresponds to The second sequence: detecting the candidate sequence of the discovery reference signal at the candidate time-frequency resource location comprises: detecting the first sequence at the first time-frequency resource location, and detecting the second sequence at the second time-frequency resource location.
  • the configuration information further includes a combination of the time-frequency resource information and the sequence information.
  • detecting the discovery reference signal according to the configuration information comprises: detecting the discovery reference signal according to the time-frequency resource information, the sequence information, and the combination relationship.
  • the combination of the time-frequency resource information and the sequence information can also constitute a factor corresponding to the specific content. That is, not only different contents may be associated with different sequences, but also different combinations of the set frequency resource information and the sequence information may be used.
  • the same sequence of the different time-frequency resource locations may correspond to different cell identifiers.
  • the first time-frequency resource location where the same is located corresponds to one cell identifier
  • the second time-frequency resource location where the second time-frequency resource location is located corresponds to Another cell identifier.
  • the combination relationship may be: all the DRS sequences of the cells are mapped to the resource locations, that is, one resource location and different DRSs.
  • the sequence is combined; if the time-frequency resource information of the DRS includes more than one time-frequency resource location, the first time-frequency resource location may be combined with the first DRS sequence, and the second time-frequency resource location may be combined with the second DRS.
  • the sequence combination wherein the first time-frequency resource location and the second time-frequency resource location are different, but the first DRS sequence and the second DRS sequence may be the same or different.
  • the sequence information further includes a scrambling code corresponding to the sequence.
  • the sequence information of the DRS may further include multiple scrambling codes for the DRS sequence, and the scrambling code may perform scrambling processing on the DRS sequence, and the scrambling process may use an exclusive OR method or other manner, and the scrambling code may be
  • the cell identity is generated as a parameter.
  • Different scrambling methods of a sequence may also correspond to different information content, such as corresponding different cell identifiers or other information.
  • the time-frequency resource information includes a time-frequency resource location
  • the time-frequency resource location is a set radio frame label, a subframe label, a symbol label, a sub-carrier label, or a resource block label.
  • the location of the DRS in the radio frame or subframe may be fixed, such as a fixed frame, a subframe, a slot or an OFDM symbol; and the frequency domain location may also be fixed, such as fixed on a fixed physical resource block. Resource unit.
  • the DRS occupies one subframe, and the DRS can occupy a fixed position in one subframe, for example, a fixed resource unit on the four OFDM symbols of the first, third, fifth, and seventh subframes in one subframe;
  • the DRS occupies two subframes in one radio frame, and the DRS can occupy fixed positions in the two subframes, for example, occupy fixed resources on the first and second OFDM symbols of the first subframe, respectively.
  • the unit, and the fixed resource elements on the 3rd and 4th OFDM symbols of the second subframe does not limit the location of the time-frequency resource location.
  • the DRS corresponding to the multiple time-frequency resource locations may correspond to multiple cells, or may correspond to the same 'zone.
  • the DRS sequence 1 sent on the first time-frequency resource location corresponds to the cell identifier 1
  • the DRS sequence 1 sent on the second time-frequency resource location corresponds to the cell identifier 2
  • the DRS sequence 1 transmitted at the time-frequency resource location corresponds to the power level 1 of the cell of the cell identifier 1
  • the DRS sequence 1 transmitted at the second time-frequency resource location corresponds to the power level 2 of the cell of the cell identifier 1
  • the multiple time-frequency resource locations may be a combination of multiple resource elements on one OFDM symbol, for example, the first time-frequency resource location is an odd resource unit on one OFDM symbol within one physical resource block, and the second time-frequency resource location is An even number of resource elements on the OFDM symbol within the physical resource block.
  • the time-frequency resource information indicates at least the first time-frequency resource location and the second time-frequency resource location of the discovery reference signal, and the minimum interval of the resource unit in the first time-frequency resource location and the second time-frequency resource location
  • the minimum interval of the resource unit is different, and/or the resource unit in the first time-frequency resource location partially overlaps the resource unit in the second time-frequency resource location; wherein, the resource unit is a child Carrier, resource block, symbol, sub-frame or radio frame. That is to say, the resource units occupied by the plurality of time-frequency resource locations may adopt a partially overlapping division manner, for example, Embodiment A and Embodiment B below:
  • Embodiment A The first time-frequency resource location occupies resource elements 0 and 1 on one OFDM symbol within one physical resource block, and the second time-frequency resource location occupies resource unit 0 on the OFDM symbol in the physical resource block and 2. The third time-frequency resource location then occupies resource elements 1 and 2 on the OFDM symbol within the physical resource block.
  • Embodiment B The first time-frequency resource location occupies OFDM symbols 0 and 1 in one subframe, the second time-frequency resource location occupies OFDM symbols 0 and 2 in the subframe, and the third time-frequency resource location occupies the sub-frame OFDM symbols 1 and 2 within the frame.
  • the partial overlapping division manner of the resource units occupied by the plurality of time-frequency resource locations may also be combined with the implementation manners A and B, that is, different time-frequency resource locations are partially overlapped and symbolized on the symbols in the subframe.
  • the embodiment of the present invention is not limited thereto.
  • Partial overlap of resources of the DRS can increase the time-frequency resource reuse rate of the DRS, and can also avoid the complete overlap of multiple time-frequency resource locations, thereby playing the role of interference randomization in detecting DRS, and can also be turned on in existence.
  • the accuracy of radio resource management measurements is improved by partially overlapping resource design in the scenario of shutting down the cell.
  • the configuration information further includes the first information, and the first correspondence between the different values of the first information and the different time-frequency resource locations and/or different sequences, where the first information includes at least one of the following information: Power level information, carrier type information, duplex mode information, random access configuration information, and configuration information of a cell-specific reference signal CRS and a channel state information reference signal CSI-RS; the method further comprising: determining the actual time-frequency resource according to the determined Determining a value of the first information corresponding to the actual time-frequency resource location; and/or determining a value of the first information corresponding to the actual sequence according to the determined actual sequence and the first correspondence.
  • the first information includes at least one of the following information: Power level information, carrier type information, duplex mode information, random access configuration information, and configuration information of a cell-specific reference signal CRS and a channel state information reference signal CSI-RS
  • the method further comprising: determining the actual time-frequency resource according to the determined Determining a value of the first information corresponding to the actual time
  • the different values of the first information may be different power levels, different carrier types, different duplex modes, different random access configuration information, and CRS/CSI-RS configuration information.
  • the first correspondence may be predefined in the user equipment, or may be configured by the network side device to the user equipment.
  • the carrier type information may indicate that the carrier is a backward compatible carrier and a non-backward compatible new carrier; duplex The mode information may include FDD and TDD; the random access configuration information includes preamble sequence information and/or time-frequency resource information of the physical random access channel, and the preamble sequence information may include a sequence index, a cyclic prefix, etc.; CRS and CSI-
  • the RS configuration information includes multiple time-frequency resource configurations of the CRS and the CSI-RS, and may also be a resource configuration combination of the CRS and the CSI-RS; whether the information that the cell can be triggered by the UE triggers the information that the UE acquires the information.
  • the same cell may also be configured with different configuration information, and the different configuration information may carry other information about the cell.
  • the power level information includes a switch information or a transmit power value of the cell.
  • the configuration information further includes: a third correspondence between the different values of the first information and the second information, where the first information includes at least one of the following information: power level information of the cell, carrier type information, and dual The mode information, the random access configuration information, and the configuration information of the CRS and the CSI-RS, the second information includes one of the following information: a scrambling code and a time-frequency resource location, a scrambling code and a sequence, and a scrambling code and a time-frequency resource.
  • the first information includes at least one of the following information: power level information of the cell, carrier type information, and dual The mode information, the random access configuration information, and the configuration information of the CRS and the CSI-RS
  • the second information includes one of the following information: a scrambling code and a time-frequency resource location, a scrambling code and a sequence, and a scrambling code and a time-frequency resource.
  • the scrambling code is a scrambling code used by the sequence of the discovery reference signal; the method further comprising: determining an actual scrambling code used by the actual sequence according to the scrambling code used to find the sequence of the reference signal; Determining, by the actual scrambling code, the actual time-frequency resource location, and the third correspondence, determining the value of the first information corresponding to the actual scrambling code and the actual time-frequency resource location; or, according to the determined actual scrambling code, the actual sequence, and the third correspondence Relationship, determining the actual scrambling code and the value of the first information corresponding to the actual sequence; or, according to the determined The actual scrambling code, resource location, and a third sequence corresponding relationship between the actual frequency and the actual, real scrambling code is determined, first information corresponding to a position value of resources when the actual frequency and the actual sequence.
  • the power level information may include switch information or a transmission power value of the cell.
  • the zero power information and the non-zero power information may respectively indicate that the cell is in a closed state and an open state;
  • the transmit power value may be represented by multiple power levels, such as high, medium, and low, and may also use specific Power values, such as 10 watts, 5 watts, 1 watt or 0 watts, are indicated, and other similar power-related states and power values are not excluded.
  • the power level information may be carried by at least one of a sequence of a DRS, a 4th code corresponding to the sequence, time-frequency resource location information, and a combination of time-frequency resource information and sequence information.
  • a sequence carrying switch information Taking the sequence carrying switch information as an example, if the DRS sequence 1 and the DRS sequence 2 correspond to the current cell at the same time, if the UE detects the DRS sequence 1, it can be considered that the current cell is in the on state, then the The UE can receive other configuration information of the current cell, such as broadcast information, to camp on the current cell or perform normal data transmission on the current cell. If the UE detects the DRS sequence 2, the current cell is considered to be in the closed state.
  • the UE may not select the current cell to camp or access, but try to camp or access to other open cells; or, the UE may also send signaling to trigger the current cell to be turned on, for example, with the current
  • the uplink transmission sequence corresponding to the DRS sequence 2 transmitted by the cell is triggered.
  • the user equipment may initiate cell reselection.
  • the process or the handover process, or the user equipment may trigger measurement of the neighboring cell and camp or access the neighboring cell to perform cell reselection or handover as soon as possible.
  • the UE detects the switch or the power level of the currently detected cell by using the DRS, and can quickly obtain the information of the currently detected cell, and then perform a corresponding mobility process, such as timely cell reselection or handover, thereby improving the UE's mobility.
  • a corresponding mobility process such as timely cell reselection or handover
  • the user equipment can also obtain the path loss value of the base station by detecting the value of the transmit power carried in the DRS sent by the base station. Specifically, the user equipment can use the transmit power value carried in the DRS and the received power value of the DRS. The difference, the path loss value is known.
  • the UE may also report the path loss value to the base station, where the base station adjusts the transmit power of the DRS sent to the user equipment. In this way, the transmission power of the UE and the base station can be optimized, so that the UE can transmit information using appropriate power without causing large uplink interference to the periphery, and the base station can use the appropriate power to transmit information to the UE, which does not cause peripherals. Large downlink interference.
  • the configuration information further includes: discovering a time-frequency resource location of the reference signal and/or a second correspondence between the sequence and the cell identity information; the method further comprising: determining, according to the determined actual time-frequency resource location and/or actual sequence, and The second correspondence relationship determines the cell identity information corresponding to the cell managed by the base station that sends the first discovery reference signal.
  • a configuration information of the DRS may correspond to a physical cell identifier, and may specifically be a time-frequency resource location and/or a sequence corresponding to the physical cell identifier of the DRS. For example, if it is necessary to distinguish 504 physical cells, one method is to use 504 DRS sequences respectively corresponding to 504 physical cell identifiers, and the other method may be two time-frequency resource locations of DRS and each time-frequency resource location. 252 DRS sequences are combined to correspond to 504 physical cell identifiers respectively. Another method may be that the DRSs in the two main embodiments may include multiple time-frequency resource locations and multiple sequences, so that more For 504 physical cells, the way to identify physical cells is not limited to this.
  • the multiple configuration information of the DRS may correspond to one physical cell identifier, and may specifically be the physical resource identifier of the DRS time-frequency resource location and/or sequence. For example, two DRS sequences may be used to correspond to one physical cell identifier; or two DRS sequences may be used to correspond to one physical cell identifier; or different arrangement DRS sequences may be used to correspond to one physical cell identifier; A DRS using different time-frequency resource locations corresponds to one physical cell identifier and the like. If the configuration information of the DRS corresponds to one physical cell identifier, the two configuration information of the DRS is used as an example. The two configuration information of the DRS can be used to identify the switch of the base station of the current physical cell. Information and transmission power values and other information.
  • the method further includes: determining, by the cell in the on state, the reference signal of the first cell by using a ratio of a received power of the discovery reference signal of the first cell to a total received power of the discovery reference signal of the cell in the enabled state The receiving quality, where the first cell is a cell under the jurisdiction of the base station that sends the first discovery reference signal.
  • the method further includes: determining, by using a ratio of a received power of the discovery reference signal of the first cell to a received power of other discovery reference signals other than the second discovery reference signal at the third time-frequency resource location, determining the first cell a reference signal reception quality, where the first cell is a cell under the control of the base station that transmits the first discovery reference signal; and the second discovery reference signal includes: a discovery reference signal of the cell in the off state except the first cell, Or including: a discovery reference signal of the cell in the closed state; the third time-frequency resource location includes: an actual time-frequency resource location; or includes: a time-frequency resource location indicated by the base station, a user-defined time-frequency resource location, or a pre- The defined time-frequency resource location.
  • the UE may be pre-defined or configured with a power ratio or a power offset value, so that the UE according to the DRS and the downlink The transmission power ratio of the data or the power offset value of the DRS and the downlink data is used to obtain the transmission power of the uplink and downlink data of the current cell, and finally obtain an accurate RRM measurement value.
  • the DRS reception quality measurement for the currently detected cell belongs to the RRM measurement.
  • the reference signal received power Reference Signal Received Power, RSRP for short
  • RSSI Received Signal Strength Indicator
  • RSRQ Reference Signal Received Measurement of one or more of Quality
  • the RSRQ may be the ratio of the RSRP to the RSSI, where the RSRP is the received power of the DRS of the current cell; the RSSI is the received power of all the signals on the resource unit where the DRS of the current cell is located, that is, the reception of the DRS including the current cell.
  • the sum of power and all interference and noise power is the sum of power and all interference and noise power.
  • a large number of micro or pico cells are deployed in a macro cell.
  • the macro cell mainly provides coverage and real-time data services to user equipment, and the micro cell mainly provides users.
  • the device provides high-rate data services.
  • the micro-cell base station can be turned off when it does not need to provide service to any user equipment, and the closed micro-cell base station also transmits the DRS in a long period. If the micro cell base station is in the off state and does not interfere with other cells in reality, if the RSSI contains the DRS received power of the micro cell base station in the off state, the final RSRQ value is underestimated.
  • Method 1 First, determine the cell in the on state, which can be determined according to the power level information of the cell. For example, the first DRS sequence indicates that the base station of the cell identified by the first DRS sequence is in an on state, and the second DRS sequence indicates that the base station of the cell identified by the second DRS sequence is in a closed state, then the user equipment can identify that the base station is in the first sequence. The cell in the open state.
  • RSRQ is the ratio of the RSRP to the RSSI. The value of the obtained RSRQ is more accurate.
  • Method 2 First, the cell in the closed state is determined, and may be specifically determined according to the power level information of the cell. For example, the first DRS sequence indicates that the base station of the cell identified by the first DRS sequence is in an open state, and the second DRS sequence indicates that the base station of the cell identified by the second DRS sequence is in a closed state, then the user equipment can identify that the base station is in the second sequence. The cell in the closed state.
  • Determining the RSRP as the received power of the discovery reference signal of the current cell determining that the RSSI is the received power of the discovery reference signal except the first discovery reference signal at the current time-frequency resource location, where the current time-frequency resource location includes the current cell-capable location The time-frequency resource location of the reference signal is found, or the current time-frequency resource location is the time-frequency resource location indicated by the base station, the UE-defined time-frequency resource location or the predefined time-frequency resource location.
  • the base station may indicate, by using RRC dedicated signaling or broadcast signaling, a time-frequency resource location for measuring the RSSI, or may be a predefined time-frequency resource location (such as a pre-
  • the defined subframe or the radio frame may also be the time-frequency resource location determined by the UE itself, where the time-frequency resource location may include the discovery reference signal of the current cell, or may not include the discovery reference signal of the current cell or even any cell. For example, choose the frequency position that does not include DRS.
