WO2014110014A1 - Strontium and cesium specific ion-exchange media - Google Patents

Strontium and cesium specific ion-exchange media Download PDF

Info

Publication number
WO2014110014A1
WO2014110014A1 PCT/US2014/010444 US2014010444W WO2014110014A1 WO 2014110014 A1 WO2014110014 A1 WO 2014110014A1 US 2014010444 W US2014010444 W US 2014010444W WO 2014110014 A1 WO2014110014 A1 WO 2014110014A1
Authority
WO
WIPO (PCT)
Prior art keywords
water stream
water
group
cations
radionuclides
Prior art date
Application number
PCT/US2014/010444
Other languages
French (fr)
Inventor
Alfonse Maglio
David DUROCHER
Original Assignee
Basf Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Corporation filed Critical Basf Corporation
Priority to CN201480004252.XA priority Critical patent/CN104903253A/en
Priority to RU2015133020A priority patent/RU2664939C2/en
Priority to JP2015552727A priority patent/JP6618803B2/en
Priority to CA2896971A priority patent/CA2896971A1/en
Priority to KR1020157021083A priority patent/KR20150105392A/en
Priority to BR112015016324A priority patent/BR112015016324A2/en
Priority to SG11201504720QA priority patent/SG11201504720QA/en
Priority to EP14738180.0A priority patent/EP2943441A4/en
Priority to MX2015008682A priority patent/MX2015008682A/en
Publication of WO2014110014A1 publication Critical patent/WO2014110014A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/14Base exchange silicates, e.g. zeolites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/10Processing by flocculation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • This invention relates to a novel ion exchange media capable of removing radionuclides from water, including seawater.
  • ion exchangers both organic and inorganic, including crystalline molecular sieve zeolites
  • ion exchangers both organic and inorganic, including crystalline molecular sieve zeolites
  • a molecular sieve will function normally to the point at which the metal which is desirous of being removed effectively occupies some portion of the ionic sites in said zeolite.
  • the zeolite must either be discarded or regenerated.
  • U.S. 5,053,139 discloses that certain amorphous titanium and tin silicate gels demonstrate remarkable rates of uptake for heavy metal species such as lead, cadmium, zinc, chromium and mercury which are an order of magnitude greater than that of prior art absorbents or ion exchangers under the conditions tested which include the presence of competing ions such as calcium and magnesium.
  • the combination of extraordinary lead selectivities, capacity and uptake rates allows such materials to strip lead from aqueous streams with minimal contact time allowing direct end use in filters for water purification, be it under-the-counter or under-the-faucet, or whole-house devices.
  • This invention is directed to amorphous and crystalline titanosilicate materials that have an unexpected selectivity for cesium and strontium, especially in the presence of high levels of competing ions.
  • the titanosilicates of this invention show very high, unexpected selectivity in the presence of such competing cations such as sodium, calcium, magnesium and potassium, such as present in seawater.
  • the titanosilicates of this invention offer what is expected to be a more cost effective alternative at comparable performance to the specialized MST media noted above.
  • the amorphous titanosilicates of this invention can be produced in agglomerated form without the need for a binder, thus providing a significant advantage over MST and CST materials that are produced in powder form and must be bound, for example according to the teachings of Hobbs, D. T. Journal of the South Carolina Academy of Science, [201 1 ], 9(1 ) "Properties and Uses of Sodium Titanates and Peroxotitanates".
  • a further advantage of the proposed invention is that such inorganic materials can be vitrified making them suitable for long-term burial of radioactive nuclear waste. Organic ion exchange resins, for example, do not offer these benefits.
  • the high titanium content of MST makes those materials more difficult to vitrify relative to the subject of this invention.
  • amorphous and crystalline titanium silicates are admirably suited to remove radionuclides from water in the presence of competing ions normally found in seawater. More specifically, di- and tri-valent radionuclides are capable of being removed from contaminated aqueous streams, such as seawater, surface water and ground water which contain non- radio-active Groups I and II cations. Removal of cesium and strontium in the presence of competing ions by titanium silicates is readily achieved.
  • silicate gels have long been known in the art to be useful for a wide variety of applications including ion exchangers, and recognition that certain silicate gels were so unusual that they could also effectively remove lead at an extremely high rate, as disclosed in U.S. 5,053,139, the use of titanium silicates for the removal of radionuclides such as cesium and strontium from seawater has not been recognized.
  • the amorphous titanium silicates useful in the novel process of this invention are titanium silicates, which preferably contain a silicon-to-titanium ratio of from 2:1 to 0.5:1 , with silicon-to-titanium ratios of 1 .5:1 to 1 .2:1 being most preferred.
  • the titanium silicates useful in the novel process of this invention are prepared by merely contacting a solution of a soluble titanium salt, such as the chloride, the bromide, the oxychloride, etc. with a sodium silicate solution and sufficient alkali with vigorous stirring.
  • a soluble titanium salt such as the chloride, the bromide, the oxychloride, etc.
  • the pH of the solution should fall between 4 and 9, and preferably between 7 and 8, and if this is not the case, the pH is adjusted with dilute HCI or any other acid or dilute sodium hydroxide.
  • the sample is then washed free of salts and dried. It is usually dried at about 70° C for 24 to 48 hours, although the drying temperature and time are not critical.
  • the amorphous titanium silicates are formed as a precipitated gel.
  • the gel can be used as made, which is usually in its sodium form, or in other alkali or alkaline earth metal forms, as well as in its hydrogen form.
  • the gel is washed and then dried, the dried gel being stable in water. If the gel is dried by spray drying, then the material forms a powder. If the gel is tray dried, the material forms a rock-like state, which resembles dried mud with shrinkage cracks. The rock-like material is ground to make granules or stress fractured via hydrostatic pressure.
  • the amorphous nature of these titanium silicates can be evidenced by a powder X-ray diffraction pattern with no crystalline character.
  • the present invention also includes stable crystalline titanium silicate molecular sieve zeolites which have a pore size of approximately 3-4 Angstrom units and a titania/silica mole ratio in the range of from 1 .0 to 10. These materials are known as ETS-4 and are described in U.S. 4,938,939.
  • the ETS-4 titanium silicates have a definite X-ray diffraction pattern unlike other molecular sieve zeolites and can be identified in terms of mole ratios of oxides as follows:
  • M is at least one cation having a valence of n
  • y is from 1 .0 to 10.0
  • z is from 0 to 100.
  • M is a mixture of alkali metal cations, particularly sodium and potassium
  • y is at least 2.5 and ranges up to about 5.
  • ETS molecular sieve zeolites have an ordered crystalline structure and an X-ray powder diffraction pattern having the following significant lines:
  • ETS-4 molecular sieve zeolites can be prepared from a reaction mixture containing a titanium source such as titanium tetrachloride, a source of silica, a source of alkalinity such as an alkali metal hydroxide, water and, optionally, an alkali metal fluoride having a composition in terms of mole ratios falling within the following ranges.
