WO2014108977A1 - Antenna apparatus - Google Patents

Antenna apparatus Download PDF

Info

Publication number
WO2014108977A1
WO2014108977A1 PCT/JP2013/007627 JP2013007627W WO2014108977A1 WO 2014108977 A1 WO2014108977 A1 WO 2014108977A1 JP 2013007627 W JP2013007627 W JP 2013007627W WO 2014108977 A1 WO2014108977 A1 WO 2014108977A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna element
antenna device
ground conductor
gain
Prior art date
Application number
PCT/JP2013/007627
Other languages
French (fr)
Japanese (ja)
Inventor
宇野 博之
将之 小幡
朋明 阿部
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014108977A1 publication Critical patent/WO2014108977A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0428Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0464Annular ring patch

Definitions

  • the present invention relates to an antenna device having an antenna pattern that operates at a plurality of frequencies.
  • Various wireless communication systems for example, AM / FM broadcast, terrestrial digital broadcast, GPS, VICS (registered trademark), ETC
  • AM / FM broadcast for example, AM / FM broadcast, terrestrial digital broadcast, GPS, VICS (registered trademark), ETC
  • a plurality of frequencies are used.
  • the performance of the antenna varies in proportion to the volume. Therefore, when the antenna is downsized, a design for improving the antenna performance (for example, gain and efficiency) is required.
  • first and second antenna electrodes are provided on the surface of a dielectric block on a ground conductor, and one surface of the ground conductor is a ground side, and power is supplied to the first and second antenna electrodes.
  • a structure is known in which a feed line to be formed is formed on the other surface of the ground conductor and electrically connected to the feed line via a feed pin inserted at a feed point of each antenna electrode (Patent Document 1).
  • the first antenna electrode can be formed inside the second antenna electrode by making the operating frequency band of the first antenna electrode higher than the operating frequency band of the second antenna electrode.
  • the antenna device can be downsized.
  • a patch conductor is provided on one surface of a dielectric layer, and a ground conductor having a ring-shaped slot formed on the other surface.
  • the antenna performance can be improved while reducing the size of the apparatus by simultaneously feeding power using the L-shaped probe disposed between the patch conductor and the ring-shaped slot.
  • the antenna device described in Patent Document 1 since the first antenna element and the second antenna element are arranged close to each other, the two antenna elements are electromagnetically coupled to each other, As a result, the performance of the antenna element may be deteriorated. Further, in the antenna device described in Patent Document 2, since the patch conductor and the ring-shaped slot formed in the ground conductor are fed simultaneously, it is necessary to arrange the L-type probe with high accuracy, and the configuration of the device becomes complicated. End up. In addition, a reflector is required to increase the gain, and the number of parts increases.
  • the present invention has been made under the above background.
  • the objective of this invention is providing the antenna apparatus which implement
  • An antenna device includes a dielectric substrate, a ground conductor formed on the dielectric substrate, a dielectric block provided on the ground conductor, and formed on the dielectric block.
  • a plurality of L-shaped slits excited in the operating frequency band are formed on the ground conductor.
  • FIG. 1 is a perspective view of an antenna device according to a first embodiment of the present invention.
  • 2 is a plan view of the antenna device of FIG. 3A is a cross-sectional view taken along line AA in FIG. 2
  • FIG. 3B is a cross-sectional view taken along line BB in FIG. 4
  • FIG. 5 is a diagram comparing the antenna gain in the second antenna element by structure.
  • FIG. 6 is an explanatory diagram showing a radiation pattern of the second antenna element in the antenna apparatus of FIG.
  • FIG. 7 is a diagram comparing the antenna gain of the first antenna element by structure.
  • FIG. 8 is an explanatory diagram showing a radiation pattern of the first antenna element in the antenna apparatus of FIG. FIG.
  • FIG. 9 is a perspective view of an antenna device according to the second embodiment of the present invention.
  • 10 is a plan view of the antenna device of FIG.
  • FIG. 11 is a diagram comparing the antenna gain of the second antenna element by structure.
  • 12 is an explanatory diagram showing a radiation pattern of the second antenna element in the antenna device of FIG.
  • FIG. 13 is a diagram comparing the antenna gain of the first antenna element by structure.
  • 14 is an explanatory diagram showing a radiation pattern of the second antenna element in the antenna apparatus of FIG.
  • the antenna device of the present invention includes a dielectric substrate, a ground conductor formed on the dielectric substrate, a dielectric block provided on the ground conductor, and a substantially annular shape formed on the dielectric block.
  • a first antenna element and a second antenna element disposed inside the first antenna element, wherein the first antenna element is electromagnetically coupled to the second antenna element and excited in an operating frequency band of the second antenna element.
  • a plurality of L-shaped slits are formed on the ground conductor.
  • the slit operates as an antenna in the operating frequency band of the second antenna element
  • the second antenna element provided inside the first antenna element without reducing the efficiency of the substantially annular first antenna element.
  • the gain can be improved, and downsizing can be realized while maintaining the performance of the antenna element.
  • the plurality of slits are four slits that are uniformly formed in a central portion of the ground conductor.
  • the dielectric block is disposed at a position covering a part of the slit.
  • the antenna device further includes a plurality of parasitic elements that are arranged at positions away from the first antenna element along the outer periphery of the first antenna element and are excited in an operating frequency band of the second antenna element. It has the composition provided. With this configuration, the gain of the second antenna element can be further improved, and the size can be reduced while maintaining the performance of the antenna element.
  • the plurality of parasitic elements are four rectangular parasitic elements arranged uniformly along the outer periphery of the first antenna element.
  • any one of the parasitic elements is a power feeding element for the first antenna element.
  • FIG. 1 to 3 show an antenna device according to a first embodiment.
  • FIG. 1 is a perspective view
  • FIG. 2 is a plan view
  • FIG. 3 is a sectional view.
  • the antenna device 101 includes a dielectric substrate 102, a ground conductor 103 formed on the substrate 102, a dielectric block 104, a first antenna element 105, and a feeding element 106.
  • the dielectric substrate 102 is, for example, a glass epoxy substrate having a side length Lg and a thickness T, and its relative dielectric constant is 4.5.
  • the ground conductor 103 is formed by a conductor pattern on the upper surface (the surface on the + Z side in FIG. 1) of the dielectric substrate 102 and is electrically grounded.
  • the dielectric block 104 is a substantially rectangular parallelepiped block having a side length Lc and a thickness Tc, and is made of, for example, a dielectric material having a high dielectric constant of ceramic resin.
  • the first antenna element 105 is formed on the upper surface (the surface on the + Z side in FIG. 1) of the dielectric block 104 with, for example, a conductive material (for example, silver plating) having an outer dimension L1a, an element width W1a, and a gap dimension L1b. It has a substantially annular shape surrounding the two antenna elements 107.
  • the diagonal portion of the first antenna element 105 is formed with a right-angled isosceles triangular cutout, which acts as a perturbing element, thereby realizing circularly polarized radiation.
  • the feeding element 106 is formed on the upper surface (the surface on the + Z side) of the dielectric block 104, for example, with a conductive material (for example, silver plating) having a length Lf and a width Wf, and is separated from the first antenna element 105 by a distance S1.
  • the first antenna element 105 is disposed substantially parallel to the position.
  • the power feeding element 106 feeds power from a radio circuit (not shown) formed on the ⁇ Z side surface of the dielectric substrate 102 to the position of the first power feeding point 108 via the first power feeding pin 301 (see FIG. 3). Receive.
  • the power feeding element 106 and the first antenna element 105 are electromagnetically coupled, and the first antenna element 105 is excited.
  • the second antenna element 107 is provided on the upper surface (surface on the + Z side) of the dielectric block 104, and is formed of, for example, a conductive material (for example, silver plating) having an outer dimension L2a.
  • the second antenna element 107 is arranged at a substantially central position in the gap of the first antenna element 105, and a notch of a right-angled isosceles triangle as a perturbation element is formed in the diagonal portion.
  • a conductive material for example, silver plating
  • the second antenna element 107 is connected to the second feeding point via a second feeding pin 302 (see FIG. 3) from a radio circuit (not shown) formed on the lower surface (the ⁇ Z side surface) of the dielectric substrate 102. Power is supplied to position 109 and excited. The position of the second feeding point 109 is determined at a predetermined position in the second antenna element 107 so that impedance matching with the radio circuit can be achieved.
  • the dielectric block 104 is disposed so that the surface (the surface on the ⁇ Z side) opposite to the surface on which the antenna elements 105 and 107 are formed is in contact with the ground conductor 103.
  • the antenna element 105 and the second antenna element 107 operate as a microstrip antenna using the ground conductor 103 as a ground plane, and can realize unidirectional directivity characteristics with the maximum radiation direction as the + Z side.
  • each of the slits 401a to 401d has an L-shape having a length of Ls and a width of Ws, and the interval between adjacent slits is set to Ds.
  • 401d is arranged equally (in a symmetrical position with respect to the center of the ground conductor 103) so as to form a square corner portion.
  • These slits 401a to 401d are appropriately sized so that they operate as parasitic elements at the frequency at which the second antenna element 107 operates, and together with the second antenna element 107, improve the antenna gain in the + Z direction.
  • the dielectric block 104 is arranged on the ground conductor 103 so that the center of the square formed by the L-shaped slits 401a to 401d and the center of the dielectric block 104 coincide with each other.
  • the gain of the second antenna element 107 can be improved without degrading the performance of the element 105.
  • each of the slits 401a to 401d is partially covered by the dielectric block 104, but the present invention is not limited to such a configuration.
  • the antenna gain and radiation pattern of the antenna element having the above configuration were calculated by electromagnetic field simulation and compared with an antenna element having a configuration in which no slit was provided.
  • the dimensions of the antenna device used as the electromagnetic field simulation model are as follows.
  • the first antenna element 105 operates as an antenna element that resonates in the GPS band (1.575 GHz band), and the second antenna element 107 resonates in the DSRC band (5.8 GHz band). Operates as an antenna element.
