WO2014109289A9 - HLA-DR1-RESTRICTED Tax-SPECIFIC CD4+ T CELL EPITOPE - Google Patents

HLA-DR1-RESTRICTED Tax-SPECIFIC CD4+ T CELL EPITOPE Download PDF

Info

Publication number
WO2014109289A9
WO2014109289A9 PCT/JP2014/000053 JP2014000053W WO2014109289A9 WO 2014109289 A9 WO2014109289 A9 WO 2014109289A9 JP 2014000053 W JP2014000053 W JP 2014000053W WO 2014109289 A9 WO2014109289 A9 WO 2014109289A9
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
htlv
specific
peptide
Prior art date
Application number
PCT/JP2014/000053
Other languages
French (fr)
Japanese (ja)
Other versions
WO2014109289A1 (en
Inventor
洋太郎 玉井
温彦 長谷川
真理 神奈木
隆二 田野崎
Original Assignee
国立大学法人東京医科歯科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京医科歯科大学 filed Critical 国立大学法人東京医科歯科大学
Publication of WO2014109289A1 publication Critical patent/WO2014109289A1/en
Publication of WO2014109289A9 publication Critical patent/WO2014109289A9/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • A61K39/21Retroviridae, e.g. equine infectious anemia virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70514CD4
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5047Cells of the immune system
    • G01N33/505Cells of the immune system involving T-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • G01N33/56972White blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • G01N33/56988HIV or HTLV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/61Fusion polypeptide containing an enzyme fusion for detection (lacZ, luciferase)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/14011Deltaretrovirus, e.g. bovine leukeamia virus
    • C12N2740/14034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/15Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus, feline leukaemia virus, human T-cell leukaemia-lymphoma virus

