WO2014108300A1 - Vorrichtung und verfahren zur umfeldsensorik - Google Patents

Vorrichtung und verfahren zur umfeldsensorik Download PDF

Info

Publication number
WO2014108300A1
WO2014108300A1 PCT/EP2013/077595 EP2013077595W WO2014108300A1 WO 2014108300 A1 WO2014108300 A1 WO 2014108300A1 EP 2013077595 W EP2013077595 W EP 2013077595W WO 2014108300 A1 WO2014108300 A1 WO 2014108300A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
filter
time
signals
impulse response
Prior art date
Application number
PCT/EP2013/077595
Other languages
English (en)
French (fr)
Inventor
Matthias Karl
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP13814931.5A priority Critical patent/EP2943806A1/de
Publication of WO2014108300A1 publication Critical patent/WO2014108300A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9314Parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/932Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/937Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details
    • G01S2015/938Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles sensor installation details in the bumper area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2921Extracting wanted echo-signals based on data belonging to one radar period
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2921Extracting wanted echo-signals based on data belonging to one radar period
    • G01S7/2922Extracting wanted echo-signals based on data belonging to one radar period by using a controlled threshold
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/32Shaping echo pulse signals; Deriving non-pulse signals from echo pulse signals

Definitions

  • the present invention relates to a method and a device for environment sensors.
  • the present invention relates to methods and apparatus for improved environmental sensor technology based on
  • Environment sensors in particular in the field of automotive technology, is used, for example, the distance between a vehicle and an environment object based on runtime studies on
  • Devices for environmental sensors while units on are emitted by means of which signals in the vehicle environment, whose echoes are determined by means of receivers and closed on the basis of the running time on the traversed signal path.
  • the received signal is monitored by filters such that upon the arrival of payloads, especially when arriving at
  • the filter output is strongly oriented to a value characteristic of such an event, while upon receipt of other signals (spurious signals) not related to the transmitted signal, the filter output has a different value, which depends on the filter output based on the filter output Nutzsignals strongly different. For example, to identify an echo of a particular frequency, a bandpass filter with a corresponding
  • Center frequency can be used, so that in particular on the arrival of signals having a frequency which is similar to that of the expected signal, a significant output variable is generated, while caused by frequency-less concentrated interference signals only little energy at the filter output become.
  • Modern systems often use so-called matched filters. These are referred to in the art as matched filters
  • Filter characteristics are usually derived from the unfiltered echo signal recorded under ideal conditions. In most cases, the filter is realized by means of correlation of this ideal echo signal with the received signal.
  • Frequency domain can be described and determined.
  • monitoring systems is not always a matched filter realized in the strict sense, but equivalent sizes are already in use today.
  • systems which, instead of the filter duration, use a minimum time of exceeding a threshold value in order to make the evaluation of echoes more robust against short-term disturbances.
  • today's sensors monitor throughout the echo time, i. after the end of the excitation or after the decay of the transmitter diaphragm has subsided until the end of the echo cycle, an incoming signal has at least one predefined filter duration.
  • a transmission pulse of approx. 0.3 ms (usual value for a
  • the processed receive signal must exceed a predicted threshold value for at least 0.12 ms before the signal is output as
  • Echo signal is recognized.
  • a required threshold violation has persisted for a period of at least 60% of the transmit pulse duration, i. for at least 0.2 ms, proved to be particularly effective.
  • a required threshold violation has persisted for a period of at least 60% of the transmit pulse duration, i. for at least 0.2 ms, proved to be particularly effective.
  • Direct echo cycle (that is, the echo cycle of a sensor that had itself sent out the signal at the beginning of the echo cycle) adversely affects such long filter pulse lengths.
  • the received signal must be present at least during the impulse response of the filter before the evaluation, before a possibly contained and identified echo is also recognized as a valid echo.
  • a longer filter pulse response length also means a longer period of time until the filter responds to the arrival of an echo due to a
  • Measuring method derives the presence of objects from the echo delay. To have a high separation ability of closely running time consecutive
  • Reflecting points, or echoes reflected from them, which follow closely one after the other or are even partially superimposed by the sensor, can be realized with a filter if the filter has a correspondingly short impulse response.
  • Document EP 2 251 710 A2 describes a modulation in which short and long pulses are combined in pulse bundles in order to achieve a high measuring rate with high spatial resolution near the sensor. At the same time, high-energy long pulses can be used to achieve a high signal-to-noise ratio in the distance.
  • WO 2010 063510 A1 describes a modulation with time variant
  • Transmit signal frequency It is an object of the present invention to provide a method which allows a small near measurement limit and good noise rejection.
  • the inventive Device for environment sensor on a signal converter and an evaluation unit. By means of the signal converter, the device is set up, from the
  • the evaluation unit is set up to evaluate the signals provided by the signal converter, in particular to filter them.
  • the signal converter may comprise, for example, a radar sensor, a sound transducer, in particular an ultrasound transducer or another transducer element for conversion to environment sensors of suitable signals.
  • the evaluation unit is set up to carry out a signal delay-dependent filtering of the signals received by the signal converter, wherein a first
  • a first-length impulse response is used for the filtering and a second impulse response of a second, longer length of the filter is used at a second time within a same measurement cycle.
  • the filter in the course of a measurement cycle (the time between emission of a signal into the environment until the time when no echo from the environment is expected due to the emission) the filter is considered to have a duration of an echo pulse in the filter ie, the time that elapses from the first response of the filter output to the arrival of an echo pulse until the last response of the filter output to the arrival of an echo pulse, such that a lower dwell time for early echoes is used, while a longer dwell time for later incoming echoes is provided.
  • the switching can be done differently depending on the filter type. In the scope of the present invention, therefore, both filters are to be understood which use only two different filter lengths as a function of the transit time, as well as multistage or even continuous transit time-dependent filter length adaptations. Because early incoming echoes are generally one over the other
  • Noise level on the receiving path significantly increased and thus have clearly identifiable levels can by a less accurate, but faster filtering a finer separation of successive incoming echoes and thus a smaller minimum distance for running time adjacent
  • ultrasound signals for humans and technology at a suitable dosage are harmless and the required transducers and evaluation units as a mass-produced comparatively inexpensive available.
  • the device itself can also be set up to emit signals by means of a signal converter. It is both possible to use the same signal converter for transmitting and receiving signals, as well as separate transmitters and receivers in the composite of
  • transceivers offer the ability to combine multiple functions within one and the same unit
  • the device can be set up, including the
  • Transmission signals are reliably filtered out of the ambient noise.
  • the emission of frequency-variable signals is synchronized with the filter frequency response in the receiving path of the device, so that a particularly secure detection can be carried out.
  • a separation of incoming echoes can be separated from the self-resonant frequency decaying transducer signals.
  • a time-varying threshold can be used to detect possible echoes from the incoming signal.
  • the reliability of detection can be compared to the decay signal of a formerly transmitting signal converter as well as the background noise of the echo signal amplitude Systems are increased without that incoming echoes remain below the threshold at a later time in principle.
  • an impulse response of a first length of the filter used is used as the basis for a first time within a measurement cycle, and an impulse response of a second and longer length is used for the filtering at a second (later) point in time.
  • a shorter processing time is suggested by means of the filter, while at a later time a longer processing time for realizing a better spectral separation of the useful signal from background noise and other interference signals is accepted.
  • the device according to the invention and the method according to the invention are preferred in the case of Use can be designed in distance measuring systems for automobiles.
  • the required signal transducers can in this case be arranged in particular in the region of bumpers of a vehicle and operated in accordance with the aforementioned aspects of the invention.
  • As an evaluation unit while a built-in anyway in the vehicle microprocessor can be set up by means of software code, so that additional hardware for an evaluation is not required.
  • Figure 1 is a schematic overview of components according to a
  • FIG. 2 is a timing diagram for one shown in FIG.
  • FIG. 3 shows a time diagram for one shown in FIG.
  • Device recorded ultrasonic signals in a filtering with a longer impulse response.
  • FIG. 1 shows a schematic overview of components of a device 10 according to an exemplary embodiment of the invention.
  • an ultrasonic transducer 1 which is designed as a transceiver, connected to a microprocessor 2 as an evaluation unit via a bandpass filter 3.
  • the microprocessor is set up to control the bandpass filter 3.
  • An object O in the form of a standard cylinder is located in the detection range of the ultrasonic transducer 1.
  • the device 10 is at least configured to perform the following steps. At the beginning of a measurement cycle, a signal is emitted in the direction of the object O by the illustrated device 10 or an adjacent ultrasound transducer (not shown). To this
  • the microprocessor 2 directs the bandpass filter 3 for filtering a short impulse response, although the calculation of the result in the frequency domain is somewhat inaccurate, but can be performed faster and brought to the result.
  • the microprocessor 2 alters the filter characteristic of the bandpass filter 3, at least in that it uses a longer impulse response than signals previously received for filtering by means of the ultrasound transducer 1. Because after a long signal delay, the expected echoes due to the increased
  • FIG. 2 shows two time signals S1, S2, which were recorded by means of an ultrasonic transducer 1 as a signal converter and measured by a device 10 according to the invention on the basis of impulse responses of different lengths.
  • the signal voltage of the filter output is plotted in volts logarithmic, while the abscissa represents the distance of the
  • the filter input signal comes from sensor 1, which receives the superposition of multiple echoes that were reflected by closely spaced reflex points.
  • the signal S1 originates from a filter with a short impulse response, while the signal S2 originates from a filter with a longer impulse response.
  • Each of the local maxima of the signal curve S1, marked with black squares, represents the transit time of a reflex point. Thanks to the short
  • each reflex point leads to an independent local maximum in the signal course S1.
  • the signal S2 originates from the filter whose impulse response has been adapted to the length of the emitted acoustic measuring pulse, and whose impulse response is longer than that of the
  • Waveform S1 leading filter was.
  • a comparison shows that in the waveform S2 no longer all reflections lead to an independent maximum, which based on the signal S2 no longer every reflex point can be detected independently.
  • the longer the impulse response of the filter the more the echoes processed in close succession are superimposed by the filter, so that, for example, many small echoes are superimposed by a rough background in the filter, thus producing a disproportionately loud signal at the filter output.
  • FIG. 3 shows the same signal curves already shown in FIG. 2 in a modified form and over a larger measuring range. Also shown is the course of the echo peak, which will have one and the same reference object at the respective distance.
  • the signal values fluctuate the more the signal becomes quieter. This is the result of additive noise.
  • waveform S2 the variations are compared to
  • Signal curve S1 is not so great, since the associated filter suppresses the noise more strongly than the filter red with a shorter impulse response because of its impulse response, which is longer by a factor of 3. Since the achievable measuring range is limited by the signal distance to the noise in the signal, the measuring range of the echo evaluated with a shorter impulse response is smaller than that of the signal evaluated with a longer impulse response.

