WO2014109425A1 - Method for producing thin film on nanocrystalline max - Google Patents

Method for producing thin film on nanocrystalline max Download PDF

Info

Publication number
WO2014109425A1
WO2014109425A1 PCT/KR2013/000234 KR2013000234W WO2014109425A1 WO 2014109425 A1 WO2014109425 A1 WO 2014109425A1 KR 2013000234 W KR2013000234 W KR 2013000234W WO 2014109425 A1 WO2014109425 A1 WO 2014109425A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
aln
target
max
present
Prior art date
Application number
PCT/KR2013/000234
Other languages
French (fr)
Korean (ko)
Inventor
김광호
신정호
장텅페이
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2014109425A1 publication Critical patent/WO2014109425A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3471Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Definitions

  • the present invention relates to a method for preparing a MAX phase thin film having a chemical formula of M n + 1 AX n type, and more particularly, to a method for manufacturing a Ti 2 AlN MAX phase thin film having nanocrystals.
  • MAX phase thin films are semi-ceramic And crystalline metal combined with a metal element A different from M, and have excellent physical properties such as electrical conductivity, oxidation resistance, and machinability.
  • the AlN MAX phase material has excellent oxidation resistance at high temperatures, and it is stable when the MAX phase material is used for articles that require fire resistance, such as aircraft turbine blades and internal combustion engine components such as automobiles, which need high temperature oxidation protection. It is very advantageous for operation and long life.
  • it has low friction and wear resistance in addition to oxidation resistance to high temperature, it is recommended to be applied to a protective coating material, a low friction coating material, a sensor, an electrical contact point forming material.
  • such a Ti 2 AlN MAX phase material has been mixed with TiN and Al powder, sintered into a sintered body to make a block unit, and then drilled to produce the desired shape.
  • Applicability of Ti 2 AlN MAX phase material using this sintered body was very limited in that it must be sintered in block units and processed. Therefore, as an alternative for improving the applicability, been proposed to coat a thin film of Ti 2 AlN MAX phase material on a base material requiring the properties of Ti 2 AlN MAX phase material, it is coated with a method such as sputtering.
  • the method for fabricating a thin film using the sputtering method requires post-annealing thereof because the state of the thin film formed by deposition is amorphous. That is, after the deposited thin film is subjected to a post-heat treatment at a high temperature of 600 to 800 ° C. in a vacuum to make amorphous, the coating process is completed with the Ti 2 AlN MAX phase thin film.
  • This post-heat treatment process reduces productivity, and is not limited to the base material that can withstand the post-heat treatment process, and can be coated with a thin film of Ti 2 AlN MAX. And the crack and / or peeling problem of the thin film due to the difference in thermal expansion coefficient of the coated thin film has a disadvantage.
  • Korean Patent Publication No. 10-2004-0004091 discloses a method of manufacturing a Ti n + 1 AlN n MAX phase thin film by a magnetron sputtering method, wherein a Ti / Al target and N 2 gas are supplied to supply 700 to 900 ° C.
  • Ti n + 1 AlN n MAX phase thin film is manufactured at the process temperature.
  • an object of the present invention is to provide a method of coating a Ti 2 AlN thin film on the base material by lowering the temperature of the coating process so that the Ti 2 AlN MAX phase thin film can be more variously applied.
  • the purpose of the present invention is to provide a method for manufacturing a new MAX phase thin film to form a crystalline thin film and to be coated with a Ti 2 AlN MAX phase thin film without a post heat treatment process.
  • a target made of Ti 2 AlN is installed in a vacuum, an inert gas is blown, and a plasma discharged by applying an impulse voltage is used to discharge metal elements from the target in an ion state directly to the base material. It is possible to provide a method for manufacturing a MAX phase thin film, which is characterized by coating with a crystalline Ti 2 AlN MAX phase thin film.
  • the base material may provide a method for producing a MAX phase thin film, characterized in that maintained at 300 to 500 °C.
  • the present invention in the above method, during the plasma operation to maintain a vacuum degree of 0.1 to 1Pa, the power of the plasma generator (plasma generator) to provide a thin film manufacturing method for the MAX phase, characterized in that to maintain 0.5 to 1kW. Can be.
  • the present invention can provide a method for manufacturing a MAX phase thin film, characterized in that the bias voltage of -10 to -90 V is applied to the target side.
  • the target made of Ti 2 AlN may provide a method for manufacturing a MAX phase thin film, characterized in that the Ti: Al: TiN is mixed by producing a sintered plasma.
  • the energy of the metal ion generated from the Ti 2 AlN target can provide a method for producing a MAX phase thin film, characterized in that 50 to 100eV.
  • the base material may provide a MAX phase thin film manufacturing method, characterized in that the material having a durability at 300 to 500 °C.
  • the target of Ti 2 AlN can provide a MAX phase thin film manufacturing method, characterized in that the atomic ratio of Ti: Al: N is 2: 1.1 ⁇ 1.2: 1.8 ⁇ 2.0. .
  • the crystalline MAX phase thin film is directly formed in the thin film forming step without a separate post heat treatment process, productivity can be greatly improved.
  • the crystalline MAX phase thin film manufactured according to the present invention is formed by generating metal ions by a high-energy plasma, so that the crystalline thin film is formed at a lower temperature than the post-heating temperature, while the grain boundary has a low grain boundary.
  • a thin film can be obtained and the oxidation resistance to hardness and high temperature can be improved.
  • the crystalline MAX phase thin film is formed at a lower temperature than the post-heat treatment temperature, cracking or peeling of the thin film, which may occur due to different thermal expansion coefficients of the base material and the coated thin film, may be avoided.
  • the present invention can implement a crystalline MAX phase thin film coating at a considerably low temperature to increase the width of the base material can be applied, and due to the low process temperature, the ratio of Al loss from the Ti 2 AlN target is rather small By controlling the atomic ratio of the Ti 2 AlN MAX phase thin film of a superior composition can be coated.
  • Figure 1a is a table showing the composition of the MAX phase material.
  • Figure 1b is a crystal structure model to help understand the MAX phase material.
  • Figure 2 is a schematic diagram illustrating the generation of metal ions in the thin film forming process according to an embodiment of the present invention.
  • FIG 3 is a view for explaining preparation of a target used in the present invention.
  • Figure 4 is an XRD graph showing the characteristics of the target produced in the present invention.
  • Figure 5 is a graph showing the XRD results of the Ti 2 AlN (110) MAX coated thin film prepared according to the embodiment of the present invention in comparison with the thin film according to the prior art.
  • FIG. 6 is a graph showing the XRD results of the Ti 2 AlN MAX phase coating thin film prepared for different substrates according to an embodiment of the present invention.
  • FIG. 7 is a graph showing XRD results for differentially applying a bias voltage according to an embodiment of the present invention.
  • FIG. 8 is an SEM photograph of a Ti 2 AlN MAX phase coated thin film prepared by varying deposition temperature in an embodiment of the present invention.
  • FIG. 9 is a TEM photograph of a Ti 2 AlN MAX phase coated thin film prepared in an embodiment of the present invention.
  • FIG. 10 is a photograph of a SAED (Selected Area Electron Diffraction) pattern produced in an embodiment of the present invention.
  • 11 is a table showing HIPIMS pulse parameters in an embodiment of the present invention.
  • FIG. 12 is a table illustrating EPMA (Electro Probe Micro Analyzer) results of a Ti 2 AlN target and a Ti-Al-N coating film prepared therefrom in an embodiment of the present invention.
  • EPMA Electro Probe Micro Analyzer
  • FIG. 13 is a TEM micrograph of a Ti 2 AlN MAX phase coated thin film of nanocrystals prepared according to an embodiment of the present invention.
  • Figure 1a is a table showing the composition elements for the MAX phase material
  • Figure 1b is a crystal structure model for the understanding of the MAX phase material, in the present embodiment, in particular, the Ti 2 AlN MAX of the MAX phase materials listed in Figure 1a
  • the bond between the transition metal element X and the non-metal element X denoted by M is very strong, the bond between the non-transition metal denoted by A and MX is weak.
  • the MX layers are stacked at nanometer intervals.
  • element A is present with high activity.
  • the MAX phase material is a semi-ceramic having evenly distributed properties of metal and ceramic, and has ductility, malleability, machinability, thermal and electrical conductivity, low friction, abrasion resistance, oxidation resistance, and corrosion resistance. Due to such excellent properties, it can be applied as a protective coating material, a low friction coating material, a sensor, an electrical contact point forming material and the like applied to a high temperature.