Definitions

  • the present invention relates to an HTLV-I-specific CD4 + T cell-inducing peptide having an activity of inducing CD4 + T cells specific for human T-cell leukemia virus type I (HTLV-I), and an HTLV containing the peptide.
  • HTLV-I human T-cell leukemia virus type I
  • -It relates to an I-specific CTL inducing agent, etc.
  • HTLV-I Human T cell leukemia virus type I
  • ATL adult T cell leukemia / lymphoma
  • CD4 + T cell malignancy non-patented
  • HTLV-I seropositive individuals develop ATL, and 2-3% of others have HTLV-I-associated myelopathy / tropical spastic paraparesis paralysis (HAM / TSP: HTLV-I associated) It develops slowly progressive neurological disease known as myelopathy / tropical spastic paraparesis) and various chronic inflammatory diseases (Non-patent Document 3).
  • HAM / TSP HTLV-I associated
  • myelopathy / tropical spastic paraparesis develops slowly progressive neurological disease known as myelopathy / tropical spastic paraparesis
  • Non-patent Document 3 The vast majority of HTLV-I infected individuals are in asymptomatic carriers throughout their lifetime.
  • ATL is characterized by a very poor prognosis, mainly because ATL inherently has drug resistance to anticancer agents. It has been reported that the prognosis improvement of ATL that could not be achieved by autologous hematopoietic stem cell transplantation was observed in allogeneic hematopoietic stem cell transplantation (allo-HSCT) (Non-patent Documents 4 and 5).
  • Non-patent Document 6 HTLV-I provirus is no longer detected in some ATL patients who have achieved complete remission after allogeneic hematopoietic stem cell transplantation and this undetected condition continues, which makes allogeneic hematopoietic stem cell transplantation an effective treatment for ATL (Non-Patent Documents 6 to 8).
  • HTLV-I-specific CTL-inducing active peptide restricted by human HLA-A11
  • Patent Document 2 CD8 + T cells, particularly CTL, play an important role in the control of viral replication in various infectious diseases involving HIV, hepatitis B virus (HBV), hepatitis C virus (HCV) and the like.
  • HBV hepatitis B virus
  • HCV hepatitis C virus
  • HTLV-I infection it is considered that HTLV-I-specific CD8 + T cells recognize Tax antigen (pX gene product) as a predominant and contribute to the control of infected cells (Non-patent Documents 10 and 11).
  • Tax-specific CD8 + T cells could be detected with high frequency in HAM / TSP patients and some asymptomatic carriers (AC), but in the majority of ATL patients and in a small population of ACs The Tax-specific CD8 + T cell response was significantly reduced (Non-patent Documents 12 and 13). The mechanism by which the HTLV-I specific CD8 + T cell response is suppressed in these patients has not been fully elucidated.
  • Non-patent Documents 14 to 18 In order to induce and maintain virus-specific CTL, a virus-specific CD4 + helper T cell response is required in many viral infections (Non-patent Documents 14 to 18), but HTLV-I-specific helper T cell response There were few reports (Non-Patent Documents 19 to 22). This is probably because HTLV-I-specific helper T cells are susceptible to HTLV-I infection in vivo and in vitro (Non-patent Document 23), and infected cells produce HTLV-I antigens within a few hours after culture. (Non-Patent Documents 24 and 25).
  • Non-Patent Document 26 CD4 + at sites of early progressive inflammatory spinal cord injury with spontaneous production of inflammatory neurotoxic cytokines such as IFN- ⁇ and tumor necrosis factor (TNF) - ⁇ (Non-Patent Document 26). T cells are found in predominant (Non-Patent Documents 27 to 28), suggesting that this is involved in the development of HAM / TSP. However, the exact role of HTLV-I-specific CD4 + T cells in HTLV-I infection has not yet been elucidated.
  • Tsukasaki K Maeda T, Arimura K, et al. Poor outcome of autologous stem cell transplantation for adult T cell leukemia / lymphoma: a case report and review of the literature.
  • Utsunomiya A Miyazaki Y, Takatsuka Y, et al. Iproved outcome of adult T cell leukemia / lymphoma with allogeneic hematopoietic stem cell transplantation.
  • Tanosaki R Uike N, Utsunomiya A, et al.
  • HTLV-I Human T cell lymphotropic virus type I -specific CD4 + T cells: immunodominance hierarchy and preferential infection with HTLV-I. J Immunol. 1735-1743. Hanon E, Hall S, Taylor GP, et al. Abundant tax protein expression in CD4 + T cells infected with human T-cell lymphotropic virus type I (HTLV-I) is prevented by cytotoxic T lymphocytes. Blood. 2000; 95 : 1386-1392. Sakai JA, Nagai M, Brennan MB, Mora CA, Jacobson S. In vitro spontaneous lymphoproliferation in patients with human T-cell lymphotropic virus type I-associated neurologic disease: predominant expansion d : 1506-1511.
  • Umehara F Izumo S, Ronquillo AT, Matsumuro K, Sato E, Osame M. Cytokine expression in the spinal cord lesions in HTLV-I-associated myelopathy. J Neuropathol Exp Neurol. 1994-77 (1) Umehara F, Izumo S, Nakagawa M, et al. Immunocytochemicalunoanalysis of the cellular infiltrate in the spinal cord lesions in HTLV-I-associated myelopathy. J Neuropathol Exp Neurol. 1993; 52 (4): 424-430. Iwasaki Y, Ohara Y, Kobayashi I, Akizuki S. Infiltration of helper / inducer T lymphocytes heralds central nervous system damage in human T-cell leukemia virus infection. Am J Pathol. 1992; 140 (5): 1003-1008.
  • An object of the present invention and HTLV-I-specific CD4 + T cell-inducing activity peptide having an activity to induce CD4 + T cells specific for HTLV-I, HTLV-I-specific CTL-inducing action containing the peptide
  • the object is to provide a potentiator, a vaccine for inducing an HTLV-I-specific immune response using these, a diagnostic agent for immune function testing, and the like.
  • HLA-DR1 human HLA-DRB1 * 0101
  • C When such an HTLV-I-specific CD4 + T cell-inducing activity peptide and an HTLV-I-specific CTL-inducing activity peptide are used in combination, the HTLV-I-specific CTL-inducing activity peptide alone is used. HTLV-I-specific CTLs proliferated significantly.
  • the present invention (1) HTLV-I-specific CD4 + T cell-inducing peptide consisting of the amino acid sequence shown in any of (A) to (E) below:
  • C An amino acid sequence having 80% or more identity to the amino acid sequence shown in (A) or (B) above, wherein the peptide comprising the amino acid sequence is induced to induce HTLV-I-specific CD4 + T cells.
  • Amino acid sequence with activity (D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity: (E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL An amino acid sequence combined with the amino acid sequence of the inducing active peptide, (2) The HTLV-I-specific CD4 + T cell-inducing peptide described in (1) above, which is a Tax epitope restricted by HLA-DR1, (3) The HTLV-I-specific CD4 + T cell-inducing peptide according to (1) or (2) above, wherein the CD4 + T cell is a Th1-type helper T cell, (4) a fusion
  • the present invention also provides: (8) HTLV-I-specific CTL inducing action potentiator comprising, as an active ingredient, an HTLV-I-specific CD4 + T cell-inducing peptide consisting of any of the following amino acid sequences (A) to (E): (A) Amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19: (B) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least the amino acid sequences of amino acid numbers 155 to 167: (C) An amino acid sequence having 80% or more identity to the amino acid sequence shown in (A) or (B) above, wherein the peptide comprising the amino acid sequence is induced to induce HTLV-I-specific CD4 + T cells.
  • A Amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
  • B an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino
  • Amino acid sequence with activity (D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity: (E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL An amino acid sequence combined with the amino acid sequence of the inducing active peptide, (9) An expression vector comprising a promoter and a polynucleotide comprising the polynucleotide sequence shown in any of the following (a) to (e), wherein the polynucleotide is operably linked downstream of the promoter.
  • HTLV-I specific CTL inducing action enhancer containing as an active ingredient: (A) a polynucleotide sequence encoding the amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19: (B) a polynucleotide sequence encoding an amino acid sequence comprising 14 to 30 consecutive amino acids in the amino acid sequence represented by SEQ ID NO: 32 and comprising at least the amino acid sequences of amino acid numbers 155 to 167: (C) a polynucleotide sequence having 80% or more identity to the polynucleotide sequence shown in the above (a) or (b), wherein the peptide has HTLV-I-specific CD4 + T cell inducing activity Encoding polynucleotide sequence: (D) a polynucleotide sequence obtained by deleting, substituting, or adding one or several nucleotides in the polynucleotide sequence shown in (a) or (b), wherein the HTLV-I specific
  • the present invention provides (11) below (A) containing - a HTLV-I-specific CD4 + T cell-inducing activity peptide comprising the amino acid sequence shown in any of (E) as an active ingredient, HTLV-I-specific CD4 + T cells Immune function test diagnostic agent to identify: (A) Amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19: (B) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least the amino acid sequences of amino acid numbers 155 to 167: (C) An amino acid sequence having 80% or more identity to the amino acid sequence shown in (A) or (B) above, wherein the peptide comprising the amino acid sequence is induced to induce HTLV-I-specific CD4 + T cells.
  • A Amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
  • B an amino acid sequence consisting of 14 to 30 consecutive amino acids
  • Amino acid sequence with activity (D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity: (E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL An amino acid sequence combined with the amino acid sequence of the inducing active peptide, (12) An HTLV comprising, as an active ingredient, a protein-peptide conjugate in which HLA-DR1 and the HTLV-I-specific CD4 + T cell-inducing peptide according to any one of (1) to (3) above are bound Diagnostic reagent for immunological function test for identifying -I specific CD4 + T cells, (13) HLA-DR1 and HTLV-
  • the present invention also provides: (14) HTLV-I-specific CD4 characterized in that HTLV-I-infected T cells from ATL patients before HSCT are used to stimulate PBMCs of the same patients after HSCT from allogeneic HLA-type donors + T cell induction method, (15) HTLV-I specific, characterized by stimulating PBMC of HLA-DR1-positive ATL patients using the HTLV-I specific CTL inducing action enhancer described in (8) or (9) above CD4 + T cell induction method, (16) HTLV-I-specific CD4 + T cell response and HTLV-I-specific, characterized by stimulating PBMC of HLA-DR1-positive ATL patients using the following (X) and (Y) Methods for inducing HTLV-I specific immune responses, including CTL responses: (X) The HTLV-I-specific CTL inducing action enhancer according to (8) or (9) above: (Y) an HTLV-I-specific CTL-inducing active peptide
  • epitopes a minimal epitope of Tax-specific CD4 + T cells restricted by HLA-DR1 was found. Such epitopes have the activity of inducing CD4 + T cells specific for HTLV-I. Therefore, such epitope peptides are useful as HTLV-I specific CD4 + T cell-inducing active peptides.
  • epitopes can be predicted to some extent from amino acid anchor motifs having affinity for each HLA. However, the host immune response to pathogens in vivo is not necessarily consistent with this prediction. The epitope identified according to the present invention is obtained from an infected individual and is recognized with a much stronger selectivity than other epitopes.
  • the present inventors have found a Tax-specific CTL epitope so far, and that such an epitope peptide has HTLV-I-specific CTL inducing activity and can be used as a vaccine for HTLV-I-recognizing CTL induction. I have found it.
  • the HTLV-I-specific CD4 + T cell-inducing activity peptide found by the present inventors is used in combination with the aforementioned HTLV-I-specific CTL-inducing activity peptide, the HTLV-I-specific CTL-inducing activity peptide alone is used.
  • the HTLV-I-specific CD4 + T cell-inducing peptide of the present invention is also useful as an agent for enhancing HTLV-I-specific CTL induction.
  • the HTLV-I specific CD4 + T cell-inducing activity peptide of the present invention, the protein-peptide conjugate in which HLA-DR1 and the peptide of the present invention are bound, and the tetramer of the protein-peptide conjugate are It is also useful as a diagnostic agent for immune function tests for identifying HTLV-I-specific CD4 + T cells.
  • FIG. 6 shows Tax-specific T cell immune responses in ATL patients after allogeneic hematopoietic stem cell transplantation with palliative pretreatment.
  • PBMC from 18 ATL patients 180 days after allogeneic hematopoietic stem cell transplantation with palliative pretreatment or 2 patients 540 days after allogeneic hematopoietic stem cell transplantation with palliative pretreatment (# 350 and # 341) total PBMC and CD8 + cell depleted PBMC (B) in the absence of GST protein (open), in the presence of GST protein (gray), or in the presence of GST-Tax protein (black) After culturing for 4 days, the IFN- ⁇ concentration in the supernatant was quantified by ELISA.
  • the horizontal dotted line in (A) indicates the detection limit (23.5 pg / ml).
  • the error range represents the standard deviation of duplicate measurements.
  • * P ⁇ 0.05 It is a figure which shows the phenotype and function of CD4 ⁇ +> T cell line (T4) produced from patient # 350.
  • A The phenotype on the cell surface of T4 cells was analyzed by flow cytometry.
  • B Total RNA was extracted from LCL- # 350 (lane 1), T4 cells (lane 2), ILT- # 350 (lane 3) and MT-2 (lane 4). Tax mRNA expression of each cell type was analyzed by RT-PCR. GAPDH was used as an internal standard.
  • T4 cells were stimulated for 24 hours in the presence / absence of ILT- # 350 cells or LCL- # 350 cells fixed with formaldehyde.
  • the cytokine concentration in the supernatant was quantified with a cytometry bead array system. It is a figure which shows the identification process of the dominant Tax origin epitope recognized by the established T4 cell.
  • T4 cells and ILT- # 350 in the presence / absence of blocking antibodies (10 ⁇ g / ml anti-human HLA-DR antibody, anti-human HLA-DQ antibody, anti-HLA-class I antibody or isotype control antibody)
  • the IFN- ⁇ produced by T4 cells released into the culture supernatant was quantified by ELISA.
  • the HLA-DR allele of each LCL strain is shown in parentheses.
  • ATL patients (# 350, # 364 and # 341) who received allogeneic hematopoietic stem cell transplantation with palliative pretreatment and whose Major Histocompatibility Complex (MHC) class I and class II are HLA-A24 / HLA-DRB1 * 0101, respectively
  • MHC Major Histocompatibility Complex
  • the obtained PBMC was cultured for 13 days in the presence of 100 nM CTL epitope (Tax301-309) alone, a mixture of Tax301-309 peptide (100 nM) and Tax155-167 peptide (100 nM), or DMSO alone (negative control). did.
  • the data shows the percentage of HLA-A * 2402 / Tax301-309 tetramer positive cells in CD3 + CD8 + T cells.
  • the HTLV-I specific CD4 + T cell-inducing peptide of the present invention that is, the peptide having the activity of inducing CD4 + T cells specific to HTLV-I is any of the following (A) to (E)
  • the peptide is not particularly limited as long as it is an HTLV-I-specific CD4 + T cell-inducing peptide (hereinafter also referred to as “the peptide of the present invention”) having the amino acid sequence shown above.
  • Amino acid sequence with activity (D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity: (E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL Amino acid sequence combined with the amino acid sequence of the inducing active peptide:
  • SEQ ID NOs listed in (A) above are HLA-DRB1 * 0101 restricted Tax-specific CD4 + T cell epitopes, and SEQ ID NO: 4 is from 154th to 178th of HTLV-I Tax.
  • SEQ ID NO: 10 is the amino acid sequence consisting of amino acids 151 to 165 of Tax of HTLV-I (Tax151-165)
  • SEQ ID NO: 11 is HTLV- It is an amino acid sequence (Tax154-168) consisting of amino acids 154 to 168 of Tax of I
  • SEQ ID NO: 12 is an amino acid sequence (Tax155-169) consisting of amino acids 155 to 169 of Tax of HTLV-I
  • SEQ ID NO: 13 is an amino acid sequence consisting of amino acids 156 to 170 of Tax of HTLV-I (Tax15 6-170)
  • SEQ ID NO: 16 is an amino acid sequence (Tax155-168) consisting of amino acids 155 to 168 of HTLV-I Tax
  • SEQ ID NO: 17 is 155th to 167 of HTLV-I Tax.
  • the amino acid sequence is the amino acid sequence (Tax155-167) consisting of the first amino acid, and SEQ ID NO: 19 is the amino acid sequence (Tax151-178) consisting of the 151st to 178th amino acids of Tax of HTLV-I.
  • Peptides consisting of these amino acid sequences can be suitably exemplified among the peptides of the present invention in that they are excellent in HTLV-I-specific CD4 + T cell inducing activity.
  • SEQ ID NO: 11 (Tax154-168 ), SEQ ID NO: 12 (Tax155-169), SEQ ID NO: 16 (Tax155-168), SEQ ID NO: 17 (Tax155-167), SEQ ID NO: 4 (Tax154-178), SEQ ID NO: 13 (Tax156-170)
  • SEQ ID NO: 11 (Tax154-168), SEQ ID NO: 12 (Tax155-169), SEQ ID NO: 16 (Tax155-168), and SEQ ID NO: 17 (Tax155-167) are more preferably exemplified.
  • SEQ ID NO: 17 (Tax155-167) is particularly preferably exemplified in that it is a minimal epitope of a HLA-HLA-DR1-restricted Tax-specific CD4 + T cell epitope (hereinafter also simply referred to as “minimal epitope”). can do.
  • minimal epitope a HLA-HLA-DR1-restricted Tax-specific CD4 + T cell epitope
  • HTLV-I-specific CD4 + from the viewpoint of obtaining a suitable induction of T cell
  • HLA-HLA-DRB1 type is HLA-DRB1 * 0101 It is preferable to use for the object which is.
  • the amino acid sequence of (B) above is 14 to 30, preferably 14 to 25, more preferably 14 to 20, and still more preferably 14 to 15 amino acids in the amino acid sequence of Tax (SEQ ID NO: 32).
  • An amino acid sequence comprising at least amino acid sequences of amino acid numbers 155 to 167. Since such an amino acid sequence contains a minimal epitope, it is an HTLV-I-specific CD4 + T cell-inducing active peptide.
  • the amino acid sequence of (C) above is 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, even more than the amino acid sequence shown in (A) or (B) above.
  • it is an amino acid sequence having 98% or more identity
  • the peptide comprising the amino acid sequence is an amino acid sequence having HTLV-I-specific CD4 + T cell inducing activity.
  • Such an amino acid sequence is highly likely to be an HTLV-I-specific CD4 + T cell-inducing peptide.
  • the amino acid sequence (D) is an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in (A) or (B) above, and consists of the amino acid sequence.
  • the peptide is an amino acid sequence having HTLV-I specific CD4 + T cell inducing activity.
  • the “amino acid sequence in which one or several amino acids are deleted, substituted or added” is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 10, and still more preferably 1.
  • the modified peptide should have the same effect as that having HTLV-I-specific CD4 + T cell inducing activity in the same manner as the peptide consisting of the amino acid sequence listed in (A) above.
  • alteration (mutation) of the amino acid sequence may be caused by, for example, mutation or post-translational modification, but may be artificially altered. In the present invention, all modified peptides having the above characteristics are included regardless of the cause and means of such modification / mutation.
  • the amino acid sequence of (E) above is an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least an amino acid sequence of amino acid numbers 155 to 167, It is an amino acid sequence obtained by binding an amino acid sequence of an HTLV-I-specific CTL-inducing active peptide.
  • the number of consecutive 14 to 30 amino acids in the amino acid sequence (E) is preferably 18 to 30, more preferably 22 to 30.
  • HTLV-I-specific CTL-inducing activity peptide in the present specification is not particularly limited as long as it is a peptide having an activity to induce CTL specific to HTLV-I.
  • Peptides can be preferably exemplified, and among them, HLA-A * 2402 restricted CTL epitope Tax 301-309 (SEQ ID NO: 34) (see Patent Document 1) and the like can be particularly preferably exemplified.
  • a fusion peptide (Helper / Killer-Hybrid Epitope Long Peptide) in which a cancer antigen epitope for CD4 + T cells, which are helper T cells, and a cancer antigen epitope for CD8 + T cells, which are CTLs, are administered is administered to a subject.
  • a cancer antigen epitope for CD4 + T cells which are helper T cells
  • a cancer antigen epitope for CD8 + T cells which are CTLs
  • helper T cell can be illustrated suitably, Th1 type helper T cell can be illustrated more suitably especially.
  • the peptide of the present invention can be produced by chemical or genetic engineering techniques.
  • the chemical method includes peptide synthesis methods by ordinary liquid phase methods and solid phase methods. More specifically, the peptide synthesis method is based on the amino acid sequence information, and a stepwise erosion method in which each amino acid is sequentially linked one by one to extend the chain, and a fragment consisting of several amino acids is synthesized in advance. Then, a fragment condensation method in which each fragment is subjected to a coupling reaction is included.
  • the peptide of the present invention can be synthesized by any of them.
  • the condensation method employed in the peptide synthesis can also follow various known methods. Specific examples thereof include, for example, azide method, mixed acid anhydride method, DCC method, active ester method, redox method, DPPA (diphenylphosphoryl azide) method, DCC + additive (1-hydroxybenzotriazole, N-hydroxysuccinamide) N-hydroxy-5-norbornene-2,3-dicarboximide, etc.), Woodward method and the like. Solvents that can be used in each of these methods can be appropriately selected from general solvents that are well known to be used in this type of peptide condensation reaction.
  • Examples thereof include dimethylformamide (DMF), dimethyl sulfoxide (DMSO), hexaphosphoroamide, dioxane, tetrahydrofuran (THF), ethyl acetate and the like, and mixed solvents thereof.
  • DMF dimethylformamide
  • DMSO dimethyl sulfoxide
  • THF tetrahydrofuran
  • ethyl acetate examples thereof include dimethylformamide (DMF), dimethyl sulfoxide (DMSO), hexaphosphoroamide, dioxane, tetrahydrofuran (THF), ethyl acetate and the like, and mixed solvents thereof.
  • amino acids that do not participate in the reaction and carboxyl groups in the peptide are generally esterified, for example, lower alkyl esters such as methyl ester, ethyl ester, tertiary butyl ester, such as benzyl ester, p- It can be protected as a methoxybenzyl ester, p-nitrobenzyl ester aralkyl ester or the like.
  • an amino acid having a functional group in the side chain for example, a hydroxyl group of Tyr may be protected with an acetyl group, a benzyl group, a benzyloxycarbonyl group, a tertiary butyl group, or the like, but such protection is not necessarily required.
  • the guanidino group of Arg is a suitable protecting group such as nitro group, tosyl group, 2-methoxybenzenesulfonyl group, methylene-2-sulfonyl group, benzyloxycarbonyl group, isobornyloxycarbonyl group, adamantyloxycarbonyl group and the like. Can be protected.
  • the deprotection reaction of these protecting groups in the amino acids having the above-mentioned protecting groups, peptides and finally obtained peptides of the present invention is also carried out by conventional methods such as catalytic reduction, liquid ammonia / sodium, hydrogen fluoride, odor. It can be carried out according to a method using hydrogen fluoride, hydrogen chloride, trifluoroacetic acid, acetic acid, formic acid, methanesulfonic acid or the like.
  • the peptide of the present invention can be obtained by chemical synthesis as described above, and can also be produced by a conventional method using genetic engineering techniques.
  • the peptide of the present invention thus obtained can be obtained according to a conventional method, for example, peptide such as ion exchange resin, partition chromatography, gel chromatography, affinity chromatography, high performance liquid chromatography (HPLC), countercurrent distribution method and the like.
  • the purification can be appropriately performed according to a method widely used in the chemical field.
  • the fusion peptide of the present invention may be any peptide as long as the peptide of the present invention is bound to the marker protein and / or peptide tag, and the marker protein is a conventionally known marker protein. It is not particularly limited as long as it is, for example, alkaline phosphatase, Fc region of antibody, HRP, GFP and the like can be specifically mentioned, and peptide tags include epitope tags such as HA, FLAG, Myc, Specific examples of conventionally known peptide tags such as affinity tags such as GST, maltose-binding protein, biotinylated peptide, oligohistidine and the like can be exemplified. Such a fusion peptide can be prepared by a conventional method.
  • the protein-peptide conjugate of the present invention is not particularly limited as long as it is a conjugate of HLA-DR1 and the peptide of the present invention.
  • the HLA-DR1 molecule and the above (A) to (E) Preferred is a form capable of binding to a CD4 + T cell that recognizes such a conjugate, such as a conjugate with a peptide consisting of any of the amino acid sequences shown.
  • the tetramer of the protein-peptide conjugate of the present invention is not particularly limited as long as it is a tetramer of a protein-peptide conjugate in which HLA-DR1 and the peptide of the present invention are bound.
  • the protein-peptide conjugate can be exemplified by a tetramer having streptavidin as a nucleus.
  • a substrate of the enzyme Bir-A is expressed at the C-terminus of HLA-DR1, and Bir- It can be obtained by mixing HLA-DR1 biotinylated by the A-dependent biotinilation method with phycoerythrin (PE) -labeled deglycosylated avidin at a ratio of 4: 1 (Altman, JD, et al .: Science 274, 94- 96, 1996).
  • PE phycoerythrin
  • HLA protein-peptide conjugates and tetramers thereof are HLA produced by a conventional method using a chemically synthesized peptide of the present invention and a genetic engineering technique using the HLA-DR1 gene (GenBank accession number AF142457).
  • HLA-DR1 GeneBank accession number AF142457
  • the fusion protein of the present invention may be any protein as long as the protein-peptide conjugate or protein-peptide conjugate tetramer is bound to the marker protein and / or peptide tag.
  • the protein is not particularly limited as long as it is a conventionally known marker protein.
  • fluorescent dyes, alkaline phosphatase, antibody Fc region, HRP, GFP and the like can be specifically mentioned.
  • Specific examples of the tag include epitope tags such as HA, FLAG, and Myc, and conventionally known peptide tags such as affinity tags such as GST, maltose-binding protein, biotinylated peptide, and oligohistidine. .
  • Such fusion proteins can be prepared by conventional methods, such as purification of protein-peptide conjugates utilizing the affinity between Ni-NTA and His tags, detection of HTLV-I specific CD4 + T cells, and other such It is also useful as a research reagent in the field.
  • antibodies that specifically bind to the peptide of the present invention include immunospecific antibodies such as monoclonal antibodies, polyclonal antibodies, chimeric antibodies, single chain antibodies, humanized antibodies, and the like.
  • the peptide of the present invention can be prepared by an ordinary method using the antigen as an antigen. Among them, a monoclonal antibody is more preferable in terms of its specificity.
  • Such an antibody that specifically binds to the peptide of the present invention such as a monoclonal antibody is not only useful for diagnosis of, for example, ATL and HAM / TSP, but also HTLV-I specific CD4 + T cells of the peptide of the present invention. It is useful for clarifying the activity mechanism and molecular mechanism of induction.
  • the antibody against the peptide of the present invention can be obtained by subjecting an animal (preferably non-human) to a peptide of the present invention, a complex of the peptide of the present invention and an immunogenic protein,
  • an animal preferably non-human
  • the hybridoma method (Nature 256, 495-497, 1975) is used to produce antibodies produced by continuous cell line cultures. ), Trioma method, human B cell hybridoma method (Immunology Today 4, 72, 1983) and EBV-hybridoma method (MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp.77-96, Alan R.Liss, Inc., 1985)
  • the method can be used.
  • the polynucleotide of the present invention is a polynucleotide encoding an HTLV-I-specific CD4 + T cell-inducing peptide, that is, a polynucleotide comprising the polynucleotide sequence shown in any of the following (a) to (d):
  • the nucleotide is not particularly limited as long as it is a nucleotide (hereinafter also referred to as “polynucleotide of the present invention”).
  • the polynucleotide sequence of (a) is not particularly limited as long as it encodes any of the listed amino acid sequences, but is shown in SEQ ID NO: 24 as a polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 4.
  • the polynucleotide sequence shown in SEQ ID NO: 25 can be preferably exemplified as the polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 10.
  • polynucleotide sequence shown in SEQ ID NO: 26 can be preferably exemplified as the polynucleotide sequence encoding the amino acid sequence shown, and is shown in SEQ ID NO: 27 as the polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 12.
  • a polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 16 can be preferably exemplified as the polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 13
  • the polynucleotide sequence shown in SEQ ID NO: 29 can be preferably exemplified as the sequence
  • the polynucleotide sequence shown in SEQ ID NO: 30 is preferably exemplified as the polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 17. Can do.
  • the polynucleotide sequence of (b) is an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising an amino acid sequence comprising at least amino acid numbers 155 to 167.
  • the encoding polynucleotide sequence is not particularly limited as long as it encodes the above-mentioned amino acid sequence.
  • a polynucleotide sequence corresponding to the above-mentioned amino acid sequence is preferably exemplified. be able to.
  • Such a polynucleotide sequence can be grasped by comparing SEQ ID NO: 32 showing the amino acid sequence of the entire Tax and SEQ ID NO: 33 showing the polynucleotide sequence of the entire Tax.
  • the polynucleotide sequence (c) is 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more with respect to the polynucleotide sequence shown in (a) or (b). Even more preferably, it is a polynucleotide sequence having 98% or more identity, and encoding a peptide having HTLV-I-specific CD4 + T cell inducing activity.
  • the polynucleotide sequence of (d) is a polynucleotide sequence in which one or several nucleotides are deleted, substituted or added in the polynucleotide shown in (a) or (b) above, and the HTLV-I A polynucleotide sequence encoding a peptide having specific CD4 + T cell inducing activity.
  • the “polynucleotide sequence in which one or several nucleotides are deleted, substituted or added” is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 10, and still more preferably.
  • the degree of “addition” and the position thereof are derived from HTLV-I-specific CD4 + T cell induction in the same manner as the peptide encoded by the modified polynucleotide sequence is composed of the amino acid sequence listed in (A) above.
  • the nucleotide is not particularly limited as long as it has the same activity, and such nucleotide alteration (mutation) is caused by, for example, mutation or post-translational modification. There is also a, but can also be artificially altered. In the present invention, all modified polynucleotide sequences having the above characteristics are included regardless of the cause and means of such modification / mutation.
  • the polynucleotide sequence of (e) above is an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in column number 32, and comprising at least an amino acid sequence of amino acid numbers 155 to 167, and , A polynucleotide sequence encoding an amino acid sequence obtained by binding an amino acid sequence of an HTLV-I-specific CTL-inducing active peptide.
  • the polynucleotide sequence (e) is a polynucleotide sequence corresponding to the amino acid sequence (E).
  • the polynucleotide of the present invention can be advantageously used when preparing the peptide of the present invention by a conventional method using genetic engineering techniques.
  • the antisense strand of the polynucleotide of the present invention is ATL or the like. It is useful as a diagnostic probe for HTLV-I tumors.
  • the HTLV-I-specific CTL inducing action enhancer or HTLV-I-specific CTL inducing action enhancing composition (preferably pharmaceutical composition) of the present invention includes any of the above amino acids (A) to (E).
  • Such a peptide of the present invention or a peptide of the present invention expressed from the expression vector of the present invention induces HTLV-I specific CD4 + T cells, and such CD4 + T cells induce HTLV-I specific CTL inducing action.
  • “enhancing the HTLV-I-specific CTL inducing action” means that an HTLV-I-specific CTL-inducing active peptide (HTLV-I-specific peptide) is induced through induction of HTLV-I-specific CD4 + T cells. Which has the ability to enhance the HTLV-I-specific CTL inducing action exerted by a peptide having an activity to induce CTL).
  • Whether or not a substance having the ability to enhance the HTLV-I-specific CTL-inducing action exhibited by the HTLV-I-specific CTL-inducing active peptide is determined by, for example, determining the substance and the HTLV-I-specific CTL-inducing active peptide. When used in combination, it can be easily confirmed by investigating whether HTLV-I-specific CTLs are more prominently compared with the case where HTLV-I-specific CTL-inducing activity peptide alone is used. .
  • HTLV-I-specific CTL is more significantly induced when used in combination, the substance has the ability to enhance the HTLV-I-specific CTL inducing action exhibited by the HTLV-I-specific CTL-inducing active peptide. It can be said that it has.
  • the expression vector includes a promoter and a polynucleotide comprising the polynucleotide sequence shown in any of (a) to (e) above, and the polynucleotide is operably linked downstream of the promoter.
  • Any expression vector can be used, and plasmids derived from Escherichia coli (eg, pET28, pGEX4T, pUC118, pUC119, pUC18, pUC19, and other plasmid DNAs), plasmids derived from Bacillus subtilis (Eg, pUB110, pTP5, and other plasmid DNA), yeast-derived plasmids (eg, YEp13, YEp24, YCp50, and other plasmid DNAs), ⁇ phage ( ⁇ gt11, ⁇ ZAP, etc.), mammalian plasmids (pCMV, pSV40) Virus vectors (adenovirus vectors,
  • the promoter is not particularly limited, and a suitable promoter may be selected according to the host, and either a constitutive promoter or an inducible promoter known in the technical field may be used. Specifically, as the promoter, CMV promoter, SV40 promoter, CAG promoter, synapsin promoter, rhodopsin promoter, CaMV promoter, glycolytic enzyme promoter, lac promoter, trp promoter, tac promoter, GAPDH promoter, GAL1 promoter, PH05 promoter, PGK promoter etc. can be mentioned.
  • the expression vector may further contain a terminator downstream of the target polynucleotide.
  • the host cell used when the peptide of the present invention is expressed using the above expression vector may be any host cell as long as the expression vector can express the peptide of the present invention, such as Escherichia coli and Streptomyces.
  • Bacterial prokaryotic cells such as Bacillus subtilis, Streptococcus and Staphylococcus, eukaryotic cells such as yeast and Aspergillus, insect cells such as Drosophila S2 and Spodoptera Sf9, L cells, CHO cells, COS cells, HeLa cells, C127 Examples include cells, BALB / c3T3 cells (including mutants lacking dihydrofolate reductase and thymidine kinase), BHK21 cells, HEK293 cells, Bowes melanoma cells, and oocyte and plant cells.
  • introduction of an expression vector capable of expressing the peptide of the present invention into a host cell is performed by Davis et al. (BASIC METHODS IN MOLECULAR BIOLOGY, 1986) and Sambrook et al. (MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring). Methods described in many standard laboratory manuals such as Harbor Laboratory, Press, Cold Spring, NY, 1989), eg, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, Cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction, infection, and the like.
  • the HTLV-I specific CTL inducing action enhancer or HTLV-I specific CTL inducing action enhancing composition may contain a pharmaceutically acceptable carrier or diluent, an immunostimulant, an additive, etc.
  • a carrier or diluent include a stabilizer such as SPGA, sorbitol, mannitol, starch.
  • Specific examples include carbohydrates such as sucrose, glucose and dextran, proteins such as albumin and casein, protein-containing substances such as bovine serum and skim milk, and buffers such as phosphate buffer, physiological saline and water. be able to.
  • the immunostimulant examples include cytokines such as interleukin-2 (IL-2), interleukin-12 (IL-12), and tumor necrosis factor ⁇ (THF- ⁇ ).
  • cytokines such as interleukin-2 (IL-2), interleukin-12 (IL-12), and tumor necrosis factor ⁇ (THF- ⁇ ).
  • IL-2 interleukin-2
  • IL-12 interleukin-12
  • TNF- ⁇ tumor necrosis factor ⁇
  • examples include low molecular weight polypeptides (less than about 10 residues), proteins, amino acids, carbohydrates containing glucose or dextran, chelating agents such as EDTA, protein stabilizers, microbial growth inhibitors or inhibitors, and the like. However, it is not limited to these.
  • the HTLV-I-specific CTL inducing action enhancer or HTLV-I-specific CTL inducing action-enhancing composition of the present invention is orally, intravenously, intraperitoneally, intranasally, intradermally.
  • a form that can be administered subcutaneously, intramuscularly, and the like is preferable.
  • the effective amount to be administered can be appropriately determined in consideration of the type and composition of the pharmaceutical or pharmaceutical composition, the administration method, the age and weight of the patient, etc., and these can be administered one to several times per day. preferable.
  • When administered orally it is usually administered in the form of a preparation prepared by mixing with a pharmaceutical carrier.
  • a carrier that can be used in the preparation a substance that is commonly used in the preparation field and does not react with the peptide of the present invention is used.
  • the dosage form include tablets, capsules, granules, powders, syrups, suspensions, suppositories, ointments, creams, gels, patches, inhalants, injections, and the like.
  • These preparations can be prepared according to conventional methods, and in the case of liquid preparations in particular, they can be dissolved or suspended in water or other suitable medium at the time of use. Tablets and granules may be coated by a known method.
  • injection it is prepared by dissolving the peptide of the present invention in water, but it may be dissolved in physiological saline or glucose solution as necessary, and a buffer or preservative may be added. Good. These preparations may also contain other components having therapeutic value.
  • the vaccine for inducing an HTLV-I-specific immune response of the present invention includes the aforementioned HTLV-I-specific CTL inducing action enhancer of the present invention, an HTLV-I-specific CTL-inducing activity peptide, or a polynucleotide encoding the peptide If it contains, it will not restrict
  • the HTLV-I specific CTL inducing peptide is as described above. According to such a vaccine, both HTLV-I-specific CD4 + T cells and HTLV-I-specific CTL can be induced, and the HTLV-I-specific CTL can be significantly induced.
  • the vaccine for inducing immune response of the present invention can be used for treatment of HTLV-I tumors such as ATL. From the viewpoint of obtaining a suitable induction of HTLV-I-specific CTL, it is preferable to use an HTLV-I-specific CTL-inducing active peptide that is suitable for the type of HLA-A to be administered.
  • An HTLV-I specific CD4 + T cell-inducing activity peptide consisting of the amino acid sequence of (E) above or an expression vector containing the polynucleotide of (e) above as an HTLV-I specific CTL inducing action potentiator
  • it When it is contained as an active ingredient, it contains an HTLV-I-specific CTL-inducing active peptide or a polynucleotide encoding the peptide, and need not be separately included.
  • containing the HTLV-I-specific CTL inducing action enhancer of the present invention and an HTLV-I-specific CTL-inducing activity peptide or a polynucleotide encoding the peptide includes the above (E HTLV-I-specific CD4 + T cell-inducing peptide comprising the amino acid sequence of () and an expression vector comprising the polynucleotide (e) are also included for convenience.
  • the vaccine for inducing immune response is more preferably one containing various adjuvants that enhance cellular or local immunity.
  • adjuvants include peptide-specific CD4 + efficiently.
  • an adjuvant when used, it should be used as a recombinant fusion protein or recombinant fusion peptide prepared from a polynucleotide that continuously encodes various bacterial cell components and toxins that serve as adjuvants and the peptide of the present invention. You can also.
  • the immunological function test diagnostic agent of the present invention includes the peptide of the present invention, the expression vector of the present invention, a protein-peptide conjugate in which HLA-DR1 and the peptide of the present invention are bound, or 4 of the protein-peptide conjugate. It is not particularly limited as long as it is capable of examining and diagnosing an immune function, particularly an immune function against HTLV-I, with a monomer as an active ingredient.
  • a radioisotope can be used in addition to the marker protein and the peptide tag.
  • an immune function test diagnostic agent of the present invention an immune function test diagnostic agent for identifying HTLV-I-specific CD4 + T cells can be preferably exemplified.
  • the immune function test diagnostic agent of the present invention is brought into contact with peripheral blood leukocytes (lymphocytes) of a subject subject to recognize an epitope in the peptide or the like of the present invention.
  • peripheral blood leukocytes lymphocytes
  • HTLV-I Tax specific CD4 + T cells can be identified.
  • fluorescent labels such as the above-mentioned protein-peptide conjugate tetramer PE enable detection and quantification of CD4 + T cells by flow cytometry.
  • it is particularly useful for determining the effect of inducing HTLV-I-specific CD4 + T cells.
  • a mononuclear cell fraction is separated from a heparin peripheral blood sample, and a PE-labeled tetramer (protein-peptide conjugate tetramer) and an activation marker antibody such as a CD4 antibody labeled with FITC or PE-Cy5 are used.
  • the immune function of the subject can be examined and diagnosed.
  • the number of tetramer positive cells is often very small in a fresh blood sample, not only a fresh blood sample but also a peptide of the present invention or a cell expressing the same is used for a few days to a week. The same staining analysis can be performed after the culture.
  • HTLV-I-infected T cells derived from an ATL patient prior to HSCT are used to derive from an allogeneic HLA type, that is, an HLA-DR1 type donor.
  • a method of inducing HTLV-I-specific CD4 + T cells characterized by stimulating PBMCs of the same patient after HSCT in vitro, in vivo or ex vivo, and using the peptide of the present invention, HLA-DR1 positive
  • a method of inducing HTLV-I-specific CD4 + T cells characterized by stimulating PBMCs of ATL patients in vitro, in vivo or ex vivo, and using the above-described expression vector of the present invention, for example, to antigen-presenting cells in PBMCs
  • In vitro analysis of PBMCs from HLA-DR1-positive ATL patients such as genetically expressing peptides It is not particularly limited as long as it is a HTLV-I-specific CD4 + T method for inducing cells, characterized by stimulating in vivo or ex vivo, HTLV-I-specific CD4 + T cells obtained by such induction method
  • HTLV-I-specific CTL inducing action characterized by stimulating PB
  • PBMCs of HLA-DR1-positive ATL patients are used as follows: The method is not particularly limited as long as it is a method characterized by stimulation using (X) and (Y).
  • An HTLV-I-specific CD4 + T cell-inducing activity peptide consisting of the amino acid sequence of (E) above or an expression vector containing the polynucleotide of (e) above as an HTLV-I-specific CTL inducing action potentiator
  • it When it is contained as an active ingredient, it contains an HTLV-I-specific CTL-inducing active peptide or a polynucleotide encoding the peptide, so that it is not necessary to prepare it separately and stimulate PBMC with it.
  • Stimulating the PBMC using the above (X) and (Y) includes stimulating PBMC with an HTLV-I-specific CD4 + T cell-inducing activity peptide consisting of the amino acid sequence of (E), Stimulating PBMC with an expression vector containing the polynucleotide of (e) above is also included for convenience.
  • aspects of the present invention include the use of the peptide of the present invention for enhancing the HTLV-I-specific CTL inducing action, and the peptide of the present invention and HTLV-I for inducing an HTLV-I-specific immune response.
  • a characteristic ATL prevention, treatment or amelioration method is also included.
  • Tax-specific CD8 + T cells were examined in a number of ATL patients who received allogeneic hematopoietic stem cell transplantation with palliative pretreatment.
  • Table 1 shows that peripheral blood was collected from 18 ATL patients 180 days after allogeneic hematopoietic stem cell transplantation with palliative pretreatment, and Tax-specific CD8 + T cells (CTL) were obtained by flow cytometry using Tax / HLA tetramer.
  • chimerism (%) indicates the proportion of patient-derived T cell chimerism (indicating the engraftment rate of transplanted cells), and “tetramer-positive cells (%)” are among CD8-positive T cells.
  • the ratio of tetramer positive cells (Tax antigen-specific CTL) is shown.
  • “Infected cell rate” shows the number of infected cells per 1000 peripheral blood mononuclear cells (PBMC) determined quantitatively by nucleic acid.
  • PBMC peripheral blood mononuclear cells
  • PBMCs were isolated by density gradient centrifugation using Ficoll-Paque (registered trademark) PLUS (GE Healthcare UK), and Bambanker stock solution (manufactured by Nippon Genetics Co., Ltd.) PBMCs suspended in) were stored in liquid nitrogen until needed. Some of these stock cells were used to establish IL-2-dependent HTLV-I infected T cell line (ILT) and Epstein-Barr virus (EBV) transformed lymphoblast B cell line (LCL).
  • ILT IL-2-dependent HTLV-I infected T cell line
  • EBV Epstein-Barr virus
  • ILT- # 350 spontaneously immortalized (carcinogenic) by long-term culture of PBMC obtained from patient # 350 before allogeneic hematopoietic stem cell transplantation with 20% fetal calf serum (FCS; manufactured by Sigma Aldrich)
  • FCS fetal calf serum
  • the cells were subcultured with RPMI 1640 (Life Technologies, Inc.) containing 30 U / ml of recombinant human interleukin-2 (rhIL-2; manufactured by Shionogi & Co., Ltd.).
  • LCL- # 307, LCL- # 341, and LCL- # 350 were established from PBMCs obtained from ATL patients # 307, # 341, and # 350 after allogeneic hematopoietic stem cell transplantation, respectively.
  • These PBMCs were subcultured with RPMI 1640 containing 20% FCS, and then infected with B95-8 cell line culture supernatant containing EBV.
  • LCL-Kan was established from
  • A-3 Synthetic peptides In the central region of Tax antigen (residues 103 to 246), a total of 18 overlapping peptides of 12 to 25 mer in length were purchased from Scrum Inc. (see Table 2) for epitope mapping. used. HLA-A * 2402 restricted CTL epitope (Tax301-309) (SEQ ID NO: 34) (Non-patent Document 9) was used for in vitro peptide stimulation of Tax-specific CTL (Hokudo Co., Ltd.).
  • Non-Patent Document 13 Kurihara K, Shimizu Y, Takamori A, et al. Human T-cell leukemia virus type-I (HTLV-I) -specific T-cell responses detected using three-divided glutathione-S -Transfer (GST) -Tax fusion proteins. J Immunol Methods. 2006; 313 (1-2): 61-73.) and the immune response of T cells specific to HTLV-ITax was evaluated.
  • ⁇ ELISA> PBMC (1 ⁇ 10 6 cells / ml) containing 10% FCS in the presence / absence (presence or absence) of a mixture of GST-Tax-A, -B and -C proteins (GST-TaxABC) Incubated with RPMI 1640 (200 ⁇ l). After 4 days, the supernatant was collected, and the IFN- ⁇ concentration in the supernatant was measured using OptiEIA Human IFN- ⁇ ELISA Kit (BD Biosciences). The minimum detectable amount of IFN- ⁇ in this assay was 23.5 pg / ml.
  • CD8 + cells were removed from the cultured PBMC by Dynabeads M-450 CD8 (manufactured by Invitrogen) by the negative selection method according to the manufacturer's protocol.
  • To perform cytokine profiling of the HTLV-I specific CD4 + T cell line the isolated cells were stimulated with ILT- # 350 fixed with formaldehyde for 48 hours. The culture supernatant was collected, and various cytokines were measured using a human Th1 / Th2 / Th17 cytokine kit (BD Biosciecnes) of Cytokine Beads Array.
  • T4 cells Induction of A-5 HTLV-I specific CD4 + T cell line (T4 cells)
  • Patient # 350 PBMC (1 ⁇ 10 6 cells / ml) who achieved complete remission on day 180 after allogeneic hematopoietic stem cell transplantation with palliative pretreatment ) was cultured for 2 weeks in the presence of Tax301-309 peptide (100 nM).
  • Cultured PBMCs were then isolated from CD4 + cells by negative selection using Human CD4 T lymphocyte Enrichment Set-DM (BD Biosciecnes) and contained 20% FCS and rhIL-2 (100 U / ml). Subcultured with RPMI 1640. Every two to three weeks thereafter, isolated CD4 + cells were stimulated with ILT- # 350 fixed with formaldehyde.
  • HTLV-IpX specific primer pX1: 5'-CCA CTT CCC AGG GTT TAG ACA GAT CTT C-3 '(SEQ ID NO: 20) and pX4: 5'-TTC CTT ATC CCT CGA CTC CCC TCC TTC CCC-3 ′ (SEQ ID NO: 21)
  • PCR was performed in 50 ⁇ l of a reaction mixture containing 0.5 ⁇ M of each and 2 ⁇ l of cDNA.
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • GAPDH3 ′ 5′-TCC ACC ACC CTG TTG CTG TA-3 ′ (SEQ ID NO: 23)
  • an initial activation step was performed at 94 ° C. for 1 minute, followed by 30 cycles consisting of denaturation (98 ° C., 10 seconds), annealing (60 ° C., 2 minutes) and extension (74 ° C., 30 seconds). Cycled. After electrophoresis on a 2% (w / v) agarose gel, PCR products were visualized with ethidium bromide.
  • CD3-FITC UCHT1, BioLegend
  • CD4-FITC RPA-T4, BioLegend
  • CD8-FITC RPA-T8, BioLegend
  • CD8-PE-Cy5 HIT8a, BD Biosciences
  • PE phycoerythrin
  • HLA-DRB1 * 0101 / Tax155-167 tetramer was newly made by special order from MBL.
  • the PE-labeled Tax / HLA tetramer stained whole blood or cultured cells with a combination of CD3-FITC and CD8-PE-Cy5 or CD4-PE-Cy5.
  • the whole blood sample was lysed with red blood cells, fixed with a BD FACS solution (BD Biosciences), and then washed. Samples were analyzed using FACS Calibur (Becton Dickinson), and FlowJo software (Tree Star, Inc.) was used for data analysis.
  • T4 cells (3 ⁇ 10 5 cells / ml) were treated with LCL- # 350 peptide-stimulated for 1 hour at 37 ° C. under various synthetic peptides and concentration conditions, responder cells (T4) / Stimulation cells (LCL- # 350) were co-cultured for 6 hours at an R / S ratio of 3.
  • ELISA was performed using the collected culture supernatant, and IFN- ⁇ produced by T4 cells by various peptide-specific stimuli was quantified.
  • Tax155-167 peptides were used using various HLA type LCLs (LCL- # 350, LCL- # 341, LCL- # 307 and LCL-Kan) Specific IFN- ⁇ production response was evaluated. These LCLs (1 ⁇ 10 5 cells / ml) were stimulated with 100 ng / ml Tax155-167 peptide for 1 hour, fixed with 2% formaldehyde and then in the presence of T4 cells (3 ⁇ 10 5 cells / ml). Cultured for 6 hours. The culture supernatant was collected, and IFN- ⁇ in the supernatant was measured by ELISA.
  • PBMC proliferation ability
  • B-1 Tax-specific T cell immune response in ATL patients after allogeneic hematopoietic stem cell transplantation with palliative pretreatment Immunoassay using GST-Tax fusion protein (A above) to assess Tax-specific T cell response -4).
  • the immunological function measurement method using GST-Tax fusion protein can analyze both CD4 + T cell response and CD8 + T cell response regardless of HLA type. The results of such an assay are shown in FIG. From the results of 16 patient PBMCs in FIG. 1A, it was revealed that the degree of immune response to Tax protein stimulation based on IFN- ⁇ production was diverse.
  • HTLV-I specific CD4 + T cell line from patient # 350 Allogeneic hematopoietic stem cell transplantation using HTLV-I infected T cell line (ILT- # 350) as antigen-presenting cells and palliative pretreatment HTLV-I specific CD4 + T cells were induced from the same patient # 350 PBMC 180 days later.
  • Peptide stimulation of freshly isolated patient PBMC with Tax301-309 (CTL dominant epitope presented in HLA-A * 2402) for 2 weeks induces Tax-specific CTL and is originally present in patient PBMC HTLV-I infected cells were removed.
  • CD4 + cells were isolated from the cultured cells and stimulated every 2-3 weeks with ILT- # 350 fixed with formaldehyde.
  • T4 cell When the phenotype on the cell surface of the established cell line was analyzed by flow cytometry (see A-7 above), the cells expressed CD3 and CD4 but not CD8 (FIG. 2A). + T cell line was confirmed. Hereinafter, this is called a T4 cell.
  • HTLV-I is known to preferentially infect CD4 + T cells both in vivo and in vitro (Non-patent Document 23).
  • HTLV-I infection in the above-mentioned T4 cells was examined by RT-PCR (see A-7 above), no band was confirmed at the position indicated by pX (FIG. 2B), and HTLV-I was infected. No HTLV-I specific CD4 + T cells were shown.
  • Tax is a pX gene product, and absence of Tax in the cells indicates that HTLV-I is uninfected.
  • the EB virus-transformed B cell line LCL- # 350 was used as a negative control, the HTLV-I-infected T cell line ILT- # 350 and the ATL cell line MT-2 were used as positive controls.
  • T4 cells were stimulated for 24 hours in the presence / absence of ILT- # 350 cells or LCL- # 350 cells fixed with formaldehyde, The cytokine concentration was quantified by a cytometry bead array system. As a result, T4 cells produced large amounts of IFN- ⁇ and TNF- ⁇ in response to ILT- # 350 and produced low amounts of IL-2, IL-4 and IL-10, but LCL- # 350 Production was not observed (FIG. 2C). Thus, it was shown that T4 cells are HTLV-I specific and are a Th1-type CD4 + cell line.
  • T4 cells produced significantly higher levels of IFN- ⁇ for GST-TaxABC and GST-TaxB (TaxB: amino acid sequence of amino acid numbers 113 to 237 of SEQ ID NO: 32) than the GST protein (control).
  • TaxA amino acid sequence of amino acid numbers 1 to 127 of SEQ ID NO: 32
  • GST-TaxC amino acid sequence of amino acid numbers 224 to 353 of SEQ ID NO: 32
  • production is significantly higher.
  • FIG. 3A This indicates that T4 cells recognized mainly the central region of Tax protein as an antigen.
  • Tax154-168 SEQ ID NO: 11
  • Tax155-169 SEQ ID NO: 12
  • Tax156-170 SEQ ID NO: 13
  • Tax155-167 induced the same level of IFN- ⁇ production as Tax155-169 and Tax155-168, but Tax155-166 did not reach the same level (FIG. 3E).
  • IFN- ⁇ production was examined for Tax155-169, Tax155-168, Tax155-167, and Tax146-160 (negative control) by changing their concentration conditions. It was found that the amount of IFN- ⁇ produced in T4 cells in a concentration-dependent manner relative to Tax155-167 was comparable to that produced for Tax155-169 and Tax155-168 (FIG. 3F).
  • B-4 HLA-DRB1 * 0101 restriction of Tax-specific T4 cells
  • anti-HLA-DR In the presence / absence of anti-HLA-DQ and anti-HLA class I blocking antibodies, the immune response of T4 cells stimulated with ILT- # 350 was analyzed (see A-9 above). This epitope was shown to be HLA-DR-restricted because blocking HLA-DR suppressed IFN- ⁇ production of T4 cells upon stimulation from ILT- # 350 (FIG. 4A).
  • HLA-type LCLs that display different HLA-DR were used to examine HLA-DR alleles involved in the presentation of minimal epitopes (see A-9 above).
  • Tax155-167 was presented by autologous LCL- # 350 (DR1 / 14) and allogeneic LCL- # 341 (DR1 / 15), production of IFN- ⁇ by T4 cells was confirmed (FIG. 4B).
  • This result clearly shows that this epitope is presented on antigen-presenting cells by HLA-DRB1 * 0101.
  • the known HLA-DRB1 * 0101 motif (Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995; 41 (4): 178-228.)
  • HLA-DRB1 * 0101 motif FIG. 4C.
  • Tax155-167 specific CD4 + T against Tax specific CTL proliferation in fresh PBMC of patient # 350 Cell helper function was evaluated.
  • PBMCs (A24 / 26, DR1 / 14) that were just isolated from patient # 350 540 days after allogeneic hematopoietic stem cell transplantation with palliative pretreatment were transferred to HLA-A24-restricted CTL epitope Tax301-309 peptide and / or Stimulated for 13 days with Tax155-167 peptide, an HLA-DRB1 * 0101-restricted Th1-type epitope, and the proliferation of Tax-specific CD8 + T cells was measured using the HLA-A * 2402 / Tax301-309 tetramer (A above) See -10).
  • Tax301-309-specific CD8 + T cells proliferated to 9.26% when stimulated with Tax301-309 alone (FIG. 5, upper center panel), whereas both Tax301-309 and Tax155-167 were When stimulated in vitro, Tax-specific CD8 + T cells were significantly increased to 62.3% (upper right panel of FIG. 5). Measurements were performed in the same manner for HLA-DRB1 * 0101 + HTLV-I-infected patients who received allogeneic hematopoietic stem cell transplantation by two other palliative pretreatments.
  • Patient # 364 used PBMC (A24 / 26, DR1 /-) that had just been isolated from the patient 180 days after transplantation, and patient # 341 had PBMC that had been isolated from the patient 360 days after transplantation. (A24 / 33, DR1 / 15) was used.
  • PBMC was stimulated with Tax301-309 alone, an HLA-A24-restricted CTL epitope, Tax301-309-specific CD8 + T cells were 0.85% (patient # 364) and 7.7% (patient # 341). While proliferated (middle middle panel, lower middle panel in FIG. 5), when PBMC were co-stimulated with both Tax301-309 and Tax155-167, Tax301-309 specific CD8 + T cells were 15.5.
  • PBMCs of 3 patients had a detectable level of Tax-specific CD8 + T cells that bind to the tetramer described above, prior to stimulation with the Tax epitope. Were present.
  • Tax155-167 specific CD4 + T cells are present in HLA-DRB1 * 0101 + HTLV-I infected patients who received allogeneic hematopoietic stem cell transplantation by palliative pretreatment, Tax301-309 / Tax155-167 It was shown that the CD8 + T cell response was significantly enhanced by stimulation with mixed epitopes compared to stimulation with Tax301-309 alone.
  • HLA-DRB1 * 0101 + HTLV-I infected individuals maintain Tax155-167 specific CD4 + T cells
  • HLA-DRB1 * 0101 / Tax155-167 tetramers were generated and Tax155-167 specific by detecting the CD4 + T cells directly, from the HLA-DRB1 * 0101 + two patients who received allogeneic hematopoietic stem cell transplantation in the PBMC of freshly isolated, whether there is Tax155-167-specific CD4 + T cells It was confirmed.
  • Patient # 350 used PBMCs that had just been isolated from the patient 540 days after transplantation (A24 / 26, DR1 / 14), and patient # 364 had PBMCs that had been isolated from the patient 180 days after transplantation.
  • PBMC (A24 / 33, DR1 / 15) that had just been isolated from the same patient 360 days after transplantation was used.
  • Tax155-167 specific CD4 + T cells were present at levels detectable (0.11%) without culture or stimulation (ex vivo) (FIG. 6A, upper left panel), Tax155-167. 13 days after stimulation with the peptide, it grew to 11.6% (FIG. 6A, upper right panel).
  • no tax-specific CD4 + T cells were detected ex vivo (FIG. 6A, middle left panel), but proliferated to 0.37% when stimulated in vitro with Tax155-167 peptide ( FIG.
  • Tax-specific CD4 + T cells were not detected ex vivo in HLA-DRB1 * 0101 + seronegative donor # 365 (negative control) (lower left panel in FIG. 6A), 13 days after stimulation with Tax155-167 peptide However, it was not detectable (the right panel at the bottom of FIG. 6A).
  • Tax155-Two in HTLV-I infected individuals carrying HLA-DRB1 * 0101 asymptomatic carrier (AC) # 310 and HTLV-I related myelopathy / tropical spastic paraparesis patient # 294).
  • AC asymptomatic carrier
  • HTLV-I related myelopathy / tropical spastic paraparesis patient # 294 asymptomatic carrier (AC) # 310 and HTLV-I related myelopathy / tropical spastic paraparesis patient # 294).
  • AC asymptomatic carrier
  • tetramer positive cells were detected in peripheral CD4 + T cells, respectively (FIG. 6B).
  • Tax155-167 specific CD4 + T cells were maintained in HTLV-I infected individuals expressing HLA-DRB1 * 0101 alleles regardless of the presence or absence of hematopoietic stem cell transplantation. .
  • the present invention can be used in fields related to the induction of CD4 + T cells specific for human T cell leukemia virus type I (HTLV-I). More specifically, an HTLV-I-specific CTL inducing action enhancer, an HTLV-I-specific immune response inducing vaccine, an immune function test diagnostic agent for identifying HTLV-I-specific CD4 + T cells, It can be suitably used in the field relating to the method for inducing HTLV-I-specific CD4 + T cells.
  • HTLV-I human T cell leukemia virus type I

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Virology (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • AIDS & HIV (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)

Abstract

The purpose of the present invention is to provide: an HTLV-I-specific CD4+ T cell-induction activity peptide that has an activity of inducing a CD4+ T cell being specific to HTLV-I; an HTLV-I-specific CTL-induction effect enhancer that comprises the aforesaid peptide; and a vaccine for inducing an HTLV-I-specific immunity response, a diagnostic for examining an immune function, etc. each using the same. In the present invention, an HTLV-I-specific CD4+ T cell-induction activity peptide, which comprises an amino acid sequence of any of (A) to (E), etc. are used: (A) an amino acid sequence represented by any of SEQ ID NOS: 4, 10, 11, 12, 13, 16, 17 and 19; (B) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence represented by SEQ ID NO:32, said amino acid sequence including the amino acid sequence of at least amino acid nos. 155 to 167; (C) an amino acid sequence having a homogeneity of 80% or greater with the amino acid sequence of (A) or (B), a peptide comprising said amino acid sequence having an HTLV-I-specific CD4+ T cell-induction activity; (D) an amino acid sequence derived from the amino acid sequence of (A) or (B) by deletion, substitution or addition of one to several amino acids, a peptide comprising said amino acid sequence having an HTLV-I-specific CD4+ T cell-induction activity; and (E) an amino acid sequence comprising an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence represented by SEQ ID NO:32, said amino acid sequence including the amino acid sequence of at least amino acid nos. 155 to 167 together with the amino acid sequence of an HTLV-I-specific CTL-induction activity peptide bonded thereto.