  • FIG. 5 shows a comparison of the antenna gain of the second antenna element 107 in the 5.8 GHz band for each antenna device structure.
  • (A) is the antenna gain when the second antenna element is single (when the first antenna element and the slit are not provided), and
  • (B) is when the first antenna element is provided (however, the slit is
  • (C) shows the antenna gain in the antenna device according to the present embodiment.
  • “Antenna gain” means directivity gain in the + Z direction.
  • the antenna gain of the second antenna element is reduced by 0.7 dB due to electromagnetic coupling with the first antenna element.
  • FIG. 5C by forming a slit in the ground conductor, the antenna gain of the second antenna element is improved by 1.1 dB compared to the case where the slit is not provided (FIG. 5B). It has been shown. Note that since the antenna element of the present embodiment is configured to have perturbation, the antenna gain in FIG. 5 indicates the gain of right-handed circular polarization.
  • FIG. 6A and 6B are diagrams showing a radiation pattern of the second antenna element of the antenna device according to the present embodiment.
  • FIG. 6A shows a radiation pattern on the XZ plane
  • FIG. 6B shows a radiation pattern on the YZ plane.
  • normalization is performed so that the maximum gain is 0 dB. It can be seen from the radiation pattern of FIG. 6 that in the antenna device according to the present embodiment, unidirectional directivity characteristics radiating in the + Z direction are obtained.
  • the half-value angle of the radiation pattern in the antenna device having the configuration shown in FIG. 5B was 136 degrees on the XZ plane and 126 degrees on the YZ plane. Furthermore, the half-value angle of the radiation pattern in the antenna device having the configuration of FIG. 5A was 106 degrees on the XZ plane and 116 degrees on the YZ plane.
  • FIG. 7 shows a comparison of the antenna gain in the 1.575 GHz band of the first antenna element 105 for each antenna device structure.
  • (A) is the antenna gain when the first antenna element is single (when the second antenna element and slit are not provided), and (B) is the case when the second antenna element is provided (however, the slit is (C) shows the antenna gain in the antenna device according to the present embodiment.
  • “Antenna gain” means directivity gain in the + Z direction.
  • the antenna gain of the first antenna element does not decrease even when the second antenna element is provided or a slit is formed on the ground conductor. This is because the second antenna element and the slit are sufficiently small with respect to the wavelength of the 1.575 GHz band that is the operating frequency of the first antenna element, and these influences hardly occur.
  • FIG. 8A and 8B are diagrams showing a radiation pattern of the first antenna element of the antenna device according to the present embodiment, where FIG. 8A shows a radiation pattern on the XZ plane, and FIG. 8B shows a radiation pattern on the YZ plane. .
  • normalization is performed so that the maximum gain is 0 dB. From the radiation pattern of FIG. 8, it can be seen that the antenna device according to the present embodiment has a unidirectional directional characteristic that radiates in the + Z direction.
  • the half-value angle of the radiation pattern in FIG. 8 was 107 degrees on the XZ plane and 106 degrees on the YZ plane. Further, the half-value angle of the radiation pattern in the antenna device having the configuration of FIG. 7B was 105 degrees on the XZ plane and 106 degrees on the YZ plane. Further, the half-value angle of the radiation pattern in the antenna device having the configuration shown in FIG. 7A was 105 degrees in the XZ plane and 107 degrees in the YZ plane.
  • the L-shaped slits are formed in the ground conductor in a square shape, and the dielectric block in which the first and second antenna elements are formed is disposed on the slits, thereby improving the performance of the first antenna element.
  • the antenna gain of the second antenna element can be improved without deteriorating.
  • FIG. 9 is a perspective view of the antenna device according to the second embodiment
  • FIG. 10 is a plan view.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the antenna device 901 in this embodiment is different from the antenna device 101 in the first embodiment in that it includes parasitic elements 902a to 902d.
  • the parasitic elements 902a to 902d are formed on the upper surface (the surface on the + Z side) of the dielectric block 104 by, for example, silver plating having a length of Lr and a width of Wr, and a predetermined length from each side of the first antenna element 105. They are arranged along the first antenna element 105, separated by an interval S2.
  • the parasitic element 902a is used as a feeding element for the first antenna element 105, and feeds power from a wireless circuit (not shown) formed on the lower surface (the surface on the ⁇ Z side) of the dielectric substrate 102 via a feeding pin. Power is supplied to the point 903. Accordingly, the first antenna element 105 is excited by the electromagnetic coupling between the first antenna element 105 and the parasitic element 902a. That is, the parasitic element 902a performs the same operation as that of the feeder element 106 of the first embodiment. 9 and 10, the position of the feeding point 903 is illustrated as the center of the parasitic element 902a. However, the present invention is not limited to this, and the position where impedance matching of the first antenna element 105 can be obtained is not limited thereto. That's fine.
  • the parasitic element 902a operates as a parasitic element with respect to the second antenna element 107. That is, when the second antenna element 107 is excited, the parasitic element 902a is excited by being electromagnetically coupled to the second antenna element 107, and operates as an antenna, and as a result, the opening area of the antenna increases. Therefore, the antenna gain in the + Z direction is improved.
  • the other parasitic elements 902b to 902d act so as to improve the antenna gain of the second antenna element 107.
  • the antenna gain and radiation pattern of the antenna device configured as described above were calculated by electromagnetic field simulation and compared with the antenna device according to the first embodiment.
  • the dimensions of the antenna device used as the electromagnetic field simulation model are as follows. The values of other parameters are the same as those described in the first embodiment.
  • the first antenna element 105 operates as an antenna element that resonates in the GPS band (1.575 GHz band), and the second antenna element 107 resonates in the DSRC band (5.8 GHz band). Operates as an antenna element.
  • FIG. 11 shows a comparison of the antenna gain of the second antenna element 107 in the 5.8 GHz band for each antenna device structure.
  • (A) shows the antenna gain of the second antenna element according to the first embodiment
  • (B) shows the antenna gain of the second antenna element according to the present embodiment.
  • “Antenna gain” means directivity gain in the + Z direction. From FIG. 11, it can be seen that by providing four parasitic elements, the antenna gain of the second antenna element is improved by 1.1 dB.
  • FIG. 12A and 12B are diagrams showing a radiation pattern of the second antenna element of the antenna device according to the present embodiment, where FIG. 12A shows a radiation pattern on the XZ plane, and FIG. 12B shows a radiation pattern on the YZ plane. .
  • normalization is performed so that the maximum gain is 0 dB. From the radiation pattern of FIG. 12, it can be seen that the antenna device according to the present embodiment has a unidirectional directional characteristic that radiates in the + Z direction.
  • the half-value angle of the radiation pattern in FIG. 12 was 82 degrees on the XZ plane and 80 degrees on the YZ plane. Further, the half-value angle of the radiation pattern in the antenna device according to the configuration of the first embodiment (configuration of FIG. 11A) was 102 degrees on the XZ plane and 98 degrees on the YZ plane. Thus, in the antenna device according to the present embodiment, it can be seen that the half-value width is reduced as compared with other structures, and the directivity characteristics in the + Z direction are improved.
  • FIG. 13 compares the antenna gain of the first antenna element 105 in the 1.575 GHz band according to the structure of the antenna device.
  • (A) shows the antenna gain of the second antenna element according to the first embodiment
  • (B) shows the antenna gain of the second antenna element according to the present embodiment. From the result of FIG. 13, it can be seen that the antenna gain of the first antenna element does not decrease even when a parasitic element is provided. This is because the parasitic element is sufficiently small with respect to the wavelength of the 1.575 GHz band, which is the operating frequency of the first antenna element, and the influence of the parasitic element hardly occurs.
  • FIG. 14A and 14B are diagrams showing a radiation pattern of the first antenna element of the antenna device according to the present embodiment, where FIG. 14A shows a radiation pattern on the XZ plane, and FIG. 14B shows a radiation pattern on the YZ plane. .
  • normalization is performed so that the maximum gain is 0 dB. From the radiation pattern of FIG. 14, it can be seen that the antenna device according to the present embodiment has a unidirectional directional characteristic that radiates in the + Z direction.
  • the half-value angle of the radiation pattern in FIG. 14 was 106 degrees on the XZ plane and 106 degrees on the YZ plane. Further, the half-value angle of the radiation pattern in the antenna device according to the configuration of the first embodiment (configuration of FIG. 13A) was 107 degrees on the XZ plane and 106 degrees on the YZ plane. Thus, in the antenna device according to the present embodiment, it can be seen that the presence of the parasitic element hardly affects the radiation pattern of the first antenna element.
  • the length of each side of the L-shaped slit is made equal, but it is not always necessary to make it equal, and can be changed as long as it is excited in the operating frequency band of the second antenna element.
  • the angle of the bending part of a slit is a right angle, it does not necessarily need to be a right angle and can be suitably changed as long as it excites in the operating frequency band of a 2nd antenna element.
  • the four slits are formed, the number can be changed suitably.
  • the parasitic parasitic element is provided.
  • the shape is not necessarily limited to the rectangular shape, and the shape is appropriately changed as long as excitation is performed in the operating frequency band of the second antenna element. Can do.
  • the four slits are formed, the number can be changed suitably.
  • each parameter shown in the above embodiment is merely an example, and is not limited to the numerical value described in the above embodiment.
  • the value can be appropriately changed according to the arrangement of the power supply unit and the material and arrangement of components, casings, cables, etc. in the vicinity of the antenna device, thereby improving the radiation efficiency and gain. .
  • the 1.575 GHz band and the 5.8 GHz band are given as examples, but the present invention is not limited to this frequency.
  • the microstrip antenna having the circular polarization characteristic in which the antenna element is perturbed is used.
  • the same effect can be obtained as a microstrip antenna having the linear polarization characteristic without providing the perturbation. be able to.
  • the case where radio waves are transmitted has been described as an example.
  • the present invention can be equally applied to the case where radio waves transmitted from, for example, a radio base station are received.
  • the antenna device according to the present invention has high antenna efficiency and can be applied to, for example, a vehicle-mounted antenna device, and is useful.