  • a titanium source such as titanium tetrachloride
  • silica a source of silica
  • alkalinity such as an alkali metal hydroxide
  • water optionally, an alkali metal fluoride having a composition in terms of mole ratios falling within the following ranges.
  • M indicates the cations of valence n derived from the alkali metal hydroxide and potassium fluoride and/or alkali metal salts used for preparing the titanium silicate according to the invention.
  • the reaction mixture is heated to a temperature of from about 100°C to 300°C for a period of time ranging from about 8 hours to 40 days, or more.
  • the hydrothermal reaction is carried out until crystals are formed and the resulting crystalline product is thereafter separated from the reaction mixture, cooled to room temperature, filtered and water washed.
  • the reaction mixture can be stirred although it is not necessary. It has been found that when using gels, stirring is unnecessary but can be employed.
  • the preferred temperature range is 100°C. to 175°C for a period of time ranging from 12 hours to 15 days. Crystallization is performed in a continuous or batchwise manner under autogeneous pressure in an autoclave or static bomb reactor. Following the water washing step, the crystalline ETS- 4 is dried at temperatures of 100 to 400°F for periods ranging up to 30 hours.
  • the ETS-4 material is synthesized as a powder, typically, as a slurry of distinct particles in the micron size range. To utilize this material in a packed bed requires agglomeration of the ETS-4 with a binder, as, for example, disclosed in U.S. 4,938,939.
  • a binder as, for example, disclosed in U.S. 4,938,939.
  • ion exchangers having extraordinary selectivity, capacity and rate of exchange can be prepared by precipitating hydrous metal oxides wherein the mole ratio of silicon to titanium is in the range from 1 :4 to 1 .9:1 . Preferred mole ratios have been set forth above.
  • the titanium silicates which are operable in the novel process of this invention have cumulative desorption pore volumes in cubic centimeters per gram ranging from about 0.03 to about 0.25. Cumulative desorption pore volume is determined by the method as described in U.S. 5,053,139.
  • tin silicates would also be useful in removing radionuclides from aqueous streams containing competing ions.
  • the tin silicate gels can be prepared as mentioned above by contacting a solution of a soluble tin salt, such as the chloride, bromide, oxychloride, etc. with a sodium silicate solution and sufficient alkali, and vigorous stirring.
  • the titanium silicates and tin silicates of this invention are capable of removing radionuclide cations from aqueous streams containing substantial amounts of competing cations.
  • the invention is applicable for removing such cations from natural surface and ground water, such as for purification of potable water, as well as for remediation of natural water sources, which have become contaminated.
  • the invention is capable of removing the radionuclide cation contamination from natural aqueous sources, which have become contaminated due to industrial waste runoff, or accidental leakage of such materials from industrial processing.
  • a particularly contemporary use would be the removal of such radionuclide cations from industrial process streams, such as, for example, from fuel pool water of a nuclear reactor used to produce electricity, as well as from nuclear electrical generating plants which have been overrun by seawater, such as in the recent tsunami which afflicted Japan several years ago, or from other industrial process streams.
  • the silicates of the present invention are capable of removing radionuclide cations including, but not limited to, cesium and strontium from aqueous systems, which contain at least 10 times the amount of cations other than the radionuclide cations on an equivalent basis.
  • radionuclide cations including, but not limited to, cesium and strontium from aqueous systems, which contain at least 10 times the amount of cations other than the radionuclide cations on an equivalent basis.
  • Such other cations would include Group I and Group II metal cations such as sodium, potassium, calcium and magnesium.
  • the invention is also useful in removing the radionuclide cations from aqueous systems, in which the aqueous stream contains at least 100 times the amount of the light Group I and Group II metal cations and, even, when such aqueous streams contain at least 1 ,000 times and more of the competing Group I and Group II cations relative to the radionuclide cations on an equivalent basis.
  • solution A Two liters of a 1 .5M titanium chloride solution (solution A) are made by adding 569.1 1 g TiCI 4 to enough deionized water to make 2 liters.
  • solution B Two liters of 1 .5M sodium silicate solution (solution B) are made by dissolving 638.2 g of Na 2 S1O3.5H 2 O in enough 3M NaOH to make 2 liters.
  • Solution B is added to solution A at a rate of 16 cc/minute with extremely vigorous stirring. After addition is complete, the mixture is allowed to continue mixing for an additional 15 minutes.
  • the pH of the solution should fall between 7.5 and 7.9; if this is not the case, the pH is adjusted with dilute HCI or dilute NaOH. The sample is then allowed to age one hour.
  • any water on top of the gel is decanted off.
  • the sample is then filtered, washed with 1 liter deionized water per liter of gel, reslurried in 4-6 liters of deionized water, filtered, and finally rewashed with 2 liters of water per liter of gel.
  • the sample is then dried at 100°C for 24-48 hours.
  • the gel produced from this method has a silicon-to-titanium ratio of approximately 1 :1 and a surface area of approximately 295 m 2 /g.
  • the large gel particulates are crushed into small particulates predominantly in the range of 20-60 mesh.
  • the particles are then subjected to ion exchange testing.
  • the pore size distribution as measured by nitrogen desorption is found to have an average pore radius of 15 angstroms.
  • the cumulative desorption pore volume of this sample is found to be 0.148 cc/g.
  • a solution using reagent grade chemicals in deionized distilled water was prepared as shown in Table 3, which provides a summary of a composition for a simulated high-level nuclear waste solution used to evaluate the titanium silicate of this invention.
  • a targeted amount of 5.2 ppm of non-radioactive Sr was added to the solution shown in Table 3.
  • 2.5 mg of titanosilicate formed in Example 1 was added to 25 ml of the simulated solution and allowed to equilibrate with agitation for 40 hours at ambient room temperature. After equilibration, the solution was filtered through a 0.45 micron pore size nylon membrane filter to remove any residual solids.
  • Strontium levels were effectively reduced to the following concentrations in a series of six separate experiments as described in this example: 1 .7 ppm, 1 .5 ppm, 1 .5 ppm, 1 .4 ppm, 1 .4 ppm, and 1 .5 ppm.
  • Clinoptilolite and zeolite 4A are common zeolites with known selectivity for heavy cations and were thus compared to the titanosilicate of Example 1 .
  • Titanosilicate 1 10 4910 128 2 5 0.012
  • Titanosilicate 1 100 3530 342 44 52 0.335
  • Titanosilicate 1 1000 3260 377 99 1 12 3
  • Clinoptilolite 1 1000 3200 364 107 120 5
  • Example 7 To further show the advantages of the present invention relative to current technology, the experiment of Example 4 was repeated using a standard granular zeolite type 4A supplied by BASF under the designation 4A BF. The results of the dynamic breakthrough test are shown in Table 7. The emergence of strontium in the effluent (also referred to as breakthrough) is nearly immediate and much sooner than in Example 4 despite this zeolite having more than twice the ion exchange capacity than the titanosilicate. Table 7

