WO2014109026A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2014109026A1
WO2014109026A1 PCT/JP2013/050256 JP2013050256W WO2014109026A1 WO 2014109026 A1 WO2014109026 A1 WO 2014109026A1 JP 2013050256 W JP2013050256 W JP 2013050256W WO 2014109026 A1 WO2014109026 A1 WO 2014109026A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
state
display
control information
image
Prior art date
Application number
PCT/JP2013/050256
Other languages
French (fr)
Japanese (ja)
Inventor
橋川 広和
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2014556261A priority Critical patent/JP6081494B2/en
Priority to PCT/JP2013/050256 priority patent/WO2014109026A1/en
Publication of WO2014109026A1 publication Critical patent/WO2014109026A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47FSPECIAL FURNITURE, FITTINGS, OR ACCESSORIES FOR SHOPS, STOREHOUSES, BARS, RESTAURANTS OR THE LIKE; PAYING COUNTERS
    • A47F11/00Arrangements in shop windows, shop floors or show cases
    • A47F11/06Means for bringing about special optical effects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/02Signs, boards, or panels, illuminated by artificial light sources positioned in front of the insignia
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/18Advertising or display means not otherwise provided for using special optical effects involving the use of optical projection means, e.g. projection of images on clouds
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/22Advertising or display means on roads, walls or similar surfaces, e.g. illuminated
    • G09F19/226External wall display means; Facade advertising means

