WO2014106989A1 - Method for manufacturing extruded magnesium alloy and extruded magnesium alloy manufactured thereby - Google Patents

Method for manufacturing extruded magnesium alloy and extruded magnesium alloy manufactured thereby Download PDF

Info

Publication number
WO2014106989A1
WO2014106989A1 PCT/KR2013/009795 KR2013009795W WO2014106989A1 WO 2014106989 A1 WO2014106989 A1 WO 2014106989A1 KR 2013009795 W KR2013009795 W KR 2013009795W WO 2014106989 A1 WO2014106989 A1 WO 2014106989A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
extruded material
billet
manufacturing
alloy extruded
Prior art date
Application number
PCT/KR2013/009795
Other languages
French (fr)
Korean (ko)
Inventor
박성혁
유봉선
김하식
문병기
배준호
김영민
임창동
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130083597A external-priority patent/KR101400140B1/en
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2014106989A1 publication Critical patent/WO2014106989A1/en
Priority to US14/712,609 priority Critical patent/US20150315690A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium

Definitions

  • the present invention relates to a method for producing a magnesium alloy extruded material and to a magnesium alloy extruded material prepared according to the present invention, specifically, a magnet with improved strength and elongation from a conventional extrusion method by performing compressive deformation in a predetermined amount on a homogenized billet. It relates to a method of manufacturing an alloy extrusion.
  • the main target materials are light metals such as aluminum and magnesium and alloys thereof, and their use is increasing as a new material for transportation equipment that requires high specific strength.
  • Magnesium alloy is the lightest metal material with the lowest density among the structural materials available, and it is a material that is in the spotlight due to its high specific strength and excellent properties such as mechanical workability, electromagnetic shielding, and vibration absorption ability.
  • the alloy ratio can be adjusted for each application to be used for special purposes. Therefore, research is being actively conducted for various fields such as automobile parts, aviation parts, and portable electronic devices.
  • Magnesium alloy parts are produced by casting and by casting, casting, or forging a cast billet or slab into a secondary molded product.
  • casting methods sand casting, thick casting, precision casting, die casting, and semi-molding molding techniques are used.
  • Most magnesium alloy parts are manufactured by die casting.
  • the manufacturing technology as a processing material such as a rolled material, an extruded material, and a forged material, which have excellent mechanical properties, is essential. All .
  • magnesium alloy workpiece has better strength and ductility than cast material, it has lower mechanical properties compared to commercial aluminum alloy workpiece, adding alloying elements, applying powder metallurgy, and controlling processing conditions. Many efforts are underway to improve the strength and ductility of magnesium alloy workpieces through the method.
  • Korean Patent Publication No. 10-2008-0085662 (published date: 2008.09.24) describes the mechanical strength of a magnet alloy.
  • a method for improving a method of controlling a composition of a magnesium alloy and combining a die casting casting and a plastic processing is disclosed.
  • the Republic of Korea Patent Publication No. 10-2012-0095184 (published: 2012.08.28) discloses a method for adjusting the composition of the magnesium alloy as a method for improving the mechanical strength and ductility of the magnesium alloy extrusion material, As described above, a method of simultaneously improving the strength and ductility by performing compressive deformation in a predetermined amount on the homogenized magnesium alloy billet before extrusion has not been disclosed.
  • the present inventors performed compression deformation treatment to a specific range of the homogenized magnesium alloy billetol, which was studied to prepare a method for producing a magnetite alloy extruded material having excellent strength and ductility, followed by extrusion.
  • the method of manufacturing the magnesium alloy extruded material has been completed by finding a simple method of manufacturing a magnesium alloy extruded material having improved ductility while improving mechanical strength by adding a simple compression deformation process to the general extrusion method.
  • An object of the present invention is to provide a method for producing a magnesium alloy extruded material.
  • Another object of the present invention is to provide a magnesium alloy extruded material produced according to the manufacturing method.
  • the present invention proposes to solve the above problems.
  • step 2 Casting a raw material of the magnesium alloy melted in step 1 to produce a magnesium alloy billet (step 2);
  • It provides a method of manufacturing a magnet alloy extruded material comprising the step (step 5) of extruding the compression-deformed magnet alloy billet of step 4.
  • the present invention provides a magnet alloy extrusion material produced by the above production method.
  • the present invention provides an airborne part manufactured using the magnesium alloy extruded material.
  • the extruded material is extruded to produce a magnesium alloy extruded material, which is a simple compression deformation process in the general extrusion method
  • a simple compression deformation process in the general extrusion method
  • FIG. 1 is a simplified view showing a method of manufacturing a magnesium alloy extruded material according to the present invention.
  • Figure 2 is a result of analyzing the magnesium alloy billet before and after room temperature compression deformation using an optical microscope.
  • Electron back scattered diffraction (EBSD) analysis showing inverse pole figure maps and twin boundary maps.
  • FIG. 5 shows electron backscattering diffraction (EBSD) showing an inverse pole figure map and a grain size distribution of the magnesium extruded materials of Example 1 and Comparative Example 1 according to the present invention.
  • EBSD electron backscattering diffraction
  • FIG. 6 shows the results of analyzing the magnesium alloy extruded materials of Examples 1 to 3 and Comparative Examples 1 to 3 according to the present invention using an optical microscope.
  • 7 is a result of analyzing the magnesium alloy extruded material of Examples 4 to 6 and Comparative Examples 4 to 6 according to the present invention using an optical microscope.
  • the present invention provides a
  • step 2 Casting a raw material of the magnesium alloy melted in step 1 to produce a magnesium alloy billet (step 2);
  • step 4 Compressing and straining the homogenized magnesium alloy billet of step 3 in the range of 3-20% (step 4);
  • It provides a method for producing a magnesium alloy extruded material comprising the step (step 5) of extruding the compression-modified magnesium alloy billet of step 4.
  • the step 1 is a step of melting the raw material of the magnesium alloy.
  • the raw material of the magnet alloy can be used without limitation as long as the commercial magnet alloy.
  • the present invention is a technology using a point that twins are easily generated due to the lack of a slim system at room temperature deformation is applicable to all magnesium alloys regardless of the composition. That is, the magnesium alloy raw material may use a magnesium pure metal or a magnesium alloy, and may be used without limitation in composition.
  • the present invention is not only a magnet alloy, but also titanium (Ti), zinc (), cobalt (Co) having a dense hexagonal structure (Hexagonal close packed (HCP)) that is easily generated due to deformation. The same can be applied to alloys, etc.
  • Step 2 is to prepare a magnesium alloy billet by casting the raw material of the molten magnesium alloy melted in step 1.
  • molten metal alloy ⁇ the raw material of the molten magnesium alloy of the step 1 (hereinafter referred to as molten metal alloy ⁇ ) at 650-750 ° C.
  • molten metal alloy ⁇ the raw material of the molten magnesium alloy of the step 1
  • the method of casting the magnesium alloy molten metal is not particularly limited as long as it is a method commonly used in the art, for example, gravity casting, continuous casting, sand casting, pressurized casting can be used.
  • step 3 is a step of homogenizing the magnesium alloy billet prepared in step 2.
  • the homogenization can improve the heterogeneous structure due to segregation of alloy elements generated in the casting of magnesium alloy moltenol, and improve the high temperature workability and mechanical properties of the magnesium alloy.
  • the homogenization of the magnesium alloy billet is preferably carried out by a cooling process after performing a heat treatment process at 300-550 ° C for 0.5-96 hours, the homogenization treatment temperature range is a magnesium alloy billet. Can be appropriately selected by those skilled in the art according to the type of member.
  • Mg-Sn-based alloy it is preferable to treat it as homogenization at 400-550.
  • the magnesium alloy billet is carried out at less than 400 ° C, the content of tin dissolved in the magnesium matrix is small, so that the strengthening effect of the alloy due to dynamic precipitation during high temperature plastic processing such as extrusion, rolling, forging, etc. is not significant. Since the coarse Mg 2 Sn phase generated during the casting process is not removed sufficiently, the ductility of the magnesium alloy may be lowered.
  • the magnesium alloy has a higher homogenization treatment temperature compared to the solidus temperature of the magnesium alloy. There is a problem that the local dissolution of the billet may occur and the physical properties may be lowered.
  • the homogenization treatment of the magnesium alloy billet is performed in the temperature range for less than 0.5 hour, diffusion of the alloying elements does not sufficiently occur, so that the effect of the homogenization treatment does not appear.
  • the homogenization treatment of the magnesium alloy billet is performed for more than 96 hours, the increase in the effect against the execution time is not so large that it is not economical.
  • the step 4 is a step of compressively deforming the homogenized magnesium alloy billet of the step 3 in the range of 3-20%.
  • the compressive strain forms twins in the homogenized magnet alloy material.
  • twins play an important deformation mechanism at room temperature of the magnesium alloy.
  • the twin formed through the compression deformation acts as a region in which recrystallization occurs in the subsequent extrusion step to increase the recrystallization fraction to create a homogeneous and fine structure to improve the strength of the magnesium alloy.
  • the fraction of the large, non-recrystallized crystal grains, which easily generate cracks during tensile deformation decreases soft ducts, and is greatly reduced by extrusion after performing compression deformation, thereby improving strength as well as elongation.
  • compressive deformation of the homogenized magnesium alloy billet is performed at less than 3%, only a very small amount of twins are formed in the magnesium alloy billet, thereby increasing the strength and elongation of the magnesium alloy extruder manufactured therefrom.
  • the compression deformation may be carried out by appropriately selecting the compression deformation range of the skilled person according to the composition of the magnesium alloy.
  • the compression deformation may be performed in any direction with respect to the magnesium alloy billet, and those skilled in the art may appropriately select the compression deformation direction according to the shape and extrusion conditions of the billet.
  • the compression deformation of the step 4 is carried out in a temperature range of room temperature to 250 ° C. Can be. If the compression deformation is performed at a temperature lower than room temperature, a defect such as cracking or cracking may occur in the magnet alloy billet while the material is hardened to perform compression deformation. In addition, when the compression deformation is performed at a temperature exceeding 250 ° C. non-base slip is activated to form twins, and thus it is difficult to expect an improvement in strength and elongation of the magnesium alloy extruded material. have.
  • the "room temperature" described as the temperature at which the compressive deformation may be performed means a normal temperature at which the heating is not particularly performed and is defined as a temperature range of about 0 to 50 ° C. For example, it may be a temperature of about 20 ° C 5 ° C.
  • the manufacturing method of the magnesium alloy extruded material according to the present invention does not require a new device and equipment except for a device for performing compression deformation. Therefore, there is an advantage that can be immediately applied to the process of manufacturing a magnesium alloy extruded material using a conventional extrusion method.
  • the step 5 is a step of extruding the compression-modified magnesium alloy billet of the step 4.
  • the extrusion is preferably carried out after preheating at 150-450 ° C to smoothly perform the extrusion of the compression-modified magnesium alloy billet of the step 4.
  • the preheating temperature of the compression-modified magnesium alloy billet is less than 150 ° C, there is a problem that excessive extrusion force is required during extrusion of the compression-deformed magnet alloy billet.
  • the pre-heating temperature exceeds 450 ° C, there is a problem that the strength of the magnesium alloy extruded material produced by the coarse growth of crystals in the magnet alloy decreases, and in some alloys due to the high extrusion temperature depending on the alloy composition There is a problem in that local melting occurs and surface defects occur.
  • the extrusion may use direct extrusion, indirect extrusion, continuous extrusion, etc., but is not limited thereto, and may be appropriately selected according to the purpose or the purpose of those skilled in the art.
  • the method for producing a magnesium alloy extruded material according to the present invention is carried out in step 4 above.
  • the method may further include processing the magnet alloy billet in a form suitable for performing compression deformation and extrusion.
  • the method for producing a magnesium alloy extruded material according to the present invention may further perform the step of aging after step 5.
  • the aging treatment is only optional. Even if the aging treatment is not performed, the magnesium alloy extruded material having improved strength and ductility can be manufactured.
  • alloy elements other than magnesium contained in magnesium atoms are precipitated in grain boundaries or grain boundaries, thereby further enhancing the strength of the magnesium alloy extruded material due to the precipitation strengthening effect.
  • the aging treatment can be performed at 150-250 ° C for 1-360 hours.
  • the aging treatment is performed at less than 150, there is a problem that the magnesium alloy takes a long time to reach the maximum strength, which is not economical.
  • the aging treatment is carried out in excess of 250 ° C it is possible to shorten the time it takes for the magnesium alloy to reach the maximum strength, but the strength of the magnesium alloy is low because the precipitated phase is coarse There is a problem.
  • the present invention provides a magnet alloy extruded material produced by the manufacturing method.
  • the properties of magnesium alloys are determined by the product of tensile strength and total elongation (TSXEL).
  • TSXEL total elongation
  • the magnesium alloy can be judged from two aspects of strength and ductility.
  • the magnesium alloy having a large TSXEL value may be determined to have excellent tensile properties.
  • the value may be determined to be excellent in toughness because it is proportional to the amount of energy absorbed by the metal material during fracture.
  • the present invention provides a component for transportation equipment manufactured using the magnesium alloy extruded material.
  • the magnesium alloy extruded material manufactured by extruding the homogenized magnesium alloy billet according to the present invention after compressive deformation treatment to a specific range has a TSXEL value of about 3-. Increasing the strength by 32%, the overall tensile properties are not just improved, but it is expected to be widely used in various industrial fields including the transportation equipment industry such as aircraft and the electronic parts industry.
  • magnesium extruded materials can exhibit excellent properties such as machinability, electromagnetic shielding, and vibration absorbing ability as well as high specific strength, and thus can be manufactured as aviation components requiring specific strength and sophisticated processing.
  • Step 1 Melting the raw material of the magnesium alloy
  • the magnesium alloy was dissolved in a crucible by using a high frequency induction melting furnace. A mixed gas of SF 6 and CO 2 was applied to the molten magnesium alloy (magnesium alloy molten metal) to block contact with the atmosphere to prevent oxidation.
  • the magnesium alloy molten metal of step 1 was maintained at 700 ° C. for 10 minutes and a magnesium alloy billet having a diameter of 80 mm and a length of 200 mm was prepared using a steel mold preheated to 200 ° C. ⁇ 97>
  • Magnesium alloy billet prepared in step 2 was heated to a rate of 1 ° C / min in an inert atmosphere and heat treated at 400-490 ° C for 12-15 hours to homogenize.
  • in order to suppress the formation of coarse precipitated phase that may occur during the billet process of the billet was treated with water at room temperature.
  • the homogenization treatment conditions according to each example are shown in Table 2 below.
  • Step 4 Performing compression deformation
  • step 3 the homogenized magnesium alloy billet was compressed by 10% in the longitudinal direction from silver to a strain rate of about 0.1 / s using a 150 ton hydraulic press.
  • the magnesium alloy extruded material was manufactured by extruding the rod into a rod of 16 mm using an indirect extruder (maximum pressure output: 500 tonf) after processing into a rod of 51 ⁇ of compression-modified magnesium alloy billetol in step 4.
  • Magnesium alloy extruded material was prepared in the same manner as in Example 4, except that compression deformation was performed at 5% in Step 4 of Example 4.
  • Phase 3 of Example 4 was repeated except that compression strain was performed at 15%.
  • a magnet alloy extruded material was prepared in the same manner as in Example 4.
  • Mg alloy extruded material was manufactured in the same manner as in Example 4, except that compression deformation was performed at 2% in Example 4 of Example 4.
  • FIG. 2 and FIG. 3 show the results of analyzing before and after compression deformation of the homogenized magnesium alloy billet using an optical microscope. From this, it can be seen that twins are formed in the magnesium alloy material by compression deformation.
  • FIG. 4 shows the results of analysis of the compressive deformation of the homogenized heat-treated A231 magnesium alloy billet using the electron back-scattering diffraction diffraction column, where many twins are formed, and these twins are mostly ⁇ 10-12 ⁇ tensile twins. have.
  • twins can be formed in the magnesium alloy material by compressive deformation of the homogenized magnesium alloy billet.
  • the magnesium alloy extruded material of Examples 1-6 and Comparative Examples 1-6 were analyzed using an optical microscope and an electron scattering diffraction diffraction. The results are shown in FIGS. 5, 6 and 7.
  • FIG. 5 is a result of analyzing the magnesium alloy extruded materials of Comparative Example 1 and Example 1 using electron backscattering diffraction diffraction.
  • Example 1 which was subjected to compression deformation, recrystallization occurred throughout the material to have uniform and fine grains. This reduced the average grain size of the extruded material from 10.3 urn to 3.1 urn due to compression deformation.
  • the magnesium alloy extruded materials of Examples 1 to 6, which performed compression deformation had a recrystallized area as compared with the magnet alloy extruded materials of Comparative Examples 1-6, which did not perform compression deformation. More and more homogeneous tissue was shown. This result for the magnesium alloy extrudates of Examples 1-6 can be determined to be due to the twins formed by compression deformation acting as recrystallization sites in the extrusion process to improve the recrystallization fraction.
  • Example 1- In order to evaluate the mechanical properties of the magnet alloy according to the present invention, Example 1-
  • a rod-shaped specimen having a gauge length of 25 mm and a gauge diameter of 6 mm was prepared using a magnesium alloy extruded material of 6, and the rod-shaped specimen was tensile at a strain rate of 1 ⁇ 10 ⁇ 3 S _1 using a room temperature tensile tester (INSTRON 4206).
  • INSTRON 4206 room temperature tensile tester
  • the magnesium alloy extruded material of Examples 1 to 8 according to the present invention has a maximum yield strength as compared with the magnesium alloy extruded material of Comparative Examples 1 to 6, which do not perform compression deformation after homogenizing. 39 MPa, tensile strength is up to 32 MPa, elongation is 22%. In addition, it can be seen that the TSXEL value, which is a factor for evaluating the physical properties of the magnet alloy extruded material, was improved by up to about 32%.
  • Example 8 it can be seen that the compressive strain to 15% to improve the yield strength 46 MPa, the tensile strength is 45 MPa, the elongation is improved by 2.2%. From this, it can be seen that the manufacturing method of the magnesium alloy extruded material according to the present invention can improve the strength and ductility of the magnesium alloy extruded material by compressing the homogenized magnesium alloy billet to a specific range and then extruding it. It can be seen that an extrusion material having excellent physical properties can be produced by increasing the amount of compression deformation.