Abstract

This invention is directed to amorphous and crystalline titanosilicate materials that have an unexpected selectivity for cesium and strontium, especially in the presence of high levels of competing ions. The titanosilicates of this invention show very high, unexpected selectivity in the presence of such competing cations such as sodium, calcium, magnesium and potassium, such as present in seawater.

Description

STRONTIUM AND CESIUM SPECIFIC ION-EXCHANGE MEDIA
FIELD OF THE INVENTION
This invention relates to a novel ion exchange media capable of removing radionuclides from water, including seawater.
BACKGROUND OF THE INVENTION
The use of ion exchangers, both organic and inorganic, including crystalline molecular sieve zeolites, in order to remove certain metals from aqueous solutions is notoriously old in the art and the patent and technical literature contains many examples of such techniques. Although molecular sieves generally are effective for the removal of certain cations, nevertheless, when competing cations are present in the aqueous solution, a molecular sieve will function normally to the point at which the metal which is desirous of being removed effectively occupies some portion of the ionic sites in said zeolite.
Thereafter, the zeolite must either be discarded or regenerated.
A very practical use for the above type of operation is in the home water softening industry wherein an ion exchanger of the organic or inorganic type is contacted with water until the calcium and magnesium ions which are inherently present in most mineral water replaces the ion originally associated with the ion exchanger, usually sodium. At this point, the ion exchanger has to be
regenerated and this is usually accomplished by back-washing, or back-flushing, or otherwise contacting the ion exchanger with a solution of a different cation than that which was removed from the water, i.e., usually sodium in the form of sodium chloride. The sodium exchanges for the calcium/magnesium in the spent ion exchanger and the cycle is ready to start anew.
In evaluating the properties of a suitable ion exchanger, it is quite obvious that the environment in which it works to remove the unwanted metal or metals is of extreme importance and its susceptibility to competing ions is of paramount importance in obtaining a practical exchanger as opposed to one that is merely a scientific curiosity. Thus, for example, in industrial processes wherein heavy metals are present in contaminated aqueous solutions, such heavy metals are not ordinarily present by themselves because the water contains other ions, particularly calcium and magnesium. Thus for an ion exchanger to be practical in the contact of industrial waste streams containing heavy metals, it is necessary that the ion exchanger be sufficiently selective towards heavy metals versus magnesium or calcium which compete for its ion exchange sites.
U.S. 5,053,139 discloses that certain amorphous titanium and tin silicate gels demonstrate remarkable rates of uptake for heavy metal species such as lead, cadmium, zinc, chromium and mercury which are an order of magnitude greater than that of prior art absorbents or ion exchangers under the conditions tested which include the presence of competing ions such as calcium and magnesium. The combination of extraordinary lead selectivities, capacity and uptake rates, allows such materials to strip lead from aqueous streams with minimal contact time allowing direct end use in filters for water purification, be it under-the-counter or under-the-faucet, or whole-house devices. While this patent teaches a process for the removal of heavy metals from aqueous solutions containing competing ions such as calcium and/or magnesium using an amorphous titanium or tin silicate, no information is provided for the selective removal of Group I or II ions, such as cesium or strontium from aqueous streams containing competing ions.
Throughout the nuclear industry, many aqueous streams exist containing radioactive ions such as strontium and cesium which must be removed prior to disposal of the liquid. Ion exchange is an ideal methodology to remove such ions. However, these streams generally contain non-radioactive competing cations that render most ion exchange materials ineffective due to limited selectivity. There are many different streams containing various levels of different competing ions. For example, the Fukushima, Japan site is known to have large quantities of water containing radioactive strontium and cesium, complicated by contamination with substantial levels of seawater due to the tsunami of 201 1 . Removing the radionuclides in this competing ion environment has been challenging. Another example of high competing ions is found in high level nuclear waste solutions. These solutions, proposed materials and test methods are reviewed by Hobbs, D. T., et al in "Strontium and Actinide Separations from High Level Nuclear Waste Solutions Using Monosodium Titanate 1 . Simulant Testing", Separation Science and Technology, 40: 3093-31 1 1 , 2005. Hobbs discloses that monosodium titanate (MST), NaTi2O5 xH2O, an amorphous white solid, exhibits high selectivity for many metallic ions in both acidic and alkaline waste solutions including those containing strontium and several actinides. To those skilled in the art, it is well know that very expensive and specialized mono sodium titanates (MST) and crystalline silicotitanates (CST) are employed for the purification of these streams.