Abstract

An antenna apparatus (101) is configured from: a dielectric substrate (102); a ground conductor (103) formed on one surface of the dielectric substrate (102); a dielectric block (104) configured from a dielectric material having a high dielectric constant, such as a ceramic resin; and a first antenna element (105) and a second antenna element (107), which are formed on a dielectric block (104) by means of a conductor pattern. The first antenna element (105) is formed in a substantially annular shape so as to surround the second antenna element (107), and in a center portion of the ground conductor (103), four L-shaped slits (401a, 401b, 401c, 401d) formed by cutting the conductor pattern are configured. With the configuration, an antenna gain of the second antenna element can be improved without deteriorating performance of the first antenna element, thereby achieving high antenna performance.

Description

アンテナ装置Antenna device
 本発明は、複数の周波数で動作するアンテナパターンを備えたアンテナ装置に関する。 The present invention relates to an antenna device having an antenna pattern that operates at a plurality of frequencies.
 車両には様々な無線通信システム(例えば、AM/FM放送、地上デジタル放送、GPS、VICS(登録商標)、ETC)が搭載されているところ、各々の通信システムに対応するために、複数の周波数に対応するアンテナを設けることで、アンテナの小型化、低コスト化が可能となる。その一方で、アンテナの性能は体積に比例して変動することから、アンテナを小型化する場合には、アンテナ性能(例えば利得や効率)を向上させるための設計が必要となる。 Various wireless communication systems (for example, AM / FM broadcast, terrestrial digital broadcast, GPS, VICS (registered trademark), ETC) are mounted on the vehicle. In order to support each communication system, a plurality of frequencies are used. By providing an antenna corresponding to the above, it is possible to reduce the size and cost of the antenna. On the other hand, the performance of the antenna varies in proportion to the volume. Therefore, when the antenna is downsized, a design for improving the antenna performance (for example, gain and efficiency) is required.
 このようなアンテナ装置として、地導体上の誘電体ブロックの表面に第1,第2のアンテナ電極を設け、地導体の一方の面をグランド側とし、当該第1,第2のアンテナ電極へ給電する給電線路を地導体の他方の面に形成し、各々のアンテナ電極の給電点に挿入された給電ピンを介して給電線路と電気的に接続する構造が知られている(特許文献1)。この構造では、第1のアンテナ電極の動作周波数帯を、第2のアンテナ電極の動作周波数帯よりも高くすることにより、第1のアンテナ電極を第2のアンテナ電極の内側に形成することができ、アンテナ装置の小型化を図ることができる。 As such an antenna device, first and second antenna electrodes are provided on the surface of a dielectric block on a ground conductor, and one surface of the ground conductor is a ground side, and power is supplied to the first and second antenna electrodes. A structure is known in which a feed line to be formed is formed on the other surface of the ground conductor and electrically connected to the feed line via a feed pin inserted at a feed point of each antenna electrode (Patent Document 1). In this structure, the first antenna electrode can be formed inside the second antenna electrode by making the operating frequency band of the first antenna electrode higher than the operating frequency band of the second antenna electrode. The antenna device can be downsized.
 特許文献2に記載のアンテナ装置では、誘電体層の一方の面にパッチ導体を設けるとともに、他方の面にリング状スロットが形成されたグランド導体が設けられている。この構造では、パッチ導体及びリング状スロットの間に配置されたL型プローブを用いて、これらを同時に給電することにより、装置を小型化しつつアンテナ性能を向上することができる。 In the antenna device described in Patent Document 2, a patch conductor is provided on one surface of a dielectric layer, and a ground conductor having a ring-shaped slot formed on the other surface. In this structure, the antenna performance can be improved while reducing the size of the apparatus by simultaneously feeding power using the L-shaped probe disposed between the patch conductor and the ring-shaped slot.
特開2005-198335号公報JP 2005-198335 A 特開2008-54080号公報JP 2008-54080 A
 しかしながら、特許文献1に記載のアンテナ装置では、第1のアンテナ素子と第2のアンテナ素子とが近接して配置されることから、これら2つのアンテナ素子が互いに電磁界的に結合してしまい、これによりアンテナ素子の性能が低下してしまうおそれがある。また、特許文献2に記載のアンテナ装置では、パッチ導体とグランド導体に形成したリング状スロットとを同時に給電するため、L型プローブを高い精度で配置する必要があり、装置の構成が複雑になってしまう。また、利得を上げるために反射板が必要となり、部品点数が増加してしまう。 However, in the antenna device described in Patent Document 1, since the first antenna element and the second antenna element are arranged close to each other, the two antenna elements are electromagnetically coupled to each other, As a result, the performance of the antenna element may be deteriorated. Further, in the antenna device described in Patent Document 2, since the patch conductor and the ring-shaped slot formed in the ground conductor are fed simultaneously, it is necessary to arrange the L-type probe with high accuracy, and the configuration of the device becomes complicated. End up. In addition, a reflector is required to increase the gain, and the number of parts increases.
 本発明は、上記背景の下でなされたものである。本発明の目的は、小型化しつつ高いアンテナ性能を実現するアンテナ装置を提供することにある。 The present invention has been made under the above background. The objective of this invention is providing the antenna apparatus which implement | achieves high antenna performance, reducing in size.
 本発明の一の態様であるアンテナ装置は、誘電体基板と、前記誘電体基板上に形成されたグランド導体と、前記グランド導体上に設けられた誘電体ブロックと、前記誘電体ブロック上に形成された略環状形状の第1アンテナ素子と、前記第1アンテナ素子の内側に配置された第2アンテナ素子とを備え、前記第2アンテナ素子と電磁界的に結合して前記第2アンテナ素子の動作周波数帯で励振する複数のL字形状のスリットを、前記グランド導体上に形成した構成を有する。 An antenna device according to one aspect of the present invention includes a dielectric substrate, a ground conductor formed on the dielectric substrate, a dielectric block provided on the ground conductor, and formed on the dielectric block. A first antenna element having a substantially annular shape, and a second antenna element disposed inside the first antenna element, wherein the second antenna element is electromagnetically coupled to the second antenna element. A plurality of L-shaped slits excited in the operating frequency band are formed on the ground conductor.
 以下に説明するように、本発明には他の態様が存在する。したがって、この発明の開示は、本発明の一部の態様の提供を意図しており、ここで記述され請求される発明の範囲を制限することは意図していない。 As described below, there are other aspects of the present invention. Accordingly, this disclosure is intended to provide some aspects of the invention and is not intended to limit the scope of the invention described and claimed herein.
図1は、本発明の第1の実施形態におけるアンテナ装置の斜視図FIG. 1 is a perspective view of an antenna device according to a first embodiment of the present invention. 図2は、図1のアンテナ装置の平面図2 is a plan view of the antenna device of FIG. 図3(A)は図2のA-A線に沿った断面図、図3(B)は図2のB-B線に沿った断面図3A is a cross-sectional view taken along line AA in FIG. 2, and FIG. 3B is a cross-sectional view taken along line BB in FIG. 図4は、図1のアンテナ装置のグランド導体部分の平面図4 is a plan view of a ground conductor portion of the antenna device of FIG. 図5は、第2アンテナ素子におけるアンテナ利得を構造別に比較した図FIG. 5 is a diagram comparing the antenna gain in the second antenna element by structure. 図6は、図1のアンテナ装置における第2アンテナ素子の放射パターンを示す説明図FIG. 6 is an explanatory diagram showing a radiation pattern of the second antenna element in the antenna apparatus of FIG. 図7は、第1アンテナ素子におけるアンテナ利得を構造別に比較した図FIG. 7 is a diagram comparing the antenna gain of the first antenna element by structure. 図8は、図1のアンテナ装置における第1アンテナ素子の放射パターンを示す説明図FIG. 8 is an explanatory diagram showing a radiation pattern of the first antenna element in the antenna apparatus of FIG. 図9は、本発明の第2の実施形態におけるアンテナ装置の斜視図FIG. 9 is a perspective view of an antenna device according to the second embodiment of the present invention. 図10は、図9のアンテナ装置の平面図10 is a plan view of the antenna device of FIG. 図11は、第2アンテナ素子におけるアンテナ利得を構造別に比較した図FIG. 11 is a diagram comparing the antenna gain of the second antenna element by structure. 図12は、図9のアンテナ装置における第2アンテナ素子の放射パターンを示す説明図12 is an explanatory diagram showing a radiation pattern of the second antenna element in the antenna device of FIG. 図13は、第1アンテナ素子におけるアンテナ利得を構造別に比較した図FIG. 13 is a diagram comparing the antenna gain of the first antenna element by structure. 図14は、図9のアンテナ装置における第2アンテナ素子の放射パターンを示す説明図14 is an explanatory diagram showing a radiation pattern of the second antenna element in the antenna apparatus of FIG.
 以下に本発明の詳細な説明を述べる。ただし、以下の詳細な説明と添付の図面は発明を限定するものではない。 The detailed description of the present invention will be described below. However, the following detailed description and the accompanying drawings do not limit the invention.
 本発明のアンテナ装置は、誘電体基板と、前記誘電体基板上に形成されたグランド導体と、前記グランド導体上に設けられた誘電体ブロックと、前記誘電体ブロック上に形成された略環状形状の第1アンテナ素子と、前記第1アンテナ素子の内側に配置された第2アンテナ素子とを備え、前記第2アンテナ素子と電磁界的に結合して前記第2アンテナ素子の動作周波数帯で励振する複数のL字形状のスリットを、前記グランド導体上に形成した構成を有する。 The antenna device of the present invention includes a dielectric substrate, a ground conductor formed on the dielectric substrate, a dielectric block provided on the ground conductor, and a substantially annular shape formed on the dielectric block. A first antenna element and a second antenna element disposed inside the first antenna element, wherein the first antenna element is electromagnetically coupled to the second antenna element and excited in an operating frequency band of the second antenna element. A plurality of L-shaped slits are formed on the ground conductor.
 この構成により、スリットが第2アンテナ素子の動作周波数帯におけるアンテナとして動作するから、略環状の第1アンテナ素子の効率を低下させることなく、第1アンテナ素子の内側に設けられた第2アンテナ素子の利得を向上することができ、アンテナ素子の性能を維持しつつ小型化を実現することができる。 With this configuration, since the slit operates as an antenna in the operating frequency band of the second antenna element, the second antenna element provided inside the first antenna element without reducing the efficiency of the substantially annular first antenna element. The gain can be improved, and downsizing can be realized while maintaining the performance of the antenna element.
 本発明のアンテナ装置において、前記複数のスリットは、前記グランド導体の中央部に均等に形成された4つのスリットであることが好ましい。また、本発明のアンテナ装置において前記誘電体ブロックは、前記スリットの一部を覆う位置に配置されることが好ましい。 In the antenna device according to the aspect of the invention, it is preferable that the plurality of slits are four slits that are uniformly formed in a central portion of the ground conductor. In the antenna device of the present invention, it is preferable that the dielectric block is disposed at a position covering a part of the slit.