Abstract

Es wird eine Vorrichtung und ein Verfahren zur Umfeldsensorik mittels eines Signalwandlers und einer Auswerteeinheit vorgeschlagen, wobei aus dem Umfeld empfangener Signale mit einer ersten Impulsantwortlänge zu einem ersten Zeitpunkt während eines Messzyklus' und mit einer zweiten längeren Impulsantwortlänge zu einem zweiten späteren Zeitpunkt innerhalb desselben Messzyklus' Signale laufzeitabhängig gefiltert werden.

Description

Beschreibung
Titel
Vorrichtung und Verfahren zur Umfeldsensorik Gebiet der Erfindung
Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Umfeldsensorik. Insbesondere betrifft die vorliegende Erfindung Verfahren und Vorrichtungen zur verbesserten Umfeldsensorik auf Basis von
Ultraschallsignalen.
Umfeldsensorik, insbesondere im Bereich der Kraftfahrzeugtechnik, wird beispielsweise dazu verwendet, den Abstand zwischen einem Fahrzeug und einem Umgebungsobjekt auf Basis von Laufzeituntersuchungen am
Umgebungsobjekt reflektierter Signale festzustellen. Insbesondere weisen die
Vorrichtungen zur Umfeldsensorik dabei Einheiten auf, mittels welcher Signale in die Fahrzeugumgebung abgestrahlt werden, deren Echos mittels Empfängern ermittelt und auf Basis der Laufzeit auf die durchlaufene Signalstrecke geschlossen wird. Bei dieser Signalauswertung wird auch bei der akustischen Umfeldüberwachung das Empfangssignal mittels Filtern derart überwacht, dass beim Eintreffen von Nutzsignalen, insbesondere beim Eintreffen von an
Umgebungsobjekten reflektierten Signalen (Echos) sich die Filterausgangsgröße stark an einem für ein solches Ereignis charakteristischen Wert orientiert, während beim Eintreffen anderer und nicht mit dem ausgesendeten Signal verwandter Signale (Störsignale) die Filterausgangsgröße einen anderen Wert aufweist, welcher sich von der Filterausgangsgröße auf Basis des Nutzsignals stark unterscheidet. Beispielsweise kann zur Identifikation eines Echos einer bestimmten Frequenz ein Bandpassfilter mit einer entsprechenden
Mittenfrequenz verwendet werden, so dass insbesondere beim Eintreffen von Signalen mit einer Frequenz, welche der des erwarteten Signals ähnlich ist, eine signifikante Ausgangsgröße erzeugt wird, während durch frequenzmäßig wenig konzentrierte Störsignale nur wenig Energie am Filterausgang hervorrufen werden. Moderne Systeme verwenden dabei häufig sogenannte angepasste Filter. Diese in der Fachwelt als Matched-Filter bezeichneten
Filtercharakteristiken leiten sich zumeist aus dem unter idealen Bedingungen aufgenommenen ungefilterten Echosignal ab. Zumeist wird das Filter mittels Korrelation dieses idealen Echosignals mit dem Empfangssignal realisiert.
Charakteristisch dabei ist, dass die Impulsantwort eines solchen Empfangsfilters zumindest so lange andauert, wie das Sendesignal der entsprechenden
Vorrichtung zur Umfeldsensorik andauert. Je länger solche Filterdauern sind, desto exakter ist die Wirkung des Filters hinsichtlich des durchgelassenen Spektrums ("Frequenzselektivität"). Entsprechend geringer ist bei langem Filtern die Wahrscheinlichkeit, dass zufällig verteilte Signale ein solches
Filterausgangssignal erzeugen, welches mit eintreffenden Echos übereinstimmt oder diesen nahekommt. Eine entsprechende Länge der Impulsantwort des Filters ist somit eine wesentliche Größe zur erfolgreichen Unterdrückung von Rauschen, mit welcher die Wirksamkeit des Filters hinsichtlich des
Frequenzbereiches beschrieben und bestimmt werden kann. Bei derzeit am Markt befindlichen Umfeldüberwachungssystemen wird zwar nicht immer ein Matched-Filter im engeren Sinne realisiert, jedoch sind äquivalente Größen bereits heute in der Verwendung. Beispielsweise sind Systeme bekannt, welche statt der Filterdauer eine Mindestzeit einer Schwellenwertüberschreitung verwenden, um die Auswertung von Echos gegen kurzzeitige Störungen robuster zu gestalten. Mit anderen Worten überwachen heutige Sensoren während der gesamten Echolaufzeit, d.h. nach Ende der Anregung oder nach Abklingen des Ausschwingens der Sendemembran bis zum Ende des Echozyklus', ob ein eintreffendes Signal mindestens eine vordefinierte Filterdauer über anlag. Dabei muss bei einem Sendepuls von ca. 0,3 ms (üblicher Wert für eine
Sendesignaldauer) das aufbereitete Empfangssignal einen veranschlagten Schwellwert mindestens 0,12 ms lang überschreiten, ehe das Signal als
Echosignal anerkannt wird. Bei der vorgenannten Sendepulsdauer von 0,3 ms hat sich eine erforderliche Schwellwertüberschreitung für eine Dauer von mindestens 60% der Sendepulsdauer, d.h. für mindestens 0,2 ms, als besonders effektiv herausgestellt. Jedoch sind insbesondere zu Beginn eines
Direktechozyklus' (also der Echozyklus eines Sensors, der zu Beginn des Echozyklus' selbst das Signal ausgesendet hatte) solch lange Filterimpulslängen nachteilig. Schließlich muss das Empfangssignal vor der Auswertung mindestens während der Impulsantwort des Filters anliegen, ehe ein ggf. enthaltenes und identifiziertes Echo auch als gültiges Echo erkannt wird. Je länger die Filterimpulsantwort ist, desto weiter weg liegt zwar grundsätzlich die obere Grenze des Entfernungsmessbereiches, die sogenannte Reichweite, da mit der Zeit abnehmende Nutzsignale besser und länger von Störgeräuschen getrennt werden können. Jedoch bedeutet eine längere Filterimpulsantwortlänge auch eine längere Zeitdauer, bis das Filter auf das Eintreffen eines Echos infolge eines