Abstract

The present invention relates to a method for manufacturing an extruded magnesium alloy and an extruded magnesium alloy manufactured thereby. The present invention specifically relates to a method for manufacturing an extruded magnesium alloy which comprises a step (first step) of melting a starting material of a magnesium alloy; a step (second step) of casting the magnesium alloy starting material melted in the first step in order to prepare a magnesium alloy billet; a step (third step) of subjecting the magnesium alloy billet prepared in the second step to a homogenization treatment; a step (fourth step) of allowing the magnesium alloy billet homogenized in the third step to undergo compressive strain in the range of 3 to 20%; and a step (fifth step) of extruding the magnesium alloy billet which underwent compressive strain in the fourth step; and an extruded magnesium alloy manufactured thereby.

Description

【명세서】  【Specification】
【발명의 명 칭】  [Name of invention]
마그네슘 합금 압출재의 제조방법 및 이에 따라 제조되는 마그네슴 합금 압 출재  Manufacturing method of magnesium alloy extruded material and magnet alloy extruded material produced accordingly
【기술분야】  Technical Field
<1> 본 발명은 마그네슘 합금 압출재의 제조방법 및 이에 따라 제조되는 마그네 슘 합금 압출재에 관한 것으로 , 구체적으로 균질화처 리된 빌렛을 일정량으로 압축 변형을 수행하여 종래 압출법으로부터 강도 및 연신율이 향상된 마그네슴 합금 압 출재를 제조하는 방법에 관한 것 이다 .  The present invention relates to a method for producing a magnesium alloy extruded material and to a magnesium alloy extruded material prepared according to the present invention, specifically, a magnet with improved strength and elongation from a conventional extrusion method by performing compressive deformation in a predetermined amount on a homogenized billet. It relates to a method of manufacturing an alloy extrusion.
【배경기술】  Background Art
<2> 전세계적으로 수송기기의 효율증대와 배기가스에 의한 환경오염 및 각종 환 경 규제에 대웅하기 위한 방안으로 모든 제품의 경량화와 신소재 개발에 대한 연구 가 활발히 이루어지고 있다 . 주요한 대상 재료로는 알루미늄, 마그네슴과 같은 경 량금속 및 이의 합금들이 대두되고 있으며, 비강도가 크게 요구되는 운송기기의 새 로운 재료로서 그 용도가 크게 증가하고 있다 .  <2> In order to increase the efficiency of transportation equipment, environmental pollution caused by exhaust gas and various environmental regulations, researches on weight reduction of all products and development of new materials are being actively conducted. The main target materials are light metals such as aluminum and magnesium and alloys thereof, and their use is increasing as a new material for transportation equipment that requires high specific strength.
<3>  <3>
<4> 마그네슘 합금은 사용 가능한 구조용 소재 중 가장 밀도가 낮은 경량 금속 소재이면서, 높은 비강도와 더불어 기 계가공성, 전자파 차폐성, 진동흡수능과 같은 우수한 특성으로 인해 각광받고 있는 재료이다 . 또한 각 적용 분야에 맞게 합금 비 율을 조절하여 특수한 목적으로도 사용할 수 있어서 자동차의 부품, 항공용 부품, 휴대용 전자기기에 이르기까지 다양한 분야에 활용하기 위한 연구가 활발히 진행되 고 있다 .  <4> Magnesium alloy is the lightest metal material with the lowest density among the structural materials available, and it is a material that is in the spotlight due to its high specific strength and excellent properties such as mechanical workability, electromagnetic shielding, and vibration absorption ability. In addition, the alloy ratio can be adjusted for each application to be used for special purposes. Therefore, research is being actively conducted for various fields such as automobile parts, aviation parts, and portable electronic devices.
<5> 마그네슘 합금 부품을 채조하는 방법은 주조에 의 한 방식과 주조된 빌렛 혹 은 슬라브를 압연, 압출 혹은 단조 등으로 가공함으로써 2차 성형품을 제조하는 방 식 이 있다. 이 가운데 주조 방법의 경우, 사형주조, 증력주조, 정밀주조, 다이 캐스 팅, 그리고 반용융 성형 기술 등을 사용하여 제조되고 있으며, 현재 대부분의 마그 네슘 합금 부품은 다이 캐스팅에 의해 제조되고 있다 . 그러나, 주조를 이용하여 마 그네슘 합금을 성형하는 경우에는 연성은 우수하지 만 수축기공과 같은 내부결함이 많고, 표면이 매우 거 칠기 때문에 후처리공정 이 필수적으로 요구되어 고강도가 요 구되는 고품질의 합금 제품을 제조하기에는 적합하지 않다. 따라서 , 마그네슴 합금 의 사용 및 웅용분야의 확대를 위해서 주로 사용되는 주조재에서 벗어나, 기계적 물성 이 우수한 압연재, 압출재, 단조재와 같은 가공재로서의 제조기술이 필수적 이 다 . Magnesium alloy parts are produced by casting and by casting, casting, or forging a cast billet or slab into a secondary molded product. Among the casting methods, sand casting, thick casting, precision casting, die casting, and semi-molding molding techniques are used. Most magnesium alloy parts are manufactured by die casting. However, when forming magnesium alloy by casting, it has good ductility but many internal defects such as shrinkage pores, and because the surface is very rough, aftertreatment is required and high quality alloy is required. Not suitable for manufacturing the product. Therefore, in order to use the magnet alloy and expand the field of application, the manufacturing technology as a processing material such as a rolled material, an extruded material, and a forged material, which have excellent mechanical properties, is essential. All .
<6> 마그네슘 합금 가공재가 주조재에 비하여 우수한 강도와 연성을 가짐에도 불 구하고, 상용 알루미늄 합금 가공재와 비교하여 낮은 기계적 물성을 가지고 있어, 합금 원소 첨가, 분말야금법 적용, 가공조건 제어 등의 다양한 방법을 통해 마그네 슘 합금 가공재의 강도와 연성을 향상시키고자 많은 노력들이 진행 중이다 .  <6> Although magnesium alloy workpiece has better strength and ductility than cast material, it has lower mechanical properties compared to commercial aluminum alloy workpiece, adding alloying elements, applying powder metallurgy, and controlling processing conditions. Many efforts are underway to improve the strength and ductility of magnesium alloy workpieces through the method.
<7> 예를 들면, 종래 마그네슘 합금의 강도를 향상시 키기 위 한 방법으로는 대한 민국공개특허 제 10-2008-0085662호 (공개일 : 2008.09.24)에는 마그네슴 합금의 기 계 적 강도를 향상시키기 위한 방법으로서 마그네슘 합금의 조성을 조절하고 다이캐스 팅 주조와 소성가공이 복합된 제조방법을 개시하고 있다 . 또한, 대한민국공개특허 제 10-2012-0095184호 (공개일 : 2012 .08.28)에는 마그네슴 합금 압출재의 기 계적 강도 및 연성을 향상시키기 위한 방법으로서 마그네슘 합금의 조성을 조절하는 방법을 개시하고 있으나, 본 발명과 같이 압출 전 균질화 처 리된 마그네슘 합금 빌렛에 대 하여 일정량으로 압축변형을 수행하여 강도 및 연성을 동시에 향상시 키는 방법은 아직 개시된 바가 없다.  For example, as a method for improving the strength of a conventional magnesium alloy, Korean Patent Publication No. 10-2008-0085662 (published date: 2008.09.24) describes the mechanical strength of a magnet alloy. As a method for improving, a method of controlling a composition of a magnesium alloy and combining a die casting casting and a plastic processing is disclosed. In addition, the Republic of Korea Patent Publication No. 10-2012-0095184 (published: 2012.08.28) discloses a method for adjusting the composition of the magnesium alloy as a method for improving the mechanical strength and ductility of the magnesium alloy extrusion material, As described above, a method of simultaneously improving the strength and ductility by performing compressive deformation in a predetermined amount on the homogenized magnesium alloy billet before extrusion has not been disclosed.
<8>  <8>
<9> 이에, 본 발명자들은 강도 및 연성 이 우수한 마그네습 합금 압출재를 제조하 기 위 한 방법을 연구하던 증 , 균질화 처리된 마그네슘 합금 빌렛올 특정 범위로 압 축변형 처리를 수행한 후, 압출하여 마그네슘 합금 압출재를 제조하는 방법은 일반 압출법에 간단한 압축변형 공정을 추가함으로써 기 계적 강도를 향상시키는 동시에 연성 이 향상된 마그네슘 합금 압출재를 간단한 방법으로 제조할 수 있음을 알아내 고 본 발명을 완성하였다.  Therefore, the present inventors performed compression deformation treatment to a specific range of the homogenized magnesium alloy billetol, which was studied to prepare a method for producing a magnetite alloy extruded material having excellent strength and ductility, followed by extrusion. The method of manufacturing the magnesium alloy extruded material has been completed by finding a simple method of manufacturing a magnesium alloy extruded material having improved ductility while improving mechanical strength by adding a simple compression deformation process to the general extrusion method.
【발명의 상세한 설명】  [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
<10> 본 발명의 목적은 마그네슘 합금 압출재의 제조방법을 제공하는 데 있다. An object of the present invention is to provide a method for producing a magnesium alloy extruded material.
<11> 본 발명의 또 다른 목적은 상기 제조방법을 따라 제조되는 마그네슘 합금 압 출재를 제공하는 데 있다 . Another object of the present invention is to provide a magnesium alloy extruded material produced according to the manufacturing method.
【기술적 해결방법】  Technical Solution
<12> 상기 과제를 해결하기 위해, 본 발명은  To solve the above problems, the present invention
<13> 마그네슘 합금의 원료를 용융시키는 단계 (단계 1) ;  <13> melting a raw material of magnesium alloy (step 1);
<14> 상기 단계 1에서 용융시킨 마그네슘 합금의 원료를 주조하여 마그네슘 합금 빌렛을 제조하는 단계 (단계 2) ;  Casting a raw material of the magnesium alloy melted in step 1 to produce a magnesium alloy billet (step 2);
<15> 상기 단계 2에서 제조된 마그네슴 합금 빌렛을 균질화 처 리하는 단계 (단계 3); <15> Homogenizing the magnet alloy billet prepared in step 2 (step 3);
<16> 상기 단계 3의 균질화 처리된 마그네슘 합금 빌멧을 3 - 20 % 범위로 압축변 형시키는 단계 (단계 4);및  <16> compression deformation of the homogenized magnesium alloy bilmette of step 3 in the range of 3-20% (step 4); and
<17> 상기 단계 4의 압축변형된 마그네슴 합금 빌렛을 압출하는 단계 (단계 5)를 포함하는 마그네슴 합금 압출재의 제조방법을 제공한다. It provides a method of manufacturing a magnet alloy extruded material comprising the step (step 5) of extruding the compression-deformed magnet alloy billet of step 4.
<18>  <18>