 本発明のアンテナ装置は、前記第1アンテナ素子の外周に沿うように前記第1アンテナ素子から離れた位置に配置され、前記第2アンテナ素子の動作周波数帯で励振する複数の無給電素子を更に備えた構成を有する。この構成により、第2アンテナ素子の利得をさらに向上させることができ、アンテナ素子の性能を維持しつつ小型化を実現することができる。 The antenna device according to the present invention further includes a plurality of parasitic elements that are arranged at positions away from the first antenna element along the outer periphery of the first antenna element and are excited in an operating frequency band of the second antenna element. It has the composition provided. With this configuration, the gain of the second antenna element can be further improved, and the size can be reduced while maintaining the performance of the antenna element.
 本発明のアンテナ装置において、前記複数の無給電素子は、前記第1アンテナ素子の外周に沿って均等に配置された4つの矩形状の無給電素子であることが好ましい。また、本発明のアンテナ装置において、前記無給電素子のいずれか一つが、前記第1アンテナ素子の給電用の素子であることが好ましい。 In the antenna device of the present invention, it is preferable that the plurality of parasitic elements are four rectangular parasitic elements arranged uniformly along the outer periphery of the first antenna element. In the antenna device of the present invention, it is preferable that any one of the parasitic elements is a power feeding element for the first antenna element.
 以下、本発明の好適な実施形態に係るアンテナ装置について、図面を用いて説明する。 Hereinafter, an antenna device according to a preferred embodiment of the present invention will be described with reference to the drawings.
(第1の実施形態)
 図1ないし図3は、第1の実施形態に係るアンテナ装置を示すものであり、図1は斜視図を、図2は平面図を、図3は断面図をそれぞれ示している。アンテナ装置101は、誘電体基板102と、この基板102上に形成されたグランド導体103、誘電体ブロック104、第1アンテナ素子105、給電素子106を備える。
(First embodiment)
1 to 3 show an antenna device according to a first embodiment. FIG. 1 is a perspective view, FIG. 2 is a plan view, and FIG. 3 is a sectional view. The antenna device 101 includes a dielectric substrate 102, a ground conductor 103 formed on the substrate 102, a dielectric block 104, a first antenna element 105, and a feeding element 106.
 誘電体基板102は、例えば、一辺の長さLg、厚さTのガラスエポキシ基板であり、その比誘電率は4.5である。グランド導体103は、誘電体基板102の上面(図1の+Z側の面)に、導体パターンによって形成されており、かつ、電気的に接地されている。誘電体ブロック104は、一辺の長さLc、厚さTcの略直方体のブロックであり、例えばセラミック樹脂の高い比誘電率を有する誘電体材料から構成される。 The dielectric substrate 102 is, for example, a glass epoxy substrate having a side length Lg and a thickness T, and its relative dielectric constant is 4.5. The ground conductor 103 is formed by a conductor pattern on the upper surface (the surface on the + Z side in FIG. 1) of the dielectric substrate 102 and is electrically grounded. The dielectric block 104 is a substantially rectangular parallelepiped block having a side length Lc and a thickness Tc, and is made of, for example, a dielectric material having a high dielectric constant of ceramic resin.
 第1アンテナ素子105は、誘電体ブロック104の上面(図1の+Z側の面)に、例えば外形寸法L1a、素子幅W1a、空隙寸法L1bの導電性材料(例えば銀メッキ)で形成され、第2アンテナ素子107を囲む略環状の形状を有している。第1アンテナ素子105の対角部分には、直角二等辺三角形状の切り欠きが形成されており、これが摂動素子として作用することで、円偏波放射を実現している。 The first antenna element 105 is formed on the upper surface (the surface on the + Z side in FIG. 1) of the dielectric block 104 with, for example, a conductive material (for example, silver plating) having an outer dimension L1a, an element width W1a, and a gap dimension L1b. It has a substantially annular shape surrounding the two antenna elements 107. The diagonal portion of the first antenna element 105 is formed with a right-angled isosceles triangular cutout, which acts as a perturbing element, thereby realizing circularly polarized radiation.
 給電素子106は、誘電体ブロック104の上面(+Z側の面)に、例えば長さLf、幅Wfの導電性材料(例えば銀メッキ)で形成され、第1アンテナ素子105から間隔S1だけ離れた位置に、第1アンテナ素子105と略平行に配置されている。給電素子106は、誘電体基板102の-Z側の面に形成された無線回路(図示せず)から、第1給電ピン301(図3参照)を介して第1給電点108の位置に給電を受ける。給電素子106に給電がなされると、給電素子106と第1アンテナ素子105とが電磁界的に結合され、第1アンテナ素子105が励振される。このようにして第1アンテナ素子105を励振することにより、無線回路とのインピーダンス整合を取ることが容易となり、インピーダンス整合回路が不要となる。 The feeding element 106 is formed on the upper surface (the surface on the + Z side) of the dielectric block 104, for example, with a conductive material (for example, silver plating) having a length Lf and a width Wf, and is separated from the first antenna element 105 by a distance S1. The first antenna element 105 is disposed substantially parallel to the position. The power feeding element 106 feeds power from a radio circuit (not shown) formed on the −Z side surface of the dielectric substrate 102 to the position of the first power feeding point 108 via the first power feeding pin 301 (see FIG. 3). Receive. When power is supplied to the power feeding element 106, the power feeding element 106 and the first antenna element 105 are electromagnetically coupled, and the first antenna element 105 is excited. By exciting the first antenna element 105 in this way, it becomes easy to achieve impedance matching with the radio circuit, and an impedance matching circuit becomes unnecessary.
 第2アンテナ素子107は、誘電体ブロック104の上面(+Z側の面)に設けられ、例えば外形寸法L2aの導電性材料(例えば銀メッキ)で形成されている。第2アンテナ素子107は、第1アンテナ素子105の空隙内の略中央の位置に配置されており、また、その対角部分には摂動素子としての直角二等辺三角形状の切り欠きが形成されており、これにより円偏波放射を実現している。 The second antenna element 107 is provided on the upper surface (surface on the + Z side) of the dielectric block 104, and is formed of, for example, a conductive material (for example, silver plating) having an outer dimension L2a. The second antenna element 107 is arranged at a substantially central position in the gap of the first antenna element 105, and a notch of a right-angled isosceles triangle as a perturbation element is formed in the diagonal portion. Thus, circularly polarized radiation is realized.
 第2アンテナ素子107は、誘電体基板102の下面(-Z側の面)に形成された無線回路(図示せず)から、第2給電ピン302(図3参照)を介して第2給電点109の位置に給電され、励振される。第2給電点109の位置は、無線回路とインピーダンス整合がとれるように、第2アンテナ素子107内の所定の位置に定められる。 The second antenna element 107 is connected to the second feeding point via a second feeding pin 302 (see FIG. 3) from a radio circuit (not shown) formed on the lower surface (the −Z side surface) of the dielectric substrate 102. Power is supplied to position 109 and excited. The position of the second feeding point 109 is determined at a predetermined position in the second antenna element 107 so that impedance matching with the radio circuit can be achieved.
 上記の構成において、誘電体ブロック104は、アンテナ素子105,107が形成される面と対向する面(-Z側の面)がグランド導体103と接するように配置されており、これにより、第1アンテナ素子105及び第2アンテナ素子107は、グランド導体103を地板としたマイクロストリップアンテナとして動作し、最大放射方向を+Z側とする単方向の指向特性を実現することができる。 In the above configuration, the dielectric block 104 is disposed so that the surface (the surface on the −Z side) opposite to the surface on which the antenna elements 105 and 107 are formed is in contact with the ground conductor 103. The antenna element 105 and the second antenna element 107 operate as a microstrip antenna using the ground conductor 103 as a ground plane, and can realize unidirectional directivity characteristics with the maximum radiation direction as the + Z side.
図4に示すように、グランド導体103の中央部には、4つのスリット401a~401dが、グランド導体103の導体パターンを切削することにより、形成されている。本実施形態のアンテナ装置では、各スリット401a~401dは、長さはLs、幅がWsのL字形の形状を有しており、隣接するスリットの間隔はDsとされ、これら4つのスリット401a~401dが正方形の角の部分を構成するように均等に(グランド導体103の中心を基準として対称な位置に)配置される。 As shown in FIG. 4, four slits 401 a to 401 d are formed in the central portion of the ground conductor 103 by cutting the conductor pattern of the ground conductor 103. In the antenna device of the present embodiment, each of the slits 401a to 401d has an L-shape having a length of Ls and a width of Ws, and the interval between adjacent slits is set to Ds. 401d is arranged equally (in a symmetrical position with respect to the center of the ground conductor 103) so as to form a square corner portion.
 これらスリット401a~401dは、その寸法を適宜定めることにより、第2アンテナ素子107が動作する周波数において無給電素子として動作し、第2アンテナ素子107と相まって+Z方向へのアンテナ利得を向上させる。そして、L字形状のスリット401a~401dにより構成される正方形の中心と、誘電体ブロック104の中心とが一致するように、誘電体ブロック104をグランド導体103上に配置することで、第1アンテナ素子105の性能を低下させることなく、第2アンテナ素子107の利得を向上することができる。なお、本実施形態では、スリット401a~401dの各々は、誘電体ブロック104によってその一部が覆われているが、本発明はかかる構成に限定されるものではない。 These slits 401a to 401d are appropriately sized so that they operate as parasitic elements at the frequency at which the second antenna element 107 operates, and together with the second antenna element 107, improve the antenna gain in the + Z direction. The dielectric block 104 is arranged on the ground conductor 103 so that the center of the square formed by the L-shaped slits 401a to 401d and the center of the dielectric block 104 coincide with each other. The gain of the second antenna element 107 can be improved without degrading the performance of the element 105. In the present embodiment, each of the slits 401a to 401d is partially covered by the dielectric block 104, but the present invention is not limited to such a configuration.
 上記構成によるアンテナ素子のアンテナ利得及び放射パターンを、電磁界シミュレーションにより計算を行い、スリットが設けられていない構成のアンテナ素子と比較した。電磁界シミュレーションモデルとして用いたアンテナ装置の寸法等は、以下のとおりとした。 The antenna gain and radiation pattern of the antenna element having the above configuration were calculated by electromagnetic field simulation and compared with an antenna element having a configuration in which no slit was provided. The dimensions of the antenna device used as the electromagnetic field simulation model are as follows.
 グランド導体103: 一辺の長さLg=60mm、厚さT=0.8mm
 スリット401a~401d: 一辺の長さLs=11.1mm、幅Ws=2mm、スリット間の間隔Ds=4.8mm
 誘電体ブロック104: 一辺の長さLc=25mm、厚さTc=2.5mm、比誘電率=19.5
 第1アンテナ素子105: 外形寸法L1a=15.6mm、素子幅W1a=1.3mm、空隙寸法L1b=13mm
 給電素子106: 長さLf=5.2mm、幅Wf=1.0mm、第1アンテナ素子との間隔S1=1.2mm
 第2アンテナ素子107: 外形寸法L2a=4.5mm
Ground conductor 103: side length Lg = 60 mm, thickness T = 0.8 mm
Slits 401a to 401d: One side length Ls = 11.1 mm, width Ws = 2 mm, spacing between slits Ds = 4.8 mm
Dielectric block 104: side length Lc = 25 mm, thickness Tc = 2.5 mm, relative permittivity = 19.5
First antenna element 105: external dimensions L1a = 15.6 mm, element width W1a = 1.3 mm, gap dimension L1b = 13 mm
Feed element 106: length Lf = 5.2 mm, width Wf = 1.0 mm, distance S1 = 1.2 mm from the first antenna element
Second antenna element 107: External dimension L2a = 4.5 mm
 上記のとおり構成することにより、第1アンテナ素子105は、GPS帯(1.575GHz帯)で共振するアンテナ素子として動作し、第2アンテナ素子107は、DSRC帯(5.8GHz帯)で共振するアンテナ素子として動作する。 By configuring as described above, the first antenna element 105 operates as an antenna element that resonates in the GPS band (1.575 GHz band), and the second antenna element 107 resonates in the DSRC band (5.8 GHz band). Operates as an antenna element.