SUMMARY OF THE INVENTION
This invention is directed to amorphous and crystalline titanosilicate materials that have an unexpected selectivity for cesium and strontium, especially in the presence of high levels of competing ions. The titanosilicates of this invention show very high, unexpected selectivity in the presence of such competing cations such as sodium, calcium, magnesium and potassium, such as present in seawater. The titanosilicates of this invention offer what is expected to be a more cost effective alternative at comparable performance to the specialized MST media noted above. Further, the amorphous titanosilicates of this invention can be produced in agglomerated form without the need for a binder, thus providing a significant advantage over MST and CST materials that are produced in powder form and must be bound, for example according to the teachings of Hobbs, D. T. Journal of the South Carolina Academy of Science, [201 1 ], 9(1 ) "Properties and Uses of Sodium Titanates and Peroxotitanates". A further advantage of the proposed invention is that such inorganic materials can be vitrified making them suitable for long-term burial of radioactive nuclear waste. Organic ion exchange resins, for example, do not offer these benefits. Also, the high titanium content of MST makes those materials more difficult to vitrify relative to the subject of this invention.
DETAILED DESCRIPTION OF THE INVENTION
It has now been found that certain amorphous and crystalline titanium silicates are admirably suited to remove radionuclides from water in the presence of competing ions normally found in seawater. More specifically, di- and tri-valent radionuclides are capable of being removed from contaminated aqueous streams, such as seawater, surface water and ground water which contain non- radio-active Groups I and II cations. Removal of cesium and strontium in the presence of competing ions by titanium silicates is readily achieved.
Although silicate gels have long been known in the art to be useful for a wide variety of applications including ion exchangers, and recognition that certain silicate gels were so unusual that they could also effectively remove lead at an extremely high rate, as disclosed in U.S. 5,053,139, the use of titanium silicates for the removal of radionuclides such as cesium and strontium from seawater has not been recognized. The amorphous titanium silicates useful in the novel process of this invention are titanium silicates, which preferably contain a silicon-to-titanium ratio of from 2:1 to 0.5:1 , with silicon-to-titanium ratios of 1 .5:1 to 1 .2:1 being most preferred.
The titanium silicates useful in the novel process of this invention are prepared by merely contacting a solution of a soluble titanium salt, such as the chloride, the bromide, the oxychloride, etc. with a sodium silicate solution and sufficient alkali with vigorous stirring.
The pH of the solution should fall between 4 and 9, and preferably between 7 and 8, and if this is not the case, the pH is adjusted with dilute HCI or any other acid or dilute sodium hydroxide. The sample is then washed free of salts and dried. It is usually dried at about 70° C for 24 to 48 hours, although the drying temperature and time are not critical.
Initially, the amorphous titanium silicates are formed as a precipitated gel. The gel can be used as made, which is usually in its sodium form, or in other alkali or alkaline earth metal forms, as well as in its hydrogen form. The gel is washed and then dried, the dried gel being stable in water. If the gel is dried by spray drying, then the material forms a powder. If the gel is tray dried, the material forms a rock-like state, which resembles dried mud with shrinkage cracks. The rock-like material is ground to make granules or stress fractured via hydrostatic pressure. The amorphous nature of these titanium silicates can be evidenced by a powder X-ray diffraction pattern with no crystalline character.
The present invention also includes stable crystalline titanium silicate molecular sieve zeolites which have a pore size of approximately 3-4 Angstrom units and a titania/silica mole ratio in the range of from 1 .0 to 10. These materials are known as ETS-4 and are described in U.S. 4,938,939. The ETS-4 titanium silicates have a definite X-ray diffraction pattern unlike other molecular sieve zeolites and can be identified in terms of mole ratios of oxides as follows:
1 .0±0.25 M2/nO:TiO2:y SiO2:z H2O wherein M is at least one cation having a valence of n, y is from 1 .0 to 10.0, and z is from 0 to 100. In a preferred embodiment, M is a mixture of alkali metal cations, particularly sodium and potassium, and y is at least 2.5 and ranges up to about 5.
Members of the ETS molecular sieve zeolites have an ordered crystalline structure and an X-ray powder diffraction pattern having the following significant lines:
TABLE 1
XRD POWDER PATTERN OF ETS-4
(0-40°2 theta)
SIGNIFICANT d-SPACING (ANGS.) l/lo
1 1 .65 ± 0.25 S-VS
6.95 ± 0.25 S-VS
5.28 ± 15 M-S
4.45 ± 15 W-M
2.98 ± 05 VS
In the above table,
VS=50-100
S=30-70
M=15-50
W=5-30
ETS-4 molecular sieve zeolites can be prepared from a reaction mixture containing a titanium source such as titanium tetrachloride, a source of silica, a source of alkalinity such as an alkali metal hydroxide, water and, optionally, an alkali metal fluoride having a composition in terms of mole ratios falling within the following ranges.