<19> 또한, 본 발명은 상기 제조방법으로 제조되는 마그네슴 합금 압출재를 제공 한다.  In addition, the present invention provides a magnet alloy extrusion material produced by the above production method.
<20> 또한, 본 발명은 상기의 마그네슘 합금 압출재를 이용하여 제조된 항공용 부 품을 제공한다.  In addition, the present invention provides an airborne part manufactured using the magnesium alloy extruded material.
【유리한 효과】  Advantageous Effects
<21> 본 발명에 따른 마그네슘 합금 압출재의 제조방법은 균질화 처리된 마그네슘 합금 빌렛을 특정 범위로 압축변형 처리를 수행한 후, 압출하여 마그네습 합금 압 출재를 제조함으로써 일반 압출법에 간단한 압축변형 공정을 추가하여 기계적 강도 와 연성이 동시에 향상된 마그네슘 합금 압출재를 간단한 방법으로 제조할 수 있는 장점이 있다.  In the manufacturing method of the magnesium alloy extruded material according to the present invention, after compressive deformation treatment of the homogenized magnesium alloy billet is carried out in a specific range, the extruded material is extruded to produce a magnesium alloy extruded material, which is a simple compression deformation process in the general extrusion method By adding the mechanical strength and ductility at the same time there is an advantage that can be produced by a simple method of magnesium alloy extruded material.
【도면의 간단한 설명】  [Brief Description of Drawings]
<22> 도 1은 본 발명에 따른 마그네슘 합금 압출재의 제조방법을 간단히 나타낸 1 is a simplified view showing a method of manufacturing a magnesium alloy extruded material according to the present invention.
¾이다. ¾.
<23> 도 2는 상온 압축변형 전과 후의 마그네슘 합금 빌렛을 광학현미경올 이용하 여 분석한 결과이다.  Figure 2 is a result of analyzing the magnesium alloy billet before and after room temperature compression deformation using an optical microscope.
<24> 도 3은 상온 압축변형 전과 후의 마그네슘 합금 빌렛을 광학현미경을 이용하 여 분석한 결과이다.  3 is a result of analyzing the magnesium alloy billet before and after room temperature compression deformation using an optical microscope.
<25> 도 4는 본 발명에 따른 상온 압축변형 후의 AZ31 합금의 역극점도지도 4 is an inverse pole viscosity map of the AZ31 alloy after room temperature compression deformation according to the present invention.
(Inverse pole figure map)와 쌍정립계지도 (twin boundary map)를 나타내는 전자 후방산란 회절 (EBSD, electron back scattered di f fract ion)분석 사진이다. Electron back scattered diffraction (EBSD) analysis showing inverse pole figure maps and twin boundary maps.
<26> 도 5는 본 발명에 따른 실시예 1 및 비교예 1의 마그네슘 압출재의 역극점도 지도 (Inverse pole figure map)와 결정립크기분포 (grain size distribution)를 나 타내는 전자 후방 산란 회절 (EBSD, electron back scattered diffract ion)분석 사 진이다.  FIG. 5 shows electron backscattering diffraction (EBSD) showing an inverse pole figure map and a grain size distribution of the magnesium extruded materials of Example 1 and Comparative Example 1 according to the present invention. electron back scattered diffract ion analysis.
<27> 도 6은 본 발명에 따른 실시예 1 내지 실시예 3 및 비교예 1 내지 비교예 3 의 마그네슘 합금 압출재를 광학현미경을 이용하여 분석한 결과이다. <28> 도 7은 본 발명에 따른 실시예 4 내지 실시예 6 및 비교예 4 내지 비교예 6 의 마그네슘 합금 압출재를 광학현미경을 이용하여 분석한 결과이다. FIG. 6 shows the results of analyzing the magnesium alloy extruded materials of Examples 1 to 3 and Comparative Examples 1 to 3 according to the present invention using an optical microscope. 7 is a result of analyzing the magnesium alloy extruded material of Examples 4 to 6 and Comparative Examples 4 to 6 according to the present invention using an optical microscope.
【발명의 실시를 위한 최선의 형태】  [Best form for implementation of the invention]
<29> 이하, 본 발명을 상세히 설명한다.  Hereinafter, the present invention will be described in detail.
<30> <30>
<31> 도 1에 나타낸 바와 같이, 본 발명은ᅳ  As shown in FIG. 1, the present invention provides a
<32> 마그네슘 합금의 원료를 용융시키는 단계 (단계 1);  Melting the raw material of the magnesium alloy (step 1);
<33> 상기 단계 1에서 용융시킨 마그네슘 합금의 원료를 주조하여 마그네슘 합금 빌렛을 제조하는 단계 (단계 2);  Casting a raw material of the magnesium alloy melted in step 1 to produce a magnesium alloy billet (step 2);
<34> 상기 단계 2에서 제조된 마그네슘 합금 빌렛을 균질화 처리하는 단계 (단계 Homogenizing the magnesium alloy billet prepared in step 2 (step
3); 3);
<35> 상기 단계 3의 균질화 처리된 마그네슘 합금 빌렛을 3 - 20 % 범위로 압축변 형시키는 단계 (단계 4);및  Compressing and straining the homogenized magnesium alloy billet of step 3 in the range of 3-20% (step 4); and
<36> 상기 단계 4의 압축변형된 마그네슘 합금 빌렛을 압출하는 단계 (단계 5)를 포함하는 마그네슘 합금 압출재의 제조방법을 제공한다.  It provides a method for producing a magnesium alloy extruded material comprising the step (step 5) of extruding the compression-modified magnesium alloy billet of step 4.
<37>  <37>
<38> 하기에, 본 발명에 따른 마그네슘 합금 압출재의 제조방법을 각 단계별로 상 세히 설명한다. ' Hereinafter, the manufacturing method of the magnesium alloy extruded material according to the present invention will be described in detail for each step. '
<39>  <39>
<40> 본 발명에 따른 마그네슘 합금 압출재의 제조방법에 있어서, 상기 단계 1은 마그네슘 합금의 원료를 용융시키는 단계이다.  In the manufacturing method of the magnesium alloy extruded material according to the present invention, the step 1 is a step of melting the raw material of the magnesium alloy.
<41> 상기 마그네슴 합금의 원료는 상용 마그네슴 합금이라면 제한없이 사용될 수 있다. 본 발명은 상온 변형시 부족한 슬림계로 인해 쌍정이 용이하게 발생하게 되 는 점을 이용한 기술이므로 조성에 상관없이 모든 마그네슘 합금에 적용이 가능하 다. 즉, 상기 마그네슘 합금 원료는 마그네슘 순금속 또는 마그네슘 합금을 사용할 수 있고, 조성에 제한없이 사용될 수 있다.  The raw material of the magnet alloy can be used without limitation as long as the commercial magnet alloy. The present invention is a technology using a point that twins are easily generated due to the lack of a slim system at room temperature deformation is applicable to all magnesium alloys regardless of the composition. That is, the magnesium alloy raw material may use a magnesium pure metal or a magnesium alloy, and may be used without limitation in composition.
<42>  <42>
<43> 또한, 본 발명은 마그네슴 합금 뿐만 아니라, 변형에 의해 쌍정이 용이하게 발생하는 조밀육방구조 (Hexagonal close packed (HCP))를 가지는 타이타늄 (Ti), 아 연 ( ), 코발트 (Co) 합금 등에서도 동일하게 적용 가능하다  In addition, the present invention is not only a magnet alloy, but also titanium (Ti), zinc (), cobalt (Co) having a dense hexagonal structure (Hexagonal close packed (HCP)) that is easily generated due to deformation. The same can be applied to alloys, etc.
<44>  <44>
<45> 다음으로, 본 발명에 따른 마그네슘 합금 압출재의 제조방법에 있어서, 상기 단계 2는 상기 단계 1에서 용융시 킨 마그네슴 합금의 원료를 주조하여 마그네슘 합 금 빌렛을 제조하는 단계이다. Next, in the method for producing a magnesium alloy extruded material according to the present invention, Step 2 is to prepare a magnesium alloy billet by casting the raw material of the molten magnesium alloy melted in step 1.
<46> 상기 단계 2는 상기 단계 1의 용융시킨 마그네슘 합금의 원료 (이하, 마그네 슴 합금 용탕으로 기 재한다 ᅳ )를 650 - 750 °C에서 주조하는 것 이 바람직하다 . 이 때, 마그네슘 합금 용탕을 650 V 미만에서 주조하는 경우에는 마그네슘 합금 용탕 의 유동도가 낮아 주조가 어려운 문제가 있다. 또한, 마그네슘 합금 용탕을 750 °C 초과하여 주조하는 경우에는 마그네슘 합금 용탕이 급격하게 산화되어 주조시 불순 물이 혼합될 수 있어 이로부터 제조된 마그네슘 합금 빌렛의 순도가 낮아지는 문제 가 있다. In the step 2, it is preferable to cast the raw material of the molten magnesium alloy of the step 1 (hereinafter referred to as molten metal alloy ᅳ) at 650-750 ° C. At this time, when casting the magnesium alloy molten metal less than 650 V, there is a problem that the casting of the magnesium alloy molten metal is difficult to cast low. In addition, when the magnesium alloy molten metal is cast in excess of 750 ° C, the magnesium alloy molten metal is rapidly oxidized and impurities may be mixed during casting, thereby lowering the purity of the magnesium alloy billet manufactured therefrom.
<47>  <47>
<48> 이때, 상기 마그네슘 합금 용탕을 주조하는 방법은 당업에서 통상적으로 사 용하는 방법 이라면 이에 특정하지 않으며, 예를 들면, 중력주조, 연속주조, 사형주 조, 가압주조 둥을 사용할 수 있다.  In this case, the method of casting the magnesium alloy molten metal is not particularly limited as long as it is a method commonly used in the art, for example, gravity casting, continuous casting, sand casting, pressurized casting can be used.
<49>  <49>
<50> 다음으로 , 본 발명에 따른 마그네슘 합금 압출재의 제조방법에 있어서 , 상기 단계 3은 상기 단계 2에서 제조된 마그네슘 합금 빌렛을 균질화 처 리하는 단계이 다.  Next, in the method for producing a magnesium alloy extruded material according to the present invention, step 3 is a step of homogenizing the magnesium alloy billet prepared in step 2.
<51> 상기 균질화는 마그네슘 합금 용탕올 주조하는 과정에서 발생하는 합금원소 의 편석으로 인한 불균질한 조직을 개선하고, 마그네슘 합금의 고온 가공성 및 기 계적 특성을 향상시 킬 수 있다. 상기 마그네슘 합금 빌렛의 균질화는 300 - 550 °C 에서 0.5 ― 96 시간 동안 열처리 공정을 수행한 후 , 냉각시키는 공정을 통해 수행 하는 것 이 바람직하나, 상기 균질화 처 리 온도범위는 마그네슘 합금 빌렛을 구성하 는 구성원소의 종류에 따라 당업자가 적절하게 선택할 수 있다. The homogenization can improve the heterogeneous structure due to segregation of alloy elements generated in the casting of magnesium alloy moltenol, and improve the high temperature workability and mechanical properties of the magnesium alloy. The homogenization of the magnesium alloy billet is preferably carried out by a cooling process after performing a heat treatment process at 300-550 ° C for 0.5-96 hours, the homogenization treatment temperature range is a magnesium alloy billet. Can be appropriately selected by those skilled in the art according to the type of member.