Description

HLA-DR1拘束性Tax特異的CD4+T細胞エピトープHLA-DR1-restricted Tax-specific CD4 + T cell epitope
 本発明は、ヒトT細胞白血病ウイルスI型(HTLV-I)に特異的なCD4T細胞を誘導する活性を有するHTLV-I特異的CD4T細胞誘導活性ペプチドや、該ペプチドを含有するHTLV-I特異的CTL誘導作用増強剤等に関する。 The present invention relates to an HTLV-I-specific CD4 + T cell-inducing peptide having an activity of inducing CD4 + T cells specific for human T-cell leukemia virus type I (HTLV-I), and an HTLV containing the peptide. -It relates to an I-specific CTL inducing agent, etc.
 ヒトT細胞白血病ウイルスI型(HTLV-I)は、極めて難治性のCD4T細胞悪性腫瘍である成人T細胞白血病/リンパ腫(ATL:adult T cell leukemia/lymphoma)の原因ウイルスである(非特許文献1及び2)。世界中で1000~2000万人がこのウイルスに感染し、特に日本の南方地域、カリブ海地域、南米、メラネシア、及び赤道アフリカでの感染例が多い。HTLV-I血清反応陽性者の約5%がATLを発症し、それ以外にも2~3%がHTLV-I関連脊髄症/熱帯性痙性不全対麻痺症まひ(HAM/TSP:HTLV-I associated myelopathy/ tropical spastic paraparesis)として知られる緩徐進行性神経疾患や種々の慢性炎症性疾患を発症する(非特許文献3)。HTLV-I感染者の大多数は、その生涯にわたって無症候性キャリアの状態にある。 Human T cell leukemia virus type I (HTLV-I) is a causative virus of adult T cell leukemia / lymphoma (ATL), which is a very refractory CD4 + T cell malignancy (non-patented) References 1 and 2). Ten to 20 million people worldwide are infected with this virus, with many cases in particular in southern Japan, the Caribbean, South America, Melanesia, and Equatorial Africa. Approximately 5% of HTLV-I seropositive individuals develop ATL, and 2-3% of others have HTLV-I-associated myelopathy / tropical spastic paraparesis paralysis (HAM / TSP: HTLV-I associated) It develops slowly progressive neurological disease known as myelopathy / tropical spastic paraparesis) and various chronic inflammatory diseases (Non-patent Document 3). The vast majority of HTLV-I infected individuals are in asymptomatic carriers throughout their lifetime.
 ATLは予後が非常に悪いことを特徴とするが、これは主としてATLには抗癌剤への薬剤耐性が本質的に備わっているためである。自己造血幹細胞移植では果たせなかったATLの予後改善が、同種造血幹細胞移植(allo-HSCT:Allogeneic hematopoietic stem cell transplantation)では認められたと報告されている(非特許文献4及び5)。血縁者を含む他人の幹細胞を移植する同種造血幹細胞移植の場合、患者のがん細胞を根絶やしにすると同時に、患者自身の免疫力を弱め、ドナー細胞を患者骨髄に生着させやくする目的で、移植前に大量抗がん剤投与や全身放射線照射を行い、患者の骨髄細胞を極限まで減らす前処置が従来行われていた。しかし近年、移植後に患者体内で増えるドナーリンパ球が、前処置によっても殺されずに残った患者がん細胞を非自己の異物として攻撃することで、やがては完治に導かれる移植片対白血病効果(GVL効果)が知られるようになると、前処置として従来用いられていた抗がん剤や放射線の量を減らす(minimize)代わりに、ドナー造血幹細胞を生着させる為の免疫抑制剤を用いる緩和的前処置(RIC:reduced intensity conditioning)が行われるようになった。緩和的前処置による同種造血幹細胞移植は、ミニ移植、あるいは、骨髄非破壊的移植とも呼ばれ、今まで同種造血幹細胞移植を受けられなかった高齢者、臓器障害のある患者にも適応可能な治療法として、広く認められつつある。 ATL is characterized by a very poor prognosis, mainly because ATL inherently has drug resistance to anticancer agents. It has been reported that the prognosis improvement of ATL that could not be achieved by autologous hematopoietic stem cell transplantation was observed in allogeneic hematopoietic stem cell transplantation (allo-HSCT) (Non-patent Documents 4 and 5). In the case of allogeneic hematopoietic stem cell transplantation that transplants stem cells of other people including relatives, in order to eradicate the patient's cancer cells and weaken the patient's own immunity, it is easy to engraft the donor cells in the patient's bone marrow, Prior to transplantation, a large amount of anticancer drug administration or whole body irradiation was performed, and pretreatment was conventionally performed to reduce the bone marrow cells of the patient to the limit. However, in recent years, donor lymphocytes that increase in the patient's body after transplantation attack the patient's cancer cells that remain unkilled by the pretreatment as a non-self foreign substance, and eventually lead to a complete cure. Once the GVL effect is known, mitigating the use of immunosuppressive agents to engraft donor hematopoietic stem cells instead of minimizing the amount of radiation and anticancer agents previously used as pretreatment Pretreatment (RIC) has been performed. Allogeneic hematopoietic stem cell transplantation with palliative pretreatment, also called mini-transplantation or non-myeloablative transplantation, can be applied to elderly patients who have not been able to receive allogeneic hematopoietic stem cell transplantation until now and patients with organ disorders It is becoming widely recognized as a law.
 ATL allo-HSCT研究グループが以前に実施した臨床試験では、緩和的前処置による同種造血幹細胞移植から3年以内の全生存率は36%だった(非特許文献6)。同種造血幹細胞移植後に完全寛解を得たATL患者の一部ではHTLV-Iプロウイルスが検出されなくなり、かかる未検出の状態が継続したが、これにより同種造血幹細胞移植がATLの有効な治療であることが示唆された(非特許文献6~8)。これらの研究に関連して、本発明者らは、同種造血幹細胞移植後に完全寛解を得たATL患者の一部で、ドナー由来のHTLV-ITax特異的CD8細胞傷害性Tリンパ球(CTL:cytotoxic T lymphocyte)が誘導されたことを報告し(非特許文献9)、ヒトHLA-A24に拘束されるHTLV-I特異的CTL誘導活性ペプチド(Tax特異的CTLのエピトープ)を見いだしている(特許文献1)。前述のCTLは、自己HTLV-I感染T細胞をインビトロで溶解させることができた。このことから、CTLが移植片対白血病効果に寄与する可能性が示唆された。また、本発明者らは、ヒトHLA-A11に拘束されるHTLV-I特異的CTL誘導活性ペプチド(Tax特異的CTLのエピトープ)も見いだしている(特許文献2)。一般にCD8T細胞、特にCTLは、HIV、B型肝炎ウイルス(HBV)、C型肝炎ウイルス(HCV)等が関与する種々の感染症においてウイルス複製の制御に重要な役割を果たしている。HTLV-I感染では、HTLV-I特異的CD8T細胞がTax抗原(pX遺伝子産物)をプレドミナントに認識し、感染細胞の制御に寄与すると考えられている(非特許文献10及び11)。HAM/TSP患者及び一部の無症候性キャリア(AC:asymptomatic carrier)では、機能的なTax特異的CD8T細胞が高頻度で検出できたが、ATL患者の大多数及びACの小集団では、Tax特異的CD8T細胞応答が著しく低減していた(非特許文献12及び13)。これらの患者でHTLV-I特異的CD8T細胞応答が抑制される機構についてはまだ十分には解明されていない。 In a clinical trial conducted previously by the ATL allo-HSCT study group, the overall survival rate within 3 years after allogeneic hematopoietic stem cell transplantation by palliative pretreatment was 36% (Non-patent Document 6). HTLV-I provirus is no longer detected in some ATL patients who have achieved complete remission after allogeneic hematopoietic stem cell transplantation and this undetected condition continues, which makes allogeneic hematopoietic stem cell transplantation an effective treatment for ATL (Non-Patent Documents 6 to 8). In connection with these studies, we are part of ATL patients who have achieved complete remission after allogeneic hematopoietic stem cell transplantation, with donor-derived HTLV-ITax-specific CD8 + cytotoxic T lymphocytes (CTL: reported that cytotoxic T lymphocytes were induced (Non-patent Document 9) and found an HTLV-I-specific CTL-inducing active peptide (Tax-specific CTL epitope) restricted by human HLA-A24 (patent) Reference 1). The aforementioned CTL was able to lyse autologous HTLV-I infected T cells in vitro. This suggested that CTL may contribute to the graft versus leukemia effect. The present inventors have also found an HTLV-I-specific CTL-inducing active peptide (Tax-specific CTL epitope) restricted by human HLA-A11 (Patent Document 2). In general, CD8 + T cells, particularly CTL, play an important role in the control of viral replication in various infectious diseases involving HIV, hepatitis B virus (HBV), hepatitis C virus (HCV) and the like. In HTLV-I infection, it is considered that HTLV-I-specific CD8 + T cells recognize Tax antigen (pX gene product) as a predominant and contribute to the control of infected cells (Non-patent Documents 10 and 11). Functional Tax-specific CD8 + T cells could be detected with high frequency in HAM / TSP patients and some asymptomatic carriers (AC), but in the majority of ATL patients and in a small population of ACs The Tax-specific CD8 + T cell response was significantly reduced (Non-patent Documents 12 and 13). The mechanism by which the HTLV-I specific CD8 + T cell response is suppressed in these patients has not been fully elucidated.
 ウイルス特異的CTLを誘導及び維持するため、多くのウイルス感染症においてウイルス特異的CD4ヘルパーT細胞応答が必要であるが(非特許文献14~18)、HTLV-I特異的ヘルパーT細胞応答についての報告は数少なかった(非特許文献19~22)。これは恐らくHTLV-I特異的ヘルパーT細胞がインビボ及びインビトロでHTLV-I感染に対して感受性であり(非特許文献23)、感染細胞は培養後数時間でHTLV-I抗原を産生してしまう(非特許文献24及び25)ためと考えられる。他方、HAM/TSP患者では、IFN-γ及び腫瘍壊死因子(TNF)-α等の炎症性神経毒性サイトカインの自然産生を伴う初期進行性の炎症性脊髄損傷部位(非特許文献26)でCD4T細胞がプレドミナントに認められ(非特許文献27~28)、これがHAM/TSPの発症に関与することが示唆される。しかし、HTLV-I感染におけるHTLV-I特異的CD4T細胞の正確な役割は未だ解明されていない。 In order to induce and maintain virus-specific CTL, a virus-specific CD4 + helper T cell response is required in many viral infections (Non-patent Documents 14 to 18), but HTLV-I-specific helper T cell response There were few reports (Non-Patent Documents 19 to 22). This is probably because HTLV-I-specific helper T cells are susceptible to HTLV-I infection in vivo and in vitro (Non-patent Document 23), and infected cells produce HTLV-I antigens within a few hours after culture. (Non-Patent Documents 24 and 25). On the other hand, in HAM / TSP patients, CD4 + at sites of early progressive inflammatory spinal cord injury with spontaneous production of inflammatory neurotoxic cytokines such as IFN-γ and tumor necrosis factor (TNF) -α (Non-Patent Document 26). T cells are found in predominant (Non-Patent Documents 27 to 28), suggesting that this is involved in the development of HAM / TSP. However, the exact role of HTLV-I-specific CD4 + T cells in HTLV-I infection has not yet been elucidated.
国際公開第2004/092373号パンフレットInternational Publication No. 2004/092373 Pamphlet 国際公開第2006/035681号パンフレットInternational Publication No. 2006/035681 Pamphlet
 背景技術にも記載したように、HTLV-Iに特異的なCD8T細胞(CTL)を誘導する活性を有するペプチドはこれまでにいくつか見いだされており、HTLV-I特異的CTL誘導用ワクチンとしての実用化が期待されている。しかし、ウイルス特異的CTLを誘導及び維持するためには、多くのウイルス感染症においてウイルス特異的CD4ヘルパーT細胞応答が必要であるとされているため、より優れたワクチン開発などのためには、HTLV-Iに特異的なCD4T細胞を誘導する活性を有するペプチドが必要となる。しかし、HTLV-I感染はHTLV-I特異的CD4T細胞で優先的に生じることなどから、かかるCD4T細胞についての解析はあまり進んでおらず、HTLV-Iに特異的なCD4T細胞を誘導する活性を有するペプチドはこれまでに見いだされていなかった。 As described in the background art, several peptides having an activity of inducing CD8 + T cells (CTL) specific for HTLV-I have been found so far, and a vaccine for HTLV-I-specific CTL induction It is expected to be put to practical use. However, in order to induce and maintain a virus-specific CTL, because they are to require virus-specific CD4 + T helper cell response in a number of viral infections, such as for better vaccine development Therefore, a peptide having an activity of inducing CD4 + T cells specific for HTLV-I is required. However, since HTLV-I infection occurs preferentially in HTLV-I-specific CD4 + T cells, etc., analysis of such CD4 + T cells has not progressed much, and CD4 + T specific for HTLV-I has not progressed. No peptide having cell-inducing activity has been found so far.
 本発明の課題は、HTLV-Iに特異的なCD4T細胞を誘導する活性を有するHTLV-I特異的CD4T細胞誘導活性ペプチドや、該ペプチドを含有するHTLV-I特異的CTL誘導作用増強剤や、これらを利用したHTLV-I特異的免疫応答誘導用ワクチン並びに免疫機能検査診断薬等を提供することにある。 An object of the present invention, and HTLV-I-specific CD4 + T cell-inducing activity peptide having an activity to induce CD4 + T cells specific for HTLV-I, HTLV-I-specific CTL-inducing action containing the peptide The object is to provide a potentiator, a vaccine for inducing an HTLV-I-specific immune response using these, a diagnostic agent for immune function testing, and the like.
 本発明者らは、上記の背景技術の状況下で鋭意研究を行った結果、以下の(a)~(c)などの知見を見いだし、本発明を完成するにいたった。
(a)緩和的前処置による同種造血幹細胞移植前のATL患者に由来するHTLV-I感染T細胞に対する、緩和的前処置による同種造血幹細胞移植後の同じ患者の細胞性免疫応答を調査したところ、緩和的前処置による同種造血幹細胞移植後のATL患者において、Tax特異的なCD4T細胞応答及びCD8T細胞応答がいずれも誘導されていること。
(b)ヒトHLA-DRB10101(以下、本明細書において「HLA-DR1」とも表示する。)に拘束されるTax特異的CD4T細胞の最小エピトープ、すなわち、HTLV-I特異的CD4T細胞誘導活性ペプチドを特定したこと。
(c)かかるHTLV-I特異的CD4T細胞誘導活性ペプチドと、HTLV-I特異的CTL誘導活性ペプチドとを併用したところ、HTLV-I特異的CTL誘導活性ペプチド単独で用いた場合と比較して、HTLV-I特異的CTLが顕著に増殖したこと。
As a result of intensive studies under the above-mentioned background art, the present inventors have found the following findings (a) to (c) and completed the present invention.
(A) Investigating the cellular immune response of the same patient after allogeneic hematopoietic stem cell transplantation by palliative pretreatment against HTLV-I infected T cells derived from ATL patients before allogeneic hematopoietic stem cell transplantation by palliative pretreatment, Both Tax-specific CD4 + T cell responses and CD8 + T cell responses are induced in ATL patients after allogeneic hematopoietic stem cell transplantation with palliative pretreatment.
(B) Tax-specific CD4 + T cells that are restricted to human HLA-DRB1 * 0101 (hereinafter also referred to as “HLA-DR1” in the present specification), ie, HTLV-I-specific CD4 + Identified a T cell-inducing active peptide.
(C) When such an HTLV-I-specific CD4 + T cell-inducing activity peptide and an HTLV-I-specific CTL-inducing activity peptide are used in combination, the HTLV-I-specific CTL-inducing activity peptide alone is used. HTLV-I-specific CTLs proliferated significantly.
[規則91に基づく訂正 05.09.2014] 
 すなわち、本発明は、
(1)以下の(A)~(E)のいずれかに示されるアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチド:
(A)配列番号4、10、11、12、13、16、17、19のいずれかに示されるアミノ酸配列:
(B)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列:
(C)前記(A)又は(B)に示されるアミノ酸配列に対して80%以上の同一性を有するアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
(D)前記(A)又は(B)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
(E)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列や、
(2)HLA-DR1に拘束されるTaxエピトープである上記(1)に記載のHTLV-I特異的CD4T細胞誘導活性ペプチドや、
(3)CD4T細胞がTh1型ヘルパーT細胞である上記(1)又は(2)に記載のHTLV-I特異的CD4T細胞誘導活性ペプチドや、
(4)上記(1)~(3)のいずれかに記載のHTLV-I特異的CD4T細胞誘導活性ペプチドと、マーカータンパク質及び/又はペプチドタグとを結合させた融合ペプチドや、
(5)HLA-DR1と上記(1)~(3)のいずれかに記載のHTLV-I特異的CD4T細胞誘導活性ペプチドとが結合したタンパク-ペプチド結合体や、
(6)HLA-DR1と上記(1)~(3)のいずれかに記載のHTLV-I特異的CD4T細胞誘導活性ペプチドとが結合したタンパク-ペプチド結合体の4量体や、
(7)上記(5)に記載のタンパク-ペプチド結合体又は上記(6)に記載のタンパク-ペプチド結合体の4量体と、マーカータンパク質及び/又はペプチドタグとを結合させた融合タンパク質に関する。
[Correction 05.09.2014 based on Rule 91]
That is, the present invention
(1) HTLV-I-specific CD4 + T cell-inducing peptide consisting of the amino acid sequence shown in any of (A) to (E) below:
(A) Amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
(B) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least the amino acid sequences of amino acid numbers 155 to 167:
(C) An amino acid sequence having 80% or more identity to the amino acid sequence shown in (A) or (B) above, wherein the peptide comprising the amino acid sequence is induced to induce HTLV-I-specific CD4 + T cells. Amino acid sequence with activity:
(D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity:
(E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL An amino acid sequence combined with the amino acid sequence of the inducing active peptide,
(2) The HTLV-I-specific CD4 + T cell-inducing peptide described in (1) above, which is a Tax epitope restricted by HLA-DR1,
(3) The HTLV-I-specific CD4 + T cell-inducing peptide according to (1) or (2) above, wherein the CD4 + T cell is a Th1-type helper T cell,
(4) a fusion peptide obtained by binding the HTLV-I-specific CD4 + T cell-inducing activity peptide according to any of (1) to (3) above to a marker protein and / or a peptide tag;
(5) a protein-peptide conjugate in which HLA-DR1 is bound to the HTLV-I-specific CD4 + T cell-inducing activity peptide according to any one of (1) to (3) above,
(6) a tetramer of a protein-peptide conjugate in which HLA-DR1 is bound to the HTLV-I-specific CD4 + T cell-inducing activity peptide described in any of (1) to (3) above,
(7) The present invention relates to a fusion protein in which the protein-peptide conjugate according to (5) or the tetramer of the protein-peptide conjugate according to (6) above and a marker protein and / or peptide tag are bound.
[規則91に基づく訂正 05.09.2014] 
 また、本発明は、
(8)以下の(A)~(E)のいずれかのアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチドを有効成分として含有する、HTLV-I特異的CTL誘導作用増強剤:
(A)配列番号4、10、11、12、13、16、17、19のいずれかに示されるアミノ酸配列:
(B)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列:
(C)前記(A)又は(B)に示されるアミノ酸配列に対して80%以上の同一性を有するアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
(D)前記(A)又は(B)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
(E)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列や、
(9)プロモーターと、以下の(a)~(e)のいずれかに示されるポリヌクレオチド配列からなるポリヌクレオチドとを含み、該ポリヌクレオチドがプロモーターの下流に作動可能に連結されている発現ベクターを有効成分として含有するHTLV-I特異的CTL誘導作用増強剤:
(a)配列番号4、10、11、12、13、16、17、19のいずれかに示されるアミノ酸配列をコードするポリヌクレオチド配列:
(b)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列をコードするポリヌクレオチド配列:
(c)前記(a)又は(b)に示されるポリヌクレオチド配列に対して80%以上の同一性を有するポリヌクレオチド配列であって、HTLV-I特異的CD4T細胞誘導活性を有するペプチドをコードするポリヌクレオチド配列:
(d)前記(a)又は(b)に示されるポリヌクレオチド配列において、1若しくは数個のヌクレオチドが欠失、置換若しくは付加されたポリヌクレオチド配列であって、HTLV-I特異的CD4T細胞誘導活性を有するペプチドをコードするポリヌクレオチド配列:
(e)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列をコードするポリヌクレオチド配列や、
(10)上記(8)又は(9)に記載のHTLV-I特異的CTL誘導作用増強剤と、HTLV-I特異的CTL誘導活性ペプチド又は該ペプチドをコードするポリヌクレオチドとを含有するHTLV-I特異的免疫応答誘導用ワクチンに関する。
[Correction 05.09.2014 based on Rule 91]
The present invention also provides:
(8) HTLV-I-specific CTL inducing action potentiator comprising, as an active ingredient, an HTLV-I-specific CD4 + T cell-inducing peptide consisting of any of the following amino acid sequences (A) to (E):
(A) Amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
(B) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least the amino acid sequences of amino acid numbers 155 to 167:
(C) An amino acid sequence having 80% or more identity to the amino acid sequence shown in (A) or (B) above, wherein the peptide comprising the amino acid sequence is induced to induce HTLV-I-specific CD4 + T cells. Amino acid sequence with activity:
(D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity:
(E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL An amino acid sequence combined with the amino acid sequence of the inducing active peptide,
(9) An expression vector comprising a promoter and a polynucleotide comprising the polynucleotide sequence shown in any of the following (a) to (e), wherein the polynucleotide is operably linked downstream of the promoter. HTLV-I specific CTL inducing action enhancer containing as an active ingredient:
(A) a polynucleotide sequence encoding the amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
(B) a polynucleotide sequence encoding an amino acid sequence comprising 14 to 30 consecutive amino acids in the amino acid sequence represented by SEQ ID NO: 32 and comprising at least the amino acid sequences of amino acid numbers 155 to 167:
(C) a polynucleotide sequence having 80% or more identity to the polynucleotide sequence shown in the above (a) or (b), wherein the peptide has HTLV-I-specific CD4 + T cell inducing activity Encoding polynucleotide sequence:
(D) a polynucleotide sequence obtained by deleting, substituting, or adding one or several nucleotides in the polynucleotide sequence shown in (a) or (b), wherein the HTLV-I specific CD4 + T cell Polynucleotide sequence encoding a peptide having inductive activity:
(E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence comprising at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL A polynucleotide sequence encoding an amino acid sequence in which the amino acid sequence of the inducing active peptide is linked,
(10) An HTLV-I containing the HTLV-I-specific CTL inducing action-enhancing agent according to (8) or (9) above, and an HTLV-I-specific CTL-inducing activity peptide or a polynucleotide encoding the peptide The present invention relates to a vaccine for inducing a specific immune response.
[規則91に基づく訂正 05.09.2014] 
 さらに、本発明は、
(11)以下の(A)~(E)のいずれかに示されるアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチドを有効成分として含有する、HTLV-I特異的CD4T細胞を識別するための免疫機能検査診断薬:
(A)配列番号4、10、11、12、13、16、17、19のいずれかに示されるアミノ酸配列:
(B)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列:
(C)前記(A)又は(B)に示されるアミノ酸配列に対して80%以上の同一性を有するアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
(D)前記(A)又は(B)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
(E)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列や、
(12)HLA-DR1と上記(1)~(3)のいずれかに記載のHTLV-I特異的CD4T細胞誘導活性ペプチドとが結合したタンパク-ペプチド結合体を有効成分として含有する、HTLV-I特異的CD4T細胞を識別するための免疫機能検査診断薬や、(13)HLA-DR1と上記(1)~(3)のいずれかに記載のHTLV-I特異的CD4T細胞誘導活性ペプチドとが結合したタンパク-ペプチド結合体の4量体を有効成分として含有する、HTLV-I特異的CD4T細胞を識別するための免疫機能検査診断薬に関する。
[Correction 05.09.2014 based on Rule 91]
Furthermore, the present invention provides
(11) below (A) containing - a HTLV-I-specific CD4 + T cell-inducing activity peptide comprising the amino acid sequence shown in any of (E) as an active ingredient, HTLV-I-specific CD4 + T cells Immune function test diagnostic agent to identify:
(A) Amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
(B) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least the amino acid sequences of amino acid numbers 155 to 167:
(C) An amino acid sequence having 80% or more identity to the amino acid sequence shown in (A) or (B) above, wherein the peptide comprising the amino acid sequence is induced to induce HTLV-I-specific CD4 + T cells. Amino acid sequence with activity:
(D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity:
(E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL An amino acid sequence combined with the amino acid sequence of the inducing active peptide,
(12) An HTLV comprising, as an active ingredient, a protein-peptide conjugate in which HLA-DR1 and the HTLV-I-specific CD4 + T cell-inducing peptide according to any one of (1) to (3) above are bound Diagnostic reagent for immunological function test for identifying -I specific CD4 + T cells, (13) HLA-DR1 and HTLV-I specific CD4 + T cells according to any one of (1) to (3) above The present invention relates to a diagnostic agent for immunological function test for identifying HTLV-I-specific CD4 + T cells, which contains, as an active ingredient, a protein-peptide conjugate tetramer to which an inducing active peptide is bound.
 また、本発明は、
(14)HSCT前のATL患者に由来するHTLV-I感染T細胞を用いて、同種のHLAタイプのドナー由来のHSCT後の同じ患者のPBMCを刺激することを特徴とするHTLV-I特異的CD4T細胞の誘導方法や、
(15)上記(8)又は(9)に記載のHTLV-I特異的CTL誘導作用増強剤を用いて、HLA-DR1陽性のATL患者のPBMCを刺激することを特徴とするHTLV-I特異的CD4T細胞の誘導方法や、
(16)HLA-DR1陽性のATL患者のPBMCを、以下の(X)及び(Y)を用いて刺激することを特徴とする、HTLV-I特異的CD4T細胞応答及びHTLV-I特異的CTL応答を含むHTLV-I特異的免疫応答を誘導する方法:
(X)上記(8)又は(9)に記載のHTLV-I特異的CTL誘導作用増強剤:
(Y)前記ATL患者のHLA-A座の型に適合する、HTLV-I特異的CTL誘導活性ペプチド又は該ペプチドをコードするポリヌクレオチド:に関する。
The present invention also provides:
(14) HTLV-I-specific CD4 characterized in that HTLV-I-infected T cells from ATL patients before HSCT are used to stimulate PBMCs of the same patients after HSCT from allogeneic HLA-type donors + T cell induction method,
(15) HTLV-I specific, characterized by stimulating PBMC of HLA-DR1-positive ATL patients using the HTLV-I specific CTL inducing action enhancer described in (8) or (9) above CD4 + T cell induction method,
(16) HTLV-I-specific CD4 + T cell response and HTLV-I-specific, characterized by stimulating PBMC of HLA-DR1-positive ATL patients using the following (X) and (Y) Methods for inducing HTLV-I specific immune responses, including CTL responses:
(X) The HTLV-I-specific CTL inducing action enhancer according to (8) or (9) above:
(Y) an HTLV-I-specific CTL-inducing active peptide or a polynucleotide encoding the peptide that matches the type of HLA-A locus of the ATL patient.
(1)本発明により、HLA-DR1に拘束されるTax特異的CD4T細胞の最小エピトープが見いだされた。かかるエピトープは、HTLV-Iに特異的なCD4T細胞を誘導する活性を有している。したがって、かかるエピトープペプチドは、HTLV-I特異的CD4T細胞誘導活性ペプチドとして有用である。
(2)現在では、それぞれのHLAについて親和性のあるアミノ酸アンカーモチーフからエピトープをある程度は予測可能である。しかしながら、生体内の病原体に対する宿主の免疫反応は必ずしもこの予測と一致しない。本発明により同定されたエピトープは感染個体から得られたものであり、しかも他のエピトープよりも非常に強い選択性を持って認識されている。
(3)本発明者らはこれまでにTax特異的CTLエピトープを見いだし、かかるエピトープペプチドがHTLV-I特異的CTL誘導活性を有すること、及び、HTLV-I認識CTL誘導用ワクチンとして用い得ることを見いだしている。本発明者らが今回見いだしたHTLV-I特異的CD4T細胞誘導活性ペプチドを、前述のHTLV-I特異的CTL誘導活性ペプチドと併用したところ、HTLV-I特異的CTL誘導活性ペプチド単独で用いた場合と比較して、HTLV-I特異的CTLが顕著に誘導された。したがって、本発明のHTLV-I特異的CD4T細胞誘導活性ペプチドは、HTLV-I特異的CTL誘導作用増強剤などとしても有用である。
(4)本発明のHTLV-I特異的CD4T細胞誘導活性ペプチドや、HLA-DR1と本発明のペプチドとが結合したタンパク質-ペプチド結合体や、該タンパク-ペプチド結合体の4量体は、HTLV-I特異的CD4T細胞を識別するための免疫機能検査診断薬としても有用である。かかる免疫機能検査診断薬を用いて、ATL患者やHAM/TSP患者などのHTLV-I感染者におけるTax特異的CD4T細胞応答を観察することにより、ATLに対する新規のペプチドワクチンストラテジーの開発や、ATLの進行又は再発の防止ストラテジーの開発や、HAM/TSPの病態解明などに有用であると考えられる。
(1) According to the present invention, a minimal epitope of Tax-specific CD4 + T cells restricted by HLA-DR1 was found. Such epitopes have the activity of inducing CD4 + T cells specific for HTLV-I. Therefore, such epitope peptides are useful as HTLV-I specific CD4 + T cell-inducing active peptides.
(2) At present, epitopes can be predicted to some extent from amino acid anchor motifs having affinity for each HLA. However, the host immune response to pathogens in vivo is not necessarily consistent with this prediction. The epitope identified according to the present invention is obtained from an infected individual and is recognized with a much stronger selectivity than other epitopes.
(3) The present inventors have found a Tax-specific CTL epitope so far, and that such an epitope peptide has HTLV-I-specific CTL inducing activity and can be used as a vaccine for HTLV-I-recognizing CTL induction. I have found it. When the HTLV-I-specific CD4 + T cell-inducing activity peptide found by the present inventors is used in combination with the aforementioned HTLV-I-specific CTL-inducing activity peptide, the HTLV-I-specific CTL-inducing activity peptide alone is used. HTLV-I-specific CTLs were significantly induced compared to Therefore, the HTLV-I-specific CD4 + T cell-inducing peptide of the present invention is also useful as an agent for enhancing HTLV-I-specific CTL induction.
(4) The HTLV-I specific CD4 + T cell-inducing activity peptide of the present invention, the protein-peptide conjugate in which HLA-DR1 and the peptide of the present invention are bound, and the tetramer of the protein-peptide conjugate are It is also useful as a diagnostic agent for immune function tests for identifying HTLV-I-specific CD4 + T cells. By using this immunological function test diagnostic agent, by observing Tax-specific CD4 + T cell responses in HTLV-I infected patients such as ATL patients and HAM / TSP patients, development of a novel peptide vaccine strategy against ATL, It is considered useful for the development of strategies for preventing progression or recurrence of ATL, and for elucidating the pathology of HAM / TSP.
緩和的前処置による同種造血幹細胞移植後のATL患者におけるTax特異的なT細胞の免疫応答を示す図である。(A~B)緩和的前処置による同種造血幹細胞移植後180日目におけるATL患者18名から得たPBMC(A)又は緩和的前処置による同種造血幹細胞移植後540日目の患者2名(#350及び#341)から得た全PBMC及びCD8細胞枯渇PBMC(B)を、GSTタンパク質非存在下(白抜き)、GSTタンパク質存在下(グレー)、又はGST-Taxタンパク質存在下(黒)で4日間培養し、上清中のIFN-γ濃度をELISAで定量した。(A)の横点線は、検出限界(23.5pg/ml)を示す。誤差範囲は、二重測定値の標準偏差を表す。(P<0.05)FIG. 6 shows Tax-specific T cell immune responses in ATL patients after allogeneic hematopoietic stem cell transplantation with palliative pretreatment. (AB) PBMC from 18 ATL patients 180 days after allogeneic hematopoietic stem cell transplantation with palliative pretreatment or 2 patients 540 days after allogeneic hematopoietic stem cell transplantation with palliative pretreatment (# 350 and # 341) total PBMC and CD8 + cell depleted PBMC (B) in the absence of GST protein (open), in the presence of GST protein (gray), or in the presence of GST-Tax protein (black) After culturing for 4 days, the IFN-γ concentration in the supernatant was quantified by ELISA. The horizontal dotted line in (A) indicates the detection limit (23.5 pg / ml). The error range represents the standard deviation of duplicate measurements. ( * P <0.05) 患者#350から作製したCD4T細胞株(T4)の表現型及び機能を示す図である。(A)T4細胞の細胞表面における表現型をフローサイトメトリーにより解析した。(B)LCL-#350(レーン1)、T4細胞(レーン2)、ILT-#350(レーン3)及びMT-2(レーン4)から全RNAを抽出した。各細胞型のTax mRNA発現をRT-PCRにより分析した。GAPDHを内部標準として使用した。(C)ホルムアルデヒドで固定したILT-#350細胞又はLCL-#350細胞の存在/非存在下で、T4細胞を24時間刺激した。上清中のサイトカイン濃度は、サイトメトリービーズアレイシステムにより定量した。It is a figure which shows the phenotype and function of CD4 <+> T cell line (T4) produced from patient # 350. (A) The phenotype on the cell surface of T4 cells was analyzed by flow cytometry. (B) Total RNA was extracted from LCL- # 350 (lane 1), T4 cells (lane 2), ILT- # 350 (lane 3) and MT-2 (lane 4). Tax mRNA expression of each cell type was analyzed by RT-PCR. GAPDH was used as an internal standard. (C) T4 cells were stimulated for 24 hours in the presence / absence of ILT- # 350 cells or LCL- # 350 cells fixed with formaldehyde. The cytokine concentration in the supernatant was quantified with a cytometry bead array system. 樹立したT4細胞に認識される優位なTax由来エピトープの同定過程を示す図である。(A)GST、GST-Tax-A、GST-Tax-B、GST-Tax-C、又はGST-Tax-A、-B及び-Cの混合物(GST-TaxABC)でドナー由来LCL-#350を24時間ペプチド刺激し、その後、レスポンダー細胞/刺激細胞(R/S)比3にて、T4細胞との共培養を24時間行った。T4細胞のIFN-γ産生量をELISAで定量した。(B、C)Tax-B領域中の25mer(B)又は15mer(C)のオーバーラッピング合成ペプチド(10μg/ml)を用いてLCL-#350を1時間ペプチド刺激し、レスポンダー細胞(T4)/刺激細胞(LCL-#350)の、R/S比率3にて共培養を6時間行い、上清中のIFN-γをELISAで測定した。(B)ホルムアルデヒドで固定したILTは、ポジティブコントロールの刺激細胞として用いた。(D、E)12~25merのオーバーラッピング合成ペプチド(100ng/ml)を用い、(B、C)同様に、T4細胞のIFN-γ産生能を調べた。(F)各濃度の13~15merペプチドに対するT4細胞のIFN-γ産生を、(B、C)同様に測定した。各図、3回繰り返した実験のうちの1例を代表として示す。誤差範囲は、三重測定値の標準偏差を表す。統計的有意差は、独立t検定で解析した。「ns」は有意差のないことを示す。It is a figure which shows the identification process of the dominant Tax origin epitope recognized by the established T4 cell. (A) Donor-derived LCL- # 350 with GST, GST-Tax-A, GST-Tax-B, GST-Tax-C, or a mixture of GST-Tax-A, -B and -C (GST-TaxABC) Peptide stimulation was performed for 24 hours, and then co-culture with T4 cells was performed at a responder cell / stimulator cell (R / S) ratio of 3 for 24 hours. The amount of IFN-γ produced by T4 cells was quantified by ELISA. (B, C) 25-mer (B) or 15-mer (C) overlapping synthetic peptide (10 μg / ml) in the Tax-B region was used for peptide stimulation of LCL- # 350 for 1 hour, and responder cells (T4) / Stimulatory cells (LCL- # 350) were co-cultured at an R / S ratio of 6 for 6 hours, and IFN-γ in the supernatant was measured by ELISA. (B) ILT fixed with formaldehyde was used as a positive control stimulator cell. (D, E) Using 12-25mer overlapping synthetic peptide (100 ng / ml), the ability of T4 cells to produce IFN-γ was examined in the same manner as (B, C). (F) IFN-γ production of T4 cells for each concentration of 13-15mer peptide was measured in the same manner as in (B, C). Each figure shows one example of experiments repeated three times. The error range represents the standard deviation of triplicate measurements. Statistical significance was analyzed by independent t-test. “Ns” indicates no significant difference. 樹立したT4細胞に認識されるTax155-167のHLA-DRB10101拘束性を示す図である。(A)ブロッキング抗体(10μg/mlの抗ヒトHLA-DR抗体、抗ヒトHLA-DQ抗体、抗HLA-クラスI抗体又はアイソタイプ対照抗体)の存在/非存在下で、T4細胞とILT-#350との共培養を6時間行い、培養上清中に放出されたT4細胞の産生するIFN-γを、ELISAにより定量した。(B)Tax155-167ペプチド刺激有り(黒)またはペプチド刺激無し(白抜き)の条件で1時間パルスした各LCL(#350;自己、#307 #341 Kan;同種)と、T4細胞(#350由来)を6時間共培養した。各LCL株のHLA-DR対立遺伝子を括弧内に示す。T4細胞のIFN-γ産生量をELISAで測定した。誤差範囲は、三重測定値の標準偏差を示す。統計的有意差は、独立t検定で解析した。(C)Taxの155~167残基からなるアミノ酸配列には、HLA-DRB10101の推定アンカーモチーフが含まれていた。It is a figure which shows HLA-DRB1 * 0101 restriction | limiting of Tax155-167 recognized by the established T4 cell. (A) T4 cells and ILT- # 350 in the presence / absence of blocking antibodies (10 μg / ml anti-human HLA-DR antibody, anti-human HLA-DQ antibody, anti-HLA-class I antibody or isotype control antibody) The IFN-γ produced by T4 cells released into the culture supernatant was quantified by ELISA. (B) Each LCL (# 350; self, # 307 # 341 Kan; allogeneic) pulsed for 1 hour under the conditions of Tax155-167 peptide stimulation (black) or no peptide stimulation (white), and T4 cells (# 350) Origin) for 6 hours. The HLA-DR allele of each LCL strain is shown in parentheses. The amount of IFN-γ produced by T4 cells was measured by ELISA. The error range indicates the standard deviation of triplicate measurements. Statistical significance was analyzed by independent t-test. (C) The amino acid sequence consisting of residues 155 to 167 of Tax contained a putative anchor motif of HLA-DRB1 * 0101. CTL誘導エピトープとTax155-167ペプチドとの共刺激によるTax特異的CD8T細胞の増殖亢進を示す図である。緩和的前処置による同種造血幹細胞移植を受け、Major Histocompatibility Complex(MHC)クラスIとクラスIIがそれぞれ、HLA-A24/HLA-DRB10101であるATL患者(#350、#364及び#341)から得たPBMCを、100nMのCTLエピトープ(Tax301-309)単独、Tax301-309ペプチド(100nM)とTax155-167ペプチド(100nM)の混合物、又は、DMSOのみ(ネガティブコントロール)の存在下で、13日間培養した。データは、CD3CD8T細胞に占めるHLA-A2402/Tax301-309テトラマー陽性細胞の割合(%)を示す。It is a figure which shows the proliferation enhancement of Tax specific CD8 <+> T cell by costimulation with a CTL induction | guidance | derivation epitope and Tax155-167 peptide. From ATL patients (# 350, # 364 and # 341) who received allogeneic hematopoietic stem cell transplantation with palliative pretreatment and whose Major Histocompatibility Complex (MHC) class I and class II are HLA-A24 / HLA-DRB1 * 0101, respectively The obtained PBMC was cultured for 13 days in the presence of 100 nM CTL epitope (Tax301-309) alone, a mixture of Tax301-309 peptide (100 nM) and Tax155-167 peptide (100 nM), or DMSO alone (negative control). did. The data shows the percentage of HLA-A * 2402 / Tax301-309 tetramer positive cells in CD3 + CD8 + T cells. HLA-DRB10101HTLV-I感染者検体中のTax155-167特異的CD4T細胞の検出を示す図である。(A)緩和的前処置による同種造血幹細胞移植を受けたATL患者2名(#350及び#364)及びHLA-DRB10101血清反応陰性ドナー(#365)由来の検体を用い、新鮮PBMCと、Tax155-167ペプチド(100nM)存在下で13~14日間培養したPBMCとにおいて、HLA-DRB10101/Tax155-167テトラマーに結合するCD4T細胞の頻度を分析した。データは、CD3CD4T細胞に占めるテトラマー陽性細胞の割合(%)を示す。(B)無症候性キャリア#310及びHTLV-I関連脊髄症/熱帯性痙性不全対麻痺患者#294から得た新鮮PBMCにおけるHLA-DRB10101/Tax155-167テトラマーに結合するCD4T細胞の頻度を分析した。データは、CD3CD4T細胞に占めるテトラマー陽性細胞の割合(%)を示す。It is a figure which shows the detection of Tax155-167 specific CD4 <+> T cell in a HLA-DRB1 * 0101 + HTLV-I infected person sample. (A) Using samples from two ATL patients (# 350 and # 364) who received allogeneic hematopoietic stem cell transplantation with palliative pretreatment and HLA-DRB1 * 0101 + seronegative donor (# 365) The frequency of CD4 + T cells binding to HLA-DRB1 * 0101 / Tax155-167 tetramer was analyzed in PBMC cultured for 13-14 days in the presence of Tax155-167 peptide (100 nM). The data shows the percentage of tetramer positive cells in CD3 + CD4 + T cells. (B) CD4 + T cells binding to HLA-DRB1 * 0101 / Tax155-167 tetramer in fresh PBMC obtained from asymptomatic carrier # 310 and HTLV-I related myelopathy / tropical spastic paraparesis patient # 294 Frequency was analyzed. The data shows the percentage of tetramer positive cells in CD3 + CD4 + T cells.
