WO2014106799A2 - Bis-glycidyl methacrylate monomers for composite resin formulations for dental use, methods for preparing said monomers, resin formulations for direct dental restoration comprising the same and uses thereof - Google Patents

Bis-glycidyl methacrylate monomers for composite resin formulations for dental use, methods for preparing said monomers, resin formulations for direct dental restoration comprising the same and uses thereof Download PDF

Info

Publication number
WO2014106799A2
WO2014106799A2 PCT/IB2013/061347 IB2013061347W WO2014106799A2 WO 2014106799 A2 WO2014106799 A2 WO 2014106799A2 IB 2013061347 W IB2013061347 W IB 2013061347W WO 2014106799 A2 WO2014106799 A2 WO 2014106799A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
bis
monomer
formula
solvent
Prior art date
Application number
PCT/IB2013/061347
Other languages
Spanish (es)
French (fr)
Other versions
WO2014106799A3 (en
WO2014106799A9 (en
Inventor
Norma Beatriz D'ACCORSO
Eliezer ZAMARRIPA CALDERON
Carlos Enrique CUEVAS SUAREZ
Mirta Liliana FASCIO
Ana María HERRERA GONZALEZ
Miriam Amelia MARTINS ALHO
Jesús GARCIA SERRANO
Melisa Elsa LAMANNA
Guillermo OLIVEIRA UDRY
Original Assignee
Consejo Nacional De Investigaciones Cientificas Y Tecnicas
Universidad Autonoma Del Estado De Hidalgo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Nacional De Investigaciones Cientificas Y Tecnicas, Universidad Autonoma Del Estado De Hidalgo filed Critical Consejo Nacional De Investigaciones Cientificas Y Tecnicas
Priority to MX2015007858A priority Critical patent/MX2015007858A/en
Publication of WO2014106799A2 publication Critical patent/WO2014106799A2/en
Publication of WO2014106799A3 publication Critical patent/WO2014106799A3/en
Publication of WO2014106799A9 publication Critical patent/WO2014106799A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/24Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
    • C07C67/26Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran with an oxirane ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters

Definitions

  • the present invention relates to new monomers with improved properties for obtaining composite resins of direct dental restoration, processes for their preparation and dental resin formulations containing said monomers.
  • Composite resins are materials that are used in a wide variety of dental applications and comprise a combination of several bimetacrylic monomers, fillers and a photoinitiator system. Thanks to the continuous development in Materials Science, composite materials have significantly improved their physical, mechanical and biocompatibility properties. Despite these advances, composite resins nowadays have limitations in their clinical application; Problems such as discoloration, abrasion and polymerization shrinkage still persist. The main advances made in its formulation, focus on the continuous development of new inorganic filler materials, leaving the organic matrix virtually unchanged. One of the alternatives available to be able to counteract the problems presented by composite resins, is to replace the monomers that form the organic matrix with others of different structures that, due to their characteristics, represent some advantage compared to the monomers currently used . Dental restoration materials currently used
  • Bis-GMA is a monomer of high molecular weight and therefore has a low post-polymerization contraction, however viscosity is a factor that prevents proper handling in the clinic, so it is diluted with other monomers of lower weight Molecular such as trielylene glycol dimethacrylate (TEGDMA) or urethane dimethacrylate (UDGMA) (known as diluents), however this causes the shrinkage of the material to polymerize greatly. Polymerization contraction is still an important cause of clinical failure of restorations. Due to the decrease in volume, an interstitium is formed between the wall of the cavity and the filling material. This gap is easily accessible to bacteria, which can initiate biodegradation processes, and consequently, the worsening of the marginal adaptation of a compound.
  • TEGDMA trielylene glycol dimethacrylate
  • UDMMA urethane dimethacrylate
  • Bis-GMA finds wide use in today's commercial dental resin compounds although this monomer is too viscous for use without dilution, and cannot be purified by distillation or crystallization.
  • TEGDMA and UDMA are used commercially, mainly.
  • various aromatic diesters have been used experimentally, among which we can mention bis (2- methacryloxyethyl) ester of phthalic acid (MEP), and isophthalic acid (MEI) and terephthalic acid (MET), which have the ability to form ternary eutectic, which is a liquid at room temperature, and whose viscosity is suitable for use in resins of dental use.
  • Dupont developed a urethane dimethacrylic resin, DX-510, whose molecular weight (PM 895) doubles that of Bis-GMA or UDMA, and whose structure has a rigid and flexible part where the polymerizable groups are located.
  • This monomer shows a reduction in polymerization shrinkage because it has a lower number of carbon-carbon double bonds per unit mass.
  • CD-di-HEMA CD-di-HEMA
  • TCD-di-HEA TCD-di-HEA
  • a rigid part containing the tricycle [5.2.10] 2.10 dean
  • side chains of Optimized size, to improve elasticity, reduce shrinkage tension and decrease marginal filtration.
  • JP5320020 entitled "Denture-base resin composition and artificial tooth” which discloses a resin composition comprising a monofunctional (A) monomer (where Rl is acryloyl, methacryloyl, maleoyl, fumaroyl, itaconoyl, vinyl , vinylbenzyl or allyl; R2 is H, C1-C8 is alkyl, C3-C8 is cycloalkyl or phenyl; R3 is H or methyl; n is 1 to 50) according to formula I, and a bifunctional (B) monomer of formula II ( R4 and R5 are Rl; R6 is R3), for example ethyloxy dimethacrylate among other components.
  • A monofunctional monomer
  • R4 and R5 are Rl
  • R6 is R3
  • US4001483 (A) discloses a composition for use as a dental sealant comprising an a. alkylene glycol dimethacrylate of formula:
  • compositions of flexible dental composites comprising (a) between 2 and 15 per weight percent of a portion of flexible monomer comprising one or more flexible co-monomers of general formula
  • R 1 -0 - [(CH-R 2 ) n -0-] z -R 3 where R 1 and R 3 are acrylate or methacrylate functional groups, R 2 is selected from the group consisting of hydrogen, methyl, and ethyl, n is 3 or 5 and z is 3 to 20 and the monomer has an average molecular weight of at least 300, (b) between 30 and 80 percent by weight of a filler portion, c) from 18 to 60 percent by weight of a co-monomer comprising one or more co-monomers capable of polymerizing with the flexible monomer portion and (d) a polymerization catalyst system.
  • the composition is useful for dental restorations of class V and other classes.
  • JP59070645 (A) discloses a monomer having the following structure 4,4-'bis- (2-hydroxy-3-methacryloxyxypropyloxy) biphenyl ether.
  • This monomer is used as a reinforcing adhesive agent to improve the adhesiveness of adhesives especially used for dental therapy.