<52> 예를 들면, Mg-Sn계 합금의 경우 400 - 550 에서 균질화 처라하는 것이 바람직하다. 상기 마그네슘 합금 빌렛을 400 °C 미만에서 수행하는 경우에는 마그 네슘 매트릭스에 용해되는 주석의 함량이 적어 압출, 압연, 단조 등과 같은 고온의 소성가공시 동적석출에 의 한 합금의 강화효과가 크지 않고, 주조 과정에서 생성된 조대한 Mg2Sn 상이 층분히 제거되지 않아 마그네슘 합금의 연성 이 저하될 수 있는 문제가 있다. For example, in the case of Mg-Sn-based alloy, it is preferable to treat it as homogenization at 400-550. When the magnesium alloy billet is carried out at less than 400 ° C, the content of tin dissolved in the magnesium matrix is small, so that the strengthening effect of the alloy due to dynamic precipitation during high temperature plastic processing such as extrusion, rolling, forging, etc. is not significant. Since the coarse Mg 2 Sn phase generated during the casting process is not removed sufficiently, the ductility of the magnesium alloy may be lowered.
<53>  <53>
<54> 또한, 마그네슘 합금 빌렛을 550 °C를 초과하여 균질화 처 리하는 경우에는 마그네슘 합금의 고상선 온도와 비교하여 균질화 처 리 온도가 높아 마그네슴 합금 빌렛의 국부적인 용해가 발생하여 물성이 저하될 수 있는 문제가 있다. In addition, in the case of homogenizing the magnesium alloy billet above 550 ° C., the magnesium alloy has a higher homogenization treatment temperature compared to the solidus temperature of the magnesium alloy. There is a problem that the local dissolution of the billet may occur and the physical properties may be lowered.
<55>  <55>
<56> 나아가, 상기 마그네슘 합금 빌렛의 균질화 처리를 상기 온도 범위에서 0.5 시간 미만으로 수행하는 경우에는 합금원소의 확산이 충분히 일어나지 않아 균질화 처리의 효과가 나타나지 않는다. 또한, 마그네슘 합금 빌렛의 균질화 처리를 96 시 간을 초과하여 수행되는 경우에는 수행시간 대비 효과의 상승 폭이 크지 않아 경제 적이지 않다.  Furthermore, when the homogenization treatment of the magnesium alloy billet is performed in the temperature range for less than 0.5 hour, diffusion of the alloying elements does not sufficiently occur, so that the effect of the homogenization treatment does not appear. In addition, when the homogenization treatment of the magnesium alloy billet is performed for more than 96 hours, the increase in the effect against the execution time is not so large that it is not economical.
<57>  <57>
<58> 다음으로, 본 발명에 따른 마그네슘 합금 압출재의 제조방법에 있어서, 상기 단계 4는 상기 단계 3의 균질화 처리된 마그네슘 합금 빌렛을 3 - 20 % 범위로 압 축변형시키는 단계이다.  Next, in the method for producing a magnesium alloy extruded material according to the present invention, the step 4 is a step of compressively deforming the homogenized magnesium alloy billet of the step 3 in the range of 3-20%.
<59> 상기 압축변형은 균질화 처리된 마그네슴 합금 재료 내에 쌍정을 형성시킨 다. 조밀육방구조를 갖는 마그네슘 합금에서 쌍정은 마그네슘 합금의 상온에서의 중요한 변형기구 역할을 한다. 이때, 상기 압축변형을 통해 형성된 쌍정은 이후의 압출 단계에서 재결정이 발생하는 영역으로 작용하여 재결정 분율을 증가시킴으로 써 균질하고 미세한 조직을 만듦으로써 마그네슘 합금의 강도를 향상시킨다. 또한, 인장변형시 쉽게 크랙이 발생하여 연성올 감소시키는 재결정되지 않은 큰 결정립의 분율이 압축변형 수행 후 압출을 하면 크게 감소되어 강도뿐만 아니라 연신율을 동 시에 향상시킬 수 있는 장점이 있다.  The compressive strain forms twins in the homogenized magnet alloy material. In the magnesium alloy having a close hexagonal structure, twins play an important deformation mechanism at room temperature of the magnesium alloy. At this time, the twin formed through the compression deformation acts as a region in which recrystallization occurs in the subsequent extrusion step to increase the recrystallization fraction to create a homogeneous and fine structure to improve the strength of the magnesium alloy. In addition, the fraction of the large, non-recrystallized crystal grains, which easily generate cracks during tensile deformation, decreases soft ducts, and is greatly reduced by extrusion after performing compression deformation, thereby improving strength as well as elongation.
<60>  <60>
<61> 상기 압축변형은 상기 단계 3에서 균질화 처리된 마그네슘 합금 빌렛을 3 - The compressive deformation of the magnesium alloy billet homogenized in step 3
20 % 범위에서 수행하는 것이 바람직하다. 이때, 상기 균질화 처리된 마그네슴 합 금 빌렛에 대하여 압축변형을 3 % 미만으로 수행하는 경우에는 상기 마그네슘 합금 빌렛 내에 매우 적은 양의 쌍정만이 형성되어 이로부터 제조되는 마그네슘 합금 압 출재의 강도 및 연신율의 향상을 기대하기 어려운 문제가 있다. 또한, 상기 압축변 형을 20 %를 초과하여 수행하는 경우에는 상기 마그네슘 합금 빌렛에 균열, 깨짐 등의 결함이 발생할 수 있다. 상기 압축변형은 마그네슘 합금의 조성에 따라 당업 자가 압축변형 범위를 적절하게 선택하여 수행할 수 있다. 상기 압축변형은 마그네 슘 합금 빌렛에 대하여 어느 방향으로 수행하여도 무방하며, 빌렛의 형상 및 압출 조건 등에 따라 당업자가 압축변형 방향을 적절하게 선택하여 수행할 수 있다.Preference is given to performing in the 20% range. In this case, when compressive deformation of the homogenized magnesium alloy billet is performed at less than 3%, only a very small amount of twins are formed in the magnesium alloy billet, thereby increasing the strength and elongation of the magnesium alloy extruder manufactured therefrom. There is a problem that is difficult to expect improvement. In addition, when the compressive deformation is performed in excess of 20%, defects such as cracking and cracking may occur in the magnesium alloy billet. The compression deformation may be carried out by appropriately selecting the compression deformation range of the skilled person according to the composition of the magnesium alloy. The compression deformation may be performed in any direction with respect to the magnesium alloy billet, and those skilled in the art may appropriately select the compression deformation direction according to the shape and extrusion conditions of the billet.
<62> <62>
<63> 한편, 상기 단계 4의 압축변형은 상온 내지 250 °C 의 온도범위에서 수행될 수 있다. 만약, 상기 압축변형이 상온보다 낮은 온도에서 수행되는 경우에는 소재 가 경화되어 압축변형을 수행하는 동안 상기 마그네슴 합금 빌렛에 균열, 깨짐 등 의 결함이 발생할 수 있다. 또한, 상기 압축변형이 250 °C를 초과하는 온도에서 수 행되는 경우에는 비저면 슬립이 활성화 되어 쌍정이 형성되기 어려우며, 이에 따라 제조되는 마그네슘 합금 압출재의 강도 및 연신율의 향상을 기대하기 어려운 문제 가 있다. On the other hand, the compression deformation of the step 4 is carried out in a temperature range of room temperature to 250 ° C. Can be. If the compression deformation is performed at a temperature lower than room temperature, a defect such as cracking or cracking may occur in the magnet alloy billet while the material is hardened to perform compression deformation. In addition, when the compression deformation is performed at a temperature exceeding 250 ° C. non-base slip is activated to form twins, and thus it is difficult to expect an improvement in strength and elongation of the magnesium alloy extruded material. have.
<64> 이때, 상기 압축변형이 수행될수 있는 온도로써 기재된 "상온 "은 특별히 가 열이 수행되지 않은 평상시의 온도를 의미하는 것으로써, 약 0 ~ 50 °C의 온도 범 위를 의미하는 것으로 정의될 수 있으며, 예를 들어 약 20士 5 °C의 온도일 수 있 다. In this case, the "room temperature" described as the temperature at which the compressive deformation may be performed means a normal temperature at which the heating is not particularly performed and is defined as a temperature range of about 0 to 50 ° C. For example, it may be a temperature of about 20 ° C 5 ° C.
<65>  <65>
<66> 본 발명에 따른 마그네슘 합금 압출재의 제조방법은 압축변형을 수행하기 위 한 장치를 제외하고는 새로운 장치 및 설비 등을 요구하지 않는다. 따라서, 종래 일반 압출법을 이용하여 마그네슘 합금 압출재를 제조하는 공정에 즉시 응용될 수 있는 장점아있다ᅳ  The manufacturing method of the magnesium alloy extruded material according to the present invention does not require a new device and equipment except for a device for performing compression deformation. Therefore, there is an advantage that can be immediately applied to the process of manufacturing a magnesium alloy extruded material using a conventional extrusion method.
<67>  <67>
<68> 다음으로, 본 발명에 따른 마그네슘 합금 압출재의 제조방법에 있어서, 상기 단계 5는 상기 단계 4의 압축변형된 마그네슘 합금 빌렛을 압출하는 단계이다. Next, in the method of manufacturing a magnesium alloy extruded material according to the present invention, the step 5 is a step of extruding the compression-modified magnesium alloy billet of the step 4.
<69> 본 발명에 있어서, 상기 압출은 상기 단계 4의 압축변형된 마그네슘 합금 빌 렛의 압출을 원활하게 수행하기 위해서, 150 - 450 °C에서 선예열한 후 수행되는 것이 바람직하다. 이때, 압축변형된 마그네슘 합금 빌렛의 선예열 온도가 150 °C 미만일 경우에는, 압축변형된 마그네슴 합금 빌렛 압출시 과도한 압출력이 소요되 는 문제가 있다. 또한, 선예열 온도가 450 °C를 초과하는 경우에는 마그네슴 합금 내의 결정이 조대하게 성장하여 제조되는 마그네슘 합금 압출재의 강도가 저하되는 문제가 있고, 합금 조성에 따라 일부 합금에서는 높은 압출 온도로 인해 국부적인 용융이 발생하여 표면결함이 발생하는 문제가 있다. In the present invention, the extrusion is preferably carried out after preheating at 150-450 ° C to smoothly perform the extrusion of the compression-modified magnesium alloy billet of the step 4. At this time, when the preheating temperature of the compression-modified magnesium alloy billet is less than 150 ° C, there is a problem that excessive extrusion force is required during extrusion of the compression-deformed magnet alloy billet. In addition, when the pre-heating temperature exceeds 450 ° C, there is a problem that the strength of the magnesium alloy extruded material produced by the coarse growth of crystals in the magnet alloy decreases, and in some alloys due to the high extrusion temperature depending on the alloy composition There is a problem in that local melting occurs and surface defects occur.
<70>  <70>
<71> 이때, 상기 압출은 직접압출, 간접압출, 연속압출 등을 사용할 수 있으나, 이에 제한되는 것은 아니고 용도 또는 당업자의 목적에 따라 적절히 선택할 수 있 다.  In this case, the extrusion may use direct extrusion, indirect extrusion, continuous extrusion, etc., but is not limited thereto, and may be appropriately selected according to the purpose or the purpose of those skilled in the art.
<72>  <72>