[規則91に基づく訂正 05.09.2014] 
 本発明のHTLV-I特異的CD4T細胞誘導活性ペプチド、すなわち、HTLV-Iに特異的なCD4T細胞を誘導する活性を有するペプチドとしては、以下の(A)~(E)のいずれかに示されるアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチド(以下、「本発明のペプチド」とも表示する。)であれば特に制限されるものではない。
(A)配列番号4、10、11、12、13、16、17、19のいずれかに示されるアミノ酸配列:
(B)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列:
(C)前記(A)又は(B)に示されるアミノ酸配列に対して80%以上の同一性を有するアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
(D)前記(A)又は(B)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
(E)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列:
[Correction 05.09.2014 based on Rule 91]
The HTLV-I specific CD4 + T cell-inducing peptide of the present invention, that is, the peptide having the activity of inducing CD4 + T cells specific to HTLV-I is any of the following (A) to (E) The peptide is not particularly limited as long as it is an HTLV-I-specific CD4 + T cell-inducing peptide (hereinafter also referred to as “the peptide of the present invention”) having the amino acid sequence shown above.
(A) Amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
(B) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least the amino acid sequences of amino acid numbers 155 to 167:
(C) An amino acid sequence having 80% or more identity to the amino acid sequence shown in (A) or (B) above, wherein the peptide comprising the amino acid sequence is induced to induce HTLV-I-specific CD4 + T cells. Amino acid sequence with activity:
(D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity:
(E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL Amino acid sequence combined with the amino acid sequence of the inducing active peptide:
 上記(A)に列挙されている配列番号のアミノ酸配列はいずれも、HLA-DRB10101拘束性Tax特異的CD4T細胞エピトープであり、配列番号4はHTLV-IのTaxの154番目から178番目のアミノ酸からなるアミノ酸配列(Tax154-178)であり、配列番号10はHTLV-IのTaxの151番目から165番目のアミノ酸からなるアミノ酸配列(Tax151-165)であり、配列番号11はHTLV-IのTaxの154番目から168番目のアミノ酸からなるアミノ酸配列(Tax154-168)であり、配列番号12はHTLV-IのTaxの155番目から169番目のアミノ酸からなるアミノ酸配列(Tax155-169)であり、配列番号13はHTLV-IのTaxの156番目から170番目のアミノ酸からなるアミノ酸配列(Tax156-170)であり、配列番号16はHTLV-IのTaxの155番目から168番目のアミノ酸からなるアミノ酸配列(Tax155-168)であり、配列番号17はHTLV-IのTaxの155番目から167番目のアミノ酸からなるアミノ酸配列(Tax155-167)であり、配列番号19はHTLV-IのTaxの151番目から178番目のアミノ酸からなるアミノ酸配列(Tax151-178)である。これらのアミノ酸配列からなるペプチドは、HTLV-I特異的CD4T細胞誘導活性に優れている点で、本発明のペプチドの中でも好適に例示することができ、中でも、配列番号11(Tax154-168)、配列番号12(Tax155-169)、配列番号16(Tax155-168)、配列番号17(Tax155-167)、配列番号4(Tax154-178)、配列番号13(Tax156-170)を好適に例示することができ、中でも、配列番号11(Tax154-168)、配列番号12(Tax155-169)、配列番号16(Tax155-168)、配列番号17(Tax155-167)をより好適に例示することができ、HLA-HLA-DR1拘束性Tax特異的CD4T細胞エピトープの最小エピトープ(以下、単に「最小エピトープ」とも表示する。)である点で配列番号17(Tax155-167)を特に好適に例示することができる。なお、HTLV-I特異的CD4T細胞の好適な誘導を得る観点から、本発明のHTLV-I特異的CD4T細胞誘導活性ペプチドは、HLA-HLA-DRB1のタイプがHLA-DRB10101である対象に用いることが好ましい。 All of the amino acid sequences of SEQ ID NOs listed in (A) above are HLA-DRB1 * 0101 restricted Tax-specific CD4 + T cell epitopes, and SEQ ID NO: 4 is from 154th to 178th of HTLV-I Tax. The amino acid sequence consisting of the amino acid (Tax154-178), SEQ ID NO: 10 is the amino acid sequence consisting of amino acids 151 to 165 of Tax of HTLV-I (Tax151-165), and SEQ ID NO: 11 is HTLV- It is an amino acid sequence (Tax154-168) consisting of amino acids 154 to 168 of Tax of I, SEQ ID NO: 12 is an amino acid sequence (Tax155-169) consisting of amino acids 155 to 169 of Tax of HTLV-I SEQ ID NO: 13 is an amino acid sequence consisting of amino acids 156 to 170 of Tax of HTLV-I (Tax15 6-170), SEQ ID NO: 16 is an amino acid sequence (Tax155-168) consisting of amino acids 155 to 168 of HTLV-I Tax, and SEQ ID NO: 17 is 155th to 167 of HTLV-I Tax. The amino acid sequence is the amino acid sequence (Tax155-167) consisting of the first amino acid, and SEQ ID NO: 19 is the amino acid sequence (Tax151-178) consisting of the 151st to 178th amino acids of Tax of HTLV-I. Peptides consisting of these amino acid sequences can be suitably exemplified among the peptides of the present invention in that they are excellent in HTLV-I-specific CD4 + T cell inducing activity. Among them, SEQ ID NO: 11 (Tax154-168 ), SEQ ID NO: 12 (Tax155-169), SEQ ID NO: 16 (Tax155-168), SEQ ID NO: 17 (Tax155-167), SEQ ID NO: 4 (Tax154-178), SEQ ID NO: 13 (Tax156-170) Among them, SEQ ID NO: 11 (Tax154-168), SEQ ID NO: 12 (Tax155-169), SEQ ID NO: 16 (Tax155-168), and SEQ ID NO: 17 (Tax155-167) are more preferably exemplified. SEQ ID NO: 17 (Tax155-167) is particularly preferably exemplified in that it is a minimal epitope of a HLA-HLA-DR1-restricted Tax-specific CD4 + T cell epitope (hereinafter also simply referred to as “minimal epitope”). can do. Incidentally, HTLV-I-specific CD4 + from the viewpoint of obtaining a suitable induction of T cell, HTLV-I-specific CD4 + T cell-inducing activity peptides of the present invention, HLA-HLA-DRB1 type is HLA-DRB1 * 0101 It is preferable to use for the object which is.
 上記(B)のアミノ酸配列は、Taxのアミノ酸配列(配列番号32)おける連続する14~30個、好ましくは14~25個、より好ましくは14~20個、さらに好ましくは14~15個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列である。かかるアミノ酸配列は最小エピトープを含んでいるため、HTLV-I特異的CD4T細胞誘導活性ペプチドである。 The amino acid sequence of (B) above is 14 to 30, preferably 14 to 25, more preferably 14 to 20, and still more preferably 14 to 15 amino acids in the amino acid sequence of Tax (SEQ ID NO: 32). An amino acid sequence comprising at least amino acid sequences of amino acid numbers 155 to 167. Since such an amino acid sequence contains a minimal epitope, it is an HTLV-I-specific CD4 + T cell-inducing active peptide.
 上記(C)のアミノ酸配列は、上記(A)又は(B)に示されるアミノ酸配列に対して80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上さらにより好ましくは98%以上の同一性を有するアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列である。かかるアミノ酸配列は、HTLV-I特異的CD4T細胞誘導活性ペプチドである蓋然性が高い。 The amino acid sequence of (C) above is 80% or more, preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, even more than the amino acid sequence shown in (A) or (B) above. Preferably, it is an amino acid sequence having 98% or more identity, and the peptide comprising the amino acid sequence is an amino acid sequence having HTLV-I-specific CD4 + T cell inducing activity. Such an amino acid sequence is highly likely to be an HTLV-I-specific CD4 + T cell-inducing peptide.
 上記(D)のアミノ酸配列は、上記(A)又は(B)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列である。ここで、「1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列」とは、例えば1~20個、好ましくは1~15個、より好ましくは1~10個、さらに好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個の任意の数のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を意味し、アミノ酸の「置換、欠失若しくは付加」の程度及びそれらの位置などは、改変されたペプチドが、上記(A)に列挙されているアミノ酸配列からなるペプチドと同様にHTLV-I特異的CD4T細胞誘導活性を有する同効物であれば特に制限されず、アミノ酸配列の改変(変異)は、例えば突然変異や翻訳後の修飾などにより生じることもあるが、人為的に改変することもできる。本発明においては、このような改変・変異の原因及び手段などを問わず、上記特性を有する全ての改変ペプチドを包含する。 The amino acid sequence (D) is an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in (A) or (B) above, and consists of the amino acid sequence. The peptide is an amino acid sequence having HTLV-I specific CD4 + T cell inducing activity. Here, the “amino acid sequence in which one or several amino acids are deleted, substituted or added” is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 10, and still more preferably 1. Means an amino acid sequence in which any number of amino acids of ˜5, more preferably of 1 to 3, more preferably of 1 to 2 are deleted, substituted or added, and amino acid “substitution, deletion or addition” As for the extent of these and the position thereof, the modified peptide should have the same effect as that having HTLV-I-specific CD4 + T cell inducing activity in the same manner as the peptide consisting of the amino acid sequence listed in (A) above. There is no particular limitation, and the alteration (mutation) of the amino acid sequence may be caused by, for example, mutation or post-translational modification, but may be artificially altered. In the present invention, all modified peptides having the above characteristics are included regardless of the cause and means of such modification / mutation.
[規則91に基づく訂正 05.09.2014] 
 上記(E)のアミノ酸配列は、配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列である。上記(E)のアミノ酸配列における連続する14~30個のアミノ酸の個数としては、好ましくは18~30個、より好ましくは22~30個であることを好適に例示することができる。
[Correction 05.09.2014 based on Rule 91]
The amino acid sequence of (E) above is an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least an amino acid sequence of amino acid numbers 155 to 167, It is an amino acid sequence obtained by binding an amino acid sequence of an HTLV-I-specific CTL-inducing active peptide. The number of consecutive 14 to 30 amino acids in the amino acid sequence (E) is preferably 18 to 30, more preferably 22 to 30.
 本明細書における「HTLV-I特異的CTL誘導活性ペプチド」としては、HTLV-Iに特異的なCTLを誘導する活性を有するペプチドである限り特に制限されず、中でも、Tax特異的なCTL誘導活性ペプチドを好適に例示することができ、中でも、HLA-A2402拘束性CTLエピトープであるTax301-309(配列番号34)(特許文献1参照)などを特に好適に例示することができる。近年、ヘルパーT細胞であるCD4T細胞に対する癌抗原エピトープと、CTLであるCD8T細胞に対する癌抗原エピトープを結合させた融合ペプチド(Helper/Killer-Hybrid Epitope Long Peptide)を被験対象に投与することによって、被験対象の癌細胞に対する免疫を効果的に高めることが知られている(例えばCancer Science (2012) 103, 150-153など)。本願発明においても、上記Eのアミノ酸配列のペプチドを用いることによって、HTLV-I特異的CD4T細胞と共に、HTLV-I特異的CTLを誘導し、HTLV-Iに対する免疫を効果的に高めることができると考えられる。 The “HTLV-I-specific CTL-inducing activity peptide” in the present specification is not particularly limited as long as it is a peptide having an activity to induce CTL specific to HTLV-I. Peptides can be preferably exemplified, and among them, HLA-A * 2402 restricted CTL epitope Tax 301-309 (SEQ ID NO: 34) (see Patent Document 1) and the like can be particularly preferably exemplified. In recent years, a fusion peptide (Helper / Killer-Hybrid Epitope Long Peptide) in which a cancer antigen epitope for CD4 + T cells, which are helper T cells, and a cancer antigen epitope for CD8 + T cells, which are CTLs, are administered is administered to a subject. Thus, it is known to effectively enhance immunity against cancer cells of a test subject (for example, Cancer Science (2012) 103, 150-153, etc.). Also in the present invention, by using the peptide having the amino acid sequence of E, HTLV-I-specific CTL can be induced together with HTLV-I-specific CD4 + T cells, and immunity against HTLV-I can be effectively enhanced. It is considered possible.
 なお、本明細書におけるCD4T細胞としては、ヘルパーT細胞を好適に例示することができ、中でもTh1型ヘルパーT細胞をより好適に例示することができる。 In addition, as a CD4 <+> T cell in this specification, a helper T cell can be illustrated suitably, Th1 type helper T cell can be illustrated more suitably especially.
 本発明のペプチドは、化学的又は遺伝子工学的手法により製造することができる。化学的方法には、通常の液相法及び固相法によるペプチド合成法が包含される。かかるペプチド合成法は、より詳しくは、アミノ酸配列情報に基づいて、各アミノ酸を1個ずつ逐次結合させ鎖を延長させていくステップワイズエロゲーション法と、アミノ酸数個からなるフラグメントを予め合成し、次いで各フラグメントをカップリング反応させるフラグメント・コンデンセーション法とを包含する。本発明のペプチドの合成は、そのいずれによることもできる。 The peptide of the present invention can be produced by chemical or genetic engineering techniques. The chemical method includes peptide synthesis methods by ordinary liquid phase methods and solid phase methods. More specifically, the peptide synthesis method is based on the amino acid sequence information, and a stepwise erosion method in which each amino acid is sequentially linked one by one to extend the chain, and a fragment consisting of several amino acids is synthesized in advance. Then, a fragment condensation method in which each fragment is subjected to a coupling reaction is included. The peptide of the present invention can be synthesized by any of them.
 上記ペプチド合成に採用される縮合法も、公知の各種方法に従うことができる。その具体例としては、例えばアジド法、混合酸無水物法、DCC法、活性エステル法、酸化還元法、DPPA(ジフェニルホスホリルアジド)法、DCC+添加物(1-ヒドロキシベンゾトリアゾール、N-ヒドロキシサクシンアミド、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド等)、ウッドワード法等を例示できる。これら各方法に利用できる溶媒もこの種ペプチド縮合反応に使用されることがよく知られている一般的なものから適宜選択することができる。その例としては、例えばジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ヘキサホスホロアミド、ジオキサン、テトラヒドロフラン(THF)、酢酸エチル等及びこれらの混合溶媒等を挙げることができる。 The condensation method employed in the peptide synthesis can also follow various known methods. Specific examples thereof include, for example, azide method, mixed acid anhydride method, DCC method, active ester method, redox method, DPPA (diphenylphosphoryl azide) method, DCC + additive (1-hydroxybenzotriazole, N-hydroxysuccinamide) N-hydroxy-5-norbornene-2,3-dicarboximide, etc.), Woodward method and the like. Solvents that can be used in each of these methods can be appropriately selected from general solvents that are well known to be used in this type of peptide condensation reaction. Examples thereof include dimethylformamide (DMF), dimethyl sulfoxide (DMSO), hexaphosphoroamide, dioxane, tetrahydrofuran (THF), ethyl acetate and the like, and mixed solvents thereof.
 なお、上記ペプチド合成反応に際して、反応に関与しないアミノ酸及至ペプチドにおけるカルボキシル基は、一般にはエステル化により、例えばメチルエステル、エチルエステル、第三級ブチルエステル等の低級アルキルエステル、例えばベンジルエステル、p-メトキシベンジルエステル、p-ニトロベンジルエステルアラルキルエステル等として保護することができる。また、側鎖に官能基を有するアミノ酸、例えばTyrの水酸基は、アセチル基、ベンジル基、ベンジルオキシカルボニル基、第三級ブチル基等で保護されてもよいが、必ずしもかかる保護を行う必要はない。更に例えばArgのグアニジノ基は、ニトロ基、トシル基、2-メトキシベンゼンスルホニル基、メチレン-2-スルホニル基、ベンジルオキシカルボニル基、イソボルニルオキシカルボニル基、アダマンチルオキシカルボニル基等の適当な保護基により保護することができる。上記保護基を有するアミノ酸、ペプチド及び最終的に得られる本発明のペプチドにおけるこれら保護基の脱保護反応もまた、慣用される方法、例えば接触還元法や、液体アンモニア/ナトリウム、フッ化水素、臭化水素、塩化水素、トリフルオロ酢酸、酢酸、蟻酸、メタンスルホン酸等を用いる方法等に従って、実施することができる。 In the peptide synthesis reaction, amino acids that do not participate in the reaction and carboxyl groups in the peptide are generally esterified, for example, lower alkyl esters such as methyl ester, ethyl ester, tertiary butyl ester, such as benzyl ester, p- It can be protected as a methoxybenzyl ester, p-nitrobenzyl ester aralkyl ester or the like. An amino acid having a functional group in the side chain, for example, a hydroxyl group of Tyr may be protected with an acetyl group, a benzyl group, a benzyloxycarbonyl group, a tertiary butyl group, or the like, but such protection is not necessarily required. . Further, for example, the guanidino group of Arg is a suitable protecting group such as nitro group, tosyl group, 2-methoxybenzenesulfonyl group, methylene-2-sulfonyl group, benzyloxycarbonyl group, isobornyloxycarbonyl group, adamantyloxycarbonyl group and the like. Can be protected. The deprotection reaction of these protecting groups in the amino acids having the above-mentioned protecting groups, peptides and finally obtained peptides of the present invention is also carried out by conventional methods such as catalytic reduction, liquid ammonia / sodium, hydrogen fluoride, odor. It can be carried out according to a method using hydrogen fluoride, hydrogen chloride, trifluoroacetic acid, acetic acid, formic acid, methanesulfonic acid or the like.
 本発明のペプチドは、上記のように化学合成により得られる他、遺伝子工学的手法を用いて常法により製造することもできる。このようにして得られた本発明のペプチドは、通常の方法に従って、例えばイオン交換樹脂、分配クロマトグラフィー、ゲルクロマトグラフィー、アフィニティークロマトグラフィー、高速液体クロマトグラフィー(HPLC)、向流分配法等のペプチド化学の分野で汎用されている方法に従って、適宜その精製を行うことができる。 The peptide of the present invention can be obtained by chemical synthesis as described above, and can also be produced by a conventional method using genetic engineering techniques. The peptide of the present invention thus obtained can be obtained according to a conventional method, for example, peptide such as ion exchange resin, partition chromatography, gel chromatography, affinity chromatography, high performance liquid chromatography (HPLC), countercurrent distribution method and the like. The purification can be appropriately performed according to a method widely used in the chemical field.
 本発明の融合ペプチドとしては、本発明のペプチドとマーカータンパク質及び/又はペプチドタグとが結合しているものであればどのようなものでもよく、マーカータンパク質としては、従来知られているマーカータンパク質であれば特に制限されるものではなく、例えば、アルカリフォスファターゼ、抗体のFc領域、HRP、GFPなどを具体的に挙げることができ、またペプチドタグとしては、HA、FLAG、Myc等のエピトープタグや、GST、マルトース結合タンパク質、ビオチン化ペプチド、オリゴヒスチジン等の親和性タグなどの従来知られているペプチドタグを具体的に例示することができる。かかる融合ペプチドは、常法により作製することができ、Ni-NTAとHisタグの親和性を利用した本発明のペプチドの精製や、本発明のペプチドの検出や、本発明のペプチドに対する抗体の定量や、その他当該分野の研究用試薬としても有用である。 The fusion peptide of the present invention may be any peptide as long as the peptide of the present invention is bound to the marker protein and / or peptide tag, and the marker protein is a conventionally known marker protein. It is not particularly limited as long as it is, for example, alkaline phosphatase, Fc region of antibody, HRP, GFP and the like can be specifically mentioned, and peptide tags include epitope tags such as HA, FLAG, Myc, Specific examples of conventionally known peptide tags such as affinity tags such as GST, maltose-binding protein, biotinylated peptide, oligohistidine and the like can be exemplified. Such a fusion peptide can be prepared by a conventional method. Purification of the peptide of the present invention utilizing the affinity between Ni-NTA and His tag, detection of the peptide of the present invention, and quantification of an antibody against the peptide of the present invention It is also useful as a research reagent in this field.
 本発明のタンパク-ペプチド結合体としては、HLA-DR1と本発明のペプチドとの結合体であれば特に制限されるものではなく、例えばHLA-DR1分子と、上記(A)~(E)のいずれかに示されるアミノ酸配列からなるペプチドとの結合体など、かかる結合体を認識するCD4T細胞に結合できる形態のものが好ましい。また、本発明のタンパク-ペプチド結合体の4量体としては、HLA-DR1と本発明のペプチドとが結合したタンパク-ペプチド結合体の4量体であれば特に制限されるものではなく、上記タンパク-ペプチド結合体を、ストレプトアビジンを核として4量体(テトラマー)としたものを例示することができ、例えばHLA-DR1のC末端に酵素Bir-Aの基質を発現させておき、Bir-A-dependent biotinilation法でビオチン化したHLA-DR1と、フィコエリトリン(PE)標識脱グリコシル化アビジンを4:1で混合することにより得ることができる(Altman, J.D., et al.: Science 274, 94-96, 1996)。これらタンパク-ペプチド結合体及びその4量体は、化学合成された本発明のペプチドと、HLA-DR1遺伝子(GenBank アクセッションナンバーAF142457)を利用した遺伝子工学的手法を用いて常法により作製したHLA-DR1のα鎖及びβ鎖とを、リフォールディングバッファー中、インビトロで結合させることにより、あるいは本発明のペプチドをコードするポリヌクレオチドとHLA-DR1遺伝子とをそれぞれ利用した遺伝子工学的手法を用いて常法により本発明のペプチドとHLA-DR1のα鎖及びβ鎖とを同一宿主細胞内で共発現させ、精製後にこれらを結合させることにより作製することができる。 The protein-peptide conjugate of the present invention is not particularly limited as long as it is a conjugate of HLA-DR1 and the peptide of the present invention. For example, the HLA-DR1 molecule and the above (A) to (E) Preferred is a form capable of binding to a CD4 + T cell that recognizes such a conjugate, such as a conjugate with a peptide consisting of any of the amino acid sequences shown. The tetramer of the protein-peptide conjugate of the present invention is not particularly limited as long as it is a tetramer of a protein-peptide conjugate in which HLA-DR1 and the peptide of the present invention are bound. The protein-peptide conjugate can be exemplified by a tetramer having streptavidin as a nucleus. For example, a substrate of the enzyme Bir-A is expressed at the C-terminus of HLA-DR1, and Bir- It can be obtained by mixing HLA-DR1 biotinylated by the A-dependent biotinilation method with phycoerythrin (PE) -labeled deglycosylated avidin at a ratio of 4: 1 (Altman, JD, et al .: Science 274, 94- 96, 1996). These protein-peptide conjugates and tetramers thereof are HLA produced by a conventional method using a chemically synthesized peptide of the present invention and a genetic engineering technique using the HLA-DR1 gene (GenBank accession number AF142457). -By combining the α chain and β chain of DR1 in vitro in a refolding buffer, or using genetic engineering techniques utilizing the polynucleotide encoding the peptide of the present invention and the HLA-DR1 gene, respectively. It can be prepared by co-expressing the peptide of the present invention and the HLA-DR1 α chain and β chain in the same host cell by a conventional method, and binding them after purification.
 本発明の融合タンパク質としては、上記タンパク-ペプチド結合体又はタンパク-ペプチド結合体の4量体とマーカータンパク質及び/又はペプチドタグとが結合しているものであればどのようなものでもよく、マーカータンパク質としては、従来知られているマーカータンパク質であれば特に制限されるものではなく、例えば、蛍光色素、アルカリフォスファターゼ、抗体のFc領域、HRP、GFPなどを具体的に挙げることができ、またペプチドタグとしては、HA、FLAG、Myc等のエピトープタグや、GST、マルトース結合タンパク質、ビオチン化ペプチド、オリゴヒスチジン等の親和性タグなどの従来知られているペプチドタグを具体的に例示することができる。かかる融合タンパク質は、常法により作製することができ、Ni-NTAとHisタグの親和性を利用したタンパク-ペプチド結合体の精製や、HTLV-I特異的CD4T細胞の検出や、その他当該分野の研究用試薬としても有用である。 The fusion protein of the present invention may be any protein as long as the protein-peptide conjugate or protein-peptide conjugate tetramer is bound to the marker protein and / or peptide tag. The protein is not particularly limited as long as it is a conventionally known marker protein. For example, fluorescent dyes, alkaline phosphatase, antibody Fc region, HRP, GFP and the like can be specifically mentioned. Specific examples of the tag include epitope tags such as HA, FLAG, and Myc, and conventionally known peptide tags such as affinity tags such as GST, maltose-binding protein, biotinylated peptide, and oligohistidine. . Such fusion proteins can be prepared by conventional methods, such as purification of protein-peptide conjugates utilizing the affinity between Ni-NTA and His tags, detection of HTLV-I specific CD4 + T cells, and other such It is also useful as a research reagent in the field.
 本発明のペプチドに特異的に結合する抗体としては、モノクローナル抗体、ポリクローナル抗体、キメラ抗体、一本鎖抗体、ヒト化抗体等の免疫特異的な抗体を具体的に挙げることができ、これらは上記本発明のペプチドを抗原として用いて常法により作製することができるが、その中でもモノクローナル抗体がその特異性の点でより好ましい。かかるモノクローナル抗体等の本発明のペプチドに特異的に結合する抗体は、例えば、ATLやHAM/TSPなどの診断に有用であるばかりでなく、本発明のペプチドのHTLV-I特異的CD4T細胞誘導の活性機構や分子機構を明らかにする上で有用である。 Specific examples of antibodies that specifically bind to the peptide of the present invention include immunospecific antibodies such as monoclonal antibodies, polyclonal antibodies, chimeric antibodies, single chain antibodies, humanized antibodies, and the like. The peptide of the present invention can be prepared by an ordinary method using the antigen as an antigen. Among them, a monoclonal antibody is more preferable in terms of its specificity. Such an antibody that specifically binds to the peptide of the present invention such as a monoclonal antibody is not only useful for diagnosis of, for example, ATL and HAM / TSP, but also HTLV-I specific CD4 + T cells of the peptide of the present invention. It is useful for clarifying the activity mechanism and molecular mechanism of induction.
 本発明のペプチドに対する抗体は、慣用のプロトコールを用いて、動物(好ましくはヒト以外)に、本発明のペプチド、該本発明のペプチドと免疫原性を有するタンパク質との複合体、該本発明のペプチドを膜表面に提示した細胞等を投与することにより産生され、例えばモノクローナル抗体の調製には、連続細胞系の培養物により産生される抗体をもたらす、ハイブリドーマ法(Nature 256, 495-497, 1975)、トリオーマ法、ヒトB細胞ハイブリドーマ法(Immunology Today 4, 72, 1983)及びEBV-ハイブリドーマ法(MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp.77-96, Alan R.Liss, Inc., 1985)など任意の方法を用いることができる。 The antibody against the peptide of the present invention can be obtained by subjecting an animal (preferably non-human) to a peptide of the present invention, a complex of the peptide of the present invention and an immunogenic protein, For example, for the preparation of monoclonal antibodies, the hybridoma method (Nature 256, 495-497, 1975) is used to produce antibodies produced by continuous cell line cultures. ), Trioma method, human B cell hybridoma method (Immunology Today 4, 72, 1983) and EBV-hybridoma method (MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp.77-96, Alan R.Liss, Inc., 1985) The method can be used.
[規則91に基づく訂正 05.09.2014] 
 また、本発明のポリヌクレオチドは、HTLV-I特異的CD4T細胞誘導活性ペプチドをコードするポリヌクレオチド、すなわち、以下の(a)~(d)のいずれかに示されるポリヌクレオチド配列からなるポリヌクレオチド(以下、「本発明のポリヌクレオチド」とも表示する。)であれば特に制限されるものではない。
(a)配列番号4、10、11、12、13、16、17、19のいずれかに示されるアミノ酸配列をコードするポリヌクレオチド配列:
(b)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列をコードするポリヌクレオチド配列:
(c)前記(a)又は(b)に示されるポリヌクレオチド配列に対して80%以上の同一性を有するポリヌクレオチド配列であって、HTLV-I特異的CD4T細胞誘導活性を有するペプチドをコードするポリヌクレオチド配列:
(d)前記(a)又は(b)に示されるポリヌクレオチド配列において、1若しくは数個のヌクレオチドが欠失、置換若しくは付加されたポリヌクレオチド配列であって、HTLV-I特異的CD4T細胞誘導活性を有するペプチドをコードするポリヌクレオチド配列:
(e)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列をコードするポリヌクレオチド配列:
[Correction 05.09.2014 based on Rule 91]
The polynucleotide of the present invention is a polynucleotide encoding an HTLV-I-specific CD4 + T cell-inducing peptide, that is, a polynucleotide comprising the polynucleotide sequence shown in any of the following (a) to (d): The nucleotide is not particularly limited as long as it is a nucleotide (hereinafter also referred to as “polynucleotide of the present invention”).
(A) a polynucleotide sequence encoding the amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
(B) a polynucleotide sequence encoding an amino acid sequence comprising 14 to 30 consecutive amino acids in the amino acid sequence represented by SEQ ID NO: 32 and comprising at least the amino acid sequences of amino acid numbers 155 to 167:
(C) a polynucleotide sequence having 80% or more identity to the polynucleotide sequence shown in the above (a) or (b), wherein the peptide has HTLV-I-specific CD4 + T cell inducing activity Encoding polynucleotide sequence:
(D) a polynucleotide sequence obtained by deleting, substituting, or adding one or several nucleotides in the polynucleotide sequence shown in (a) or (b), wherein the HTLV-I specific CD4 + T cell Polynucleotide sequence encoding a peptide having inductive activity:
(E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence comprising at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL Polynucleotide sequence encoding an amino acid sequence linked to the amino acid sequence of an inducing active peptide:
 上記(a)のポリヌクレオチド配列は、列挙されているいずれかのアミノ酸配列をコードしている限り特に制限されないが、配列番号4に示されるアミノ酸配列をコードするポリヌクレオチド配列として配列番号24に示されるポリヌクレオチド配列を好適に例示することができ、配列番号10に示されるアミノ酸配列をコードするポリヌクレオチド配列として配列番号25に示されるポリヌクレオチド配列を好適に例示することができ、配列番号11に示されるアミノ酸配列をコードするポリヌクレオチド配列として配列番号26に示されるポリヌクレオチド配列を好適に例示することができ、配列番号12に示されるアミノ酸配列をコードするポリヌクレオチド配列として配列番号27に示されるポリヌクレオチド配列を好適に例示することができ、配列番号13に示されるアミノ酸配列をコードするポリヌクレオチド配列として配列番号28に示されるポリヌクレオチド配列を好適に例示することができ、配列番号16に示されるアミノ酸配列をコードするポリヌクレオチド配列として配列番号29に示されるポリヌクレオチド配列を好適に例示することができ、配列番号17に示されるアミノ酸配列をコードするポリヌクレオチド配列として配列番号30に示されるポリヌクレオチド配列を好適に例示することができる。 The polynucleotide sequence of (a) is not particularly limited as long as it encodes any of the listed amino acid sequences, but is shown in SEQ ID NO: 24 as a polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 4. The polynucleotide sequence shown in SEQ ID NO: 25 can be preferably exemplified as the polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 10. The polynucleotide sequence shown in SEQ ID NO: 26 can be preferably exemplified as the polynucleotide sequence encoding the amino acid sequence shown, and is shown in SEQ ID NO: 27 as the polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 12. Suitable examples of polynucleotide sequences A polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 16 can be preferably exemplified as the polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 13 The polynucleotide sequence shown in SEQ ID NO: 29 can be preferably exemplified as the sequence, and the polynucleotide sequence shown in SEQ ID NO: 30 is preferably exemplified as the polynucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 17. Can do.
[規則91に基づく訂正 05.09.2014] 
 上記(b)のポリヌクレオチド配列は、配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列をコードするポリヌクレオチド配列である。かかるポリヌクレオチド配列は、前述のアミノ酸配列をコードしている限り特に制限されないが、配列番号33に示すTaxのポリヌクレオチド配列において、前述のアミノ酸配列に対応する部分のポリヌクレオチド配列を好適に例示することができる。かかるポリヌクレオチド配列は、Tax全体のアミノ酸配列を示す配列番号32と、Tax全体のポリヌクレオチド配列を示す配列番号33を比較することにより、把握することができる。
[Correction 05.09.2014 based on Rule 91]
The polynucleotide sequence of (b) is an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising an amino acid sequence comprising at least amino acid numbers 155 to 167. The encoding polynucleotide sequence. Such a polynucleotide sequence is not particularly limited as long as it encodes the above-mentioned amino acid sequence. However, in the Tax polynucleotide sequence shown in SEQ ID NO: 33, a polynucleotide sequence corresponding to the above-mentioned amino acid sequence is preferably exemplified. be able to. Such a polynucleotide sequence can be grasped by comparing SEQ ID NO: 32 showing the amino acid sequence of the entire Tax and SEQ ID NO: 33 showing the polynucleotide sequence of the entire Tax.
 上記(c)のポリヌクレオチド配列は、上記(a)又は(b)に示されるポリヌクレオチド配列に対して80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上さらにより好ましくは98%以上の同一性を有するポリヌクレオチド配列であって、HTLV-I特異的CD4T細胞誘導活性を有するペプチドをコードするポリヌクレオチド配列である。 The polynucleotide sequence (c) is 80% or more, preferably 85% or more, more preferably 90% or more, and still more preferably 95% or more with respect to the polynucleotide sequence shown in (a) or (b). Even more preferably, it is a polynucleotide sequence having 98% or more identity, and encoding a peptide having HTLV-I-specific CD4 + T cell inducing activity.