  • a process comprising the preparation of an alpha, beta-unsaturated monocarboxylic acid ester by reaction of glycidyl methacrylate with 4,4'-dihydroxyphenyl ether in the presence of a catalyst (for example a quaternary ammonium salt) or by reacting 4,4'-dihydroxybiphenyl ether with epichlorohydrin in the presence of a base, and reacting the resulting 4,4'-diglycidyloxybiphenyl ether with methacrylic acid in the presence of a catalyst (for example a quaternary ammonium salt). Therefore, there is a need in the prior art to provide new monomers that exhibit a suitable combination of physical, mechanical and biocompatibility properties for the preparation of composites useful in dental applications.
  • the present invention aims to provide new monomers that allow to obtain resins that exhibit improved material handling properties and the mechanical, optical and biocompatibility properties of dental resins.
  • the present invention aims to provide new monomers, which make it possible to obtain resins that exhibit an increase in mechanical properties without adversely altering the optical, handling and biocompatibility characteristics of dental resins.
  • the present invention aims at the preparation of dental resins based on a new organic matrix from new bis-glycidyl methacrylate monomers that can be used as solvents and as additives that improve the properties of the resin, and which by their characteristics bifunctional, could also be used in other polymerization reactions as bifunctional crosslinking agents, giving rise to various applications.
  • the properties of a composite material are given based on the properties of the phases that constitute it, the relative amount of each of them, as well as the geometry of the dispersed phase, such as its shape and size, as well as its distribution and orientation (9, 15-17, 19).
  • the matrix in a composite material comprises between 30 and 40% of its structure, and has numerous functions (17):
  • the matrix of a composite material can be composed of ceramic materials, metals or polymers, in this way we have composite materials of ceramic matrix, metal matrix or polymer matrix (15).
  • the dispersed phase of the composite materials is constituted by a reinforcement material, which can be discontinuous (particles, scales, short fibers) or continuous (fibers or long sheets) (17, 19).
  • a reinforcement material which can be discontinuous (particles, scales, short fibers) or continuous (fibers or long sheets) (17, 19).
  • fiber-like reinforcement materials are stronger and harder than any other type of filler, and this is the main reason why most composite materials contain fillers with this geometry (15, 16).
  • the reinforcement material is also stronger, harder and more rigid than the matrix and its size, shape, concentration and distribution within the composite material, represents one of the greatest parameters to determine its effectiveness (18, 20).
  • the size of the filler particles can vary in the order of the microns to the nanometers, their shape can vary and present in the form of fibers or cubic or spherical particles, in the same way, the arrangement can range from being completely random, to having a certain orientation, and the mechanical properties of the composite material will vary according to these characteristics (15, 17, 19).
  • composite materials are classified according to the type of material that is conforming to the matrix (15, 17).
  • MCM metal matrix composite materials
  • the use of metals to form the matrix is mainly due to the following reasons: they have applications in a wide range of temperatures, in general they have higher hardness values, the effect of moisture and the danger of flammability is absent, they have high thermal and electrical conductivity and also, compared to pure metals or alloys, they have greater resistance to fatigue and abrasion, as well as lower coefficient of thermal expansion (9, 16, 17).
  • Composite materials with ceramic matrix (MCC) can be composed of metallic or non-metallic elements.
  • MMC ceramic matrix
  • characteristics that ceramic materials possess and that make them useful for the production of composite materials are: they have a very large application range, have very low densities and also have a very high elastic modulus (15, 17 , 19).
  • Polymeric matrix (MCP) materials can be considered as the most developed composite materials, in addition to finding a wide variety of applications (19). In addition, the CCMs can be manufactured very easily (17).
  • CCMs result from a synergistic combination between a high performance filler and a polymeric organic matrix.
  • the reinforcement provides better mechanical properties to the material, while the organic matrix distributes the loads and increases resistance to wear and corrosion.
  • the mechanical properties are directly proportional to the properties of the reinforcement material (9, 15, 16, 19).
  • a composite resin for dental use is a crosslinked polymeric material reinforced with dispersed filler particles bonded to the polymer matrix by means of silane type coupling agents (7).
  • materials of this type correspond to a polymer matrix composite material with a particulate reinforcement.
  • composite resin refers to a reinforced polymeric system used for the restoration of hard dental tissues, such as enamel and dentin (6).
  • Composite resins are used to replace lost dental structures, and one of the advantages of this material is the versatility for its application, whether in areas where aesthetics has been compromised, such as in areas subject to many forces, such materials they can be used with good results (21).
  • composite resins are used in a variety of other applications, such as pit and fissure senators, cemented ceramic restorations and other types of fixed restorations (7).
  • Composite resins for dental use were developed in the early sixties (21-24). The first restorative materials of this type were self-healing; for the next generation, they were photoactivated materials with ultraviolet light. These were then replaced by materials activated by visible light. The following improvements made, have contributed to achieve a composite resin with excellent durability, abrasion resistance and aesthetics that allows to perfectly mimic natural teeth (7, 11, 12).
  • a composite resin consists of four main components: polymeric matrix or organic matrix, inorganic filler particles, coupling agent and an initiator-accelerator system (6, 7, 22). All properties and performance of these types of materials depend on the nature of these components; some are broadly related to the filler and the binding agent, while others depend solely on the organic matrix (25).
  • One of the main benefits of using the polymer matrix is the ability that the material can be molded at room temperature, together with the possibility of doing so in a considerably short time.
  • the benefits provided by the inorganic filler are increased stiffness, hardness and strength, as well as a low thermal expansion coefficient (11).
  • PEGMA Filtek Supreme XT 3M resin contains bis-GMA, UDMA, TEGDMA, BISEN! A, PEGDMA bis-EMA2,2-bis (4- (2-methacryloxyethoxy) phenylpropane
  • Two of the most commonly used monomers for this purpose are glycidyl bisphenol A-methacrylate (Bis-GMA) and urethane dimethacrylate (UDMA). Both monomers have carbon-carbon double bonds at each end of the molecule and can easily polymerize by free radicals (6, 7). In said molecules, each of the double bonds forms part of the polymerization by addition, which gives it the possibility of forming crosslinked networks (11).
  • bimetacrylic monomers has the advantage of producing polymer chains with a high degree of crosslinking.
  • the result is a rigid matrix highly resistant to softening and / or degradation by heat or solvents such as water or alcohol (7).
  • composite materials include inorganic fillers in order to improve their physicochemical and mechanical properties.
  • the inorganic filler forms most of the volume or weight of a composite material, depending on the type of resin, the total amount of inorganic filler material incorporated into commercial composite resins ranges between 42 and 85%.
  • the incorporation of the filler particles into an organic matrix significantly improves the mechanical properties of the material (5, 11).