  • the first discovery reference signal includes a discovery reference signal of the cell in the off state except the current cell or the first discovery reference signal includes a discovery reference signal of the cell in the off state;
  • RSRQ is a ratio of RSRP to RSSI, and thus obtained The value of RSRQ is more accurate.
  • the method 2 may include: First, determining a cell that is in an on state may be specifically determined according to power level information of the cell. For example, the first DRS sequence indicates that the base station of the cell identified by the first DRS sequence is in an on state, and the second DRS sequence indicates that the base station of the cell identified by the second DRS sequence is in a closed state, then the user equipment can identify that the base station is in the first sequence. The cell in the open state.
  • Determining the RSRP as the received power of the discovery reference signal of the current cell determining the RSSI as the sum of the received power of the discovery reference signal of the current cell and other cells in the open state at the current time-frequency resource location, or may also include the current time-frequency resource a signal power other than DRS, where the current time-frequency resource location includes a time-frequency resource location carrying a discovery reference signal of the current cell; RSRQ is a ratio of RSRP to RSSI, and the obtained RSRQ value is more accurate. of.
  • Method 3 The method does not need to eliminate the power of the closed cell when calculating the RSSI, but averages the RSSI or the RSRQ according to the information of the closed cell at the first time interval Q, that is, the final RSRQ is based on the RSRP and the RSSI.
  • the ratio is then divided by the first time interval Q to determine.
  • the length of the first time interval Q may be greater than the length of the time interval for detecting the DRS. For example, if the DRS sent by the base station is in two subframes, the first time interval Q may be the length of one radio frame, that is, 10 subframes. There can be different time interval length values.
  • the first time interval Q may be predefined, or the base station is configured to the UE, or the UE itself determines the information according to the detected closed cell, such as the number and/or power of the closed cell.
  • the method for detecting the discovery reference signal may detect the DRS of each cell according to the time-frequency resource information and the sequence information in the configuration information of the DRS; and the corresponding relationship between the detected DRS and the cell identifier information Determining the cell identification information corresponding to the currently detected 'j, the area; the reference signal receiving quality measurement of the currently detected cell may also be performed by using the detected DRS; and the power level information carried in the detected DRS may be more accurate Obtaining the reference signal reception quality measurement result of the currently detected cell.
  • Embodiment 3 :
  • FIG. 3 is a schematic structural diagram of a device for transmitting a reference signal according to Embodiment 3 of the present invention.
  • the device 300 for discovering reference signals provided in this embodiment may be configured on a network side device or a network side.
  • the device itself may include an obtaining module 310, a selecting module 320, a generating module 330, a sending module 340, a determining module 350, and a scrambling module 360, where:
  • the acquiring module 310 is configured to acquire configuration information of the discovery reference signal, where the configuration information includes time-frequency resource information and sequence information of the discovery reference signal, where the time-frequency resource information indicates at least one candidate time-frequency resource location of the discovery reference signal, and the sequence information indication And selecting at least one candidate sequence of the reference signal; the selecting module 320, configured to select an actual time-frequency resource location from the candidate time-frequency resource locations acquired by the acquiring module 310, and select an actual sequence from the candidate sequences acquired by the obtaining module 310;
  • a generating module 330 configured to generate a first discovery reference signal
  • the sending module 340 is configured to send, by using the actual time-frequency resource location and the actual sequence selected by the selecting module 320, the first discovery reference signal generated by the generating module 330.
  • the time-frequency resource information indicates at least the first time-frequency resource location and the second time-frequency resource location of the discovery reference signal, and the minimum interval of the resource unit in the first time-frequency resource location and the second time-frequency resource location
  • the minimum interval of the resource unit is different, and/or the resource unit in the first time-frequency resource location partially overlaps the resource unit in the second time-frequency resource location; wherein, the resource unit is a sub-carrier, a resource block, a symbol, a sub- Frame or radio frame.
  • the determining module 350 is configured to determine a value of the first information, where the first information includes at least one of the following information: power level information of the cell, carrier type information, duplex mode information, random access configuration information, and The configuration information of the cell-specific reference signal CRS and the cell-specific reference signal CSI-RS;
  • the selecting module 320 is specifically configured to: determine an actual time-frequency resource location according to the value determined by the determining module 350 and the first correspondence, where the first correspondence The relationship includes: a correspondence between different values of the first information and different time-frequency resource locations; and/or, determining an actual sequence according to the determined value and the second correspondence, where the first correspondence includes: The corresponding values of different values and different sequences.
  • the selecting module 320 is further configured to: determine an actual scrambling code according to the value determined by the determining module 350 and the third correspondence, where the third correspondence includes: different values of the first information and different sequences used Corresponding relationship of scrambling code, the actual scrambling code is: the interference used in the actual sequence
  • the scrambling module 360 is configured to scramble the actual sequence using an actual scrambling code.
  • the power level information includes a switch information or a transmit power value of the cell.
  • the device for transmitting the reference signal may be used to perform the technical solution in the method embodiment shown in FIG. 1 by using the device of each function module, and may be based on the time-frequency resource information and sequence in the configuration information of the DRS.
  • the information is sent to the DRS.
  • the user equipment may determine the cell identity information corresponding to the currently detected cell by using the detected correspondence between the DRS and the cell identity information.
  • the user equipment may also perform the reference signal of the currently detected cell by using the detected DRS.
  • Receiving the quality measurement; the user equipment can also obtain the reference signal reception quality measurement result of the currently detected cell more accurately by using the power level information carried in the detected DRS.
  • the UE may be pre-defined or configured with a power ratio or a power offset value, so that the UE according to the DRS and the downlink The transmission power ratio of the data or the DRS and downlink data power offset values are used to obtain the transmission power of the uplink and downlink data of the current cell, and finally obtain an accurate RRM measurement value.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 4 is a schematic structural diagram of a device for detecting a reference signal according to Embodiment 4 of the present invention.
  • the device for detecting a reference signal provided by the present embodiment may be configured on a user equipment or a user equipment itself.
  • the method may include an obtaining module 410, a receiving module 420, and a processing module 430:
  • the obtaining module 410 is configured to acquire configuration information of the discovery reference signal, where the configuration information includes time-frequency resource information and sequence information of the discovery reference signal, where the time-frequency resource information indicates at least one candidate time-frequency resource location of the discovery reference signal, and the sequence information indication Obtaining at least one candidate sequence of the reference signal; the receiving module 420, configured to receive the first discovery reference signal sent by the base station;
  • the processing module 430 is configured to determine a candidate time-frequency resource location of the discovery reference signal according to the time-frequency resource information acquired by the obtaining module 410, determine a candidate sequence of the discovery reference signal according to the sequence information acquired by the obtaining module 410, and pass the candidate time
  • the candidate sequence of the discovery reference signal is detected at the frequency resource location, the actual time-frequency resource location of the first discovery reference signal received by the receiving module 420 is determined, and/or the actual sequence corresponding to the first discovery reference signal is determined.
  • the processing module 430 is configured to determine a candidate time-frequency resource location of the discovery reference signal according to the time-frequency resource information, and determine a candidate sequence of the discovery reference signal according to the sequence information, including: determining, according to the time-frequency resource information, the first time Frequency resource location and second time-frequency resource location, first time The frequency resource location and the second time-frequency resource location do not completely overlap; determining the first sequence and the second sequence according to the sequence information; the configuration information further includes a correspondence between the candidate time-frequency resource location and the candidate sequence; correspondingly, the processing module 430 is configured to: Detecting the candidate sequence of the discovery reference signal at the candidate time-frequency resource location, including: determining a candidate sequence corresponding to each candidate time-frequency resource location according to the correspondence, including the first time-frequency resource location corresponding to the first sequence, The second time-frequency resource location corresponds to the second sequence; the first sequence is detected at the first time-frequency resource location, and the second sequence is detected at the second time-frequency resource location.
  • the time-frequency resource information indicates at least the first time-frequency resource location and the second time-frequency resource location of the discovery reference signal, and the minimum interval of the resource unit in the first time-frequency resource location and the second time-frequency resource location
  • the minimum interval of the resource unit is different, and/or the resource unit in the first time-frequency resource location partially overlaps the resource unit in the second time-frequency resource location; wherein, the resource unit is a sub-carrier, a resource block, a symbol, a sub- Frame or radio frame.
  • the configuration information further includes the first information, and the first correspondence between the different values of the first information and the different time-frequency resource locations and/or different sequences, where the first information includes at least one of the following information: The power level information, the carrier type information, the duplex mode information, the random access configuration information, and the configuration information of the cell-specific reference signal CRS and the channel state information reference signal CSI-RS; the processing module 430 is further configured to: according to the determined actual time And determining, by the frequency resource location and the first correspondence, the value of the first information corresponding to the actual time-frequency resource location; and/or determining the first sequence corresponding to the actual sequence according to the determined actual sequence and the first correspondence relationship Information value.
  • the power level information includes a switch information or a transmit power value of the cell.
  • the configuration information further includes: finding a time-frequency resource location of the reference signal and/or a second correspondence between the sequence and the cell identity information; the processing module 430 is further configured to: determine, according to the determined actual time-frequency resource location and/or actual sequence And the second correspondence, determining cell identity information corresponding to the cell managed by the base station that sends the first discovery reference signal.
  • the configuration information further includes: a third correspondence between the different values of the first information and the second information, where the first information includes at least one of the following information: power level information of the cell, carrier type information, and dual The mode information, the random access configuration information, and the configuration information of the CRS and the CSI-RS, the second information includes one of the following information: a scrambling code and a time-frequency resource location, a scrambling code and a sequence, and a scrambling code and a time-frequency resource.
  • the first information includes at least one of the following information: power level information of the cell, carrier type information, and dual The mode information, the random access configuration information, and the configuration information of the CRS and the CSI-RS
  • the second information includes one of the following information: a scrambling code and a time-frequency resource location, a scrambling code and a sequence, and a scrambling code and a time-frequency resource.
  • the processing module 430 is further configured to: use the sequence according to the discovery reference signal
  • the scrambling code determines an actual scrambling code used by the actual sequence; determining, according to the determined actual scrambling code, the actual time-frequency resource location, and the third correspondence, the first information value corresponding to the actual scrambling code and the actual time-frequency resource location Or determining, according to the determined actual scrambling code, the actual sequence, and the third correspondence, determining the actual scrambling code and the first information corresponding to the actual sequence; or, according to the determined actual scrambling code, actual sequence, and actual time
  • the frequency resource location and the third correspondence relationship determine the value of the first information corresponding to the actual scrambling code, the actual sequence, and the actual time-frequency resource location.
  • the processing module 430 is further configured to: determine, by the cell in the on state, that the ratio of the received power of the discovery reference signal of the first cell to the total received power of the discovery reference signal of the cell that is in the on state determines the first cell.
  • the reference signal reception quality where the first cell is a cell under the jurisdiction of the base station that transmits the first discovery reference signal.
  • the processing module 430 is further configured to: determine, by using a ratio of a received power of the discovery reference signal of the first cell to a received power of other discovery reference signals other than the second discovery reference signal at the third time-frequency resource location a reference signal reception quality of a cell, where the first cell is a cell managed by a base station that transmits a first discovery reference signal; and the second discovery reference signal includes: a discovery reference of a cell other than the first cell in a closed state
  • the signal includes: a discovery reference signal of the cell in the closed state;
  • the third time-frequency resource location includes: an actual time-frequency resource location; or includes: a time-frequency resource location indicated by the base station, and a time-frequency resource location customized by the user equipment, Or a predefined time-frequency resource location.
  • the device for detecting the reference signal provided by the embodiment of the present invention may be configured to perform the technical solution described in the method embodiment of FIG. 2 by using the setting of the function module, and may be based on time-frequency resource information and sequence information in the configuration information of the DRS. Determining the DRS of each cell; determining the cell identification information corresponding to the currently detected 'j, zone' by using the detected correspondence between the DRS and the cell identity information; or performing the reference signal of the currently detected cell by using the detected DRS Receiving quality measurement; The reference signal receiving quality measurement result of the currently detected cell can be obtained more accurately by using the detected power level information in the DRS.
  • the method and device for transmitting and detecting a discovery reference signal may send or detect DRS of each cell according to time-frequency resource information and sequence information in the configuration information of the DRS;
  • the corresponding relationship between the detected DRS and the cell identification information determines the cell identification information corresponding to the currently detected cell;
  • the reference signal receiving quality measurement of the currently detected cell may also be performed by using the detected DRS; and may also be carried by the detected DRS. Power, etc.
  • the level information is more accurate to obtain the reference signal reception quality measurement result of the currently detected cell.