Definitions

  • the present invention relates to a display device that displays video.
  • Patent Document 1 describes that a hologram screen is provided on a cover glass of a show window, a showcase, etc., and information is displayed at the same time as the exhibits are displayed.
  • Patent Document 2 describes that a translucent screen sheet is installed on the front glass of a showcase, and information is projected and displayed on the screen sheet.
  • the hologram screen since the hologram screen generates a diffraction phenomenon using the refractive index distribution inside the screen, the light extraction efficiency is poor. Also, for the same reason, the clearness is lost due to the influence of light from the exhibits installed in the showcase.
  • the hologram screen has a problem that it is very expensive.
  • the actual exhibit behind the video display area on the translucent screen becomes invisible.
  • the viewpoint is changed, the positional relationship between the video display area on the screen and the actual exhibit changes, so that the video display area and the actual exhibit overlap or open, so that it is optimal (ie production The viewpoint position is fixed), and it is not suitable for applications in which a plurality of observers observe at the same time.
  • the image display area on the screen is always exposed to light emitted from the actual display from behind the screen, and there is a problem that the contrast of the display image is always poor.
  • an object of the present invention is to provide a display device that can clearly observe, for example, images displayed on a screen and exhibits.
  • the invention described in claim 1 has a first surface and a second surface which is a back surface of the first surface, and has a transmission state and a scattering state with respect to visible light.
  • a switchable screen and control means for switching the transmission state and the scattering state of the screen.
  • the control means controls the illumination on the second surface side.
  • Illumination control information for reducing light intensity is output
  • projection control information for projecting a first image on the screen is output during any period when the screen is switched to the scattering state, and the screen is in the transmission state
  • the projection control information for stopping projection of the first video is output, and the second surface is switched to an arbitrary period during which the screen is switched to the transmission state.
  • the outputs illumination control data for increasing the light intensity of the lighting it is a display device according to claim.
  • a screen having a first surface and a second surface that is the back surface of the first surface and capable of switching between a transmission state and a scattering state with respect to visible light
  • the screen Control means for switching the transmission state and the scattering state of the second image, and the control means, when the screen is switched to the scattering state, displays the light intensity of the second image on the display means on the second surface side.
  • the projection control information for stopping the projection of the first video is output, and the second means is displayed on the display means during an arbitrary period when the screen is switched to the transmission state. And outputs the display control information for increasing the light intensity of the image, it is a display device according to claim.
  • the invention described in claim 8 includes a screen having a first surface and a second surface which is the back surface of the first surface, and capable of switching between a transmissive state and a scattering state with respect to visible light.
  • a control step of switching a scattering state and when the screen is switched to the scattering state, the control step outputs illumination control information for reducing light intensity of illumination on the second surface side, and the screen
  • illumination control information for reducing light intensity of illumination on the second surface side and the screen
  • projection control information for projecting the first video onto the screen is output, and when the screen is switched to the transmissive state, the projection of the first video is performed.
  • the invention described in claim 9 includes a screen having a first surface and a second surface which is the back surface of the first surface, and capable of switching between a transmissive state and a scattering state with respect to visible light.
  • Display control information including a control step of switching a scattering state, wherein the control step reduces the light intensity of the second image on the display means on the second surface side when the screen is switched to the scattering state.
  • the projection control information for stopping the projection of the first video is output, and the light intensity of the second video is increased on the display means during an arbitrary period when the screen is switched to the transmission state. And it outputs the display control information to a display wherein the.
  • the invention described in claim 10 is a display program characterized by causing a display method according to claim 8 to be executed by a computer.
  • the invention described in claim 11 is a display program characterized in that the display method according to claim 9 is executed by a computer.
  • the invention described in claim 12 is a computer-readable recording medium in which the display program according to claim 10 is stored.
  • the invention described in claim 13 is a computer-readable recording medium in which the display program according to claim 11 is stored.
  • FIG. 2 It is a schematic block diagram of the exhibition apparatus provided with the display apparatus concerning the 1st Example of this invention. It is typical sectional drawing of the screen shown by FIG. FIG. 2 is a timing chart of the state of the screen shown in FIG. 1, the linear transmittance of light beams of a light control unit, and the intensity of image light projected from a projector. 2 is a flowchart illustrating an operation of the display device illustrated in FIG. 1. It is explanatory drawing which performs a cross fade by changing the duty of the scattering state of a screen shown by FIG. 1, and a permeation
  • FIG. 8 is a timing chart of the state of the screen shown in FIG. 7, the linear transmittance of light beams from the light control unit, and the intensity of image light projected from the projector.
  • FIG. 8 is an explanatory diagram of transmission and display of a video source displayed on the screen and the opaque display shown in FIG. 7.
  • a display device has a first surface and a second surface that is the back surface of the first surface, and a screen that can switch between a transmission state and a scattering state for visible light, and And control means for switching the transmission state and the scattering state of the screen.
  • control unit when the control unit is switching the screen to the scattering state, it outputs illumination control information for reducing the light intensity of the illumination on the second surface side, and in an arbitrary period during which the screen is switched to the scattering state,
  • the projection control information for projecting the first video on the screen is output and the screen is switched to the transmission state
  • the projection control information for stopping the projection of the first video is output, and the screen is switched to the transmission state.
  • Illumination control information for increasing the light intensity of the illumination on the second surface side is output during an arbitrary period. In this way, when the screen is in a scattered state, the light intensity of the illumination for displaying the image and illuminating the exhibits etc. is reduced, so that the contrast of the displayed image can be made very high.
  • the screen is in a transmissive state, it is possible to increase the light intensity of illumination and observe an exhibit or the like. Therefore, it is possible to clearly observe the video displayed on the screen and the exhibit.
  • a display device has a first surface and a second surface that is the back surface of the first surface, and a screen that can switch between a transmission state and a scattering state for visible light, and And control means for switching the transmission state and the scattering state of the screen.
  • the control means When the screen is switched to the scattering state, the control means outputs display control information for reducing the light intensity of the second image to the second surface side display means, and switches the screen to the scattering state.
  • the projection control information for projecting the first video on the screen is output during an arbitrary period, and when the screen is switched to the transmission state, the projection control information for stopping the projection of the first video is output, and the screen
  • the display control information for increasing the light intensity of the second video is output to the display means on the second surface side in an arbitrary period during which the screen is switched to the transmission state.
  • the display control information for increasing the light intensity of the second video is output to the display means on the second surface side in an arbitrary period during which the screen is switched to the transmission state.
  • control means may alternately switch the transmission state and the scattering state of the screen at a predetermined cycle.
  • control means may change the ratio between the transmission state and the scattering state in one cycle of the predetermined cycle of the screen. By doing so, for example, it is possible to increase the ratio of the screen display and the exhibits and display means that want to show more clearly, such as the screen display and the contents of the exhibits and display means. Each way of viewing can be changed accordingly.
  • control means gradually increases the ratio of the transmission state and the ratio of the transmission state and gradually decreases the ratio of the transmission state and the ratio of the transmission state in one cycle of the predetermined period of the screen. You may make it change so that it may reduce gradually and the ratio of a scattering state may increase gradually. By doing in this way, for example, it is possible to observe the exhibits and display means gradually from the screen display state, and then it is possible to perform effects such as crossfading that changes to the display state of the exhibits and display means thereafter. .
  • control means may include information for changing the light intensity of the first video in the projection control information. By doing so, it is possible to increase the light intensity of the screen display and the exhibits and display means that want to show more clearly, such as the contents of the screen display and the exhibits and display means, etc. Each way of showing can be changed according to.
  • control means gradually increases the light intensity of the first image and gradually decreases the light intensity of the illumination or the second image, gradually decreases the light intensity of the first image and the illumination or the second image.
  • the light intensity of the second image may be gradually increased. By doing so, for example, by changing the light intensity, it is possible to achieve an effect such as a crossfade.
  • a display method includes a first surface and a second surface that is the back surface of the first surface, and a screen capable of switching between a transmission state and a scattering state with respect to visible light.
  • a control step of switching between the transmission state and the scattering state it outputs illumination control information for reducing the light intensity of the illumination on the second surface side, and in an arbitrary period during which the screen is switched to the scattering state,
  • the projection control information for projecting the first video on the screen is output and the screen is switched to the transmission state
  • the projection control information for stopping the projection of the first video is output, and the screen is switched to the transmission state.
  • Illumination control information for increasing the light intensity of the illumination on the second surface side is output during an arbitrary period.
  • the screen is in a scattered state, the light intensity of the illumination for displaying the image and illuminating the exhibits etc. is reduced, so that the contrast of the displayed image can be made very high.
  • the screen is in a transmissive state, it is possible to increase the light intensity of illumination and observe an exhibit or the like. Therefore, it is possible to clearly observe the video displayed on the screen and the exhibit.
  • a display method includes a first surface and a second surface that is the back surface of the first surface, and a screen that can switch between a transmission state and a scattering state with respect to visible light. Includes a control step of switching between the transmission state and the scattering state.
  • display control information for reducing the light intensity of the second image is output to the display means on the second surface side, and the screen is switched to the scattering state.
  • projection control information for projecting the first video on the screen is output, and when the screen is switched to the transmission state, projection control information for stopping the projection of the first video is output and transmitted through the screen.
  • Display control information for increasing the light intensity of the second video is output to the display means on the second surface side during an arbitrary period of switching to the state.
  • the light intensity of the display means that displays the first video and displays the second video is reduced, so the first video that is displayed
  • the contrast of the second image can be displayed very high on the display means when the screen is in a transmissive state. Therefore, it is possible to clearly observe both the first video displayed on the screen and the second video displayed on the display means.
  • the display method described above may be configured as a display program that is executed by a computer. By doing so, since the program is executed by a computer, dedicated hardware or the like is not necessary, and it can be installed and functioned in a general-purpose information processing apparatus.
  • the display program described above may be stored in a computer-readable recording medium.
  • the program can be distributed as a single unit in addition to being incorporated in the device, and version upgrades can be easily performed.
  • the exhibition apparatus 1 includes a display device 2, a projector 11, and a lighting device 41.
  • the display device 2 and the projector 11 are transmissive projection devices that project (project) the image light (projected image) of the projector 11 and transmit and scatter it on the screen 21 (projection surface).
  • the screen 21 is disposed between the observer and the actual exhibit 51.
  • the actual exhibit 51 is accommodated in a show window, a showcase, and the like. At least one surface facing the observer may be configured by the screen 21 or may be attached.
  • the display device 2 includes a screen 21 and a synchronization control unit 31.
  • FIG. 2 is a schematic cross-sectional view of the screen 21 that can control the optical state.
  • the screen 21 shown in FIG. 2 has a light control unit 25 that is an optical layer in which a composite material containing liquid crystal is sandwiched between a pair of transparent glass substrates 23 and 24.
  • a counter electrode 26 is formed on the entire surface of one glass substrate 24 on the light control unit 25 side.
  • a control electrode 27 is formed on the entire surface of the other glass substrate 23 on the light control section 25 side.
  • An intermediate layer made of an insulator may be formed between the electrodes 26 and 27 and the light control unit 25.
  • the screen 21 includes a light control unit 25 made of an element or a material that can change an optical state by applying a voltage.
  • the optical state of the light control unit 25 is a state in which the scattering state displays an image, and a transparent transmission state in which the scattering of incident light is smaller and the linear transmittance of light is higher than that is a non-image display state in which no image is displayed. It is.
  • the light control unit 25 is disposed between the counter electrode 26 and the control electrode 27. That is, the light control unit 25 is sandwiched between two electrodes and can switch an optical state between a transmission state and a scattering state by a voltage applied between the two electrodes.
  • the light control unit 25 one that can switch an optical state between a scattering state and a transmission state, for example, a so-called polymer dispersed liquid crystal (PDLC) in which nematic liquid crystal domains are distributed in a polymer can be used.
  • PDLC polymer dispersed liquid crystal
  • a better optical state can be realized by using a composite material that is associated with the orientation of liquid crystal molecules in which a polymer network forms domains in a state where no voltage is applied.
  • a suitable amount of photopolymerizable monomer, nematic liquid crystal and polymerization initiating material are mixed and placed between 5 and 50 micron substrates of glass or resin constituting the light control member.
  • the liquid crystal domain can be dispersed in the polymer by irradiating with ultraviolet rays under conditions such as phase separation temperature.
  • the normal mode is designed so that the scattering due to the refractive index difference between the polymer and the liquid crystal is large when no voltage is applied, and the refractive index difference in the substrate normal direction is small when the liquid crystal is aligned by an electric field. Called.
  • a photopolymerizable monomer As a composite material associated with the orientation of liquid crystal molecules in which a polymer network forms domains in a state where no voltage is applied, a photopolymerizable monomer has liquid crystal properties.
  • the substrate is subjected to an alignment process such as rubbing, and the mixed material disposed between the substrates has an arrangement based on the alignment process.
  • the above initial arrangement is obtained when no voltage is applied, and scattering occurs due to the difference in refractive index between the liquid crystal domain and the polymer when the voltage is applied.
  • the unidirectional arrangement it has optical characteristics depending on this orientation.
  • a transmission state is obtained when a predetermined voltage is applied between the electrodes, and a scattering state is obtained when no voltage is applied between the electrodes.
  • a scattering state occurs when a predetermined voltage is applied between the electrodes, and a transmission state occurs when no voltage is applied between the electrodes.
  • the counter electrode 26 and the control electrode 27 are formed as transparent electrodes using, for example, ITO (indium tin oxide).
  • the screen 21 appears to be clouded, for example.
  • the dimming unit 25 is in the transmissive state
  • the screen 21 is in the transmissive state, so that the actual exhibit 51 can be observed through the screen 21. Therefore, when the light control unit 25 is in the scattering state, the image light projected from the projector 11 can be displayed on the screen 21, and in the transmission state, the screen 21 has transparency that can recognize the actual exhibit 51.
  • the surface 24a of the screen 21 that does not contact the light control portion 25 of the glass substrate 24 is the first surface
  • the surface 23a of the glass substrate 23 that does not contact the light control portion 25 is the second surface 23a.
  • a voltage is applied to the screen 21 so as to generate a potential difference between the control electrode 27 and the counter electrode 26.
  • the drive waveform (drive voltage waveform)
  • one electrode may be in a DC state (0 volt)
  • an AC voltage may be applied to the other electrode, or an AC voltage whose phase is inverted to both electrodes. May be applied to generate a potential difference. That is, when a voltage is applied so as to generate a potential difference between the control electrode 27 and the counter electrode 26, the screen 21 is in a transmission state when in the normal mode, and is in a scattering state when in the reverse mode. In the following description, the screen 21 may be in either the normal mode or the reverse mode.
  • the synchronization control unit 31 controls the dimming unit 25 of the screen 21 on which the image light is projected to scatter the image light, and is not projected.
  • a voltage is applied so that the light control unit 25 is in a scattering state or a transmission state.
  • the synchronization control unit 31 is connected to the projector 11, the screen 21, and the illumination device 41.
  • the synchronization control unit 31 controls the switching of the optical state of the screen 21 (the light control unit 25) and the lighting device 41 between turning on and off in synchronization with the projection of the image light of the projector 11.
  • a synchronization signal synchronized with the video frame period of the video signal input to the projector 11 can be used as the synchronization signal input from the projector 11 to the synchronization control unit 31, for example, a synchronization signal synchronized with the video frame period of the video signal input to the projector 11 can be used.
  • the synchronization control unit 31 may include a CPU (Central Processing Unit), a memory, and the like, and may be configured by a computer whose operation is controlled by a program, or an ASIC (Application Specific Specific Integrated Circuit) or the like. It may be hardware.
  • CPU Central Processing Unit
  • ASIC Application Specific Specific Integrated Circuit
  • the projector 11 is disposed on the real display 51 side of the screen 21.
  • the projector 11 may be any projector as long as it can project video light modulated by video information onto the screen 21. That is, the first video is projected on the screen 21.
  • the video information is obtained from a video signal input to the projector 11.
  • the projector 11 may receive a video signal of a still image as well as a video signal of a moving image. Further, the projector 11 may be arranged not only on the real display 51 side of the screen 21 but also on the observer side.
  • the illumination device 41 is preferably arranged on the entity display 51 side of the screen 21, but can also be arranged on the viewer side of the screen 21.
  • the lighting device 41 illuminates the actual exhibit 51.
  • the illumination device 41 is preferably capable of switching on and off at a high speed of one video cycle or less to be described later, such as LED (Light-Emitting-Diode) light and organic EL (Electro-Luminescence) illumination.
  • FIG. 3 shows the state of the screen 21 configured as described above, the linear transmittance of the light beam of the light control unit 25, the intensity (light intensity) of the image light projected from the projector 11, and the illumination light intensity of the illumination device 41. It is a timing chart.
  • the screen 21 changes between a scattering state and a transmission state once within one video period. That is, the transmission state and the scattering state are alternately switched at a predetermined cycle.
  • One video cycle is one frame period of a video signal input to the projector 11 and is, for example, about 50 to 60 Hz. Therefore, the screen 21 is switched between the scattering state and the transmission state in a period shorter than one video cycle.
  • the linear transmittance of the light beam of the light control unit 25 decreases. Since light incident on the screen during this period is scattered, an image can be displayed. Accordingly, since the projector 11 projects the image light onto the screen 21, the image light intensity increases and an image is displayed. On the other hand, during the period in which the screen 21 is in the scattering state, the illumination device 41 is switched off. This is because the contrast of the video displayed on the screen 21 is lowered by the influence of the lighting device 41 if the lighting device 41 is lit while the video is displayed.
  • the linear transmittance of the light beam of the light control unit 25 increases. Light incident on the screen during this period is transmitted as it is. Accordingly, the projector 11 stops projecting the image light on the screen 21.
  • the lighting device 41 switches to lighting. When the lighting device 41 is turned on, the real exhibit 51 is illuminated and can be clearly observed through the screen 21.
  • the image of the entire screen is repeatedly projected every one image period, and this repetition is not recognized as blinking by the human eye, but is projected onto the screen 21 by time averaging (integration).
  • the image and the actual exhibit 51 can be simultaneously observed without feeling flicker.
  • a synchronization signal for detecting the head of one video cycle is detected, and the process proceeds to step S2.
  • the synchronization signal may be a synchronization signal synchronized with the video frame period of the video signal input to the projector 11 described above. Note that the projector 11 and the illumination device 41 are set to an initial state in which no image light is projected and a light-off state, respectively.
  • step S2 a voltage is applied to the counter electrode 26 and the control electrode 27 so that the screen 21 is in a scattering state, and the process proceeds to step S3.
  • step S3 image light is projected on the projector 11, and the process proceeds to step S4. That is, projection control information for causing the projector 11 to project video light as the first video is output.
  • the projection control information may be a control signal system in which the start and stop of projection are defined at a high level and a low level of one signal line, and is composed of a combination of a high level and a low level of a plurality of signal lines.
  • a command format in which start and stop of projection are defined in the command or the like may be used.
  • this step is performed after the transient state shown in FIG. 3 has elapsed. The period of the transient state can be calculated in advance by the material constituting the light control unit 25 and the applied voltage.
  • step S4 the projection of the video performed in step S3 is stopped after the elapse of a predetermined period, and the process proceeds to step S5.
  • the projection period of this image is determined according to the period of the scattering state of the screen 21. That is, the projector 11 outputs projection control information for stopping the projection of the image light to the projector 11.
  • step S5 a voltage is applied to the counter electrode 26 and the control electrode 27 so that the screen 21 is in a transmissive state, and the process proceeds to step S6.
  • step S6 the lighting device 41 is turned on and the process proceeds to step S7.
  • this step is performed after the transient state shown in FIG. That is, the illumination control information for lighting the illumination device 41 on the second surface side is output.
  • the illumination control information may be a control signal system in which lighting and extinguishing are defined at a high level and a low level of one signal line, a command composed of a combination of a high level and a low level of a plurality of signal lines, etc. It may be a command format in which ON and OFF are defined.
  • step S7 the lighting device 41 is turned off after a predetermined period of time, and the process proceeds to step S8.
  • the lighting period of the video illumination device 41 is determined according to the period of the transmission state of the screen 21. That is, the illumination control information for turning off the illumination device 41 on the second surface side is output.
  • step S8 it is determined whether or not the use of the exhibition apparatus 1 is to be ended.
  • the flowchart is ended, and when it is not to be ended (NO), the process returns to step S1. That is, this flowchart functions as a control process.
  • the luminance of the screen 21 can be increased by increasing the ratio (hereinafter referred to as duty) of the time during which the light adjusting unit 25 is in the transmission state and the scattering state in one video cycle, and conversely the duty is reduced. Then, the actual exhibit 51 can be clearly illuminated. That is, when the duty is large, the ratio of the scattering state in one video period increases, and when the duty is small, the ratio of the transmission state in one video period increases.
  • the maximum brightness of the screen 21 and the actual exhibit 51 changes depending on the duty.
  • the brightness of the video displayed on the screen 21 can be changed according to the video signal level input to the projector 11 or the intensity of the projection light. It is also possible to make the actual exhibit 51 appear darker or brighter by dimming the lighting device 41. As described above, more complex effects such as a cross-fade effect can be provided by controlling the duty and dimming on the projector 11 side and the illumination device 41 side. Of course, duty control and dimming control may be combined.
  • FIG. 5 is an example in which the crossfade effect is performed by changing the duty.
  • FIG. 5A is basically the same as the timing chart shown in FIG. 3, but as an example, one video period is 10 milliseconds, the scattering state Ta is 5 milliseconds, the transmission state Tb is 4 milliseconds, The transient state when changing to the scattering state and the transmission state is 0.5 milliseconds.
  • the light intensity of the projector 11 is A
  • the illumination light intensity of the illumination device 41 is B.
  • the scattering state time Ta is increased to 1 to 8 milliseconds and the transmission state time Ta is decreased to 8 to 1 millisecond, as shown in FIG.
  • the maximum light intensity (the maximum brightness value of the image on the screen 21) changes in order from 1A to 8A, and the maximum illumination light intensity (the maximum brightness value of the actual exhibit 51 (illumination device 41)) sequentially changes from 8B to 1B. Change.
  • the unit of the cross fading time may be arbitrarily set as long as it is a time longer than one video cycle such as a video cycle or a second.
  • the ratio of the transmission state and the scattering state in one image period of the screen 21 is gradually increased while the ratio of the scattering state is gradually decreased and the ratio of the transmission state is gradually decreased and the scattering is performed.
  • the state ratio is changed to gradually increase. In this way, for example, the image gradually disappears from the state in which the image is displayed on the screen 21, and the actual exhibit 51 starts to gradually appear, and finally only the actual exhibit 51 can be seen. Crossfading effect can be realized.
  • FIG. 5 is an example in which the crossfade effect is performed by changing the light intensity.
  • FIG. 6A is also similar to the timing chart shown in FIG. 5A, except that the scattering state Ta is 1 millisecond, the transmission state Tb is 8 milliseconds, and the transient when changing from the scattering state to the transmission state. The state is fixed at 0.5 milliseconds.
  • the maximum light intensity of the projector 11 is Amax, and the maximum illumination light intensity of the illumination device 41 is Bmax.
  • the maximum light intensity from the projector 11 ( The maximum brightness value of the image on the screen 21 changes in order from 0 to 1 Amax, and the maximum illumination light intensity (the maximum brightness value of the actual exhibit 51 (illumination device 41)) changes in order from 8Bmax to 0.
  • This can be output by including light intensity information for changing the light intensity in addition to the start or stop of projection, lighting or extinguishing, in the projection control information or illumination control information.
  • the light intensity may be designated as an absolute value, or a relative value (such as ⁇ 12.5%) from the current value may be designated.
  • the light intensity of the image is gradually increased and the light intensity of the illumination device 41 is gradually decreased, and the light intensity of the image is gradually decreased and the light intensity of the illumination device 41 is gradually increased.
  • the image gradually disappears from the state in which the image is displayed on the screen 21, and the actual exhibit 51 starts to gradually appear, and finally only the actual exhibit 51 can be seen.
  • Cross-fade effect can be realized without changing the duty.
  • the lighting control information for turning off the lighting device 41 is output to the lighting device 41, and the image light is output from the projector 11 to the screen 21. Is output to the projector 11.
  • the projector 11 When the screen 21 is switched to the transmissive state, the projector 11 outputs projection control information for stopping projection of image light to the projector 11, and outputs illumination control information for lighting the lighting device 41 to the lighting device 41. .
  • the illumination device 41 for displaying the image and illuminating the actual exhibit 51 is turned off, so that the contrast of the displayed image is very high.
  • the lighting device 41 When the screen 21 is in a transmissive state, the lighting device 41 can be turned on to observe the actual exhibit 51. Therefore, the image displayed on the screen 21 and the actual exhibit 51 can be clearly observed. Moreover, since the illuminating device 41 is turned off in the scattering state, the power consumption of the illuminating device 41 can be reduced.
  • the display of the screen 21 and the observation of the actual exhibit 51 can be performed alternately. That is, each display and observation can be performed by time division. Therefore, the display on the screen 21 and the observation of the actual exhibit 51 can be performed simultaneously. Furthermore, since the time division is used, both the image and the actual exhibit 51 can be observed even if the observer moves, and there is no restriction on the observation position.
  • the duty of the transmission state and the scattering state in one video period of the screen 21 is gradually increased as the transmission state ratio is gradually decreased, and the scattering state ratio is gradually decreased, or conversely, the transmission state ratio is gradually decreased.
  • the ratio of the scattering state is changed so as to gradually increase.
  • the light intensity of the projector 11 is gradually increased and the light intensity of the illumination device 41 is gradually decreased. Conversely, the light intensity of the projector 11 is gradually decreased and the light intensity of the illumination device 41 is gradually increased. I am doing so. In this way, for example, by changing the intensity of light, it is possible to perform effects such as crossfading independently of the duty of the transmission state and the scattering state.
  • the degree of freedom of the projection position of the projector 11 is increased.
  • the screen 21 supports the entire visible light range, the wavelength of the image light projected from the projector is not limited. Further, the light transmission and light diffusion efficiency of the screen 21 can be increased by time-sharing control, and light loss hardly occurs.
  • an opaque display 61 as a display means is provided instead of the lighting device 41 and the actual exhibit 51.
  • the opaque display 61 is arranged on the second surface side of the screen 21 like the entity display 51 of the first embodiment, and receives a video signal such as a moving image, a still image, or character information as a second image. It is displayed towards the observer.
  • a flat panel display such as an LED-backlit liquid crystal display or an EL display that can be turned on and off at high speed in the same manner as the lighting device 41 can be used.
  • the opaque display 61 in this embodiment needs to have a luminance that allows an observer to observe the displayed image. Therefore, the opaque display 61 is preferably composed of a self-light emitting element or provided with light emitting means such as a backlight. .
  • FIG. 8 shows the state of the screen 21 of this embodiment, the linear transmittance of the light beam of the light control unit 25, the intensity (light intensity) of the image light projected from the projector 11, and the illumination light intensity of the illumination device 41.
  • a timing chart is shown. As shown in FIG. 8, when the screen 21 is in the scattering state, the image light from the projector 11 is projected as in FIG. When the screen 21 is in the transmissive state, an image is displayed on the opaque display 61. That is, since an image is displayed on the opaque display 61, the emission intensity is increased.
  • the display control information for stopping the video display is output to the opaque display 61 on the second surface side, and the projection control information for projecting the video to the projector 11 is output.
  • projection control information for stopping the projection of the image is output to the projector 11 and display control information for displaying the image on the opaque display 61 on the second surface side is output.
  • the display control information may be started and stopped by a control signal method or a command method.
  • the screen 21 and the opaque display 61 repeatedly project the image of the entire screen every one image period, and this repetition is not recognized as blinking by the human eye.
  • averaging integrating
  • the image projected on the screen 21 and the image displayed on the opaque display 61 can be observed simultaneously without feeling flicker. Effective production is possible.
  • the two video sources are collectively transmitted as one video source, and each of the projectors 11 and the opaque display 61 that receives them extracts each video signal from one video source.
  • a video signal an L-ch (left-eye) video used for 3D (three-dimensional) television broadcasting or the like and a side-by-side signal in which an R-ch (right-eye) video is superimposed are used. it can.
  • FIG. 9 shows an example in which the above-mentioned two video sources are sent together and received, and the respective projectors 11 and opaque display 61 that receive and extract the respective video signals from one video source are displayed.
  • FIG. 9 first, an image for the screen 21 and an image for the opaque display 61 are prepared (FIG. 9A).
  • a video transmission device (not shown) or the like sends the screen 21 video and the opaque display 61 video together into a single video source (video signal) using a side-by-side signal or the like (FIG. 9B).
  • the video signal of the screen video is extracted from the video signals combined into one, and projected onto the screen 21.
  • the video signal of the video for the opaque display 61 is extracted from the combined video signals and displayed (FIG. 9C). Then, it appears that the image for the opaque display 61 is displayed at the back of the screen image positioned in front of the observer (FIG. 9D).
  • cross fade described with reference to FIGS. 5 and 6 can be performed in the same manner.
  • the display control information for stopping the display of the image is output to the opaque display 61, and the image light from the projector 11 is output to the screen 21.
  • Projection control information for projecting is output.
  • projection control information for stopping projection of image light is output from the projector 11, and display control information for displaying an image on the opaque display 61 is output.
  • the display of the screen 21 and the display of the opaque display 61 can be performed alternately. Therefore, each display can be performed in a time division manner. Therefore, the display on the screen 21 and the display on the opaque display 61 can be observed simultaneously.
  • the video source of the video light projected from the projector 11 and the video source displayed on the opaque display 61 are collectively sent to each video source, and each video source is extracted by the projector 11 and the opaque display 61. Since both are projected or displayed, the timing of both images can be synchronized.
  • the period for projecting image light from the projector 11, the period for lighting the illumination device 41, and the period for displaying the opaque display 61 need to be completely matched with the periods for the scattering state and the transmission state. There is no.
  • the image light may be projected from the projector 11 in an arbitrary period between the scattering state periods, and the illumination device 41 is turned on or the opaque display 61 is turned on in an arbitrary period between the transmission state periods. You may make it display.