  • properties of a composite resin, which the inorganic filler can improve are (7):
  • the filler particles most frequently used in the manufacture of these composite materials are produced by grinding, crushing or pulverizing minerals such as quartz, barium glass, barium glass / silica, barium glass, quartz / barium glass, silica, zirconia / silica, mixture of silica, lithium aluminosilicate, sodium silicate and / or zinc alumino and barium aluminosilicate or sol-gel derivatives of ceramic materials, which produces particles with a size in the range of 0.1 to 100 ⁇ (7, 11). Recently, particles of nanometric size of silica have been incorporated into materials of this type (11, 22).
  • glasses used as inorganic fillers have heavy metal oxides such as barium or zinc, which provides radiopacity to be visualized when exposed to X-rays (6).
  • the surface of these fillers is usually treated with a coupling agent that can be used in amounts ranging from 40 to 95% by weight based on the total weight of the composition.
  • Coupling agents The union of the inorganic phase with the organic phase is achieved by coating the filler particles with a coupling agent having both filler and matrix characteristics.
  • the agent responsible for this binding is a bifunctional molecule called silane (22).
  • Silanes are a group of organic compounds that have the particularity of reacting with organic and inorganic substrates, as well as with themselves and with other silanes, this is achieved through complex hydrolysis and condensation reactions to form a wide variety of hybrid structures organic and inorganic (27).
  • the binding agent between the organic matrix and the filler particles is 3-methacryloxypropyl trimethoxy silane (MPTMS), which is a bifunctional molecule capable of reacting with itself, with the agent filling and methacrylate groups. The amount of reactions that occur between these groups will determine the effectiveness of the coupling agent (6).
  • MPTMS 3-methacryloxypropyl trimethoxy silane
  • silanization of a filler material can be seen in the figure below.
  • the methoxy groups (-0-CH 3 ) are hydrolyzed and converted to silanol (Si-OH) groups, which can bind to other silanol groups located on the surface of the filler particles and form covalent bonds called siloxanes (-Si-O-Si-) (7).
  • the silane improves the physical and mechanical properties of the composite resin, as it establishes a stress transfer of the easily deformed phase (resinous matrix), for the more rigid phase (filler particles).
  • these coupling agents prevent the penetration of water into the BisGMA / filler particles interface, promoting hydrolytic stability inside the resin.
  • Representative examples are 3- methacryloxypropyl trimethoxy silane (MPTMS), vinyl triethoxysilane, dimethyl dichlorosilane, hexamethylene disilazane, dimethyl polysiloxane among others.
  • Photoinitiator system Hardening of materials of this type is carried out by addition polymerization initiated by free radicals. These free radicals can be generated through a chemical reaction or through external energy in the form of light (6, 7, 11).
  • the activation by light is carried out by exposing the material to blue light with a wavelength of 465 nm, said light is absorbed by a photosensitive molecule, such as canforquinone, which generates the free radicals that initiate the process of polymerization
  • the reaction is accelerated by the presence of an organic amine, such as ethyl 2-N, N'-dimethylaminomethacrylate, N, N ' -dimethyl-para-toluidine and ethyl ⁇ - ⁇ , ⁇ ' - dimethylaminobenzoate.
  • the total amount of activator and accelerator that is added to a commercial formulation of a composite resin varies between 0.1 and 1% by weight of each of them, based on the total weight of the composite resin composition. (7).
  • additives that can be added to the resin may be polymerization inhibitors, photostabilizing agents, antioxidant agents, and pigments to form the color of the composite resin.
  • a polymerization inhibitor such as hydroquinone (HQ), hydroquinone monomethyl ether or hydroquinone monoethyl ether can be added in an amount of 0.1 to 10% by weight based on the total weight of the composition.
  • a photostabilizer such as Tinubin can be added in an amount of 0.01 to 5% by weight based on the total weight of the composition.
  • An antioxidant such as Irganox (Tetrakis Propionate (3- (3,5-di-tert-butyl-4-hydroxyphenyl) pentaerythritol) and 2,6-di-tert-butyl-4-methyl phenol, butylhydroxytoluene (BHT) can be added in an amount of 0.01 to 5% by weight based on the total weight of the composition: Inorganic pigments yellow, navy blue, or red-iron oxides and iron dioxide Titanium can be added in an amount of% by weight of from 0.005 to 0.5 based on the total weight of the composition.
  • Irganox Tetrakis Propionate (3- (3,5-di-tert-butyl-4-hydroxyphenyl) pentaerythritol) and 2,6-di-tert-butyl-4-methyl phenol, butylhydroxytoluene (BHT)
  • Irganox Tetrakis Propionate (3- (3,5-d
  • Some recently introduced composite resins are dual curing, that is, they polymerize by chemical reaction as well as by exposure to visible light.
  • the formulation in this type of products contains initiators and accelerators that allow the generation of free radicals by the two routes described above (6).
  • Composite resins for dental use are classified using as a main criterion the average size of particles that are forming in the inorganic matrix thereof (28-30). According to Table 1, several groups of dental composite resins can be distinguished, each with different clinical applications (6, 7).
  • Hybrids (1) 1-10 ⁇ High stress areas a
  • Nanohybrid (1) 0.4 ⁇ High stress areas a
  • Hybrid and microhybrid composite resins This classification includes materials in whose composition there are two different sizes of inorganic filler particles. The combination of sizes confers unique properties to the materials, since it improves the transfer of tensions between the particles in the composite, thereby increasing the resistance of the resin
  • Nanofill Resins These contain filler particles between 1 and 100 nm in size along the organic matrix (29, 30).
  • One of the main reasons why particles of such a small scale are incorporated is because their size is below the scale of visible light (400-800 nm), which makes it possible to create materials with high translucency (6 ).
  • nanoparticles There are two different types of nanoparticles that are added to dental composite resins. The first one is based on monodispersed non-aggregated particles of silica or zirconia, while a second type consists of a controlled size aggregate of these nanoparticles known as nanocluster (24).
  • the particles maintain their original shape and size, and these agglomerate in such a way that they allow to make particles larger than 0.6 microns in size (24).
  • Nanofill materials can be considered unique, since they have quite acceptable mechanical properties, while presenting excellent optical properties and that over time they are preserved (6).
  • nanofills used in commercial formulations are:
  • nanometric particles offer this type of materials the possibility of showing translucency; This feature allows resins to be created with a wide variety of colors and opacities that allow restorations that match the appearance of dental tissues (11).
  • polymerization begins immediately after mixing of the two components of the material.
  • the degree of polymerization is uniform throughout the entire material, causing a gradual increase in its viscosity (5, 11).
  • the Working time for this group of materials is limited, from 3 to 5 minutes (6).