  • the method includes the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种发现参考信号的发送和检测方法及装置,发现参考信号的检测方法包括:用户设备获取发现参考信号的配置信息,配置信息包括发现参考信号的时频资源信息和序列信息;用户设备接收基站发送的第一发现参考信号,并根据时频资源信息确定发现参考信号的候选时频资源位置,根据序列信息确定发现参考信号的候选序列,并通过在候选时频资源位置上对发现参考信号的候选序列进行检测,确定第一发现参考信号的实际时频资源位置,和/或,确定第一发现参考信号对应的实际序列。本发明实施例提供的发现参考信号的发送和检测方法及装置,通过发现参考信号的配置信息中的时频资源信息和序列信息,可以对各小区的发现参考信号进行发送和检测。

Description

发现参考信号的发送和检测方法及装置
技术领域
本发明实施例涉及通信技术, 尤其涉及一种发现参考信号的发送和检测 方法及装置。 背景技术
当前的长期演进( Long Term Evolution, 以下简称 LTE ) 系统中, 用户 设备 (User Equipment, 以下简称 UE)通过检测演进型基站 (Evolved Node B , 以下简称 eNB)发送的主同步信号( Primary Synchronization Signal , 以下简称 PSS )和辅同步信号 (Secondary Synchronization Signal, 以下简称 SSS)与 eNB 进行同步并识别物理小区,之后读取 eNB发送的系统广播消息, 向 eNB发起 随机接入, 最终可以与 eNB建立无线资源控制 (Radio Resource Control, 以下 简称 RRC)连接并与 eNB进行数据通信。
处于 RRC连接态的 UE和处于 RRC空闲态的 UE都需要通过小区特定参 考信号( Cell-specific Reference Signal, 以下简称 CRS )做无线资源管理 (Radio Resource Management, 简称 RRM)的测量, 以保证 UE的移动性性能, 以便 能够做合适的小区切换、小区选择或小区重选。 当前 LTE系统中的 PSS, SSS 和 CRS等的发送周期比较短,发送周期通常都在 5ms左右, 即使没有需要服 务的 UE, eNB也要以该较短的发送周期发送上述同步信号和参考信号,这导 致 eNB的功率效率不是 4艮高。
业界提出了使用一种发现参考信号 (Discovery Reference Signal,以下简称 DRS)解决上述问题的思想。 基于上述 DRS, 基站可以关闭一段较长时间, 比 如基站的功率放大器可以长时间关闭, 相对于现有的 5 ms。 基站之所以可以 关闭较长时间, 是因为该 DRS即使在处于长时间关闭的状态下也需要发送, 以供 UE发现和 /或测量到该基站所辖的小区, 即该 DRS的周期较上述 CRS 等现有参考信号要长,比如周期为几百毫秒甚至几秒。虽然业界已有针对 DRS 的上述思想, 但尚无用于解决上述问题的 DRS具体发送和检测方案。 发明内容 本发明实施例提供一种发现参考信号的发送和检测方法及装置, 以实现 对发现参考信号的发送和检测。
第一方面, 本发明实施例提供一种发现参考信号的检测方法, 包括: 用户设备获取发现参考信号的配置信息, 所述配置信息包括发现参考信 号的时频资源信息和序列信息, 所述时频资源信息指示发现参考信号的至少 一种候选时频资源位置, 所述序列信息指示发现参考信号的至少一个候选序 列; 所述用户设备接收基站发送的第一发现参考信号; 所述用户设备根据所 述时频资源信息确定发现参考信号的候选时频资源位置, 根据所述序列信息 确定发现参考信号的候选序列, 并通过在所述候选时频资源位置上对发现参 考信号的候选序列进行检测, 确定所述第一发现参考信号的实际时频资源位 置, 和 /或, 确定所述第一发现参考信号对应的实际序列。
在第一方面的第一种可能的实现方式中, 所述根据所述时频资源信息确 定候选时频资源位置, 包括确定第一时频资源位置和第二时频资源位置, 所 述第一时频资源位置和第二时频资源位置不完全重叠; 所述根据序列信息确 定候选序列, 包括确定第一序列和第二序列; 所述配置信息还包括候选时频 资源位置和候选序列的对应关系; 对应地, 所述在所述候选时频资源位置上 对所述发现参考信号的候选序列进行检测之前, 包括: 根据所述对应关系确 定每个候选时频资源位置对应的候选序列, 包括第一时频资源位置对应第一 序列, 第二时频资源位置对应第二序列; 所述在所述候选时频资源位置上对 所述发现参考信号的候选序列进行检测包括: 在第一时频资源位置上检测第 一序列, 以及在第二时频资源位置上检测第二序列。
根据第一方面或第一方面的第一种可能的实现方式, 在第一方面的第二 种可能的实现方式中, 所述时频资源信息至少指示发现参考信号的第一时频 资源位置和第二时频资源位置, 且所述第一时频资源位置中的资源单元的最 小间隔与所述第二时频资源位置中的资源单元的最小间隔不相同, 和 /或, 所 述第一时频资源位置中的资源单元与所述第二时频资源位置中的资源单元部 分重叠; 其中, 所述资源单元是子载波、 资源块、 符号、 子帧或无线帧。
根据第一方面或第一方面的前两种可能的实现方式之一, 在第一方面的 第三种可能的实现方式中, 所述配置信息还包括第一信息, 以及所述第一信 息的不同取值与不同时频资源位置和 /或不同序列的第一对应关系, 所述第 ― 信息包括如下信息中的至少一种: 小区的功率等级信息、 载波类型信息、 双 工模式信息、 随机接入配置信息和小区特定参考信号 CRS和信道状态信息参 考信号 CSI-RS的配置信息; 该方法进一步包括: 根据所确定的实际时频资源 位置以及所述第一对应关系, 确定所述实际时频资源位置所对应的第一信息 取值; 和 /或, 根据所确定的实际序列以及所述第一对应关系, 确定所述实际 序列所对应的第一信息取值。
根据第一方面的第三种可能的实现方式, 在第一方面的第四种可能的实 现方式中, 所述功率等级信息包括所述小区的开关信息或发送功率值。
根据第一方面或第一方面的前四种可能的实现方式之一, 在第一方面的 第五种可能的实现方式中, 所述配置信息进一步包括发现参考信号的时频资 源位置和 /或序列和小区标识信息的第二对应关系; 该方法进一步包括: 根据 所确定的实际时频资源位置和 /或实际序列, 以及所述第二对应关系, 确定发 送所述第一发现参考信号的基站所辖的小区所对应的小区标识信息。
根据第一方面或第一方面的前四种可能的实现方式之一, 在第一方面的 第六种可能的实现方式中, 所述配置信息进一步包括: 第一信息的不同取值 和第二信息的第三对应关系, 其中, 所述第一信息包括如下信息中的至少一 种: 小区的功率等级信息、 载波类型信息、 双工模式信息、 随机接入配置信 息和 CRS和 CSI-RS的配置信息, 所述第二信息包括如下信息中的一种: 扰 码与时频资源位置, 4尤码与序列, 以及 ·ί尤码与时频资源位置以及序列, 其中, 所述扰码为发现参考信号的序列所使用的扰码; 该方法进一步包括: 根据所 根据所确定的实际扰码、 实际时频资源位置以及所述第三对应关系, 确定所 述实际扰码和实际时频资源位置所对应的第一信息取值; 或者, 根据所确定 的实际扰码、 实际序列以及所述第三对应关系, 确定所述实际扰码和实际序 列所对应的第一信息取值; 或者, 根据所确定的实际扰码、 实际序列和实际 时频资源位置, 以及所述第三对应关系, 确定所述实际扰码、 实际序列和实 际时频资源位置所对应的第一信息取值。
根据第一方面或第一方面的前六种可能的实现方式之一, 在第一方面的 第七种可能的实现方式中, 该方法还包括: 确定处于开启状态的小区, 通过 第一小区的发现参考信号的接收功率与所述处于开启状态的小区的发现参考 信号的总接收功率的比值, 确定所述第一小区的参考信号接收质量, 其中, 所述第一小区为发送所述第一发现参考信号的基站所辖的小区。
根据第一方面或第一方面的前六种可能的实现方式之一, 在第一方面的 第八种可能的实现方式中, 该方法还包括: 通过第一小区的发现参考信号的 接收功率与第三时频资源位置上除第二发现参考信号之外的其他发现参考信 号的接收功率的比值, 确定所述第一小区的参考信号接收质量, 其中, 所述 第一小区为发送所述第一发现参考信号的基站所辖的小区; 所述第二发现参 考信号包括: 除所述第一小区之外的其他处于关闭状态的小区的发现参考信 号, 或者包括: 处于关闭状态的小区的发现参考信号; 所述第三时频资源位 置包括: 所述实际时频资源位置; 或者包括: 所述基站指示的时频资源位置, 所述用户设备自定的时频资源位置, 或预定义的时频资源位置。
第二方面, 本发明实施例提供一种发现参考信号的发送方法, 包括: 网络侧设备获取发现参考信号的配置信息, 所述配置信息包括发现参考 信号的时频资源信息和序列信息, 所述时频资源信息指示发现参考信号的至 少一种候选时频资源位置, 所述序列信息指示发现参考信号的至少一个候选 序列; 所述网络侧设备从所述候选时频资源位置中选择一个实际时频资源位 置, 并从所述候选序列中选择一个实际序列; 所述网络侧设备生成第一发现 参考信号, 并通过所述实际时频资源位置和实际序列发送所述第一发现参考 信号。
在第二方面的第一种可能的实现方式中, 所述时频资源信息至少指示发 现参考信号的第一时频资源位置和第二时频资源位置, 且所述第一时频资源 位置中的资源单元的最小间隔与所述第二时频资源位置中的资源单元的最小 间隔不相同, 和 /或, 所述第一时频资源位置中的资源单元与所述第二时频资 源位置中的资源单元部分重叠; 其中, 所述资源单元是子载波、 资源块、 符 号、 子帧或无线帧。
根据第二方面或者第二方面的第一种可能的实现方式, 在第二方面的第 二种可能的实现方式中, 该方法还包括: 所述网络侧设备确定第一信息的取 值, 所述第一信息包括如下信息中的至少一种: 小区的功率等级信息、 载波 类型信息、 双工模式信息、 随机接入配置信息和小区特定参考信号 CRS和小 区特定参考信号 CSI-RS的配置信息;所述网络侧设备从所述候选时频资源位 置中选择一个实际时频资源位置, 包括: 根据所确定的取值以及第一对应关 系确定所述实际时频资源位置, 其中, 所述第一对应关系包括: 所述第一信 息的不同取值与不同时频资源位置的对应关系; 和 /或, 所述网络侧设备从所 述候选序列中选择一个实际序列, 包括: 根据所确定的取值以及第二对应关 系确定所述实际序列, 其中, 所述第一对应关系包括: 所述第一信息的不同 取值与不同序列的对应关系。
根据第二方面的第二种可能的实现方式, 在第二方面的第三种可能的实 现方式中, 该方法还包括: 根据所确定的取值以及第三对应关系确定实际扰 码, 其中, 所述第三对应关系包括: 所述第一信息的不同取值与不同序列所 使用的扰码的对应关系, 所述实际扰码为: 所述实际序列所使用的扰码; 使 用所述实际扰码对所述实际序列进行加扰。
根据第二方面的第二或第三种可能的实现方式, 在第二方面的第四种可 能的实现方式中,所述功率等级信息包括所述小区的开关信息或发送功率值。
第三方面, 本发明实施例提供一种发现参考信号检测装置, 所述发现参 考信号检测装置为用户设备, 包括: 获取模块, 用于获取发现参考信号的配 置信息, 所述配置信息包括发现参考信号的时频资源信息和序列信息, 所述 时频资源信息指示发现参考信号的至少一种候选时频资源位置, 所述序列信 息指示发现参考信号的至少一个候选序列; 接收模块, 用于接收基站发送的 第一发现参考信号; 处理模块, 用于根据所述获取模块所获取的所述时频资 源信息确定发现参考信号的候选时频资源位置, 根据所述获取模块所获取的 所述序列信息确定发现参考信号的候选序列, 并通过在所述候选时频资源位 置上对发现参考信号的候选序列进行检测, 确定所述接收模块接收的所述第 一发现参考信号的实际时频资源位置, 和 /或, 确定所述第一发现参考信号对 应的实际序列。
在第三方面的第一种可能的实现方式中, 所述处理模块用于根据所述时 频资源信息确定发现参考信号的候选时频资源位置, 根据所述序列信息确定 发现参考信号的候选序列, 包括: 根据所述时频资源信息确定第一时频资源 位置和第二时频资源位置, 所述第一时频资源位置和第二时频资源位置不完 全重叠; 根据所述序列信息确定第一序列和第二序列; 所述配置信息还包括 候选时频资源位置和候选序列的对应关系; 对应地, 所述处理模块用于在所 述候选时频资源位置上对发现参考信号的候选序列进行检测, 包括: 根据所 述对应关系确定每个候选时频资源位置对应的候选序列, 包括第一时频资源 位置对应第一序列, 第二时频资源位置对应第二序列; 在第一时频资源位置 上检测第一序列, 以及在第二时频资源位置上检测第二序列。
根据第三方面或第三方面的第一种可能的实现方式, 在第三方面的第二 种可能的实现方式中, 所述时频资源信息至少指示发现参考信号的第一时频 资源位置和第二时频资源位置, 且所述第一时频资源位置中的资源单元的最 小间隔与所述第二时频资源位置中的资源单元的最小间隔不相同, 和 /或, 所 述第一时频资源位置中的资源单元与所述第二时频资源位置中的资源单元部 分重叠; 其中, 所述资源单元是子载波、 资源块、 符号、 子帧或无线帧。
根据第三方面或第三方面的前两种可能的实现方式之一, 在第三方面的 第三种可能的实现方式中, 所述配置信息还包括第一信息, 以及所述第一信 息的不同取值与不同时频资源位置和 /或不同序列的第一对应关系, 所述第 ― 信息包括如下信息中的至少一种: 小区的功率等级信息、 载波类型信息、 双 工模式信息、 随机接入配置信息和小区特定参考信号 CRS和信道状态信息参 考信号 CSI-RS的配置信息; 所述处理模块还用于: 根据所确定的实际时频资 源位置以及所述第一对应关系, 确定所述实际时频资源位置所对应的第一信 息取值; 和 /或, 根据所确定的实际序列以及所述第一对应关系, 确定所述实 际序列所对应的第一信息取值。
根据第三方面的第三种可能的实现方式, 在第三方面的第四种可能的实 现方式中, 所述功率等级信息包括所述小区的开关信息或发送功率值。
根据第三方面或第三方面的前四种可能的实现方式之一, 在第三方面的 第五种可能的实现方式中, 所述配置信息进一步包括发现参考信号的时频资 源位置和 /或序列和小区标识信息的第二对应关系; 所述处理模块还用于: 根 据所确定的实际时频资源位置和 /或实际序列, 以及所述第二对应关系, 确定 发送所述第一发现参考信号的基站所辖的小区所对应的小区标识信息。
根据第三方面或第三方面的前四种可能的实现方式之一, 在第三方面的 第六种可能的实现方式中, 所述配置信息进一步包括: 第一信息的不同取值 和第二信息的第三对应关系, 其中, 所述第一信息包括如下信息中的至少一 种: 小区的功率等级信息、 载波类型信息、 双工模式信息、 随机接入配置信 息和 CRS和 CSI-RS的配置信息, 所述第二信息包括如下信息中的一种: 扰 码与时频资源位置, 4尤码与序列, 以及 ·ί尤码与时频资源位置以及序列, 其中, 所述扰码为发现参考信号的序列所使用的扰码; 所述处理模块还用于: 根据 码; 根据所确定的实际扰码、 实际时频资源位置以及所述第三对应关系, 确 定所述实际扰码和实际时频资源位置所对应的第一信息取值; 或者, 根据所 确定的实际扰码、 实际序列以及所述第三对应关系, 确定所述实际扰码和实 际序列所对应的第一信息取值; 或者, 根据所确定的实际扰码、 实际序列和 实际时频资源位置, 以及所述第三对应关系, 确定所述实际扰码、 实际序列 和实际时频资源位置所对应的第一信息取值。
根据第三方面或第三方面的前六种可能的实现方式之一, 在第三方面的 第七种可能的实现方式中, 所述处理模块还用于: 确定处于开启状态的小区, 通过第一小区的发现参考信号的接收功率与所述处于开启状态的小区的发现 参考信号的总接收功率的比值, 确定所述第一小区的参考信号接收质量, 其 中, 所述第一小区为发送所述第一发现参考信号的基站所辖的小区。
根据第三方面或第三方面的前六种可能的实现方式之一, 在第三方面的 第八种可能的实现方式中, 所述处理模块还用于: 通过第一小区的发现参考 信号的接收功率与第三时频资源位置上除第二发现参考信号之外的其他发现 参考信号的接收功率的比值, 确定所述第一小区的参考信号接收质量, 其中, 所述第一小区为发送所述第一发现参考信号的基站所辖的小区; 所述第二发 现参考信号包括: 除所述第一小区之外的其他处于关闭状态的小区的发现参 考信号, 或者包括: 处于关闭状态的小区的发现参考信号; 所述第三时频资 源位置包括: 所述实际时频资源位置; 或者包括: 所述基站指示的时频资源 位置, 所述用户设备自定的时频资源位置, 或预定义的时频资源位置。
第四方面, 本发明实施例提供一种发现参考信号的发送装置, 所述发现 参考信号的发送装置为网络侧设备, 包括: 获取模块, 用于获取发现参考信 号的配置信息,所述配置信息包括发现参考信号的时频资源信息和序列信息, 所述时频资源信息指示发现参考信号的至少一种候选时频资源位置, 所述序 列信息指示发现参考信号的至少一个候选序列; 选择模块, 用于从所述获取 模块获取的所述候选时频资源位置中选择一个实际时频资源位置, 并从所述 获取模块获取的所述候选序列中选择一个实际序列; 生成模块, 用于生成第 一发现参考信号; 发送模块, 用于通过所述选择模块选择的所述实际时频资 源位置和实际序列, 发送所述生成模块生成的所述第一发现参考信号。
在第四方面的第一种可能的实现方式中, 所述时频资源信息至少指示发 现参考信号的第一时频资源位置和第二时频资源位置, 且所述第一时频资源 位置中的资源单元的最小间隔与所述第二时频资源位置中的资源单元的最小 间隔不相同, 和 /或, 所述第一时频资源位置中的资源单元与所述第二时频资 源位置中的资源单元部分重叠; 其中, 所述资源单元是子载波、 资源块、 符 号、 子帧或无线帧。
根据第四方面或者第四方面的第一种可能的实现方式, 在第四方面的第 二种可能的实现方式中, 还包括: 确定模块, 用于确定第一信息的取值, 所 述第一信息包括如下信息中的至少一种: 小区的功率等级信息、 载波类型信 息、 双工模式信息、 随机接入配置信息和小区特定参考信号 CRS和小区特定 参考信号 CSI-RS的配置信息; 所述选择模块具体用于: 根据所述确定模块所 确定的取值以及第一对应关系确定所述实际时频资源位置, 其中, 所述第一 对应关系包括: 所述第一信息的不同取值与不同时频资源位置的对应关系; 和 /或, 根据所确定的取值以及第二对应关系确定所述实际序列, 其中, 所述 第一对应关系包括: 所述第一信息的不同取值与不同序列的对应关系。