Reflexpunktes reagiert und seinen maximalen Filterausgangswert erreicht hat sowie danach eine längere Zeitdauer bis das Filter seine Reaktion auf das Eintreffen des Echos beendet hat. In Filtern mit längerer Impulsantwort ist daher die Verweildauer von empfangenen Echos größer als in Filtern mit kurzer Impulsantwort. Je größer die Verweildauer eines Echos in einem Filter ist, desto größer muss der zeitliche Abstand von zwei aufeinander folgend auf den Sensor eintreffenden Echos sein, damit mit dem Filter die unterschiedlichen
Echolaufzeiten noch voneinander separiert werden können, da das
Messverfahren das Vorhandensein von Objekten aus der Echolaufzeit ableitet. Um eine hohe Trennfähigkeit von eng laufzeitmäßig aufeinander folgenden
Reflexpunkten, bzw. den an ihnen reflektierten Echos, die entsprechend eng aufeinander folgen bzw. sogar teilweise miteinander überlagert vom Sensor aufgenommen werden, mit einem Filter realisieren zu können, sollte das Filter eine entsprechend kurze Impulsantwort aufweisen.
Dokument EP 2 251 710 A2 beschreibt eine Modulation, bei der kurze und lange Pulse in Pulsbündeln zusammengefasst werden, um eine hohe Messrate bei hoher Ortsauflösung in Sensornähe zu erreichen. Gleichzeitig können bei diesem Verfahren energiereiche lange Pulse zum Erreichen eines hohen Signal-Rausch- Abstandes in der Ferne verwendet werden.
WO 2010 063510 A1 beschreibt eine Modulation mit zeitvarianter
Sendesignalfrequenz. Es ist eine Aufgabe der vorliegenden Erfindung, ein Verfahren zu entwerfen, das eine kleine Nahmessgrenze und eine gute Rauschunterdrückung ermöglicht.
Offenbarung der Erfindung
Die vorstehend genannte Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung mit den Merkmalen gemäß Anspruch 1 und ein Verfahren mit den Merkmalen gemäß Anspruch 7. Dementsprechend weist die erfindungsgemäße Vorrichtung zur Umfeldsensorik einen Signalwandler und eine Auswerteeinheit auf. Mittels des Signalwandlers ist die Vorrichtung eingerichtet, aus der
Umgebung der Vorrichtung stammende Signale in elektrische Signale zu wandeln. Die Auswerteeinheit ist eingerichtet, die vom Signalwandler zur Verfügung gestellten Signale auszuwerten, insbesondere zu filtern. Der
Signalwandler kann dabei beispielsweise ein Radarsensor, ein Schallwandler, insbesondere ein Ultraschallwandler oder ein anderes Wandlerelement zur Wandlung zur Umfeldsensorik geeigneter Signale umfassen. Erfindungsgemäß ist die Auswerteeinheit eingerichtet, eine Signallaufzeit-abhängige Filterung der vom Signalwandler empfangenen Signale durchzuführen, wobei zu einem ersten
Zeitpunkt eine Impulsantwort erster Länge für die Filterung verwendet wird und zu einem zweiten Zeitpunkt innerhalb eines selben Messzyklus eine zweite Impulsantwort einer zweiten, längeren Länge des Filters verwendet wird. Mit anderen Worten wird das Filter im Laufe eines Messzyklus' (die Zeit zwischen einem Aussenden eines Signals in die Umgebung bis zu dem Zeitpunkt, an dem kein infolge des Aussendens entstandenes Echo von der Umgebung mehr erwartet wird) hinsichtlich der Verweildauer eines Echoimpulses in dem Filter, d.h., der Zeitdauer, die von der ersten Reaktion des Filterausgangs auf das Eintreffen eines Echoimpulses bis zur letzten Reaktion des Filterausgangs auf das Eintreffen eines Echoimpulses, verstreicht so modifiziert, dass eine niedrigere Verweildauer für frühe Echos Verwendung findet, während eine höhere Verweildauer für später eintreffende Echos vorgesehen wird. Dabei kann die Umschaltung je nach Filtertyp unterschiedlich erfolgen. Im Bereich der vorliegenden Erfindung sind somit sowohl Filter zu verstehen, welche lediglich zwei unterschiedliche Filterlängen laufzeitabhängig verwenden, als auch mehrstufige oder gar kontinuierlich laufzeitabhängige Filterlängenanpassungen. Da frühzeitig eintreffende Echos im Allgemeinen eine gegenüber dem
Rauschpegel auf der Empfangsstrecke deutlich erhöhte und damit klar identifizierbare Pegel aufweisen, kann durch eine ungenauere, jedoch schnellere Filterung eine feinere Trennung von aufeinanderfolgend eintreffenden Echos und damit ein geringerer Mindestabstand für laufzeitmäßig benachbarte
Umgebungsobjekte realisiert werden. Im Gegensatz dazu wird erfindungsgemäß für später eintreffende Echos, welche im Allgemeinen vergleichsweise schwerer gegenüber dem Rauschen auf dem Empfangszweig identifizierbar sind, eine exaktere Filterung veranschlagt, welche zwar länger dauert, für im Rauschen versinkende Empfangssignale jedoch eine verbesserte Detektierbarkeit gewährleistet. Filter mit kurzer Impulsantwort weisen bekanntlich im Allgemeinen eine höhere Bandbreite im Frequenzgang auf als Filter mit langer Impulsantwort. Die Unteransprüche zeigen bevorzugte Weiterbildungen und Ausgestaltungen der vorliegenden Erfindung.
Bevorzugt ist die erfindungsgemäße Vorrichtung zur akustischen
Umfeldsensorik, insbesondere unter Verwendung von Ultraschallsignalen, eingerichtet. Vorteilhafterweise sind Ultraschallsignale für Mensch und Technik bei geeigneter Dosierung ungefährlich und die erforderlichen Wandler sowie Auswerteeinheiten als Massenware vergleichsweise kostengünstig erhältlich.
Weiter bevorzugt kann die Vorrichtung selbst auch zur Aussendung von Signalen mittels eines Signalwandlers eingerichtet sein. Dabei ist es sowohl möglich, denselben Signalwandler zum Aussenden und zum Empfangen von Signalen zu verwenden, wie auch separate Sender und Empfänger im Verbund der