TABLE 2
Broad Preferred Most Preferred
SiO2 IT\ 1 -10 1 -10 2-3
H2O/SiO2 2-100 5-50 10-25
Mn/SiO2 0.1 -10 .5-5 1 -3 wherein M indicates the cations of valence n derived from the alkali metal hydroxide and potassium fluoride and/or alkali metal salts used for preparing the titanium silicate according to the invention. The reaction mixture is heated to a temperature of from about 100°C to 300°C for a period of time ranging from about 8 hours to 40 days, or more. The hydrothermal reaction is carried out until crystals are formed and the resulting crystalline product is thereafter separated from the reaction mixture, cooled to room temperature, filtered and water washed. The reaction mixture can be stirred although it is not necessary. It has been found that when using gels, stirring is unnecessary but can be employed. When using sources of titanium which are solids, stirring is beneficial. The preferred temperature range is 100°C. to 175°C for a period of time ranging from 12 hours to 15 days. Crystallization is performed in a continuous or batchwise manner under autogeneous pressure in an autoclave or static bomb reactor. Following the water washing step, the crystalline ETS- 4 is dried at temperatures of 100 to 400°F for periods ranging up to 30 hours.
The ETS-4 material is synthesized as a powder, typically, as a slurry of distinct particles in the micron size range. To utilize this material in a packed bed requires agglomeration of the ETS-4 with a binder, as, for example, disclosed in U.S. 4,938,939. For reasons which are not completely understood, it has been discovered that ion exchangers having extraordinary selectivity, capacity and rate of exchange can be prepared by precipitating hydrous metal oxides wherein the mole ratio of silicon to titanium is in the range from 1 :4 to 1 .9:1 . Preferred mole ratios have been set forth above.
In general, the titanium silicates which are operable in the novel process of this invention have cumulative desorption pore volumes in cubic centimeters per gram ranging from about 0.03 to about 0.25. Cumulative desorption pore volume is determined by the method as described in U.S. 5,053,139.
Although titanium silicates are preferred, it is believed tin silicates would also be useful in removing radionuclides from aqueous streams containing competing ions. The tin silicate gels can be prepared as mentioned above by contacting a solution of a soluble tin salt, such as the chloride, bromide, oxychloride, etc. with a sodium silicate solution and sufficient alkali, and vigorous stirring.
The titanium silicates and tin silicates of this invention are capable of removing radionuclide cations from aqueous streams containing substantial amounts of competing cations. Thus, the invention is applicable for removing such cations from natural surface and ground water, such as for purification of potable water, as well as for remediation of natural water sources, which have become contaminated. In particular, the invention is capable of removing the radionuclide cation contamination from natural aqueous sources, which have become contaminated due to industrial waste runoff, or accidental leakage of such materials from industrial processing. A particularly contemporary use would be the removal of such radionuclide cations from industrial process streams, such as, for example, from fuel pool water of a nuclear reactor used to produce electricity, as well as from nuclear electrical generating plants which have been overrun by seawater, such as in the recent tsunami which afflicted Japan several years ago, or from other industrial process streams.
In general, the silicates of the present invention are capable of removing radionuclide cations including, but not limited to, cesium and strontium from aqueous systems, which contain at least 10 times the amount of cations other than the radionuclide cations on an equivalent basis. Such other cations would include Group I and Group II metal cations such as sodium, potassium, calcium and magnesium. The invention is also useful in removing the radionuclide cations from aqueous systems, in which the aqueous stream contains at least 100 times the amount of the light Group I and Group II metal cations and, even, when such aqueous streams contain at least 1 ,000 times and more of the competing Group I and Group II cations relative to the radionuclide cations on an equivalent basis. EXAMPLE 1
Two liters of a 1 .5M titanium chloride solution (solution A) are made by adding 569.1 1 g TiCI4 to enough deionized water to make 2 liters. Two liters of 1 .5M sodium silicate solution (solution B) are made by dissolving 638.2 g of Na2 S1O3.5H2O in enough 3M NaOH to make 2 liters. Solution B is added to solution A at a rate of 16 cc/minute with extremely vigorous stirring. After addition is complete, the mixture is allowed to continue mixing for an additional 15 minutes. The pH of the solution should fall between 7.5 and 7.9; if this is not the case, the pH is adjusted with dilute HCI or dilute NaOH. The sample is then allowed to age one hour. After aging, any water on top of the gel is decanted off. The sample is then filtered, washed with 1 liter deionized water per liter of gel, reslurried in 4-6 liters of deionized water, filtered, and finally rewashed with 2 liters of water per liter of gel. The sample is then dried at 100°C for 24-48 hours.