根据第四方面的第二种可能的实现方式, 在第四方面的第三种可能的实 现方式中, 所述选择模块还用于: 根据所述确定模块所确定的取值以及第三 对应关系确定实际扰码, 其中, 所述第三对应关系包括: 所述第一信息的不 同取值与不同序列所使用的扰码的对应关系, 所述实际扰码为: 所述实际序 列所使用的扰码; 还包括: 加扰模块, 用于使用所述实际扰码对所述实际序 列进行加扰。
根据第四方面的第二或第三种可能的实现方式, 在第四方面的第四种可 能的实现方式中,所述功率等级信息包括所述小区的开关信息或发送功率值。
本发明实施例提供的发现参考信号的发送和检测方法及装置, 可以完成 对发现参考信号的发送, 以及通过获取发现参考信号的配置信息中的时频资 源信息和序列信息, 可以对各小区的发现参考信号进行检测。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例一提供的发现参考信号的发送方法的流程图; 图 2为本发明实施例二提供的发现参考信号的检测方法的流程图; 图 3为本发明实施例三提供的发现参考信号的发送装置的结构示意图; 图 4为本发明实施例四提供的发现参考信号的检测装置的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
实施例一:
图 1为本发明实施例一提供的发现参考信号的发送方法的流程图, 如图 1 所示, 本实施例中的发现参考信号的发送方法以网络侧设备中配置的发现 参考信号发送装置为执行主体, 该方法可以包括:
S110、 网络侧设备获取发现参考信号的配置信息, 配置信息包括发现参 考信号的时频资源信息和序列信息, 时频资源信息指示发现参考信号的至少 一种候选时频资源位置, 序列信息指示发现参考信号的至少一个候选序列。
详细而言,网络侧设备可以是基站,基站可以通过预配置的方式获取 DRS 的配置信息, DRS的配置信息中包括 DRS的时频资源信息和 DRS的序列信 息。 时频资源信息可以指示 DRS的多种候选时频资源位置, 序列信息可以指 示 DRS的多个候选序列。其中, DRS的多种候选时频资源位置可以为时域上 的帧, 子帧, 时隙或符号, 和频域上的频带, 资源块, 资源单元等; DRS的 多个候选序列可以釆用伪随机序列, 比如 Gold 序列等, 或者可以釆用 Zadoff-Chu序列 , 比如 CAZAC序列等。 本发明实施例对 DRS的序列形式不 做限制。
S120、 网络侧设备从候选时频资源位置中选择一个实际时频资源位置, 并从候选序列中选择一个实际序列。 即网络侧设备可以选择需要的实际时频 资源位置以及实际序列。
S130、 网络侧设备生成第一发现参考信号, 并通过实际时频资源位置和 实际序列发送第一发现参考信号。 换言之, 网络侧设备生成需要发送的第一 发现参考信号, 并在所选择的实际时频资源位置上和所选择的实际序列上发 送该第一发现参考信号。
通常 DRS的发送周期较长, 例如发送周期为 500ms, 则用户设备不需要 每个子帧都对 DRS进行检测。 对于 RRC连接态的用户设备, 基站可以通过 RRC信令为该用户设备配置相邻小区的 DRS的检测时刻,比如在模 500等于 0的时刻来检测 DRS , 即从起始时刻开始, 没 500帧检测一次 DRS , 而在每 一次检测时, 可以依据上述时频资源位置, 比如子帧, 时隙或符号, 和频带, 资源块或资源单元等来检测 DRS;对于 RRC空闲态用户设备,基站可以釆用 小区广播信令来通知用户设备当前服务小区和 /或相邻小区的 DRS检测时刻; 或者,釆用预定义的方式,比如在各小区的帧号同步的情况下,各小区的 DRS 发送时刻可以为模 500等于 0的时刻, 且发送周期也是一定的, 比如 500ms, 那么可以将用户设备检测各小区的 DRS 的时刻和周期预定义为与各小区的 DRS发送时刻和周期同步。本发明实施例对于 DRS的配置信息的发送和配置 方式不做限制, 配置检测 DRS的时刻和 /或周期的方式也不以此为限。
本实施例提供的 DRS的发送方法, 基站通过从 DRS的配置信息中指示 的候选时频资源信息和候选的序列信息中选择的实际时频资源和实际序列来 发送 DRS , 可以使用户设备对各小区的 DRS进行检测。
进一步地, 时频资源信息至少指示发现参考信号的第一时频资源位置和 第二时频资源位置, 且第一时频资源位置中的资源单元的最小间隔与第二时 频资源位置中的资源单元的最小间隔不相同, 和 /或, 第一时频资源位置中的 资源单元与第二时频资源位置中的资源单元部分重叠; 其中, 资源单元是子 载波、 资源块、 符号、 子帧或无线帧。 也就是说, 多种时频资源位置所占用 的资源单元可以釆用部分重叠的划分方式, 例如下述实施方式 A和实施方式 B:
实施方式 A: 第一时频资源位置占用一个物理资源块内的一个正交频分 复用 ( Orthogonal Frequency Division Multiplexing , 以下简称 OFDM )符号上 的资源单元 0和 1 , 第二时频资源位置占用该物理资源块内的该 OFDM符号 上的资源单元 0和 2, 第三时频资源位置则占用该物理资源块内的该 OFDM 符号上的资源单元 1和 2。
实施方式 B: 第一时频资源位置占用一个子帧内的 OFDM符号 0和 1 , 第二时频资源位置占用该子帧内的 OFDM符号 0和 2, 第三时频资源位置则 占用该子帧内的 OFDM符号 1和 2。
多种时频资源位置占用的资源单元的部分重叠划分方式也可以结合实施 方式 A和 B,即不同的时频资源位置既在子帧内的符号上釆用部分重叠划分, 又在符号上的资源单元上釆用部分重叠的划分方式, 本发明实施例不以此为 限。
上述多种时频资源位置占用的资源单元的部分重叠划分方式, 通过不同 DRS的资源部分重叠可以使 DRS的时频资源复用率增加,还可以规避多种时 频资源位置的完全重叠, 从而在检测 DRS的过程中起到干扰随机化的作用, 还可以在存在开启和关闭小区的场景下通过部分重叠资源设计来提高无线资 源管理测量的精确性。
进一步地, 该方法还包括: 网络侧设备确定第一信息的取值, 第一信息 包括如下信息中的至少一种: 小区的功率等级信息、 载波类型信息、 双工模 式信息、 随机接入配置信息和小区特定参考信号 CRS和小区特定参考信号信 道状态信息参考信号 ( Channel State Information-Reference Signal, 以下简称 CSI-RS ) 的配置信息; 网络侧设备从候选时频资源位置中选择一个实际时频 资源位置, 包括: 根据所确定的取值以及第一对应关系确定实际时频资源位 置, 其中, 第一对应关系包括: 第一信息的不同取值与不同时频资源位置的 对应关系; 和 /或, 网络侧设备从候选序列中选择一个实际序列, 包括: 根据 所确定的取值以及第二对应关系确定实际序列, 其中, 第一对应关系包括: 第一信息的不同取值与不同序列的对应关系。
进一步地, 该方法还包括: 根据所确定的取值以及第三对应关系确定实 际扰码, 其中, 第三对应关系包括: 第一信息的不同取值与不同序列所使用 的扰码的对应关系, 实际扰码为: 实际序列所使用的扰码; 使用实际扰码对 实际序列进行加扰。
进一步地, 功率等级信息包括小区的开关信息或发送功率值。
详细而言, 载波类型信息可以指示载波为后向兼容的载波和非后向兼容 的新载波; 双工模式信息可以包括频分双工 (Frequency Division Duplexing, 以下简称 FDD )和时分双工 (Time Division Duplexing, 以下简称 TDD ) ; 随机接入配置信息包括物理随机接入信道的前导序列信息和 /或时频资源信 息, 该前导序列信息可以包括根序列索引, 循环前缀等; CRS和 CSI-RS配 置信息包括 CRS和 CSI-RS的多种时频资源配置, 还可以是 CRS和 CSI-RS 的资源配置组合; 该小区是否可以被 UE发送的信令触发开启的信息表示 UE 获取了该信息后, 可以确定当前这个配置信息对应的小区能否被自己发送的 信号来触发开启, 关闭或调整该小区的发送功率。 所以, 相同的小区也可以 对应不同的配置信息, 那么该不同的配置信息就可以携带上述一些该小区的 其他信息。
功率等级信息可以包括小区的开关信息或发送功率值。 具体地, 可以用 零功率信息和非零功率信息分别表示小区处于关闭状态和开启状态; 发送功 率值则可以釆用多种功率等级, 比如高, 中, 低来表示, 还可以釆用具体的 功率数值, 比如 10瓦, 5瓦, 1瓦或 0瓦等来表示, 其他类似与功率相关的 状态和功率值也不排除。
功率等级信息可以通过 DRS的序列、 序列对应的 4尤码、 时频资源位置信 息和时频资源信息与序列信息的组合关系等信息中的至少一种进行携带。 以 序列携带开关信息为例, 殳 DRS序列 1和 DRS序列 2同时对应当前小区, 那么如果 UE检测到 DRS序列 1 , 可以认为该当前小区是开启状态, 那么该 UE就可以去接收当前小区的其他配置信息, 比如广播信息等, 来驻留到当前 小区或在当前小区上进行正常的数据传输; 如果 UE检测到 DRS序列 2, 就 会认为当前小区处于关闭状态, 那么该 UE可以不选择当前小区来驻留或接 入, 而去试图驻留或接入到其他开启的小区上; 或者, UE也可以发送信令来 触发当前小区进行开启, 比如用与当前小区发送的 DRS序列 2对应的上行发 送序列来进行触发。 再或者, 用户设备如果通过检测当前已驻留或已接入小 区的 DRS中携带的小区的开关信息,发现当前已接入小区的状态由开启转为 关闭, 则该用户设备可以启动小区重选过程或切换过程, 或该用户设备可以 触发相邻小区的测量并驻留或接入相邻小区,来尽快实行小区重选或切换等。 这样, 通过 UE检测 DRS发现当前所检测小区的开关或功率等级, 可以快速 获取当前所检测小区的信息, 进而进行相应的移动性流程, 比如及时的小区 重选或切换等, 提高了 UE的移动性性能。
相应地,基站通过调整 DRS配置信息把当前小区由开启状态变为关闭状 态时, 该基站会延迟一段时间间隔, 之后才把当前小区关闭, 当前其他状态 变化类似处理。 这样, 在这段时间间隔内, 可以保证驻留或接入在该基站下 面的 UE有足够的时间进行及时的小区重选或切换, 不至于由于基站突然关 闭或降低功率而导致的 UE移动性性能下降, 比如来不及重选到合适的小区 上驻留或来不及切换到合适的小区上。 具体地, 如果基站不给出这个关闭前 的时间间隔, UE很可能在重选或切换过程中漏检寻呼消息, 导致 UE感受下 降。
用户设备还可以通过对基站发送的 DRS中携带的发送功率值的检测,获 知自身距离基站的路径损耗值, 具体的, 用户设备可以根据 DRS中携带的发 送功率值与该 DRS的接收功率值的差值, 获知路径损耗值。 UE还可以将该 路径损耗值上报给基站, 供基站来调整向该用户设备发送 DRS的发送功率。 这样,可以优化 UE和基站的发送功率,使得 UE使用适当的功率发送信息而 不会对周边造成大的上行干扰, 还可以使得基站釆用适当的功率给 UE进行 发送信息, 不会对周边造成大的下行干扰。
进一步地, 配置信息包括发现参考信号和小区标识信息的对应关系, 以 使用户设备根据检测到的发现参考信号和对应关系, 确定当前所检测小区对 应的小区标识信息。
DRS的一种配置信息可以对应一个物理小区标识,可以为 DRS的时频资 源位置和 /或序列对应该物理小区标识。例如,如果需要区分 504种物理小区, 那么一个方法是用 504个 DRS序列分别对应 504个物理小区标识,另一种方 法可以是两个 DRS的时频资源位置与每个时频资源位置上的 252个 DRS序 列组合后分别对应 504个物理小区标识,还有一种方法可以是 2个主 DRS序 中的 DRS可以包括多种时频资源位置和多种序列,所以能够标识多于 504种 的物理小区, 标识物理小区的方式不以此为限。
DRS的多种配置信息可以对应一个物理小区标识,可以为 DRS的时频资 源位置和 /或序列对应该物理小区标识。 例如, 可以使用两个 DRS 序列对应 一个物理小区标识;也可以使用一个 DRS序列的两种加 4尤方式对应一个物理 小区标识; 也可以使用不同排列方式的 DRS序列对应一个物理小区标识; 还 可以使用不同时频资源位置对应一个物理小区标识等等。上述 DRS的多种配 置信息对应一个物理小区标识的情况下, 以 DRS的两种配置信息对应一个物 理小区标识为例,该 DRS的两种配置信息可以分别用于标识当前物理小区的 基站的开关信息和发送功率值等信息。
进一步地, 配置信息还包括时频资源信息和序列信息的组合关系。
上述方案中, 所谓时频资源信息和序列信息的组合关系, 也能构成与具 体内容对应的一个因素。 即, 不仅以不同序列对应不同的内容, 还以设定时 频资源信息和序列信息的组合对应不同的内容。 例如, 在不同时频资源位置 对应的相同序列可对应不同的小区标识。
具体而言, 如果 DRS的时频资源信息中只包括一种时频资源位置, 该组 合关系可以是: 所有小区的 DRS序列都映射到这种资源位置上, 即一种资源 位置与不同的 DRS序列进行组合; 如果 DRS的时频资源信息中包括多于一 种的时频资源位置, 第一种时频资源位置可以与第一 DRS序列组合, 第二种 时频资源位置可以与第二 DRS序列组合,其中第一种时频资源位置和第二种 时频资源位置是不同的, 但第一 DRS序列和第二 DRS序列可以相同也可以 不同。
进一步地, 序列信息还包括序列对应的扰码。 详细而言, DRS的序列信 息还可以包括对 DRS序列的多种扰码,扰码可以对 DRS序列进行加扰处理, 该加扰处理可以釆用异或方式或其他方式, 该扰码可以由小区标识作为参数 而生成。 一个序列的不同加扰方式也可以对应不同的信息内容。
进一步地, 时频资源信息包括一种时频资源位置, 且时频资源位置是设 定的无线帧标号、 子帧标号、 符号标号、 子载波标号或资源块标号。 换言之, DRS在无线帧或子帧中的位置可以是固定的, 比如固定的帧, 子帧, 时隙或 OFDM符号; 且频域位置也可以是固定的, 比如固定的物理资源块上固定的 资源单元。 以发送一次 DRS 占用一个子帧为例, 该 DRS可以占用一个子帧 内的固定位置, 比如是一个子帧内的第 1 , 3 , 5, 7这四个 OFDM符号上的 固定的资源单元; 以发送一次 DRS 占用一个无线帧中的两个子帧为例, 该 DRS可以占用这两个子帧内的固定位置, 比如分别占用第一个子帧的第 1和 20FDM符号上的固定的资源单元,以及第二个子帧的第 3和 40FDM符号上 的固定的资源单元。本发明实施例对时频资源位置具体设定的位置不做限制。
如果 DRS的时频资源信息包括两种或两种以上的时频资源位置,那么多 种时频资源位置对应的 DRS可以对应多个小区, 也可以对应同一' 区。 多种 时频资源位置可以为一个 OFDM符号上的多种资源单元的组合, 比如第一时 频资源位置为一个物理资源块内的一个 OFDM符号上的奇数资源单元, 第二 时频资源位置为该物理资源块内的该 OFDM符号上的偶数资源单元。
本发明实施例提供的发现参考信号的发送方法,可以根据 DRS的配置信 息中的时频资源信息和序列信息, 发送 DRS; 可以使用户设备通过检测到的 DRS和小区标识信息的对应关系确定当前所检测小区对应的小区标识信息; 也可以使用户设备通过检测到的 DRS进行当前所检测小区的参考信号接收质 量测量; 还可以使用户设备通过检测到的 DRS中携带的功率等级信息, 更为 准确的获得当前所检测小区的参考信号接收质量测量结果。
实施例二:
图 2为本发明实施例二提供的发现参考信号的检测方法的流程图, 如图 2 所示, 本实施例中的发现参考信号的检测方法以用户设备中配置的发现参 考信号检测装置为执行主体, 该方法可以包括:
S210、 用户设备获取发现参考信号的配置信息, 配置信息包括发现参考 信号的时频资源信息和序列信息, 时频资源信息指示发现参考信号的至少一 种候选时频资源位置, 序列信息指示发现参考信号的至少一个候选序列。
用户设备例如移动电话或平板电脑等, 可以通过预配置的方式获取 DRS 的配置信息,也可以通过 RRC信令、小区广播信令或切换命令从基站处获取。 DRS可以有多种, 不同 DRS可以对应不同的配置信息。 DRS的配置信息中 包括 DRS的时频资源信息和 DRS的序列信息。 因此, 该配置信息还可以理 解为 DRS的发送参数, 比如发送 DRS所釆用的序列和时频资源信息等。 其 中, DRS 的时频资源信息可以用于指示 DRS 的一种或多种候选时频资源位 置, 候选时频资源位置可以表示时域上的帧, 子帧, 时隙和符号中的至少一 种, 和频域上的频带, 资源块, 资源单元中的至少一种等; DRS的序列信息 可以用于指示 DRS的至少一个候选序列, DRS的候选序列可以釆用伪随机序 歹 ij , 比如 Gold序列等,或者可以釆用 Zadoff-Chu序列,比如 CAZAC序列等。 本发明实施例对 DRS的序列形式不做限制。
S220、 用户设备接收基站发送的第一发现参考信号。
通常 DRS的发送周期较长, 例如发送周期为 500ms, 则用户设备不需要 每个子帧都对 DRS进行检测。 对于 RRC连接态的用户设备, 可以通过 RRC 信令为该用户设备配置当前服务小区或相邻小区的 DRS的检测时刻, 比如在 模 500等于 0的时刻来检测 DRS ,即从起始时刻开始 ,每 500帧检测一次 DRS , 而在每一次检测时, 可以依据上述时频资源位置, 比如子帧, 时隙或符号, 和频带, 资源块或资源单元等来检测 DRS; 对于 RRC空闲态用户设备, 可以 釆用小区广播信令来通知用户设备当前服务小区和 /或相邻小区的 DRS检测 时刻; 或者, 釆用预定义的方式, 比如在各小区的帧号同步的情况下, 各小 区的 DRS发送时刻可以为模 500等于 0的时刻, 且发送周期也是一定的, 比 如 500ms, 那么可以将用户设备检测各小区的 DRS的时刻和周期预定义为与 各小区的 DRS发送时刻和周期同步。 本发明实施例对于 DRS的配置信息的 发送和配置方式不做限制, 配置检测 DRS 的时刻和 /或周期的方式也不以此 为限。
S230、 用户设备根据时频资源信息确定发现参考信号的候选时频资源位 置, 根据序列信息确定发现参考信号的候选序列, 并通过在候选时频资源位 置上对发现参考信号的候选序列进行检测, 确定第一发现参考信号的实际时 频资源位置, 和 /或, 确定第一发现参考信号对应的实际序列。
用户设备可以通过从 DRS的配置信息中获知的时频资源信息包括的时频 资源位置, 以及序列信息中包括的序列, 对 DRS进行检测。 因为 DRS包括 时频资源位置和序列这两个信息, 因此, 在确定时频资源位置和序列之后, 即可确定检测出 DRS。