Abstract

Provided is a display device which allows vivid observation of an exhibit and video displayed on a screen. When a synchronization control unit (31) switches a screen (21) to a scattering mode, the synchronization control unit (31): outputs, to a lighting device (41), lighting control information for causing the lighting device (41) to darken; and outputs, to a projector (11), projection cont rol information for causing video light to be projected from the projector (11) to the screen (21). When the screen (21) is switched to a transmission mode, projection control information for causing projection of video light from the projector (11) to stop is outputted to the projector (11), and lighting control information for causing the lighting device (41) to light up is outputted to the lighting device (41).

Description

表示装置Display device
 本発明は、映像を表示する表示装置に関する。 The present invention relates to a display device that displays video.
 従来、ショーウインドウ、ショーケース、ショールーム等の展示装置において、展示物に関する情報等各種情報を観察者に与える場合は、パネルや表示装置等を別に設置することによって行っており、展示物と同時に当該情報を表示させることができなかった。 Conventionally, in the display devices such as show windows, showcases, showrooms, etc., when various information such as information on exhibits is given to the observer, it has been done by installing a panel or display device separately. Information could not be displayed.
 このような問題に対して、例えば特許文献1には、ショーウインドウ、ショーケースなどのカバーガラスにホログラムスクリーンを設け、展示物の展示と同時に情報表示を行うことが記載されている。 For example, Patent Document 1 describes that a hologram screen is provided on a cover glass of a show window, a showcase, etc., and information is displayed at the same time as the exhibits are displayed.
 また、特許文献2には、ショーケースの前面ガラスに半透明なスクリーンシートを設置し、これに情報を投影表示することが記載されている。 Patent Document 2 describes that a translucent screen sheet is installed on the front glass of a showcase, and information is projected and displayed on the screen sheet.
特開平9-28530号公報Japanese Patent Laid-Open No. 9-28530 特開2012-32613号公報JP 2012-32613 A
 特許文献1に記載されたホログラムを用いた情報表示展示装置の場合、ホログラムスクリーンに対してある決められた位置から映像の投影を行わなければならず、投射位置の自由度がない。また、スクリーンによる回折角度も設計時に決められ、観察される光の出射角度範囲が狭く、観察者の視点位置が制限されるといった問題があった。 In the case of an information display exhibition apparatus using a hologram described in Patent Document 1, an image must be projected from a predetermined position on the hologram screen, and there is no degree of freedom in the projection position. In addition, the diffraction angle by the screen is also determined at the time of design, and there is a problem that the observation angle range of the observed light is narrow and the viewpoint position of the observer is limited.
 また、ホログラムスクリーンはスクリーン内部の屈折率分布などを利用して回折現象を発生させているので、光の取り出し効率が悪い。また、同様の理由によりショーケース内に設置された展示物からの光の影響を受け、鮮明さが損なわれる。そして、ホログラムスクリーンは非常に高価であるといった問題があった。 Also, since the hologram screen generates a diffraction phenomenon using the refractive index distribution inside the screen, the light extraction efficiency is poor. Also, for the same reason, the clearness is lost due to the influence of light from the exhibits installed in the showcase. The hologram screen has a problem that it is very expensive.
 特許文献2に記載されたショーケースの場合、半透明スクリーン上の映像表示領域の後方にある実体展示物が見えなくなる。また、視点を変えると、スクリーン上の映像表示領域と実体展示物の位置関係が変わるために、映像表示領域と実体展示物が重なり合ったり、間が開いたりするために、最適な(即ち、制作者が意図する構図が観察できる)視点位置が固定され、複数の観察者が同時に観察するような用途に向かない。また、スクリーン上の映像表示領域には、常時スクリーン後方から実体展示物の発する光が当たっており、表示映像のコントラストが常に悪いといった問題があった。 In the case of the showcase described in Patent Document 2, the actual exhibit behind the video display area on the translucent screen becomes invisible. Also, if the viewpoint is changed, the positional relationship between the video display area on the screen and the actual exhibit changes, so that the video display area and the actual exhibit overlap or open, so that it is optimal (ie production The viewpoint position is fixed), and it is not suitable for applications in which a plurality of observers observe at the same time. In addition, the image display area on the screen is always exposed to light emitted from the actual display from behind the screen, and there is a problem that the contrast of the display image is always poor.
 そこで、本発明は、上述した問題に鑑み、例えば、スクリーンに表示される映像と展示物とを鮮明に観察することができる表示装置を提供することを目的とする。 Therefore, in view of the above-described problems, an object of the present invention is to provide a display device that can clearly observe, for example, images displayed on a screen and exhibits.
 上記課題を解決するために、請求項1に記載された発明は、第1の面および前記第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンと、前記スクリーンの透過状態および散乱状態を切り替える制御手段と、有し、前記制御手段は、前記スクリーンを前記散乱状態に切り替えている場合は、前記第2の面側の照明の光強度を減少させる照明制御情報を出力し、前記スクリーンを前記散乱状態に切り替えている任意の期間に、前記スクリーンに第1の映像を投射させる投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている場合は、前記第1の映像の投射を停止させる前記投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている任意の期間に、前記第2の面側の照明の光強度を増加させる前記照明制御情報を出力する、ことを特徴とする表示装置である。 In order to solve the above-mentioned problem, the invention described in claim 1 has a first surface and a second surface which is a back surface of the first surface, and has a transmission state and a scattering state with respect to visible light. A switchable screen; and control means for switching the transmission state and the scattering state of the screen. When the screen is switched to the scattering state, the control means controls the illumination on the second surface side. Illumination control information for reducing light intensity is output, projection control information for projecting a first image on the screen is output during any period when the screen is switched to the scattering state, and the screen is in the transmission state The projection control information for stopping projection of the first video is output, and the second surface is switched to an arbitrary period during which the screen is switched to the transmission state. The outputs illumination control data for increasing the light intensity of the lighting, it is a display device according to claim.
 請求項2に記載された発明は、第1の面および前記第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンと、前記スクリーンの透過状態および散乱状態を切り替える制御手段と、有し、前記制御手段は、前記スクリーンを前記散乱状態に切り替えている場合は、前記第2の面側の表示手段に第2の映像の光強度を減少させる表示制御情報を出力し、前記スクリーンを前記散乱状態に切り替えている任意の期間に、前記スクリーンに第1の映像を投射させる投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている場合は、前記第1の映像の投射を停止させる前記投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている任意の期間に、前記表示手段に前記第2の映像の光強度を増加させる前記表示制御情報を出力する、ことを特徴とする表示装置である。 According to a second aspect of the present invention, there is provided a screen having a first surface and a second surface that is the back surface of the first surface and capable of switching between a transmission state and a scattering state with respect to visible light, and the screen Control means for switching the transmission state and the scattering state of the second image, and the control means, when the screen is switched to the scattering state, displays the light intensity of the second image on the display means on the second surface side. Display control information for reducing the screen, output projection control information for projecting the first image on the screen, and switch the screen to the transmission state during an arbitrary period when the screen is switched to the scattering state. If it is, the projection control information for stopping the projection of the first video is output, and the second means is displayed on the display means during an arbitrary period when the screen is switched to the transmission state. And outputs the display control information for increasing the light intensity of the image, it is a display device according to claim.
 請求項8に記載された発明は、第1の面および前記第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンを透過状態および散乱状態を切り替える制御工程を含み、前記制御工程は、前記スクリーンを前記散乱状態に切り替えている場合は、前記第2の面側の照明の光強度を減少させる照明制御情報を出力し、前記スクリーンを前記散乱状態に切り替えている任意の期間に、前記スクリーンに第1の映像を投射させる投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている場合は、前記第1の映像の投射を停止させる前記投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている任意の期間に、前記第2の面側の照明の光強度を増加させる前記照明制御情報を出力する、ことを特徴とする表示方法である。 The invention described in claim 8 includes a screen having a first surface and a second surface which is the back surface of the first surface, and capable of switching between a transmissive state and a scattering state with respect to visible light. A control step of switching a scattering state, and when the screen is switched to the scattering state, the control step outputs illumination control information for reducing light intensity of illumination on the second surface side, and the screen When the screen is switched to the scattering state, projection control information for projecting the first video onto the screen is output, and when the screen is switched to the transmissive state, the projection of the first video is performed. The projection control information for stopping the illumination and the illumination control information for increasing the light intensity of the illumination on the second surface side in an arbitrary period during which the screen is switched to the transmission state. Forces, a display method wherein the.
 請求項9に記載された発明は、第1の面および前記第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンを透過状態および散乱状態を切り替える制御工程を含み、前記制御工程は、前記スクリーンを前記散乱状態に切り替えている場合は、前記第2の面側の表示手段に第2の映像の光強度を減少させる表示制御情報を出力し、前記スクリーンを前記散乱状態に切り替えている任意の期間に、前記スクリーンに第1の映像を投射させる投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている場合は、前記第1の映像の投射を停止させる前記投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている任意の期間に、前記表示手段に前記第2の映像の光強度を増加させる前記表示制御情報を出力する、ことを特徴とする表示方法である。 The invention described in claim 9 includes a screen having a first surface and a second surface which is the back surface of the first surface, and capable of switching between a transmissive state and a scattering state with respect to visible light. Display control information including a control step of switching a scattering state, wherein the control step reduces the light intensity of the second image on the display means on the second surface side when the screen is switched to the scattering state. Output the projection control information for projecting the first video on the screen in any period when the screen is switched to the scattering state, and when the screen is switched to the transmissive state, The projection control information for stopping the projection of the first video is output, and the light intensity of the second video is increased on the display means during an arbitrary period when the screen is switched to the transmission state. And it outputs the display control information to a display wherein the.
 請求項10に記載された発明は、請求項8に記載の表示方法を、コンピュータにより実行させることを特徴とする表示プログラムである。 The invention described in claim 10 is a display program characterized by causing a display method according to claim 8 to be executed by a computer.
 請求項11に記載された発明は、請求項9に記載の表示方法を、コンピュータにより実行させることを特徴とする表示プログラムである。 The invention described in claim 11 is a display program characterized in that the display method according to claim 9 is executed by a computer.
 請求項12に記載された発明は、請求項10に記載の表示プログラムを格納したことを特徴とするコンピュータ読み取り可能な記録媒体である。 The invention described in claim 12 is a computer-readable recording medium in which the display program according to claim 10 is stored.
 請求項13に記載された発明は、請求項11に記載の表示プログラムを格納したことを特徴とするコンピュータ読み取り可能な記録媒体である。 The invention described in claim 13 is a computer-readable recording medium in which the display program according to claim 11 is stored.
本発明の第1の実施例にかかる表示装置を備えた展示装置の概略構成図である。It is a schematic block diagram of the exhibition apparatus provided with the display apparatus concerning the 1st Example of this invention. 図1に示されたスクリーンの模式的な断面図である。It is typical sectional drawing of the screen shown by FIG. 図1に示されたスクリーンの状態と調光部の光線の直線透過率とプロジェクタから投射される映像光強度のタイミングチャートである。FIG. 2 is a timing chart of the state of the screen shown in FIG. 1, the linear transmittance of light beams of a light control unit, and the intensity of image light projected from a projector. 図1に示された表示装置の動作を示したフローチャートである。2 is a flowchart illustrating an operation of the display device illustrated in FIG. 1. 図1に示されたスクリーンの散乱状態と透過状態のデューティを変化させることでクロスフェードを行う説明図である。It is explanatory drawing which performs a cross fade by changing the duty of the scattering state of a screen shown by FIG. 1, and a permeation | transmission state. 図1に示されたプロジェクタと照明装置の光強度を変化させることでクロスフェードを行う説明図である。It is explanatory drawing which performs a cross fade by changing the light intensity of the projector shown in FIG. 1, and an illuminating device. 本発明の第2の実施例にかかる表示装置の概略構成図である。It is a schematic block diagram of the display apparatus concerning the 2nd Example of this invention. 図7に示されたスクリーンの状態と調光部の光線の直線透過率とプロジェクタから投射される映像光強度のタイミングチャートである。FIG. 8 is a timing chart of the state of the screen shown in FIG. 7, the linear transmittance of light beams from the light control unit, and the intensity of image light projected from the projector. 図7に示されたスクリーンと不透明ディスプレイに表示する映像ソースの送出と表示の説明図である。FIG. 8 is an explanatory diagram of transmission and display of a video source displayed on the screen and the opaque display shown in FIG. 7.
 以下、本発明の一実施形態にかかる表示装置を説明する。本発明の一実施形態にかかる表示装置は、第1の面および第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンと、そのスクリーンの透過状態および散乱状態を切り替える制御手段と、を有している。そして、制御手段は、スクリーンを散乱状態に切り替えている場合は、第2の面側の照明の光強度を減少させる照明制御情報を出力し、スクリーンを散乱状態に切り替えている任意の期間に、スクリーンに第1の映像を投射させる投射制御情報を出力し、スクリーンを透過状態に切り替えている場合は、第1の映像の投射を停止させる投射制御情報を出力し、スクリーンを透過状態に切り替えている任意の期間に、第2の面側の照明の光強度を増加させる照明制御情報を出力している。このようにすることにより、スクリーンが散乱状態の場合には、映像を表示して展示物等を照明するための照明の光強度が減少するので、表示映像のコントラストを非常に高くすることができ、スクリーンが透過状態の場合には、照明の光強度を増加させて展示物等を観察させることができる。そのため、スクリーンに表示される映像と展示物とを鮮明に観察することができる。 Hereinafter, a display device according to an embodiment of the present invention will be described. A display device according to an embodiment of the present invention has a first surface and a second surface that is the back surface of the first surface, and a screen that can switch between a transmission state and a scattering state for visible light, and And control means for switching the transmission state and the scattering state of the screen. And when the control unit is switching the screen to the scattering state, it outputs illumination control information for reducing the light intensity of the illumination on the second surface side, and in an arbitrary period during which the screen is switched to the scattering state, When the projection control information for projecting the first video on the screen is output and the screen is switched to the transmission state, the projection control information for stopping the projection of the first video is output, and the screen is switched to the transmission state. Illumination control information for increasing the light intensity of the illumination on the second surface side is output during an arbitrary period. In this way, when the screen is in a scattered state, the light intensity of the illumination for displaying the image and illuminating the exhibits etc. is reduced, so that the contrast of the displayed image can be made very high. When the screen is in a transmissive state, it is possible to increase the light intensity of illumination and observe an exhibit or the like. Therefore, it is possible to clearly observe the video displayed on the screen and the exhibit.
 また、他の実施形態にかかる表示装置は、第1の面および第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンと、そのスクリーンの透過状態および散乱状態を切り替える制御手段と、を有している。そして、制御手段は、スクリーンを散乱状態に切り替えている場合は、第2の面側の表示手段に第2の映像の光強度を減少させる表示制御情報を出力し、スクリーンを散乱状態に切り替えている任意の期間に、スクリーンに第1の映像を投射させる投射制御情報を出力し、スクリーンを透過状態に切り替えている場合は、第1の映像の投射を停止させる投射制御情報を出力し、スクリーンを透過状態に切り替えている任意の期間に、第2の面側の表示手段に第2の映像の光強度を増加させる表示制御情報を出力している。このようにすることにより、スクリーンが散乱状態の場合には、第1の映像を表示して第2の映像を表示している表示手段の光強度が減少するので、表示される第1の映像のコントラストを非常に高くすることができ、スクリーンが透過状態の場合には、表示手段に第2の映像のコントラストを非常に高く表示させることができる。そのため、スクリーンに表示される第1の映像と表示手段に表示される第2の映像を共に鮮明に観察することができる。 A display device according to another embodiment has a first surface and a second surface that is the back surface of the first surface, and a screen that can switch between a transmission state and a scattering state for visible light, and And control means for switching the transmission state and the scattering state of the screen. When the screen is switched to the scattering state, the control means outputs display control information for reducing the light intensity of the second image to the second surface side display means, and switches the screen to the scattering state. The projection control information for projecting the first video on the screen is output during an arbitrary period, and when the screen is switched to the transmission state, the projection control information for stopping the projection of the first video is output, and the screen The display control information for increasing the light intensity of the second video is output to the display means on the second surface side in an arbitrary period during which the screen is switched to the transmission state. In this way, when the screen is in a scattering state, the light intensity of the display means that displays the first video and displays the second video is reduced, so the first video that is displayed The contrast of the second image can be displayed very high on the display means when the screen is in a transmissive state. Therefore, it is possible to clearly observe both the first video displayed on the screen and the second video displayed on the display means.
 また、制御手段は、スクリーンの透過状態と散乱状態とを所定の周期で交互に切り替えるようにしてもよい。このようにすることにより、スクリーンの表示と展示物や表示手段の観察を交互に行うことができるので、それぞれの表示や観察を時分割で行うことができる。したがって、スクリーンの表示と展示物や表示手段の観察を同時にすることができる。 Further, the control means may alternately switch the transmission state and the scattering state of the screen at a predetermined cycle. By doing in this way, since display of a screen and observation of an exhibit and a display means can be performed alternately, each display and observation can be performed by time division. Therefore, it is possible to simultaneously display the screen and observe the exhibits and display means.