<73> 또한, 본 발명에 따른 마그네슴 합금 압출재의 제조방법은 상기 단계 4 전ᅳ 후에 압축변형 및 압출을 수행하기 적합한 형태로 마그네슴 합금 빌멧을 가공하는 단계를 더 포함할수 있다. In addition, the method for producing a magnesium alloy extruded material according to the present invention is carried out in step 4 above. The method may further include processing the magnet alloy billet in a form suitable for performing compression deformation and extrusion.
<74>  <74>
<75> 나아가, 본 발명에 따른 마그네슘 합금 압출재의 제조방법은 상기 단계 5 이 후에 시효처리하는 단계를 더 수행할 수 있다 . 단, 본 발명에서 상기 시효처리는 단지 선택사항이며, 상기 시효처리를 수행하지 않는다 하더라도 강도 및 연성이 향 상된 마그네슘 합금 압출재를 제조할수 있다.  Furthermore, the method for producing a magnesium alloy extruded material according to the present invention may further perform the step of aging after step 5. However, in the present invention, the aging treatment is only optional. Even if the aging treatment is not performed, the magnesium alloy extruded material having improved strength and ductility can be manufactured.
<76>  <76>
<77> 상기 시효처리를 통해 마그네슘 원자 내에 포함되어 있는 마그네슘 이외의 합금 원소들이 결정립계 또는 결정립계 내에 석출되면서 이로 인한 석출 강화 효과 로 마그네슘 합금 압출재의 강도를 더욱 향상시킬 수 있다.  Through the aging treatment, alloy elements other than magnesium contained in magnesium atoms are precipitated in grain boundaries or grain boundaries, thereby further enhancing the strength of the magnesium alloy extruded material due to the precipitation strengthening effect.
<78> 예를 들면, 상기 시효처리는 150 - 250 °C에서 1 - 360 시간 동안 수행할수 있다. 이때, 상기 시효처리가 150 미만에서 수행되는 경우에는 마그네슘 합금이 최대강도에 도달하기까지 걸리는 시간이 길어 경제적이지 않은 문제가 있다. 또한, 상기 시효처리가 250 °C를 초과하여 수행되는 경우에는 마그네슘 합금이 최대강도 에 도달하기까지 걸리는 시간을 단축시킬 수는 있으나, 고은으로 인해 석출상의 크 기가조대해지므로 마그네슘 합금의 강도가 낮아지는 문제가 있다. For example, the aging treatment can be performed at 150-250 ° C for 1-360 hours. In this case, when the aging treatment is performed at less than 150, there is a problem that the magnesium alloy takes a long time to reach the maximum strength, which is not economical. In addition, when the aging treatment is carried out in excess of 250 ° C it is possible to shorten the time it takes for the magnesium alloy to reach the maximum strength, but the strength of the magnesium alloy is low because the precipitated phase is coarse There is a problem.
<79>  <79>
<80> 또한, 본 발명은상기 제조방법으로 제조되는 마그네슴 합금 압출재를 제공 한다.  In addition, the present invention provides a magnet alloy extruded material produced by the manufacturing method.
<81> 일반적으로, 마그네슘 합금의 물성은 인장강도와 총 연신율의 곱 (TSXEL)으 로 판단한다. 일반적으로 금속재료는 인장강도가 커지면 연신율이 작아지고, 연신 율이 커지면 인장강도가 작아지는 경향을 나타낸다. 따라서, 마그네슴 합금의 TSX EL 값을 이용함으로써 마그네슘 합금을 강도 및 연성의 두 가지 관점에서 판단할 수 있다. 이때, 상기 TSXEL 값이 큰 마그네슘 합금은 우수한 인장특성을 갖는 것 으로 판단할 수 있으몌 상기 값은 금속재료가 파단 동안에 흡수할 수 있는 에너지 의 양과 비례하므로 인성 역시 우수한 것으로 판단할 수 있다.  In general, the properties of magnesium alloys are determined by the product of tensile strength and total elongation (TSXEL). In general, as the tensile strength of the metal material increases, the elongation decreases, and when the elongation increases, the tensile strength tends to decrease. Therefore, by using the TSX EL value of the magnet alloy, the magnesium alloy can be judged from two aspects of strength and ductility. In this case, the magnesium alloy having a large TSXEL value may be determined to have excellent tensile properties. The value may be determined to be excellent in toughness because it is proportional to the amount of energy absorbed by the metal material during fracture.
<82>  <82>
<83> 또한, 본 발명은 상기의 마그네슘 합금 압출재를 이용하여 제조된 수송기기 용 부품을 제공한다.  In addition, the present invention provides a component for transportation equipment manufactured using the magnesium alloy extruded material.
<84> 본 발명에 따른 균질화 처리된 마그네슘 합금 빌렛을 특정 범위로 압축변형 처리를 수행한 후, 압출하여 제조된 마그네슘 합금 압출재는 TSXEL 값이 약 3 - 32 % 증가함을 나타내어, 단순히 강도만이 향상된 것이 아닌 전반적인 인장특성이 향성된 것으로, 항공기 등의 수송기기 산업 및 전자부품 산업을 비롯한 다양한 산 업분야에 보다폭넓게 사용될 수 있을 것으로 기대된다. The magnesium alloy extruded material manufactured by extruding the homogenized magnesium alloy billet according to the present invention after compressive deformation treatment to a specific range has a TSXEL value of about 3-. Increasing the strength by 32%, the overall tensile properties are not just improved, but it is expected to be widely used in various industrial fields including the transportation equipment industry such as aircraft and the electronic parts industry.
<85>  <85>
<86> 특히, 마그네슘 압출재는 높은 비강도와 더불어 기계가공성, 전자파 차폐성, 진동흡수능과 같은 우수한 특성을 나타낼 수 있어 비강도 및 정교한 가공이 요구되 는 항공용 부품으로 제조될 수 있다.  In particular, magnesium extruded materials can exhibit excellent properties such as machinability, electromagnetic shielding, and vibration absorbing ability as well as high specific strength, and thus can be manufactured as aviation components requiring specific strength and sophisticated processing.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
<87> 이하, 본 발명을 실시예를 통하여 더욱 구체적으로 설명한다. 단 하기 실시 예들은 본 발명의 설명을 위한 것일 뿐 본 발명의 범위가 하기 실시예에 의하여 한 정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for the description of the present invention and the scope of the present invention is not limited by the following examples.
<88>  <88>
<89> <실시예 1 - 6>마그네슴 합금 압출재의 제조  Example 1-6 Preparation of Magnet Alloy Extruded Material
<90> 단계 1. 마그네습 합금의 원료를 용융시키는 단계  Step 1. Melting the raw material of the magnesium alloy
<91> 순 Mg(99.9 중량 «, 순 Sn(99.9 증량 %) . 순 AK99.9 중량 %), 순 Zn(99.995 중량 ¾), 순 Z 99.99 중량 %), 순 Cu(99.997 중량 %)를 사용하여, 하기 표 1의 조성 으로 마그네슘 합금을 고주파 유도 용해로를 이용하여 혹연 도가니 내에서 용해하 였다. 상기 용융시킨 마그네슘 합금 (마그네슘 합금 용탕) 상부에 SF6 와 C02의 흔합 가스를 도포하여 대기와의 접촉을 차단하여 산화를 방지하였다. Pure Mg (99.9 weight «, Pure Sn (99.9 weight%). Pure AK99.9 weight%), pure Zn (99.995 weight ¾), pure Z 99.99 weight%), pure Cu (99.997 weight%). The magnesium alloy was dissolved in a crucible by using a high frequency induction melting furnace. A mixed gas of SF 6 and CO 2 was applied to the molten magnesium alloy (magnesium alloy molten metal) to block contact with the atmosphere to prevent oxidation.
<92>  <92>
<93> 【표 1]  <93> [Table 1]
Figure imgf000011_0001
Figure imgf000011_0001
<94>  <94>
<95> 단계 2. 마그네습 합금 빔랫을 제조하는 단계  Step 2. Manufacturing the Magnesium Alloy Beam Rat
<96> 상기 단계 1의 마그네슴 합금 용탕을 700 °C에서 10분 간 유지하고 200 °C로 예열된 스틸 몰드를 이용해 직경 80 匪, 길이 200 腿의 마그네슘 합금 빌렛을 제조 하였다. <97> The magnesium alloy molten metal of step 1 was maintained at 700 ° C. for 10 minutes and a magnesium alloy billet having a diameter of 80 mm and a length of 200 mm was prepared using a steel mold preheated to 200 ° C. <97>
<98> 단계 3.마그네습 합금 빌렛을 균질화 처리하는 단계  Step 3. Homogenizing the Magnesium Alloy Billet
<99> 상기 단계 2에서 제조된 마그네슴 합금 빌렛을 불활성 분위기에서 1 °C/min 의 속도로 승온시켜 400 - 490 °C에서 12 - 15 시간 동안 열처리하여 균질화 처리 하였다. 또한, 상기 빌렛의 넁각과정에서 발생할 수 있는 조대한 석출상의 생성을 억제하기 위하여 상온의 물로 수넁처리하였다. 각 실시예에 따른 균질화 처리 조건 을 하기 표 2에 나타내었다. Magnesium alloy billet prepared in step 2 was heated to a rate of 1 ° C / min in an inert atmosphere and heat treated at 400-490 ° C for 12-15 hours to homogenize. In addition, in order to suppress the formation of coarse precipitated phase that may occur during the billet process of the billet was treated with water at room temperature. The homogenization treatment conditions according to each example are shown in Table 2 below.
<100>  <100>
<ιοι> 【표 2】  <ιοι> 【Table 2】
Figure imgf000012_0001
Figure imgf000012_0001
<102>  <102>
<103> 단계 4. 압축변형을 수행하는 단계  Step 4. Performing compression deformation
<104> 상기 단계 3에서 균질화 처리된 마그네슘 합금 빌렛을 150톤 유압프레스를 사용하여 약 0.1 /s의 변형률 속도로 상은에서 길이방향으로 10 % 압축하였다. In step 3, the homogenized magnesium alloy billet was compressed by 10% in the longitudinal direction from silver to a strain rate of about 0.1 / s using a 150 ton hydraulic press.
<105> <105>
<106> 단계 5. 압출하는 단계  Step 5. Extruding
<107> 상기 단계 4에서 압축변형된 마그네슘 합금 빌렛올 51 隱인 봉상으로 가공 후 간접압출기 (최대압출력 : 500 tonf)를 이용하여 16 mm인 봉상으로 압출하여 마 그네슘 합금 압출재를 제조하였다 (압출온도: 200 °C, 압출비: 2으'1, 램속도: 0.1 mm/s) . The magnesium alloy extruded material was manufactured by extruding the rod into a rod of 16 mm using an indirect extruder (maximum pressure output: 500 tonf) after processing into a rod of 51 隱 of compression-modified magnesium alloy billetol in step 4. Extrusion temperature: 200 ° C, extrusion ratio: 2 ' 1, ram speed: 0.1 mm / s).
<108>  <108>
<109> <실시예 7>마그네슘 합금 압출재의 제조  Example 7 Preparation of Magnesium Alloy Extruded Material
<πο> 실시예 4의 상기 단계 4에서 압축변형을 5 %로 수행한 것을 제외하고는 상기 실시예 4와동일한 방법으로 마그네슘 합금 압출재를 제조하였다.  Magnesium alloy extruded material was prepared in the same manner as in Example 4, except that compression deformation was performed at 5% in Step 4 of Example 4.
<111>  <111>
<112> <실시예 8>마그네슘 합금 압출재의 제조  Example 8 Fabrication of Magnesium Alloy Extruded Material
<Π3> 실시예 4의 상기 단계 4에서 압축변형을 15 %로 수행한 것을 제외하고는 상 기 실시예 4와동일한 방법으로 마그네슴 합금 압출재를 제조하였다. Phase 3 of Example 4 was repeated except that compression strain was performed at 15%. A magnet alloy extruded material was prepared in the same manner as in Example 4.