Vorrichtung vorzusehen. Während reine Empfänger ein geringeres Maß an Wandlerrobustheit erfordern, bieten Sendeempfänger die Möglichkeit, mehrere Funktionen innerhalb ein und derselben Einheit zu vereinen und
Anschlussleitungen gleich mehrfach zu verwenden.
Weiter bevorzugt kann die Vorrichtung eingerichtet sein, auch den
Filterfrequenzgang über der Zeit, insbesondere im Bezug auf einen Messzyklus, zu verändern. Auf diese Weise können auch über der Frequenz veränderliche
Sendesignale sicher aus dem Umgebungsgeräusch herausgefiltert werden. Insbesondere ist die Aussendung frequenzveränderlicher Signale mit dem Filterfrequenzgang im Empfangspfad der Vorrichtung synchronisiert, so dass eine besonders sichere Erkennung erfolgen kann. Ebenso kann auf diese Weise eine Trennung eintreffender Echos von den mit Eigenresonanzfrequenz ausklingenden Wandlersignalen getrennt werden.
Weiter bevorzugt kann eine zeitveränderliche Schwellgröße verwendet werden, um aus dem eintreffenden Signal mögliche Echos zu erkennen. Indem mit zunehmender Echolaufzeit auch die Echosignalamplituden tendenziell abnehmen, kann die Erkennungssicherheit gegenüber dem Ausschwingsignal eines ehemals sendenden Signalwandlers sowie dem Hintergrundrauschen des Systems erhöht werden, ohne dass zu einem späteren Zeitpunkt eintreffende Echos grundsätzlich unter dem Schwellwert verbleiben.
Generell leuchtet dem Fachmann ein, dass die vorliegende Erfindung mit vielfältigen im Stand der Technik bekannten und bewährten Funktionen und
Merkmalen kombinierbar ist, welche eine gattungsgemäße Umfeldsensorik begünstigen, ohne den Bereich der vorliegenden Erfindung hierdurch zu verlassen. Gemäß einem weiteren Aspekt der vorliegenden Erfindung wird ein Verfahren zur Umfeldsensorik vorgeschlagen, gemäß welchem ein
signallaufzeitabhängiges Filtern aus einer Umgebung empfangener Signale vorgeschlagen wird. Dabei wird innerhalb eines Messzyklus' zu einem ersten Zeitpunkt eine Impulsantwort einer ersten Länge des verwendeten Filters zugrunde gelegt und zu einem zweiten (späteren) Zeitpunkt eine Impulsantwort einer zweiten und längeren Länge für die Filterung zugrunde gelegt. Mit anderen Worten wird zu einem ersten Zeitpunkt eine kürzere Verarbeitungszeit mittels des Filters vorgeschlagen, während zu einem späteren Zeitpunkt eine längere Verarbeitungszeit zur Realisierung einer besseren spektralen Trennung des Nutzsignals vom Hintergrundrauschen und anderen Störsignalen in Kauf genommen wird. Es sei dabei in Verbindung mit beiden erfindungsgemäßen Aspekten darauf hingewiesen, dass dem Fachmann für Signalverarbeitung viele ähnliche Begriffe geläufig sind, um die Frequenzauflösung bzw. die mit der Impulsantwortlänge eines Filters verknüpften Größen auszudrücken, und dass in Abhängigkeit des verwendeten Filters (analoges Filter, digitales Filter etc.) unterschiedliche Begriffe verwendet werden können, um nachrichtentechnisch identische oder äquivalente Zusammenhänge zu beschreiben, ohne den Bereich der vorliegenden Erfindung hierdurch zu verlassen. Für die bevorzugten Ausgestaltungen des erfindungsgemäßen Verfahrens gelten die in Verbindung mit der erfindungsgemäßen Vorrichtung gemachten
Ausführungen entsprechend, so dass zur Vermeidung von Wiederholungen und der Übersichtlichkeit halber auf die in Verbindung mit dem erstgenannten Aspekt der vorliegenden Erfindung gemachten Ausführungen verwiesen wird.
Der Vollständigkeit halber sei darauf verwiesen, dass die erfindungsgemäße Vorrichtung sowie das erfindungsgemäße Verfahren bevorzugt bei der Verwendung in Abstandsmesssystemen für Automobile ausgestaltet werden können. Die erforderlichen Signalwandler können hierbei insbesondere im Bereich von Stoßfängern eines Fahrzeugs angeordnet und entsprechend den vorgenannten Erfindungsaspekten betrieben werden. Als Auswerteeinheit kann dabei ein ohnehin im Fahrzeug verbauter Mikroprozessor mittels Softwarecode eingerichtet werden, so dass zusätzliche Hardware für eine Auswerteeinheit nicht erforderlich ist.
Kurzbeschreibung der Figuren
Nachfolgend werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die begleitenden Zeichnungen im Detail beschrieben. In den Zeichnung sind:
Figur 1 eine schematische Ubersicht über Komponenten gemäß einem
Ausführungsbeispiel für eine erfindungsgemäße Vorrichtung;
Figur 2 ein Zeitdiagramm für mittels einer in Figur 1 gezeigten
Vorrichtung aufgenommene Ultraschallsignale bei einer Filterung mit kürzerer Impulsantwort; und
Figur 3 ein Zeitdiagramm für mittels einer in Figur 1 gezeigten
Vorrichtung aufgenommene Ultraschallsignale bei einer Filterung mit einer längeren Impulsantwort.
Ausführungsformen der Erfindung
Figur 1 zeigt eine schematische Übersicht über Komponenten einer Vorrichtung 10 gemäß einem erfindungsgemäßen Ausführungsbeispiel der Erfindung. Darin ist ein Ultraschallwandler 1 , der als Sendeempfänger ausgestaltet ist, mit einem Mikroprozessor 2 als Auswerteeinheit über einen Bandpassfilter 3 verbunden. Dabei ist der Mikroprozessor eingerichtet, den Bandpassfilter 3 zu steuern. Ein Objekt O in Form eines Normzylinders befindet sich im Erfassungsbereich des Ultraschallwandler 1. Dabei ist die Vorrichtung 10 mindestens eingerichtet, die folgenden Schritte durchzuführen. Zu Beginn eines Messzyklus' wird durch die dargestellte Vorrichtung 10 oder einen benachbarten Ultraschallwandler (nicht dargestellt) ein Signal in Richtung des Objektes O abgestrahlt. Zu diesem