The gel produced from this method has a silicon-to-titanium ratio of approximately 1 :1 and a surface area of approximately 295 m2/g. Once dried, the large gel particulates are crushed into small particulates predominantly in the range of 20-60 mesh. The particles are then subjected to ion exchange testing. The pore size distribution as measured by nitrogen desorption is found to have an average pore radius of 15 angstroms. The cumulative desorption pore volume of this sample is found to be 0.148 cc/g.
EXAMPLE 2
A solution using reagent grade chemicals in deionized distilled water was prepared as shown in Table 3, which provides a summary of a composition for a simulated high-level nuclear waste solution used to evaluate the titanium silicate of this invention. A targeted amount of 5.2 ppm of non-radioactive Sr was added to the solution shown in Table 3. 2.5 mg of titanosilicate formed in Example 1 was added to 25 ml of the simulated solution and allowed to equilibrate with agitation for 40 hours at ambient room temperature. After equilibration, the solution was filtered through a 0.45 micron pore size nylon membrane filter to remove any residual solids. Strontium levels were effectively reduced to the following concentrations in a series of six separate experiments as described in this example: 1 .7 ppm, 1 .5 ppm, 1 .5 ppm, 1 .4 ppm, 1 .4 ppm, and 1 .5 ppm.
Figure imgf000011_0001
EXAMPLE 3
Five gallons of an artificial solution representing a concentration of 30% ordinary seawater was prepared by diluting the ingredients in Table 4:
Table 4
Component Mass, g
NaCI 136.27
MgCI2«6H20 61 .92
Na2S04 22.71
CaCI2«6H20 1 1 .32
KCI 3.97
KBr 0.57
SrCI2«6H20 0.262
Clinoptilolite and zeolite 4A are common zeolites with known selectivity for heavy cations and were thus compared to the titanosilicate of Example 1 .
Twenty grams of the 30% seawater solution was added to each of three 250 ml Ehrlenmeyer flasks. To each solution two grams of each ion exchange sample was added. A second set of three flasks were prepared using fifty grams of solution and 0.5 g of each media and a third set using 200 grams of solution and 0.2 grams of each media. The nine samples thus were dosed according to the ratios shown in Table 5. The flasks were manually agitated several times per day and allowed to equilibrate for 4210 minutes. Aliquots of each end-of-run solution were withdrawn through a syringe fitted with a micron size filter and analyzed for the cations present in the starting solution. The results are included in Table 5 and clearly show the superior strontium removal performance of the titanosilicate. Table 5
Media wt ratio Na, ppm Mg, ppm Ca, ppm K, ppm Sr, ppm media:
solution
Starting Solution - 3181 387 108 1 18 4.8
Titanosilicate 1 :10 4910 128 2 5 0.012
Zeolite 4A 1 :10 4500 1 <1 1 1 0.052
Clinoptilolite 1 :10 2790 364 419 99 6
Titanosilicate 1 :100 3530 342 44 52 0.335
Zeolite 4A 1 :100 3740 192 27 42 0.589
Clinoptilolite 1 :100 3130 368 141 1 10 5
Titanosilicate 1 :1000 3260 377 99 1 12 3
Zeolite 4A 1 :1000 3080 379 98 1 1 1 4
Clinoptilolite 1 :1000 3200 364 107 120 5
EXAMPLE 4
In commercial practice, ion exchange materials are largely employed in dynamic flow systems owing to the improved performance and practicality.
These systems require water stable agglomerates to ensure the dynamic
pressure drop is acceptable. In such systems the treated effluent stream
changes composition over time representing the various mass transfer fronts moving through the bed. The lowest selectivity ion emerges from the bed first, followed successively by those with incrementally higher selectivity. The stock seawater solution from Example 3 was further diluted with deionized water at a ratio of 1 1 : 1 [water:stock]. Ten grams of the titanosilicate of Example 1 was placed in a glass column with an internal diameter of 1 1 mm and packed with inert glass wool on both sides of the bed. The diluted stock solution was flowed through the column at an average rate of 1 .74 ml/min. The outlet stream was monitored at various times and analyzed for the ions in the stock solution. The results in Table 6 clearly show the selectivity for strontium is several orders of magnitude greater than the competing ions of sodium, magnesium, calcium and potassium. Table 6
Elapsed time,
hh:mm Na, ppm Mg, ppm Ca, ppm K, ppm Sr, ppb
1 :05 347 <1 <1 <1 0.25
18:15 320 14 <1 <1 0.13
43:05 284 33 <1 <1 0.08
66:20 272 37 <1 <1 0.12
89:55 271 37 2 3 0.19
1 14:25 268 34 3 6 0.43
138:05 268 35 5 8 1 .44
185:55 264 33 7 10 2.94
210:05 265 33 7 10 13.3
236:35 272 33 7 10 20.2
288:55 272 31 8 1 1 33.9
305:55 269 33 8 1 1 34.7
330:15 271 32 8 10 44.0
354:40 258 33 9 1 1 38.8
377:55 255 32 9 10 42.4
402:10 252 33 9 10 48.4
431 :35 254 31 9 1 1 53.8
456:10 257 33 9 1 1 56.8
474:20 250 33 9 10 66.8
EXAMPLE 5
To further show the advantages of the present invention relative to current technology, the experiment of Example 4 was repeated using a standard granular zeolite type 4A supplied by BASF under the designation 4A BF. The results of the dynamic breakthrough test are shown in Table 7. The emergence of strontium in the effluent (also referred to as breakthrough) is nearly immediate and much sooner than in Example 4 despite this zeolite having more than twice the ion exchange capacity than the titanosilicate. Table 7
Elapsed Time,
hh:mm Na, ppm Mg, ppm Ca, ppm K, ppm Sr, ppb
0:30 518 <1 <1 1 5
21 :45 320 21 4 4 91
51 :30 310 26 6 6 172
70:30 308 27 6 7 194
1 17:35 304 28 7 8 234