  • the time and depth of polymerization of the materials activated by light depend to a greater extent on the intensity of the lamp as well as the amount of penetration of the beam into the material (5). It is also important to consider that exposure to ambient light for between 60 and 90 seconds, makes the surface of the composite material lose its ability to flow and therefore, its handling becomes difficult (6).
  • the polymerization shrinkage values of some current restorative systems may present a final reduction in volume from 0.5% to 3% according to recent publications (21, 24, 32, 35-38).
  • the matrix molecules of a composite resin are separated by an average distance of 0.340 nm, this distance is given by the forces of Van der Waals exerted by the elements that make up each monomer; by polymerizing and establishing covalent bonds with each other, that distance is reduced to 0.154 nm.
  • the polymerized material is more compact and with a smaller volume compared to the same material when it has not polymerized (22, 39).
  • the polymerization contraction causes residual stress, that is, when the polymerization resins produce and accumulate stress that remains within the restoration without being able to dissipate completely (40, 41). To this we must add that if the adhesion of the resin to the cavity walls restricts the volumetric changes, the stress is then transferred directly to the tooth. In bismetacrylates, about 80% of polymerization contraction results in the formation of stress within the tooth structure (23).
  • the volumetric contraction produces a contraction stress of around 13 MPa, enough to severely deform the resin-tooth interface, causing gaps that can cause the appearance of marginal caries, likewise, stress can overcome the tensile strength of the enamel and cause fractures (37).
  • the coefficient of thermal expansion is the rate of dimensional change per unit of temperature change. The closer the coefficient of thermal expansion of the resin is close to the coefficient of thermal expansion of dental tissues, the less likely there will be marginal gaps between the tooth and the restoration, as the temperature changes (22).
  • the coefficient of linear thermal expansion for composite resins ranges from 25 to 68xlO "6 / ° C. This value is higher than the values established for enamel (Il, 4xl0 " 6 / ° C) and for dentin 8.3xlO "6 / ° C) (11).
  • the difference in the values for this property can lead to additional stress at the resin-tooth interface, which can lead to the appearance of gaps in the restoration and allow the percolation of oral fluids (6).
  • the polymer matrix of a composite resin for dental use is capable of absorbing water, a phenomenon related to the reduction of surface hardness and wear resistance of the material (11).
  • the incorporation of water in the resin can cause solubility of the matrix negatively affecting the properties of the resin, this phenomenon is known as hydrolytic degradation.
  • the quality and stability of the coupling agent is very important to minimize the deterioration of the joint between the filler and the organic matrix and, therefore, the amount of water it can absorb (27).
  • Aqueous sorption is a property attributed to the organic phase, so the higher the percentage of filler incorporated into the material, the lower it will be. In the case of hybrid composite resins, this value ranges between 5 and 17 ⁇ / mm 3 , and for micro-filling resins it rises to 30 m / mm 3 (6).
  • the mechanical properties of this type of materials reflect the amount of inorganic filler of which they are composed, the type of filler, the efficiency of the matrix-filler coupling process as well as the porosity of the polymerized material (5, 11).
  • Table 2 presents the main mechanical properties of various composite resins. Table 2 Main mechanical properties of composite resins
  • a material with a low elastic modulus deforms in the presence of a load. Compared to enamel, composite resins have only a very small fraction of this value. This represents a problem, since during the masticatory loads, the deformation of the restoration generates stress in the resin-tooth interface (7, 10).
  • Compressive strength is an important value in this group of materials since, as a result of chewing, it is the main type of force to which they are subjected (6).
  • Hardness is a property directly related to the amount of inorganic filler and the degree of polymerization (5).
  • the hardness value on the Vickers scale for a resin without inorganic filler is 18, while that for a microhybrid type resin, this value rises to almost 100 (11).
  • the new monomers that are designed for this purpose are designed so that they can have some of the following characteristics: reduction of polymerization shrinkage, release of fluoride or some other cariostatic substances, improve mechanical properties and improve biocompatibility by reducing the number of components that are released into the oral environment (14, 23).
  • Table 3 describes other monomers of these characteristics that have been synthesized and applied experimentally by various authors. Some of these monomers have a high molecular weight, and others within their structure, have cyclic compounds that open at the time of polymerization. The results of mechanical tests made with composite materials based on these new monomers, reveal that their contraction percentage is significantly lower than that of the BisGMA / TEGDMA pair, while the behavior in terms of its flexural modulus and flexural strength is not visible. significantly affected when compared to a control group. (50, 61-73).
  • Aqueous sorption is a phenomenon related to the reduction of surface hardness and wear resistance of the material (11), which is why one of the attempts made to reduce this characteristic in matrix composite materials
  • Polymeric is to achieve monomer systems that do not have the capacity to form secondary joints with water (39).
  • the mechanical properties of the polymers depend largely on their degree of polymerization and molecular weight, as well as the number of branches and the degree of crosslinking that it presents (2).
  • the degree of conversion for the BisGMA / TEGDMA system ranges from 42 to 85% depending on the type of study (33, 41, 79-81). It has been shown that the presence of residual monomer impairs the chemical, physical and mechanical properties of these materials, so new monomers with a better degree of conversion have been proposed (26).
  • composite resins are formed by the three-dimensional combination of chemically different materials from each other, it is possible to consider, within this group of components, the organic matrix and the backbone of this type of restorative system (22), and therefore, to attribute to it, the great majority of the inconveniences that these restorative materials present.
  • the organic matrix of current restorative systems is made up of the Bis-GMA / TEGDMA pair.
  • One of the great disadvantages of these monomers is their degree of incomplete conversion, which results in the formation of less resistant polymers;
  • its high viscosity prevents the addition of a higher percentage of inorganic filler, reducing its resistance (50).
  • Polymerization shrinkage is another problem derived from the organic matrix; Factors such as the molecular weight and the degree of crosslinking of the monomers, as well as the amount of inorganic filler contained in the composite material, determine the percentage of contraction of the material (23, 24, 32).
  • the present invention aims to provide new monomers that allow to obtain an advantageous mechanical performance of materials based on them overcoming the problems of the prior art.
  • the improvements introduced in the properties of resin-based composite materials will allow a step forward in the search for new and better materials that can be used in a greater number of clinical applications with good long-term results.
  • a biphenyl group unsubstituted or substituted by OH, oxygen, ermine, or C1-C4 alkyl, carbonyl or carboxyl; a phenyl group unsubstituted or substituted by OH, oxygen, amino, Cl-4 alkyl, carbonyl or carboxyl;
  • Preferred monomers are those where R has the following meanings:
  • Another object of the invention relates to methods for the preparation of said bis-glycidyl methacrylate monomers.