<114>  <114>
<ιΐ5> <비교예 1 - 6>마그네슘 합금 압출재의 제조  <ιΐ5> <Comparative Example 1-6> Preparation of magnesium alloy extrusion material
<Π6> 상기 실시예 1 - 6 에서 상기 단계 4의 압축변형을 수행하지 않은 것을 제외 하고는 상기 실시예 1 - 6과 동일한 방법으로 마그네슴 합금 압출재를 제조하였다 <8> A magnet alloy extruded material was manufactured in the same manner as in Examples 1 to 6 except that the compression deformation of Step 4 was not performed in Examples 1 to 6.
<117> <117>
<118> <비교예 7>  <118> <Comparative Example 7>
<Π9> 실시예 4의 상기 단계 4에서 압축변형을 2 %로 수행한 것을 제외하고는 상기 실시예 4와동일한 방법으로 마그네슘 합금 압출재를 제조하였다.  Mg alloy extruded material was manufactured in the same manner as in Example 4, except that compression deformation was performed at 2% in Example 4 of Example 4.
<120>  <120>
<121> 분석  <121> Analysis
<122> 1. 압축변형에 따른 마그네습 합금 빔렛의 미세조직 분석  1. Microstructure Analysis of Magnesium Alloy Beamlets with Compressive Strain
<123> 본 발명에서 압축변형에 따른 마그네슴 합금 빌렛의 미세조직을 분석하기 위 하여 압축변형 전과 후를 광학현미경을 이용하여 분석하였고, 그 결과를 도 2 및 도 3에 나타내었다.  In order to analyze the microstructure of the magnet alloy billet according to the compression deformation in the present invention, before and after compression deformation was analyzed using an optical microscope, and the results are shown in FIGS. 2 and 3.
<124> 도 2 및 도 3은 균질화 처리된 마그네슘 합금 빌렛의 압축변형 전과후를 광 학현미경을 이용하여 분석한 결과로서, 이로부터 압축변형에 의해 마그네슘 합금 재료 내에 쌍정이 형성되었음을 알수 있다.  FIG. 2 and FIG. 3 show the results of analyzing before and after compression deformation of the homogenized magnesium alloy billet using an optical microscope. From this, it can be seen that twins are formed in the magnesium alloy material by compression deformation.
<125> 도 4는 균질화 열처리된 A231 마그네슘 합금 빌렛의 압축변형 후를 전자후방 산란회절올 이용하여 분석한 결과로서, 많은 쌍정들이 형성되어 있으며 이러한 쌍 정들은 대부분 {10-12} 인장쌍정임을 알수 있다.  FIG. 4 shows the results of analysis of the compressive deformation of the homogenized heat-treated A231 magnesium alloy billet using the electron back-scattering diffraction diffraction column, where many twins are formed, and these twins are mostly {10-12} tensile twins. have.
<126> 도 2, 도 3 및 도 4를 참조하면, 균질화 처리된 마그네슘 합금 빌렛에 압축 변형을 수행함으로써 마그네슘 합금 재료 내에 쌍정을 형성시킬 수 있음을 알 수 있다. 2, 3 and 4, it can be seen that twins can be formed in the magnesium alloy material by compressive deformation of the homogenized magnesium alloy billet.
<127>  <127>
<128> <실험예 1>마그네슘 합금 압출재의 미세조직 분석  Experimental Example 1 Microstructure Analysis of Magnesium Alloy Extruded Materials
<129> 본 발명에 따른 마그네슘 합금 압출재의 압축변형에 따른 효과를 알아보기 위하여, 실시예 1 - 6 및 비교예 1- 6의 마그네슘 합금 압출재를 광학현미경 및 전 자후방산란회절을 이용하여 분석하였고, 그 결과를 도 5, 도 6 및 도 7에 나타내었 다 ·  In order to examine the effect of the compression deformation of the magnesium alloy extruded material according to the present invention, the magnesium alloy extruded material of Examples 1-6 and Comparative Examples 1-6 were analyzed using an optical microscope and an electron scattering diffraction diffraction. The results are shown in FIGS. 5, 6 and 7.
<130> 도 5는 비교예 1 과 실시예 1의 마그네슘 합금 압출재를 전자후방산란회절를 이용하여 분석한 결과로서, 압축변형을 수행하지 않은 비교예 1의 압출재에서는 재 결정이 되지 않은 큰 결정립이 존재하는 반면, 압축변형을 수행한 실시예 1의 압출 재에서는 재료 전반에 걸쳐 재결정이 발생하여 균일하고 미세한 결정립을 가지고 있다. 이로 인해 압출재의 평균 결정립 크기가 압축변형에 의해 10.3 urn에서 3.1 urn로 감소하였다. FIG. 5 is a result of analyzing the magnesium alloy extruded materials of Comparative Example 1 and Example 1 using electron backscattering diffraction diffraction. On the other hand, in the extruded ash of Example 1, which was subjected to compression deformation, recrystallization occurred throughout the material to have uniform and fine grains. This reduced the average grain size of the extruded material from 10.3 urn to 3.1 urn due to compression deformation.
<131>  <131>
<132> 도 6 및 도 7을 참조하면, 압축변형을 수행한 실시예 1 - 6의 마그네슘 합금 압출재는 압축변형을 수행하지 않은 비교예 1 - 6의 마그네슴 합금 압출재에 비하 여 재결정된 영역이 많고 보다 균질한 조직을 나타내었다. 실시예 1 - 6의 마그네 슘 합금 압출재에 대한 이러한 결과는 압축변형에 의해 형성된 쌍정들이 압출 과정 에서 재결정사이트로 작용하여 재결정 분율을 향상시키는 것에 기인하는 것으로 판 단할수 있다.  6 and 7, the magnesium alloy extruded materials of Examples 1 to 6, which performed compression deformation, had a recrystallized area as compared with the magnet alloy extruded materials of Comparative Examples 1-6, which did not perform compression deformation. More and more homogeneous tissue was shown. This result for the magnesium alloy extrudates of Examples 1-6 can be determined to be due to the twins formed by compression deformation acting as recrystallization sites in the extrusion process to improve the recrystallization fraction.
<133>  <133>
<134> 이로부터, 본 발명에 따른 균질화 처리된 마그네슘 합금 압출재를 특정 범위 에서 압축변형 처리를 수행한 후, 압출하여 마그네슴 합금 압출재를 제조하는 방법 은 마그네슘 합금 재료 내에 쌍정을 형성시켜 마그네슘 합금 압출재의 강도 및 연 성을 동시에 향상시킬 수 있을 것으로 판단할 수 있다.  From this, after the compression deformation treatment of the homogenized magnesium alloy extruded material according to the present invention to perform a compression deformation treatment in a specific range, to produce a magnesium alloy extruded material by forming twins in the magnesium alloy material to form a magnesium alloy extruded material It can be judged that the strength and ductility of the membrane can be improved simultaneously.
<135>  <135>
<136> <실험예 2>마그네슘 합금 압출재의 기계적 물성 평가실험  Experimental Example 2 Evaluation of Mechanical Properties of Magnesium Alloy Extrusions
<137> 본 발명에 따른 마그네슴 합금의 기계적 물성을 평가하기 위하여, 실시예 1- In order to evaluate the mechanical properties of the magnet alloy according to the present invention, Example 1-
6의 마그네슘 합금 압출재를 이용하여 게이지 길이 25 mm, 게이지 직경 6 誦인 봉 상 시편을 제조하였고, 상기 봉상 시편을 상온인장시험기 (INSTRON 4206)을 이용하 여 1X10— 3S_1의 변형율 속도로 인장특성을 실험하고, 그 결과를 하기 표 3에 나타 내었다. 하기 표 3에서 동일한 합금 TAZ811으로 제조된 실시예 4, 실시예 7, 실시 예 8, 비교예 4 및 비교예 7의 결과를 발췌하여 하기 표 4에 나타내었다. A rod-shaped specimen having a gauge length of 25 mm and a gauge diameter of 6 mm was prepared using a magnesium alloy extruded material of 6, and the rod-shaped specimen was tensile at a strain rate of 1 × 10 − 3 S _1 using a room temperature tensile tester (INSTRON 4206). Was tested and the results are shown in Table 3 below. In Table 3, the results of Example 4, Example 7, Example 8, Comparative Example 4 and Comparative Example 7 made of the same alloy TAZ811 are shown in Table 4 below.
<138>  <138>
<139> 【표 3】
Figure imgf000015_0001
<139> [Table 3]
Figure imgf000015_0001
<140> 【표 4]  <140> [Table 4]
Figure imgf000015_0002
Figure imgf000015_0002
<141>  <141>
<142> 상기 표 3을 참조하면, 본 발명에 따른 실시예 1 - 8의 마그네슘 합금 압출 재는 균질화처리 후 압축변형을 수행하지 않은 비교예 1 - 6의 마그네슘 합금 압출 재와 비교하여 항복강도는 최대 39 MPa, 인장강도는 최대 32 MPa, 연신율은 22 % 향상되었음을 알 수 있다. 또한, 마그네슴 합금 압출재의 물성을 평가하는 인자인 TSXEL 값은 최대 약 32 %향상되었음을 알수 있다.  Referring to Table 3, the magnesium alloy extruded material of Examples 1 to 8 according to the present invention has a maximum yield strength as compared with the magnesium alloy extruded material of Comparative Examples 1 to 6, which do not perform compression deformation after homogenizing. 39 MPa, tensile strength is up to 32 MPa, elongation is 22%. In addition, it can be seen that the TSXEL value, which is a factor for evaluating the physical properties of the magnet alloy extruded material, was improved by up to about 32%.
<143>  <143>
<144> 상기 표 4를 참조하면, 압축변형량이 증가할수록 항복강도, 인장강도 및 연 Referring to Table 4 above, the yield strength, tensile strength, and age increase as the compressive strain increases.
'신율이 향상되는 것을 확인할 수 있고, 압축변형량이 5 내지 15 %인 실시예 4, 실 시예 7 ¾ 실시예 8의 경우 압축변형이 수행되지 않은 비교예 4에 비하여 항복강 도, 인장강도 및 연신율이 현저히 향상되는 것을 확인할 수 있다. 특히, 실시예 8 의 경우 15 %로 압축변형되어 항복강도가 46 MPa 향상되고, 인장강도는 45 MPa가 향상되며, 연신율은 2.2 %향상되는 것을 확인할 수 있다. 이로부터, 본 발명에 따른 마그네슘 합금 압출재의 제조방법은 균질화 처리 된 마그네슘 합금 빌렛을 특정 범위로 압축변형처 리 한 후, 압출함으로써 마그네슴 합금 압출재의 강도 및 연성을 향상시킬 수 있음올 알 수 있고, 압축변형량을 증가 시킴에 따라 우수한 물성을 갖는 압출재를 제조할 수 있음을 알 수 있다 . 'It can be seen that the elongation is improved, and the compressive strain of Example 4, Example 7 ¾ Example 8, yield strength, tensile strength and elongation compared to Comparative Example 4 in which the compression strain was not performed It can be seen that this is remarkably improved. In particular, in the case of Example 8 it can be seen that the compressive strain to 15% to improve the yield strength 46 MPa, the tensile strength is 45 MPa, the elongation is improved by 2.2%. From this, it can be seen that the manufacturing method of the magnesium alloy extruded material according to the present invention can improve the strength and ductility of the magnesium alloy extruded material by compressing the homogenized magnesium alloy billet to a specific range and then extruding it. It can be seen that an extrusion material having excellent physical properties can be produced by increasing the amount of compression deformation.