  • the high activity of Al atoms is to form an Al 2 O 3 protective layer on the surface of Ti 2 AlN can withstand a long period of time even at high temperatures of around 800 °C. Therefore, the protective coating thin film may be formed of Ti 2 AlN or the electrode body on the aircraft turbine blade.
  • a base material and a target are prepared first.
  • the base material was prepared by Si and Ti6242 alloy substrate, respectively, Ti6242 alloy means Ti 6 Al 2 Sn 4 ZrMo.
  • the base material is not limited to this, and other materials may be selected.
  • the present invention may not be concerned about high temperature thermal deformation since the temperature of the manufacturing process is considerably low and does not perform high temperature post-heat treatment, and thus, a wide range of base material choices are made of stainless steel.
  • Steel (SUS) may also be selected as a base material to raise the Ti 2 AlN coating thin film.
  • the target was made of Ti 2 AlN and used.
  • the target is prepared by mixing Ti: Al: TiN in an atomic ratio of 1: 1 to 2: 1, processing it by wet milling for about 2 hours, and plasma sintering at a high pressure of 40 MPa and a temperature of about 1230 ° C. for 10 minutes. It is possible to produce, and the target manufacturing apparatus is shown in FIG.
  • Ti: Al: TiN was produced with an atomic ratio of 1: 1: 1, and this target has a density of 4.36, which has an excellent density without relatively internal pores, which is also a pressurized effect during fabrication.
  • An XRD test result and a SEM photograph of the target and a graph showing the analyzed target composition are shown in FIG. 4. That is, it is composed of 50% Ti, 24% Al, 26% N, and it is a target composed of Ti 2 AlN, and put it in a vacuum chamber to discharge the plasma using an inert gas such as Ar The target is eroded, thereby ionizing the protruding metal particles to coat the Ti 2 AlN thin film on the base material.
  • the thin film is formed directly into the crystalline thin film in the deposition step only when the degree of ionization of the metal particles is high.
  • an impulse voltage and current to generate a high-energy plasma at a high density preferably HIPIMS (used by Hauzer in the present embodiment) can be used.
  • argon gas is introduced to maintain the operating pressure at 0.1 to 1 Pa.
  • the power of the plasma generator was maintained at 0.5 to 1 kW, and the current was flowed at about 1 A / cm 2 .
  • a bias voltage to the target so as to exert an attraction force that strongly attracts the generated plasma toward the target.
  • the energy of the ion to be deposited and the temperature combined therewith are important factors, and the base metal is maintained at 400 to 500 ° C. during the deposition process. It is desirable that the crystalline MAX phase thin film be formed at a much lower temperature than the prior art as metal ions provide a significant portion of the energy required for crystalline formation.
  • the deposition process using the plasma may vary depending on the thickness of the desired coating thin film, and if the coating layer is equipped with high temperature oxidation resistance, such as an aircraft turbine blade, the coating film may be formed up to ⁇ m, but low friction, such as forming a sensor or an electrical contact point If the use requires a thin film of the nm level may be formed.
  • Figure 5 is a graph showing the XRD results of the Ti 2 AlN MAX phase coated thin film prepared by using the base material according to the embodiment of the present invention in comparison with that for the thin film according to the prior art, the graph represented by (a) is a conventional
  • the Ti 2 AlN thin film was manufactured using a DC pulse, indicating that TiN and Ti 2 AlN of AlTi, fcc were mixed.
  • the Ti 2 AlN thin film according to the present embodiment is different depending on the temperature variables of room temperature, 300 °C, 450 °C, but produced at 450 °C temperature that the Ti 2 AlN thin film having a crystal plane (110) was formed.
  • a crystalline Ti 2 AlN thin film can be obtained immediately at the thin film manufacturing step. If the temperature is room temperature or less than about 300 °C, it is present in the state of AlTi, AlTi 3 and the like, it can be seen that to obtain the desired crystalline thin film to maintain the temperature at an appropriate level even when the degree of metal ionization is high. In the above, the direction of the crystal surface can be formed differently depending on the conditions, and is not limited.
  • the XRD graph for the case of using the Si and Ti6242 alloys as the base substrate, respectively, also shows the base material component in the thin film, which means that the thin film is formed very thinly on the substrate, and it can be predicted that the adhesion between the thin film and the base material is strong. have.
  • the bias voltage is optimized, and it can be seen that about -30 to -90 V, and preferably, about -50 V is the optimum bias.
  • FIG. 8 is a SEM photograph of a Ti 2 AlN thin film formed at room temperature and at 450 ° C. with a base substrate as Si, respectively, and the thin film formed at 450 ° C. shows a morphology capable of knowing the growth direction, and is crystalline at 450 ° C. rather than at room temperature. It can be seen that the thin film is advantageous for growth.
  • FIG. 9 is a TEM image of a Ti 2 AlN thin film having a base substrate as Si, whereby the crystal growth direction of the thin film can be seen more clearly than in FIG. 8.
  • FIG. 10 shows more clearly that the thin film was grown crystalline in the SAED pattern of the Ti 2 AlN thin film with the base substrate as Si.
  • Figure 13 shows a TEM micrograph of a specimen deposited with a bias voltage of -60V on a Si (100) substrate, (a) a bright image, (b) a dark image, (c) a selected area diffraction pattern, (d) and (e) is HRTEM (high resolution TEM), it can be confirmed that the nano-sized crystals are formed.
  • the Ti 2 AlN MAX thin film can be directly produced in a crystalline state in the deposition step without a post-heat treatment process.
  • the Ti 2 AlN MAX phase thin film is formed at a relatively low temperature of 500 ° C. or less, it can be used as a base material as long as it does not deform within the above temperature range.
  • the base material can be diversified compared to the conventional Si, Ti6242 alloy substrate, stainless steel and the like.
  • the Ti 2 AlN MAX phase thin film is formed by using a high power impulse magnetron sputtering (HIPIMS) Ti 2 AlN target.
  • HIPIMS high power impulse magnetron sputtering
  • the Ti 2 AlN target may be fabricated by plasma sintering.
  • Ti: Al: N: O 0.47: 0.22: 0.25: 0.06 as shown in FIG.
  • the composition of the Ti 2 AlN MAX thin film manufactured with the target was also shown in FIG. 12. This suggests that the number of collisions of Al, which is 1.3 times longer than Ti, is smaller than that of Ti, and that Al is evaporated, causing Al to be deficient. In the case of N, the diffusion rate is similar, so similar deficiency may occur.
  • a nanocomposite in which a small amount of Ti 2 N coexists in the thin film of Ti 2 AlN MAX may be formed.
  • the composition ratio can be controlled in the production of Ti 2 AlN target to improve this. That is, the atomic ratio of Ti: Al: N can be set to 2: 1.1 to 1.2: 1.8 to 2.0, preferably 2: 1.12: 1.9.
  • the plasma is discharged using an inert gas, such as Ar, into a vacuum chamber, and the target is eroded.
  • an inert gas such as Ar
  • the protruding metal particles are ionized to coat the Ti 2 AlN thin film on the base material.
  • HIPIMS Heauzer company
  • the base pressure is 4 ⁇ 10 -3 Pa
  • inert gas such as argon is blown near the target to maintain the operating pressure at 0.5 Pa
  • the temperature was changed from room temperature to 300 to 450 °C to perform the thin film coating.
  • the distance between the target and the substrate was maintained at about 8 cm, and the deposition rate was 0.9 to 1.2 ⁇ m / h. Therefore, the film thickness is controlled by the deposition time.
  • the Ti 2 AlN MAX phase thin film can be manufactured at a relatively low temperature.
  • the coating of the Ti 2 AlN MAX phase thin film of the present invention is applied to various articles requiring fire resistance, low friction, and abrasion resistance, such as aircraft or automobile parts, internal combustion engine parts, protective coating materials, low friction coating materials, sensors, and electrical contact point forming materials. Can be applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to making a thin film on Ti2AlN MAX, and provides a method wherein, in contrast to the prior art in which an amorphous Ti2AlN thin film that has been formed by sputtering or the like is given crystalline properties by being subjected to a subsequent heat treatment at a high temperature of about 800°C, a thin film is made directly into a crystalline thin film while being vapour-deposited at relatively low temperature. According to the present invention, outstanding crystalline thin films can be made at a relatively low temperature of between 400 and 500°C by making a Ti2AlN target and by causing the ionisation of metal particles which are eroded and emerge from the target through the use of a plasma which is discharged upon applying an impulse voltage, and hence the range of choice of base materials is widened and the range of uses of thin films on Ti2AlN MAX is widened.