  • 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl is obtained according to a general procedure comprising the steps of: a) reacting a compound of 4.4 bisphenol with epichlorohydrin in the presence of a solvent to obtain the intermediate compound of formula BE-4,4-0H
  • a 4.4 bisphenol compound is reacted with epichlorohydrin in the presence of dimethylformamide as solvent and potassium carbonate to obtain the intermediate compound BE-4 , 4-0H and in step b) said intermediate compound BE-4.4-0H is reacted with stoichiometric methacrylic acid in the presence of dimethylformamide as solvent and triethanol amine to give compound 4,4'-bis [ 2-hydroxy-3-methacryloxypropoxy] biphenyl (MB-4,4-0H) according to the following reaction scheme:
  • the 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl monomer of formula MB-4,4-0H is obtained by a method comprising the step of reacting the compound of 4,4- biphenol with glycidylmethacrylate in the presence of a solvent to obtain the compound 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl of formula MB-4,4-OH:
  • the 4,4-biphenol compound with the glycidyl methacrylate is reacted in a stoichiometric ratio of 1: 2.5, using triethylamine and hydroquinone as an inhibitor and dimethylformamide as a solvent according to the following reaction scheme:
  • the 1,4-bis [(2- hydroxy-3-methacryloxy propoxy) methyl] phenyl monomer of formula MB-Fen-OH is obtained by means of a process comprising the steps of a) Reacting 1,4-benzenedimethanol and epichlorohydrin in the presence of a solvent to give the intermediate compound BE-Fen-OH of the formula:
  • BE-Fen-OH b) reacting said BE-Fen-OH intermediate compound with methacrylic acid in the presence of a solvent to obtain the 1,4-bis [(2-hydroxy-3-methacryloxyl propoxy) methyl compound ] phenyl of formula MB-Fen-OH:
  • step a) of the process for obtaining the monomer 1 4-bis [(2-hydroxy-3-methacryloxypropoxy) methyl] phenyl of formula MB-Fen-OH
  • compound 1 is reacted, 4-benzenedimethanol and epichlorohydrin, in the presence of sodium hydride as catalyst and DMF as solvent to obtain the intermediate compound BE-Fen-OH and in step b) said intermediate of formula BE-Fen-OH is reacted with methacrylic acid in presence of dimethylformamide and triethanol amine according to the following reaction scheme:
  • the 1,4-bis [2-hydroxy-3-methacryloxypropoxy] butane monomer of formula MB-1,4-0H is obtained by a method comprising a) reacting 1.4 -butanediol and epichlorohydrin in the presence of a solvent to obtain the intermediate compound of formula BE-1,4-OH:
  • step a) 1,4-butanediol and epichlorohydrin are reacted in the presence of sodium hydride as catalyst and dimethylformamide as solvent to obtain the intermediate compound of formula BE-1,4-0H, and in step b) Said intermediate compound BE-1,4-0H is reacted with acrylic acid in a stoichiometric ratio of 1 to 2.5 in the presence of triethanolamine and dimethylformamide as solvent to obtain said compound of formula MB-1,4-0H according to The following reaction scheme:
  • the monomer (Z) -l, 4-bis [2- hydroxy-3-methacryloxy propoxy] -2-butene of the formula MB-Cis-OH is obtained by a process comprising the steps of : a) reacting the cis-2-buten-l, 4-diol and epichlorohydrin compound in the presence of a solvent to obtain the intermediate compound of formula BE-cis-OH Y b) reacting said BE-Cis-OH intermediate compound with acrylic acid in the presence of a solvent to obtain the compound of formula MB-Cis-OH
  • step a) the cis-2- buten-1,4-diol compound and the epichlorohydrin are reacted in the presence of sodium hydride as catalyst and dimethylformamide as a solvent to obtain the intermediate compound of formula BE-cis- OH
  • a further embodiment of the invention the monomer l, 7-bis [2-hydroxy-3-methacryloxy propoxy] heptane of formula MB-l, 7-OH, is obtained by means of a process comprising the steps of: a) react 1,7-heptanediol and epichlorohydrin in the presence of a solvent to obtain the intermediate compound of formula BE-1,7-OH
  • step a) 1,7-heptanediol and epichlorohydrin are reacted in the presence of a dimethylformamide as solvent and sodium hydride as catalyst to obtain the intermediate compound of formula BE-1, 7-OH and in step b ) the intermediate compound BE-l, 7-OH is reacted in the presence of dimethylformamide as solvent and triethanolamine to obtain the compound of formula MB-l, 7-OH according to the following reaction scheme:
  • a further object of the invention relates to dental restoration resin formulations comprising said monomers.
  • NMR Nuclear Magnetic Resonance
  • IR spectra were obtained on a Perkin Elmer FT-IR System 2000 infrared spectrophotometer with Fourier transform (IR-FT). Preparing KBr tablets.
  • the images of the nanoparticles of the inorganic filler silanized and without silanizing were obtained from a Transmission Electron Microscope (TEM) brand JEOL model JEM 21-00.
  • the samples were prepared by placing a drop of colloidal solution on a copper grid covered with a layer of amorphous carbon and drying under vacuum.
  • the polymerizations were made with a Bluephase® light curing unit (Ivoclar-Vivadent) equipped with a visible LED light, which has the possibility of varying the intensity of the light emitted in a range of 1200 mW / cm 2 to 460 mW / cm 2
  • the dimensions of the specimens were measured using a Mitutoyo digital caliper (Mod. CD-6 "C Mitutoyo corp. Japan).
  • the 3-point bending test was performed on an Instron universal testing machine (Instron model 1100 Mas USA). Reagents and solvents.
  • Boiling Point 235 ° C
  • Boiling Point 235 ° C
  • Boiling Point 90 ° C
  • Boiling Point 117, 9 ° C
  • the synthesis of the MB-4,4-0H monomer was carried out in two different synthetic routes.
  • the first route of synthesis is illustrated below and consists of a two-stage reaction.
  • the first reaction stage consists in the synthesis of intermediate BE-4,4-0H by means of an etherification reaction between 4,4'-biphenol and epichlorohydrin.
  • reaction medium was filtered under vacuum using a buchner funnel and a Whatman® filter paper of number 5.
  • the filtered acetone was evaporated to obtain a white solid.
  • the final compound was purified by the technique of recrystallization with ethanol, presenting itself as a white solid.
  • a second step the formation of an ester group attached to the vinyl group was carried out by reacting the intermediate compound BE-4,4-0H with methacrylic acid in a stoichiometric ratio of 1: 2.5, using triethylamine, in a concentration of 2% and DMF as solvent.
  • a two-mouth ball protected from light with aluminum foil, and equipped with magnetic stirrer and thermometer 0.5 g (16 mmol) of intermediate compound BE-4.4-0H, 0.3 g (41 mmol) were added ) of methacrylic acid, 0.16 g (16 mmol) of triethylamine and 2.5 ml of DMF as solvent.