Zeitpunkt richtet der Mikroprozessor 2 den Bandpassfilter 3 zur Filterung mit einer kurzen Impulsantwort ein, wobei die Berechnung des Ergebnisses im Frequenzbereich zwar etwas ungenauer ist, jedoch schneller durchgeführt und zum Ergebnis gebracht werden kann. Mit voranschreitender Zeit, welche mit einem höheren zu erwartenden Objektabstand übereinstimmt, verändert der Mikroprozessor 2 die Filtercharakteristik des Bandpassfilters 3 zumindest dahingehend, dass dieser eine längere Impulsantwort als zuvor zur Filterung mittels des Ultraschallwandler 1 empfangener Signale verwendet. Da nach längerer Signallaufzeit die zu erwartenden Echos aufgrund der erhöhten
Laufstrecke erwartungsgemäß eine geringere Amplitude aufweisen, laufen die Echos zunehmend Gefahr, im Rauschen des Systems und/oder in empfangenen
Störsignalen "unterzugehen". Eine erhöhte Frequenzauflösung trägt nun dazu bei, die oftmals schmalbandigen Ultraschallechos aus dem breitbandigen Signalrauschen zu extrahieren und zuverlässig erkennen zu können. Der Effekt der laufzeitabhängigen Impulsantwortlänge wird in Verbindung mit den Figuren 2 und 3 nachfolgend veranschaulicht.
Figur 2 zeigt zwei Zeitsignale S1 , S2, welche mittels eines Ultraschallwandlers 1 als Signalwandler aufgenommen und durch eine erfindungsgemäße Vorrichtung 10 bei Zugrundelegung unterschiedlich langer Impulsantworten gemessen wurden. Auf der Ordinate ist die Signalspannung des Filterausgangs in Volt logarithmisch aufgetragen, während die Abszisse den Abstand des
reflektierenden Objekts anzeigt. Dargestellt sind die Ausgangssignale zweier Filter, die jeweils die Hüllkurve aus dem Eingangssignal bilden, mit
unterschiedlicher Impulsantwort, und die beide ein und das gleiche
Eingangssignal ausgewertet haben. Das Filtereingangssignal stammt vom Sensor 1 , der die Überlagerung von mehreren Echos empfängt, die von laufzeitmäßig eng aufeinander folgenden Reflexpunkten reflektiert wurden. Der Signalverlauf S1 stammt von einem Filter mit kurzer Impulsantwort, während der Signalverlauf S2 von einem Filter mit längerer Impulsantwort stammt. Jedes der mit schwarzen Quadraten gekennzeichneten lokalen Maxima des Signalverlaufs S1 repräsentiert die Laufzeit eines Reflexpunktes. Dank der kurzen
Filterimpulsantwort führt jeder Reflexpunkt zu einem eigenständigen lokalen Maximum im Signalverlauf S1 . Der Signalverlauf S2 stammt von dem Filter, dessen Impulsantwort an die Länge des ausgesandten akustischen Messpulses angepasst wurde, und dessen Impulsantwort länger als die des zum
Signalverlauf S1 führenden Filters war. Ein Vergleich zeigt, dass im Signalverlauf S2 nicht mehr alle Reflexe zu einem eigenständigen Maximum führen, wodurch anhand des Signalverlaufes S2 nicht mehr jeder Reflexpunkt eigenständig detektiert werden kann. Je länger also die Impulsantwort des Filters ist, desto mehr sind durch das Filter laufzeitmäßig eng aufeinander folgend verarbeitete Echos miteinander überlagert, so dass sich beispielsweise viele kleine Echos von einem rauen Untergrund im Filter überlagern, womit am Filterausgang ein überproportional lautes Signal entsteht.
Figur 3 zeigt die gleichen bereits in Figur 2 dargestellt Signalverläufe in abgewandelter Form und über einen größeren Messbereich. Dargestellt ist weiterhin der Verlauf des Echopeak, den ein und das gleiche Referenzobjekt bei dem jeweiligen Abstand haben wird. Insbesondere anhand des Signalverlauf S1 des Filters mit kürzerer Impulsantwort ist ersichtlich, dass die Signalwerte um so stärker schwanken, je leiser das Signal wird. Das ist die Folge von additivem Rauschen. Beim Signalverlauf S2 sind die Schwankungen im Vergleich zum
Signalverlauf S1 jeweils nicht so groß, da das zugehörige Filter aufgrund seiner hier um Faktor 3 längeren Impulsantwort das Rauschen stärker unterdrückt, als das Filter rot mit kürzerer Impulsantwort. Da die erreichbare Messreichweite durch den Signalabstand zum Rauschens im Signal begrenzt wird, ist die Messreichweite des mit kürzerer Impulsantwort ausgewerteten Echos kleiner als die des mit längerer Impulsantwort ausgewerteten Signals.
Es ist ein Kerngedanke der vorliegenden Erfindung, die Aufbereitung mittels eines Umfeldsensors empfangener Signale mittels adaptiver Filterung dahingehend zu verbessern, dass frühzeitig im Messzyklus aufgenommene
Signale mit höherer Trennschärfe gefiltert werden als im späteren Zeitbereich desselben Messzyklus'. Die zu frühen Zeitpunkten im Messzyklus deutlich höhere Trennung zwischen den Amplitudenpeaks laufzeitmäßig benachbarter Echos (Nutzsignals) von übrigen Signalen wiegt im frühen Zeitbereich des Messzyklus' die Nachteile des geringeren Störabstandes mehr als auf. Im späteren Verlauf des Messzyklus' wird erfindungsgemäß mehr Zeit auf die Filterung der Sensorsignale verwendet, um die ohnehin geringen Amplituden zu erwartender Nutzechos mittels längerer Impulsantworten der verwendeten Filter besser von sonstigen im Sensorsignal enthaltenen Signalen, wie z.B. Rauschen, zu trennen. Auch wenn die vorliegende Erfindung anhand der beigefügten Figuren in Form von Ausführungsbeispielen im Detail erläutert worden ist, verbleiben
Modifikationen und Abänderungen der darin gezeigten Merkmale im Bereich des fachmännischen Könnens des einschlägigen Fachmanns, welche als im Bereich der vorliegenden Erfindung liegend zu erachten sind, deren Schutzbereich durch die beigefügten Ansprüche definiert wird.