 また、制御手段は、スクリーンの所定の周期の1周期における透過状態と散乱状態との割合を変化させるようにしてもよい。このようにすることにより、例えば、スクリーンの表示と展示物や表示手段のうちより鮮明に見せたい方の割合を多くするようなことができ、スクリーンの表示と展示物や表示手段の内容等に応じてそれぞれの見せ方を変化させることができる。 Further, the control means may change the ratio between the transmission state and the scattering state in one cycle of the predetermined cycle of the screen. By doing so, for example, it is possible to increase the ratio of the screen display and the exhibits and display means that want to show more clearly, such as the screen display and the contents of the exhibits and display means. Each way of viewing can be changed accordingly.
 また、制御手段は、スクリーンの所定の周期の1周期における透過状態と散乱状態との割合を、透過状態の割合を徐々に増加させるとともに散乱状態の割合を徐々に減少させ、透過状態の割合を徐々に減少させるとともに散乱状態の割合を徐々に増加させるように変化させるようにしてもよい。このようにすることにより、例えば、全てスクリーン表示状態から徐々に展示物や表示手段が観察可能となり、その後全て展示物や表示手段の表示状態に変化するクロスフェードなどの演出効果を行うことができる。 In addition, the control means gradually increases the ratio of the transmission state and the ratio of the transmission state and gradually decreases the ratio of the transmission state and the ratio of the transmission state in one cycle of the predetermined period of the screen. You may make it change so that it may reduce gradually and the ratio of a scattering state may increase gradually. By doing in this way, for example, it is possible to observe the exhibits and display means gradually from the screen display state, and then it is possible to perform effects such as crossfading that changes to the display state of the exhibits and display means thereafter. .
 また、制御手段は、投射制御情報に第1の映像の光強度を変化させる情報を含ませるようにしてもよい。このようにすることにより、スクリーンの表示と展示物や表示手段のうちより鮮明に見せたい方の光の強さを多くするようなことができ、スクリーンの表示と展示物や表示手段の内容等に応じてそれぞれの見せ方を変化させることができる。 Further, the control means may include information for changing the light intensity of the first video in the projection control information. By doing so, it is possible to increase the light intensity of the screen display and the exhibits and display means that want to show more clearly, such as the contents of the screen display and the exhibits and display means, etc. Each way of showing can be changed according to.
 また、制御手段は、第1の映像の光強度を徐々に増加させるとともに照明または第2の映像の光強度を徐々に減少させ、第1の映像の光強度を徐々に減少させるとともに照明または第2の映像の光強度を徐々に増加させるようにしてもよい。このようにすることにより、例えば、光の強さを変化させることで、クロスフェードなどの演出効果を行うことができる。 In addition, the control means gradually increases the light intensity of the first image and gradually decreases the light intensity of the illumination or the second image, gradually decreases the light intensity of the first image and the illumination or the second image. The light intensity of the second image may be gradually increased. By doing so, for example, by changing the light intensity, it is possible to achieve an effect such as a crossfade.
 また、本発明の一実施形態にかかる表示方法は、第1の面および前記第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンを透過状態および散乱状態を切り替える制御工程を含んでいる。そして、制御工程は、スクリーンを散乱状態に切り替えている場合は、第2の面側の照明の光強度を減少させる照明制御情報を出力し、スクリーンを散乱状態に切り替えている任意の期間に、スクリーンに第1の映像を投射させる投射制御情報を出力し、スクリーンを透過状態に切り替えている場合は、第1の映像の投射を停止させる投射制御情報を出力し、スクリーンを透過状態に切り替えている任意の期間に、第2の面側の照明の光強度を増加させる照明制御情報を出力している。このようにすることにより、スクリーンが散乱状態の場合には、映像を表示して展示物等を照明するための照明の光強度が減少するので、表示映像のコントラストを非常に高くすることができ、スクリーンが透過状態の場合には、照明の光強度を増加させて展示物等を観察させることができる。そのため、スクリーンに表示される映像と展示物とを鮮明に観察することができる。 In addition, a display method according to an embodiment of the present invention includes a first surface and a second surface that is the back surface of the first surface, and a screen capable of switching between a transmission state and a scattering state with respect to visible light. Includes a control step of switching between the transmission state and the scattering state. And when the control step is switching the screen to the scattering state, it outputs illumination control information for reducing the light intensity of the illumination on the second surface side, and in an arbitrary period during which the screen is switched to the scattering state, When the projection control information for projecting the first video on the screen is output and the screen is switched to the transmission state, the projection control information for stopping the projection of the first video is output, and the screen is switched to the transmission state. Illumination control information for increasing the light intensity of the illumination on the second surface side is output during an arbitrary period. In this way, when the screen is in a scattered state, the light intensity of the illumination for displaying the image and illuminating the exhibits etc. is reduced, so that the contrast of the displayed image can be made very high. When the screen is in a transmissive state, it is possible to increase the light intensity of illumination and observe an exhibit or the like. Therefore, it is possible to clearly observe the video displayed on the screen and the exhibit.
 また、本発明の他の実施形態にかかる表示方法は、第1の面および第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンを透過状態および散乱状態を切り替える制御工程を含んでいる。制御工程は、スクリーンを散乱状態に切り替えている場合は、第2の面側の表示手段に第2の映像の光強度を減少させる表示制御情報を出力し、スクリーンを散乱状態に切り替えている任意の期間に、スクリーンに第1の映像を投射させる投射制御情報を出力し、スクリーンを透過状態に切り替えている場合は、第1の映像の投射を停止させる投射制御情報を出力し、スクリーンを透過状態に切り替えている任意の期間に、第2の面側の前記表示手段に第2の映像の光強度を増加させる表示制御情報を出力している。このようにすることにより、スクリーンが散乱状態の場合には、第1の映像を表示して第2の映像を表示している表示手段の光強度が減少するので、表示される第1の映像のコントラストを非常に高くすることができ、スクリーンが透過状態の場合には、表示手段に第2の映像のコントラストを非常に高く表示させることができる。そのため、スクリーンに表示される第1の映像と表示手段に表示される第2の映像を共に鮮明に観察することができる。 In addition, a display method according to another embodiment of the present invention includes a first surface and a second surface that is the back surface of the first surface, and a screen that can switch between a transmission state and a scattering state with respect to visible light. Includes a control step of switching between the transmission state and the scattering state. In the control step, when the screen is switched to the scattering state, display control information for reducing the light intensity of the second image is output to the display means on the second surface side, and the screen is switched to the scattering state. During this period, projection control information for projecting the first video on the screen is output, and when the screen is switched to the transmission state, projection control information for stopping the projection of the first video is output and transmitted through the screen. Display control information for increasing the light intensity of the second video is output to the display means on the second surface side during an arbitrary period of switching to the state. In this way, when the screen is in a scattering state, the light intensity of the display means that displays the first video and displays the second video is reduced, so the first video that is displayed The contrast of the second image can be displayed very high on the display means when the screen is in a transmissive state. Therefore, it is possible to clearly observe both the first video displayed on the screen and the second video displayed on the display means.
 また、上述した表示方法を、コンピュータにより実行させる表示プログラムとして構成しても良い。このようにすることにより、コンピュータにより実行されるプログラムであるので、専用のハードウェア等が不要となり、汎用の情報処理装置にインストールして機能させることができる。 Further, the display method described above may be configured as a display program that is executed by a computer. By doing so, since the program is executed by a computer, dedicated hardware or the like is not necessary, and it can be installed and functioned in a general-purpose information processing apparatus.
 また、上述した表示プログラムをコンピュータ読み取り可能な記録媒体に格納してもよい。このようにすることにより、当該プログラムを機器に組み込む以外に単体でも流通させることができ、バージョンアップ等も容易に行える。 Further, the display program described above may be stored in a computer-readable recording medium. In this way, the program can be distributed as a single unit in addition to being incorporated in the device, and version upgrades can be easily performed.
 本発明の第1の実施例にかかる表示装置2を備えた展示装置1を図1乃至図6を参照して説明する。展示装置1は図1に示すように、表示装置2と、プロジェクタ11と、照明装置41と、を備えている。表示装置2とプロジェクタ11は、プロジェクタ11の映像光(投影映像)を投射(投影)して、スクリーン21(投影面)で透過散乱する透過型プロジェクション装置である。なお、図1では、観察者と実体展示物51との間にスクリーン21のみが配置されているが、例えば、ショーウインドウ、ショーケース等に実体展示物51を収容し、ショーウインドウ、ショーケースの少なくとも観察者と対面する一つの面をスクリーン21で構成またはスクリーン21が取り付けられているようにしてもよい。 The display device 1 including the display device 2 according to the first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the exhibition apparatus 1 includes a display device 2, a projector 11, and a lighting device 41. The display device 2 and the projector 11 are transmissive projection devices that project (project) the image light (projected image) of the projector 11 and transmit and scatter it on the screen 21 (projection surface). In FIG. 1, only the screen 21 is disposed between the observer and the actual exhibit 51. For example, the actual exhibit 51 is accommodated in a show window, a showcase, and the like. At least one surface facing the observer may be configured by the screen 21 or may be attached.
 表示装置2は、スクリーン21と、同期制御部31と、を備えている。 The display device 2 includes a screen 21 and a synchronization control unit 31.
 図2に、光学状態を制御可能なスクリーン21の模式的な断面図を示す。図2に示したスクリーン21は、一対の透明なガラス基板23,24の間に液晶を含む複合材料を挟み込んだ光学層である調光部25を有する。一方のガラス基板24の調光部25側には、全面に対向電極26が形成される。他方のガラス基板23の調光部25側には、全面に制御電極27が形成される。なお、電極26、27と調光部25との間に、絶縁体からなる中間層を形成してもよい。 FIG. 2 is a schematic cross-sectional view of the screen 21 that can control the optical state. The screen 21 shown in FIG. 2 has a light control unit 25 that is an optical layer in which a composite material containing liquid crystal is sandwiched between a pair of transparent glass substrates 23 and 24. A counter electrode 26 is formed on the entire surface of one glass substrate 24 on the light control unit 25 side. A control electrode 27 is formed on the entire surface of the other glass substrate 23 on the light control section 25 side. An intermediate layer made of an insulator may be formed between the electrodes 26 and 27 and the light control unit 25.
 スクリーン21は、電圧の印加により光学状態を変化できる素子や材料により構成された調光部25を備えている。調光部25の光学状態は、散乱状態が映像を表示する状態であり、それよりも入射光の散乱が小さく且つ光線の直線透過率が高い透明な透過状態が映像を表示しない非映像表示状態である。調光部25は、対向電極26と制御電極27との間に配置される。即ち、調光部25は、2つの電極間に挟持され、2つの電極間に印加された電圧によって光学状態を透過状態と散乱状態とに切り替え可能である。 The screen 21 includes a light control unit 25 made of an element or a material that can change an optical state by applying a voltage. The optical state of the light control unit 25 is a state in which the scattering state displays an image, and a transparent transmission state in which the scattering of incident light is smaller and the linear transmittance of light is higher than that is a non-image display state in which no image is displayed. It is. The light control unit 25 is disposed between the counter electrode 26 and the control electrode 27. That is, the light control unit 25 is sandwiched between two electrodes and can switch an optical state between a transmission state and a scattering state by a voltage applied between the two electrodes.
 調光部25には、光学状態を散乱状態と透過状態とを切り替えることができるもの、例えば、高分子中にネマティック液晶ドメインを分布させた所謂高分子分散液晶(PDLC)を用いることができる。また、電圧を印加しない状態において高分子ネットワークがドメインを形成する液晶分子の配向と関連付けられている複合材料を用いれば、より良好な光学状態を実現できる。 As the light control unit 25, one that can switch an optical state between a scattering state and a transmission state, for example, a so-called polymer dispersed liquid crystal (PDLC) in which nematic liquid crystal domains are distributed in a polymer can be used. In addition, a better optical state can be realized by using a composite material that is associated with the orientation of liquid crystal molecules in which a polymer network forms domains in a state where no voltage is applied.
 PDLCを用いた例としては、光重合性モノマー、ネマティック液晶及び重合開始材料を適量混合し、調光部材を構成するガラスや樹脂の5から50ミクロン程度の基板間に配置せしめ、モノマーと液晶が相分離する温度など条件において紫外線を照射することで、高分子中に液晶ドメインを分散させることができる。この場合、通常電圧を印加しない場合に高分子と液晶の屈折率差による散乱が大きく、電場により液晶を配列させた場合に基板法線方向の屈折率差が小さくなるように設計され、ノーマルモードと呼ばれる。この他、ネマティック液晶を含むカプセルをモノマー及び重合開始剤と混合したものを用いることもできる。 As an example using PDLC, a suitable amount of photopolymerizable monomer, nematic liquid crystal and polymerization initiating material are mixed and placed between 5 and 50 micron substrates of glass or resin constituting the light control member. The liquid crystal domain can be dispersed in the polymer by irradiating with ultraviolet rays under conditions such as phase separation temperature. In this case, the normal mode is designed so that the scattering due to the refractive index difference between the polymer and the liquid crystal is large when no voltage is applied, and the refractive index difference in the substrate normal direction is small when the liquid crystal is aligned by an electric field. Called. In addition, it is also possible to use a capsule containing a nematic liquid crystal mixed with a monomer and a polymerization initiator.
 電圧を印加しない状態において高分子ネットワークがドメインを形成する液晶分子の配向と関連付けられている複合材料としては、光重合性モノマーが液晶の性質を保有している。基板はラビングなど配向処理がなされ、基板間に配置された混合材料は配向処理に基づいた配列をもつ。この状態で紫外線を照射することで、電圧を印加しない場合に上記初期配列となり、電圧を印加することで液晶ドメインと高分子との屈折率差が生じることで散乱を生じる。なお一方向配列とした場合はこの配向に依存した光学特性を有するが、カイラル材を添加し初期配列にねじれを与えることで、入射光の偏光に依存しない光学特性としたものを用いることもできる。この場合、通常電圧を印加しない場合に高分子と液晶の屈折率差による散乱が小さく、電場により液晶を配列させた場合に屈折率差が大きくなるように設計され、リバースモードと呼ばれる。 As a composite material associated with the orientation of liquid crystal molecules in which a polymer network forms domains in a state where no voltage is applied, a photopolymerizable monomer has liquid crystal properties. The substrate is subjected to an alignment process such as rubbing, and the mixed material disposed between the substrates has an arrangement based on the alignment process. By irradiating ultraviolet rays in this state, the above initial arrangement is obtained when no voltage is applied, and scattering occurs due to the difference in refractive index between the liquid crystal domain and the polymer when the voltage is applied. In addition, when the unidirectional arrangement is used, it has optical characteristics depending on this orientation. However, it is also possible to use an optical characteristic that does not depend on the polarization of incident light by adding a chiral material and twisting the initial arrangement. . In this case, the scattering due to the difference in refractive index between the polymer and the liquid crystal is small when a normal voltage is not applied, and the refractive index difference is increased when the liquid crystal is aligned by an electric field, which is called a reverse mode.
 即ち、ノーマルモードでは、電極間に所定の電圧を印加した場合に透過状態となり、電極間に電圧を印加しない場合に散乱状態となる。また、リバースモードでは、電極間に所定の電圧を印加した場合に散乱状態となり、電極間に電圧を印加しない場合に透過状態となる。 That is, in the normal mode, a transmission state is obtained when a predetermined voltage is applied between the electrodes, and a scattering state is obtained when no voltage is applied between the electrodes. In the reverse mode, a scattering state occurs when a predetermined voltage is applied between the electrodes, and a transmission state occurs when no voltage is applied between the electrodes.
 対向電極26と制御電極27は、たとえばITO(酸化インジウム・スズ)により、透明電極として形成される。 The counter electrode 26 and the control electrode 27 are formed as transparent electrodes using, for example, ITO (indium tin oxide).
 スクリーン21のガラス基板24側に位置する観察者からは、スクリーン21の調光部25が散乱状態の場合は、スクリーン21は例えば白濁したように見える。一方、調光部25が透過状態の場合は、スクリーン21は透過状態のため、スクリーン21越しに実体展示物51を観察することができる。したがって、調光部25が散乱状態の場合にはスクリーン21にプロジェクタ11から投射される映像光が表示でき、透過状態の場合はスクリーン21は、実体展示物51を認識しうる透明さを有する。 From the observer located on the glass substrate 24 side of the screen 21, when the light control unit 25 of the screen 21 is in a scattering state, the screen 21 appears to be clouded, for example. On the other hand, when the dimming unit 25 is in the transmissive state, the screen 21 is in the transmissive state, so that the actual exhibit 51 can be observed through the screen 21. Therefore, when the light control unit 25 is in the scattering state, the image light projected from the projector 11 can be displayed on the screen 21, and in the transmission state, the screen 21 has transparency that can recognize the actual exhibit 51.
 なお、本実施例では、スクリーン21のガラス基板24の調光部25と接しない側の面24aを第1の面、ガラス基板23側の調光部25と接しない側の面23aを第2の面とし、第1の面を観察者側、第2の面を実体展示物51側に向けるように配置するが、面24aを第2の面として実体展示物51側、面23aを第1の面として観察者側に向けるように配置してもよい。 In the present embodiment, the surface 24a of the screen 21 that does not contact the light control portion 25 of the glass substrate 24 is the first surface, and the surface 23a of the glass substrate 23 that does not contact the light control portion 25 is the second surface 23a. Are arranged such that the first surface faces the observer side and the second surface faces the entity exhibit 51 side, but the surface 24a is the second surface and the entity exhibit 51 side and the surface 23a are the first surface. You may arrange | position so that it may face to the observer side as a surface.
 スクリーン21は、制御電極27と対向電極26との間に電位差を生じるように電圧が印加される。駆動波形(駆動電圧波形)としては、たとえば、一方の電極を直流状態(0ボルト)として、他方の電極に交流電圧を印加するようにしてもよいし、双方の電極に位相が反転した交流電圧を印加して電位差が生じるようにしてもよい。即ち、制御電極27と対向電極26との間に電位差を生じるように電圧が印加されると、スクリーン21がノーマルモードの場合は透過状態になり、リバースモードの場合は散乱状態になる。なお、以下の説明において、スクリーン21はノーマルモード、リバースモードのいずれであってもよい。 A voltage is applied to the screen 21 so as to generate a potential difference between the control electrode 27 and the counter electrode 26. As the drive waveform (drive voltage waveform), for example, one electrode may be in a DC state (0 volt), and an AC voltage may be applied to the other electrode, or an AC voltage whose phase is inverted to both electrodes. May be applied to generate a potential difference. That is, when a voltage is applied so as to generate a potential difference between the control electrode 27 and the counter electrode 26, the screen 21 is in a transmission state when in the normal mode, and is in a scattering state when in the reverse mode. In the following description, the screen 21 may be in either the normal mode or the reverse mode.