Description

나노결정 MAX 상 박막의 제조방법Manufacturing method of nanocrystalline MAA thin film
본 발명은 Mn+1AXn 형태의 화학식을 갖는 MAX 상(MAX phase) 박막의 제조방법에 관한 것으로 좀 더 상세하게는 나노결정을 갖는 Ti2AlN MAX 상 박막의 제조방법에 관한 것이다. The present invention relates to a method for preparing a MAX phase thin film having a chemical formula of M n + 1 AX n type, and more particularly, to a method for manufacturing a Ti 2 AlN MAX phase thin film having nanocrystals.
MAX 상(MAX phase) 박막은 준 세라믹 특성의 MX 와, M과는 다른 금속원소 A가 조합된 결정질로 전기전도성, 내 산화성, 기계가공성 등의 물성이 우수하다. 특히, Ti2AlN MAX 상 물질은 고온에서의 내 산화성이 우수하여, 고온 산화 방지를 필요로 하는 항공기 터빈 블레이드, 자동차 등의 내연기관 부품 등 내화성을 요하는 물품에 MAX 상(MAX phase) 물질을 이용하면, 안정된 동작과 수명연장에 매우 유리하다. 뿐만아니라 고온에 대한 내산화성과 더불어 저마찰성과 내마모성이 있어, 보호용 코팅재, 저마찰용 코팅재, 센서, 전기접촉점 형성재 등에 적용되는 것은 권장할 만한 일이다. MAX phase thin films are semi-ceramic And crystalline metal combined with a metal element A different from M, and have excellent physical properties such as electrical conductivity, oxidation resistance, and machinability. In particular, Ti2The AlN MAX phase material has excellent oxidation resistance at high temperatures, and it is stable when the MAX phase material is used for articles that require fire resistance, such as aircraft turbine blades and internal combustion engine components such as automobiles, which need high temperature oxidation protection. It is very advantageous for operation and long life. In addition, it has low friction and wear resistance in addition to oxidation resistance to high temperature, it is recommended to be applied to a protective coating material, a low friction coating material, a sensor, an electrical contact point forming material.
종래기술에 따르면, 이와 같은 Ti2AlN MAX 상 물질은 TiN과 Al을 분말혼합하고 소결체로 소결하여 블록단위로 만든 후, 드릴 가공으로 원하는 형상체를 제작하여 왔다. 이러한 소결체를 이용한 Ti2AlN MAX 상 물질의 응용성은 블록단위로 소결하고 이를 가공하여야만 한다는 점에서 매우 제한적일 수밖에 없었다. 따라서 응용성을 높이기 위한 대안으로서, Ti2AlN MAX 상 물질의 특성을 요하는 모재에 Ti2AlN MAX 상 물질을 박막으로 코팅하는 것이 제안되어, 스퍼터링 등의 방법으로 코팅되고 있다. 그러나, 스퍼터링 방법을 이용한 박막의 제작방법은, 증착으로 형성된 박막의 상태가 비정질이기 때문에 이에 대한 후열처리(post-annealing)를 필요로 한다. 즉, 증착된 박막을 진공 내 600 내지 800℃의 고온에서 후열처리하여 비정질을 결정질로 만드는 과정을 거쳐야 Ti2AlN MAX 상 박막으로 코팅처리가 완료되게 된다. According to the prior art, such a Ti 2 AlN MAX phase material has been mixed with TiN and Al powder, sintered into a sintered body to make a block unit, and then drilled to produce the desired shape. Applicability of Ti 2 AlN MAX phase material using this sintered body was very limited in that it must be sintered in block units and processed. Therefore, as an alternative for improving the applicability, been proposed to coat a thin film of Ti 2 AlN MAX phase material on a base material requiring the properties of Ti 2 AlN MAX phase material, it is coated with a method such as sputtering. However, the method for fabricating a thin film using the sputtering method requires post-annealing thereof because the state of the thin film formed by deposition is amorphous. That is, after the deposited thin film is subjected to a post-heat treatment at a high temperature of 600 to 800 ° C. in a vacuum to make amorphous, the coating process is completed with the Ti 2 AlN MAX phase thin film.
이와 같은 후열처리 공정은 생산성을 떨어뜨리며, 후열처리 공정을 견딜 수 있는 모재에 한정하여 Ti2AlN MAX 상 박막으로 코팅처리 할 수 있다는 점에서 응용성을 그다지 넓히지 못하며, 고온의 후열처리 도중 모재와 코팅 박막의 열팽창계수의 차이로 인한 박막의 균열 및/또는 박리문제가 발생한다는 단점을 지닌다. This post-heat treatment process reduces productivity, and is not limited to the base material that can withstand the post-heat treatment process, and can be coated with a thin film of Ti 2 AlN MAX. And the crack and / or peeling problem of the thin film due to the difference in thermal expansion coefficient of the coated thin film has a disadvantage.
한편, 대한민국공개특허제10-2004-0004091호에서는 마그네트론 스퍼터링 방법으로 Tin+1AlNn MAX 상 박막을 제조하는 방법을 개시하며, 여기서는 Ti/Al 타깃과 N2 가스를 공급하여 700 내지 900℃ 공정온도에서 Tin+1AlNn MAX 상 박막을 제조하고 있다. 이와 같은 고온 공정은 생산성 문제는 해결할 수 있다고 하여도, 여전히 모재 자체가 고온 내구성을 요하므로 적용성이 떨어지며, 고온 공정에서 일어날 수 있는 열 팽창 문제와 타깃으로 제공되는 Al의 증발로 인한 Al 분율의 저하 등이 문제될 수 있다. Meanwhile, Korean Patent Publication No. 10-2004-0004091 discloses a method of manufacturing a Ti n + 1 AlN n MAX phase thin film by a magnetron sputtering method, wherein a Ti / Al target and N 2 gas are supplied to supply 700 to 900 ° C. Ti n + 1 AlN n MAX phase thin film is manufactured at the process temperature. Although such a high temperature process can solve the productivity problem, it is still inapplicable since the base material itself requires high temperature durability, and the thermal expansion problem that can occur in the high temperature process and the Al fraction due to evaporation of Al provided as a target Deterioration may be a problem.
따라서 본 발명의 목적은 Ti2AlN MAX 상 박막을 좀 더 다양하게 적용할 수 있도록 코팅 공정의 온도를 낮추어 모재에 Ti2AlN 박막을 증착하여 코팅하는 방법을 제공하고자 하며, 특히, 코팅단계에서 바로 결정질 박막을 형성하여 후열 처리 공정 없이 Ti2AlN MAX 상 박막으로 코팅처리 할 수 있는 새로운 MAX 상 박막의 제조방법을 제공하고자 하는 것이다.Accordingly, an object of the present invention is to provide a method of coating a Ti 2 AlN thin film on the base material by lowering the temperature of the coating process so that the Ti 2 AlN MAX phase thin film can be more variously applied. The purpose of the present invention is to provide a method for manufacturing a new MAX phase thin film to form a crystalline thin film and to be coated with a Ti 2 AlN MAX phase thin film without a post heat treatment process.
본 발명은, The present invention,
모재에 Ti2AlN MAX 상 박막으로 코팅처리함에 있어서, In coating the base material with a thin film of Ti 2 AlN MAX,
진공 중에서 Ti2AlN으로 된 하나의 타겟(target)을 설치하고, 불활성 가스를 불어넣고, 임펄스 전압을 인가하여 방전된 플라즈마(plasma)를 이용하여 타겟으로부터 금속원소를 이온상태로 방출시켜 모재에 직접 결정질의 Ti2AlN MAX 상 박막으로 코팅 처리하는 것을 특징으로 하는 MAX 상(MAX phase) 박막 제조방법을 제공할 수 있다. A target made of Ti 2 AlN is installed in a vacuum, an inert gas is blown, and a plasma discharged by applying an impulse voltage is used to discharge metal elements from the target in an ion state directly to the base material. It is possible to provide a method for manufacturing a MAX phase thin film, which is characterized by coating with a crystalline Ti 2 AlN MAX phase thin film.
또한, 본 발명은, 상기 코팅 처리 중, 상기 모재는 300 내지 500 ℃로 유지되는 것을 특징으로 하는 MAX 상 박막 제조방법을 제공할 수 있다.In addition, the present invention, during the coating process, the base material may provide a method for producing a MAX phase thin film, characterized in that maintained at 300 to 500 ℃.
또한, 본 발명은, 상기 방법에 있어서, 플라즈마 운전중 진공도는 0.1 내지 1Pa로 유지하고, 플라즈마 제너레이터(plasma generator)의 전력은 0.5 내지 1kW로 유지하는 것을 특징으로 하는 MAX 상 박막 제조방법을 제공할 수 있다.In addition, the present invention, in the above method, during the plasma operation to maintain a vacuum degree of 0.1 to 1Pa, the power of the plasma generator (plasma generator) to provide a thin film manufacturing method for the MAX phase, characterized in that to maintain 0.5 to 1kW. Can be.
또한, 본 발명은, 상기 방법에 있어서, 타겟 쪽에 -10 내지 -90 V의 바이어스 전압을 인가하는 것을 특징으로 하는 MAX 상 박막의 제조방법을 제공할 수 있다.In addition, the present invention can provide a method for manufacturing a MAX phase thin film, characterized in that the bias voltage of -10 to -90 V is applied to the target side.
또한, 본 발명은, 상기 방법에 있어서, Ti2AlN으로 된 타겟은 Ti:Al:TiN을 혼합하여 플라즈마로 소결하여 제작되는 것을 특징으로 하는 MAX 상 박막의 제조방법을 제공할 수 있다.In addition, in the above method, the target made of Ti 2 AlN may provide a method for manufacturing a MAX phase thin film, characterized in that the Ti: Al: TiN is mixed by producing a sintered plasma.
또한, 본 발명은, 상기 방법에 있어서, Ti2AlN 타겟으로부터 생성되는 금속이온의 에너지는 50 내지 100eV 인 것을 특징으로 하는 MAX 상 박막의 제조방법을 제공할 수 있다.In addition, the present invention, in the above method, the energy of the metal ion generated from the Ti 2 AlN target can provide a method for producing a MAX phase thin film, characterized in that 50 to 100eV.