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
마그네슘 합금의 원료를 용융시키는 단계 (단계 1) ;  Melting the raw material of the magnesium alloy (step 1);
상기 단계 1에서 용융시킨 마그네슴 합금의 원료를 주조하여 마그네슘 합금 빌렛을 제조하는 단계 (단계 2) ;  Casting a raw material of the molten magnesium alloy melted in step 1 to produce a magnesium alloy billet (step 2);
상기 단계 2에서 제조된 마그네슘 합금 빌렛을 균질화 처리하는 단계 (단계 Homogenizing the magnesium alloy billet prepared in step 2 (step
3); 3);
상기 단계 3의 균질화 처 리된 마그네슴 합금 빌렛을 3 - 20 ¾ 범위로 압축변 형시키는 단계 (단계 4) ; 및  Compressing and straining the homogenized magnesium alloy billet of step 3 in the range of 3-20 3/4 (step 4); And
상기 단계 4의 압축변형된 마그네슘 합금 빌렛을 압출하는 단계 (단계 5)를 포함하는 마그네슘 합금 압출재의 제조방법 .  Method for producing a magnesium alloy extruded material comprising the step (step 5) of extruding the compression-modified magnesium alloy billet of step 4.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 단계 2의 주조는 650 - 750 °C에서 수행되는 것을 특징으로 하는 마그 네슴 합금 압출재의 제조방법 . The casting of the step 2 is a method of manufacturing a magnet alloy extruded material, characterized in that carried out at 650-750 ° C.
【청구항 3】 [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 단계 3의 균질화는 400 - 550 °C에서 0.5 - 96 시간 동안 열처 리 공정 을 수행한 후 , 냉각시키는 공정올 포함하는 것을 특징으로 하는 마그네슘 합금 압 출재의 제조방법 . The homogenization of step 3 is a method of manufacturing a magnesium alloy extruder, characterized in that it comprises a step of cooling after performing a heat treatment process at 400-550 ° C for 0.5-96 hours.
【청구항 4】 [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 단계 3의 균질화는 250 - 350 °C에서 선예열 후 수행되는 것을 특징으 로 하는 마그네슘 합금 압출재의 제조방법 . The homogenization of the step 3 is a method of producing a magnesium alloy extruded material, characterized in that carried out after preheating at 250-350 ° C.
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 단계 4의 압축변형은 마그네슘 합금 빌렛에 대하여 길이방향으로 수행 되는 것을 특징으로 하는 마그네슴 합금 압출재의 제조방법 . Compression deformation of the step 4 is a method of manufacturing a magnesium alloy extruded material, characterized in that carried out in the longitudinal direction with respect to the magnesium alloy billet.
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 단계 4의 압축변형은 상온 내지 250 °C 의 온도범위 에서 수행되는 것을 특징으로 하는 마그네슘 합금 압출재의 제조방법 . Compression deformation of the step 4 is a method of producing a magnesium alloy extruded material, characterized in that carried out at a temperature range of room temperature to 250 ° C.
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 단계 5의 압출은 200 - 450 °C에서 선예열 후 수행되는 것을 특징으로 하는 마그네슘 합금 압출재의 제조방법 . Extrusion of step 5 is a method for producing a magnesium alloy extruded material, characterized in that carried out after pre-heating at 200-450 ° C.
[청구항 8】 [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 마그네슘 합금 압출재의 제조방법은 상기 단계 5 이후에 시효처리하는 단계를 더 포함하는 것을 특징으로 하는 마그네슴 합금 압출재의 제조방법 .  The manufacturing method of the magnesium alloy extruded material is a method of manufacturing a magnesium alloy extruded material, further comprising the step of aging after step 5.
【청구항 9] [Claim 9]
제 8항에 있어서 ,  The method of claim 8,
상기 시 효처 리는 150 - 250 °C에서 1 - 360 시간 동안 수행되는 것을 특징으 로 하는 마그네슘 합금 압출재의 제조방법 . The aging treatment is a method for producing a magnesium alloy extruded material, characterized in that carried out for 1-360 hours at 150-250 ° C.
【청구항 10】 [Claim 10]
제 1항의 방법으로 제조되는 마그네슴 합금 압출재 . 【청구항 111  Magnesium alloy extrusion material produced by the method of claim 1. [Claim 111]
제 10 항의 마그네슘 합금 압출재를 이용하여 제조된 수송기기용 부품 .  Parts for transportation equipment manufactured using the magnesium alloy extrusion material of claim 10.
PCT/KR2013/009795 2013-01-04 2013-10-31 Method for manufacturing extruded magnesium alloy and extruded magnesium alloy manufactured thereby WO2014106989A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/712,609 US20150315690A1 (en) 2013-01-04 2015-05-14 Method for manufacturing extruded magnesium alloy and extruded magnesium alloy manufactured thereby