 制御手段としての同期制御部31は、映像光が投射されるスクリーン21の調光部25を、映像光が投射されている場合は当該映像光を散乱する状態に制御し、投射されていない場合に透過状態に制御する。即ち、調光部25を散乱状態または透過状態となるように電圧を印加する。同期制御部31は、図1に示したように、プロジェクタ11とスクリーン21と照明装置41とに接続される。同期制御部31は、プロジェクタ11の映像光の投射に同期させて、スクリーン21(調光部25)の光学状態と、照明装置41の点灯および消灯の切り替えを制御する。また、プロジェクタ11から同期制御部31へ入力される同期信号は、例えばプロジェクタ11に入力される映像信号の映像フレーム周期に同期した同期信号を用いることができる。 When the image light is projected, the synchronization control unit 31 as the control unit controls the dimming unit 25 of the screen 21 on which the image light is projected to scatter the image light, and is not projected. To control the transmission state. That is, a voltage is applied so that the light control unit 25 is in a scattering state or a transmission state. As shown in FIG. 1, the synchronization control unit 31 is connected to the projector 11, the screen 21, and the illumination device 41. The synchronization control unit 31 controls the switching of the optical state of the screen 21 (the light control unit 25) and the lighting device 41 between turning on and off in synchronization with the projection of the image light of the projector 11. Further, as the synchronization signal input from the projector 11 to the synchronization control unit 31, for example, a synchronization signal synchronized with the video frame period of the video signal input to the projector 11 can be used.
 なお、同期制御部31は、CPU(Central Processing Unit)やメモリ等を備え、プログラムにより動作が制御されるコンピュータで構成されてもよいし、ASIC(Application Specific Integrated Circuit)などから構成された専用のハードウェアでもよい。 The synchronization control unit 31 may include a CPU (Central Processing Unit), a memory, and the like, and may be configured by a computer whose operation is controlled by a program, or an ASIC (Application Specific Specific Integrated Circuit) or the like. It may be hardware.
 プロジェクタ11は、スクリーン21の実体展示物51側に配置されている。プロジェクタ11は、スクリーン21へ映像情報により変調された映像光を投射できるものであればよい。即ち、スクリーン21に第1の映像を投射する。なお、映像情報は、プロジェクタ11に入力される映像信号から得られる。プロジェクタ11には、動画の映像信号だけでなく静止画の映像信号が入力されてもよい。また、プロジェクタ11は、スクリーン21の実体展示物51側に限らず観察者側に配置してもよい。 The projector 11 is disposed on the real display 51 side of the screen 21. The projector 11 may be any projector as long as it can project video light modulated by video information onto the screen 21. That is, the first video is projected on the screen 21. Note that the video information is obtained from a video signal input to the projector 11. The projector 11 may receive a video signal of a still image as well as a video signal of a moving image. Further, the projector 11 may be arranged not only on the real display 51 side of the screen 21 but also on the observer side.
 照明装置41は、スクリーン21の実体展示物51側に配置されていることが望ましいが、スクリーン21の観察者側に配置することも可能である。照明装置41は、実体展示物51を照明する。照明装置41は、例えば、LED(Light Emitting Diode)ライトや有機EL(Electro Luminescence)照明など後述する1映像周期以下の高速で点灯と消灯の切り替えが可能なものが望ましい。 The illumination device 41 is preferably arranged on the entity display 51 side of the screen 21, but can also be arranged on the viewer side of the screen 21. The lighting device 41 illuminates the actual exhibit 51. The illumination device 41 is preferably capable of switching on and off at a high speed of one video cycle or less to be described later, such as LED (Light-Emitting-Diode) light and organic EL (Electro-Luminescence) illumination.
 図3に上述した構成のスクリーン21の状態と、調光部25の光線の直線透過率と、プロジェクタ11から投射される映像光の強度(光強度)と、照明装置41の照明光強度を示したタイミングチャートである。 FIG. 3 shows the state of the screen 21 configured as described above, the linear transmittance of the light beam of the light control unit 25, the intensity (light intensity) of the image light projected from the projector 11, and the illumination light intensity of the illumination device 41. It is a timing chart.
 図3に示したように、スクリーン21は、1映像周期内に1回散乱状態と透過状態とに変化する。つまり、透過状態と散乱状態とを所定の周期で交互に切り替えている。1映像周期とは、プロジェクタ11に入力される映像信号の1フレーム期間などであり、例えば50~60Hz程度である。したがって、スクリーン21は、1映像周期よりも短い期間で散乱状態と透過状態との切り替えが行われる。 As shown in FIG. 3, the screen 21 changes between a scattering state and a transmission state once within one video period. That is, the transmission state and the scattering state are alternately switched at a predetermined cycle. One video cycle is one frame period of a video signal input to the projector 11 and is, for example, about 50 to 60 Hz. Therefore, the screen 21 is switched between the scattering state and the transmission state in a period shorter than one video cycle.
 スクリーン21(調光部25)が散乱状態となると、調光部25の光線の直線透過率は低下する。この期間にスクリーンに入射した光は散乱されるので、映像を表示することが可能となる。したがって、プロジェクタ11は映像光をスクリーン21に投射するので映像光強度が上昇し映像が表示される。一方、スクリーン21が散乱状態の期間は、照明装置41は消灯に切り替える。映像が表示されている際に照明装置41が点灯していると、照明装置41の影響によりスクリーン21に表示されている映像のコントラストが低下してしまうためである。 When the screen 21 (light control unit 25) is in a scattering state, the linear transmittance of the light beam of the light control unit 25 decreases. Since light incident on the screen during this period is scattered, an image can be displayed. Accordingly, since the projector 11 projects the image light onto the screen 21, the image light intensity increases and an image is displayed. On the other hand, during the period in which the screen 21 is in the scattering state, the illumination device 41 is switched off. This is because the contrast of the video displayed on the screen 21 is lowered by the influence of the lighting device 41 if the lighting device 41 is lit while the video is displayed.
 スクリーン21が透過状態となると、調光部25の光線の直線透過率は上昇する。この期間にスクリーンに入射した光はそのまま透過する。したがって、プロジェクタ11は映像光をスクリーン21に投射を停止する。一方、スクリーン21が透過状態の期間は、照明装置41は点灯に切り替える。照明装置41が点灯すると、実体展示物51が照明されスクリーン21越しに鮮明に観察することができる。 When the screen 21 is in the transmissive state, the linear transmittance of the light beam of the light control unit 25 increases. Light incident on the screen during this period is transmitted as it is. Accordingly, the projector 11 stops projecting the image light on the screen 21. On the other hand, during the period in which the screen 21 is in the transmissive state, the lighting device 41 switches to lighting. When the lighting device 41 is turned on, the real exhibit 51 is illuminated and can be clearly observed through the screen 21.
 スクリーン21には、1映像周期毎に全画面の映像を繰り返し投影しており、人間の目にはこの繰り返しは点滅として認識されないで、時間平均(積分)されることによって、スクリーン21に投影された映像と、実体展示物51とを、フリッカを感じることなく同時に観察することができる。 On the screen 21, the image of the entire screen is repeatedly projected every one image period, and this repetition is not recognized as blinking by the human eye, but is projected onto the screen 21 by time averaging (integration). The image and the actual exhibit 51 can be simultaneously observed without feeling flicker.
 上述した動作を図4のフローチャートにまとめる。図4に示したフローチャートは同期制御部31で実行される。 The above operation is summarized in the flowchart of FIG. The flowchart shown in FIG. 4 is executed by the synchronization control unit 31.
 まず、ステップS1において、1映像周期の先頭を検出するための同期信号を検出してステップS2に進む。同期信号は、上述したプロジェクタ11に入力される映像信号の映像フレーム周期に同期した同期信号などを用いればよい。なお、プロジェクタ11と照明装置41は、初期状態として、映像光を投射していない状態、消灯状態にそれぞれ設定されている。 First, in step S1, a synchronization signal for detecting the head of one video cycle is detected, and the process proceeds to step S2. The synchronization signal may be a synchronization signal synchronized with the video frame period of the video signal input to the projector 11 described above. Note that the projector 11 and the illumination device 41 are set to an initial state in which no image light is projected and a light-off state, respectively.
 次に、ステップS2において、スクリーン21を散乱状態にするように対向電極26と制御電極27に電圧を印加してステップS3に進む。 Next, in step S2, a voltage is applied to the counter electrode 26 and the control electrode 27 so that the screen 21 is in a scattering state, and the process proceeds to step S3.
 次に、ステップS3において、プロジェクタ11に映像光を投射させてステップS4に進む。即ち、プロジェクタ11に第1の映像としての映像光を投射させる投射制御情報を出力する。投射制御情報は、1つの信号線のハイレベルとローレベルに投射の開始と停止とが定義されている制御信号方式としてもよし、複数の信号線のハイレベルとローレベルの組み合わせから構成されるコマンド等に投射の開始と停止とが定義されているコマンド形式でもよい。また、本ステップは、図3に示した過渡状態が経過した後に行う。過渡状態の期間は、調光部25を構成する材料と印加する電圧によって予め算出可能である。 Next, in step S3, image light is projected on the projector 11, and the process proceeds to step S4. That is, projection control information for causing the projector 11 to project video light as the first video is output. The projection control information may be a control signal system in which the start and stop of projection are defined at a high level and a low level of one signal line, and is composed of a combination of a high level and a low level of a plurality of signal lines. A command format in which start and stop of projection are defined in the command or the like may be used. Further, this step is performed after the transient state shown in FIG. 3 has elapsed. The period of the transient state can be calculated in advance by the material constituting the light control unit 25 and the applied voltage.
 次に、ステップS4において、予め定めた期間経過後にステップS3で行った映像の投射を停止させステップS5に進む。この映像の投射期間はスクリーン21の散乱状態の期間に応じて定められている。即ち、プロジェクタ11に映像光を投射を停止させる投射制御情報を出力する。 Next, in step S4, the projection of the video performed in step S3 is stopped after the elapse of a predetermined period, and the process proceeds to step S5. The projection period of this image is determined according to the period of the scattering state of the screen 21. That is, the projector 11 outputs projection control information for stopping the projection of the image light to the projector 11.
 次に、ステップS5において、スクリーン21を透過状態にするように対向電極26と制御電極27に電圧を印加してステップS6に進む。 Next, in step S5, a voltage is applied to the counter electrode 26 and the control electrode 27 so that the screen 21 is in a transmissive state, and the process proceeds to step S6.
 次に、ステップS6において、照明装置41を点灯させてステップS7に進む。勿論本ステップは、図3に示した過渡状態が経過した後に行う。即ち、第2の面側の照明装置41を点灯させる照明制御情報を出力する。照明制御情報は、1つの信号線のハイレベルとローレベルに点灯と消灯とが定義されている制御信号方式としてもよし、複数の信号線のハイレベルとローレベルの組み合わせから構成されるコマンド等に点灯と消灯とが定義されているコマンド形式でもよい。 Next, in step S6, the lighting device 41 is turned on and the process proceeds to step S7. Of course, this step is performed after the transient state shown in FIG. That is, the illumination control information for lighting the illumination device 41 on the second surface side is output. The illumination control information may be a control signal system in which lighting and extinguishing are defined at a high level and a low level of one signal line, a command composed of a combination of a high level and a low level of a plurality of signal lines, etc. It may be a command format in which ON and OFF are defined.
 次に、ステップS7において、予め定めた期間経過後に照明装置41を消灯させステップS8に進む。この映像の照明装置41の点灯期間はスクリーン21の透過状態の期間に応じて定められている。即ち、第2の面側の照明装置41を消灯させる照明制御情報を出力する。 Next, in step S7, the lighting device 41 is turned off after a predetermined period of time, and the process proceeds to step S8. The lighting period of the video illumination device 41 is determined according to the period of the transmission state of the screen 21. That is, the illumination control information for turning off the illumination device 41 on the second surface side is output.
 次に、ステップS8において、展示装置1の使用を終了するか否かを判断し、終了する場合(YESの場合)はフローチャートを終了し、終了しない場合(NOの場合)はステップS1に戻る。即ち、本フローチャートが制御工程として機能する。 Next, in step S8, it is determined whether or not the use of the exhibition apparatus 1 is to be ended. When it is to be ended (YES), the flowchart is ended, and when it is not to be ended (NO), the process returns to step S1. That is, this flowchart functions as a control process.
 ここで、1映像周期の中で調光部25が透過状態となる時間と散乱状態となる時間の比(以下デューティ)を大きくするとスクリーン21の輝度を明るくすることができ、逆にデューティを小さくすると 実体展示物51を鮮明に照らし出すことができる。つまり、デューティが大きい場合は1映像周期における散乱状態の割合が多くなり、デューティが小さい場合は1映像周期における透過状態の割合が多くなる。 Here, the luminance of the screen 21 can be increased by increasing the ratio (hereinafter referred to as duty) of the time during which the light adjusting unit 25 is in the transmission state and the scattering state in one video cycle, and conversely the duty is reduced. Then, the actual exhibit 51 can be clearly illuminated. That is, when the duty is large, the ratio of the scattering state in one video period increases, and when the duty is small, the ratio of the transmission state in one video period increases.
 デューティによって変化するのはスクリーン21と実体展示物51それぞれの最大明るさであり、スクリーン21に表示する映像の明るさはプロジェクタ11に入力される映像信号レベルまたは投射光の強度によって変化させることが可能であり、さらに照明装置41を調光することによって実体展示物51を暗く或いは明るく見せることも可能である。このようにデューティの制御や、プロジェクタ11側、および照明装置41側での調光によってクロスフェード効果などのより複雑な演出が与える可能となる。勿論、デューティの制御と調光制御を組み合せてもよい。 The maximum brightness of the screen 21 and the actual exhibit 51 changes depending on the duty. The brightness of the video displayed on the screen 21 can be changed according to the video signal level input to the projector 11 or the intensity of the projection light. It is also possible to make the actual exhibit 51 appear darker or brighter by dimming the lighting device 41. As described above, more complex effects such as a cross-fade effect can be provided by controlling the duty and dimming on the projector 11 side and the illumination device 41 side. Of course, duty control and dimming control may be combined.
 クロスフェード効果の具体的動作例について図5および図6を参照して説明する。図5は、デューティを変化させることでクロスフェード効果を行う例である。図5(a)は、基本的に図3に示したタイミングチャートと同様であるが、一例として1映像周期を10ミリ秒とし、散乱状態Taを5ミリ秒、透過状態Tbを4ミリ秒、散乱状態と透過状態に変化する際の過渡状態を0.5ミリ秒としている。そして、プロジェクタ11の光強度をA、照明装置41の照明光強度をBとする。 A specific operation example of the crossfade effect will be described with reference to FIGS. FIG. 5 is an example in which the crossfade effect is performed by changing the duty. FIG. 5A is basically the same as the timing chart shown in FIG. 3, but as an example, one video period is 10 milliseconds, the scattering state Ta is 5 milliseconds, the transmission state Tb is 4 milliseconds, The transient state when changing to the scattering state and the transmission state is 0.5 milliseconds. The light intensity of the projector 11 is A, and the illumination light intensity of the illumination device 41 is B.
 この場合に、散乱状態の時間Taは1~8ミリ秒と増加させ、透過状態の時間Taは8~1ミリ秒と減少させると、図5(b)に示したように、プロジェクタ11からの最大光強度(スクリーン21上の映像の最大明るさ値)は1A~8Aと順に変化し、最大照明光強度(実体展示物51(照明装置41)の最大明るさ値)は8B~1Bと順に変化する。なお、図5(b)の表でクロスフェードの時間経過の単位は映像周期や秒など1映像周期以上の長さの時間であれば任意に設定すればよい。 In this case, when the scattering state time Ta is increased to 1 to 8 milliseconds and the transmission state time Ta is decreased to 8 to 1 millisecond, as shown in FIG. The maximum light intensity (the maximum brightness value of the image on the screen 21) changes in order from 1A to 8A, and the maximum illumination light intensity (the maximum brightness value of the actual exhibit 51 (illumination device 41)) sequentially changes from 8B to 1B. Change. In the table of FIG. 5 (b), the unit of the cross fading time may be arbitrarily set as long as it is a time longer than one video cycle such as a video cycle or a second.
 即ち、スクリーン21の1映像周期における透過状態と散乱状態との割合を、透過状態の割合を徐々に増加させるとともに散乱状態の割合を徐々に減少させ、透過状態の割合を徐々に減少させるとともに散乱状態の割合を徐々に増加させるように変化させている。このようにすることで、例えば、スクリーン21に映像が表示されている状態から徐々に映像が見えなくなるとともに、実体展示物51が徐々に見え始め、最終的には実体展示物51のみが見えるようなクロスフェード効果が実現できる。 That is, the ratio of the transmission state and the scattering state in one image period of the screen 21 is gradually increased while the ratio of the scattering state is gradually decreased and the ratio of the transmission state is gradually decreased and the scattering is performed. The state ratio is changed to gradually increase. In this way, for example, the image gradually disappears from the state in which the image is displayed on the screen 21, and the actual exhibit 51 starts to gradually appear, and finally only the actual exhibit 51 can be seen. Crossfading effect can be realized.
 次に、図6を説明する。図5は、光強度を変化させることでクロスフェード効果を行う例である。図6(a)も、図5(a)に示したタイミングチャートと同様であるが、散乱状態Taを1ミリ秒、透過状態Tbを8ミリ秒、散乱状態と透過状態に変化する際の過渡状態を0.5ミリ秒と固定している。そして、プロジェクタ11の最大光強度をAmax、照明装置41の最大照明光強度をBmaxとする。 Next, FIG. 6 will be described. FIG. 5 is an example in which the crossfade effect is performed by changing the light intensity. FIG. 6A is also similar to the timing chart shown in FIG. 5A, except that the scattering state Ta is 1 millisecond, the transmission state Tb is 8 milliseconds, and the transient when changing from the scattering state to the transmission state. The state is fixed at 0.5 milliseconds. The maximum light intensity of the projector 11 is Amax, and the maximum illumination light intensity of the illumination device 41 is Bmax.
 この場合に、プロジェクタ11の光強度を8分の1ずつ増加させ、照明光強度を8分の1ずつ減少させると、図6(b)に示したように、プロジェクタ11からの最大光強度(スクリーン21上の映像の最大明るさ値)は0~1Amaxと順に変化し、最大照明光強度(実体展示物51(照明装置41)の最大明るさ値)は8Bmax~0と順に変化する。これは、投射制御情報や照明制御情報に投射の開始または停止や点灯または消灯以外に光強度を変化させる光強度情報を含ませて出力できるようにすればよい。この光強度情報は、例えば、光強度を絶対値として指定してもよいし、現在値からの相対値(-12.5%等)を指定するようにしてもよい。 In this case, when the light intensity of the projector 11 is increased by 1/8 and the illumination light intensity is decreased by 1/8, as shown in FIG. 6B, the maximum light intensity from the projector 11 ( The maximum brightness value of the image on the screen 21 changes in order from 0 to 1 Amax, and the maximum illumination light intensity (the maximum brightness value of the actual exhibit 51 (illumination device 41)) changes in order from 8Bmax to 0. This can be output by including light intensity information for changing the light intensity in addition to the start or stop of projection, lighting or extinguishing, in the projection control information or illumination control information. In this light intensity information, for example, the light intensity may be designated as an absolute value, or a relative value (such as −12.5%) from the current value may be designated.