 上記(d)のポリヌクレオチド配列は、上記(a)又は(b)に示されるポリヌクレオチドにおいて、1若しくは数個のヌクレオチドが欠失、置換若しくは付加されたポリヌクレオチド配列であって、HTLV-I特異的CD4T細胞誘導活性を有するペプチドをコードするポリヌクレオチド配列である。ここで、「1若しくは数個のヌクレオチドが欠失、置換若しくは付加されたポリヌクレオチド配列」とは、例えば1~20個、好ましくは1~15個、より好ましくは1~10個、さらに好ましくは1~5個、より好ましくは1~3個、さらに好ましくは1~2個の任意の数のヌクレオチドが欠失、置換若しくは付加されたポリヌクレオチド配列を意味し、ヌクレオチドの「置換、欠失若しくは付加」の程度及びそれらの位置などは、改変されたポリヌクレオチド配列がコードするペプチドが、上記(A)に列挙されているアミノ酸配列からなるペプチドと同様にHTLV-I特異的CD4T細胞誘導活性を有する同効物であれば特に制限されず、かかるヌクレオチドの改変(変異)は、例えば突然変異や翻訳後の修飾などにより生じることもあるが、人為的に改変することもできる。本発明においては、このような改変・変異の原因及び手段などを問わず、上記特性を有する全ての改変ポリヌクレオチド配列を包含する。 The polynucleotide sequence of (d) is a polynucleotide sequence in which one or several nucleotides are deleted, substituted or added in the polynucleotide shown in (a) or (b) above, and the HTLV-I A polynucleotide sequence encoding a peptide having specific CD4 + T cell inducing activity. Here, the “polynucleotide sequence in which one or several nucleotides are deleted, substituted or added” is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 10, and still more preferably. Means a polynucleotide sequence in which any number of nucleotides of 1 to 5, more preferably 1 to 3, even more preferably 1 to 2 are deleted, substituted or added, The degree of “addition” and the position thereof are derived from HTLV-I-specific CD4 + T cell induction in the same manner as the peptide encoded by the modified polynucleotide sequence is composed of the amino acid sequence listed in (A) above. The nucleotide is not particularly limited as long as it has the same activity, and such nucleotide alteration (mutation) is caused by, for example, mutation or post-translational modification. There is also a, but can also be artificially altered. In the present invention, all modified polynucleotide sequences having the above characteristics are included regardless of the cause and means of such modification / mutation.
[規則91に基づく訂正 05.09.2014] 
 上記(e)のポリヌクレオチド配列は、列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列をコードするポリヌクレオチド配列である。かかる(e)のポリヌクレオチド配列は、上記(E)のアミノ酸配列に対応するポリヌクレオチド配列である。
[Correction 05.09.2014 based on Rule 91]
The polynucleotide sequence of (e) above is an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in column number 32, and comprising at least an amino acid sequence of amino acid numbers 155 to 167, and , A polynucleotide sequence encoding an amino acid sequence obtained by binding an amino acid sequence of an HTLV-I-specific CTL-inducing active peptide. The polynucleotide sequence (e) is a polynucleotide sequence corresponding to the amino acid sequence (E).
 また、本発明のポリヌクレオチドは、遺伝子工学的手法を用いた常法により本発明のペプチドを作製するときに有利に用いることができる他、特に本発明のポリヌクレオチドのアンチセンス鎖は、ATL等のHTLV-I腫瘍の診断用プローブとして有用である。 In addition, the polynucleotide of the present invention can be advantageously used when preparing the peptide of the present invention by a conventional method using genetic engineering techniques. In particular, the antisense strand of the polynucleotide of the present invention is ATL or the like. It is useful as a diagnostic probe for HTLV-I tumors.
 本発明のHTLV-I特異的CTL誘導作用増強剤あるいはHTLV-I特異的CTL誘導作用増強用組成物(好ましくは医薬組成物)としては、「上記(A)~(E)のいずれかのアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチド」や、「プロモーターと、以下の(a)~(e)のいずれかに示されるポリヌクレオチド配列からなるポリヌクレオチドとを含み、該ポリヌクレオチドがプロモーターの下流に作動可能に連結されている発現ベクター」を有効成分として含有していれば特に制限されるものではない。 The HTLV-I-specific CTL inducing action enhancer or HTLV-I-specific CTL inducing action enhancing composition (preferably pharmaceutical composition) of the present invention includes any of the above amino acids (A) to (E). HTLV-I specific CD4 + T cell-inducing peptide consisting of a sequence "or" promoter and a polynucleotide consisting of a polynucleotide sequence shown in any of the following (a) to (e): There is no particular limitation as long as it contains an “expression vector in which nucleotides are operably linked downstream of a promoter” as an active ingredient.
 かかる本発明のペプチドや、かかる本発明の発現ベクターから発現する本発明のペプチドは、HTLV-I特異的CD4T細胞を誘導し、かかるCD4T細胞が、HTLV-I特異的CTL誘導作用を増強する。本明細書において「HTLV-I特異的CTL誘導作用を増強する」ものとは、HTLV-I特異的CD4T細胞の誘導を介して、HTLV-I特異的CTL誘導活性ペプチド(HTLV-I特異的なCTLを誘導する活性を有するペプチド)が発揮するHTLV-I特異的CTL誘導作用を増強する能力を有しているものを意味する。HTLV-I特異的CTL誘導活性ペプチドが発揮するHTLV-I特異的CTL誘導作用を増強する能力をある物質が有するか否かは、例えば、その物質とHTLV-I特異的CTL誘導活性ペプチドとを併用した場合に、HTLV-I特異的CTL誘導活性ペプチド単独で用いた場合と比較して、HTLV-I特異的CTLがより顕著に誘導されるかどうかを調べることによって容易に確認することができる。併用した場合にHTLV-I特異的CTLがより顕著に誘導されれば、その物質はHTLV-I特異的CTL誘導活性ペプチドが発揮するHTLV-I特異的CTL誘導作用を増強する能力をある物質が有するといえる。 Such a peptide of the present invention or a peptide of the present invention expressed from the expression vector of the present invention induces HTLV-I specific CD4 + T cells, and such CD4 + T cells induce HTLV-I specific CTL inducing action. To strengthen. In the present specification, “enhancing the HTLV-I-specific CTL inducing action” means that an HTLV-I-specific CTL-inducing active peptide (HTLV-I-specific peptide) is induced through induction of HTLV-I-specific CD4 + T cells. Which has the ability to enhance the HTLV-I-specific CTL inducing action exerted by a peptide having an activity to induce CTL). Whether or not a substance having the ability to enhance the HTLV-I-specific CTL-inducing action exhibited by the HTLV-I-specific CTL-inducing active peptide is determined by, for example, determining the substance and the HTLV-I-specific CTL-inducing active peptide. When used in combination, it can be easily confirmed by investigating whether HTLV-I-specific CTLs are more prominently compared with the case where HTLV-I-specific CTL-inducing activity peptide alone is used. . If HTLV-I-specific CTL is more significantly induced when used in combination, the substance has the ability to enhance the HTLV-I-specific CTL inducing action exhibited by the HTLV-I-specific CTL-inducing active peptide. It can be said that it has.
 上記発現ベクターとしては、プロモーターと、上記の(a)~(e)のいずれかに示されるポリヌクレオチド配列からなるポリヌクレオチドとを含み、該ポリヌクレオチドがプロモーターの下流に作動可能に連結されている発現ベクターであればどのようなものでもよく、大腸菌(Escherichia coli)由来のプラスミド(例えばpET28、pGEX4T、pUC118、pUC119、pUC18、pUC19、及び他のプラスミドDNA)、枯草菌(Bacillus subtilis)由来のプラスミド(例えばpUB110、pTP5、及び他のプラスミドDNA)、酵母由来のプラスミド(例えばYEp13、YEp24、YCp50、及び他のプラスミドDNA)、λファージ(λgt11、λZAP等)、哺乳動物用プラスミド(pCMV、pSV40)、ウイルスベクター(アデノウイルスベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、レンチウイルスベクター、ワクシニアウイルスベクターなどの動物ウイルスベクター、バキュロウイルスベクターなどの昆虫ウイルスベクター等)、植物用ベクター(バイナリベクターpBI系等)、コスミドベクターなどを用いることができる。 The expression vector includes a promoter and a polynucleotide comprising the polynucleotide sequence shown in any of (a) to (e) above, and the polynucleotide is operably linked downstream of the promoter. Any expression vector can be used, and plasmids derived from Escherichia coli (eg, pET28, pGEX4T, pUC118, pUC119, pUC18, pUC19, and other plasmid DNAs), plasmids derived from Bacillus subtilis (Eg, pUB110, pTP5, and other plasmid DNA), yeast-derived plasmids (eg, YEp13, YEp24, YCp50, and other plasmid DNAs), λ phage (λgt11, λZAP, etc.), mammalian plasmids (pCMV, pSV40) Virus vectors (adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, lentiviruses) Vectors, animal virus vectors such as vaccinia virus vectors, insect virus vectors such as baculovirus vectors), plant vectors (binary vector pBI system, etc.), cosmid vectors, and the like can be used.
 上記プロモーターとしては特に制限されず、宿主に応じて適するプロモーターを選択すればよく、また当該技術分野で公知の構成的プロモーター、誘導性プロモーターのいずれを用いてもよい。プロモーターとして具体的には、CMVプロモーター、SV40プロモーター、CAGプロモーター、シナプシンプロモーター、ロドプシンプロモーター、CaMVプロモーター、解糖系酵素プロモーター、lacプロモーター、trpプロモーター、tacプロモーター、GAPDHプロモーター、GAL1プロモーター、PH05プロモーター、PGKプロモーターなどを挙げることができる。また、上記発現ベクターは、目的ポリヌクレオチドの下流にターミネーターをさらに含んでいてもよい。 The promoter is not particularly limited, and a suitable promoter may be selected according to the host, and either a constitutive promoter or an inducible promoter known in the technical field may be used. Specifically, as the promoter, CMV promoter, SV40 promoter, CAG promoter, synapsin promoter, rhodopsin promoter, CaMV promoter, glycolytic enzyme promoter, lac promoter, trp promoter, tac promoter, GAPDH promoter, GAL1 promoter, PH05 promoter, PGK promoter etc. can be mentioned. The expression vector may further contain a terminator downstream of the target polynucleotide.
 上記の「ポリヌクレオチドがプロモーターの下流に作動可能に連結されている」とは、プロモーターがそのポリヌクレオチド配列の転写を開始することができるように、プロモーターと該ポリヌクレオチドが機能的に結合されていることを意味する。 The above “polynucleotide is operably linked downstream of the promoter” means that the promoter and the polynucleotide are operably linked so that the promoter can initiate transcription of the polynucleotide sequence. Means that
 上記発現ベクターを用いて本発明のペプチドを発現させる場合に用いる宿主細胞としては、該発現ベクターが本発明のペプチドを発現し得る宿主細胞であればどのようなものでもよく、例えば大腸菌、ストレプトミセス、枯草菌、ストレプトコッカス、スタフィロコッカス等の細菌原核細胞や、酵母、アスペルギルス等の真核細胞や、ドロソフィラS2、スポドプテラSf9等の昆虫細胞や、L細胞、CHO細胞、COS細胞、HeLa細胞、C127細胞、BALB/c3T3細胞(ジヒドロ葉酸レダクターゼやチミジンキナーゼなどを欠損した変異株を含む)、BHK21細胞、HEK293細胞、Bowesメラノーマ細胞、卵母細胞等の動植物細胞などを挙げることができる。また、本発明のペプチドを発現することができる発現ベクターの宿主細胞への導入は、Davisら(BASIC METHODS IN MOLECULAR BIOLOGY, 1986)及びSambrookら(MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989)などの多くの標準的な実験室マニュアルに記載される方法、例えば、リン酸カルシウムトランスフェクション、DEAE-デキストラン媒介トランスフェクション、トランスベクション(transvection)、マイクロインジェクション、カチオン性脂質媒介トランスフェクション、エレクトロポレーション、形質導入、スクレープローディング (scrape loading)、弾丸導入(ballistic introduction)、感染等により行うことができる。 The host cell used when the peptide of the present invention is expressed using the above expression vector may be any host cell as long as the expression vector can express the peptide of the present invention, such as Escherichia coli and Streptomyces. Bacterial prokaryotic cells such as Bacillus subtilis, Streptococcus and Staphylococcus, eukaryotic cells such as yeast and Aspergillus, insect cells such as Drosophila S2 and Spodoptera Sf9, L cells, CHO cells, COS cells, HeLa cells, C127 Examples include cells, BALB / c3T3 cells (including mutants lacking dihydrofolate reductase and thymidine kinase), BHK21 cells, HEK293 cells, Bowes melanoma cells, and oocyte and plant cells. In addition, introduction of an expression vector capable of expressing the peptide of the present invention into a host cell is performed by Davis et al. (BASIC METHODS IN MOLECULAR BIOLOGY, 1986) and Sambrook et al. (MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring). Methods described in many standard laboratory manuals such as Harbor Laboratory, Press, Cold Spring, NY, 1989), eg, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, Cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction, infection, and the like.
 本発明のHTLV-I特異的CTL誘導作用増強剤あるいはHTLV-I特異的CTL誘導作用増強用組成物(好ましくは医薬組成物)に含まれる本発明のペプチドや上記発現ベクター以外の任意成分として、例えば、医薬的に容認可能な担体又は希釈剤、免疫賦活剤、添加剤等を含んでいてもよく、かかる担体又は希釈剤としては、例えば、SPGAなどの安定化剤や、ソルビトール、マンニトール、澱粉、スクロース、グルコース、デキストラン等の炭水化物や、アルブミン、カゼイン等のタンパク質や、ウシ血清、スキムミルク等のタンパク質含有物質や、リン酸緩衝液、生理食塩水、水等の緩衝液などを具体的に挙げることができる。免疫賦活剤としては、インターロイキン-2(IL-2)、インターロイキン-12(IL-12)、腫瘍壊死因子α(THF-α)等のサイトカインを具体的に例示することができ、添加剤としては、低分子量のポリペプチド(約10残基未満)、タンパク質、アミノ酸、グルコース又はデキストランを含む炭水化物、EDTAなどのキレート剤、蛋白質安定化剤、微生物増殖阻止若しくは抑制剤等を例示することができるがこれらに限定されるものではない。 As an optional component other than the peptide of the present invention and the above expression vector contained in the HTLV-I specific CTL inducing action enhancer or HTLV-I specific CTL inducing action enhancing composition (preferably pharmaceutical composition) of the present invention, For example, it may contain a pharmaceutically acceptable carrier or diluent, an immunostimulant, an additive, etc. Examples of such a carrier or diluent include a stabilizer such as SPGA, sorbitol, mannitol, starch. Specific examples include carbohydrates such as sucrose, glucose and dextran, proteins such as albumin and casein, protein-containing substances such as bovine serum and skim milk, and buffers such as phosphate buffer, physiological saline and water. be able to. Specific examples of the immunostimulant include cytokines such as interleukin-2 (IL-2), interleukin-12 (IL-12), and tumor necrosis factor α (THF-α). Examples include low molecular weight polypeptides (less than about 10 residues), proteins, amino acids, carbohydrates containing glucose or dextran, chelating agents such as EDTA, protein stabilizers, microbial growth inhibitors or inhibitors, and the like. However, it is not limited to these.
 また、本発明のHTLV-I特異的CTL誘導作用増強剤あるいはHTLV-I特異的CTL誘導作用増強用組成物(好ましくは医薬組成物)は、経口、静脈内、腹腔内、鼻腔内、皮内、皮下、筋肉内等により投与することができる形態のものが好ましい。投与すべき有効量は、医薬品や医薬組成物の種類・組成、投与方法、患者の年齢や体重等を考慮して適宜決定することができ、これらを1日あたり1~数回投与することが好ましい。また、経口投与する場合、通常、製剤用担体と混合して調製した製剤の形で投与される。この際、製剤に用いることができる担体としては、製剤分野において常用され、かつ本発明のペプチドと反応しない物質が用いられる。また、剤型としては、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤、懸濁剤、坐剤、軟膏、クリーム剤、ゲル剤、貼付剤、吸入剤、注射剤等を具体的に例示することができ、これらの製剤は常法に従って調製され、特に液体製剤にあっては、用時、水又は他の適当な媒体に溶解又は懸濁する形態とすることもできる。また錠剤、顆粒剤は周知の方法でコーティングしてもよい。注射剤の場合には、本発明のペプチドを水に溶解させて調製されるが、必要に応じて生理食塩水あるいはブドウ糖溶液に溶解させてもよく、また緩衝剤や保存剤を添加してもよい。またこれらの製剤は、治療上価値のある他の成分を含有していてもよい。 The HTLV-I-specific CTL inducing action enhancer or HTLV-I-specific CTL inducing action-enhancing composition of the present invention (preferably a pharmaceutical composition) is orally, intravenously, intraperitoneally, intranasally, intradermally. A form that can be administered subcutaneously, intramuscularly, and the like is preferable. The effective amount to be administered can be appropriately determined in consideration of the type and composition of the pharmaceutical or pharmaceutical composition, the administration method, the age and weight of the patient, etc., and these can be administered one to several times per day. preferable. When administered orally, it is usually administered in the form of a preparation prepared by mixing with a pharmaceutical carrier. In this case, as a carrier that can be used in the preparation, a substance that is commonly used in the preparation field and does not react with the peptide of the present invention is used. Examples of the dosage form include tablets, capsules, granules, powders, syrups, suspensions, suppositories, ointments, creams, gels, patches, inhalants, injections, and the like. These preparations can be prepared according to conventional methods, and in the case of liquid preparations in particular, they can be dissolved or suspended in water or other suitable medium at the time of use. Tablets and granules may be coated by a known method. In the case of injection, it is prepared by dissolving the peptide of the present invention in water, but it may be dissolved in physiological saline or glucose solution as necessary, and a buffer or preservative may be added. Good. These preparations may also contain other components having therapeutic value.
 本発明のHTLV-I特異的免疫応答誘導用ワクチンとしては、前述の本発明のHTLV-I特異的CTL誘導作用増強剤と、HTLV-I特異的CTL誘導活性ペプチド又は該ペプチドをコードするポリヌクレオチドとを含有していれば特に制限されるものではない。HTLV-I特異的CTL誘導活性ペプチドについては前述したとおりである。かかるワクチンによれば、HTLV-I特異的CD4T細胞と、HTLV-I特異的CTLを共に誘導することができ、しかも、そのHTLV-I特異的CTLの誘導を顕著に行うことができる。本発明の免疫応答誘導用ワクチンはATL等のHTLV-I腫瘍の治療に用いることができる。なお、HTLV-I特異的CTLの好適な誘導を得る観点から、HTLV-I特異的CTL誘導活性ペプチドは投与対象のHLA-Aのタイプに適合したものを用いることが好ましい。また、HTLV-I特異的CTL誘導作用増強剤として、上記(E)のアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチド、又は、上記(e)のポリヌクレオチドを含む発現ベクターを有効成分として含有する場合は、HTLV-I特異的CTL誘導活性ペプチド又は該ペプチドをコードするポリヌクレオチドを含んでいるため、別個に含める必要はない。本明細書において、「本発明のHTLV-I特異的CTL誘導作用増強剤と、HTLV-I特異的CTL誘導活性ペプチド又は該ペプチドをコードするポリヌクレオチドとを含有する」ことには、上記(E)のアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチドの態様や、上記(e)のポリヌクレオチドを含む発現ベクターの態様も便宜上含まれる。 The vaccine for inducing an HTLV-I-specific immune response of the present invention includes the aforementioned HTLV-I-specific CTL inducing action enhancer of the present invention, an HTLV-I-specific CTL-inducing activity peptide, or a polynucleotide encoding the peptide If it contains, it will not restrict | limit in particular. The HTLV-I specific CTL inducing peptide is as described above. According to such a vaccine, both HTLV-I-specific CD4 + T cells and HTLV-I-specific CTL can be induced, and the HTLV-I-specific CTL can be significantly induced. The vaccine for inducing immune response of the present invention can be used for treatment of HTLV-I tumors such as ATL. From the viewpoint of obtaining a suitable induction of HTLV-I-specific CTL, it is preferable to use an HTLV-I-specific CTL-inducing active peptide that is suitable for the type of HLA-A to be administered. An HTLV-I specific CD4 + T cell-inducing activity peptide consisting of the amino acid sequence of (E) above or an expression vector containing the polynucleotide of (e) above as an HTLV-I specific CTL inducing action potentiator When it is contained as an active ingredient, it contains an HTLV-I-specific CTL-inducing active peptide or a polynucleotide encoding the peptide, and need not be separately included. In the present specification, “containing the HTLV-I-specific CTL inducing action enhancer of the present invention and an HTLV-I-specific CTL-inducing activity peptide or a polynucleotide encoding the peptide” includes the above (E HTLV-I-specific CD4 + T cell-inducing peptide comprising the amino acid sequence of () and an expression vector comprising the polynucleotide (e) are also included for convenience.
 また、本発明の免疫応答誘導用ワクチンとしては、さらに細胞性の又は局所的な免疫を増強する種々のアジュバントを含むものがより好ましく、かかるアジュバントとしては、例えば、効率よくペプチド特異的なCD4T細胞やCTLを誘導することができる樹状細胞、CpGモチーフを含むISS-ODN(Immunostimulatory DNAsequences-oligodeoxynucleotide;Nat. Med. 3, 849-854, 1997)、細胞傷害性T細胞を刺激するQS21(Quil1aia saponaria、Cambridge Biotech,Worcester,MAより商業的に入手可能)、水酸化アルミニウム、リン酸アルミニウム、酸化アルミニウム、油性エマルジョン、サポニン、ビタミンE溶解物等を具体的に挙げることができる。アジュバントを用いる場合、アジュバントとなる種々の菌体成分や毒素等と、前記本発明の本発明のペプチドとを連続してコードするポリヌクレオチドから作製した組換え融合タンパクあるいは組換え融合ペプチドとして用いることもできる。 The vaccine for inducing immune response according to the present invention is more preferably one containing various adjuvants that enhance cellular or local immunity. Examples of such adjuvants include peptide-specific CD4 + efficiently. Dendritic cells that can induce T cells and CTLs, ISS-ODN (Immunostimulatory DNA sequences-oligodeoxynucleotides; Nat. Med. 3, 849-854, 1997) containing CpG motifs, QS21 that stimulates cytotoxic T cells ( Specific examples thereof include Quil1aia saponaria, commercially available from Cambridge Biotech, Worcester, MA), aluminum hydroxide, aluminum phosphate, aluminum oxide, oil emulsion, saponin, vitamin E lysate, and the like. When an adjuvant is used, it should be used as a recombinant fusion protein or recombinant fusion peptide prepared from a polynucleotide that continuously encodes various bacterial cell components and toxins that serve as adjuvants and the peptide of the present invention. You can also.
 本発明の免疫機能検査診断薬としては、本発明のペプチド、本発明の発現ベクター、HLA-DR1と本発明のペプチドとが結合したタンパク-ペプチド結合体、又は、該タンパク-ペプチド結合体の4量体を有効成分とし、免疫機能、特にHTLV-Iに対する免疫機能を検査・診断しうるものであれば特に制限されるものではないが、通常は、本発明のペプチドの標識体、発現産物が標識体となる本発明のペプチドを発現させることができる発現ベクター、HLA-DR1と本発明のペプチドとが結合したタンパク-ペプチド結合体の標識体、又は該タンパク-ペプチド結合体の4量体の標識体を用いることが好ましい。標識体とするために用いられる標識化物質しては、上記のマーカータンパク質やペプチドタグの他、放射性同位元素を用いることができる。本発明の免疫機能検査診断薬としては、HTLV-I特異的CD4T細胞を識別するための免疫機能検査診断薬を好適に例示することができる。本発明の免疫機能検査診断薬を用いた免疫機能検査診断は、対象被験者の末梢血白血球(リンパ球)に本発明の免疫機能検査診断薬を接触させ、本発明のペプチド等におけるエピトープを認識するCD4T細胞と結合させることによりHTLV-I Tax特異的CD4T細胞を識別することができる。免疫機能検査診断薬の中でも、上記タンパク-ペプチド結合体の4量体のPE等の蛍光標識体はフローサトメトリーによるCD4T細胞の検出・定量を可能にするため、免疫機能検査診断薬の他、HTLV-I特異的CD4T細胞誘導効果の判定に特に有用である。例えば、ヘパリン末梢血検体から単核球分画を分離し、PE標識テトラマー(タンパク-ペプチド結合体の4量体)と、FITCやPE-Cy5で標識したCD4抗体等の活性化マーカー抗体とで2重染色し、フローサイトメーターでCD4陽性テトラマー陽性の細胞数を計算することにより、対象被験者の免疫機能の検査・診断を行うことができる。また、新鮮血液検体ではテトラマー陽性細胞数が非常に少ないことがよくあることから、新鮮血液検体だけでなく、本発明のペプチドやその発現細胞などで一回刺激をした後、数日~1週間培養後に同様の染色解析をすることもできる。 The immunological function test diagnostic agent of the present invention includes the peptide of the present invention, the expression vector of the present invention, a protein-peptide conjugate in which HLA-DR1 and the peptide of the present invention are bound, or 4 of the protein-peptide conjugate. It is not particularly limited as long as it is capable of examining and diagnosing an immune function, particularly an immune function against HTLV-I, with a monomer as an active ingredient. An expression vector capable of expressing the peptide of the present invention to be a label, a label of a protein-peptide conjugate in which HLA-DR1 and the peptide of the present invention are bound, or a tetramer of the protein-peptide conjugate It is preferable to use a label. As a labeling substance used for forming a label, a radioisotope can be used in addition to the marker protein and the peptide tag. As an immune function test diagnostic agent of the present invention, an immune function test diagnostic agent for identifying HTLV-I-specific CD4 + T cells can be preferably exemplified. In the immune function test diagnosis using the immune function test diagnostic agent of the present invention, the immune function test diagnostic agent of the present invention is brought into contact with peripheral blood leukocytes (lymphocytes) of a subject subject to recognize an epitope in the peptide or the like of the present invention. By binding to CD4 + T cells, HTLV-I Tax specific CD4 + T cells can be identified. Among immunodiagnostic diagnostic reagents, fluorescent labels such as the above-mentioned protein-peptide conjugate tetramer PE enable detection and quantification of CD4 + T cells by flow cytometry. In addition, it is particularly useful for determining the effect of inducing HTLV-I-specific CD4 + T cells. For example, a mononuclear cell fraction is separated from a heparin peripheral blood sample, and a PE-labeled tetramer (protein-peptide conjugate tetramer) and an activation marker antibody such as a CD4 antibody labeled with FITC or PE-Cy5 are used. By double-staining and calculating the number of CD4-positive tetramer-positive cells with a flow cytometer, the immune function of the subject can be examined and diagnosed. In addition, since the number of tetramer positive cells is often very small in a fresh blood sample, not only a fresh blood sample but also a peptide of the present invention or a cell expressing the same is used for a few days to a week. The same staining analysis can be performed after the culture.
 本発明のHTLV-I特異的CD4T細胞の誘導方法としては、HSCT前のATL患者に由来するHTLV-I感染T細胞を用いて、同種のHLAタイプ、すなわちHLA-DR1タイプのドナー由来のHSCT後の同じ患者のPBMCをインビトロ、インビボ又はエクスビボで刺激することを特徴とする、HTLV-I特異的CD4T細胞を誘導する方法や、本発明のペプチドを用いて、HLA-DR1陽性のATL患者のPBMCをインビトロ、インビボ又はエクスビボで刺激することを特徴とするHTLV-I特異的CD4T細胞の誘導方法や、上記本発明の発現ベクターを用いて、例えばPBMC中の抗原提示細胞に遺伝子工学的にペプチドを発現させるなど、HLA-DR1陽性のATL患者のPBMCをインビトロ、インビボ又はエクスビボで刺激することを特徴とするHTLV-I特異的CD4T細胞の誘導方法であれば特に制限されるものではなく、かかる誘導方法により得られるHTLV-I特異的CD4T細胞は、HTLV-I特異的CTL誘導作用増強剤として用いることができる他、HTLV-I特異的CD4T細胞誘導の活性機構や分子機構を明らかにしたり、HTLV-I特異的CD4T細胞誘導とATLやHAM/TSPとの関連を調べる上でも有用である。 As a method for inducing HTLV-I-specific CD4 + T cells of the present invention, HTLV-I-infected T cells derived from an ATL patient prior to HSCT are used to derive from an allogeneic HLA type, that is, an HLA-DR1 type donor. A method of inducing HTLV-I-specific CD4 + T cells, characterized by stimulating PBMCs of the same patient after HSCT in vitro, in vivo or ex vivo, and using the peptide of the present invention, HLA-DR1 positive A method of inducing HTLV-I-specific CD4 + T cells characterized by stimulating PBMCs of ATL patients in vitro, in vivo or ex vivo, and using the above-described expression vector of the present invention, for example, to antigen-presenting cells in PBMCs In vitro analysis of PBMCs from HLA-DR1-positive ATL patients, such as genetically expressing peptides It is not particularly limited as long as it is a HTLV-I-specific CD4 + T method for inducing cells, characterized by stimulating in vivo or ex vivo, HTLV-I-specific CD4 + T cells obtained by such induction method In addition to being able to be used as an HTLV-I-specific CTL inducing action enhancer, the HTLV-I-specific CD4 + T cell induction activity mechanism and molecular mechanism are elucidated, HTLV-I specific CD4 + T cell induction It is also useful for examining the relationship with ATL and HAM / TSP.
 本発明のHTLV-I特異的CD4T細胞応答及びHTLV-I特異的CTL応答を含むHTLV-I特異的免疫応答を誘導する方法としては、HLA-DR1陽性のATL患者のPBMCを、以下の(X)及び(Y)を用いて刺激することを特徴とする方法である限り特に制限されない。
(X)本発明のHTLV-I特異的CTL誘導作用増強剤:
(Y)前記ATL患者のHLA-A座の型に適合する、HTLV-I特異的CTL誘導活性ペプチド又は該ペプチドをコードするポリヌクレオチド:
As a method for inducing an HTLV-I-specific immune response including an HTLV-I-specific CD4 + T cell response and an HTLV-I-specific CTL response of the present invention, PBMCs of HLA-DR1-positive ATL patients are used as follows: The method is not particularly limited as long as it is a method characterized by stimulation using (X) and (Y).
(X) HTLV-I specific CTL inducing action enhancer of the present invention:
(Y) an HTLV-I-specific CTL-inducing active peptide that matches the type of HLA-A locus of the ATL patient or a polynucleotide encoding the peptide:
 なお、HTLV-I特異的CTL誘導作用増強剤として、上記(E)のアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチド、又は、上記(e)のポリヌクレオチドを含む発現ベクターを有効成分として含有する場合は、HTLV-I特異的CTL誘導活性ペプチド又は該ペプチドをコードするポリヌクレオチドを含んでいるため、別個に用意してそれでPBMCを刺激する必要はない。上記PBMCを、上記(X)及び(Y)を用いて刺激することには、上記(E)のアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチドでPBMCを刺激することや、上記(e)のポリヌクレオチドを含む発現ベクターでPBMCを刺激することも便宜上含まれる。 An HTLV-I-specific CD4 + T cell-inducing activity peptide consisting of the amino acid sequence of (E) above or an expression vector containing the polynucleotide of (e) above as an HTLV-I-specific CTL inducing action potentiator When it is contained as an active ingredient, it contains an HTLV-I-specific CTL-inducing active peptide or a polynucleotide encoding the peptide, so that it is not necessary to prepare it separately and stimulate PBMC with it. Stimulating the PBMC using the above (X) and (Y) includes stimulating PBMC with an HTLV-I-specific CD4 + T cell-inducing activity peptide consisting of the amino acid sequence of (E), Stimulating PBMC with an expression vector containing the polynucleotide of (e) above is also included for convenience.
 本発明の他の態様には、HTLV-I特異的CTL誘導作用増強のための、本発明のペプチドの使用や、HTLV-I特異的免疫応答誘導のための、本発明のペプチド及びHTLV-I特異的CTL誘導活性ペプチドの使用や、本発明のHTLV-I特異的CD4T細胞の誘導方法により得られるHTLV-I特異的CD4T細胞を、哺乳動物に投与することを特徴とするATLの予防、治療又は改善方法や、本発明のHTLV-I特異的免疫応答を誘導する方法により得られるHTLV-I特異的CD4T細胞及びHTLV-I特異的CTLを哺乳動物に投与することを特徴とするATLの予防、治療又は改善方法なども含まれる。 Other aspects of the present invention include the use of the peptide of the present invention for enhancing the HTLV-I-specific CTL inducing action, and the peptide of the present invention and HTLV-I for inducing an HTLV-I-specific immune response. ATL characterized by administering HTLV-I-specific CD4 + T cells obtained by the use of a specific CTL-inducing active peptide or the HTLV-I-specific CD4 + T cell induction method of the present invention to a mammal Administration of HTLV-I-specific CD4 + T cells and HTLV-I-specific CTL obtained by a method for preventing, treating or ameliorating HTLV-I or a method for inducing an HTLV-I-specific immune response of the present invention to a mammal A characteristic ATL prevention, treatment or amelioration method is also included.
[参考例]
 本発明者らは以前、HLA型が同じ兄弟姉妹をドナーとして緩和的前処置による同種造血幹細胞移植(ミニ移植)を受けたATL患者の一部でTax特異的CD8T細胞が誘導されたことを報告した(非特許文献9)。本発明では、緩和的前処置による同種造血幹細胞移植を受けたATL患者多数におけるTax特異的T細胞応答を調べた。表1は、緩和的前処置による同種造血幹細胞移植から180日後のATL患者18名から末梢血を採取し、Tax/HLAテトラマーを使用したフローサイトメトリーでTax特異的CD8T細胞(CTL)を検出した結果を臨床情報と併せて示している。前記期間中、全ての患者は、ドナー由来造血幹細胞が95%を上回るという完全なキメラ状態にあった。入手可能な4種類のテトラマー(HLA-A0201/Tax11-19,HLA-A2402/Tax301-309,HLA-A1101/Tax88-96,HLA-A1101/Tax272-280)を使用し、14名の患者でTax特異的CD8T細胞を認めた(後述の表1の「テトラマ-陽性細胞(%)」の項目を参照)。殆どの症例でドナーは未感染者だったことから(表1の「ドナー血清抗HTLV-I抗体反応の(-)を参照)、Tax特異的なドナー由来CD8T細胞がレシピエントにおいて誘導されたことは、HTLV-Iに対する新たな免疫応答がレシピエントに生じたことを示している。かかる証拠は本発明者らの以前の知見を補強するものである(非特許文献9や、Harashima N, Tanosaki R, Shimizu Y, et al. Identification of two new HLA-A*1101-restricted tax epitopes recognized by cytotoxic T lymphocytes in an adult T-cell leukemia patient after hematopoietic stem cell transplantation. J Virol. 2005;79(15):10088-10092)。
[Reference example]
We have previously induced Tax-specific CD8 + T cells in some ATL patients who received allogeneic hematopoietic stem cell transplantation (mini-transplantation) with palliative pretreatment using siblings with the same HLA type as donors. (Non-Patent Document 9). In the present invention, Tax-specific T cell responses were examined in a number of ATL patients who received allogeneic hematopoietic stem cell transplantation with palliative pretreatment. Table 1 shows that peripheral blood was collected from 18 ATL patients 180 days after allogeneic hematopoietic stem cell transplantation with palliative pretreatment, and Tax-specific CD8 + T cells (CTL) were obtained by flow cytometry using Tax / HLA tetramer. The detected results are shown together with clinical information. During the period, all patients were fully chimeric with donor-derived hematopoietic stem cells> 95%. Uses four available tetramers (HLA-A * 0201 / Tax11-19, HLA-A * 2402 / Tax301-309, HLA-A * 1101 / Tax88-96, HLA-A * 1101 / Tax272-280) In 14 patients, Tax-specific CD8 + T cells were observed (see “Tetramer-positive cells (%)” in Table 1 below). In most cases, the donor was uninfected (see “(-) of the donor serum anti-HTLV-I antibody response” in Table 1), so Tax-specific donor-derived CD8 + T cells were induced in the recipient. This indicates that a new immune response to the HTLV-I has occurred in the recipient, and such evidence reinforces our previous findings (Non-patent Document 9 and Harashima N , Tanosaki R, Shimizu Y, et al. Identification of two new HLA-A * 1101-restricted tax epitopes recognized by cytotoxic T lymphocytes in an adult T-cell leukemia patient after hematopoietic stem cell transplantation.J Virol. 2005; 79 (15 ): 10088-10092).
 以下に実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited to these examples.
A[方法と材料]
A-1 被験者
 本実施例で用いた、ATL患者の検体は、緩和的前処置による同種造血幹細胞移植を受けた18例、抗HTLV-I抗体血清反応陰性者1例(#365)、及びHLA-DRB10101を保有する抗HTLV-I抗体血清反応陽性ドナー2例(無症候性キャリア1例:#360、及びHTLV-I関連脊髄症/熱帯性痙性不全対麻痺(HAM/TSP)患者1例:#294)から書面によるインフォームドコンセントを得た上で末梢血の提供を受けた。
A [Method and materials]
A-1 Subjects The specimens of ATL patients used in this example were 18 patients who received allogeneic hematopoietic stem cell transplantation by palliative pretreatment, 1 anti-HTLV-I antibody seronegative patient (# 365), and HLA 2 anti-HTLV-I antibody seropositive donors with DRB1 * 0101 (1 asymptomatic carrier: # 360 and HTLV-I related myelopathy / tropical spastic paraparesis (HAM / TSP) 1 Example: Obtained written informed consent from # 294) and received peripheral blood.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