또한, 본 발명은, 상기 방법에 있어서, 상기 모재는 300 내지 500℃에서 내구성을 갖는 소재인 것을 특징으로 하는 MAX 상 박막 제조방법을 제공할 수 있다.In addition, the present invention, in the above method, the base material may provide a MAX phase thin film manufacturing method, characterized in that the material having a durability at 300 to 500 ℃.
또한, 본 발명은, 상기 방법에 있어서, Ti2AlN으로 된 타겟은 Ti:Al:N의 원자비가 2:1.1~1.2:1.8~2.0인 것을 특징으로 하는 MAX 상 박막 제조방법을 제공할 수 있다.In addition, the present invention, in the above method, the target of Ti 2 AlN can provide a MAX phase thin film manufacturing method, characterized in that the atomic ratio of Ti: Al: N is 2: 1.1 ~ 1.2: 1.8 ~ 2.0. .
본 발명에 따르면, 별도의 후열 처리 공정 없이 박막 형성 단계에서 직접 결정질의 MAX 상 박막을 형성하므로, 생산성을 크게 향상시킬 수 있다. According to the present invention, since the crystalline MAX phase thin film is directly formed in the thin film forming step without a separate post heat treatment process, productivity can be greatly improved.
또한, 본 발명에 따라 제작되는 결정질의 MAX 상 박막은 고에너지 플라즈마에 의하여 금속이온을 생성시켜 형성되므로, 후열 처리 온도에 비해 낮은 온도에서 결정질 박막을 형성하면서도 그레인 바운더리(grain boundary)가 적은 치밀한 결정질 박막을 얻을 수 있어 경도 및 고온에 대한 내 산화성을 향상시킬 수 있다. In addition, the crystalline MAX phase thin film manufactured according to the present invention is formed by generating metal ions by a high-energy plasma, so that the crystalline thin film is formed at a lower temperature than the post-heating temperature, while the grain boundary has a low grain boundary. A thin film can be obtained and the oxidation resistance to hardness and high temperature can be improved.
또한, 후열 처리 온도에 비해 낮은 온도에서 결정질의 MAX 상 박막을 형성하므로 후열 처리 공정 중 모재와 코팅 박막의 열팽창 계수가 달라 일어날 수 있는 박막의 균열 내지는 박리 현상을 회피할 수 있다. In addition, since the crystalline MAX phase thin film is formed at a lower temperature than the post-heat treatment temperature, cracking or peeling of the thin film, which may occur due to different thermal expansion coefficients of the base material and the coated thin film, may be avoided.
또한, 본 발명은 결정질의 MAX 상 박막 코팅을 상당히 낮은 온도에서 구현할 수 있어 적용할 수 있는 모재의 폭을 넓힐 수 있으며, 낮은 공정 온도로 인하여 오히려 Ti2AlN 타깃으로부터 Al이 손실되는 비율이 적어 타깃의 원자비를 조절하여 더욱 우수한 조성의 Ti2AlN MAX 상 박막을 코팅할 수 있다. In addition, the present invention can implement a crystalline MAX phase thin film coating at a considerably low temperature to increase the width of the base material can be applied, and due to the low process temperature, the ratio of Al loss from the Ti 2 AlN target is rather small By controlling the atomic ratio of the Ti 2 AlN MAX phase thin film of a superior composition can be coated.
결론적으로 본 발명에 따르면 생산공정을 단순화하고 공정 온도를 낮춰 적용성을 넓히면서도 종래공정에 비해 우수한 물성의 박막 코팅을 할 수 있다. In conclusion, according to the present invention, it is possible to simplify the production process and lower the process temperature to increase the applicability and to coat the thin film of superior physical properties compared to the conventional process.
도 1a는 MAX 상 물질의 조성원소를 나타내는 테이블이다. Figure 1a is a table showing the composition of the MAX phase material.
도 1b는 MAX 상 물질에 대한 이해를 돕기 위한 결정 구조 모형도이다.Figure 1b is a crystal structure model to help understand the MAX phase material.
도 2는 본 발명의 실시예에 따른 박막 형성공정에서 금속 이온 생성을 설명하는 개요도이다.Figure 2 is a schematic diagram illustrating the generation of metal ions in the thin film forming process according to an embodiment of the present invention.
도 3은 본 발명에 사용되는 타겟의 제작을 설명하는 도면이다.3 is a view for explaining preparation of a target used in the present invention.
도 4는 본 발명에서 제작된 타겟의 특성을 나타내는 XRD 그래프이다.Figure 4 is an XRD graph showing the characteristics of the target produced in the present invention.
도 5는 본 발명의 실시예에 따라 제작된 Ti2AlN(110) MAX 상 코팅 박막의 XRD 결과를 종래 기술에 의한 박막에 대한 것과 대비하여 나타낸 그래프이다.Figure 5 is a graph showing the XRD results of the Ti 2 AlN (110) MAX coated thin film prepared according to the embodiment of the present invention in comparison with the thin film according to the prior art.
도 6은 본 발명의 실시예에 따라 서로 다른 기판에 대하여 제작된 Ti2AlN MAX 상 코팅 박막의 XRD 결과를 나타낸 그래프이다.6 is a graph showing the XRD results of the Ti 2 AlN MAX phase coating thin film prepared for different substrates according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따라 바이어스 전압을 차등 인가하여 그에 대한 XRD 결과를 나타낸 그래프이다.7 is a graph showing XRD results for differentially applying a bias voltage according to an embodiment of the present invention.
도 8은 본 발명의 실시예에서 증착 온도를 달리하여 제작된 Ti2AlN MAX 상 코팅 박막의 SEM 사진이다.FIG. 8 is an SEM photograph of a Ti 2 AlN MAX phase coated thin film prepared by varying deposition temperature in an embodiment of the present invention. FIG.
도 9는 본 발명의 실시예에서 제작된 Ti2AlN MAX 상 코팅 박막의 TEM 사진이다.9 is a TEM photograph of a Ti 2 AlN MAX phase coated thin film prepared in an embodiment of the present invention.
도 10은 본 발명의 실시예에서 제작한 SAED(Selected Area Electron Diffraction) 패턴의 사진이다. 10 is a photograph of a SAED (Selected Area Electron Diffraction) pattern produced in an embodiment of the present invention.
도 11은 본 발명의 실시예에서 HIPIMS 펄스 파라미터들을 나타낸 표이다.11 is a table showing HIPIMS pulse parameters in an embodiment of the present invention.
도 12는 본 발명의 실시예에서 Ti2AlN 타깃과 그로부터 제작된 Ti-Al-N 코팅막의 EPMA(Electro Probe Micro Analyzer) 결과를 나타내는 표이다. FIG. 12 is a table illustrating EPMA (Electro Probe Micro Analyzer) results of a Ti 2 AlN target and a Ti-Al-N coating film prepared therefrom in an embodiment of the present invention.
도 13은 본 발명의 실시예에 따라 제작된 나노결정의 Ti2AlN MAX 상 코팅 박막의 TEM 마이크로그래프이다. FIG. 13 is a TEM micrograph of a Ti 2 AlN MAX phase coated thin film of nanocrystals prepared according to an embodiment of the present invention. FIG.
이하, 본 발명의 바람직한 실시예에 대해 첨부도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1a는 MAX 상 물질에 대한 조성원소를 나타내는 테이블이고, 도 1b는 MAX 상 물질에 대한 이해를 돕기 위한 결정 구조 모형도로, 본 실시예의 경우, 도 1a에 나열된 MAX 상 물질 중 특별히 Ti2AlN MAX 상 코팅 박막을 제작하는 것이다. M으로 표시된 전이금속원소와 비금속원소 X간의 결합은 매우 강한 반면, A로 표시되는 비 전이금속과 MX와의 결합은 약한 편으로, 도 1b에서와 같이 MX층은 나노미터 수준의 간격으로 적층 되며, 그 사이사이 원소 A 가 높은 활성을 지닌 채 존재하게된다. 이러한 MAX 상 물질은, 금속과 세라믹의 물성을 골고루 갖춘 준 세라믹으로, 연성, 전성, 기계가공성, 열 및 전기전도성, 저 마찰성, 내마모성, 내 산화성, 내 부식성 등을 갖는다. 이와 같은 우수한 물성으로 인하여 고온에 적용되는 물품의 보호용 코팅재, 저마찰용 코팅재, 센서, 전기접촉점 형성재 등으로 응용될 수 있다. 특히, Ti2AlN의 경우, Al원자의 높은 활성으로 Ti2AlN 표면에 Al2O3 보호층을 형성하게 되어 800℃ 내외의 고온에서도 장시간 견딜 수 있다. 따라서, 항공기 터빈 블레이드에 보호코팅 박막을 Ti2AlN으로 형성하거나 전극체를 형성할 수 있다. Figure 1a is a table showing the composition elements for the MAX phase material, Figure 1b is a crystal structure model for the understanding of the MAX phase material, in the present embodiment, in particular, the Ti 2 AlN MAX of the MAX phase materials listed in Figure 1a To produce a phase coating thin film. While the bond between the transition metal element X and the non-metal element X denoted by M is very strong, the bond between the non-transition metal denoted by A and MX is weak. As shown in FIG. 1B, the MX layers are stacked at nanometer intervals. In the meantime, element A is present with high activity. The MAX phase material is a semi-ceramic having evenly distributed properties of metal and ceramic, and has ductility, malleability, machinability, thermal and electrical conductivity, low friction, abrasion resistance, oxidation resistance, and corrosion resistance. Due to such excellent properties, it can be applied as a protective coating material, a low friction coating material, a sensor, an electrical contact point forming material and the like applied to a high temperature. In particular, in the case of Ti 2 AlN, the high activity of Al atoms is to form an Al 2 O 3 protective layer on the surface of Ti 2 AlN can withstand a long period of time even at high temperatures of around 800 ℃. Therefore, the protective coating thin film may be formed of Ti 2 AlN or the electrode body on the aircraft turbine blade.