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0001125 2013-01-04
KR1020130001125 2013-01-04
KR1020130083597A KR101400140B1 (en) 2013-07-16 2013-07-16 Preparing method for magnesium alloy extrudate and the magnesium alloy extrudate thereby
KR10-2013-0083597 2013-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/712,609 Continuation US20150315690A1 (en) 2013-01-04 2015-05-14 Method for manufacturing extruded magnesium alloy and extruded magnesium alloy manufactured thereby

Publications (1)

Publication Number Publication Date
WO2014106989A1 true WO2014106989A1 (en) 2014-07-10

Family

ID=51062293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009795 WO2014106989A1 (en) 2013-01-04 2013-10-31 Method for manufacturing extruded magnesium alloy and extruded magnesium alloy manufactured thereby

Country Status (2)

Country Link
US (1) US20150315690A1 (en)
WO (1) WO2014106989A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642417A (en) * 2018-05-25 2018-10-12 湖南工学院 A kind of Ultra-fine Grained Mg-3Al-1Zn alloy short flow processes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065775A (en) * 2002-01-31 2003-08-09 쇼와 덴코 가부시키가이샤 Method for casting metallic ingot for plastic working, apparatus for producing the same, members for plastic working, mehtod for producing the same
JP2006144059A (en) * 2004-11-18 2006-06-08 Mitsubishi Alum Co Ltd Magnesium alloy sheet superior in press formability, and manufacturing method therefor
KR100723630B1 (en) * 2006-03-02 2007-06-04 지성알미늄주식회사 A motor vehicle air conditioner al-alloy material, manufacture method, and the air-conditioner sub-cool materials
KR20090121792A (en) * 2008-05-23 2009-11-26 주식회사 지알로이테크놀로지 Method of manufacturing fine-grained mg alloy sheets by static recrystallization
KR20120095184A (en) * 2011-02-18 2012-08-28 한국기계연구원 High-strength high-ductility magnesium alloy extrusions with low anisotropy and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101139879B1 (en) * 2009-07-17 2012-05-02 포항공과대학교 산학협력단 Method for manufacturing wrought magnesium alloy having improved low-cycle fatigue life using pre-straining

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030065775A (en) * 2002-01-31 2003-08-09 쇼와 덴코 가부시키가이샤 Method for casting metallic ingot for plastic working, apparatus for producing the same, members for plastic working, mehtod for producing the same
JP2006144059A (en) * 2004-11-18 2006-06-08 Mitsubishi Alum Co Ltd Magnesium alloy sheet superior in press formability, and manufacturing method therefor
KR100723630B1 (en) * 2006-03-02 2007-06-04 지성알미늄주식회사 A motor vehicle air conditioner al-alloy material, manufacture method, and the air-conditioner sub-cool materials
KR20090121792A (en) * 2008-05-23 2009-11-26 주식회사 지알로이테크놀로지 Method of manufacturing fine-grained mg alloy sheets by static recrystallization
KR20120095184A (en) * 2011-02-18 2012-08-28 한국기계연구원 High-strength high-ductility magnesium alloy extrusions with low anisotropy and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108642417A (en) * 2018-05-25 2018-10-12 湖南工学院 A kind of Ultra-fine Grained Mg-3Al-1Zn alloy short flow processes

Also Published As

Publication number Publication date
US20150315690A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
Park et al. High-speed indirect extrusion of Mg–Sn–Al–Zn alloy and its influence on microstructure and mechanical properties
JP6368087B2 (en) Aluminum alloy wire, method for producing aluminum alloy wire, and aluminum alloy member
KR100994812B1 (en) High-strength high-ductility magnesium alloy extrudate and manufacturing method thereof
Mendis et al. Microstructures and tensile properties of a twin roll cast and heat-treated Mg–2.4 Zn–0.1 Ag–0.1 Ca–0.1 Zr alloy
JP6420553B2 (en) Aluminum alloy, aluminum alloy wire, aluminum alloy wire manufacturing method, aluminum alloy member manufacturing method, and aluminum alloy member
KR101159790B1 (en) Magnesium alloy having high ductility and high toughness and process for preparing the same
EP2274454B1 (en) Alloy composition and preparation thereof
CN108472699B (en) Magnesium alloy sheet material and method for producing same
KR101931672B1 (en) High speed extrudable non-flammability magnesium alloys and method for manufacturing magnesium alloy extrusion using the same
Heard et al. Metallurgical assessment of a hypereutectic aluminum–silicon P/M alloy
KR101277297B1 (en) High-strength high-ductility magnesium alloy extrusions with low anisotropy and manufacturing method thereof
Binesh et al. RUE-based semi-solid processing: Microstructure evolution and effective parameters
Elsayed et al. Microstructure and mechanical properties of hot extruded Mg–Al–Mn–Ca alloy produced by rapid solidification powder metallurgy
WO2016161565A1 (en) Formable magnesium based wrought alloys
EP2929061B1 (en) Heat resistant aluminium base alloy and fabrication method
KR101400140B1 (en) Preparing method for magnesium alloy extrudate and the magnesium alloy extrudate thereby
KR102589799B1 (en) High-strength aluminum-based alloys and methods for producing articles therefrom
WO2018088351A1 (en) Aluminum alloy extruded material
KR101680046B1 (en) Method for manufacturing high-strength wrought magnesium alloy by conducting aging treatment prior to plastic working and high-strength wrought magnesium alloy manufactured thereby
KR101007856B1 (en) High strength and high ductility magnesium alloy
KR101700419B1 (en) Method for preparing high-strength magnesium alloy extruded material using low temperature and slow speed extrusion process and magnesium alloy extruded material manufactured thereby
KR20170077886A (en) High-strength and low-density aluminum-lithium alloy and Preparation method of alloy wrought products using the same
WO2014106989A1 (en) Method for manufacturing extruded magnesium alloy and extruded magnesium alloy manufactured thereby
KR101252784B1 (en) Magnesium alloy sheet having high strength and high formability and method for manufacturing the same
EA034631B1 (en) Heat resistant ultrafine-grain aluminium conductor alloy and method of production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870323

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870323

Country of ref document: EP

Kind code of ref document: A1