 即ち、映像の光強度を徐々に増加させるとともに照明装置41の光強度を徐々に減少させ、映像の光強度を徐々に減少させるとともに照明装置41の光強度を徐々に増加させている。このようにすることでも、例えば、スクリーン21に映像が表示されている状態から徐々に映像が見えなくなるとともに、実体展示物51が徐々に見え始め、最終的には実体展示物51のみが見えるようなクロスフェード効果がデューティを変化させずに実現できる。 That is, the light intensity of the image is gradually increased and the light intensity of the illumination device 41 is gradually decreased, and the light intensity of the image is gradually decreased and the light intensity of the illumination device 41 is gradually increased. Even in this way, for example, the image gradually disappears from the state in which the image is displayed on the screen 21, and the actual exhibit 51 starts to gradually appear, and finally only the actual exhibit 51 can be seen. Cross-fade effect can be realized without changing the duty.
 本実施例によれば、同期制御部31が、スクリーン21を散乱状態に切り替えている場合は、照明装置41を消灯させる照明制御情報を照明装置41に出力し、プロジェクタ11からスクリーン21に映像光を投射させる投射制御情報をプロジェクタ11に出力する。スクリーン21を透過状態に切り替えている場合は、プロジェクタ11から映像光の投射を停止させる投射制御情報をプロジェクタ11に出力し、照明装置41を点灯させる照明制御情報を照明装置41に出力している。このようにすることにより、スクリーン21が散乱状態の場合には、映像を表示して実体展示物51を照明するための照明装置41が消灯されるので、表示映像のコントラストを非常に高くすることができ、スクリーン21が透過状態の場合には、照明装置41を点灯して実体展示物51を観察させることができる。そのため、スクリーン21に表示される映像と実体展示物51とを鮮明に観察することができる。また、散乱状態では照明装置41を消灯しているので、照明装置41の消費電力を低減することができる。 According to the present embodiment, when the synchronization control unit 31 switches the screen 21 to the scattering state, the lighting control information for turning off the lighting device 41 is output to the lighting device 41, and the image light is output from the projector 11 to the screen 21. Is output to the projector 11. When the screen 21 is switched to the transmissive state, the projector 11 outputs projection control information for stopping projection of image light to the projector 11, and outputs illumination control information for lighting the lighting device 41 to the lighting device 41. . In this way, when the screen 21 is in a scattered state, the illumination device 41 for displaying the image and illuminating the actual exhibit 51 is turned off, so that the contrast of the displayed image is very high. When the screen 21 is in a transmissive state, the lighting device 41 can be turned on to observe the actual exhibit 51. Therefore, the image displayed on the screen 21 and the actual exhibit 51 can be clearly observed. Moreover, since the illuminating device 41 is turned off in the scattering state, the power consumption of the illuminating device 41 can be reduced.
 また、スクリーン21の透過状態と散乱状態とを1映像周期で交互に切り替えるようにしているので、スクリーン21の表示と実体展示物51の観察を交互に行うことができる。つまり、それぞれの表示や観察を時分割で行うことができる。したがって、スクリーン21の表示と実体展示物51の観察を同時にすることができる。さらには、時分割であるので観察者が移動しても映像と実体展示物51の両方を観察することができ観察位置の制限がない。 Further, since the transmission state and the scattering state of the screen 21 are alternately switched in one video cycle, the display of the screen 21 and the observation of the actual exhibit 51 can be performed alternately. That is, each display and observation can be performed by time division. Therefore, the display on the screen 21 and the observation of the actual exhibit 51 can be performed simultaneously. Furthermore, since the time division is used, both the image and the actual exhibit 51 can be observed even if the observer moves, and there is no restriction on the observation position.
 また、スクリーン21の1映像周期における透過状態と散乱状態とのデューティを、透過状態の割合が徐々に増加させるとともに散乱状態の割合が徐々に減少させ、あるいは逆に透過状態の割合が徐々に減少させるとともに散乱状態の割合が徐々に増加させるように変化させるようにしている。このようにすることにより、例えば、全てスクリーン21表示状態から徐々に実体展示物51が観察可能となり、その後全て実体展示物51の観察状態に変化するクロスフェードの演出効果を、あるいは逆に実体展示物51のみが観察可能な状態から徐々にスクリーン21表示が現れ、その後全てスクリーン21表示に変化するクロスフェードの演出効果などを行うことができる。 In addition, the duty of the transmission state and the scattering state in one video period of the screen 21 is gradually increased as the transmission state ratio is gradually decreased, and the scattering state ratio is gradually decreased, or conversely, the transmission state ratio is gradually decreased. And the ratio of the scattering state is changed so as to gradually increase. By doing so, for example, the actual exhibit 51 can be gradually observed from the display state of the screen 21, and then the effect of crossfade that changes to the observation state of the actual exhibit 51 afterwards, or conversely, the actual display. From the state in which only the object 51 is observable, the display of the screen 21 gradually appears, and thereafter, the effect of cross-fading that changes to the display of the screen 21 can be performed.
 また、プロジェクタ11の光強度を徐々に増加させるとともに照明装置41の光強度を徐々に減少させ、あるいは逆にプロジェクタ11の光強度を徐々に減少させるとともに照明装置41の光強度を徐々に増加させるようにしている。このようにすることにより、例えば、光の強さを変化させることで、透過状態と散乱状態とのデューティとは独立してクロスフェードなどの演出効果を行うことができる。 Further, the light intensity of the projector 11 is gradually increased and the light intensity of the illumination device 41 is gradually decreased. Conversely, the light intensity of the projector 11 is gradually decreased and the light intensity of the illumination device 41 is gradually increased. I am doing so. In this way, for example, by changing the intensity of light, it is possible to perform effects such as crossfading independently of the duty of the transmission state and the scattering state.
 また、プロジェクタ11とスクリーン21からなる、透過型プロジェクション装置を使用しているので、プロジェクタ11の投射位置の自由度が大きくなる。また、スクリーン21は可視光全域に渡って対応しているので、プロジェクタから投射される映像光の波長が制限されない。また、スクリーン21の光透過および光拡散効率が時分割制御することによりそれぞれを高くすることが可能で、光のロスが殆ど起こらない。 Further, since a transmission type projection apparatus including the projector 11 and the screen 21 is used, the degree of freedom of the projection position of the projector 11 is increased. Further, since the screen 21 supports the entire visible light range, the wavelength of the image light projected from the projector is not limited. Further, the light transmission and light diffusion efficiency of the screen 21 can be increased by time-sharing control, and light loss hardly occurs.
 次に、本発明の第2の実施例にかかる表示装置を図7乃至図9を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。 Next, a display device according to a second embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
 本実施例では、照明装置41と実体展示物51に代えて表示手段としての不透明ディスプレイ61を備えている。 In this embodiment, an opaque display 61 as a display means is provided instead of the lighting device 41 and the actual exhibit 51.
 不透明ディスプレイ61は、第1の実施例の実体展示物51と同様に、スクリーン21の第2の面側に配置され、第2の映像としての動画や静止画或いは文字情報などの映像信号が入力され観察者に向かって表示されている。不透明ディスプレイ61は、照明装置41と同様に高速で点灯と消灯が可能なLEDバックライトの液晶ディスプレイやELディスプレイなどのフラットパネルディスプレイを用いることができる。本実施例における不透明ディスプレイ61は、表示されている映像を観察者が観察できる程度の輝度が必要であるので、自発光素子で構成するか、バックライト等の発光手段を備えていることが好ましい。 The opaque display 61 is arranged on the second surface side of the screen 21 like the entity display 51 of the first embodiment, and receives a video signal such as a moving image, a still image, or character information as a second image. It is displayed towards the observer. As the opaque display 61, a flat panel display such as an LED-backlit liquid crystal display or an EL display that can be turned on and off at high speed in the same manner as the lighting device 41 can be used. The opaque display 61 in this embodiment needs to have a luminance that allows an observer to observe the displayed image. Therefore, the opaque display 61 is preferably composed of a self-light emitting element or provided with light emitting means such as a backlight. .
 図8に本実施例のスクリーン21の状態と、調光部25の光線の直線透過率と、プロジェクタ11から投射される映像光の強度(光強度)と、照明装置41の照明光強度を示したタイミングチャートを示す。図8に示したように、スクリーン21が散乱状態の場合は図3と同様にプロジェクタ11からの映像光が投射される。そして、スクリーン21が透過状態の場合は、不透明ディスプレイ61に映像が表示される。つまり、不透明ディスプレイ61に映像が表示されるため発光強度が高くなる。 FIG. 8 shows the state of the screen 21 of this embodiment, the linear transmittance of the light beam of the light control unit 25, the intensity (light intensity) of the image light projected from the projector 11, and the illumination light intensity of the illumination device 41. A timing chart is shown. As shown in FIG. 8, when the screen 21 is in the scattering state, the image light from the projector 11 is projected as in FIG. When the screen 21 is in the transmissive state, an image is displayed on the opaque display 61. That is, since an image is displayed on the opaque display 61, the emission intensity is increased.
 つまり、スクリーン21を散乱状態に切り替えている場合は、第2の面側の不透明ディスプレイ61に映像の表示を停止させる表示制御情報を出力し、プロジェクタ11に映像を投射させる投射制御情報を出力し、スクリーン21を透過状態に切り替えている場合は、プロジェクタ11に映像の投射を停止させる投射制御情報を出力し、第2の面側の不透明ディスプレイ61に映像を表示させる表示制御情報を出力する。表示制御情報は、投射制御情報と同様に、表示の開始と停止とを、制御信号方式で行ってもよいし、コマンド方式で行ってもよい。 That is, when the screen 21 is switched to the scattering state, the display control information for stopping the video display is output to the opaque display 61 on the second surface side, and the projection control information for projecting the video to the projector 11 is output. When the screen 21 is switched to the transmissive state, projection control information for stopping the projection of the image is output to the projector 11 and display control information for displaying the image on the opaque display 61 on the second surface side is output. As with the projection control information, the display control information may be started and stopped by a control signal method or a command method.
 このように、本実施例では、スクリーン21と不透明ディスプレイ61とには、1映像周期毎に全画面の映像を繰り返し投影しており、人間の目にはこの繰り返しは点滅として認識されないで、時間平均(積分)されることによって、スクリーン21に投影された映像と、不透明ディスプレイ61に表示された映像とを、フリッカを感じることなく同時に観察することができるので、それら内容を連携させることでより効果的な演出が可能となる。 As described above, in this embodiment, the screen 21 and the opaque display 61 repeatedly project the image of the entire screen every one image period, and this repetition is not recognized as blinking by the human eye. By averaging (integrating), the image projected on the screen 21 and the image displayed on the opaque display 61 can be observed simultaneously without feeling flicker. Effective production is possible.
 ここで、プロジェクタ11と不透明ディスプレイ61それぞれの映像を個別に送出した場合、送出タイミングがずれることで、演出的に逆効果となってしまう場合がある。また、それぞれの表示タイミングと時間配分は、上述したように1映像周期の中で割り振らなければならないが、表示される内容がそれぞれ独立した時間経過を持つと双方を満足するタイミング制御が十分に行えないといった問題が生じる。 Here, when the images of the projector 11 and the opaque display 61 are individually transmitted, there is a case where the transmission timing is deviated and the production effect is counterproductive. Each display timing and time distribution must be allocated within one video cycle as described above. However, if the displayed contents have independent time courses, timing control satisfying both can be sufficiently performed. The problem of not occurring.
 そこで、2つの映像ソースを1つの映像ソースにまとめて送出し、受け取るそれぞれのプロジェクタ11および不透明ディスプレイ61がそれぞれの映像信号を1つの映像ソースから抽出する。この様な映像信号の例としては3D(3次元)テレビ放送などに用いられているL-ch(左目用)映像、とR-ch(右目用)映像を重畳したサイドバイサイド信号などを用いることができる。 Therefore, the two video sources are collectively transmitted as one video source, and each of the projectors 11 and the opaque display 61 that receives them extracts each video signal from one video source. As an example of such a video signal, an L-ch (left-eye) video used for 3D (three-dimensional) television broadcasting or the like and a side-by-side signal in which an R-ch (right-eye) video is superimposed are used. it can.
 上述した2つの映像ソースを1つにまとめて送出し、受け取るそれぞれのプロジェクタ11および不透明ディスプレイ61がそれぞれの映像信号を1つの映像ソースから抽出して表示する例を図9に示す。図9に示したように、まず、スクリーン21用映像と不透明ディスプレイ61用映像をそれぞれ用意する(図9(a))。次に、不図示の映像送出装置等が、スクリーン21用映像と不透明ディスプレイ61用映像とを、サイドバイサイド信号などで1つの映像ソース(映像信号)にまとめて送出する(図9(b))。次に、プロジェクタ11では、1つにまとめられている映像信号からスクリーン用映像の映像信号を抽出してスクリーン21に向けて投射する。不透明ディスプレイ61では、1つにまとめられている映像信号から不透明ディスプレイ61用映像の映像信号を抽出して表示する(図9(c))。すると、観察者から手前に位置するスクリーン用映像の奥に不透明ディスプレイ61用映像が表示されているように見える(図9(d))。 FIG. 9 shows an example in which the above-mentioned two video sources are sent together and received, and the respective projectors 11 and opaque display 61 that receive and extract the respective video signals from one video source are displayed. As shown in FIG. 9, first, an image for the screen 21 and an image for the opaque display 61 are prepared (FIG. 9A). Next, a video transmission device (not shown) or the like sends the screen 21 video and the opaque display 61 video together into a single video source (video signal) using a side-by-side signal or the like (FIG. 9B). Next, in the projector 11, the video signal of the screen video is extracted from the video signals combined into one, and projected onto the screen 21. In the opaque display 61, the video signal of the video for the opaque display 61 is extracted from the combined video signals and displayed (FIG. 9C). Then, it appears that the image for the opaque display 61 is displayed at the back of the screen image positioned in front of the observer (FIG. 9D).
 また、本実施例においても図5および図6で説明したクロスフェードを同様にして行うことができる。 Also in the present embodiment, the cross fade described with reference to FIGS. 5 and 6 can be performed in the same manner.
 本実施例によれば、同期制御部31が、スクリーン21を散乱状態に切り替えている場合は、不透明ディスプレイ61に映像の表示を停止させる表示制御情報を出力し、スクリーン21にプロジェクタ11から映像光を投射させる投射制御情報を出力する。スクリーン21を透過状態に切り替えている場合は、プロジェクタ11から映像光の投射を停止させる投射制御情報を出力し、不透明ディスプレイ61に映像を表示させる表示制御情報を出力している。このようにすることにより、スクリーン21が散乱状態の場合には、プロジェクタ11からの映像を表示して不透明ディスプレイ61の表示が停止されるので、スクリーン21に表示される映像のコントラストを非常に高くすることができ、スクリーン21が透過状態の場合には、不透明ディスプレイ61の映像を表示させることができる。そのため、スクリーン21に表示映像と不透明ディスプレイ61に表示される映像を鮮明に観察することができる。 According to the present embodiment, when the synchronization control unit 31 switches the screen 21 to the scattering state, the display control information for stopping the display of the image is output to the opaque display 61, and the image light from the projector 11 is output to the screen 21. Projection control information for projecting is output. When the screen 21 is switched to the transmission state, projection control information for stopping projection of image light is output from the projector 11, and display control information for displaying an image on the opaque display 61 is output. By doing so, when the screen 21 is in the scattering state, the image from the projector 11 is displayed and the display of the opaque display 61 is stopped. Therefore, the contrast of the image displayed on the screen 21 is very high. When the screen 21 is in the transmissive state, the image on the opaque display 61 can be displayed. Therefore, the display image on the screen 21 and the image displayed on the opaque display 61 can be clearly observed.
 また、スクリーン21の透過状態と散乱状態とを1映像周期で交互に切り替えるようにしているので、スクリーン21の表示と不透明ディスプレイ61の表示を交互に行うことができる。そのため、それぞれの表示を時分割で行うことができる。したがって、スクリーン21の表示と不透明ディスプレイ61の表示を同時に観察することができる。 Further, since the transmission state and the scattering state of the screen 21 are alternately switched in one video cycle, the display of the screen 21 and the display of the opaque display 61 can be performed alternately. Therefore, each display can be performed in a time division manner. Therefore, the display on the screen 21 and the display on the opaque display 61 can be observed simultaneously.
 また、プロジェクタ11から投射する映像光の映像ソースと不透明ディスプレイ61に表示する映像ソースとを1つの映像ソースにまとめてそれぞれに送出し、プロジェクタ11と不透明ディスプレイ61で、それぞれの映像ソースを抽出して投影または表示させているので、双方の映像のタイミングを合わせることができる。 In addition, the video source of the video light projected from the projector 11 and the video source displayed on the opaque display 61 are collectively sent to each video source, and each video source is extracted by the projector 11 and the opaque display 61. Since both are projected or displayed, the timing of both images can be synchronized.
 なお、上述した2つの実施例において、プロジェクタ11から映像光を投射する期間や照明装置41を点灯する期間および不透明ディスプレイ61を表示させる期間は、散乱状態や透過状態の期間と完全に一致させる必要は無い。つまり、散乱状態の期間の間の任意の期間にプロジェクタ11から映像光を投射するようにしてもよいし、透過状態の期間の間の任意の期間に照明装置41を点灯したり不透明ディスプレイ61を表示させるようにしてもよい。 In the two embodiments described above, the period for projecting image light from the projector 11, the period for lighting the illumination device 41, and the period for displaying the opaque display 61 need to be completely matched with the periods for the scattering state and the transmission state. There is no. In other words, the image light may be projected from the projector 11 in an arbitrary period between the scattering state periods, and the illumination device 41 is turned on or the opaque display 61 is turned on in an arbitrary period between the transmission state periods. You may make it display.
 また、本発明は、照明(もしくは別の表示装置)が完全に消灯になるものに限らず、例えばスクリーン21が散乱状態の時に、照明(もしくは別の表示装置)が完全に消灯とはならないけれども、相対的に弱くなるように時分割変調することなど、光強度を減少させるようなものも含まれる。即ち、クロスフェード以外でも、照明の消灯や点灯、別の表示装置の表示または停止に限らず、光強度(輝度や照度など)を減少または増加とする制御を行って、スクリーンに表示される映像と実体展示物や別の表示装置とを鮮明に観察することができるような光強度であれば含まれる。 The present invention is not limited to the case where the illumination (or another display device) is completely turned off. For example, when the screen 21 is in a scattering state, the illumination (or another display device) is not completely turned off. Also included are those that reduce the light intensity, such as time-division modulation to be relatively weak. In other words, the image displayed on the screen by controlling to reduce or increase the light intensity (luminance, illuminance, etc.) is not limited to turning off or turning on the lighting, displaying or stopping another display device other than the cross fade. If the light intensity is such that it can clearly observe a physical display and another display device.
 また、本発明は上記実施例に限定されるものではない。即ち、当業者は、従来公知の知見に従い、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。かかる変形によってもなお本発明の表示装置の構成を具備する限り、勿論、本発明の範疇に含まれるものである。 Further, the present invention is not limited to the above embodiment. That is, those skilled in the art can implement various modifications in accordance with conventionally known knowledge without departing from the scope of the present invention. Of course, such modifications are included in the scope of the present invention as long as the configuration of the display device of the present invention is provided.
  2        表示装置
  11      プロジェクタ
  21      スクリーン
  23a    第2の面
  24a    第1の面
  31      同期制御部(制御手段)
  41      照明装置
  51      実体展示物
  61      不透明ディスプレイ
2 Display device 11 Projector 21 Screen 23a Second surface 24a First surface 31 Synchronization control unit (control means)
41 Illumination device 51 Entity display 61 Opaque display