이러한 결정질의 Ti2AlN 코팅 박막을 직접적으로 제작하기 위해 먼저 모재와 타겟을 준비한다.In order to directly manufacture the crystalline Ti 2 AlN coating thin film, a base material and a target are prepared first.
본 실시예의 경우, 모재는 Si과 Ti6242 합금 기판을 각각 준비하였고, Ti6242 합금은 Ti6Al2Sn4ZrMo를 뜻한다. 그러나 모재는 이에 한정되지 않고 다른 소재를 선택할 수 있으며, 특히 본 발명은 제작공정의 온도가 상당히 낮고 고온의 후열 처리를 행하지 않으므로 고온 열변성을 우려하지 않을 수 있어 모재 선택의 폭이 넓으며, 스테인레스스틸(SUS)도 모재로 선택하여 Ti2AlN 코팅 박막을 올릴 수 있다. In this embodiment, the base material was prepared by Si and Ti6242 alloy substrate, respectively, Ti6242 alloy means Ti 6 Al 2 Sn 4 ZrMo. However, the base material is not limited to this, and other materials may be selected. In particular, the present invention may not be concerned about high temperature thermal deformation since the temperature of the manufacturing process is considerably low and does not perform high temperature post-heat treatment, and thus, a wide range of base material choices are made of stainless steel. Steel (SUS) may also be selected as a base material to raise the Ti 2 AlN coating thin film.
상술한 바와 같이, Ti2AlN 코팅 박막을 박막 증착 단계에서부터 결정질로 만들어 후열 처리 공정을 없애기 위하여는 증착 공정에서 박막 형성에 기여하는 금속 입자들의 에너지가 높아야 하고, 무엇보다, 도 2에서와 같이 타겟으로부터 침식되어 튀어나오는 금속 입자들이 이온화되어야 한다. 이를 위해, 본 실시예에서는 타겟을 Ti2AlN으로 제작하여 사용하였다. 타겟의 제작은 Ti:Al:TiN을 원자비로 1:1~2:1로 혼합하고, 습식 밀링으로 2 시간 정도 가공한 후, 40MPa의 고압 및 1230℃ 내외의 온도에서 10 분 정도 플라즈마 소결하여 제작할 수 있으며, 타겟 제작 장치를 도 3에 도시하였다. 본 실시예에서는 Ti:Al:TiN을 원자비로 1:1:1로 하여 제작되었고, 이러한 타겟은 밀도가 4.36으로 비교적 내부 기공이 없는 우수한 밀도를 가지며, 이는 제작시 가압한 효과이기도 하다. 타겟에 대한 XRD 검사 결과와 SEM 사진 및 이에 따라 분석된 타겟 조성을 나타낸 그래프가 도 4에 도시되어 있다. 즉, 50 % 내외의 Ti, 24 % 내외의 Al, 26 % 내외의 N로 이루어져 Ti2AlN로 조성된 타겟 임을 알 수 있으며, 이를 진공 챔버에 넣고 Ar등의 비활성 가스를 이용하여 플라즈마를 방전시켜 타겟을 침식하고, 이로 인해 튀어나오는 금속 입자를 이온화하여 모재에 Ti2AlN 박막을 코팅하는 것이다.As described above, in order to make the Ti 2 AlN coated thin film crystalline from the thin film deposition step to eliminate the post-heat treatment process, the energy of the metal particles contributing to the thin film formation in the deposition process should be high, and above all, as shown in FIG. Protruding metal particles from the erosion must be ionized. To this end, in this embodiment, the target was made of Ti 2 AlN and used. The target is prepared by mixing Ti: Al: TiN in an atomic ratio of 1: 1 to 2: 1, processing it by wet milling for about 2 hours, and plasma sintering at a high pressure of 40 MPa and a temperature of about 1230 ° C. for 10 minutes. It is possible to produce, and the target manufacturing apparatus is shown in FIG. In the present embodiment, Ti: Al: TiN was produced with an atomic ratio of 1: 1: 1, and this target has a density of 4.36, which has an excellent density without relatively internal pores, which is also a pressurized effect during fabrication. An XRD test result and a SEM photograph of the target and a graph showing the analyzed target composition are shown in FIG. 4. That is, it is composed of 50% Ti, 24% Al, 26% N, and it is a target composed of Ti 2 AlN, and put it in a vacuum chamber to discharge the plasma using an inert gas such as Ar The target is eroded, thereby ionizing the protruding metal particles to coat the Ti 2 AlN thin film on the base material.
도 2에 나타낸 바와 같이, 금속 입자의 이온화 도가 높아야만 박막이 증착 단계에서 바로 결정질 박막으로 형성된다. 이를 위해, 본 발명의 실시예에서는 임펄스 전압 및 전류를 인가하여 고에너지 플라즈마를 고밀도로 생성하게 하며, 바람직하게는 HIPIMS(본 실시예의 경우 Hauzer사제 사용) 장치를 이용할 수 있다. As shown in FIG. 2, the thin film is formed directly into the crystalline thin film in the deposition step only when the degree of ionization of the metal particles is high. To this end, in the embodiment of the present invention by applying an impulse voltage and current to generate a high-energy plasma at a high density, preferably HIPIMS (used by Hauzer in the present embodiment) can be used.
진공 챔버 내에 모재와 타겟을 장착하고, 기저 압력을 10-3 Pa 내지 10-2 Pa 로 한 후, 아르곤 가스를 도입하여 운전 압력을 0.1 내지 1Pa로 유지한다. After the base material and the target are mounted in the vacuum chamber, and the base pressure is set to 10 -3 Pa to 10 -2 Pa, argon gas is introduced to maintain the operating pressure at 0.1 to 1 Pa.
플라즈마 제너레이터의 전력은 0.5 내지 1kW로 유지하고, 전류는 약 1 A/cm2 정도로 흘려주었다. The power of the plasma generator was maintained at 0.5 to 1 kW, and the current was flowed at about 1 A / cm 2 .
특히, 발생한 플라즈마를 타겟 쪽으로 강하게 유인하는 인력을 미치도록 타겟에 바이어스 전압을 걸어주는 것이 바람직하며, 본 실시예의 경우, -10 내지 -90 V, 더욱 바람직하게는, -30 내지 -60 V의 바이어스 전압을 걸어주었다. In particular, it is preferable to apply a bias voltage to the target so as to exert an attraction force that strongly attracts the generated plasma toward the target. In the present embodiment, a bias of -10 to -90 V, more preferably, -30 to -60 V I applied voltage.
또한, 형성되는 Ti2AlN 박막이 증착 단계에서부터 결정질로 형성되기 위해서는 증착을 수행하는 이온의 에너지와 이에 조합되는 온도가 중요 인자로 작용하며, 증착 공정 중 모재는 400 내지 500 ℃로 유지되게 하는 것이 바람직하며, 이는 결정질 형성에 필요한 에너지의 상당부분을 금속 이온이 제공함에 따라 종래 기술에 비해 매우 낮은 온도에서 결정질의 MAX 상 박막이 형성되는 것이다. In addition, in order for the Ti 2 AlN thin film to be formed to be crystalline from the deposition step, the energy of the ion to be deposited and the temperature combined therewith are important factors, and the base metal is maintained at 400 to 500 ° C. during the deposition process. It is desirable that the crystalline MAX phase thin film be formed at a much lower temperature than the prior art as metal ions provide a significant portion of the energy required for crystalline formation.
플라즈마를 이용한 증착 공정은 원하는 코팅 박막의 두께에 따라 달라질 수 있으며, 항공기 터빈 블레이드 등, 고온 내 산화성을 구비하게 할 경우, μm 단위까지 코팅막을 형성할 수 있으나, 센서나 전기접촉점 형성 등, 저마찰 성을 요하는 용도이면 nm 수준의 박막으로 형성할 수도 있다. The deposition process using the plasma may vary depending on the thickness of the desired coating thin film, and if the coating layer is equipped with high temperature oxidation resistance, such as an aircraft turbine blade, the coating film may be formed up to μm, but low friction, such as forming a sensor or an electrical contact point If the use requires a thin film of the nm level may be formed.
도 5는 본 발명의 실시예에 따라 모재를 Si로 하여 제작된 Ti2AlN MAX 상 코팅 박막의 XRD 결과를 종래 기술에 의한 박막에 대한 것과 대비하여 나타낸 그래프이며, (a)로 표시된 그래프는 종래 DC 펄스를 이용하여 Ti2AlN 박막을 제작한 것으로 AlTi, fcc의 TiN 및 Ti2AlN이 혼재함을 알 수 있다. 이에 비해, 본 실시예에 의한 Ti2AlN 박막은 실온, 300 ℃, 450 ℃의 온도 변인에 따라 각각 차이가 있으나, 450 ℃ 온도에서 제작한 것은 결정면이 (110)인 Ti2AlN 박막이 형성되었음을 확인할 수 있고, 이로써 박막 제작 단계에서 바로 결정질의 Ti2AlN 박막을 얻을 수 있음을 확인할 수 있다. 온도가 실온이거나 300 ℃ 이하 정도이면, AlTi, AlTi3 등의 상태로 존재하게되어, 원하는 결정질 박막을 얻으려면 금속이온화 도가 높은 경우에도 온도를 적정 수준으로 유지하여 함을 알 수 있다. 상기에서 결정면의 방향은 조건에 따라 달리 형성하게 할 수 있어, 한정적인 것은 아니다. Figure 5 is a graph showing the XRD results of the Ti 2 AlN MAX phase coated thin film prepared by using the base material according to the embodiment of the present invention in comparison with that for the thin film according to the prior art, the graph represented by (a) is a conventional The Ti 2 AlN thin film was manufactured using a DC pulse, indicating that TiN and Ti 2 AlN of AlTi, fcc were mixed. On the other hand, the Ti 2 AlN thin film according to the present embodiment is different depending on the temperature variables of room temperature, 300 ℃, 450 ℃, but produced at 450 ℃ temperature that the Ti 2 AlN thin film having a crystal plane (110) was formed. It can be confirmed, and thus it can be seen that a crystalline Ti 2 AlN thin film can be obtained immediately at the thin film manufacturing step. If the temperature is room temperature or less than about 300 ℃, it is present in the state of AlTi, AlTi 3 and the like, it can be seen that to obtain the desired crystalline thin film to maintain the temperature at an appropriate level even when the degree of metal ionization is high. In the above, the direction of the crystal surface can be formed differently depending on the conditions, and is not limited.