  • the temperature of the reaction medium was raised to 60 ° C under an atmosphere of argon and constant stirring for 12 hours. After this period of time, it was left under constant stirring at room temperature for an additional 48 hours.
  • 20 ml_ of distilled water were added, forming a white precipitate.
  • Said solid was filtered with a funnel coors and Whatman filter paper of number 5. After having been filtered and dried, the bifunctional monomer was obtained as a white solid.
  • a second route to obtain the MB-4,4-0H monomer consists of a one-step reaction in which the 4,4-biphenol was reacted with the glycidyl methacrylate, in a stoichiometric ratio of 1: 2.5, using 2% triethylamine by weight as catalyst and 2% hydroquinone by weight as inhibitor.
  • the synthesis route used to obtain the MB-Fen-OH monomer is described.
  • the synthetic route consisted of a two stage reaction.
  • the first step is to synthesize the intermediate compound BE-Fen-OH from the etherification reaction between 1,4-benzenedimethanol and epichlorohydrin, using sodium hydride as the base and DMF as solvent.
  • the column chromatography technique was used for purification of the compound, using alumina and a mixture of cyclohexane: acetone (9: 1) as the mobile phase as the stationary phase.
  • the identification of the portions in which the pure compound is presented was made by making chromatoplates. Once the fractions containing the expected compound were collected, they were evaporated and BE-Fen-OH was obtained as a yellow viscous liquid.
  • the intermediate compound previously synthesized was reacted with methacrylic acid, in the presence of triethylamine, to form a bimetacrylic ester.
  • the synthesis route for obtaining the MB-1,4-0H monomer is described.
  • Said synthetic route consisted of a two stage reaction.
  • the intermediate compound BE-1,4-0H was synthesized from an etherification reaction between 1,4-butanediol and epichlorohydrin, in the presence of sodium hydride as a base and DMF as a solvent.
  • a dimethacrylic monomer was formed from the intermediate compound [BE-1,4-0H] and methacrylic acid, the reaction was performed in a stoichiometric ratio of 1 to 2.5. 2% by weight of triethylamine was used as base and DMF as solvent.
  • the synthesis method for this monomer consists of a two stage reaction. In the first stage, an ether was synthesized from the reaction between cis-2-buten-l, 4-diol and epichlorohydrin in a 2.5 to 1 molar ratio, using sodium hydride and DMF as solvent. . Step 1 Step 2
  • bismetacrylic monomer was formed from BE-Cis-OH and methacrylic acid in a stoichiometric ratio of 1 to 2.5, using 2% by weight triethylamine catalyst with respect to the above reagents and using DMF as a solvent.
  • the synthesis route for this monomer consists of a two stage reaction. During the first stage, synthesis of intermediate BE-1,7-OH takes place by means of an etherification reaction between 1,7-heptanediol and epichlorohydrin.
  • the purification was carried out by the column chromatography process, using silica as the stationary phase and a dichloromethane-ethyl acetate mixture (8: 2) as the mobile phase. Once the tubes containing 1,7-heptanediol diepoxide were identified, they were collected in a flask and when the solvent evaporated, the expected compound was obtained as a light brown liquid.
  • the formation of the vinyl monomer was achieved from the reaction between the compound BE-l, 7-OH and methacrylic acid in a stoichiometric ratio of 1: 2.5, using 2% triethylamine by weight and acetone as solvent.
  • silanized filler material 500 mg was added together with a solution of the organic matrix (monomers, CQ and E4DMA) dissolved in 90% ethanol followed by mechanical stirring for a period of two hours. After this time the ethanol was removed by evaporation under high vacuum and the system was then mixed manually until the composite material was obtained with adequate consistency. The composite materials obtained were placed in amber vials and kept refrigerated until use.
  • organic matrix monomers, CQ and E4DMA
  • the flexural strength of the prepared composite materials was evaluated based on the provisions of section 7.11 of the International Standard ISO-4049 Dentistry-Polymer-based filling, restoratve and luting materials (91), while the flexural modulus was evaluated according to the provisions of specification No. 27 ANSI / ADA (92).
  • Specimens of each 2 x 2 x 25 mm composite material were prepared in a stainless steel shaper or mold on a celluloid strip and a 1 mm thick slide. On the unpolymerized material, another celluloid strip was placed along with another slide exerting digital pressure for the removal of surpluses. Both the celluloid strip and the slide were maintained during the polymerization of the specimens.
  • the specimens were irradiated with an intensity of 460 mW / mm 2 three times per side to give a total time of 90 seconds for each.
  • the polymerization began in the center of the test tube and alternately on each side, overlapping already irradiated areas for a total of 3 on each side until the total length on both sides of the test piece was completed.
  • Surpluses were removed with 600 and 1200 grain abrasive paper and their dimensions measured with an accuracy of 0.01 mm using a digital caliper.
  • the specimens were kept in distilled water at 37 ° C until the time of the test.
  • the specimens were placed on two 2 mm diameter cylindrical supports, parallel to each other and at a distance between their centers of 20 mm for the three-point bending test in a universal testing machine, using a 1 kN load cell, with a spindle speed of 1 mm per minute, using the Series IX program for data capture.
  • the flexural module was calculated using the following formula:
  • the MB-4,4-OH monomer was obtained in a two-step reaction, where the compound BE-4,4-OH is used as a precursor.
  • the intermediate compound BE-4,4-0H is a white powder soluble in ethanol, methanol and partially soluble in acetone. Its melting point is of 160 ° C and its molecular weight of 298.33 g / mol. This compound was obtained with a yield of 37.23%.
  • composition and purity of compound BE-4,4-0H was obtained through the elemental analysis technique.
  • Table 6 shows the experimental values that were obtained, which coincide with those calculated for the expected compound. Also, according to this values, the purity with which this compound was obtained was 98.89%.
  • the IR-FT spectrum of compound BE-4,4-0H is presented in Figure 1.
  • the main bands that give evidence of the formation of this compound are: symmetric and asymmetric elongation bands at 1133, 1247 and 1037 cm “1 corresponding to the OC-OC group, as well as the 910 cm band " 1 corresponding to the vibration of the skeleton of the epoxy ring.
  • the absence of the band between 3200 and 3600 corresponding to stretch ⁇ - ⁇ bond present in the starting material, 4,4' -bifenol confirms the structure of the expected compound.
  • Figure 3 shows the 13 C NMR spectrum of biepóxido compound synthesized from 4,4' -bifenol.
  • seven signals are present in a range of 157.6 to 44.7 ppm.
  • the signal at 157.6 ppm corresponds to the quaternary carbon of the aromatic ring located on the side of the ether (aromatic) functional group.