 上記表1中、「キメリズム(%)」は、患者由来T細胞キメリズム(移植細胞の生着率を示す)の割合を示し、「テトラマ-陽性細胞(%)」は、CD8陽性T細胞中のテトラマー陽性細胞(Tax抗原特異的CTL)の割合を示し、「感染細胞率」は、核酸定量的に割り出した、末梢血単核球(PBMC)1000あたりの感染細胞数を示し、「M」は男性を表し、「F」は女性を表し、「NT」は未検を表し、「r-PB」は血縁者間末梢血幹細胞移植を行ったことを示し、「ur―BM」は、非血縁者間骨髄細胞移植を行ったことを示す。 In Table 1 above, “chimerism (%)” indicates the proportion of patient-derived T cell chimerism (indicating the engraftment rate of transplanted cells), and “tetramer-positive cells (%)” are among CD8-positive T cells. The ratio of tetramer positive cells (Tax antigen-specific CTL) is shown. “Infected cell rate” shows the number of infected cells per 1000 peripheral blood mononuclear cells (PBMC) determined quantitatively by nucleic acid. “M” "F" represents female, "NT" represents untested, "r-PB" indicates that a peripheral blood stem cell transplant was performed between relatives, and "ur-BM" represents unrelated It shows that the bone marrow cell transplantation between persons was performed.
 上記表1中のATL患者の約半数が、HLA-A-、B-及びDR-が一致する兄弟姉妹ドナーからの同種末梢血幹細胞移植を受けており、残りの半数は、HLA-A-、B-及びDR-が一致する抗HTLV-I抗体血清反応陰性の非血縁ドナーによる同種骨髄細胞移植を受けている(表1参照)。これらの患者は、日本の厚生労働省の支援による、ATL同種造血幹細胞移植研究グループが実施した臨床試験の参加者であり、本願実施例の実験を行うにあたって、東京医科歯科大学倫理審査委員会の承認を得ている。 About half of the ATL patients in Table 1 above have received allogeneic peripheral blood stem cell transplants from sibling donors with matching HLA-A-, B- and DR-, and the other half are HLA-A-, He has undergone allogeneic bone marrow cell transplantation by an unrelated donor who is seronegative for anti-HTLV-I antibody with matched B- and DR- (see Table 1). These patients are participants of a clinical trial conducted by the ATL Allogeneic Hematopoietic Stem Cell Transplantation Research Group with support from the Ministry of Health, Labor and Welfare in Japan. Have gained.
A-2 患者及びドナー由来細胞株の樹立
 Ficoll-Paque(登録商標)PLUS(GE Healthcare UK社製)を用いた密度勾配遠心分離法によりPBMCを単離し、Bambankerストック溶液(日本ジェネティクス株式会社製)中に懸濁したPBMCを、必要時まで液体窒素中に保存した。これらストック細胞の一部を使用して、IL-2依存性HTLV-I感染T細胞株(ILT)及びEpstein-Barrウイルス(EBV)形質転換リンパ芽球B細胞株(LCL)を樹立した。患者#350から、同種造血幹細胞移植前に得たPBMCの長期培養によって、自発的に不死化(がん化)したILT-#350を、20%ウシ胎仔血清(FCS;Sigma Aldrich社製)と組換えヒトインターロイキン-2(rhIL-2;塩野義製薬株式会社製)30U/mlを含むRPMI1640(Life Technologies, Inc.社製)で継代培養した。同種造血幹細胞移植後のATL患者#307、#341及び#350からそれぞれ得たPBMCより、LCL-#307、LCL-#341及びLCL-#350を樹立した。これらのPBMCを20%FCS含有RPMI1640で継代培養し、その後、EBVを含有するB95-8細胞株培養上清を用いて感染させた。同様に健常者由来のPBMCより、LCL-Kanを樹立した。
A-2 Establishment of patient and donor-derived cell lines PBMCs were isolated by density gradient centrifugation using Ficoll-Paque (registered trademark) PLUS (GE Healthcare UK), and Bambanker stock solution (manufactured by Nippon Genetics Co., Ltd.) PBMCs suspended in) were stored in liquid nitrogen until needed. Some of these stock cells were used to establish IL-2-dependent HTLV-I infected T cell line (ILT) and Epstein-Barr virus (EBV) transformed lymphoblast B cell line (LCL). ILT- # 350 spontaneously immortalized (carcinogenic) by long-term culture of PBMC obtained from patient # 350 before allogeneic hematopoietic stem cell transplantation with 20% fetal calf serum (FCS; manufactured by Sigma Aldrich) The cells were subcultured with RPMI 1640 (Life Technologies, Inc.) containing 30 U / ml of recombinant human interleukin-2 (rhIL-2; manufactured by Shionogi & Co., Ltd.). LCL- # 307, LCL- # 341, and LCL- # 350 were established from PBMCs obtained from ATL patients # 307, # 341, and # 350 after allogeneic hematopoietic stem cell transplantation, respectively. These PBMCs were subcultured with RPMI 1640 containing 20% FCS, and then infected with B95-8 cell line culture supernatant containing EBV. Similarly, LCL-Kan was established from PBMCs derived from healthy subjects.
A-3 合成ペプチド
 Tax抗原の中央領域(103~246残基)における、長さが12~25merのオーバーラッピングペプチドをScrum Inc.社から合計で18種類購入し(表2参照)、エピトープマッピングに使用した。HLA-A2402拘束性CTLエピトープ(Tax301-309)(配列番号34)(非特許文献9)は、Tax特異的CTL(株式会社ホクドー社製)のインビトロ・ペプチド刺激に使用した。
A-3 Synthetic peptides In the central region of Tax antigen (residues 103 to 246), a total of 18 overlapping peptides of 12 to 25 mer in length were purchased from Scrum Inc. (see Table 2) for epitope mapping. used. HLA-A * 2402 restricted CTL epitope (Tax301-309) (SEQ ID NO: 34) (Non-patent Document 9) was used for in vitro peptide stimulation of Tax-specific CTL (Hokudo Co., Ltd.).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