도 6에서는 모재 기판을 각각 Si과 Ti6242 합금을 사용하였을 경우에 대한 XRD 그래프로 모재 성분이 박막에서도 나타나며 이는 기판에 대해 박막이 매우 얇게 형성되어 있음을 뜻하며, 박막과 모재 간의 밀착성이 강함을 예측할 수 있다. 이는 비교적 저온에서 결정질을 만들기 때문에 열 팽창계수의 차이에 의한 균열 박리 등이 없는 우수한 품질의 박막이 형성될 수 있음을 뜻한다. In FIG. 6, the XRD graph for the case of using the Si and Ti6242 alloys as the base substrate, respectively, also shows the base material component in the thin film, which means that the thin film is formed very thinly on the substrate, and it can be predicted that the adhesion between the thin film and the base material is strong. have. This means that the crystalline film is formed at a relatively low temperature, and thus a thin film of good quality can be formed without crack separation due to a difference in thermal expansion coefficient.
도 7은 바이어스 전압을 최적화한 실험 데이터를 포함하며, -30 내지 -90 V, 바람직하게는, -50 V 내외가 최적 바이어스임을 알 수 있다.7 includes experimental data in which the bias voltage is optimized, and it can be seen that about -30 to -90 V, and preferably, about -50 V is the optimum bias.
도 8은 모재 기판을 각각 Si로 하여, 상온과 450℃에서 형성한 Ti2AlN 박막의 SEM 사진으로 450℃에서 형성한 박막은 성장방향을 알 수 있는 모폴로지를 보여, 상온에서보다는 450℃에서 결정질 박막이 성장하기에 유리함을 알 수 있다.8 is a SEM photograph of a Ti 2 AlN thin film formed at room temperature and at 450 ° C. with a base substrate as Si, respectively, and the thin film formed at 450 ° C. shows a morphology capable of knowing the growth direction, and is crystalline at 450 ° C. rather than at room temperature. It can be seen that the thin film is advantageous for growth.
도 9는 모재 기판을 Si로 한 Ti2AlN 박막의 TEM 사진으로 박막의 결정성장 방향을 도 8에 비해 훨씬 뚜렷하게 알 수 있다. FIG. 9 is a TEM image of a Ti 2 AlN thin film having a base substrate as Si, whereby the crystal growth direction of the thin film can be seen more clearly than in FIG. 8.
도 10은 모재 기판을 Si로 한 Ti2AlN 박막의 SAED 패턴으로 박막이 결정질로 성장하였음을 더욱 명백히 보여준다.FIG. 10 shows more clearly that the thin film was grown crystalline in the SAED pattern of the Ti 2 AlN thin film with the base substrate as Si.
특히, 도 13에는 Si(100) 기판에 -60V의 바이어스 전압을 걸어 증착된 시편의 TEM 마이크로그래프로, (a)밝은 이미지, (b)어두운 이미지, (c)SADP(selected area diffraction pattern), (d)와 (e)는 HRTEM(high resolution TEM)으로, 나노사이즈의 결정이 형성되었음을 확인할 수 있다. In particular, Figure 13 shows a TEM micrograph of a specimen deposited with a bias voltage of -60V on a Si (100) substrate, (a) a bright image, (b) a dark image, (c) a selected area diffraction pattern, (d) and (e) is HRTEM (high resolution TEM), it can be confirmed that the nano-sized crystals are formed.
이와 같이 하여, 후열 처리 공정 없이 Ti2AlN MAX 상 박막을 증착 단계에서 바로 결정질로 제작할 수 있다. In this way, the Ti 2 AlN MAX thin film can be directly produced in a crystalline state in the deposition step without a post-heat treatment process.
본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다. The rights of the present invention are not limited to the embodiments described above, but are defined by the claims, and those skilled in the art can make various modifications and adaptations within the scope of the claims. It is self-evident.
본 발명은 Ti2AlN MAX 상 박막을 500 ℃ 이하의 비교적 낮은 온도에서 형성하므로 상기 온도 범위 내에서 변형되지 않는 것이면 모재로 사용할 수 있다. According to the present invention, since the Ti 2 AlN MAX phase thin film is formed at a relatively low temperature of 500 ° C. or less, it can be used as a base material as long as it does not deform within the above temperature range.
따라서 모재는 Si, Ti6242 합금 기판, 스테인레스스틸 등 종래에 비해 다양화 될 수 있다. Therefore, the base material can be diversified compared to the conventional Si, Ti6242 alloy substrate, stainless steel and the like.
Ti2AlN MAX 상 박막은 Ti2AlN 타겟을 HIPIMS(High Power Impulse Magnetron Sputtering)을 이용하여 형성한다.The Ti 2 AlN MAX phase thin film is formed by using a high power impulse magnetron sputtering (HIPIMS) Ti 2 AlN target.
Ti2AlN 타깃의 제작은 플라즈마 소결로 할 수 있으며, 이와 같이 제작된 타깃에 대해 EPMA로 분석한 결과 도 12에서와 같이 Ti:Al:N:O=0.47:0.22:0.25:0.06임을 알 수 있으며, 이러한 타깃으로 제작된 Ti2AlN MAX 상 박막의 조성도 도 12에서와 같이 나타났다. 이는 평균자유행정이 Ti에 비해 1.3 배 더 긴 Al의 충돌 횟수가 더 적어진다는 점과 Al이 증발(evaporation)되어 Al이 결핍되는 원인이 된다고 볼 수 있다. N의 경우도 확산속도가 빨라 비슷하게 결핍이 일어날 수 있다. 그 결과 Ti2AlN MAX 상 박막에 소량의 Ti2N이 공존하는 나노복합체가 형성될 수 있다. Ti2N의 생성은 Al의 결핍이 원인이므로, 이를 개선허기 위해 Ti2AlN 타깃 제작에서 그 조성비를 조절할 수 있다. 즉, Ti:Al:N의 원자비를 2:1.1~1.2:1.8~2.0, 바람직하게는 2:1.12:1.9로 할 수 있다. The Ti 2 AlN target may be fabricated by plasma sintering. As a result of analysis by EPMA on the target thus manufactured, Ti: Al: N: O = 0.47: 0.22: 0.25: 0.06 as shown in FIG. The composition of the Ti 2 AlN MAX thin film manufactured with the target was also shown in FIG. 12. This suggests that the number of collisions of Al, which is 1.3 times longer than Ti, is smaller than that of Ti, and that Al is evaporated, causing Al to be deficient. In the case of N, the diffusion rate is similar, so similar deficiency may occur. As a result, a nanocomposite in which a small amount of Ti 2 N coexists in the thin film of Ti 2 AlN MAX may be formed. Since the formation of Ti 2 N is caused by Al deficiency, the composition ratio can be controlled in the production of Ti 2 AlN target to improve this. That is, the atomic ratio of Ti: Al: N can be set to 2: 1.1 to 1.2: 1.8 to 2.0, preferably 2: 1.12: 1.9.
이를 진공 챔버에 넣고 Ar등의 비활성 가스를 이용하여 플라즈마를 방전시켜 타겟을 침식하고, 이로 인해 튀어나오는 금속 입자를 이온화하여 모재에 Ti2AlN 박막을 코팅하는 것이다.The plasma is discharged using an inert gas, such as Ar, into a vacuum chamber, and the target is eroded. Thus, the protruding metal particles are ionized to coat the Ti 2 AlN thin film on the base material.
본 발명의 실시예에서는 임펄스 전압 및 전류를 인가하여 고에너지 플라즈마를 고밀도로 생성하게 하며, 이는 HIPIMS(Hauzer사제) 장치를 이용할 수 있다. HIPIMS의 바람직한 일실시예로서 파라미터들을 도 11에 나타내었다. In the embodiment of the present invention by applying an impulse voltage and current to generate a high-energy plasma at high density, it can use a HIPIMS (Hauzer company) device. The parameters are shown in FIG. 11 as a preferred embodiment of HIPIMS.
기저 압력은 4×10-3 Pa, 아르곤과 같은 비활성 가스를 타깃 근처에 불어넣어 운전압력은 0.5Pa로 유지하고, 온도는 상온에서부터 300 내지 450℃로 변화시켜가며 박막코팅을 실시하였으며, 바이어스 전압은 0 내지 -70 V로 하였다. 타깃과 기판 간거리는 8cm 내외로 유지하였고, 증착율은 0.9 내지 1.2μm/h 였다. 따라서 박막 두께는 증착 시간으로 제어한다. The base pressure is 4 × 10 -3 Pa, inert gas such as argon is blown near the target to maintain the operating pressure at 0.5 Pa, and the temperature was changed from room temperature to 300 to 450 ℃ to perform the thin film coating. Was 0 to -70V. The distance between the target and the substrate was maintained at about 8 cm, and the deposition rate was 0.9 to 1.2 μm / h. Therefore, the film thickness is controlled by the deposition time.
이와 같이 하여 Ti2AlN MAX 상 박막을 상대적으로 낮은 온도에서 제작할 수 있다. In this way, the Ti 2 AlN MAX phase thin film can be manufactured at a relatively low temperature.
본 발명의 권리는 위에서 설명된 실시예에 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다. The rights of the present invention are not limited to the embodiments described above, but are defined by the claims, and those skilled in the art can make various modifications and adaptations within the scope of the claims. It is self-evident.
본 발명의 Ti2AlN MAX 상 박막의 코팅은 항공기나 자동차 부품, 내연기관 부품, 물품의 보호용 코팅재, 저마찰용 코팅재, 센서, 전기접촉점 형성재 등 내화성과 저 마찰성, 내마모성을 요하는 다양한 물품에 적용될 수 있다. The coating of the Ti 2 AlN MAX phase thin film of the present invention is applied to various articles requiring fire resistance, low friction, and abrasion resistance, such as aircraft or automobile parts, internal combustion engine parts, protective coating materials, low friction coating materials, sensors, and electrical contact point forming materials. Can be applied.