 第2アンテナ素子107の5.8GHz帯におけるアンテナ利得を、アンテナ装置の構造別に比較したものを、図5に示す。同図において、(A)は第2アンテナ素子単体の場合(第1アンテナ素子及びスリットが設けられていない場合)のアンテナ利得、(B)は第1アンテナ素子を設けた場合(ただし、スリットは形成されていない)のアンテナ利得、(C)は本実施形態に係るアンテナ装置におけるアンテナ利得を示す。なお、「アンテナ利得」とは、+Z方向における指向性利得を意味する。 FIG. 5 shows a comparison of the antenna gain of the second antenna element 107 in the 5.8 GHz band for each antenna device structure. In the same figure, (A) is the antenna gain when the second antenna element is single (when the first antenna element and the slit are not provided), and (B) is when the first antenna element is provided (however, the slit is (C) shows the antenna gain in the antenna device according to the present embodiment. “Antenna gain” means directivity gain in the + Z direction.
 図5の(A)と(B)の比較より、第1アンテナ素子を設けることにより、第1アンテナ素子との電磁結合によって第2アンテナ素子のアンテナ利得が0.7dB低下する。そして、同図(C)に示すように、グランド導体にスリットを形成することにより、設けない場合(同図(B))と比較して、第2アンテナ素子のアンテナ利得が1.1dB向上することが示されている。なお、本実施形態のアンテナ素子は摂動を設けた構成としているため、図5のアンテナ利得は右旋円偏波の利得を示している。 5A and 5B, by providing the first antenna element, the antenna gain of the second antenna element is reduced by 0.7 dB due to electromagnetic coupling with the first antenna element. Then, as shown in FIG. 5C, by forming a slit in the ground conductor, the antenna gain of the second antenna element is improved by 1.1 dB compared to the case where the slit is not provided (FIG. 5B). It has been shown. Note that since the antenna element of the present embodiment is configured to have perturbation, the antenna gain in FIG. 5 indicates the gain of right-handed circular polarization.
 図6は、本実施形態に係るアンテナ装置の第2アンテナ素子の放射パターンを示す図であり、(A)はXZ面における放射パターン、(B)はYZ面における放射パターンを、それぞれ示している。なお、図6では、最大利得が0dBとなるように規格化している。図6の放射パターンより、本実施形態に係るアンテナ装置において、+Z方向に放射する単方向の指向特性が得られていることが分かる。 6A and 6B are diagrams showing a radiation pattern of the second antenna element of the antenna device according to the present embodiment. FIG. 6A shows a radiation pattern on the XZ plane, and FIG. 6B shows a radiation pattern on the YZ plane. . In FIG. 6, normalization is performed so that the maximum gain is 0 dB. It can be seen from the radiation pattern of FIG. 6 that in the antenna device according to the present embodiment, unidirectional directivity characteristics radiating in the + Z direction are obtained.
 図6の放射パターンの半値角は、XZ面において102度、YZ面において98度であった。また、図5(B)の構成によるアンテナ装置における放射パターンの半値角は、XZ面において136度、YZ面において126度であった。さらに、図5(A)の構成によるアンテナ装置における放射パターンの半値角は、XZ面において106度、YZ面において116度であった。このように、本実施形態に係るアンテナ装置においては、他の構造と比較して半値幅が減少しており、+Z方向に対する指向特性が向上していることが分かる。 6 has a half-value angle of 102 degrees on the XZ plane and 98 degrees on the YZ plane. The half-value angle of the radiation pattern in the antenna device having the configuration shown in FIG. 5B was 136 degrees on the XZ plane and 126 degrees on the YZ plane. Furthermore, the half-value angle of the radiation pattern in the antenna device having the configuration of FIG. 5A was 106 degrees on the XZ plane and 116 degrees on the YZ plane. Thus, in the antenna device according to the present embodiment, it can be seen that the half-value width is reduced as compared with other structures, and the directivity characteristics in the + Z direction are improved.
 図7は、第1アンテナ素子105の1.575GHz帯におけるアンテナ利得を、アンテナ装置の構造別に比較したものである。同図において、(A)は第1アンテナ素子単体の場合(第2アンテナ素子及びスリットが設けられていない場合)のアンテナ利得、(B)は第2アンテナ素子を設けた場合(ただし、スリットは形成されていない)のアンテナ利得、(C)は本実施形態に係るアンテナ装置におけるアンテナ利得を示す。なお、「アンテナ利得」とは、+Z方向における指向性利得を意味する。 FIG. 7 shows a comparison of the antenna gain in the 1.575 GHz band of the first antenna element 105 for each antenna device structure. In the same figure, (A) is the antenna gain when the first antenna element is single (when the second antenna element and slit are not provided), and (B) is the case when the second antenna element is provided (however, the slit is (C) shows the antenna gain in the antenna device according to the present embodiment. “Antenna gain” means directivity gain in the + Z direction.
 図7の結果より、第1アンテナ素子のアンテナ利得は、第2アンテナ素子が設けられ、あるいは、グランド導体上にスリットが形成された場合であっても、低下していないことが分かる。これは、第2アンテナ素子及びスリットが、第1アンテナ素子の動作周波数である1.575GHz帯の波長に対して十分小さく、これらの影響がほとんど生じないためである。 7 that the antenna gain of the first antenna element does not decrease even when the second antenna element is provided or a slit is formed on the ground conductor. This is because the second antenna element and the slit are sufficiently small with respect to the wavelength of the 1.575 GHz band that is the operating frequency of the first antenna element, and these influences hardly occur.
 図8は、本実施形態に係るアンテナ装置の第1アンテナ素子の放射パターンを示す図であり、(A)はXZ面における放射パターン、(B)はYZ面における放射パターンを、それぞれ示している。なお、図8では、最大利得が0dBとなるように規格化している。図8の放射パターンより、本実施形態に係るアンテナ装置において、+Z方向に放射する単方向の指向特性が得られていることが分かる。 8A and 8B are diagrams showing a radiation pattern of the first antenna element of the antenna device according to the present embodiment, where FIG. 8A shows a radiation pattern on the XZ plane, and FIG. 8B shows a radiation pattern on the YZ plane. . In FIG. 8, normalization is performed so that the maximum gain is 0 dB. From the radiation pattern of FIG. 8, it can be seen that the antenna device according to the present embodiment has a unidirectional directional characteristic that radiates in the + Z direction.
 図8の放射パターンの半値角は、XZ面において107度、YZ面において106度であった。また、図7(B)の構成によるアンテナ装置における放射パターンの半値角は、XZ面において105度、YZ面において106度であった。さらに、図7(A)の構成によるアンテナ装置における放射パターンの半値角は、XZ面において105度、YZ面において107度であった。このように、本実施形態に係るアンテナ装置においては、第2アンテナ素子及びスリットにより、第1アンテナ素子の放射パターンにほとんど影響を与えていないことが分かる。 The half-value angle of the radiation pattern in FIG. 8 was 107 degrees on the XZ plane and 106 degrees on the YZ plane. Further, the half-value angle of the radiation pattern in the antenna device having the configuration of FIG. 7B was 105 degrees on the XZ plane and 106 degrees on the YZ plane. Further, the half-value angle of the radiation pattern in the antenna device having the configuration shown in FIG. 7A was 105 degrees in the XZ plane and 107 degrees in the YZ plane. Thus, it can be seen that in the antenna device according to the present embodiment, the radiation pattern of the first antenna element is hardly affected by the second antenna element and the slit.
 以上のとおり、グランド導体にL字形状のスリットを正方形状に形成し、それらスリット上に第1及び第2アンテナ素子が形成された誘電体ブロックを配置することにより、第1アンテナ素子の性能を劣化させずに、第2アンテナ素子のアンテナ利得を向上することができる。 As described above, the L-shaped slits are formed in the ground conductor in a square shape, and the dielectric block in which the first and second antenna elements are formed is disposed on the slits, thereby improving the performance of the first antenna element. The antenna gain of the second antenna element can be improved without deteriorating.
(第2の実施形態)
 次に、本発明の第2の実施形態について、図9及び図10を参照しながら説明する。図9は、第2の実施形態に係るアンテナ装置の斜視図を示しており、図10は平面図である。なお、本実施形態において、前記第1の実施形態と同一の部材には、同一の符号を付して詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a perspective view of the antenna device according to the second embodiment, and FIG. 10 is a plan view. In the present embodiment, the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施形態におけるアンテナ装置901は、第1の実施形態におけるアンテナ装置101と比べ、無給電素子902a~902dを備えている点で相違する。無給電素子902a~902dは、誘電体ブロック104の上面(+Z側の面)に、例えば、長さがLr、幅がWrの銀メッキで形成され、第1アンテナ素子105の各辺から所定の間隔S2だけ離して、それぞれ第1アンテナ素子105に沿って配置されている。 The antenna device 901 in this embodiment is different from the antenna device 101 in the first embodiment in that it includes parasitic elements 902a to 902d. The parasitic elements 902a to 902d are formed on the upper surface (the surface on the + Z side) of the dielectric block 104 by, for example, silver plating having a length of Lr and a width of Wr, and a predetermined length from each side of the first antenna element 105. They are arranged along the first antenna element 105, separated by an interval S2.
 無給電素子902aは、第1アンテナ素子105の給電素子として利用され、誘電体基板102の下面(-Z側の面)に形成された無線回路(図示せず)から、給電ピンを介して給電点903の位置に給電される。これにより、第1アンテナ素子105と無給電素子902aとが電磁界的に結合することにより、第1アンテナ素子105が励振される。つまり、無給電素子902aは、第1の実施形態の給電素子106と同様の動作を行う。なお、図9及び図10では、給電点903の位置を無給電素子902aの中央として図示しているが、これに限るものではなく、第1アンテナ素子105のインピーダンス整合が取れるような位置であればよい。 The parasitic element 902a is used as a feeding element for the first antenna element 105, and feeds power from a wireless circuit (not shown) formed on the lower surface (the surface on the −Z side) of the dielectric substrate 102 via a feeding pin. Power is supplied to the point 903. Accordingly, the first antenna element 105 is excited by the electromagnetic coupling between the first antenna element 105 and the parasitic element 902a. That is, the parasitic element 902a performs the same operation as that of the feeder element 106 of the first embodiment. 9 and 10, the position of the feeding point 903 is illustrated as the center of the parasitic element 902a. However, the present invention is not limited to this, and the position where impedance matching of the first antenna element 105 can be obtained is not limited thereto. That's fine.
 一方、無給電素子902aは、第2アンテナ素子107に関しては無給電素子として動作する。すなわち、第2アンテナ素子107が励振されると、無給電素子902aは第2アンテナ素子107と電磁界的に結合することにより励振され、アンテナとして動作し、その結果、アンテナの開口面積が大きくなるため+Z方向へのアンテナ利得が向上する。他の無給電素子902b~902dについても同様である。このようにして、無給電素子902a~902dは、第2アンテナ素子107のアンテナ利得を向上するように、作用する。 On the other hand, the parasitic element 902a operates as a parasitic element with respect to the second antenna element 107. That is, when the second antenna element 107 is excited, the parasitic element 902a is excited by being electromagnetically coupled to the second antenna element 107, and operates as an antenna, and as a result, the opening area of the antenna increases. Therefore, the antenna gain in the + Z direction is improved. The same applies to the other parasitic elements 902b to 902d. In this way, the parasitic elements 902a to 902d act so as to improve the antenna gain of the second antenna element 107.
 上記構成によるアンテナ装置のアンテナ利得及び放射パターンを、電磁界シミュレーションにより計算を行い、第1実施形態に係るアンテナ装置と比較した。電磁界シミュレーションモデルとして用いたアンテナ装置の寸法等は、以下のとおりとした。なお、他のパラメータの値は、第1の実施形態で説明したのと同じである。 The antenna gain and radiation pattern of the antenna device configured as described above were calculated by electromagnetic field simulation and compared with the antenna device according to the first embodiment. The dimensions of the antenna device used as the electromagnetic field simulation model are as follows. The values of other parameters are the same as those described in the first embodiment.
 第1アンテナ素子105: 外形寸法L1c=15.5mm、素子幅W1b=1.25mm、空隙寸法L1d=13mm
 第2アンテナ素子107: 外形寸法L2b=4.7mm