由于针对第一发现参考信号的实际时频资源位置可以是固定的, 也即已 知的, 因此, 通过在时频资源位置上对发现参考信号的序列进行检测, 可以 只需要确定实际序列。 对于只确定实际时频资源位置的情况类似, 不再赘述。 当然, 也可以通过在时频资源位置上对发现参考信号的序列进行检测, 确定 实际时频资源位置和实际序列。
检测到 DRS之后, 就可以确定该 DRS对应的小区标识。 例如, 不同的 序列可以对应不同的小区标识。
本实施例提供的 DRS的检测方法, 用户设备通过获取 DRS的配置信息 中的时频资源信息和序列信息, 可以对各小区的 DRS进行检测。
进一步地, 根据时频资源信息确定候选时频资源位置, 包括确定第一时 频资源位置和第二时频资源位置, 第一时频资源位置和第二时频资源位置不 完全重叠; 根据序列信息确定候选序列, 包括确定第一序列和第二序列; 第 一序列可以相同也可以不同; 配置信息还包括候选时频资源位置和候选序列 的对应关系; 对应地, 在候选时频资源位置上对发现参考信号的候选序列进 行检测之前, 包括: 根据对应关系确定每个候选时频资源位置对应的候选序 歹 ij , 包括第一时频资源位置对应第一序列, 第二时频资源位置对应第二序列; 在候选时频资源位置上对发现参考信号的候选序列进行检测包括: 在第一时 频资源位置上检测第一序列, 以及在第二时频资源位置上检测第二序列。
进一步地, 配置信息还包括时频资源信息和序列信息的组合关系; 对应 地, 根据配置信息检测发现参考信号包括: 根据时频资源信息、 序列信息以 及组合关系检测发现参考信号。
上述方案中, 所谓时频资源信息和序列信息的组合关系, 也能构成与具 体内容对应的一个因素。 即, 不仅以不同序列对应不同的内容, 还可以以设 定时频资源信息和序列信息的组合对应不同的内容。 例如, 在不同时频资源 位置对应的相同序列可对应不同的小区标识, 例如, 对于相同的序列, 其所 在的第一时频资源位置对应一个小区标识, 其所在的第二时频资源位置对应 另一个小区标识。
具体而言, 如果 DRS的时频资源信息中只包括一种时频资源位置, 该组 合关系可以是: 所有小区的 DRS序列都映射到这种资源位置上, 即一种资源 位置与不同的 DRS序列进行组合; 如果 DRS的时频资源信息中包括多于一 种的时频资源位置, 第一种时频资源位置可以与第一 DRS序列组合, 第二种 时频资源位置可以与第二 DRS序列组合,其中第一种时频资源位置和第二种 时频资源位置是不同的, 但第一 DRS序列和第二 DRS序列可以相同也可以 不同。 进一步地, 序列信息还包括序列对应的扰码。 详细而言, DRS的序列信 息还可以包括对 DRS序列的多种扰码,扰码可以对 DRS序列进行加扰处理, 该加扰处理可以釆用异或方式或其他方式, 该扰码可以由小区标识作为参数 而生成。 一个序列的不同加扰方式也可以对应不同的信息内容, 比如对应不 同的小区标识或其他信息。
进一步地, 时频资源信息包括一种时频资源位置, 且时频资源位置是设 定的无线帧标号、 子帧标号、 符号标号、 子载波标号或资源块标号。 换言之, DRS在无线帧或子帧中的位置可以是固定的, 比如固定的帧, 子帧, 时隙或 OFDM符号; 且频域位置也可以是固定的, 比如固定的物理资源块上固定的 资源单元。 以发送一次 DRS 占用一个子帧为例, 该 DRS可以占用一个子帧 内的固定位置, 比如是一个子帧内的第 1 , 3 , 5, 7这四个 OFDM符号上的 固定的资源单元; 以发送一次 DRS 占用一个无线帧中的两个子帧为例, 该 DRS可以占用这两个子帧内的固定位置, 比如分别占用第一个子帧的第 1和 2个 OFDM符号上的固定的资源单元, 以及第二个子帧的第 3和 4个 OFDM 符号上的固定的资源单元。 本发明实施例对时频资源位置具体设定的位置不 做限制。
如果 DRS的时频资源信息包括两种或两种以上的时频资源位置,那么多 种时频资源位置对应的 DRS可以对应多个小区, 也可以对应同一' 区。 具体 地,一个实施例是,第一时频资源位置上发送的 DRS序列 1对应小区标识 1 , 第二时频资源位置上发送的 DRS序列 1对应小区标识 2; 另一个实施例是, 第一时频资源位置上发送的 DRS序列 1对应小区标识 1的小区的功率等级 1 , 第二时频资源位置上发送的 DRS序列 1对应小区标识 1的小区的功率等级 2; 等等。 多种时频资源位置可以为一个 OFDM符号上的多种资源单元的组合, 比如第一时频资源位置为一个物理资源块内的一个 OFDM符号上的奇数资源 单元, 第二时频资源位置为该物理资源块内的该 OFDM符号上的偶数资源单 元。
进一步地, 时频资源信息至少指示发现参考信号的第一时频资源位置和 第二时频资源位置, 且第一时频资源位置中的资源单元的最小间隔与第二时 频资源位置中的资源单元的最小间隔不相同, 和 /或, 第一时频资源位置中的 资源单元与第二时频资源位置中的资源单元部分重叠; 其中, 资源单元是子 载波、 资源块、 符号、 子帧或无线帧。 也就是说, 多种时频资源位置所占用 的资源单元可以釆用部分重叠的划分方式, 例如下述实施方式 A和实施方式 B:
实施方式 A: 第一时频资源位置占用一个物理资源块内的一个 OFDM符 号上的资源单元 0和 1 , 第二时频资源位置占用该物理资源块内的该 OFDM 符号上的资源单元 0 和 2, 第三时频资源位置则占用该物理资源块内的该 OFDM符号上的资源单元 1和 2。
实施方式 B: 第一时频资源位置占用一个子帧内的 OFDM符号 0和 1 , 第二时频资源位置占用该子帧内的 OFDM符号 0和 2, 第三时频资源位置则 占用该子帧内的 OFDM符号 1和 2。
多种时频资源位置占用的资源单元的部分重叠划分方式也可以结合实施 方式 A和 B,即不同的时频资源位置既在子帧内的符号上釆用部分重叠划分, 又在符号上的资源单元上釆用部分重叠的划分方式, 本发明实施例不以此为 限。
上述多种时频资源位置占用的资源单元的部分重叠划分方式, 通过不同
DRS的资源部分重叠可以使 DRS的时频资源复用率增加,还可以规避多种时 频资源位置的完全重叠, 从而在检测 DRS的过程中起到干扰随机化的作用, 还可以在存在开启和关闭小区的场景下通过部分重叠资源设计来提高无线资 源管理测量的精确性。
进一步地, 配置信息还包括第一信息, 以及第一信息的不同取值与不同 时频资源位置和 /或不同序列的第一对应关系, 第一信息包括如下信息中的至 少一种: 小区的功率等级信息、 载波类型信息、 双工模式信息、 随机接入配 置信息和小区特定参考信号 CRS和信道状态信息参考信号 CSI-RS的配置信 息; 该方法进一步包括: 根据所确定的实际时频资源位置以及第一对应关系, 确定实际时频资源位置所对应的第一信息取值; 和 /或, 根据所确定的实际序 列以及第一对应关系, 确定实际序列所对应的第一信息取值。
其中, 第一信息的不同取值, 可以是不同功率等级, 不同载波类型, 不 同双工模式, 不同随机接入配置信息、 CRS/CSI-RS配置信息。 第一对应关系 可以在用户设备中进行预定义, 也可以由网络侧设备向用户设备进行配置。 载波类型信息可以指示载波为后向兼容的载波和非后向兼容的新载波; 双工 模式信息可以包括 FDD和 TDD; 随机接入配置信息包括物理随机接入信道 的前导序列信息和 /或时频资源信息, 该前导序列信息可以包括才艮序列索引, 循环前缀等; CRS和 CSI-RS配置信息包括 CRS和 CSI-RS的多种时频资源 配置, 还可以是 CRS和 CSI-RS的资源配置组合; 该小区是否可以被 UE发 送的信令触发开启的信息表示 UE获取了该信息后, 可以确定当前这个配置 信息对应的小区能否被自己发送的信号来触发开启, 关闭或调整该小区的发 送功率。 所以, 相同的小区也可以对应不同的配置信息, 那么该不同的配置 信息就可以携带上述一些该小区的其他信息。
进一步地, 功率等级信息包括小区的开关信息或发送功率值。
进一步地, 配置信息进一步包括: 第一信息的不同取值和第二信息的第 三对应关系, 其中, 第一信息包括如下信息中的至少一种: 小区的功率等级 信息、 载波类型信息、 双工模式信息、 随机接入配置信息和 CRS和 CSI-RS 的配置信息, 第二信息包括如下信息中的一种: 扰码与时频资源位置, 扰码 与序列, 以及扰码与时频资源位置以及序列, 其中, 扰码为发现参考信号的 序列所使用的扰码; 该方法进一步包括: 根据发现参考信号的序列所使用的 扰码确定实际序列所使用的实际扰码; 根据所确定的实际扰码、 实际时频资 源位置以及第三对应关系, 确定实际扰码和实际时频资源位置所对应的第一 信息取值; 或者, 根据所确定的实际扰码、 实际序列以及第三对应关系, 确 定实际扰码和实际序列所对应的第一信息取值; 或者, 根据所确定的实际扰 码、 实际序列和实际时频资源位置, 以及第三对应关系, 确定实际扰码、 实 际序列和实际时频资源位置所对应的第一信息取值。
功率等级信息可以包括小区的开关信息或发送功率值。 具体地, 可以用 零功率信息和非零功率信息分别表示小区处于关闭状态和开启状态; 发送功 率值则可以釆用多种功率等级, 比如高, 中, 低来表示, 还可以釆用具体的 功率数值, 比如 10瓦, 5瓦, 1瓦或 0瓦等来表示, 其他类似与功率相关的 状态和功率值也不排除。
功率等级信息可以通过 DRS的序列、 序列对应的 4尤码、 时频资源位置信 息和时频资源信息与序列信息的组合关系等信息中的至少一种进行携带。 以 序列携带开关信息为例, 殳 DRS序列 1和 DRS序列 2同时对应当前小区, 那么如果 UE检测到 DRS序列 1 , 可以认为该当前小区是开启状态, 那么该 UE就可以去接收当前小区的其他配置信息, 比如广播信息等, 来驻留到当前 小区或在当前小区上进行正常的数据传输; 如果 UE检测到 DRS序列 2, 就 会认为当前小区处于关闭状态, 那么该 UE 可以不选择当前小区来驻留或接 入, 而去试图驻留或接入到其他开启的小区上; 或者, UE也可以发送信令来 触发当前小区进行开启, 比如用与当前小区发送的 DRS序列 2对应的上行发 送序列来进行触发。 再或者, 用户设备如果通过检测当前已驻留或已接入小 区的 DRS中携带的小区的开关信息,发现当前已接入小区的状态由开启转为 关闭, 则该用户设备可以启动小区重选过程或切换过程, 或该用户设备可以 触发相邻小区的测量并驻留或接入相邻小区,来尽快实行小区重选或切换等。 这样, 通过 UE检测 DRS发现当前所检测小区的开关或功率等级, 可以快速 获取当前所检测小区的信息, 进而进行相应的移动性流程, 比如及时的小区 重选或切换等, 提高了 UE的移动性性能。
用户设备还可以通过对基站发送的 DRS中携带的发送功率值的检测,获 知自身距离基站的路径损耗值, 具体的, 用户设备可以根据 DRS中携带的发 送功率值与该 DRS的接收功率值的差值, 获知路径损耗值。 UE还可以将该 路径损耗值上报给基站, 供基站来调整向该用户设备发送 DRS的发送功率。 这样,可以优化 UE和基站的发送功率,使得 UE使用适当的功率发送信息而 不会对周边造成大的上行干扰, 还可以使得基站釆用适当的功率给 UE进行 发送信息, 不会对周边造成大的下行干扰。
进一步地, 配置信息进一步包括发现参考信号的时频资源位置和 /或序列 和小区标识信息的第二对应关系; 该方法进一步包括: 根据所确定的实际时 频资源位置和 /或实际序列, 以及第二对应关系, 确定发送第一发现参考信号 的基站所辖的小区所对应的小区标识信息。
DRS的一种配置信息可以对应一个物理小区标识,具体可以为 DRS的时 频资源位置和 /或序列对应该物理小区标识。 例如, 如果需要区分 504种物理 小区, 那么一个方法是用 504个 DRS序列分别对应 504个物理小区标识, 另 一种方法可以是 DRS 的两个时频资源位置与每个时频资源位置上的 252个 DRS序列组合后分别对应 504个物理小区标识, 还有一种方法可以是 2个主 实施例中的 DRS可以包括多种时频资源位置和多种序列,所以能够标识多于 504种的物理小区, 标识物理小区的方式不以此为限。
DRS的多种配置信息可以对应一个物理小区标识,具体可以为 DRS的时 频资源位置和 /或序列对应该物理小区标识。 例如, 可以使用两个 DRS序列 对应一个物理小区标识;也可以使用一个 DRS序列的两种加 4尤方式对应一个 物理小区标识;也可以使用不同排列方式的 DRS序列对应一个物理小区标识; 还可以使用不同时频资源位置的 DRS对应一个物理小区标识等等。上述 DRS 的多种配置信息对应一个物理小区标识的情况下, 以 DRS的两种配置信息对 应一个物理小区标识为例,该 DRS的两种配置信息可以分别用于标识当前物 理小区的基站的开关信息和发送功率值等信息。
进一步地, 该方法还包括: 确定处于开启状态的小区, 通过第一小区的 发现参考信号的接收功率与处于开启状态的小区的发现参考信号的总接收功 率的比值, 确定第一小区的参考信号接收质量, 其中, 第一小区为发送第一 发现参考信号的基站所辖的小区。
进一步地, 该方法还包括: 通过第一小区的发现参考信号的接收功率与 第三时频资源位置上除第二发现参考信号之外的其他发现参考信号的接收功 率的比值, 确定第一小区的参考信号接收质量, 其中, 第一小区为发送第一 发现参考信号的基站所辖的小区; 第二发现参考信号包括: 除第一小区之外 的其他处于关闭状态的小区的发现参考信号, 或者包括: 处于关闭状态的小 区的发现参考信号; 第三时频资源位置包括: 实际时频资源位置; 或者包括: 基站指示的时频资源位置, 用户设备自定的时频资源位置, 或预定义的时频 资源位置。
进一步地, 由于 DRS的发送功率跟当前小区上的下行数据或其他参考信 号的发送功率不一致, 因此可以预定义或配置给 UE—个功率比或功率偏移 值, 以使得 UE根据这个 DRS跟下行数据的发送功率比或 DRS跟下行数据 的功率偏移值, 来获得当前小区上下行数据的发送功率情况, 最终获得准确 的 RRM测量数值。
详细而言, 对当前所检测小区的 DRS接收质量测量, 属于 RRM测量。 对于 RRM测量, 可以包括对参考信号接收功率 (Reference Signal Received Power, 以下简称 RSRP ) , 接收信号强度指示 (Received Signal Strength Indicator, 以下简称 RSSI )和参考信号接收质量(Reference Signal Received Quality, 以下简称 RSRQ ) 中的一种或多种的测量。
以 RSRQ测量为例, RSRQ可以是 RSRP与 RSSI的比值, 其中 RSRP为 当前小区的 DRS的接收功率; RSSI为当前小区的 DRS所在资源单元上所有 信号的接收功率, 即包括当前小区的 DRS的接收功率和所有干扰、 噪声功率 之和。
在异构网络中, 往往在一个宏小区 (Macro cell)的范围内会部署大量的微 或微微小区 (Pico cell),其中宏小区主要向用户设备提供覆盖和实时数据业务, 微小区主要向用户设备提供高速率数据业务, 微小区基站在不需要对任何用 户设备提供服务时可以被关闭, 而关闭的微小区基站还会以较长的周期发送 DRS。 如果微小区基站处于关闭状态, 实际上对其他小区是没有干扰的, 那 么, 如果 RSSI中包含了处于关闭状态的微小区基站的 DRS接收功率, 最终 得到的 RSRQ值是被低估的。
针对上述 RSRQ值被低估的问题, 可以釆用如下方法加以解决: 方法一: 首先, 确定处于开启状态的小区, 具体可以根据小区的功率等 级信息来确定。 例如第一 DRS序列表示该第一 DRS序列标识的小区的基站 处于开启状态, 第二 DRS序列表示该第二 DRS序列标识的小区的基站处于 关闭状态, 那么用户设备可以通过第一序列识别出处于开启状态的小区。 确 定 RSRP为当前小区的发现参考信号的接收功率; 确定 RSSI为当前小区的 DRS 所在时频资源上所有处于开启状态的小区的发现参考信号的总接收功 率; RSRQ为 RSRP与 RSSI的比值, 由此获得的 RSRQ的值是更为准确的。
方法二: 首先, 确定处于关闭状态的小区, 具体可以根据小区的功率等 级信息来确定。 例如第一 DRS序列表示该第一 DRS序列标识的小区的基站 处于开启状态, 第二 DRS序列表示该第二 DRS序列标识的小区的基站处于 关闭状态, 那么用户设备可以通过第二序列识别出处于关闭状态的小区。 确 定 RSRP为当前小区的发现参考信号的接收功率;确定 RSSI为当前时频资源 位置上除第一发现参考信号之外的发现参考信号的接收功率, 其中, 当前时 频资源位置包括承载当前小区的发现参考信号的时频资源位置, 或者, 当前 时频资源位置为基站指示的时频资源位置, UE自定的时频资源位置或预定义 的时频资源位置。 具体地, 基站可以通过 RRC专有信令或广播信令为 UE指 示用于测量 RSSI的时频资源位置, 也可以是预定义的时频资源位置 (比如预 定义的子帧或无线帧), 还可以是 UE自己确定的时频资源位置, 该时频资源 位置上可以包括当前小区的发现参考信号, 也可以不包括当前小区甚至是任 何小区的发现参考信号, 比如选择不包括 DRS的频率位置等。 第一发现参考 信号包括除当前小区之外的处于关闭状态的小区的发现参考信号或第一发现 参考信号包括处于关闭状态的小区的发现参考信号; RSRQ为 RSRP与 RSSI 的比值, 由此获得的 RSRQ的值是更为准确的。
换言之, 方法二可以包括: 首先, 确定处于开启状态的小区, 具体可以 根据小区的功率等级信息来确定。 例如第一 DRS序列表示该第一 DRS序列 标识的小区的基站处于开启状态, 第二 DRS序列表示该第二 DRS序列标识 的小区的基站处于关闭状态, 那么用户设备可以通过第一序列识别出处于开 启状态的小区。确定 RSRP为当前小区的发现参考信号的接收功率;确定 RSSI 为当前时频资源位置上, 当前小区和其它处于开启状态的小区的发现参考信 号的接收功率之和,或者还可以包括当前时频资源位置上除 DRS之外的信号 功率, 其中, 当前时频资源位置包括承载当前小区的发现参考信号的时频资 源位置; RSRQ为 RSRP与 RSSI的比值, 由此获得的 RSRQ的值是更为准确 的。
方法三: 该方法在计算 RSSI时不需要剔除关闭小区的功率, 而是根据关 闭小区的信息来将 RSSI或 RSRQ在第一时间间隔 Q上做平均化处理, 即最 终的 RSRQ根据 RSRP与 RSSI的比值再除以该第一时间间隔 Q来确定。 该 第一时间间隔 Q的长度可以大于当前检测 DRS的时间间隔长度,比如基站一 次发送的 DRS在两个子帧上, 那么该第一时间间隔 Q可以是一个无线帧即 10个子帧的长度, 也可以具有不同的时间间隔长度值。 具体地, 该第一时间 间隔 Q可以是预定义的, 或基站配置给 UE的, 或 UE 自己根据检测到的关 闭小区的信息, 比如关闭小区的数量和 /或功率等信息, 来确定的。