Claims (8)

  1. 모재에 Ti2AlN MAX 상 박막으로 코팅처리함에 있어서, In coating the base material with a thin film of Ti 2 AlN MAX,
    진공 중에서 Ti2AlN으로 된 하나의 타겟(target)을 설치하고, 불활성 가스를 불어넣고, 임펄스 전압을 인가하여 방전된 플라즈마(plasma)를 이용하여 타겟으로부터 금속원소를 이온상태로 방출시켜 모재에 직접 결정질의 Ti2AlN MAX 상 박막으로 코팅 처리하는 것을 특징으로 하는 MAX 상(MAX phase) 박막 제조방법.A target made of Ti 2 AlN is installed in a vacuum, an inert gas is blown, and a plasma discharged by applying an impulse voltage is used to discharge metal elements from the target in an ion state directly to the base material. MAX phase thin film manufacturing method, characterized in that the coating treatment with a crystalline Ti 2 AlN MAX phase thin film.
  2. 제1항에 있어서, 상기 코팅 처리 중, 상기 모재는 300 내지 500 ℃로 유지되는 것을 특징으로 하는 MAX 상 박막 제조방법.The method of claim 1, wherein the base material is maintained at 300 to 500 ° C. during the coating process.
  3. 제1항 또는 제2항에 있어서, 플라즈마 운전중 진공도는 0.1 내지 1Pa로 유지하고, 플라즈마 제너레이터(plasma generator)의 전력은 0.5 내지 1kW로 유지하는 것을 특징으로 하는 MAX 상 박막 제조방법.The method of claim 1 or 2, wherein the vacuum during plasma operation is maintained at 0.1 to 1 Pa, and the power of the plasma generator is maintained at 0.5 to 1 kW.
  4. 제3항에 있어서, 타겟 쪽에 -10 내지 -90 V의 바이어스 전압을 인가하는 것을 특징으로 하는 MAX 상 박막 제조방법.4. The method of claim 3, wherein a bias voltage of -10 to -90 V is applied to the target side.
  5. 제1항에 있어서, Ti2AlN으로 된 타겟은 Ti:Al:TiN을 혼합하여 플라즈마로 소결하여 제작되는 것을 특징으로 하는 MAX 상 박막 제조방법.The method of claim 1, wherein the target made of Ti 2 AlN is manufactured by sintering with plasma by mixing Ti: Al: TiN.
  6. 제1항에 있어서, Ti2AlN 타겟으로부터 생성되는 금속이온의 에너지는 50 내지 100eV 인 것을 특징으로 하는 MAX 상 박막 제조방법.The method of claim 1, wherein the energy of the metal ions generated from the Ti 2 AlN target is 50 to 100 eV.
  7. 제1항 또는 제2항에 있어서, 상기 모재는 300 내지 500℃에서 내구성을 갖는 소재인 것을 특징으로 하는 MAX 상 박막 제조방법.The method of claim 1, wherein the base material is a material having durability at 300 to 500 ° C. 4.
  8. 제5항에 있어서, Ti2AlN으로 된 타겟은 Ti:Al:N의 원자비가 2:1.1~1.2:1.8~2.0인 것을 특징으로 하는 MAX 상 박막 제조방법.The method of claim 5, wherein the target of Ti 2 AlN has an atomic ratio of Ti: Al: N of 2: 1.1 to 1.2: 1.8 to 2.0.
PCT/KR2013/000234 2013-01-10 2013-01-11 Method for producing thin film on nanocrystalline max WO2014109425A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0002743 2013-01-10
KR1020130002743A KR20140090754A (en) 2013-01-10 2013-01-10 MAX phase thin film Manufacturing Method