Claims

Ansprüche
1 . Vorrichtung zur Umfeldsensorik umfassend
- einen Signalwandler (1 ), und
- eine Auswerteeinheit (2),
wobei die Auswerteeinheit (2) eingerichtet ist, eine signallaufzeitabhängige Filterung vom Signalwandler (1 ) empfangener Signale durchzuführen, wobei die Filterung zu einem ersten Zeitpunkt während eines Messzyklus' eine kürzere Impulsantwort hat als zu einem zweiten späteren Zeitpunkt innerhalb desselben Messzyklus'.
2. Vorrichtung nach Anspruch 1 , wobei die Längen der gewählten
Impulsantworten im Wesentlichen umgekehrt proportional einer jeweils zu erwartenden mittleren Echo-Amplitude und/oder umgekehrt proportional einem jeweils zu erwartenden Echo-Rauschabstand sind.
3. Vorrichtung nach Anspruch 1 oder 2, wobei die Vorrichtung (10) zur
akustischen Umfeldsensorik, insbesondere im Ultraschallbereich, eingerichtet ist.
4. Vorrichtung nach einem der vorstehenden Ansprüche, wobei die Länge der Impulsantwort durch eine Modifikation der Frequenzauflösung und/oder der Pulsdiskriminierungszeit verändert wird.
5. Vorrichtung nach einem der vorstehenden Ansprüche, wobei zusätzlich der Filterfrequenzgang in spektraler Hinsicht über der Zeit verändert wird.
6. Vorrichtung nach einem der vorstehenden Ansprüche, wobei die
Vorrichtung (10) weiter eingerichtet ist, ein Sendesignal mittels des Signalwandlers (1 ) auszusenden.
7. Verfahren zur Umfeldsensorik umfassend die Schritte:
signallaufzeitabhängiges Filtern aus dem Umfeld empfangener Signale mit einer ersten Impulsantwortlänge zu einem ersten Zeitpunkt während eines Messzyklus' und mit einer zweiten längeren Impulsantwortlänge zu einem zweiten späteren Zeitpunkt innerhalb desselben Messzyklus'.
8. Verfahren nach Anspruch 7, wobei die Längen der gewählten
Impulsantwort im Wesentlichen jeweils umgekehrt proportional einem jeweils zu erwartenden Echo-Rauschabstand sind.
9. Verfahren nach Anspruch 7 oder 8, wobei die Signale akustische Signale, insbesondere im Frequenzbereich des Ultraschallbereiches, sind, und/oder das Verfahren einen Schritt eines Aussendens von Signalen in das Umfeld umfasst.
10. Verfahren nach einem der Ansprüche 7 bis 9, wobei zusätzlich der
Filterfrequenzgang über der Zeit verändert wird.
PCT/EP2013/077595 2013-01-14 2013-12-20 Vorrichtung und verfahren zur umfeldsensorik WO2014108300A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13814931.5A EP2943806A1 (de) 2013-01-14 2013-12-20 Vorrichtung und verfahren zur umfeldsensorik