 無給電素子902a~902d: 長さLr=14mm、幅Wr=1.0mm、第1アンテナ素子との間隔S2=1.3mm
First antenna element 105: External dimension L1c = 15.5 mm, element width W1b = 1.25 mm, gap dimension L1d = 13 mm
Second antenna element 107: External dimension L2b = 4.7 mm
Parasitic elements 902a to 902d: length Lr = 14 mm, width Wr = 1.0 mm, distance S2 from the first antenna element = 1.3 mm
 上記のとおり構成することにより、第1アンテナ素子105は、GPS帯(1.575GHz帯)で共振するアンテナ素子として動作し、第2アンテナ素子107は、DSRC帯(5.8GHz帯)で共振するアンテナ素子として動作する。 By configuring as described above, the first antenna element 105 operates as an antenna element that resonates in the GPS band (1.575 GHz band), and the second antenna element 107 resonates in the DSRC band (5.8 GHz band). Operates as an antenna element.
 第2アンテナ素子107の5.8GHz帯におけるアンテナ利得を、アンテナ装置の構造別に比較したものを、図11に示す。同図において、(A)は第1実施形態に係る第2アンテナ素子のアンテナ利得、(B)は本実施形態に係る第2アンテナ素子のアンテナ利得を示す。なお、「アンテナ利得」とは、+Z方向における指向性利得を意味する。図11より、4つの無給電素子を設けることにより、第2アンテナ素子のアンテナ利得が1.1dB向上することが分かる。 FIG. 11 shows a comparison of the antenna gain of the second antenna element 107 in the 5.8 GHz band for each antenna device structure. In the figure, (A) shows the antenna gain of the second antenna element according to the first embodiment, and (B) shows the antenna gain of the second antenna element according to the present embodiment. “Antenna gain” means directivity gain in the + Z direction. From FIG. 11, it can be seen that by providing four parasitic elements, the antenna gain of the second antenna element is improved by 1.1 dB.
 図12は、本実施形態に係るアンテナ装置の第2アンテナ素子の放射パターンを示す図であり、(A)はXZ面における放射パターン、(B)はYZ面における放射パターンを、それぞれ示している。なお、図12では、最大利得が0dBとなるように規格化している。図12の放射パターンより、本実施形態に係るアンテナ装置において、+Z方向に放射する単方向の指向特性が得られていることが分かる。 12A and 12B are diagrams showing a radiation pattern of the second antenna element of the antenna device according to the present embodiment, where FIG. 12A shows a radiation pattern on the XZ plane, and FIG. 12B shows a radiation pattern on the YZ plane. . In FIG. 12, normalization is performed so that the maximum gain is 0 dB. From the radiation pattern of FIG. 12, it can be seen that the antenna device according to the present embodiment has a unidirectional directional characteristic that radiates in the + Z direction.
 図12の放射パターンの半値角は、XZ面において82度、YZ面において80度であった。また、第1実施形態の構成(図11(A)の構成)によるアンテナ装置における放射パターンの半値角は、XZ面において102度、YZ面において98度であった。このように、本実施形態に係るアンテナ装置においては、他の構造と比較して半値幅が減少しており、+Z方向に対する指向特性が向上していることが分かる。 The half-value angle of the radiation pattern in FIG. 12 was 82 degrees on the XZ plane and 80 degrees on the YZ plane. Further, the half-value angle of the radiation pattern in the antenna device according to the configuration of the first embodiment (configuration of FIG. 11A) was 102 degrees on the XZ plane and 98 degrees on the YZ plane. Thus, in the antenna device according to the present embodiment, it can be seen that the half-value width is reduced as compared with other structures, and the directivity characteristics in the + Z direction are improved.
 図13は、第1アンテナ素子105の1.575GHz帯におけるアンテナ利得を、アンテナ装置の構造別に比較したものである。同図において、(A)は第1実施形態に係る第2アンテナ素子のアンテナ利得、(B)は本実施形態に係る第2アンテナ素子のアンテナ利得を示す。図13の結果より、第1アンテナ素子のアンテナ利得は、無給電素子を設けた場合であっても、低下していないことが分かる。これは、無給電素子が第1アンテナ素子の動作周波数である1.575GHz帯の波長に対して十分小さく、無給電素子の影響がほとんど生じないためである。 FIG. 13 compares the antenna gain of the first antenna element 105 in the 1.575 GHz band according to the structure of the antenna device. In the figure, (A) shows the antenna gain of the second antenna element according to the first embodiment, and (B) shows the antenna gain of the second antenna element according to the present embodiment. From the result of FIG. 13, it can be seen that the antenna gain of the first antenna element does not decrease even when a parasitic element is provided. This is because the parasitic element is sufficiently small with respect to the wavelength of the 1.575 GHz band, which is the operating frequency of the first antenna element, and the influence of the parasitic element hardly occurs.
 図14は、本実施形態に係るアンテナ装置の第1アンテナ素子の放射パターンを示す図であり、(A)はXZ面における放射パターン、(B)はYZ面における放射パターンを、それぞれ示している。なお、図14では、最大利得が0dBとなるように規格化している。図14の放射パターンより、本実施形態に係るアンテナ装置において、+Z方向に放射する単方向の指向特性が得られていることが分かる。 14A and 14B are diagrams showing a radiation pattern of the first antenna element of the antenna device according to the present embodiment, where FIG. 14A shows a radiation pattern on the XZ plane, and FIG. 14B shows a radiation pattern on the YZ plane. . In FIG. 14, normalization is performed so that the maximum gain is 0 dB. From the radiation pattern of FIG. 14, it can be seen that the antenna device according to the present embodiment has a unidirectional directional characteristic that radiates in the + Z direction.
 図14の放射パターンの半値角は、XZ面において106度、YZ面において106度であった。また、第1実施形態の構成(図13(A)の構成)によるアンテナ装置における放射パターンの半値角は、XZ面において107度、YZ面において106度であった。このように、本実施形態に係るアンテナ装置においては、無給電素子の存在が第1アンテナ素子の放射パターンにほとんど影響を与えていないことが分かる。 The half-value angle of the radiation pattern in FIG. 14 was 106 degrees on the XZ plane and 106 degrees on the YZ plane. Further, the half-value angle of the radiation pattern in the antenna device according to the configuration of the first embodiment (configuration of FIG. 13A) was 107 degrees on the XZ plane and 106 degrees on the YZ plane. Thus, in the antenna device according to the present embodiment, it can be seen that the presence of the parasitic element hardly affects the radiation pattern of the first antenna element.
 以上のとおり、無給電素子を配置することにより、第1アンテナ素子の性能を低下させることなく、第2アンテナ素子のアンテナ利得を向上することができる。 As described above, by disposing the parasitic element, it is possible to improve the antenna gain of the second antenna element without degrading the performance of the first antenna element.
 以上、本発明の実施の形態を例示により説明したが、本発明の範囲はこれらに限定されるものではなく、請求項に記載された範囲内において目的に応じて変更・変形することが可能である。 The embodiments of the present invention have been described above by way of example, but the scope of the present invention is not limited to these embodiments, and can be changed or modified according to the purpose within the scope of the claims. is there.
 上記実施形態では、L字形状のスリットの各辺の長さを等しくしているが、必ずしも等しくする必要はなく、第2アンテナ素子の動作周波数帯において励振される限りにおいて適宜変更することができる。また、上記実施形態では、スリットの屈曲部の角度が直角となっているが、必ずしも直角である必要はなく、第2アンテナ素子の動作周波数帯において励振される限りにおいて適宜変更することができる。さらに、上記実施形態では、スリットを4つ形成しているが、その数は適宜変更することができる。 In the above embodiment, the length of each side of the L-shaped slit is made equal, but it is not always necessary to make it equal, and can be changed as long as it is excited in the operating frequency band of the second antenna element. . Moreover, in the said embodiment, although the angle of the bending part of a slit is a right angle, it does not necessarily need to be a right angle and can be suitably changed as long as it excites in the operating frequency band of a 2nd antenna element. Furthermore, in the said embodiment, although the four slits are formed, the number can be changed suitably.
 上記実施形態では、矩形状の無給電素子を設けているが、必ずしも矩形状に限定されることはなく、第2アンテナ素子の動作周波数帯において励振される限りにおいて、その形状を適宜変更することができる。また、上記実施形態では、スリットを4つ形成しているが、その数は適宜変更することができる。 In the above embodiment, the parasitic parasitic element is provided. However, the shape is not necessarily limited to the rectangular shape, and the shape is appropriately changed as long as excitation is performed in the operating frequency band of the second antenna element. Can do. Moreover, in the said embodiment, although the four slits are formed, the number can be changed suitably.
 なお、上記実施形態で示した各パラメータの値は、あくまで一例であり、上記実施形態に記載の数値に限定されることは無い。例えば、給電部の配置やアンテナ装置周辺に近接する部品、筐体、ケーブル等の材質や配置に応じ、適宜、その値を変化させることができ、これにより放射効率及び利得を改善することができる。 In addition, the value of each parameter shown in the above embodiment is merely an example, and is not limited to the numerical value described in the above embodiment. For example, the value can be appropriately changed according to the arrangement of the power supply unit and the material and arrangement of components, casings, cables, etc. in the vicinity of the antenna device, thereby improving the radiation efficiency and gain. .
 上記実施形態では、1.575GHz帯と5.8GHz帯を例として挙げたが、この周波数に限定されることは無い。また、上記実施形態では、アンテナ素子に摂動を設けた円偏波特性を有するマイクロストリップアンテナとしたが、摂動を設けずに直線偏波特性を有するマイクロストリップアンテナとしても同様な効果を得ることができる。さらに、上記実施形態では、電波を送信する場合を例にして説明しているが、本発明は例えば無線基地局から送信されてくる電波を受信する場合にも、等しく適用することができる。 In the above embodiment, the 1.575 GHz band and the 5.8 GHz band are given as examples, but the present invention is not limited to this frequency. In the above-described embodiment, the microstrip antenna having the circular polarization characteristic in which the antenna element is perturbed is used. However, the same effect can be obtained as a microstrip antenna having the linear polarization characteristic without providing the perturbation. be able to. Furthermore, in the above embodiment, the case where radio waves are transmitted has been described as an example. However, the present invention can be equally applied to the case where radio waves transmitted from, for example, a radio base station are received.
 以上に現時点で考えられる本発明の好適な実施の形態を説明したが、本実施の形態に対して多様な変形が可能なことが理解され、そして、本発明の真実の精神と範囲内にあるそのようなすべての変形を添付の請求の範囲が含むことが意図されている。 Although the presently preferred embodiments of the present invention have been described above, it will be understood that various modifications can be made to the present embodiments and are within the true spirit and scope of the present invention. It is intended that the appended claims include all such variations.
 以上のように、本発明にかかるアンテナ装置は、高いアンテナ効率を有し、例えば車載用のアンテナ装置に適用することができ、有用である。 As described above, the antenna device according to the present invention has high antenna efficiency and can be applied to, for example, a vehicle-mounted antenna device, and is useful.
 101、901 アンテナ装置
 102 誘電体基板
 103 グランド導体
 104 誘電体ブロック
 105 第1アンテナ素子
 106 給電素子
 107 第2アンテナ素子
 108 第1給電点
 109 第2給電点
 301 第1給電ピン
 302 第2給電ピン
 401a~401d スリット
 902a~902d 無給電素子
 903 給電点
101, 901 Antenna device 102 Dielectric substrate 103 Ground conductor 104 Dielectric block 105 First antenna element 106 Feeding element 107 Second antenna element 108 First feeding point 109 Second feeding point 301 First feeding pin 302 Second feeding pin 401a ˜401d Slit 902a˜902d Parasitic element 903 Feeding point