Publications (1)

Publication Number Publication Date
WO2014109425A1 true WO2014109425A1 (en) 2014-07-17

Family

ID=51167068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/000234 WO2014109425A1 (en) 2013-01-10 2013-01-11 Method for producing thin film on nanocrystalline max

Country Status (2)

Country Link
KR (1) KR20140090754A (en)
WO (1) WO2014109425A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3406751A1 (en) * 2017-05-24 2018-11-28 Walter Ag A coated cutting tool and a method for its production
US20210395875A1 (en) * 2018-11-09 2021-12-23 Oerlikon Surface Solutions Ag, Pfäffikon Cubic Al-rich AlTiN Coatings Deposited from Ceramic Targets
CN115961259A (en) * 2022-12-09 2023-04-14 中国科学院宁波材料技术与工程研究所 Tough corrosion-resistant MAX phase multilayer composite coating and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220259700A1 (en) * 2019-07-30 2022-08-18 Drexel University Max phase-gold composites and methods for making the same
KR102569313B1 (en) 2021-08-05 2023-08-21 전북대학교산학협력단 MAX phase with low oxygen concentration manufacturing method and apparatus
KR20230167485A (en) 2022-06-02 2023-12-11 전북대학교산학협력단 MAX phase with low oxygen synthesis method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004091A (en) * 2002-07-01 2004-01-13 세코 툴스 에이비 Wear resistant coating with enhanced toughness
KR20070083961A (en) * 2004-11-26 2007-08-24 산드빅 인터렉츄얼 프로퍼티 에이비 Product coated with a composite max-material and method of its production
KR20080004944A (en) * 2006-07-07 2008-01-10 배은현 High efficiency facing target type sputtering apparatus
US20100065418A1 (en) * 2006-11-29 2010-03-18 Helmholtz-Zentrum Berlin Fuer Materialien Und Energie Gmbh Reactive magnetron sputtering for the large-scale deposition of chalcopyrite absorber layers for thin layer solar cells
JP2010236060A (en) * 2009-03-31 2010-10-21 Hitachi Tool Engineering Ltd Nitride dispersion ti-al based target and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004091A (en) * 2002-07-01 2004-01-13 세코 툴스 에이비 Wear resistant coating with enhanced toughness
KR20070083961A (en) * 2004-11-26 2007-08-24 산드빅 인터렉츄얼 프로퍼티 에이비 Product coated with a composite max-material and method of its production
KR20080004944A (en) * 2006-07-07 2008-01-10 배은현 High efficiency facing target type sputtering apparatus
US20100065418A1 (en) * 2006-11-29 2010-03-18 Helmholtz-Zentrum Berlin Fuer Materialien Und Energie Gmbh Reactive magnetron sputtering for the large-scale deposition of chalcopyrite absorber layers for thin layer solar cells
JP2010236060A (en) * 2009-03-31 2010-10-21 Hitachi Tool Engineering Ltd Nitride dispersion ti-al based target and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3406751A1 (en) * 2017-05-24 2018-11-28 Walter Ag A coated cutting tool and a method for its production
WO2018215410A1 (en) * 2017-05-24 2018-11-29 Walter Ag A coated cutting tool and a method for its production
CN110651063A (en) * 2017-05-24 2020-01-03 瓦尔特公开股份有限公司 Coated cutting tool and method of producing the same
US11104987B2 (en) 2017-05-24 2021-08-31 Walter Ag Coated cutting tool and a method for its production
CN110651063B (en) * 2017-05-24 2023-03-14 瓦尔特公开股份有限公司 Coated cutting tool and method of producing the same
US20210395875A1 (en) * 2018-11-09 2021-12-23 Oerlikon Surface Solutions Ag, Pfäffikon Cubic Al-rich AlTiN Coatings Deposited from Ceramic Targets
US12006564B2 (en) * 2018-11-09 2024-06-11 Oerlikon Surface Solutions Ag, Pfäffikon Cubic Al-rich AlTiN coatings deposited from ceramic targets
CN115961259A (en) * 2022-12-09 2023-04-14 中国科学院宁波材料技术与工程研究所 Tough corrosion-resistant MAX phase multilayer composite coating and preparation method and application thereof
CN115961259B (en) * 2022-12-09 2024-05-03 中国科学院宁波材料技术与工程研究所 High-toughness corrosion-resistant MAX-phase multilayer composite coating and preparation method and application thereof

Also Published As

Publication number Publication date
KR20140090754A (en) 2014-07-18

Similar Documents

Publication Publication Date Title
WO2014109425A1 (en) Method for producing thin film on nanocrystalline max
CN112064024B (en) Diffusion-resistant high-entropy alloy coating material, high-temperature-resistant coating material, and preparation method and application thereof
JP2742896B2 (en) Titanium nitride coating composition, coated product and manufacturing method
KR101850667B1 (en) Method For Producing Cubic Zirconia Layers
KR20090074035A (en) Layer system having at least one mixed crystal layer of a polyoxide
Delplancke-Ogletree et al. Deposition of titanium carbide films from mixed carbon and titanium plasma streams
CN114717516B (en) Strongly-combined high corrosion-resistant TiAl/Ti2Preparation method of AlC coating
JP2013096004A (en) Coated tool having excellent peel resistance and method for manufacturing the same
SE520716C2 (en) A process for manufacturing a cutting tool coated with alumina
CN114196914B (en) Carbide high-entropy ceramic material, carbide ceramic layer and preparation method and application thereof
Yang et al. Nanocrystalline titanium films deposited via thermal-emission-enhanced magnetron sputtering
CN105463391A (en) Nanocrystalline ZrB2 superhard coating and preparation method
KR20130070433A (en) Method of manufacturing max phase thin film
WO2013165036A1 (en) High-speed film-forming device and film-forming method using same
CN111534799B (en) Oxidation-resistant and heat-insulating ceramic coating and preparation method thereof
CN113874540B (en) Cubic aluminum-rich AlTiN coatings deposited from ceramic targets
CN113278931A (en) Method for thickening magnetron sputtering coating on surface of composite material
KR101695590B1 (en) ELECTRODE FOR WATER TREATMENT WITH DIAMOND COATING LAYER ON Ti SUBSTRATE AND MANUFACTURING METHOD THREREOF
Salagean et al. Combined steered arc-unbalanced magnetron grown niobium coatings for decorative and corrosion resistance applications
Lou et al. Fabrication of TiN coatings using superimposed HiPIMS and MF technique: Effect of target poisoning ratios and MF/HiPIMS pulse on-time ratio
Dasgupta et al. Structural characteristics of titanium coating on copper substrates
CN112553580A (en) Diboride composite coating and preparation method and application thereof
KR100653043B1 (en) Method for forming coating layer of solid oxide fuel cell separate plate
CN116180075B (en) Preparation method of low-stress strong-bonding high-temperature insulating coating
CN114068946B (en) MAX-phase multilayer composite protective coating for sulfur electrode current collector of sodium-sulfur battery and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870655

Country of ref document: EP

Kind code of ref document: A1