A-4 GST-Tax融合タンパク質を用いたイムノアッセイ
 HTLV-IのTaxのN末端、中央、及びC末端の各領域におけるグルタチオン-S-トランスフェラーゼ(GST)融合タンパク質(それぞれGST-Tax-A、-B及び-C)(非特許文献13、Kurihara K, Shimizu Y, Takamori A, et al. Human T-cell leukemia virus type-I (HTLV-I)-specific T-cell responses detected using three-divided glutathione-S-transferase (GST)-Tax fusion proteins. J Immunol Methods. 2006;313(1-2):61-73.)を使用し、HTLV-ITax特異的なT細胞の免疫応答を評価した。
A-4 Immunoassay using GST-Tax fusion protein Glutathione-S-transferase (GST) fusion protein (GST-Tax-A, -B respectively) in the N-terminal, central and C-terminal regions of Tax of HTLV-I And -C) (Non-Patent Document 13, Kurihara K, Shimizu Y, Takamori A, et al. Human T-cell leukemia virus type-I (HTLV-I) -specific T-cell responses detected using three-divided glutathione-S -Transfer (GST) -Tax fusion proteins. J Immunol Methods. 2006; 313 (1-2): 61-73.) and the immune response of T cells specific to HTLV-ITax was evaluated.
<ELISA>
 GST-Tax-A、-B及び-Cタンパク質の混合物(GST-TaxABC)の存在/非存在下(存在又は非存在下)において、PBMC(1×10細胞/ml)を、10%FCS含有RPMI1640(200μl)で培養した。4日後に上清を回収し、OptiEIA Human IFN-γ ELISA Kit(BD Biosciences社製)を用いて上清中のIFN-γ濃度を測定した。このアッセイにおけるIFN-γの最少検出量は、23.5pg/mlであった。
<ELISA>
PBMC (1 × 10 6 cells / ml) containing 10% FCS in the presence / absence (presence or absence) of a mixture of GST-Tax-A, -B and -C proteins (GST-TaxABC) Incubated with RPMI 1640 (200 μl). After 4 days, the supernatant was collected, and the IFN-γ concentration in the supernatant was measured using OptiEIA Human IFN-γ ELISA Kit (BD Biosciences). The minimum detectable amount of IFN-γ in this assay was 23.5 pg / ml.
<サイトカイン定量測定>
 Dynabeads M-450 CD8(インビトロゲン社製)を、製造者のプロトコールに従ったネガティブセレクション法により、上記培養PBMCからCD8細胞を除去した。HTLV-I特異的CD4T細胞株のサイトカインプロファイリングを行うため、ホルムアルデヒドで固定したILT-#350で上記分離細胞を48時間刺激した。培養上清を回収し、Cytokine Beads ArrayのヒトTh1/Th2/Th17サイトカインキット(BD Biosciecnes社製)を使用して種々のサイトカインを測定した。
<Quantitative measurement of cytokines>
CD8 + cells were removed from the cultured PBMC by Dynabeads M-450 CD8 (manufactured by Invitrogen) by the negative selection method according to the manufacturer's protocol. To perform cytokine profiling of the HTLV-I specific CD4 + T cell line, the isolated cells were stimulated with ILT- # 350 fixed with formaldehyde for 48 hours. The culture supernatant was collected, and various cytokines were measured using a human Th1 / Th2 / Th17 cytokine kit (BD Biosciecnes) of Cytokine Beads Array.
A-5 HTLV-I特異的CD4+T細胞株(T4細胞)の誘導
 緩和的前処置による同種造血幹細胞移植から180日目に完全寛解を得た、患者#350のPBMC(1×10細胞/ml)を、Tax301-309ペプチド(100nM)存在下で2週間培養した。培養PBMCは、次に、Human CD4 T lymphocyte Enrichment Set-DM(BD Biosciecnes社製)を用いたネガティブセレクションにより、CD4細胞が単離され、20%FCS及びrhIL-2(100U/ml)を含むRPMI1640で継代培養された。その後2~3週間毎に、ホルムアルデヒドで固定したILT-#350で単離CD4細胞を刺激した。
Induction of A-5 HTLV-I specific CD4 + T cell line (T4 cells) Patient # 350 PBMC (1 × 10 6 cells / ml) who achieved complete remission on day 180 after allogeneic hematopoietic stem cell transplantation with palliative pretreatment ) Was cultured for 2 weeks in the presence of Tax301-309 peptide (100 nM). Cultured PBMCs were then isolated from CD4 + cells by negative selection using Human CD4 T lymphocyte Enrichment Set-DM (BD Biosciecnes) and contained 20% FCS and rhIL-2 (100 U / ml). Subcultured with RPMI 1640. Every two to three weeks thereafter, isolated CD4 + cells were stimulated with ILT- # 350 fixed with formaldehyde.
A-6 逆転写ポリメラーゼ連鎖反応(RT-PCR)
 ISOGEN(株式会社ニッポンジーン社製)及びTURBO DNA-free(Life Technologies, Inc.社製)を用いて、細胞から全RNAを単離した。ReverTra Ace-α-kit(TOYOBO社製)に含まれるReverTra Aceプライマー及びOligo(dt)20プライマーを使用し、RNA0.5μgから第1鎖相補的DNA(cDNA)を調製した。ReverTra Dash(TOYOBO社製)、HTLV-IpX特異的プライマー(pX1:5'-CCA CTT CCC AGG GTT TAG ACA GAT CTT C-3'(配列番号20)及びpX4:5'-TTC CTT ATC CCT CGA CTC CCC TCC TTC CCC-3'(配列番号21))各0.5μM、及びcDNA2μlを含む反応混合液50μl中でPCRを行った。内部標準として、グリセルアルデヒド-3-リン酸デヒドロゲナーゼ(GAPDH)特異的プライマー(GAPDH5’:5'-ACC ACA GTC CAT GCC ATC AC-3'(配列番号22)、及びGAPDH3’:5'-TCC ACC ACC CTG TTG CTG TA-3'(配列番号23))を使用した。熱サイクル条件として、初期活性化ステップを94℃で1分間行い、その後、変性(98℃、10秒)、アニーリング(60℃、2分)及び伸長(74℃、30秒)からなるサイクルを30サイクル行った。2%(w/v)アガロースゲルで電気泳動を行った後、エチジウムブロマイドによりPCR産物を可視化した。
A-6 Reverse transcription polymerase chain reaction (RT-PCR)
Total RNA was isolated from the cells using ISOGEN (Nippon Gene Co., Ltd.) and TURBO DNA-free (Life Technologies, Inc.). First-strand complementary DNA (cDNA) was prepared from 0.5 μg of RNA using ReverTra Ace primer and Oligo (dt) 20 primer contained in ReverTra Ace-α-kit (manufactured by TOYOBO). ReverTra Dash (manufactured by TOYOBO), HTLV-IpX specific primer (pX1: 5'-CCA CTT CCC AGG GTT TAG ACA GAT CTT C-3 '(SEQ ID NO: 20) and pX4: 5'-TTC CTT ATC CCT CGA CTC CCC TCC TTC CCC-3 ′ (SEQ ID NO: 21)) PCR was performed in 50 μl of a reaction mixture containing 0.5 μM of each and 2 μl of cDNA. As internal standards, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) specific primers (GAPDH5 ′: 5′-ACC ACA GTC CAT GCC ATC AC-3 ′ (SEQ ID NO: 22)) and GAPDH3 ′: 5′-TCC ACC ACC CTG TTG CTG TA-3 ′ (SEQ ID NO: 23)) was used. As thermal cycle conditions, an initial activation step was performed at 94 ° C. for 1 minute, followed by 30 cycles consisting of denaturation (98 ° C., 10 seconds), annealing (60 ° C., 2 minutes) and extension (74 ° C., 30 seconds). Cycled. After electrophoresis on a 2% (w / v) agarose gel, PCR products were visualized with ethidium bromide.
A-7 フローサイトメトリー
 細胞表面染色には、以下の蛍光色素標識マウス抗ヒトモノクローナル抗体(mAb)を使用した。CD3-FITC(UCHT1、BioLegend社製);CD4-FITC(RPA-T4、BioLegend社製);CD8-FITC(RPA-T8、BioLegend社製)及びCD8-PE-Cy5(HIT8a、BD Biosciences社製)。テトラマー染色用に、フィコエリスリン(PE)で標識したHLA-A0201/Tax11-19、HLA-A1101/Tax88-96、HLA-A1101/Tax272-280、HLA-A2402/Tax301-309の各テトラマーをMBL社(Medical & Biological Laboratories Co. Ltd.、株式会社医学生物学研究所)から購入した。PE標識HLA-DRB10101/Tax155-167テトラマーはMBLに特別注文して新たに作製した。PE標識Tax/HLAテトラマーはCD3-FITCと、CD8-PE-Cy5またはCD4-PE-Cy5の組み合わせで、全血又は培養細胞を染色した。全血試料は赤血球を溶血させ、BD FACS溶解液(BD Biosciences社製)で固定してから洗浄した。FACS Calibur(Becton Dickinson社製)を用いて試料を分析し、データ解析には、FlowJoソフトウエア(Tree Star, Inc.社製)を用いた。
A-7 Flow cytometry The following fluorescent dye-labeled mouse anti-human monoclonal antibody (mAb) was used for cell surface staining. CD3-FITC (UCHT1, BioLegend); CD4-FITC (RPA-T4, BioLegend); CD8-FITC (RPA-T8, BioLegend) and CD8-PE-Cy5 (HIT8a, BD Biosciences) . For tetramer staining, labeled with phycoerythrin (PE) HLA-A * 0201 / Tax11-19, HLA-A * 1101 / Tax88-96, HLA-A * 1101 / Tax272-280, HLA-A * 2402 / Each tetramer of Tax301-309 was purchased from MBL (Medical & Biological Laboratories Co. Ltd., Medical and Biological Laboratories). PE-labeled HLA-DRB1 * 0101 / Tax155-167 tetramer was newly made by special order from MBL. The PE-labeled Tax / HLA tetramer stained whole blood or cultured cells with a combination of CD3-FITC and CD8-PE-Cy5 or CD4-PE-Cy5. The whole blood sample was lysed with red blood cells, fixed with a BD FACS solution (BD Biosciences), and then washed. Samples were analyzed using FACS Calibur (Becton Dickinson), and FlowJo software (Tree Star, Inc.) was used for data analysis.
A-8 エピトープマッピング
 T4細胞(3×10細胞/ml)は、種々の合成ペプチドおよび濃度条件下のもと37℃で1時間ペプチド刺激されたLCL-#350と、レスポンダー細胞(T4)/刺激細胞(LCL-#350)のR/S比率3にて、6時間共培養された。回収した培養上清を用いてELISAを行い、T4細胞が種々のペプチド特異的な刺激により産生したIFN-γを定量した。
A-8 Epitope Mapping T4 cells (3 × 10 5 cells / ml) were treated with LCL- # 350 peptide-stimulated for 1 hour at 37 ° C. under various synthetic peptides and concentration conditions, responder cells (T4) / Stimulation cells (LCL- # 350) were co-cultured for 6 hours at an R / S ratio of 3. ELISA was performed using the collected culture supernatant, and IFN-γ produced by T4 cells by various peptide-specific stimuli was quantified.
A-9 HLAクラスII拘束性の解析
 抗ヒトHLA-DR抗体(10μg/ml;L423、BioLegend社製)、抗ヒトHLA-DQ抗体(10μg/ml;SPVL3、Beckman Coulter, Inc.社製)又は抗HLA-ABC抗体(10μg/ml;W6/32、BioLegend社製)の存在/非存在下で、T4細胞(5×10細胞/ml)とILT-#350(1×10細胞/ml)との共培養を6時間行った。上清中のIFN-γをELISAで定量した。
 T4細胞に対する抗原提示に関与するHLAクラスII分子を同定するため、種々のHLA型LCL(LCL-#350、LCL-#341、LCL-#307及びLCL-Kan)を用いて、Tax155-167ペプチド特異的なIFN-γ産生応答を評価した。これらのLCL(1×10細胞/ml)を100ng/mlのTax155-167ペプチドで1時間刺激し、2%ホルムアルデヒドで固定した後、T4細胞(3×10細胞/ml)の存在下で6時間培養した。培養上清を回収し、上清中のIFN-γをELISAで測定した。
A-9 Analysis of restriction to HLA class II Anti-human HLA-DR antibody (10 μg / ml; L423, manufactured by BioLegend), anti-human HLA-DQ antibody (10 μg / ml; SPVL3, manufactured by Beckman Coulter, Inc.) or T4 cells (5 × 10 5 cells / ml) and ILT- # 350 (1 × 10 5 cells / ml) in the presence / absence of anti-HLA-ABC antibody (10 μg / ml; W6 / 32, manufactured by BioLegend) For 6 hours. IFN-γ in the supernatant was quantified by ELISA.
To identify HLA class II molecules involved in antigen presentation to T4 cells, Tax155-167 peptides were used using various HLA type LCLs (LCL- # 350, LCL- # 341, LCL- # 307 and LCL-Kan) Specific IFN-γ production response was evaluated. These LCLs (1 × 10 5 cells / ml) were stimulated with 100 ng / ml Tax155-167 peptide for 1 hour, fixed with 2% formaldehyde and then in the presence of T4 cells (3 × 10 5 cells / ml). Cultured for 6 hours. The culture supernatant was collected, and IFN-γ in the supernatant was measured by ELISA.
A-10 増殖能の解析
 100nMの抗原ペプチドの存在/非存在下で、PBMC(1.0×10細胞/ml)を13日間又は14日間培養した。HLA/Taxテトラマー-PE、CD3-FITC、CD8-PE-Cy5またはCD4-PE-Cy5の組み合わせで細胞を染色し、フローサイトメトリー分析を行った。
A-10 Analysis of proliferation ability PBMC (1.0 × 10 6 cells / ml) was cultured for 13 days or 14 days in the presence / absence of 100 nM antigenic peptide. Cells were stained with a combination of HLA / Tax tetramer-PE, CD3-FITC, CD8-PE-Cy5 or CD4-PE-Cy5 and subjected to flow cytometry analysis.
A-11 統計解析
 統計的有意性は、Graphpad Prism 5(Graphpad Prism Software, Inc.社製)により、独立t検定を用いて評価した。全ての症例において、両側P値が0.05未満を有意とした。
A-11 Statistical analysis Statistical significance was evaluated by Graphpad Prism 5 (Graphpad Prism Software, Inc.) using an independent t-test. In all cases, a bilateral P value of less than 0.05 was considered significant.
B[結果および考察]
B-1 緩和的前処置による同種造血幹細胞移植後のATL患者におけるTax特異的なT細胞の免疫応答
 Tax特異的T細胞応答を評価するために、GST-Tax融合タンパク質を用いたイムノアッセイ(上記A-4参照)を行った。GST-Tax融合タンパク質を用いた免疫学的機能測定法は、HLA型に関係なくCD4T細胞応答とCD8T細胞応答の両方について解析可能である。かかるアッセイの結果を図1に示す。図1Aの患者PBMC16例の結果から、IFN-γ産生を基準としたTaxタンパク質刺激に対する免疫応答の程度が、多様であることが明らかとなった。また、かかるアッセイにより、患者16名中11名(#239,#241,#301,#317,#341,#344,#350,#351,#352,#358,#364)、すなわち、68.8%もの患者のTax特異的T細胞応答を検出できることが分かった。更に、T細胞が産生するIFN-γのうち、Tax特異的CD4T細胞の寄与を明確にするため、CD8細胞枯渇PBMC(“CD8(-)”)と比べて解析したところ、全PBMC(“whole”)と比較してIFN-γ産生量は低下しているものの、#350および#341の2検体ともに、CD8細胞枯渇PBMCすなわちCD4を主とするT細胞が、Taxタンパク質刺激に応答して有意にIFN-γ産生を行っていることが示された(図1B)。
B [Results and Discussion]
B-1 Tax-specific T cell immune response in ATL patients after allogeneic hematopoietic stem cell transplantation with palliative pretreatment Immunoassay using GST-Tax fusion protein (A above) to assess Tax-specific T cell response -4). The immunological function measurement method using GST-Tax fusion protein can analyze both CD4 + T cell response and CD8 + T cell response regardless of HLA type. The results of such an assay are shown in FIG. From the results of 16 patient PBMCs in FIG. 1A, it was revealed that the degree of immune response to Tax protein stimulation based on IFN-γ production was diverse. In addition, by this assay, 11 out of 16 patients (# 239, # 241, # 301, # 317, # 341, # 344, # 350, # 351, # 352, # 358, # 364), that is, 68 It has been found that as many as 8% of patients can detect Tax-specific T cell responses. Furthermore, in order to clarify the contribution of Tax-specific CD4 + T cells among the IFN-γ produced by T cells, analysis was made in comparison with CD8 + cell-depleted PBMC (“CD8 (−)”). Although the amount of IFN-γ produced is lower than that of (“whole”), both the # 350 and # 341 specimens stimulated Tax protein stimulation with T cells mainly comprising CD8 + cell-depleted PBMC, that is, CD4 + It was shown that IFN-γ production was significantly performed in response to (Fig. 1B).
B-2 患者#350からのHTLV-I特異的CD4T細胞株の誘導
 HTLV-I感染T細胞株(ILT-#350)を抗原提示細胞として使用し、緩和的前処置による同種造血幹細胞移植後180日目の同患者#350PBMCから、HTLV-I特異的CD4T細胞を誘導した。単離したばかりの患者PBMCをTax301-309(HLA-A2402に提示されるCTL優位なエピトープ)で2週間ペプチド刺激することで、Tax特異的CTLを誘導し、患者PBMC中に元々存在していたHTLV-I感染細胞を除去した。次に、培養細胞からCD4細胞を単離し、ホルムアルデヒドで固定したILT-#350で2~3週間毎に刺激した。樹立した細胞株の細胞表面における表現型をフローサイトメトリー(上記A-7参照)により解析したところ、その細胞がCD3及びCD4を発現するもののCD8は発現しなかったことから(図2A)、CD4T細胞株であることが確認された。以下、これをT4細胞と呼ぶ。
B-2 Induction of HTLV-I specific CD4 + T cell line from patient # 350 Allogeneic hematopoietic stem cell transplantation using HTLV-I infected T cell line (ILT- # 350) as antigen-presenting cells and palliative pretreatment HTLV-I specific CD4 + T cells were induced from the same patient # 350 PBMC 180 days later. Peptide stimulation of freshly isolated patient PBMC with Tax301-309 (CTL dominant epitope presented in HLA-A * 2402) for 2 weeks induces Tax-specific CTL and is originally present in patient PBMC HTLV-I infected cells were removed. Next, CD4 + cells were isolated from the cultured cells and stimulated every 2-3 weeks with ILT- # 350 fixed with formaldehyde. When the phenotype on the cell surface of the established cell line was analyzed by flow cytometry (see A-7 above), the cells expressed CD3 and CD4 but not CD8 (FIG. 2A). + T cell line was confirmed. Hereinafter, this is called a T4 cell.
 HTLV-Iは、インビボとインビトロの両方でCD4T細胞を優先的に感染させることが知られる(非特許文献23)。RT-PCR(上記A-7参照)により、前述のT4細胞でのHTLV-I感染を調べたところ、pXで示される位置にバンドは確認されず(図2B)、HTLV-Iに感染していないHTLV-I特異的CD4T細胞であることが示された。なお、TaxはpX遺伝子産物であり、細胞中にTaxがないことはHTLV-Iに未感染であることを示す。また、EBウイルス形質転換B細胞株のLCL-#350は、ネガティブコントロールとして、HTLV-I感染T細胞株のILT-#350と、ATL細胞株のMT-2は、ポジティブコントロールとして使用した。 HTLV-I is known to preferentially infect CD4 + T cells both in vivo and in vitro (Non-patent Document 23). When HTLV-I infection in the above-mentioned T4 cells was examined by RT-PCR (see A-7 above), no band was confirmed at the position indicated by pX (FIG. 2B), and HTLV-I was infected. No HTLV-I specific CD4 + T cells were shown. Tax is a pX gene product, and absence of Tax in the cells indicates that HTLV-I is uninfected. The EB virus-transformed B cell line LCL- # 350 was used as a negative control, the HTLV-I-infected T cell line ILT- # 350 and the ATL cell line MT-2 were used as positive controls.
 次に、T4細胞における様々なサイトカイン産生を調べるために、ホルムアルデヒドで固定したILT-#350細胞又はLCL-#350細胞の存在/非存在下で、T4細胞を24時間刺激し、その上清中のサイトカイン濃度をサイトメトリービーズアレイシステムにより定量した。その結果、T4細胞はILT-#350に応答してIFN-γ及びTNF-αを大量に産生し、IL-2、IL-4及びIL-10も低量だが産生したが、LCL-#350に対する産生は認められなかった(図2C)。従って、T4細胞がHTLV-I特異的であり、Th1型のCD4細胞株であることが示された。 Next, to examine the production of various cytokines in T4 cells, T4 cells were stimulated for 24 hours in the presence / absence of ILT- # 350 cells or LCL- # 350 cells fixed with formaldehyde, The cytokine concentration was quantified by a cytometry bead array system. As a result, T4 cells produced large amounts of IFN-γ and TNF-α in response to ILT- # 350 and produced low amounts of IL-2, IL-4 and IL-10, but LCL- # 350 Production was not observed (FIG. 2C). Thus, it was shown that T4 cells are HTLV-I specific and are a Th1-type CD4 + cell line.
B-3 T4細胞が認識する最小エピトープの決定
 T4細胞に認識されるTaxタンパク質の抗原エピトープを調べるため、GST-Taxタンパク質で刺激したLCL-#350を抗原提示細胞として用い、それぞれのTaxペプチドに対する、T4細胞の応答性を調べた(上記A-4やA-8参照)。その結果を図3に示す。
B-3 Determination of the minimum epitope recognized by T4 cells To examine the antigenic epitope of Tax protein recognized by T4 cells, LCL- # 350 stimulated with GST-Tax protein was used as an antigen-presenting cell and The responsiveness of T4 cells was examined (see A-4 and A-8 above). The result is shown in FIG.
 T4細胞は、GST-TaxABC及びGST-TaxB(TaxB:配列番号32のアミノ酸番号113~237のアミノ酸配列)に対しては、GSTタンパク質(コントロール)と比べ、著しく高い値のIFN-γを産生したが、GST-TaxA(TaxA:配列番号32のアミノ酸番号1~127のアミノ酸配列)やGST-TaxC(TaxC:配列番号32のアミノ酸番号224~353のアミノ酸配列)に対しては、有意に高い産生はみられなかった(図3A)。このことは、T4細胞が、Taxタンパクの主に中央領域を、抗原として認識したことを示す。 T4 cells produced significantly higher levels of IFN-γ for GST-TaxABC and GST-TaxB (TaxB: amino acid sequence of amino acid numbers 113 to 237 of SEQ ID NO: 32) than the GST protein (control). However, for GST-TaxA (TaxA: amino acid sequence of amino acid numbers 1 to 127 of SEQ ID NO: 32) and GST-TaxC (TaxC: amino acid sequence of amino acid numbers 224 to 353 of SEQ ID NO: 32), production is significantly higher. Was not seen (FIG. 3A). This indicates that T4 cells recognized mainly the central region of Tax protein as an antigen.
 次に、Taxの中央部(103~246残基)を領域とする、25merのオーバーラッピングペプチド8種類を合成し(配列番号1~8;上記A-3及び表2参照)、それらペプチドのT4細胞に対する刺激能を分析した。その結果、Tax154-178(配列番号4)でペプチド刺激した場合のみ、T4細胞株のIFN-γ産生は高い値を示した(図3B)。 Next, eight types of 25-mer overlapping peptides having the central part of Tax (residues 103 to 246) as regions were synthesized (SEQ ID NOs: 1 to 8; see A-3 and Table 2 above), and T4 of these peptides was synthesized. The ability to stimulate cells was analyzed. As a result, only when peptide stimulation was performed with Tax154-178 (SEQ ID NO: 4), IFN-γ production of the T4 cell line showed a high value (FIG. 3B).
 次に、更にエピトープの領域を狭め、Taxの154~178残基の領域から、15merのオーバーラッピングペプチドを4種類作製し(配列番号10、13、14、15;上記A-3及び表2参照)、各エピトープペプチドに対するT4細胞のIFN-γ産生能を調べた。その結果、Tax151-165(配列番号10)及びTax156-170(配列番号13)は、Tax154~178(配列番号4)に匹敵する水準ではなかったものの、有意にT4細胞のIFN-γ産生を誘導した(図3C)。これらの結果から、T4細胞に認識されるエピトープが、Tax154-178のN末端側の半分に存在している可能性が示唆された。 Next, the epitope region was further narrowed, and four types of 15-mer overlapping peptides were prepared from the region of 154-178 residues of Tax (SEQ ID NOs: 10, 13, 14, 15; see A-3 and Table 2 above) ), The ability of T4 cells to produce IFN-γ for each epitope peptide was examined. As a result, Tax 151-165 (SEQ ID NO: 10) and Tax 156-170 (SEQ ID NO: 13) significantly induced IFN-γ production of T4 cells, although they were not comparable to Tax 154 to 178 (SEQ ID NO: 4). (FIG. 3C). These results suggested that the epitope recognized by T4 cells may be present in the N-terminal half of Tax154-178.
 そこで、Tax154-168(配列番号11)、Tax155-169(配列番号12)、Tax156-170(配列番号13)のエピトープペプチドを作製又は用意し(上記A-3及び表2参照)、同様に調べたところ、Tax156-170ではTax154~178と同程度のIFN-γ産生が認められ、Tax154-168やTax155-169ではTax156-170に対して有意に高いIFN-γ産生が誘導された。これらの結果から、最小エピトープが、Taxの155~168残基中に存在する可能性が示唆された(図3D)。 Therefore, epitope peptides of Tax154-168 (SEQ ID NO: 11), Tax155-169 (SEQ ID NO: 12), Tax156-170 (SEQ ID NO: 13) were prepared or prepared (see A-3 and Table 2 above) and examined in the same manner. As a result, Tax156-170 produced IFN-γ comparable to Tax154-178, and Tax154-168 and Tax155-169 induced significantly higher IFN-γ production than Tax156-170. These results suggested that the minimal epitope may exist in residues 155-168 of Tax (FIG. 3D).
 次に、T4細胞に認識される最小エピトープを同定するため、Taxの155残基から始まり、長さが12~14merのオーバーラッピングペプチドを3種類合成した(配列番号16~18;上記A-3及び表2参照)。Tax155-167では、Tax155-169及びTax155-168と同レベルのIFN-γ産生が誘導されたが、Tax155-166では同等のレベルに至らなかった(図3E)。 Next, in order to identify the minimum epitope recognized by T4 cells, three types of overlapping peptides starting from 155 residues of Tax and having a length of 12 to 14 mer were synthesized (SEQ ID NOs: 16 to 18; A-3 above) And Table 2). Tax155-167 induced the same level of IFN-γ production as Tax155-169 and Tax155-168, but Tax155-166 did not reach the same level (FIG. 3E).
 さらに、Tax155-169、Tax155-168、Tax155-167、Tax146-160(ネガティブコントロール)について、その濃度条件を変えてIFN-γ産生を調べた。Tax155-167に対し濃度依存性にT4細胞で産生されるIFN-γの量は、Tax155-169及びTax155-168に対する産生量に匹敵していることが分かった(図3F)。 Furthermore, IFN-γ production was examined for Tax155-169, Tax155-168, Tax155-167, and Tax146-160 (negative control) by changing their concentration conditions. It was found that the amount of IFN-γ produced in T4 cells in a concentration-dependent manner relative to Tax155-167 was comparable to that produced for Tax155-169 and Tax155-168 (FIG. 3F).
 上記B-3の一連の実験結果により、T4細胞に認識される最小エピトープはTax155-167であることが明確に示された。 The series of experimental results of B-3 above clearly showed that the minimum epitope recognized by T4 cells was Tax155-167.
B-4 Tax特異的T4細胞のHLA-DRB10101拘束性
 上記B-3で判明した最小エピトープ(Tax155-167)の抗原提示に関与するHLAクラスII分子の種類を調べるため、抗HLA-DR、抗HLA-DQ及び抗HLAクラスIブロッキング抗体の存在/非存在下で、ILT-#350刺激によるT4細胞の免疫応答を解析した(上記A-9参照)。HLA-DRのブロッキングにより、ILT-#350からの刺激に対するT4細胞のIFN-γ産生が抑制されたため、このエピトープがHLA-DR拘束性であることが示された(図4A)。
B-4 HLA-DRB1 * 0101 restriction of Tax-specific T4 cells In order to examine the types of HLA class II molecules involved in antigen presentation of the minimal epitope (Tax155-167) found in B-3 above, anti-HLA-DR In the presence / absence of anti-HLA-DQ and anti-HLA class I blocking antibodies, the immune response of T4 cells stimulated with ILT- # 350 was analyzed (see A-9 above). This epitope was shown to be HLA-DR-restricted because blocking HLA-DR suppressed IFN-γ production of T4 cells upon stimulation from ILT- # 350 (FIG. 4A).
 さらに、異なるHLA-DRをディスプレイする4種類のHLA型LCLを使用し、最小エピトープの提示に関与するHLA-DR対立遺伝子を調べた(上記A-9参照)。Tax155-167が自己LCL-#350(DR1/14)及び同種LCL-#341(DR1/15)によって提示されると、T4細胞によるIFN-γの産生が確認された(図4B)。この結果は、このエピトープが、HLA-DRB10101によって抗原提示細胞上に提示されることを明確に示している。同定したエピトープTax155-167中に、公知のHLA-DRB10101モチーフ(Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41(4):178-228.)の有無を探索したところ、このエピトープがHLA-DRB10101モチーフを含むことが分かった(図4C) Furthermore, four types of HLA-type LCLs that display different HLA-DR were used to examine HLA-DR alleles involved in the presentation of minimal epitopes (see A-9 above). When Tax155-167 was presented by autologous LCL- # 350 (DR1 / 14) and allogeneic LCL- # 341 (DR1 / 15), production of IFN-γ by T4 cells was confirmed (FIG. 4B). This result clearly shows that this epitope is presented on antigen-presenting cells by HLA-DRB1 * 0101. In the identified epitope Tax155-167, the known HLA-DRB1 * 0101 motif (Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995; 41 (4): 178-228.) As a result of searching for the presence or absence, it was found that this epitope contains the HLA-DRB1 * 0101 motif (FIG. 4C).
B-5 Tax155-167特異的CD4T細胞のヘルプによるTax特異的CD8T細胞増殖の亢進
 次に、患者#350の新鮮PBMCにおけるTax特異的CTL増殖に対する、Tax155-167特異的CD4T細胞のヘルパー機能を評価した。緩和的前処置による同種造血幹細胞移植から540日後に患者#350から単離されたばかりのPBMC(A24/26、DR1/14)を、HLA-A24拘束性CTLエピトープであるTax301-309ペプチド及び/又はHLA-DRB10101拘束性Th1型エピトープであるTax155-167ペプチドで13日間刺激し、Tax特異的CD8T細胞の増殖をHLA-A2402/Tax301-309テトラマーを用いて測定した(上記A-10参照)。これは、かかるテトラマーがTax特異的CD8T細胞に結合する性質を利用するものである。この測定の結果を図5に示す。Tax301-309特異的CD8T細胞は、Tax301-309単独で刺激した場合、9.26%まで増殖したのに対し(図5の上段の中央パネル)、Tax301-309及びTax155-167の両方を用いてインビトロ刺激したところ、Tax特異的CD8T細胞が62.3%まで著しく増加した(図5の上段の右パネル)。その他2名の緩和的前処置による同種造血幹細胞移植を受けたHLA-DRB10101HTLV-I感染患者についても同様の方法で測定を行った。患者#364では、移植から180日後に同患者から単離されたばかりのPBMC(A24/26、DR1/-)を用い、患者#341では、移植から360日後の同患者から単離されたばかりのPBMC(A24/33、DR1/15)を用いた。HLA-A24拘束性CTLエピトープであるTax301-309単独でPBMCを刺激した場合、Tax301-309特異的CD8T細胞は0.85%(患者#364)及び7.7%(患者#341)に増殖したのに対し(図5の中段の中央パネル、下段の中央パネル)、Tax301-309及びTax155-167の両方でPBMCを共刺激した場合、Tax301-309特異的CD8T細胞は15.5%(患者#364)及び59.6%(患者#341)まで著しく増加した(図5の中段の右パネル、下段の右パネル)。また、3人の患者(#350、#364、#341)のPBMCには、Taxエピトープで刺激する前の段階で、前述のテトラマーに結合するTax特異的CD8T細胞が検出可能なレベルで存在した。
 以上の結果から、緩和的前処置による同種造血幹細胞移植を受けたHLA-DRB10101HTLV-I感染者において、Tax155-167特異的CD4T細胞が存在し、Tax301-309/Tax155-167の混合エピトープ刺激により、Tax301-309単独刺激に比してCD8T細胞応答が顕著に亢進されることが示された。
B-5 Enhancement of Tax-specific CD8 + T cell proliferation with Tax155-167 specific CD4 + T cell help Next, Tax155-167 specific CD4 + T against Tax specific CTL proliferation in fresh PBMC of patient # 350 Cell helper function was evaluated. PBMCs (A24 / 26, DR1 / 14) that were just isolated from patient # 350 540 days after allogeneic hematopoietic stem cell transplantation with palliative pretreatment were transferred to HLA-A24-restricted CTL epitope Tax301-309 peptide and / or Stimulated for 13 days with Tax155-167 peptide, an HLA-DRB1 * 0101-restricted Th1-type epitope, and the proliferation of Tax-specific CD8 + T cells was measured using the HLA-A * 2402 / Tax301-309 tetramer (A above) See -10). This utilizes the property that such tetramers bind to Tax-specific CD8 + T cells. The result of this measurement is shown in FIG. Tax301-309-specific CD8 + T cells proliferated to 9.26% when stimulated with Tax301-309 alone (FIG. 5, upper center panel), whereas both Tax301-309 and Tax155-167 were When stimulated in vitro, Tax-specific CD8 + T cells were significantly increased to 62.3% (upper right panel of FIG. 5). Measurements were performed in the same manner for HLA-DRB1 * 0101 + HTLV-I-infected patients who received allogeneic hematopoietic stem cell transplantation by two other palliative pretreatments. Patient # 364 used PBMC (A24 / 26, DR1 /-) that had just been isolated from the patient 180 days after transplantation, and patient # 341 had PBMC that had been isolated from the patient 360 days after transplantation. (A24 / 33, DR1 / 15) was used. When PBMC was stimulated with Tax301-309 alone, an HLA-A24-restricted CTL epitope, Tax301-309-specific CD8 + T cells were 0.85% (patient # 364) and 7.7% (patient # 341). While proliferated (middle middle panel, lower middle panel in FIG. 5), when PBMC were co-stimulated with both Tax301-309 and Tax155-167, Tax301-309 specific CD8 + T cells were 15.5. % (Patient # 364) and 59.6% (patient # 341) (Fig. 5, middle right panel, lower right panel). In addition, the PBMCs of 3 patients (# 350, # 364, # 341) had a detectable level of Tax-specific CD8 + T cells that bind to the tetramer described above, prior to stimulation with the Tax epitope. Were present.
From the above results, Tax155-167 specific CD4 + T cells are present in HLA-DRB1 * 0101 + HTLV-I infected patients who received allogeneic hematopoietic stem cell transplantation by palliative pretreatment, Tax301-309 / Tax155-167 It was shown that the CD8 + T cell response was significantly enhanced by stimulation with mixed epitopes compared to stimulation with Tax301-309 alone.
B-6 HLA-DRB10101HTLV-I感染者ではTax155-167特異的CD4T細胞が維持される
 次に、HLA-DRB10101/Tax155-167テトラマーを作製し、Tax155-167特異的CD4T細胞を直接検出することで、同種造血幹細胞移植を受けたHLA-DRB10101患者2名から単離したばかりのPBMC中に、Tax155-167特異的CD4T細胞が存在するかどうかを確認した。患者#350では、移植から540日後に同患者から単離されたばかりのPBMC(A24/26、DR1/14)を用い、患者#364では、移植から180日後に同患者から単離されたばかりのPBMC(A24/26、DR1/-)を用い、患者#341では、移植から360日後の同患者から単離されたばかりのPBMC(A24/33、DR1/15)を用いた。患者#350では、Tax155-167特異的CD4T細胞が培養や刺激無しに(ex vivo)検出可能な水準で存在し(0.11%)(図6Aの上段の左パネル)、Tax155-167ペプチドによる刺激から13日後では、11.6%まで増殖した(図6Aの上段の右パネル)。患者#364では、ex vivoではTax特異的CD4T細胞は検出されなかったが(図6Aの中段の左パネル)、Tax155-167ペプチドによりインビトロで刺激したところ、0.37%まで増殖した(図6Aの中段の右パネル)。HLA-DRB10101血清反応陰性ドナー#365(ネガティブコントロール)では、ex vivoではTax特異的CD4T細胞は検出されず(図6Aの下段の左パネル)、Tax155-167ペプチドによる刺激13日後でも検出不可能だった(図6Aの下段の右パネル)。
B-6 HLA-DRB1 * 0101 + HTLV-I infected individuals maintain Tax155-167 specific CD4 + T cells Next, HLA-DRB1 * 0101 / Tax155-167 tetramers were generated and Tax155-167 specific by detecting the CD4 + T cells directly, from the HLA-DRB1 * 0101 + two patients who received allogeneic hematopoietic stem cell transplantation in the PBMC of freshly isolated, whether there is Tax155-167-specific CD4 + T cells It was confirmed. Patient # 350 used PBMCs that had just been isolated from the patient 540 days after transplantation (A24 / 26, DR1 / 14), and patient # 364 had PBMCs that had been isolated from the patient 180 days after transplantation. (A24 / 26, DR1 /-) was used, and for patient # 341, PBMC (A24 / 33, DR1 / 15) that had just been isolated from the same patient 360 days after transplantation was used. In patient # 350, Tax155-167 specific CD4 + T cells were present at levels detectable (0.11%) without culture or stimulation (ex vivo) (FIG. 6A, upper left panel), Tax155-167. 13 days after stimulation with the peptide, it grew to 11.6% (FIG. 6A, upper right panel). In patient # 364, no tax-specific CD4 + T cells were detected ex vivo (FIG. 6A, middle left panel), but proliferated to 0.37% when stimulated in vitro with Tax155-167 peptide ( FIG. 6A middle right panel). Tax-specific CD4 + T cells were not detected ex vivo in HLA-DRB1 * 0101 + seronegative donor # 365 (negative control) (lower left panel in FIG. 6A), 13 days after stimulation with Tax155-167 peptide However, it was not detectable (the right panel at the bottom of FIG. 6A).
 さらに、HLA-DRB10101を保有するHTLV-I感染者2名(無症候性キャリア(AC)#310及びHTLV-I関連脊髄症/熱帯性痙性不全対麻痺患者#294)での、Tax155-167特異的CD4T細胞の存在の有無を調べたところ、末梢CD4T細胞中それぞれ0.18%と0.31%のテトラマー陽性細胞を検出した(図6B)。 Furthermore, Tax155-Two in HTLV-I infected individuals carrying HLA-DRB1 * 0101 (asymptomatic carrier (AC) # 310 and HTLV-I related myelopathy / tropical spastic paraparesis patient # 294). When the presence or absence of 167-specific CD4 + T cells was examined, 0.18% and 0.31% tetramer positive cells were detected in peripheral CD4 + T cells, respectively (FIG. 6B).
 以上の結果から、HLA-DRB10101対立遺伝子を発現するHTLV-I感染者において、造血幹細胞移植の有無に関係なく、Tax155-167特異的CD4T細胞が維持されていることが示された。 From the above results, it was shown that Tax155-167 specific CD4 + T cells were maintained in HTLV-I infected individuals expressing HLA-DRB1 * 0101 alleles regardless of the presence or absence of hematopoietic stem cell transplantation. .
 本発明は、ヒトT細胞白血病ウイルスI型(HTLV-I)に特異的なCD4T細胞の誘導に関連する分野などに利用することができる。より詳細には、HTLV-I特異的CTL誘導作用増強剤や、HTLV-I特異的免疫応答誘導用ワクチンや、HTLV-I特異的CD4T細胞を識別するための免疫機能検査診断薬や、HTLV-I特異的CD4T細胞の誘導方法などに関する分野に好適に利用することができる。 The present invention can be used in fields related to the induction of CD4 + T cells specific for human T cell leukemia virus type I (HTLV-I). More specifically, an HTLV-I-specific CTL inducing action enhancer, an HTLV-I-specific immune response inducing vaccine, an immune function test diagnostic agent for identifying HTLV-I-specific CD4 + T cells, It can be suitably used in the field relating to the method for inducing HTLV-I-specific CD4 + T cells.