Claims (6)

  1.  誘電体基板と、
     前記誘電体基板上に形成されたグランド導体と、
     前記グランド導体上に設けられた誘電体ブロックと、
     前記誘電体ブロック上に形成された略環状形状の第1アンテナ素子と、
     前記第1アンテナ素子の内側に配置された第2アンテナ素子とを備え、
     前記第2アンテナ素子と電磁界的に結合して前記第2アンテナ素子の動作周波数帯で励振する複数のL字形状のスリットを、前記グランド導体上に形成したことを特徴とするアンテナ装置。
    A dielectric substrate;
    A ground conductor formed on the dielectric substrate;
    A dielectric block provided on the ground conductor;
    A substantially annular first antenna element formed on the dielectric block;
    A second antenna element disposed inside the first antenna element;
    An antenna device comprising: a plurality of L-shaped slits that are electromagnetically coupled to the second antenna element and excited in an operating frequency band of the second antenna element on the ground conductor.
  2.  前記複数のスリットは、前記グランド導体の中央部に均等に形成された4つのスリットであることを特徴とする、請求項1記載のアンテナ装置。 The antenna device according to claim 1, wherein the plurality of slits are four slits formed uniformly in a central portion of the ground conductor.
  3.  前記誘電体ブロックは、前記スリットの一部を覆う位置に配置されることを特徴とする、請求項1記載のアンテナ装置。 The antenna device according to claim 1, wherein the dielectric block is arranged at a position covering a part of the slit.
  4.  前記第1アンテナ素子の外周に沿うように前記第1アンテナ素子から離れた位置に配置され、前記第2アンテナ素子の動作周波数帯で励振する複数の無給電素子を備えたことを特徴とする、請求項1記載のアンテナ装置。 Characterized in that it comprises a plurality of parasitic elements arranged at positions away from the first antenna element along the outer periphery of the first antenna element and excited in the operating frequency band of the second antenna element, The antenna device according to claim 1.
  5.  前記複数の無給電素子は、前記第1アンテナ素子の外周に沿って均等に配置された4つの矩形状の無給電素子であることを特徴とする、請求項4記載のアンテナ装置。 5. The antenna device according to claim 4, wherein the plurality of parasitic elements are four rectangular parasitic elements arranged uniformly along the outer periphery of the first antenna element.
  6.  前記無給電素子のいずれか一つが、前記第1アンテナ素子の給電用の素子であることを特徴とする、請求項4記載のアンテナ装置。 5. The antenna device according to claim 4, wherein any one of the parasitic elements is a power feeding element for the first antenna element.
PCT/JP2013/007627 2013-01-08 2013-12-26 Antenna apparatus WO2014108977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-001166 2013-01-08
JP2013001166A JP6004180B2 (en) 2013-01-08 2013-01-08 Antenna device