  • the signal at 133.9 ppm comes from the signal emitted by the quaternary carbons of the aromatic rings in the center of the (aromatic) molecule.
  • the signals at 122.7 and 114.9 ppm come from the rest of the carbons that make up the aromatic ring.
  • the 68.8 ppm signal corresponds to the methylene carbon located next to the ether functional group.
  • the signal at 50.2 ppm corresponds to the carbon of the methine present in the skeleton of the epoxide (epoxide).
  • the signal presented at 44.7 ppm is from the carbon of the methylene corresponding to the epoxide.
  • the MB-4,4-0H monomer was obtained from two synthetic routes; The first one was a two-step reaction, where synthesis and purification of the intermediate compound described in the previous section was required. In a second synthetic route, the monomer was obtained from a single step reaction. In both synthetic routes the bifunctional monomer was obtained.
  • the compound MB-4,4-0H is a white powder with a melting point between 134 and 138 ° C, with a molecular weight of 470, 19 g / mol. It is soluble in THF, partially soluble in acetone and insoluble in hexane, cyclohexane, dichloromethane, ethanol and methanol. The yield for obtaining this monomer was 67% for the synthetic two-step route, while for the one-step route, the yield was 45%.
  • composition and purity of compound MB-4,4-0H was obtained by elemental analysis technique.
  • the values obtained by this technique are observed in Table 7. These values coincide with the values calculated for the expected compound.
  • the infrared spectrum for the compound MB-4,4-0H is shown in Figure 4.
  • the presence of the signal in 1697 cm “1 which corresponds to the stretching of the link from methacrylic acid, confirms the formation of the monomer.
  • further evidence is the absence of the signal at 910 cm "1 , which corresponds to the vibration of the skeleton of the epoxy ring present in the intermediate compound and which does not occur in the bifunctional monomer.
  • the multiple signals present at 4.41 and 4.37 ppm integrate for a total of four protons, and come from the protons of the methylene group attached to the oxygen from the alcohol (Ar-0-CH 2 -).
  • a multiple signal is distinguished that integrates for two protons, said signal corresponds to the proton of the methine group (-CH-) presented by the monomer).
  • -CH- methine group
  • a simple signal at 1.97 ppm is assigned to the protons of the methyl group that are at the ends of the molecule (-CH 3 ), which signal gives a total integration for six protons.
  • the corresponding spectrum is presented in Figure 5.
  • the 13 C NMR spectrum for this compound is presented in Figure 6.
  • a total of ten signals in a range of 167.2 to 18.3 ppm can be observed, which correspond to the expected signals for the synthesized compound.
  • the signal at a displacement of 157.5 ppm corresponds to the carbon of the aromatic ring that is attached to oxygen (Ar).
  • the signal that appears at 65.5 ppm corresponds to the carbons of the methylene groups that are bound to oxygen (0-CH 2 -CH-CH 2 -0). Finally, at a displacement of 18.3 ppm, there is a signal that represents the carbon of the terminal methyl group (-CH 3 ).
  • the precursor BE-Fen-OH was synthesized by reacting bis alcohol with epichlorohydrin in DMF, using HNa to generate the reactive species. A Once purified, this product was used for the synthesis of the MB-Fen-OH monomer.
  • the compound BE-Fen-OH is a yellow liquid that has a molecular weight of 250.29 g / mol. This is soluble in dichloromethane, acetone and DMF and insoluble in hexane and ethyl acetate. The yield for this reaction was 27%.
  • the composition and purity of the BE-Fen-OH compound was obtained by elemental analysis technique. The results of this can be seen in Table 8. The values obtained coincide with those calculated for this compound, demonstrating that it was obtained with a purity of 95.5%.
  • the BE-Fen-OH compound was characterized by the Fourier transform infrared spectroscopy technique.
  • the spectrum obtained by this technique is presented in Figure 7.
  • some important bands can be observed that allow demonstrating the formation of the expected compound, among them are: elongation of the link of the aromatic ring of the compound is represented by a very large signal located at a wave number of 1701 cm "1 , the symmetrical and asymmetric elongation bands at 914 and 1364 cm " 1 corresponding to a terminal epoxy ring.
  • Figure 8 shows the NMR spectrum corresponding to the compound BE-Fen-OH.
  • seven different signals can be observed that integrate for eighteen protons, which correspond to the expected compound.
  • the signals appear in a range of 7.34 to 2.62 ppm.
  • the simple signal that is presented at 7.34 ppm, and which is composed of four protons corresponds to the protons present within the aromatic ring (Ar).
  • the double signal that appears at 4.62 ppm is composed of four protons and corresponds to the protons of the methylene group located between the oxygen and the aromatic ring (Ar-CH 2 -0-).
  • the multiple signals at 3.77 and 3.43 ppm correspond to the protons of the methylene groups that are between the oxygen and the epoxy ring (-0-CH 2 -), both signals integrate for a total of four protons.
  • the multiple signal located at 3.19 ppm is found by integrating two protons, which correspond to the metino groups located in the skeleton of the epoxy ring (D).
  • the two multiple signals at 2.81 and 2.62 ppm are integrated by two protons each and correspond to the protons of the methylene group found in the ring of the epoxy skeleton (E).
  • the 13 C NMR spectrum for this same compound can be seen in Figure 9.
  • Six different signals appear in this spectrum that correspond to those expected for the synthesized compound.
  • the signals appear in a range from 137.6 ppm to 44.3 ppm.
  • the signal presented at 137.6 ppm corresponds to the carbon of the aromatic ring that is located next to the methylene group (B).
  • B methylene group
  • a signal from the central carbons of the aromatic ring (A) is presented.
  • the signal that It is presented at 73.7 ppm corresponds to the carbon of the methylene group that is between oxygen and the aromatic ring (Ar-CH 2 -0-).
  • a signal appears that comes from the carbon of the methylene group located between oxygen and the epoxy ring (-0-CH 2 -).
  • the signal presented at 50.9 ppm belongs to the carbon of the methine located inside the epoxide ring, while the signal at 44.3 ppm is originated by the carbon of the methylene group of the epoxy skeleton.
  • the MB-Fen-OH monomer is a light yellow viscous liquid that has a molecular weight of 422.47 g / mol. This compound has solubility in acetone, dichloromethane and chloroform. The yield for the second stage of synthesis is 75.9%. The final yield for the synthesis of this monomer is 51.45%.
  • the MB-Fen-OH compound was characterized by elemental analysis technique in order to know its composition and determine the purity with which it was obtained. Table 9 shows the results of this analysis; according to these, the purity of the synthesized monomer was 98.75%.
  • Figure 10 shows the IR-FT spectrum obtained from the compound MB-Fen-OH.