Claims (13)

  1.  第1の面および前記第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンと、
     前記スクリーンの透過状態および散乱状態を切り替える制御手段と、有し、
     前記制御手段は、
     前記スクリーンを前記散乱状態に切り替えている場合は、前記第2の面側の照明の光強度を減少させる照明制御情報を出力し、前記スクリーンを前記散乱状態に切り替えている任意の期間に、前記スクリーンに第1の映像を投射させる投射制御情報を出力し、
     前記スクリーンを前記透過状態に切り替えている場合は、前記第1の映像の投射を停止させる前記投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている任意の期間に、前記第2の面側の照明の光強度を増加させる前記照明制御情報を出力する、
    ことを特徴とする表示装置。
    A screen having a first surface and a second surface that is the back surface of the first surface, and capable of switching between a transmission state and a scattering state for visible light;
    Control means for switching the transmission state and the scattering state of the screen, and
    The control means includes
    When the screen is switched to the scattering state, it outputs illumination control information for reducing the light intensity of the illumination on the second surface side, and in any period during which the screen is switched to the scattering state, Outputting projection control information for projecting the first image on the screen;
    When the screen is switched to the transmissive state, the projection control information for stopping the projection of the first video is output, and the second screen is output during an arbitrary period during which the screen is switched to the transmissive state. Outputting the illumination control information for increasing the light intensity of the illumination on the surface side,
    A display device characterized by that.
  2.  第1の面および前記第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンと、
     前記スクリーンの透過状態および散乱状態を切り替える制御手段と、有し、
     前記制御手段は、
     前記スクリーンを前記散乱状態に切り替えている場合は、前記第2の面側の表示手段に第2の映像の光強度を減少させる表示制御情報を出力し、前記スクリーンを前記散乱状態に切り替えている任意の期間に、前記スクリーンに第1の映像を投射させる投射制御情報を出力し、
     前記スクリーンを前記透過状態に切り替えている場合は、前記第1の映像の投射を停止させる前記投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている任意の期間に、前記表示手段に前記第2の映像の光強度を増加させる前記表示制御情報を出力する、
    ことを特徴とする表示装置。
    A screen having a first surface and a second surface that is the back surface of the first surface, and capable of switching between a transmission state and a scattering state for visible light;
    Control means for switching the transmission state and the scattering state of the screen, and
    The control means includes
    When the screen is switched to the scattering state, display control information for reducing the light intensity of the second image is output to the display unit on the second surface side, and the screen is switched to the scattering state. Output projection control information for projecting the first video on the screen at an arbitrary period,
    When the screen is switched to the transmissive state, the projection control information for stopping the projection of the first video is output, and the display means is displayed in an arbitrary period during which the screen is switched to the transmissive state. Outputting the display control information for increasing the light intensity of the second image;
    A display device characterized by that.
  3.  前記制御手段は、前記スクリーンの前記透過状態と前記散乱状態とを所定の周期で交互に切り替えることを特徴とする請求項1または2に記載の表示装置。 3. The display device according to claim 1, wherein the control unit alternately switches the transmission state and the scattering state of the screen at a predetermined cycle.
  4.  前記制御手段は、前記スクリーンの前記所定の周期の1周期における前記透過状態と前記散乱状態との割合を変化させることを特徴とする請求項3に記載の表示装置。 4. The display device according to claim 3, wherein the control unit changes a ratio of the transmission state and the scattering state in one cycle of the predetermined cycle of the screen.
  5.  前記制御手段は、前記スクリーンの前記所定の周期の1周期における前記透過状態と前記散乱状態との割合を、前記透過状態の割合を徐々に増加させるとともに前記散乱状態の割合を徐々に減少させ、前記透過状態の割合を徐々に減少させるとともに前記散乱状態の割合を徐々に増加させるように変化させることを特徴とする請求項4に記載の表示装置。 The control means gradually increases the ratio of the transmission state and the ratio of the scattering state and gradually decreases the ratio of the scattering state in one cycle of the predetermined period of the screen, The display device according to claim 4, wherein the ratio is changed so that the ratio of the transmission state is gradually decreased and the ratio of the scattering state is gradually increased.
  6.  前記制御手段は、前記投射制御情報に前記第1の映像の光強度を変化させる情報を含ませることを特徴とする請求項1乃至5のうちいずれか一項に記載の表示装置。 6. The display device according to claim 1, wherein the control unit includes information for changing a light intensity of the first video in the projection control information.
  7.  前記制御手段は、前記第1の映像の光強度を徐々に増加させるとともに前記照明または前記第2の映像の光強度を徐々に減少させ、前記第1の映像の光強度を徐々に減少させるとともに前記照明または前記第2の映像の光強度を徐々に増加させることを特徴とする請求項6に記載の表示装置。 The control means gradually increases the light intensity of the first image, gradually decreases the light intensity of the illumination or the second image, and gradually decreases the light intensity of the first image. The display device according to claim 6, wherein the light intensity of the illumination or the second image is gradually increased.
  8.  第1の面および前記第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンを透過状態および散乱状態を切り替える制御工程を含み、
     前記制御工程は、
     前記スクリーンを前記散乱状態に切り替えている場合は、前記第2の面側の照明の光強度を減少させる照明制御情報を出力し、前記スクリーンを前記散乱状態に切り替えている任意の期間に、前記スクリーンに第1の映像を投射させる投射制御情報を出力し、
     前記スクリーンを前記透過状態に切り替えている場合は、前記第1の映像の投射を停止させる前記投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている任意の期間に、前記第2の面側の照明の光強度を増加させる前記照明制御情報を出力する、
    ことを特徴とする表示方法。
    A control step of switching a transmission state and a scattering state of a screen having a first surface and a second surface which is a back surface of the first surface and capable of switching between a transmission state and a scattering state with respect to visible light,
    The control step includes
    When the screen is switched to the scattering state, it outputs illumination control information for reducing the light intensity of the illumination on the second surface side, and in any period during which the screen is switched to the scattering state, Outputting projection control information for projecting the first image on the screen;
    When the screen is switched to the transmissive state, the projection control information for stopping the projection of the first video is output, and the second screen is output during an arbitrary period during which the screen is switched to the transmissive state. Outputting the illumination control information for increasing the light intensity of the illumination on the surface side,
    A display method characterized by that.
  9.  第1の面および前記第1の面の裏面である第2の面を有し、可視光に対し透過状態と散乱状態を切り替え可能なスクリーンを透過状態および散乱状態を切り替える制御工程を含み、
     前記制御工程は、
     前記スクリーンを前記散乱状態に切り替えている場合は、前記第2の面側の表示手段に第2の映像の光強度を減少させる表示制御情報を出力し、前記スクリーンを前記散乱状態に切り替えている任意の期間に、前記スクリーンに第1の映像を投射させる投射制御情報を出力し、
     前記スクリーンを前記透過状態に切り替えている場合は、前記第1の映像の投射を停止させる前記投射制御情報を出力し、前記スクリーンを前記透過状態に切り替えている任意の期間に、前記表示手段に前記第2の映像の光強度を増加させる前記表示制御情報を出力する、
    ことを特徴とする表示方法。
    A control step of switching a transmission state and a scattering state of a screen having a first surface and a second surface which is a back surface of the first surface and capable of switching between a transmission state and a scattering state with respect to visible light,
    The control step includes
    When the screen is switched to the scattering state, display control information for reducing the light intensity of the second image is output to the display unit on the second surface side, and the screen is switched to the scattering state. Output projection control information for projecting the first video on the screen at an arbitrary period,
    When the screen is switched to the transmissive state, the projection control information for stopping the projection of the first video is output, and the display means is displayed in an arbitrary period during which the screen is switched to the transmissive state. Outputting the display control information for increasing the light intensity of the second image;
    A display method characterized by that.
  10.  請求項8に記載の表示方法を、コンピュータにより実行させることを特徴とする表示プログラム。 A display program that causes a computer to execute the display method according to claim 8.
  11.  請求項9に記載の表示方法を、コンピュータにより実行させることを特徴とする表示プログラム。 A display program that causes a computer to execute the display method according to claim 9.
  12.  請求項10に記載の表示プログラムを格納したことを特徴とするコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium in which the display program according to claim 10 is stored.
  13.  請求項11に記載の表示プログラムを格納したことを特徴とするコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium storing the display program according to claim 11.
PCT/JP2013/050256 2013-01-10 2013-01-10 Display device WO2014109026A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014556261A JP6081494B2 (en) 2013-01-10 2013-01-10 Display device, display method, display program, and recording medium
PCT/JP2013/050256 WO2014109026A1 (en) 2013-01-10 2013-01-10 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050256 WO2014109026A1 (en) 2013-01-10 2013-01-10 Display device