本发明实施例提供的发现参考信号的检测方法,可以根据 DRS的配置信 息中的时频资源信息和序列信息, 对各小区的 DRS进行检测; 可以通过检测 到的 DRS和小区标识信息的对应关系确定当前所检测 ' j、区对应的小区标识信 息;也可以通过检测到的 DRS进行当前所检测小区的参考信号接收质量测量; 还可以通过检测到的 DRS中携带的功率等级信息, 更为准确的获得当前所检 测小区的参考信号接收质量测量结果。 实施例三:
图 3为本发明实施例三提供的发现参考信号的发送装置的结构示意图, 如图 3所示, 本实施例提供的发现参考信号的发送装置 300可以设置在网络 侧设备上也可以是网络侧设备本身, 可以包括获取模块 310、 选择模块 320、 生成模块 330、 发送模块 340、 确定模块 350以及加扰模块 360, 其中:
获取模块 310, 用于获取发现参考信号的配置信息, 配置信息包括发现 参考信号的时频资源信息和序列信息, 时频资源信息指示发现参考信号的至 少一种候选时频资源位置,序列信息指示发现参考信号的至少一个候选序列; 选择模块 320, 用于从获取模块 310获取的候选时频资源位置中选择一 个实际时频资源位置, 并从获取模块 310获取的候选序列中选择一个实际序 列;
生成模块 330, 用于生成第一发现参考信号;
发送模块 340, 用于通过选择模块 320选择的实际时频资源位置和实际 序列, 发送生成模块 330生成的第一发现参考信号。
进一步地, 时频资源信息至少指示发现参考信号的第一时频资源位置和 第二时频资源位置, 且第一时频资源位置中的资源单元的最小间隔与第二时 频资源位置中的资源单元的最小间隔不相同, 和 /或, 第一时频资源位置中的 资源单元与第二时频资源位置中的资源单元部分重叠; 其中, 资源单元是子 载波、 资源块、 符号、 子帧或无线帧。
进一步地, 确定模块 350, 用于确定第一信息的取值, 第一信息包括如 下信息中的至少一种: 小区的功率等级信息、 载波类型信息、 双工模式信息、 随机接入配置信息和小区特定参考信号 CRS和小区特定参考信号 CSI-RS的 配置信息; 选择模块 320具体用于: 根据确定模块 350所确定的取值以及第 一对应关系确定实际时频资源位置, 其中, 第一对应关系包括: 第一信息的 不同取值与不同时频资源位置的对应关系; 和 /或, 根据所确定的取值以及第 二对应关系确定实际序列, 其中, 第一对应关系包括: 第一信息的不同取值 与不同序列的对应关系。
进一步地, 选择模块 320还用于: 根据确定模块 350所确定的取值以及 第三对应关系确定实际扰码, 其中, 第三对应关系包括: 第一信息的不同取 值与不同序列所使用的扰码的对应关系, 实际扰码为: 实际序列所使用的扰 码; 加扰模块 360, 用于使用实际扰码对实际序列进行加扰。
进一步地, 功率等级信息包括小区的开关信息或发送功率值。
本发明实施例提供的发现参考信号的发送装置,通过各功能模块的设备, 可以用于执行图 1所示方法实施例中的技术方案,可以根据 DRS的配置信息 中的时频资源信息和序列信息,发送 DRS;可以使用户设备通过检测到的 DRS 和小区标识信息的对应关系确定当前所检测小区对应的小区标识信息; 也可 以使用户设备通过检测到的 DRS进行当前所检测小区的参考信号接收质量测 量; 还可以使用户设备通过检测到的 DRS中携带的功率等级信息, 更为准确 的获得当前所检测小区的参考信号接收质量测量结果。 进一步地, 由于 DRS 的发送功率跟当前小区上的下行数据或其他参考信号的发送功率不一致, 因 此可以预定义或配置给 UE—个功率比或功率偏移值, 以使得 UE根据这个 DRS跟下行数据的发送功率比或 DRS跟下行数据功率偏移值,来获得当前小 区上下行数据的发送功率情况, 最终获得准确的 RRM测量数值。
实施例四:
图 4为本发明实施例四提供的发现参考信号的检测装置的结构示意图, 如图 4所示, 本实施例提供的发现参考信号的检测装置 400可以设置在用户 设备上也可以是用户设备本身, 可以包括获取模块 410、 接收模块 420、 处理 模块 430:
获取模块 410, 用于获取发现参考信号的配置信息, 配置信息包括发现 参考信号的时频资源信息和序列信息, 时频资源信息指示发现参考信号的至 少一种候选时频资源位置,序列信息指示发现参考信号的至少一个候选序列; 接收模块 420, 用于接收基站发送的第一发现参考信号;
处理模块 430, 用于根据获取模块 410所获取的时频资源信息确定发现 参考信号的候选时频资源位置, 根据获取模块 410所获取的序列信息确定发 现参考信号的候选序列, 并通过在候选时频资源位置上对发现参考信号的候 选序列进行检测, 确定接收模块 420接收的第一发现参考信号的实际时频资 源位置, 和 /或, 确定第一发现参考信号对应的实际序列。
进一步地, 处理模块 430用于根据所述时频资源信息确定发现参考信号 的候选时频资源位置, 根据所述序列信息确定发现参考信号的候选序列, 包 括: 根据时频资源信息确定第一时频资源位置和第二时频资源位置, 第一时 频资源位置和第二时频资源位置不完全重叠; 根据序列信息确定第一序列和 第二序列; 配置信息还包括候选时频资源位置和候选序列的对应关系; 对应 地, 处理模块 430用于在所述候选时频资源位置上对发现参考信号的候选序 列进行检测, 包括: 根据对应关系确定每个候选时频资源位置对应的候选序 列, 包括第一时频资源位置对应第一序列, 第二时频资源位置对应第二序列; 在第一时频资源位置上检测第一序列, 以及在第二时频资源位置上检测第二 序列。
进一步地, 时频资源信息至少指示发现参考信号的第一时频资源位置和 第二时频资源位置, 且第一时频资源位置中的资源单元的最小间隔与第二时 频资源位置中的资源单元的最小间隔不相同, 和 /或, 第一时频资源位置中的 资源单元与第二时频资源位置中的资源单元部分重叠; 其中, 资源单元是子 载波、 资源块、 符号、 子帧或无线帧。
进一步地, 配置信息还包括第一信息, 以及第一信息的不同取值与不同 时频资源位置和 /或不同序列的第一对应关系, 第一信息包括如下信息中的至 少一种: 小区的功率等级信息、 载波类型信息、 双工模式信息、 随机接入配 置信息和小区特定参考信号 CRS和信道状态信息参考信号 CSI-RS的配置信 息; 处理模块 430还用于: 根据所确定的实际时频资源位置以及第一对应关 系, 确定实际时频资源位置所对应的第一信息取值; 和 /或, 才艮据所确定的实 际序列以及第一对应关系, 确定实际序列所对应的第一信息取值。
进一步地, 功率等级信息包括小区的开关信息或发送功率值。
进一步地, 配置信息进一步包括发现参考信号的时频资源位置和 /或序列 和小区标识信息的第二对应关系; 处理模块 430还用于: 根据所确定的实际 时频资源位置和 /或实际序列, 以及第二对应关系, 确定发送第一发现参考信 号的基站所辖的小区所对应的小区标识信息。
进一步地, 配置信息进一步包括: 第一信息的不同取值和第二信息的第 三对应关系, 其中, 第一信息包括如下信息中的至少一种: 小区的功率等级 信息、 载波类型信息、 双工模式信息、 随机接入配置信息和 CRS和 CSI-RS 的配置信息, 第二信息包括如下信息中的一种: 扰码与时频资源位置, 扰码 与序列, 以及扰码与时频资源位置以及序列, 其中, 扰码为发现参考信号的 序列所使用的扰码; 处理模块 430还用于: 根据发现参考信号的序列所使用 的扰码确定实际序列所使用的实际扰码; 根据所确定的实际扰码、 实际时频 资源位置以及第三对应关系, 确定实际扰码和实际时频资源位置所对应的第 一信息取值; 或者, 根据所确定的实际扰码、 实际序列以及第三对应关系, 确定实际扰码和实际序列所对应的第一信息取值; 或者, 根据所确定的实际 扰码、 实际序列和实际时频资源位置, 以及第三对应关系, 确定实际扰码、 实际序列和实际时频资源位置所对应的第一信息取值。
进一步地, 处理模块 430还用于: 确定处于开启状态的小区, 通过第一 小区的发现参考信号的接收功率与处于开启状态的小区的发现参考信号的总 接收功率的比值, 确定第一小区的参考信号接收质量, 其中, 第一小区为发 送第一发现参考信号的基站所辖的小区。
进一步地, 处理模块 430还用于: 通过第一小区的发现参考信号的接收 功率与第三时频资源位置上除第二发现参考信号之外的其他发现参考信号的 接收功率的比值, 确定第一小区的参考信号接收质量, 其中, 第一小区为发 送第一发现参考信号的基站所辖的小区; 第二发现参考信号包括: 除第一小 区之外的其他处于关闭状态的小区的发现参考信号, 或者包括: 处于关闭状 态的小区的发现参考信号; 第三时频资源位置包括: 实际时频资源位置; 或 者包括: 基站指示的时频资源位置, 用户设备自定的时频资源位置, 或预定 义的时频资源位置。
本发明实施例提供的发现参考信号的检测装置, 通过功能模块的设置, 可以用于执行图 2方法实施例中记载的技术方案,可以根据 DRS的配置信息 中的时频资源信息和序列信息, 对各小区的 DRS进行检测; 可以通过检测到 的 DRS 和小区标识信息的对应关系确定当前所检测 ' j、区对应的小区标识信 息;也可以通过检测到的 DRS进行当前所检测小区的参考信号接收质量测量; 还可以通过检测到的 DRS中携带的功率等级信息, 更为准确的获得当前所检 测小区的参考信号接收质量测量结果。
综上所述,本发明实施例提供的发现参考信号的发送和检测方法及装置, 可以根据 DRS 的配置信息中的时频资源信息和序列信息, 对各小区的 DRS 进行发送或检测; 可以通过检测到的 DRS和小区标识信息的对应关系确定当 前所检测小区对应的小区标识信息;也可以通过检测到的 DRS进行当前所检 测小区的参考信号接收质量测量;还可以通过检测到的 DRS中携带的功率等 级信息, 更为准确的获得当前所检测小区的参考信号接收质量测量结果。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM, RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种发现参考信号的检测方法, 其特征在于, 包括:
用户设备获取发现参考信号的配置信息, 所述配置信息包括发现参考信 号的时频资源信息和序列信息, 所述时频资源信息指示发现参考信号的至少 一种候选时频资源位置, 所述序列信息指示发现参考信号的至少一个候选序 列;
所述用户设备接收基站发送的第一发现参考信号;
所述用户设备根据所述时频资源信息确定发现参考信号的候选时频资源 位置, 根据所述序列信息确定发现参考信号的候选序列, 并通过在所述候选 时频资源位置上对发现参考信号的候选序列进行检测, 确定所述第一发现参 考信号的实际时频资源位置, 和 /或, 确定所述第一发现参考信号对应的实际 序列。
2、 根据权利要求 1所述的方法, 其特征在于,
所述根据所述时频资源信息确定候选时频资源位置, 包括确定第一时频 资源位置和第二时频资源位置, 所述第一时频资源位置和第二时频资源位置 不完全重叠;
所述根据序列信息确定候选序列, 包括确定第一序列和第二序列; 所述配置信息还包括候选时频资源位置和候选序列的对应关系; 对应地, 所述在所述候选时频资源位置上对所述发现参考信号的候选序 列进行检测之前, 包括: 根据所述对应关系确定每个候选时频资源位置对应 的候选序列, 包括第一时频资源位置对应第一序列, 第二时频资源位置对应 第二序列;
所述在所述候选时频资源位置上对所述发现参考信号的候选序列进行检 测包括:
在第一时频资源位置上检测第一序列, 以及在第二时频资源位置上检测 第二序列。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述时频资源信息至 少指示发现参考信号的第一时频资源位置和第二时频资源位置, 且所述第一 时频资源位置中的资源单元的最小间隔与所述第二时频资源位置中的资源单 元的最小间隔不相同, 和 /或, 所述第一时频资源位置中的资源单元与所述第 二时频资源位置中的资源单元部分重叠; 其中, 所述资源单元是子载波、 资 源块、 符号、 子帧或无线帧。
4、 根据权利要求 1至 3中任一项所述的方法, 其特征在于,
所述配置信息还包括第一信息, 以及所述第一信息的不同取值与不同时 频资源位置和 /或不同序列的第一对应关系, 所述第一信息包括如下信息中的 至少一种: 小区的功率等级信息、 载波类型信息、 双工模式信息、 随机接入 配置信息和小区特定参考信号 CRS和信道状态信息参考信号 CSI-RS的配置 信息;
该方法进一步包括:
根据所确定的实际时频资源位置以及所述第一对应关系, 确定所述实际 时频资源位置所对应的第一信息取值; 和 /或, 根据所确定的实际序列以及所 述第一对应关系, 确定所述实际序列所对应的第一信息取值。
5、 根据权利要求 4所述的方法, 其特征在于,
所述功率等级信息包括所述小区的开关信息或发送功率值。
6、 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述配置信 息进一步包括发现参考信号的时频资源位置和 /或序列和小区标识信息的第 二对应关系;
该方法进一步包括: 根据所确定的实际时频资源位置和 /或实际序列, 以 及所述第二对应关系, 确定发送所述第一发现参考信号的基站所辖的小区所 对应的小区标识信息。
7、 根据权利要求 1至 5中任一项所述的方法, 其特征在于, 所述配置信 息进一步包括: 第一信息的不同取值和第二信息的第三对应关系, 其中, 所 述第一信息包括如下信息中的至少一种: 小区的功率等级信息、 载波类型信 息、 双工模式信息、 随机接入配置信息和 CRS和 CSI-RS的配置信息, 所述 第二信息包括如下信息中的一种: 扰码与时频资源位置, 扰码与序列, 以及 扰码与时频资源位置以及序列, 其中, 所述扰码为发现参考信号的序列所使 用的扰码;
该方法进一步包括:
根据所述发现参考信号的序列所使用的扰码确定所述实际序列所使用的 实际扰码; 根据所确定的实际扰码、 实际时频资源位置以及所述第三对应关系, 确 定所述实际扰码和实际时频资源位置所对应的第一信息取值; 或者,
根据所确定的实际扰码、 实际序列以及所述第三对应关系, 确定所述实 际扰码和实际序列所对应的第一信息取值; 或者,
根据所确定的实际扰码、 实际序列和实际时频资源位置, 以及所述第三 对应关系, 确定所述实际扰码、 实际序列和实际时频资源位置所对应的第一 信息取值。
8、 根据权利要求 1至 Ί中任一项所述的方法, 其特征在于,
该方法还包括: 确定处于开启状态的小区, 通过第一小区的发现参考信 号的接收功率与所述处于开启状态的小区的发现参考信号的总接收功率的比 值, 确定所述第一小区的参考信号接收质量, 其中, 所述第一小区为发送所 述第一发现参考信号的基站所辖的小区。
9、 根据权利要求 1至 Ί中任一项所述的方法, 其特征在于,
该方法还包括: 通过第一小区的发现参考信号的接收功率与第三时频资 源位置上除第二发现参考信号之外的其他发现参考信号的接收功率的比值, 确定所述第一小区的参考信号接收质量,
其中, 所述第一小区为发送所述第一发现参考信号的基站所辖的小区; 所述第二发现参考信号包括: 除所述第一小区之外的其他处于关闭状态 的小区的发现参考信号, 或者包括: 处于关闭状态的小区的发现参考信号; 所述第三时频资源位置包括: 所述实际时频资源位置; 或者包括: 所述 基站指示的时频资源位置, 所述用户设备自定的时频资源位置, 或预定义的 时频资源位置。
10、 一种发现参考信号的发送方法, 其特征在于, 包括:
网络侧设备获取发现参考信号的配置信息, 所述配置信息包括发现参考 信号的时频资源信息和序列信息, 所述时频资源信息指示发现参考信号的至 少一种候选时频资源位置, 所述序列信息指示发现参考信号的至少一个候选 序列;
所述网络侧设备从所述候选时频资源位置中选择一个实际时频资源位 置, 并从所述候选序列中选择一个实际序列;
所述网络侧设备生成第一发现参考信号, 并通过所述实际时频资源位置 和实际序列发送所述第一发现参考信号。
11、 根据权利要求 10所述的方法, 其特征在于, 所述时频资源信息至少 指示发现参考信号的第一时频资源位置和第二时频资源位置, 且所述第一时 频资源位置中的资源单元的最小间隔与所述第二时频资源位置中的资源单元 的最小间隔不相同, 和 /或, 所述第一时频资源位置中的资源单元与所述第二 时频资源位置中的资源单元部分重叠; 其中, 所述资源单元是子载波、 资源 块、 符号、 子帧或无线帧。
12、 根据权利要求 10或 11所述的方法, 其特征在于,
该方法还包括: 所述网络侧设备确定第一信息的取值, 所述第一信息包 括如下信息中的至少一种: 小区的功率等级信息、 载波类型信息、 双工模式 信息、 随机接入配置信息和小区特定参考信号 CRS 和小区特定参考信号 CSI-RS的配置信息;
所述网络侧设备从所述候选时频资源位置中选择一个实际时频资源位 置, 包括: 根据所确定的取值以及第一对应关系确定所述实际时频资源位置, 其中, 所述第一对应关系包括: 所述第一信息的不同取值与不同时频资源位 置的对应关系;
和 /或,
所述网络侧设备从所述候选序列中选择一个实际序列, 包括: 根据所确 定的取值以及第二对应关系确定所述实际序列, 其中, 所述第一对应关系包 括: 所述第一信息的不同取值与不同序列的对应关系。
13、 根据权利要求 12所述的方法, 其特征在于, 该方法还包括: 根据所确定的取值以及第三对应关系确定实际扰码, 其中, 所述第三对 所述实际扰码为: 所述实际序列所使用的扰码;
使用所述实际扰码对所述实际序列进行加扰。
14、 根据权利要求 12或 13所述的方法, 其特征在于,
所述功率等级信息包括所述小区的开关信息或发送功率值。
15、 一种发现参考信号检测装置, 所述发现参考信号检测装置为用户设 备, 其特征在于, 包括:
获取模块, 用于获取发现参考信号的配置信息, 所述配置信息包括发现 参考信号的时频资源信息和序列信息, 所述时频资源信息指示发现参考信号 的至少一种候选时频资源位置, 所述序列信息指示发现参考信号的至少一个 候选序列;
接收模块, 用于接收基站发送的第一发现参考信号;
处理模块, 用于根据所述获取模块所获取的所述时频资源信息确定发现 参考信号的候选时频资源位置, 根据所述获取模块所获取的所述序列信息确 定发现参考信号的候选序列, 并通过在所述候选时频资源位置上对发现参考 信号的候选序列进行检测, 确定所述接收模块接收的所述第一发现参考信号 的实际时频资源位置, 和 /或, 确定所述第一发现参考信号对应的实际序列。