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013200434.6 2013-01-14
DE102013200434.6A DE102013200434A1 (de) 2013-01-14 2013-01-14 Vorrichtung und Verfahren zur Umfeldsensorik

Publications (1)

Publication Number Publication Date
WO2014108300A1 true WO2014108300A1 (de) 2014-07-17

Family

ID=49886922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/077595 WO2014108300A1 (de) 2013-01-14 2013-12-20 Vorrichtung und verfahren zur umfeldsensorik

Country Status (3)

Country Link
EP (1) EP2943806A1 (de)
DE (1) DE102013200434A1 (de)
WO (1) WO2014108300A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210966A1 (de) 2017-05-16 2018-11-22 Elmos Semiconductor Aktiengesellschaft Verfahren zur übertragung von daten über einen fahrzeugdatenbus von einem ultraschallsystem zu einer datenverarbeitungsvorrichtung
WO2019020457A1 (de) 2017-07-28 2019-01-31 Elmos Semiconductor Aktiengesellschaft Verfahren zur erkennung mindestens eines im umfeld eines fahrzeugs befindlichen objekts
DE102018106244B3 (de) 2018-03-16 2019-06-27 Elmos Semiconductor Aktiengesellschaft Verfahren zur periodisch fortlaufenden Übertragung von komprimierten Daten eines Ultraschallsensorsystems in einem Fahrzeug
DE102018010254A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018010255A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018010261A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102019105651A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018010260A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102019106190A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Dekompression von Ultraschallsignalen die mittels Signalobjektklassen komprimiert wurden
DE102019106432A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Verfahren komprimierten Übertragung von Daten eines Ultraschallsensorsystems durch Nichtübertragung erkannter unwichtiger Signalobjekte
DE102018010257A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018106247A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018010258A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018106251A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Verfahren komprimierten Übertragung von Daten eines Ultraschallsensorsystems durch Nichtübertragung erkannter unwichtiger Signalobjekte auf Basis von mindestens zwei Parametersignalen
WO2020182963A2 (de) 2019-03-12 2020-09-17 Elmos Semiconductor Aktiengesellschaft Verfahren zur erkennung von hindernisobjekten sowie zur prognose der veränderung der position bekannter hindernisobjekte anhand von signalen mehrerer sensoren und zur kompression sowie dekompression von zu den obigen zwecken verwendeten sensorsignalen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219858A1 (de) 2017-11-08 2019-05-09 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetfeldsensors und zugehörige Magnetfeldsensoranordnung
DE102018222320A1 (de) * 2018-12-19 2020-06-25 Robert Bosch Gmbh Objekterkennungsvorrichtung für Fahrzeuge und Verfahren zur Erkennung eines Objektes für Fahrzeuge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027123A (en) * 1989-06-26 1991-06-25 Simon Haykin Adaptive interference canceller
WO2004069577A1 (de) * 2003-01-30 2004-08-19 Robert Bosch Gmbh Fahrzeugführungssystem
DE102008044366A1 (de) * 2008-12-04 2010-06-10 Robert Bosch Gmbh Erfassungsvorrichtung und Verfahren zum Erfassen eines Umfeldes eines Fahrzeugs

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1120578A (en) * 1976-10-04 1982-03-23 Juerg Muggli Ultrasonic ranging system for a camera
CH677834A5 (de) * 1989-01-25 1991-06-28 Grieshaber Ag
DE102008041894A1 (de) * 2008-09-09 2010-03-11 Robert Bosch Gmbh Ultraschallsensor und Verfahren zum Betreiben eines Ultraschallsensors
DE102009002870A1 (de) 2009-05-06 2010-11-18 Robert Bosch Gmbh Ultraschallobjekterfassungssystem und Verfahren zur Erfassung von Objekten mit Hilfe von Ultraschall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027123A (en) * 1989-06-26 1991-06-25 Simon Haykin Adaptive interference canceller
WO2004069577A1 (de) * 2003-01-30 2004-08-19 Robert Bosch Gmbh Fahrzeugführungssystem
DE102008044366A1 (de) * 2008-12-04 2010-06-10 Robert Bosch Gmbh Erfassungsvorrichtung und Verfahren zum Erfassen eines Umfeldes eines Fahrzeugs
WO2010063510A1 (de) * 2008-12-04 2010-06-10 Robert Bosch Gmbh Erfassungsvorrichtung und verfahren zum erfassen eines umfeldes eines fahrzeugs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2943806A1 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210966A1 (de) 2017-05-16 2018-11-22 Elmos Semiconductor Aktiengesellschaft Verfahren zur übertragung von daten über einen fahrzeugdatenbus von einem ultraschallsystem zu einer datenverarbeitungsvorrichtung
US11719785B2 (en) 2017-05-16 2023-08-08 Elmos Semiconductor Se Transmitting ultrasonic signal data
DE112018001823B3 (de) 2017-05-16 2023-04-13 Elmos Semiconductor Se Verfahren zur Übertragung von Daten über einen Fahrzeugdatenbus von einem Ultraschallsystem zu einer Datenverarbeitungsvorrichtung
DE112018001824B3 (de) 2017-05-16 2022-12-08 Elmos Semiconductor Se Verfahren zur Übertragung von Daten über einen Fahrzeugdatenbus von einem Ultraschallsystem zu einer Datenverarbeitungsvorrichtung
DE112018001826B3 (de) 2017-05-16 2022-10-06 Elmos Semiconductor Se Verfahren zur Übertragung von Daten über einen Fahrzeugdatenbus von einem Ultraschallsystem zu einer Datenverarbeitungsvorrichtung
WO2019020457A1 (de) 2017-07-28 2019-01-31 Elmos Semiconductor Aktiengesellschaft Verfahren zur erkennung mindestens eines im umfeld eines fahrzeugs befindlichen objekts
DE102019105651A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102019105651B4 (de) 2018-03-16 2023-03-23 Elmos Semiconductor Se Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierte Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102019106190A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Dekompression von Ultraschallsignalen die mittels Signalobjektklassen komprimiert wurden
DE102019106432A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Verfahren komprimierten Übertragung von Daten eines Ultraschallsensorsystems durch Nichtübertragung erkannter unwichtiger Signalobjekte
DE102018010257A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018106247A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018010258A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018106251A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Verfahren komprimierten Übertragung von Daten eines Ultraschallsensorsystems durch Nichtübertragung erkannter unwichtiger Signalobjekte auf Basis von mindestens zwei Parametersignalen
DE102018106244B3 (de) 2018-03-16 2019-06-27 Elmos Semiconductor Aktiengesellschaft Verfahren zur periodisch fortlaufenden Übertragung von komprimierten Daten eines Ultraschallsensorsystems in einem Fahrzeug
DE102019009243B3 (de) 2018-03-16 2023-05-11 Elmos Semiconductor Se Sensorsystem mit Übertragung des Ultraschallsignals an das Rechnersystem mittels approximierender Signalobjektkompression und -dekompression
DE102018010261A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102019009242B3 (de) 2018-03-16 2023-05-11 Elmos Semiconductor Se Sensor mit Ultraschallsignalkompression auf Basis eines Annäherungsverfahrens mittels Signalobjektklassen
DE102018010255A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018010260A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102018010254A1 (de) 2018-03-16 2019-09-19 Elmos Semiconductor Aktiengesellschaft Klassifikation von Signalobjekten innerhalb von Ultraschallempfangssignalen und komprimierten Übertragung von Symbolen als Repräsentanten dieser Signalobjekte an eine Rechnereinheit zur Objekterkennung
DE102019106190B4 (de) 2018-03-16 2023-04-27 Elmos Semiconductor Se Dekompression von Ultraschallsignalen die mittels Signalobjektklassen basierender Annäherung komprimiert wurden
DE102019106204B4 (de) 2019-03-12 2023-04-27 Elmos Semiconductor Se Ultraschallsystem mit zentralisierter Objekterkennung auf Basis von dekomprimierten Ultraschallsignalen mehrerer Sensoren und zugehöriges Kompressionsverfahren
EP4071513A1 (de) 2019-03-12 2022-10-12 Elmos Semiconductor SE Verfahren zur erkennung von hindernisobjekten sowie zur prognose der veränderung der position bekannter hindernisobjekte anhand von signalen mehrerer sensoren und zur kompresion sowie dekompression von zu den obigen zwecken verwendeten sensorsignalen
EP4067937A1 (de) 2019-03-12 2022-10-05 Elmos Semiconductor SE Verfahren zur erkennung von hindernisobjekten sowie zur prognose der veränderung der position bekannter hindernisobjekte anhand von signalen mehrerer sensoren und zur kompression sowie dekompression von zu den obigen zwecken verwendeten sensorsignalen
WO2020182963A2 (de) 2019-03-12 2020-09-17 Elmos Semiconductor Aktiengesellschaft Verfahren zur erkennung von hindernisobjekten sowie zur prognose der veränderung der position bekannter hindernisobjekte anhand von signalen mehrerer sensoren und zur kompression sowie dekompression von zu den obigen zwecken verwendeten sensorsignalen