Claims

1 . A method of removing di- and/or tri-valent radionuclides from a water stream which contains lighter Group I and Group II cations comprising: contacting said water stream with a titanium silicate.
2. The method of claim 1 , wherein said titanium silicate is amorphous.
3. The method of claim 2, wherein the titanium silicate has a Si to Ti ratio of from about 2:1 to 0.5-1 .
4. The method of claim 3, wherein said Si to Ti ratio is from about 1 .5:1 to 0.9:1 .
5. The method of claim 1 , wherein said titanium silicate is crystalline ETS-4.
6. The method of claim 2, wherein said amorphous silicate is present as binder-free granules.
7. The method of claim 5, wherein said ETS-4 is in the form of granules containing a binder.
8. The method of claim 1 , wherein said water stream comprises seawater.
9. The method of claim 1 , wherein said water stream comprises surface or ground water.
10. The method of claim 9, wherein said water stream is purified to produce potable water, or for remediation of water streams which have been contaminated with said radionuclides.
1 1 . The method of claim 1 , wherein said radionuclides comprise cesium and/or strontium.
12. The method of claim 1 , wherein said water stream is from nuclear fuel pool water, or from a seawater flooded nuclear power plant for generating electricity.
13. The method of claim 1 , wherein said cations comprise sodium,
potassium, calcium, magnesium, or mixtures thereof.
14. The method of claim 1 , wherein the water stream contains at least 10 times the amount of Group I and Group II cations relative to said radionuclides on an equivalent basis.
15. The method of claim 1 , wherein the water stream contains at least 100 times the amount of Group I and Group II cations relative to said radionuclides on an equivalent basis.
16. The method of claim 1 , wherein the water stream contains at least 1 ,000 times the amount of Group I and Group II cations relative to said radionuclides on an equivalent basis.
17. A method of removing di- and/or tri-valent radionucleotides from a water stream which contains light Group I and Group II cations comprising: contacting said water stream with a tin silicate.
18. The method of claim 14, wherein said water stream comprises seawater.
19 The method of claim 14, wherein said water stream comprises surface or ground water.
20. The method of claim 14, wherein said radionuclides comprise cesium and/or strontium.
PCT/US2014/010444 2013-01-09 2014-01-07 Strontium and cesium specific ion-exchange media WO2014110014A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201480004252.XA CN104903253A (en) 2013-01-09 2014-01-07 Strontium and cesium specific ion-exchange media
RU2015133020A RU2664939C2 (en) 2013-01-09 2014-01-07 Ion-exchange materials selective to strontium and cesium
JP2015552727A JP6618803B2 (en) 2013-01-09 2014-01-07 A method for selective removal of strontium radionuclides from water streams.
CA2896971A CA2896971A1 (en) 2013-01-09 2014-01-07 Strontium and cesium specific ion-exchange media
KR1020157021083A KR20150105392A (en) 2013-01-09 2014-01-07 Strontium and cesium specific ion-exchange media
BR112015016324A BR112015016324A2 (en) 2013-01-09 2014-01-07 method of removing divalent and / or trivalent radionuclides from a water stream
SG11201504720QA SG11201504720QA (en) 2013-01-09 2014-01-07 Strontium and cesium specific ion-exchange media
EP14738180.0A EP2943441A4 (en) 2013-01-09 2014-01-07 Strontium and cesium specific ion-exchange media
MX2015008682A MX2015008682A (en) 2013-01-09 2014-01-07 Strontium and cesium specific ion-exchange media.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361750557P 2013-01-09 2013-01-09
US61/750,557 2013-01-09

Publications (1)

Publication Number Publication Date
WO2014110014A1 true WO2014110014A1 (en) 2014-07-17

Family

ID=51060182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/010444 WO2014110014A1 (en) 2013-01-09 2014-01-07 Strontium and cesium specific ion-exchange media

Country Status (11)

Country Link
US (1) US9744518B2 (en)
EP (1) EP2943441A4 (en)
JP (1) JP6618803B2 (en)
KR (1) KR20150105392A (en)
CN (2) CN104903253A (en)
BR (1) BR112015016324A2 (en)
CA (1) CA2896971A1 (en)
MX (1) MX2015008682A (en)
RU (1) RU2664939C2 (en)
SG (1) SG11201504720QA (en)
WO (1) WO2014110014A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190192A (en) * 2015-03-31 2016-11-10 株式会社クボタ Composite ion exchanger, and ion adsorption device comprising the same and water treatment system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015318A1 (en) * 2015-07-20 2017-01-26 Basf Corporation Mesoporous titanosilicates and uses thereof
KR20170022522A (en) 2015-08-21 2017-03-02 안동대학교 산학협력단 Method for preparing titanosilicate using dropwise method and titanosilicate absorbent for removing radioactive nuclides prepared thereby
KR20180032337A (en) * 2016-09-22 2018-03-30 안동대학교 산학협력단 Titanosilicates absorbants substituted tetravalance cation
US20200131052A1 (en) * 2017-06-29 2020-04-30 Solenis Technologies Cayman, L.P. Water stable granules and tablets
KR102035801B1 (en) * 2017-10-19 2019-10-24 한국과학기술원 Titanosilicate Adsorbent Having Sodium and Potassium for Simultaneously Removing Cesium and Strontium and Method of Preparing the Same
JP2020018971A (en) * 2018-07-31 2020-02-06 Dic株式会社 Adsorbent granulated body, manufacturing method of adsorbent granulated body, and purification method of solution containing radioactive strontium
CN110293001A (en) * 2019-07-01 2019-10-01 中国科学院青海盐湖研究所 Rubidium, the precipitate flotation separation system of caesium and its application in a kind of aqueous solution
US11577014B2 (en) 2019-07-09 2023-02-14 Uop Llc Process for removing strontium ions from bodily fluids using metallate ion exchange compositions
US20220370979A1 (en) * 2019-11-04 2022-11-24 Basf Corporation Porous aluminosilicate compositions for contaminant metal removal in water treatment
WO2023215755A2 (en) * 2022-05-03 2023-11-09 Graver Technologies Llc Sorbent for removal of ions from liquid streams and method of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764284A (en) * 1983-10-17 1988-08-16 Dhv Raadgevend Ingenieursbureau B.V. Process for removing of heavy metal from water in particular from waste water
US5053139A (en) * 1990-12-04 1991-10-01 Engelhard Corporation Removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing amorphous tin and titanium silicates
US6340433B1 (en) * 2000-09-15 2002-01-22 Engelhard Corporation Water purification using titanium silicate membranes
US8147696B1 (en) * 2006-09-19 2012-04-03 Pandya Ken V High-efficiency water-softening process