Publications (1)

Publication Number Publication Date
WO2014109026A1 true WO2014109026A1 (en) 2014-07-17

Family

ID=51166696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050256 WO2014109026A1 (en) 2013-01-10 2013-01-10 Display device

Country Status (2)

Country Link
JP (1) JP6081494B2 (en)
WO (1) WO2014109026A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190461A1 (en) * 2014-06-13 2015-12-17 シャープ株式会社 Display device
WO2016175120A1 (en) * 2015-04-28 2016-11-03 シャープ株式会社 Display device
WO2017126079A1 (en) * 2016-01-21 2017-07-27 パイオニア株式会社 Display control device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191726A (en) * 1992-01-09 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> Presence display device
JP2004184979A (en) * 2002-09-03 2004-07-02 Optrex Corp Image display apparatus
JP2006243068A (en) * 2005-02-28 2006-09-14 Dainippon Printing Co Ltd Screen system
JP2007109205A (en) * 2005-09-14 2007-04-26 Sony Corp Image display device, image display method, program and recording medium
JP2009058662A (en) * 2007-08-30 2009-03-19 Seiko Epson Corp Image display system and image display method
JP2011081245A (en) * 2009-10-08 2011-04-21 Seiko Epson Corp Display system, screen and projector
JP2011162032A (en) * 2010-02-09 2011-08-25 Stanley Electric Co Ltd Display device and method for recognizing sign
JP2012039432A (en) * 2010-08-09 2012-02-23 Casio Comput Co Ltd Light source control device and program
JP2012220540A (en) * 2011-04-04 2012-11-12 Asahi Glass Co Ltd Transmission screen and image display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096691A (en) * 2006-10-12 2008-04-24 Tadao Yoshida Projection device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191726A (en) * 1992-01-09 1993-07-30 Nippon Telegr & Teleph Corp <Ntt> Presence display device
JP2004184979A (en) * 2002-09-03 2004-07-02 Optrex Corp Image display apparatus
JP2006243068A (en) * 2005-02-28 2006-09-14 Dainippon Printing Co Ltd Screen system
JP2007109205A (en) * 2005-09-14 2007-04-26 Sony Corp Image display device, image display method, program and recording medium
JP2009058662A (en) * 2007-08-30 2009-03-19 Seiko Epson Corp Image display system and image display method
JP2011081245A (en) * 2009-10-08 2011-04-21 Seiko Epson Corp Display system, screen and projector
JP2011162032A (en) * 2010-02-09 2011-08-25 Stanley Electric Co Ltd Display device and method for recognizing sign
JP2012039432A (en) * 2010-08-09 2012-02-23 Casio Comput Co Ltd Light source control device and program
JP2012220540A (en) * 2011-04-04 2012-11-12 Asahi Glass Co Ltd Transmission screen and image display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190461A1 (en) * 2014-06-13 2015-12-17 シャープ株式会社 Display device
US10192493B2 (en) 2014-06-13 2019-01-29 Sharp Kabushiki Kaisha Display device
WO2016175120A1 (en) * 2015-04-28 2016-11-03 シャープ株式会社 Display device
WO2017126079A1 (en) * 2016-01-21 2017-07-27 パイオニア株式会社 Display control device

Also Published As

Publication number Publication date
JPWO2014109026A1 (en) 2017-01-19
JP6081494B2 (en) 2017-02-15

Similar Documents

Publication Publication Date Title
JP5943283B2 (en) Flat panel display for displaying stereoscopic image, method for displaying stereoscopic image, and controller for flat panel display for displaying stereoscopic image
JP5857599B2 (en) Screen and image display system
US9001198B2 (en) Image display viewing system, optical modulator and image display device
KR20090074542A (en) See-through display apparatus and method
JP2011128548A (en) Image display apparatus, image display observation system, and image display method
JP5866936B2 (en) Image display system
JP2013231933A (en) Display device and electronic apparatus
JP2013529309A (en) Suppression of crosstalk in time sequential liquid crystal stereoscopic display system
WO2011111711A1 (en) Color display device and method
CA2633864A1 (en) Display device having a plurality of pixels and method for displaying images
JP2011075617A (en) Image display viewing system and image display device
JP6081494B2 (en) Display device, display method, display program, and recording medium
JP4738470B2 (en) Illumination device and display device including the same
US10192493B2 (en) Display device
WO2011033684A1 (en) Image display device
WO2011058728A1 (en) Liquid crystal display
WO2011148671A1 (en) Liquid-crystal display device
JP2014153380A (en) Display device
Date et al. 52.3: Direct‐viewing Display Using Alignment‐controlled PDLC and Holographic PDLC
JP2021076802A (en) Projection system
WO2013038883A1 (en) Stereoscopic image display device, and drive method of stereoscopic image display device
JP2008096691A (en) Projection device
WO2012147663A1 (en) Stereoscopic image display system
JP2005114763A (en) Projector system and driving method for the same
JP2005024627A (en) Display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556261

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870578

Country of ref document: EP

Kind code of ref document: A1