Also Published As

Publication number Publication date
DE102013200434A1 (de) 2014-07-17
EP2943806A1 (de) 2015-11-18

Similar Documents

Publication Publication Date Title
EP2943806A1 (de) Vorrichtung und verfahren zur umfeldsensorik
DE102017123050B3 (de) Echokodierung und -Dekodierung von Ultraschallsignalen unter Verwendung von dreiwertigen Chirp-Signalen durch Schwellwertvergleich der Frequenzänderung
DE102017123049B3 (de) Echokodierung und -Dekodierung von Ultraschallsignalen unter Verwendung von zweiwertigen Chirp-Signalen durch Vorzeichenermittlung der Frequenzänderung
EP1562050B1 (de) Verfahren und Vorrichtung zur Anpassung eines Schwellwertes einer Detektionseinrichtung
EP2144083B1 (de) Verfahren zur dynamischen Ermittlung des Rauschlevels
DE19924755A1 (de) Abstandserfassungsvorrichtung
DE102013226085B3 (de) Verfahren zur Verarbeitung eines Echosignals eines Ultraschallwandlers
DE102008044088A1 (de) Verfahren zur dynamischen Ermittlung des Rauschlevels
DE102013019431A1 (de) Verfahren zum Bestimmen des Signal-Rausch-Verhältnisses eines Zielechos eines von einem Ultraschallsensor eines Kraftfahrzeugs empfangenen Empfangssignals, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE3513270A1 (de) Einrichtung zur abstandsmessung, insbesondere fuer kraftfahrzeuge
EP2807500B1 (de) Umfelderfassungsvorrichtung und dazugehöriges verfahren zur bestimmung der position und/oder der bewegung von einem objekt
EP2557434B1 (de) Verfahren zum Bestimmen der Herkunft eines von einem Ultraschallsensor eines Kraftfahrzeugs empfangenen Empfangssignals, Fahrerassistenzeinrichtung und Kraftfahrzeug
DE102008040248A1 (de) Verfahren und Vorrichtung zum Bestimmen einer Geschwindigkeit eines Objekts
EP2322952B1 (de) Verfahren zum Detektieren eines Objektes, Fahrerassistenzeinrichtung und Fahrzeug mit einer Fahrerassistenzeinrichtung
EP2693231B1 (de) Verfahren und Vorrichtung zum Auswerten eines empfangenen Wechselsignals
WO2010028919A1 (de) Ultraschallsensor und verfahren zum betreiben eines ultraschallsensors
DE102013008235A1 (de) Verfahren zur Messung eines Abstands mittels Ultraschall
DE102016224932A1 (de) Verfahren zum Betrieb eines Ultraschallsensors
EP2607919A1 (de) Verfahren zum berührungslosen Detektieren eines Objekts in einer Umgebung eines Fahrzeugs, Fahrerassistenzeinrichtung mit einer Ultraschallsensoreinrichtung und Fahrzeug mit einer derartigen Fahrerassistenzeinrichtung
DE19802724A1 (de) Überwachungseinrichtung für Signal-Echo-Sensoren
DE102012017667A1 (de) Verfahren zur Erzeugung einer Schwellwertkurve sowie Verfahren zur Auswertung von Signalen eines Ultraschallsensors und Vorrichtung zur Umfelderfassung
WO2017005688A1 (de) Verfahren zum auswerten eines empfangssignals eines ultraschallsensors
DE102012212902A1 (de) Verfahren zum Betrieb eines Umfelderfassungssystems eines Fahrzeugs und Umfelderfassungssystem
EP2800983B1 (de) Verfahren und umfelderfassungsvorrichtung zur bestimmung der position von mindestens einem objekt in der umgebung eines bewegungshilfsmittels mittels mindestens eines akustischen pulses
EP2805181B1 (de) Verfahren zur bestimmung der position und/oder bewegung von objekten in der umgebung eines bewegungshilfsmittels mittels von schallsignalen sowie vorrichtung zur durchführung des verfahrens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13814931

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013814931

Country of ref document: EP