Claims (16)

  1. [規則91に基づく訂正 05.09.2014] 
    以下の(A)~(E)のいずれかに示されるアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチド:
    (A)配列番号4、10、11、12、13、16、17、19のいずれかに示されるアミノ酸配列:
    (B)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列:
    (C)前記(A)又は(B)に示されるアミノ酸配列に対して80%以上の同一性を有するアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
    (D)前記(A)又は(B)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
    (E)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列。
    [Correction 05.09.2014 based on Rule 91]
    HTLV-I-specific CD4 + T cell-inducing peptide consisting of the amino acid sequence shown in any of (A) to (E) below:
    (A) Amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
    (B) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least the amino acid sequences of amino acid numbers 155 to 167:
    (C) An amino acid sequence having 80% or more identity to the amino acid sequence shown in (A) or (B) above, wherein the peptide comprising the amino acid sequence is induced to induce HTLV-I-specific CD4 + T cells. Amino acid sequence with activity:
    (D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity:
    (E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL An amino acid sequence obtained by binding an amino acid sequence of an inducing active peptide.
  2. HLA-DR1に拘束されるTaxエピトープである請求項1に記載のHTLV-I特異的CD4T細胞誘導活性ペプチド。 The HTLV-I-specific CD4 + T cell-inducing peptide according to claim 1, which is a Tax epitope restricted by HLA-DR1.
  3. CD4T細胞がTh1型ヘルパーT細胞である請求項1又は2に記載のHTLV-I特異的CD4T細胞誘導活性ペプチド。 The HTLV-I-specific CD4 + T cell-inducing peptide according to claim 1 or 2, wherein the CD4 + T cell is a Th1-type helper T cell.
  4. 請求項1~3のいずれかに記載のHTLV-I特異的CD4T細胞誘導活性ペプチドと、マーカータンパク質及び/又はペプチドタグとを結合させた融合ペプチド。 A fusion peptide in which the HTLV-I-specific CD4 + T cell-inducing activity peptide according to any one of claims 1 to 3 is bound to a marker protein and / or a peptide tag.
  5. HLA-DR1と請求項1~3のいずれかに記載のHTLV-I特異的CD4T細胞誘導活性ペプチドとが結合したタンパク-ペプチド結合体。 A protein-peptide conjugate in which HLA-DR1 and the HTLV-I-specific CD4 + T cell-inducing active peptide according to any one of claims 1 to 3 are bound.
  6. HLA-DR1と請求項1~3のいずれかに記載のHTLV-I特異的CD4T細胞誘導活性ペプチドとが結合したタンパク-ペプチド結合体の4量体。 A protein-peptide conjugate tetramer in which HLA-DR1 is bound to the HTLV-I-specific CD4 + T cell-inducing peptide according to any one of claims 1 to 3.
  7. 請求項5に記載のタンパク-ペプチド結合体又は請求項6に記載のタンパク-ペプチド結合体の4量体と、マーカータンパク質及び/又はペプチドタグとを結合させた融合タンパク質。 A fusion protein comprising the protein-peptide conjugate according to claim 5 or the tetramer of the protein-peptide conjugate according to claim 6 and a marker protein and / or a peptide tag.
  8. [規則91に基づく訂正 05.09.2014] 
    以下の(A)~(E)のいずれかのアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチドを有効成分として含有する、HTLV-I特異的CTL誘導作用増強剤:(A)配列番号4、10、11、12、13、16、17、19のいずれかに示されるアミノ酸配列:
    (B)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列:
    (C)前記(A)又は(B)に示されるアミノ酸配列に対して80%以上の同一性を有するアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
    (D)前記(A)又は(B)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
    (E)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列。
    [Correction 05.09.2014 based on Rule 91]
    An HTLV-I-specific CTL inducing action potentiator comprising, as an active ingredient, an HTLV-I-specific CD4 + T cell-inducing activity peptide consisting of any of the following amino acid sequences (A) to (E): (A) Amino acid sequence shown in any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
    (B) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least the amino acid sequences of amino acid numbers 155 to 167:
    (C) An amino acid sequence having 80% or more identity to the amino acid sequence shown in (A) or (B) above, wherein the peptide comprising the amino acid sequence is induced to induce HTLV-I-specific CD4 + T cells. Amino acid sequence with activity:
    (D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity:
    (E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL An amino acid sequence obtained by combining the amino acid sequence of the inducing active peptide.
  9. [規則91に基づく訂正 05.09.2014] 
    プロモーターと、以下の(a)~(e)のいずれかに示されるポリヌクレオチド配列からなるポリヌクレオチドとを含み、該ポリヌクレオチドがプロモーターの下流に作動可能に連結されている発現ベクターを有効成分として含有するHTLV-I特異的CTL誘導作用増強剤:
    (a)配列番号4、10、11、12、13、16、17、19のいずれかに示されるアミノ酸配列をコードするポリヌクレオチド配列:
    (b)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列をコードするポリヌクレオチド配列:
    (c)前記(a)又は(b)に示されるポリヌクレオチド配列に対して80%以上の同一性を有するポリヌクレオチド配列であって、HTLV-I特異的CD4T細胞誘導活性を有するペプチドをコードするポリヌクレオチド配列:
    (d)前記(a)又は(b)に示されるポリヌクレオチド配列において、1若しくは数個のヌクレオチドが欠失、置換若しくは付加されたポリヌクレオチド配列であって、HTLV-I特異的CD4T細胞誘導活性を有するペプチドをコードするポリヌクレオチド配列:
    (e)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列をコードするポリヌクレオチド配列。
    [Correction 05.09.2014 based on Rule 91]
    An expression vector comprising a promoter and a polynucleotide comprising the polynucleotide sequence shown in any of the following (a) to (e), wherein the polynucleotide is operably linked downstream of the promoter, HTLV-I-specific CTL inducing action enhancer containing:
    (A) a polynucleotide sequence encoding the amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
    (B) a polynucleotide sequence encoding an amino acid sequence comprising 14 to 30 consecutive amino acids in the amino acid sequence represented by SEQ ID NO: 32 and comprising at least the amino acid sequences of amino acid numbers 155 to 167:
    (C) a polynucleotide sequence having 80% or more identity to the polynucleotide sequence shown in the above (a) or (b), wherein the peptide has HTLV-I-specific CD4 + T cell inducing activity Encoding polynucleotide sequence:
    (D) a polynucleotide sequence obtained by deleting, substituting, or adding one or several nucleotides in the polynucleotide sequence shown in (a) or (b), wherein the HTLV-I specific CD4 + T cell Polynucleotide sequence encoding a peptide having inductive activity:
    (E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence comprising at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL A polynucleotide sequence encoding an amino acid sequence linked to an amino acid sequence of an inducing active peptide.
  10. 請求項8又は9に記載のHTLV-I特異的CTL誘導作用増強剤と、HTLV-I特異的CTL誘導活性ペプチド又は該ペプチドをコードするポリヌクレオチドとを含有するHTLV-I特異的免疫応答誘導用ワクチン。 10. An HTLV-I-specific immune response induction comprising the HTLV-I-specific CTL inducing action-enhancing agent according to claim 8 or 9, and an HTLV-I-specific CTL-inducing activity peptide or a polynucleotide encoding the peptide. vaccine.
  11. [規則91に基づく訂正 05.09.2014] 
    以下の(A)~(E)のいずれかに示されるアミノ酸配列からなるHTLV-I特異的CD4T細胞誘導活性ペプチドを有効成分として含有する、HTLV-I特異的CD4T細胞を識別するための免疫機能検査診断薬:
    (A)配列番号4、10、11、12、13、16、17、19のいずれかに示されるアミノ酸配列:
    (B)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列:
    (C)前記(A)又は(B)に示されるアミノ酸配列に対して80%以上の同一性を有するアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
    (D)前記(A)又は(B)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列であって、該アミノ酸配列からなるペプチドがHTLV-I特異的CD4T細胞誘導活性を有するアミノ酸配列:
    (E)配列番号32に示されるアミノ酸配列における連続する14~30個のアミノ酸からなるアミノ酸配列であって、少なくともアミノ酸番号155から167までのアミノ酸配列を含むアミノ酸配列と、HTLV-I特異的CTL誘導活性ペプチドのアミノ酸配列とを結合させたアミノ酸配列。
    [Correction 05.09.2014 based on Rule 91]
    Containing the following (A) ~ one to HTLV-I-specific CD4 + T cell-inducing activity peptide comprising the amino acid sequence shown in (E) as an active ingredient, identifying the HTLV-I-specific CD4 + T cells Immune function test diagnostic agent for:
    (A) Amino acid sequence represented by any of SEQ ID NOs: 4, 10, 11, 12, 13, 16, 17, 19:
    (B) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, and comprising at least the amino acid sequences of amino acid numbers 155 to 167:
    (C) An amino acid sequence having 80% or more identity to the amino acid sequence shown in (A) or (B) above, wherein the peptide comprising the amino acid sequence is induced to induce HTLV-I-specific CD4 + T cells. Amino acid sequence with activity:
    (D) In the amino acid sequence shown in (A) or (B) above, an amino acid sequence in which one or several amino acids are deleted, substituted or added, and the peptide comprising the amino acid sequence is specific to HTLV-I Amino acid sequence having CD4 + T cell inducing activity:
    (E) an amino acid sequence consisting of 14 to 30 consecutive amino acids in the amino acid sequence shown in SEQ ID NO: 32, comprising an amino acid sequence of at least amino acid numbers 155 to 167, and an HTLV-I-specific CTL An amino acid sequence obtained by combining the amino acid sequence of the inducing active peptide.
  12. HLA-DR1と請求項1~3のいずれかに記載のHTLV-I特異的CD4T細胞誘導活性ペプチドとが結合したタンパク-ペプチド結合体を有効成分として含有する、HTLV-I特異的CD4T細胞を識別するための免疫機能検査診断薬。 HLA-DR1 and claims 1 to 3, either the HTLV-I-specific CD4 + T cell-inducing activity peptide is bound to proteins according - containing peptide conjugate as an active ingredient, HTLV-I-specific CD4 + A diagnostic reagent for immune function tests for identifying T cells.
  13. HLA-DR1と請求項1~3のいずれかに記載のHTLV-I特異的CD4T細胞誘導活性ペプチドとが結合したタンパク-ペプチド結合体の4量体を有効成分として含有する、HTLV-I特異的CD4T細胞を識別するための免疫機能検査診断薬。 HTLV-I comprising, as an active ingredient, a tetramer of a protein-peptide conjugate in which HLA-DR1 and the HTLV-I-specific CD4 + T cell-inducing peptide according to any one of claims 1 to 3 are bound An immunological function test diagnostic agent for identifying specific CD4 + T cells.
  14. HSCT前のATL患者に由来するHTLV-I感染T細胞を用いて、同種のHLAタイプのドナー由来のHSCT後の同じ患者のPBMCを刺激することを特徴とするHTLV-I特異的CD4T細胞の誘導方法。 HTLV-I specific CD4 + T cells characterized in that HTLV-I infected T cells derived from ATL patients before HSCT are used to stimulate PBMCs of the same patients after HSCT from allogeneic HLA type donors Guidance method.
  15. 請求項8又は9に記載のHTLV-I特異的CTL誘導作用増強剤を用いて、HLA-DR1陽性のATL患者のPBMCを刺激することを特徴とするHTLV-I特異的CD4T細胞の誘導方法。 10. Induction of HTLV-I-specific CD4 + T cells characterized by stimulating PBMC of an HTL-DR1-positive ATL patient using the HTLV-I-specific CTL inducing action enhancer according to claim 8 or 9. Method.
  16. HLA-DR1陽性のATL患者のPBMCを、以下の(X)及び(Y)を用いて刺激することを特徴とする、HTLV-I特異的CD4T細胞応答及びHTLV-I特異的CTL応答を含むHTLV-I特異的免疫応答を誘導する方法:
    (X)請求項8又は9に記載のHTLV-I特異的CTL誘導作用増強剤:
    (Y)前記ATL患者のHLA-A座の型に適合する、HTLV-I特異的CTL誘導活性ペプチド又は該ペプチドをコードするポリヌクレオチド。
    HTLV-I specific CD4 + T cell response and HTLV-I specific CTL response characterized by stimulating PBMC of HLA-DR1-positive ATL patients with the following (X) and (Y) Methods of inducing HTLV-I specific immune responses comprising:
    (X) The HTLV-I-specific CTL inducing action potentiator according to claim 8 or 9:
    (Y) An HTLV-I-specific CTL-inducing active peptide that matches the type of HLA-A locus of the ATL patient or a polynucleotide encoding the peptide.
PCT/JP2014/000053 2013-01-09 2014-01-09 HLA-DR1-RESTRICTED Tax-SPECIFIC CD4+ T CELL EPITOPE WO2014109289A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013002127A JP5999703B2 (en) 2013-01-09 2013-01-09 HLA-DR1-restricted Tax-specific CD4 + T cell epitope
JP2013-002127 2013-01-09

Publications (2)

Publication Number Publication Date
WO2014109289A1 WO2014109289A1 (en) 2014-07-17
WO2014109289A9 true WO2014109289A9 (en) 2014-12-24

Family

ID=51166939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000053 WO2014109289A1 (en) 2013-01-09 2014-01-09 HLA-DR1-RESTRICTED Tax-SPECIFIC CD4+ T CELL EPITOPE

Country Status (2)

Country Link
JP (1) JP5999703B2 (en)
WO (1) WO2014109289A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116074A1 (en) * 2016-12-19 2018-06-28 Kabiri Mona Chimeric peptides against htlv-1
JP7411988B2 (en) * 2019-11-13 2024-01-12 文彦 松田 HAM/TSP onset risk determination method
WO2021167094A1 (en) 2020-02-20 2021-08-26 陽子 末廣 Monocyte purification method in peripheral blood raw material collection/freezing-thawing step

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62500452A (en) * 1984-09-19 1987-02-26 ザ リ−ジエンツ オブ ザ ユニバ−シテイ オブ カリフオルニア Retroviral polypeptides associated with human cell transformation
US5717058A (en) * 1993-02-23 1998-02-10 Somatogen, Inc. Peptide inhibitors of tax-dependent transcription
US5420244A (en) * 1993-08-06 1995-05-30 The United States Of America As Represented By The Department Of Health And Human Services Methods and compositions for diagnosing HTLV-I associated myelopathy and adult T-cell leukemia
JPH09188696A (en) * 1996-08-01 1997-07-22 Seishi Nokihara Synthetic peptide for human adult leukemia vaccine
CA2323632A1 (en) * 1998-03-13 1999-09-16 Epimmune Inc. Hla-binding peptides and their uses
DE602004014605D1 (en) * 2003-04-16 2008-08-07 Japan Science & Tech Agency PEPTIDE WITH HTLV-1 SPECIFIC CTL INDUCTIVE ACTIVITY
WO2010009465A2 (en) * 2008-07-18 2010-01-21 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Htlv-ii vector and methods of use

Also Published As

Publication number Publication date
JP5999703B2 (en) 2016-09-28
WO2014109289A1 (en) 2014-07-17
JP2014133712A (en) 2014-07-24

Similar Documents

Publication Publication Date Title
US11707512B2 (en) Cancer vaccine composition
DK2186889T3 (en) CDCA1 PEPTID AND PHARMACEUTICAL COMPOSITION, INCLUDING THIS
US6790662B1 (en) Method of isolating CD8+ cells, and related hybridoma cells antibodies and polypeptides
US7148326B2 (en) Tumor antigen
Kawashima et al. Identification of GP100‐derived, melanoma‐specific cytotoxic T‐lymphocyte epitopes restricted by HLA‐A3 supertype molecules by primary in vitro immunization with peptide‐pulsed dendritic cells
CN111032686B (en) Treatment of hematological malignancies
KR20020026461A (en) Mage-a1 peptides presented by hla class ii molecules
JP4972691B2 (en) Lck-derived peptide useful for cancer vaccine therapy for HLA-A3 supertype allele positive cancer patients
JP5999703B2 (en) HLA-DR1-restricted Tax-specific CD4 + T cell epitope
KR20110005833A (en) Partial peptide of survivin presented on mhc class ii molecule and use thereof
JP2003533175A (en) NY-ESO-1 peptide derivatives and uses thereof
JP2019536429A (en) Immunotherapy for polyomavirus
JP5176099B2 (en) HLA-A11 restricted Tax anti-tumor epitope
US20040141995A1 (en) MHC class I-restricted and MHC class II-restricted EBNA1 peptides
JPWO2004092373A1 (en) HTLV-I specific CTL inducing peptide
WO2022244891A1 (en) T CELL EPITOPE PEPTIDE DERIVED FROM SARS-CoV-2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14737810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14737810

Country of ref document: EP

Kind code of ref document: A1