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1074037A (en) * 1964-08-07 1967-06-28 Yissum Res Dev Co Improvements in or relating to cation exchangers
CA1329696C (en) * 1987-09-01 1994-05-24 Exxon Research & Engineering Company Stannosilicates and preparation thereof
US5110571A (en) 1987-09-01 1992-05-05 Exxon Research And Engineering Company Stannosilicates and preparation thereof (C-2417)
US4938939A (en) 1987-09-08 1990-07-03 Engelhard Corporation Preparation of small-pored crystalline titanium molecular sieve zeolites
US5989434A (en) * 1997-10-31 1999-11-23 3M Innovative Properties Company Method for removing metal ions from solution with titanate sorbents
CN1150976C (en) 2002-01-14 2004-05-26 华南理工大学 Prepn and application of titanium silicate adsorbent with high adsorption performance
US6974563B2 (en) 2002-06-18 2005-12-13 Lynntech, Inc. Ion exchange materials for the separation of 90Y from 90SR
US20070243129A1 (en) * 2006-03-16 2007-10-18 Bell Valerie A Exchange cation selection in ETS-4 to control adsorption strength and effective pore diameter
US9208915B2 (en) * 2010-10-06 2015-12-08 Electric Power Research Institute, Inc. Ion exchange regeneration and nuclide specific selective processes
TWI647178B (en) 2013-04-17 2019-01-11 美商巴斯夫公司 Method for preparing Group 4 metal citrate and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4764284A (en) * 1983-10-17 1988-08-16 Dhv Raadgevend Ingenieursbureau B.V. Process for removing of heavy metal from water in particular from waste water
US5053139A (en) * 1990-12-04 1991-10-01 Engelhard Corporation Removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing amorphous tin and titanium silicates
US6340433B1 (en) * 2000-09-15 2002-01-22 Engelhard Corporation Water purification using titanium silicate membranes
US8147696B1 (en) * 2006-09-19 2012-04-03 Pandya Ken V High-efficiency water-softening process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLEARFIELD, A. ET AL.: "Cesium and Strontium Specific Exchangers for Nuclear Waste Effluent Remediation", FINAL REPORT OF DOE PROJECT NUMBER DE -FG07-96 ER 14689, September 2000 (2000-09-01), XP055268833 *
See also references of EP2943441A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016190192A (en) * 2015-03-31 2016-11-10 株式会社クボタ Composite ion exchanger, and ion adsorption device comprising the same and water treatment system

Also Published As

Publication number Publication date
RU2015133020A (en) 2017-02-14
JP6618803B2 (en) 2019-12-11
CN109908858A (en) 2019-06-21
US9744518B2 (en) 2017-08-29
EP2943441A4 (en) 2016-10-05
US20140190892A1 (en) 2014-07-10
RU2664939C2 (en) 2018-08-23
JP2016504597A (en) 2016-02-12
SG11201504720QA (en) 2015-07-30
KR20150105392A (en) 2015-09-16
CA2896971A1 (en) 2014-07-17
MX2015008682A (en) 2016-04-28
CN104903253A (en) 2015-09-09
BR112015016324A2 (en) 2017-07-11
EP2943441A1 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
US9744518B2 (en) Method of removing strontium cations from a water stream using an amorphous titanium silicate
EP0561998B1 (en) The removal of heavy metals, especially lead, from aqueous systems containing competing ions utilizing amorphous tin and titanium silicates
Scott et al. Zeolite synthesis from coal fly ash for the removal of lead ions from aqueous solution
JP5734807B2 (en) Method for treating radioactive cesium and radioactive strontium-containing substances
Pansini Natural zeolites as cation exchangers for environmental protection
JP5922193B2 (en) NOVEL ADSORBENT, METHOD FOR PRODUCING THE SAME AND USE THEREOF
Xie et al. Synthesis of zeolite/aluminum oxide hydrate from coal fly ash: a new type of adsorbent for simultaneous removal of cationic and anionic pollutants
JPS61501077A (en) Fixation of dissolved metal species by complexing agents
Zhang et al. Investigation of radionuclide 63 Ni (II) sorption on ZSM-5 zeolite
? nan et al. Sorption studies of strontium on hydrous zirconium dioxide
JP6173396B2 (en) Method and apparatus for treating radioactive liquid waste generated during a major nuclear accident
KR20200012772A (en) Radionuclide adsorbents, method for preparing the same and method for removing radionuclide using the same
JP5001202B2 (en) Manufacturing method of environmental cleaner
KR102035801B1 (en) Titanosilicate Adsorbent Having Sodium and Potassium for Simultaneously Removing Cesium and Strontium and Method of Preparing the Same
RU2537313C2 (en) Method of sorption purification of industrial flow sewage and drinking water from lead (ii) cations on glauconite concentrate
JP6719214B2 (en) Oxo acid ion adsorbent
WO2018066634A1 (en) Method for treating radioactive liquid waste containing radioactive cesium
Fuks et al. Sorption of selected radionuclides from liquid radioactive waste by sorbents of biological origin: The alkaline earth alginates
JP6470354B2 (en) Silicotitanate molded body and method for producing the same, cesium or strontium adsorbent containing silicotitanate molded body, and decontamination method of radioactive liquid waste using the adsorbent
JP2019113484A (en) Decontamination method of fluid containing radioactive iodine
JPS6036831B2 (en) Treatment method for water containing arsenic and silica
JP3173528B2 (en) Method for immobilizing carbonate ion or bicarbonate ion
JP2006263603A (en) Method for treating boron-containing water
Ćurković et al. Kinetic modelling of Fe 3+ ion uptake by zeolite from water
JPH0299189A (en) Process for treating waste water containing fluorine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14738180

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2896971

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/008682

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015552727

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015016324

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014738180

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157021083

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015133020

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015016324

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150707