16、 根据权利要求 15所述的装置, 其特征在于,
所述处理模块用于根据所述时频资源信息确定发现参考信号的候选时频 资源位置, 根据所述序列信息确定发现参考信号的候选序列, 包括: 根据所 述时频资源信息确定第一时频资源位置和第二时频资源位置, 所述第一时频 资源位置和第二时频资源位置不完全重叠; 根据所述序列信息确定第一序列 和第二序列;
所述配置信息还包括候选时频资源位置和候选序列的对应关系;对应地, 所述处理模块用于在所述候选时频资源位置上对发现参考信号的候选序 列进行检测, 包括: 根据所述对应关系确定每个候选时频资源位置对应的候 选序列, 包括第一时频资源位置对应第一序列, 第二时频资源位置对应第二 序列; 在第一时频资源位置上检测第一序列, 以及在第二时频资源位置上检 测第二序列。
17、 根据权利要求 15或 16所述的装置, 其特征在于, 所述时频资源信 息至少指示发现参考信号的第一时频资源位置和第二时频资源位置, 且所述 第一时频资源位置中的资源单元的最小间隔与所述第二时频资源位置中的资 源单元的最小间隔不相同, 和 /或, 所述第一时频资源位置中的资源单元与所 述第二时频资源位置中的资源单元部分重叠; 其中, 所述资源单元是子载波、 资源块、 符号、 子帧或无线帧。
18、 根据权利要求 15至 17中任一项所述的装置, 其特征在于, 所述配 置信息还包括第一信息, 以及所述第一信息的不同取值与不同时频资源位置 和 /或不同序列的第一对应关系, 所述第一信息包括如下信息中的至少一种: 小区的功率等级信息、 载波类型信息、 双工模式信息、 随机接入配置信息和 小区特定参考信号 CRS和信道状态信息参考信号 CSI-RS的配置信息;
所述处理模块还用于: 根据所确定的实际时频资源位置以及所述第一对 应关系, 确定所述实际时频资源位置所对应的第一信息取值; 和 /或, 根据所 确定的实际序列以及所述第一对应关系, 确定所述实际序列所对应的第一信 息取值。
19、 根据权利要求 18所述的装置, 其特征在于,
所述功率等级信息包括所述小区的开关信息或发送功率值。
20、 根据权利要求 15至 19中任一项所述的装置, 其特征在于, 所述配 置信息进一步包括发现参考信号的时频资源位置和 /或序列和小区标识信息 的第二对应关系;
所述处理模块还用于: 根据所确定的实际时频资源位置和 /或实际序列, 以及所述第二对应关系, 确定发送所述第一发现参考信号的基站所辖的小区 所对应的小区标识信息。
21、 根据权利要求 15至 19中任一项所述的装置, 其特征在于, 所述配 置信息进一步包括: 第一信息的不同取值和第二信息的第三对应关系, 其中, 所述第一信息包括如下信息中的至少一种: 小区的功率等级信息、 载波类型 信息、 双工模式信息、 随机接入配置信息和 CRS和 CSI-RS的配置信息, 所 述第二信息包括如下信息中的一种: 扰码与时频资源位置, 扰码与序列, 以 及扰码与时频资源位置以及序列, 其中, 所述扰码为发现参考信号的序列所 使用的扰码;
所述处理模块还用于: 根据所述发现参考信号的序列所使用的扰码确定 所述实际序列所使用的实际扰码;
根据所确定的实际扰码、 实际时频资源位置以及所述第三对应关系, 确 定所述实际扰码和实际时频资源位置所对应的第一信息取值; 或者,
根据所确定的实际扰码、 实际序列以及所述第三对应关系, 确定所述实 际扰码和实际序列所对应的第一信息取值; 或者,
根据所确定的实际扰码、 实际序列和实际时频资源位置, 以及所述第三 对应关系, 确定所述实际扰码、 实际序列和实际时频资源位置所对应的第一 信息取值。
22、 根据权利要求 15至 21中任一项所述的装置, 其特征在于, 所述处理模块还用于: 确定处于开启状态的小区, 通过第一小区的发现 参考信号的接收功率与所述处于开启状态的小区的发现参考信号的总接收功 率的比值, 确定所述第一小区的参考信号接收质量, 其中, 所述第一小区为 发送所述第一发现参考信号的基站所辖的小区。
23、 根据权利要求 15至 21中任一项所述的装置, 其特征在于, 所述处理模块还用于: 通过第一小区的发现参考信号的接收功率与第三 时频资源位置上除第二发现参考信号之外的其他发现参考信号的接收功率的 比值, 确定所述第一小区的参考信号接收质量,
其中, 所述第一小区为发送所述第一发现参考信号的基站所辖的小区; 所述第二发现参考信号包括: 除所述第一小区之外的其他处于关闭状态 的小区的发现参考信号, 或者包括: 处于关闭状态的小区的发现参考信号; 所述第三时频资源位置包括: 所述实际时频资源位置; 或者包括: 所述 基站指示的时频资源位置, 所述用户设备自定的时频资源位置, 或预定义的 时频资源位置。
24、 一种发现参考信号的发送装置, 所述发现参考信号的发送装置为网 络侧设备, 其特征在于, 包括:
获取模块, 用于获取发现参考信号的配置信息, 所述配置信息包括发现 参考信号的时频资源信息和序列信息, 所述时频资源信息指示发现参考信号 的至少一种候选时频资源位置, 所述序列信息指示发现参考信号的至少一个 候选序列;
选择模块, 用于从所述获取模块获取的所述候选时频资源位置中选择一 个实际时频资源位置, 并从所述获取模块获取的所述候选序列中选择一个实 际序列;
生成模块, 用于生成第一发现参考信号;
发送模块, 用于通过所述选择模块选择的所述实际时频资源位置和实际 序列, 发送所述生成模块生成的所述第一发现参考信号。
25、 根据权利要求 24所述的装置, 其特征在于, 所述时频资源信息至少 指示发现参考信号的第一时频资源位置和第二时频资源位置, 且所述第一时 频资源位置中的资源单元的最小间隔与所述第二时频资源位置中的资源单元 的最小间隔不相同, 和 /或, 所述第一时频资源位置中的资源单元与所述第二 时频资源位置中的资源单元部分重叠; 其中, 所述资源单元是子载波、 资源 块、 符号、 子帧或无线帧。
26、 根据权利要求 24或 25所述的装置, 其特征在于, 还包括: 确定模块, 用于确定第一信息的取值, 所述第一信息包括如下信息中的 至少一种: 小区的功率等级信息、 载波类型信息、 双工模式信息、 随机接入 配置信息和小区特定参考信号 CRS和小区特定参考信号 CSI-RS的配置信息; 所述选择模块具体用于: 根据所述确定模块所确定的取值以及第一对应 关系确定所述实际时频资源位置, 其中, 所述第一对应关系包括: 所述第一 信息的不同取值与不同时频资源位置的对应关系; 和 /或, 才艮据所确定的取值 以及第二对应关系确定所述实际序列, 其中, 所述第一对应关系包括: 所述 第一信息的不同取值与不同序列的对应关系。
27、 根据权利要求 26所述的装置, 其特征在于,
所述选择模块还用于: 根据所述确定模块所确定的取值以及第三对应关 系确定实际扰码, 其中, 所述第三对应关系包括: 所述第一信息的不同取值 与不同序列所使用的扰码的对应关系, 所述实际扰码为: 所述实际序列所使 用的扰码;
还包括: 加扰模块, 用于使用所述实际扰码对所述实际序列进行加扰。
28、 根据权利要求 26或 27所述的装置, 其特征在于,
所述功率等级信息包括所述小区的开关信息或发送功率值。
PCT/CN2013/070688 2013-01-18 2013-01-18 发现参考信号的发送和检测方法及装置 WO2014110795A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CN201910307684.2A CN110113128B (zh) 2013-01-18 2013-01-18 发现参考信号的发送和检测方法及装置
EP22175271.0A EP4113886B1 (en) 2013-01-18 2013-01-18 Communication method and apparatus
PT138714845T PT2941061T (pt) 2013-01-18 2013-01-18 Método e dispositivo para envio e deteção de sinal de referência de descoberta
CN201811343492.9A CN109194437B (zh) 2013-01-18 2013-01-18 发现参考信号的发送和检测方法及装置
EP13871484.5A EP2941061B1 (en) 2013-01-18 2013-01-18 Method and device for sending and detecting discovery reference signal
CN202310788815.XA CN116865923A (zh) 2013-01-18 2013-01-18 发现参考信号的发送和检测方法及装置
EP23185194.0A EP4280485A3 (en) 2013-01-18 2013-01-18 Communication method and apparatus
EP19182565.2A EP3641208B1 (en) 2013-01-18 2013-01-18 Communication method and apparatus
PCT/CN2013/070688 WO2014110795A1 (zh) 2013-01-18 2013-01-18 发现参考信号的发送和检测方法及装置
CN201380001061.3A CN104521294B (zh) 2013-01-18 2013-01-18 发现参考信号的发送和检测方法及装置
CN201811343327.3A CN109194457B (zh) 2013-01-18 2013-01-18 发现参考信号的发送和检测方法及装置
US14/801,165 US9813212B2 (en) 2013-01-18 2015-07-16 Method and apparatus for sending and detecting discovery reference signal
US15/784,863 US10270577B2 (en) 2013-01-18 2017-10-16 Method and apparatus for sending and detecting discovery reference signal
US16/279,204 US11025389B2 (en) 2013-01-18 2019-02-19 Method and apparatus for sending and detecting discovery reference signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/070688 WO2014110795A1 (zh) 2013-01-18 2013-01-18 发现参考信号的发送和检测方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/801,165 Continuation US9813212B2 (en) 2013-01-18 2015-07-16 Method and apparatus for sending and detecting discovery reference signal

Publications (1)

Publication Number Publication Date
WO2014110795A1 true WO2014110795A1 (zh) 2014-07-24

Family

ID=51208976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070688 WO2014110795A1 (zh) 2013-01-18 2013-01-18 发现参考信号的发送和检测方法及装置

Country Status (5)

Country Link
US (3) US9813212B2 (zh)
EP (4) EP4113886B1 (zh)
CN (5) CN104521294B (zh)
PT (1) PT2941061T (zh)
WO (1) WO2014110795A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571147B (zh) * 2014-08-22 2017-02-11 Lg電子股份有限公司 用於在無線通訊系統中對發現訊號定義接收訊號強度指示符的方法及裝置
CN107135527A (zh) * 2016-02-26 2017-09-05 中兴通讯股份有限公司 一种信号传输方法、终端及网络侧设备
CN107689855A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 信号发送、接收方法和设备
CN110677226A (zh) * 2018-07-03 2020-01-10 中国移动通信有限公司研究院 参考信号发送、接收方法及通信设备

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104080119B (zh) * 2013-03-29 2018-05-11 华为技术有限公司 信号发送方法及设备
WO2014165712A1 (en) 2013-04-03 2014-10-09 Interdigital Patent Holdings, Inc. Cell detection, identification, and measurements for small cell deployments
US20150023191A1 (en) * 2013-07-18 2015-01-22 Electronics And Telecommunications Research Institute Cell and mobile terminal discoverly method
EP3031146B1 (en) 2013-08-08 2019-02-20 Intel IP Corporation Method, apparatus and system for electrical downtilt adjustment in a multiple input multiple output system
US9326122B2 (en) 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
US20150163008A1 (en) * 2013-12-06 2015-06-11 Electronics And Telecommunications Research Institute Method and apparatus for cell discovery
CN105101282A (zh) * 2014-05-21 2015-11-25 中兴通讯股份有限公司 发现信号测量的方法、装置及用户终端
US20160227485A1 (en) * 2015-01-29 2016-08-04 Intel Corporation Drs based power control in communication systems
CN104968052B (zh) * 2015-05-15 2017-05-17 宇龙计算机通信科技(深圳)有限公司 配置方法、配置系统、设备、接收方法、接收系统和终端
WO2017046113A1 (en) * 2015-09-18 2017-03-23 Nokia Solutions And Networks Oy Method, system and apparatus for determining physical random access channel resources
CN106686733B (zh) * 2015-11-06 2021-12-14 中兴通讯股份有限公司 一种信号处理方法及基站
JP2019057746A (ja) * 2016-02-04 2019-04-11 シャープ株式会社 端末装置および通信方法
JP6686490B2 (ja) * 2016-02-04 2020-04-22 ソニー株式会社 ユーザ端末、方法及びプログラム
WO2017156711A1 (zh) * 2016-03-15 2017-09-21 华为技术有限公司 信号发送的方法和基站
EP4283896A3 (en) * 2016-05-13 2024-01-10 Sony Group Corporation Communications device and infrastructure equipment
CN107425948B (zh) * 2016-05-24 2020-12-01 华为技术有限公司 参考信号的传输方法及装置、网络设备和用户设备
CN109155963B (zh) * 2016-05-26 2021-04-20 华为技术有限公司 一种系统消息的传输方法、相关设备及通信系统
WO2018058543A1 (en) * 2016-09-30 2018-04-05 Lenovo Innovations Limited (Hong Kong) Retransmission indication
US20190327762A1 (en) * 2016-12-27 2019-10-24 Ntt Docomo, Inc. User terminal and radio communication method
CN108282871B (zh) * 2017-01-06 2023-11-21 华为技术有限公司 接收节点、发送节点和传输方法
EP3567913B1 (en) * 2017-01-25 2021-01-06 Huawei Technologies Co., Ltd. Method and apparatus for sending reference signal, and method and apparatus for receiving reference signal
CN109964437B (zh) * 2017-02-08 2021-07-27 上海朗帛通信技术有限公司 一种用于动态调度的终端、基站中的方法和装置
CN109150424B (zh) * 2017-06-15 2021-09-07 华为技术有限公司 参考信号、消息的传输方法、传输资源确定方法和装置
US20180367287A1 (en) * 2017-06-16 2018-12-20 Mediatek Inc. Sounding Reference Signal And Channel State Information-Reference Signal Co-Design In Mobile Communications