Publications (1)

Publication Number Publication Date
WO2014108977A1 true WO2014108977A1 (en) 2014-07-17

Family

ID=51166655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007627 WO2014108977A1 (en) 2013-01-08 2013-12-26 Antenna apparatus

Country Status (2)

Country Link
JP (1) JP6004180B2 (en)
WO (1) WO2014108977A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487961A (en) * 2016-12-03 2017-03-08 胡佳培 A kind of rotating mobile being provided with barricade
US10826183B2 (en) * 2016-12-29 2020-11-03 Trimble Inc. Circularly polarized antennas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106856524A (en) * 2016-12-03 2017-06-16 胡佳培 A kind of rotating mobile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096259A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Multi-frequency microstrip antenna
JP2005130532A (en) * 2005-02-08 2005-05-19 Matsushita Electric Ind Co Ltd Bi-resonant dielectric antenna and on-vehicle radio device
JP2005192165A (en) * 2003-12-26 2005-07-14 Alps Electric Co Ltd Antenna system
JP2008054080A (en) * 2006-08-25 2008-03-06 Furuno Electric Co Ltd Circularly polarized patch antenna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690834B2 (en) * 2005-09-01 2011-06-01 古河電気工業株式会社 Multi-frequency antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096259A (en) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd Multi-frequency microstrip antenna
JP2005192165A (en) * 2003-12-26 2005-07-14 Alps Electric Co Ltd Antenna system
JP2005130532A (en) * 2005-02-08 2005-05-19 Matsushita Electric Ind Co Ltd Bi-resonant dielectric antenna and on-vehicle radio device
JP2008054080A (en) * 2006-08-25 2008-03-06 Furuno Electric Co Ltd Circularly polarized patch antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEIICHI NAKANISHI ET AL.: "A Study of Dual Band Circular Polarization Patch Antenna", IEICE TECHNICAL REPORT, vol. 102, no. 390, pages 41 - 44 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487961A (en) * 2016-12-03 2017-03-08 胡佳培 A kind of rotating mobile being provided with barricade
US10826183B2 (en) * 2016-12-29 2020-11-03 Trimble Inc. Circularly polarized antennas

Also Published As

Publication number Publication date
JP2014135556A (en) 2014-07-24
JP6004180B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
US10756420B2 (en) Multi-band antenna and radio communication device
WO2016132712A1 (en) Multiband antenna, multiband antenna array, and wireless communications device
WO2014097846A1 (en) Multiband antenna
JP2015104123A (en) Inverted f type antenna structure and portable electronic device including the same
US8310398B2 (en) Dual-band planar micro-strip antenna
US20220393360A1 (en) Electronic Device
TWM526200U (en) Antenna systems with proximity coupled annular rectangular patches
JP2010124194A (en) Antenna device
TWI566474B (en) Multi-band antenna
JP6004180B2 (en) Antenna device
JP2017530614A (en) Decoupling antenna for wireless communication
JP2013157973A (en) Antenna device
JP2013198090A (en) Antenna device
JP5891359B2 (en) Double resonance antenna device
JP2012049865A (en) Nondirectional antenna device and array antenna device
TWI459634B (en) Annular slot ring antenna
JP5078732B2 (en) Antenna device
KR100674667B1 (en) Dual-band chip antenna with stacked meander structures for mobile communication applications
JP2013197987A (en) Antenna device
JP5275418B2 (en) Multi-frequency antenna system
JP6311512B2 (en) Integrated antenna device
US9660329B2 (en) Directional antenna
JP5858844B2 (en) Antenna device
JP2003087050A (en) Slot-type bowtie antenna device, and constituting method therefor
JP2013197986A (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870516

Country of ref document: EP

Kind code of ref document: A1