CN111770561A (zh) * 2017-08-28 2020-10-13 上海朗帛通信技术有限公司 一种被用于节省功率的用户、基站中的方法和装置
CN110035567B (zh) * 2018-01-11 2021-05-28 维沃移动通信有限公司 一种参考信号的测量方法和用户终端
US11218963B2 (en) * 2018-10-05 2022-01-04 Qualcomm Incorporated Discontinuous reception wakeup operation with multiple component carriers
CN111200872A (zh) 2018-11-19 2020-05-26 华为技术有限公司 波束上报的方法和通信装置
CN111435888B (zh) * 2019-01-11 2022-02-08 大唐移动通信设备有限公司 一种参考信号的发送、接收方法和通信设备
CN111585726B (zh) * 2019-02-15 2023-05-16 华为技术有限公司 一种通信方法及装置
WO2021109040A1 (zh) * 2019-12-04 2021-06-10 华为技术有限公司 一种序列检测方法及设备
CN115152165A (zh) * 2020-01-14 2022-10-04 奥拉智能系统有限公司 用于高分辨率数字雷达的时频扩展波形
US11620238B1 (en) * 2021-02-25 2023-04-04 Amazon Technologies, Inc. Hardware blinding of memory access with epoch transitions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012022368A1 (en) * 2010-08-16 2012-02-23 Nokia Siemens Networks Oy Transmission of reference signals
CN102448088A (zh) * 2010-09-30 2012-05-09 华为技术有限公司 测量资源指示的方法、测量方法和装置
WO2012116031A1 (en) * 2011-02-22 2012-08-30 Qualcomm Incorporated Discovery reference signal design for coordinated multipoint operations in heterogeneous networks

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW548974B (en) * 2002-01-03 2003-08-21 Cyberlink Corp Real-time rich-media recording system and method thereof
KR100804667B1 (ko) * 2004-03-09 2008-02-20 포스데이타 주식회사 다중-반송파 통신 시스템에서의 랜덤 억세스 방법 및 장치
US7898983B2 (en) * 2007-07-05 2011-03-01 Qualcomm Incorporated Methods and apparatus supporting traffic signaling in peer to peer communications
US8601156B2 (en) * 2007-07-06 2013-12-03 Qualcomm Incorporated Methods and apparatus related to peer discovery and/or paging in peer to peer wireless communications
US8385317B2 (en) * 2007-07-06 2013-02-26 Qualcomm Incorporated Methods and apparatus supporting multiple timing synchronizations corresponding to different communications peers
CN101483626B (zh) * 2008-01-09 2012-11-28 中兴通讯股份有限公司 前导序列的发送、接收、及传输方法
US8625632B2 (en) * 2009-01-30 2014-01-07 Nokia Corporation Multiple user MIMO interference suppression communications system and methods
CN101795170B (zh) * 2009-02-02 2013-11-06 中兴通讯股份有限公司 一种实现数据反馈的方法、接收设备及系统
CN101540978B (zh) * 2009-04-27 2013-09-11 中兴通讯股份有限公司 下行分量载波标识方法、同步下行分量载波上报方法与装置
EP3457590B1 (en) * 2009-06-19 2020-01-22 BlackBerry Limited Downlink reference signal for type ii relay
WO2011013986A2 (en) * 2009-07-30 2011-02-03 Lg Electronics Inc. Apparatus and method for transmitting channel state information in a mobile communication system
US8934446B2 (en) * 2009-10-02 2015-01-13 Lg Electronics Inc. Transmission method and device for a downlink reference signal
CN102111846A (zh) * 2009-12-29 2011-06-29 上海无线通信研究中心 一种解决多载波系统中上行prach资源拥塞的方法
CN102215057B (zh) * 2010-04-02 2014-12-03 华为技术有限公司 生成参考信号的方法及设备
US8526347B2 (en) 2010-06-10 2013-09-03 Qualcomm Incorporated Peer-to-peer communication with symmetric waveform for downlink and uplink
CN103069882B (zh) * 2010-08-13 2016-09-07 瑞典爱立信有限公司 用户设备在授权频谱和非授权频谱中的双重操作
US9019881B2 (en) * 2010-09-01 2015-04-28 Zte Corporation Method and system for waking up node B cell
US20120224568A1 (en) * 2011-03-02 2012-09-06 Interdigital Patent Holdings, Inc. Method and apparatus for synchronizing node transmissions in a network
WO2012167433A1 (en) * 2011-06-09 2012-12-13 Empire Technology Development Llc Method for improving the success rate of reception of control channels in an lte system
EP2730104B1 (en) * 2011-07-06 2019-10-09 Nokia Solutions and Networks Oy Dm rs based downlink lte physical layer
KR101975903B1 (ko) * 2011-07-28 2019-05-08 삼성전자주식회사 무선통신시스템에서 빔 포밍 장치 및 방법
US9730123B2 (en) * 2011-08-22 2017-08-08 Telefonaktiebolaget Lm Ericsson (Publ) Determining root sequence
US20130051277A1 (en) * 2011-08-30 2013-02-28 Renesas Mobile Corporation Method and apparatus for allocating resources for device-to-device discovery
GB2497752B (en) * 2011-12-19 2014-08-06 Broadcom Corp Apparatus and methods for supporting device-to-device discovery in cellular communications
US9544099B2 (en) * 2012-07-02 2017-01-10 Intel Corporation User equipment, evolved node B, and method for multicast device-to-device communications
US8761109B2 (en) * 2012-08-03 2014-06-24 Motorola Mobility Llc Method and apparatus for receiving a control channel
CN102883408B (zh) * 2012-09-21 2017-04-05 中兴通讯股份有限公司 一种小小区的发现方法和装置
WO2014069877A1 (en) * 2012-10-29 2014-05-08 Lg Electronics Inc. Method and apparatus for configuring a reference signal in a wireless communication system
EP3131360B1 (en) * 2012-12-12 2021-06-23 Telefonaktiebolaget LM Ericsson (publ) Base station and user equipment for random access
JP6426106B2 (ja) * 2012-12-17 2018-11-21 エルジー エレクトロニクス インコーポレイティド 下りリンク信号受信方法及びユーザ機器、並びに下りリンク信号送信方法及び基地局
KR20140095994A (ko) * 2013-01-25 2014-08-04 한국전자통신연구원 셀 디스커버리 방법
CN104113851B (zh) * 2013-04-16 2019-04-16 中兴通讯股份有限公司 一种d2d发现方法及基站、用户设备
US20150089382A1 (en) * 2013-09-26 2015-03-26 Wu-chi Feng Application context migration framework and protocol
JP6328132B2 (ja) * 2013-11-01 2018-05-23 京セラ株式会社 移動通信システム及びユーザ端末
US9609502B2 (en) * 2014-02-24 2017-03-28 Intel IP Corporation Adaptive silencing mechanism for device-to-device (D2D) discovery
US10298306B2 (en) * 2014-05-30 2019-05-21 Sharp Kabushiki Kaisha Terminal device, base station apparatus and communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012022368A1 (en) * 2010-08-16 2012-02-23 Nokia Siemens Networks Oy Transmission of reference signals
CN102448088A (zh) * 2010-09-30 2012-05-09 华为技术有限公司 测量资源指示的方法、测量方法和装置
WO2012116031A1 (en) * 2011-02-22 2012-08-30 Qualcomm Incorporated Discovery reference signal design for coordinated multipoint operations in heterogeneous networks

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI571147B (zh) * 2014-08-22 2017-02-11 Lg電子股份有限公司 用於在無線通訊系統中對發現訊號定義接收訊號強度指示符的方法及裝置
US10178568B2 (en) 2014-08-22 2019-01-08 Lg Electronics Inc. Method and apparatus for defining received signal strength indicator for discovery signals in wireless communication system
US10638344B2 (en) 2014-08-22 2020-04-28 Lg Electronics Inc. Method and apparatus for defining received signal strength indicator for discovery signals in wireless communication system
CN107135527A (zh) * 2016-02-26 2017-09-05 中兴通讯股份有限公司 一种信号传输方法、终端及网络侧设备
CN107135527B (zh) * 2016-02-26 2021-07-02 中兴通讯股份有限公司 一种信号传输方法、终端及网络侧设备
CN107689855A (zh) * 2016-08-05 2018-02-13 电信科学技术研究院 信号发送、接收方法和设备
CN110677226A (zh) * 2018-07-03 2020-01-10 中国移动通信有限公司研究院 参考信号发送、接收方法及通信设备

Also Published As

Publication number Publication date
PT2941061T (pt) 2019-12-11
CN104521294A (zh) 2015-04-15
EP2941061B1 (en) 2019-09-25
CN109194437A (zh) 2019-01-11
EP2941061A1 (en) 2015-11-04
CN109194457B (zh) 2023-10-20
CN109194437B (zh) 2019-09-03
US9813212B2 (en) 2017-11-07
US11025389B2 (en) 2021-06-01
US20150326356A1 (en) 2015-11-12
CN110113128A (zh) 2019-08-09
EP4113886B1 (en) 2023-08-30
CN109194457A (zh) 2019-01-11
US10270577B2 (en) 2019-04-23
EP3641208B1 (en) 2022-07-27
CN104521294B (zh) 2019-05-10
EP4113886A1 (en) 2023-01-04
EP4280485A3 (en) 2024-03-06
CN110113128B (zh) 2021-10-26
US20190181992A1 (en) 2019-06-13
EP2941061A4 (en) 2016-01-06
EP3641208A1 (en) 2020-04-22
EP4280485A2 (en) 2023-11-22
US20180041315A1 (en) 2018-02-08
CN116865923A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
US11025389B2 (en) Method and apparatus for sending and detecting discovery reference signal
CN111406421B (zh) 切换执行中的多波束随机接入过程
US11582749B2 (en) Cell discovery in a wireless network using an unlicensed radio frequency spectrum band
US11570698B2 (en) Discovering physical cell identifiers in wireless communications
KR102337798B1 (ko) 장치-대-장치 동기화 소스 선택
EP2842367B1 (en) Apparatus and method for cell information indication in a wireless network
US20150098349A1 (en) Sequence generation for shared spectrum
JP2020536429A (ja) 通信方法及び通信装置
KR20180044914A (ko) 협대역 무선 통신들을 위한 다운링크 및 동기화 기법들
WO2015042858A1 (zh) 通信的方法、用户设备和基站
US20230007603A1 (en) Methods for enabling a reduced bandwidth wireless device to access a cell
WO2014179955A1 (zh) 一种信息检测及发送的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013871484

Country of ref document: EP