  • Figures 1 1, 12 and 13 show the NMR spectra of ⁇ and 13 C of the compound MB-Fen-OH.
  • eight signals can be distinguished that integrate for thirty protons, which were expected for the synthesized compound. The signals appear in a range of 7, 24 to 1.87 ppm. In low fields, the first signal that appears is at 7.24 ppm with an integration of four protons, these correspond to the protons of the aromatic ring (Ar).
  • the signals at 6.04 and 5.52 ppm come from the vinyl protons that are located at each end of the molecule, these signals have, in total, an integration for four protons.
  • a multiple signal appears that is integrating for four protons, this signal comes from the protons of the methylene group located between oxygen and the aromatic ring (Ar-CH 2 -0-).
  • Ar-CH 2 -0- the protons of the methylene group located between oxygen and the aromatic ring
  • a multiple signal is located that is integrated for four protons, the signal comes from the protons of the methylene group that is located next to the oxygen coming from methacrylic acid (CH-CH 2 -0).
  • the signal at 3.52 ppm represents the protons of the methylene group that are between oxygen and the methine group of the molecule (0-CH 2 -CH), said signal is composed of four protons. Finally, the signal observed in a chemical shift of 1.87 ppm is composed of six protons and represents the protons of the methyl group (-CH 3 ).
  • the signal presented at 73.2 ppm is assigned to the carbon of the methylene group located between the aromatic ring and oxygen (Ar-CH 2 -0).
  • the signal at 70.9 ppm is assigned to the carbon of the methylene group that is located between oxygen and the methine group of this molecule (0-CH 2 -CH-).
  • the signal from the methine group that possesses this monomer (-CH-) is located.
  • the signal that is located at 65.7 ppm is assigned to the carbon of the methylene group that is next to oxygen that comes from methacrylic acid (-CH 2 -0-). Finally, the signal that is in a chemical shift of 18.3 ppm, represents the carbon of the methyl group (-CH 3 ) that possesses this monomer.
  • the bifunctional monomer from 1,4-butanediol is obtained in a synthetic route consisting of 2 steps. The first of these consists in obtaining the intermediate compound 1,4-bis (oxyran-2-ylmethoxy) butane [BE-1,4-OH].
  • BE-1,4-0H is a light yellow liquid with a molecular weight of 202.25 g / mol, soluble in acetone, chloroform and dichloromethane. The yield obtained for this compound was 54%.
  • composition and purity of compound BE-1,4-0H was obtained by elemental analysis technique.
  • the values obtained through this technique are observed in Table 10.
  • the values coincide with the values calculated for the expected compound. From these results, it can be established that the purity of the compound is 97.3%.
  • the NMR spectrum of the intermediate compound BE-1,4-0H is presented in Figure 15. In it, a total of seven signals can be observed that integrate for eighteen protons, corresponding to the expected compound. The signals range between 3.7 and 1.6 ppm. The signals at 3.72 and 3.38 ppm that integrate for two protons each, are assigned to the methylene protons located between the oxygen and the epoxide ring (-0- CH 2 -). The multiple signal located at 3.52 ppm, which integrates for four protons, corresponds to the methylene protons located next to the oxygen in the center of the molecule (-0-CH 2 -CH 2 -).
  • the compound MB-1,4-0H is a light yellow liquid, with a molecular weight of 374.43 g / mol. It is soluble in acetone, chloroform and dichloromethane. The yield for the second stage of synthesis is 67%. The monomer, finally, was obtained with a total yield of 60.5%.
  • Figure 17 shows the IR-FT spectrum for compound MB-1,4-OH.
  • a signal appears at 1718 cm "1 , corresponds to link stretching 0.
  • the absence of the signal at 910 cm "1 which corresponds to the vibration of the skeleton of the epoxy ring present in the intermediate compound, confirms the formation of the expected compound.
  • Figure 18 shows the NMR spectrum of the MB-1,4-0H monomer.
  • the signals range in 6, 14 to 1.66 ppm.
  • the multiple signal observed at 4.04 ppm and which integrates for two protons, is assigned to the proton of the methine group that is present in this molecule (OH-CH-).
  • the multiple signal observed at 3.51 ppm integrates for eight protons, and is assigned to the protons of the methylene groups located on each side of the ether functional group (-CH 2 -0-CH 2 -).
  • the multiple signal at 2.84 ppm integrates for two protons and corresponds to the proton of the hydroxyl group (-OH).
  • the simple signal presented at 1.95 ppm that integrates for six protons corresponds to the protons of the methyl group (-CH 3 ).
  • the signal presented at 1.66 ppm is composed of four protons, which correspond to the protons of the methylene located in the center of the alkyl chain (-CH 2 -CH 2 -).
  • the 13 C NMR spectrum for compound MB-1,4-0H can be seen in Figure 19. It shows nine signals that correspond to the expected compound. The displacement of the signals is located in the range of 167.3 to 18.3 ppm.
  • the signals that can be observed at 71.5 and 71.2 ppm correspond to the two carbons attached to the ether functional group (-CH 2 -0-CH 2 -).
  • the signal at 68.7 ppm corresponds to the methyl carbon that is bound to the alcohol (-CH-OH).
  • the 65.6 ppm signal is assigned to the carbon of the methylene group attached to the oxygen from methacrylic acid (0-CH 2 -CH).
  • the signal that appears at 26.2 ppm is assigned to the carbons of the methylene groups that are in the center of the alkyl chain (-CH 2 -CH 2 ).
  • the signal observed at 18.3 ppm corresponds to the carbon of the methyl group at the ends of the chain (-CH 3 ). Characterization of the compound (Z) -l, 4-bis (oxiran-2-lmethox ⁇ ) -2-butene [BE-Cis-OH].
  • the compound BE-Cis-OH was a light yellow liquid with a molecular weight of 200.23 g / mol. It is soluble in acetone, chloroform, dichloromethane, ethanol, and methanol. The yield with which this compound was obtained was 47%.
  • the composition and purity of the BE-Cis-OH compound was obtained by elemental analysis technique. Table 12 shows the values obtained by this technique. From the results obtained, it can be established that the purity of the compound is 92%.
  • the Be-Cis-OH compound was characterized by the infrared spectroscopy technique with Fourier transform, the spectrum obtained by this characterization technique is shown in figure 20.
  • This spectrum allows us to confirm the formation of the compound due to the presence of the following bands: first, the absorption bands in 1254, 1095 and 1011 cm “1 correspond to the vibration modes of symmetrical elongation O sim and asymmetric O as im of the COC bond that forms in the epoxy compound when etherifying the alcohol present in the reagent. Similarly, the vibration of the skeleton of the epoxy ring represented by the band which appears in 761 cm "1 confirms the presence of this functional group in the molecule. On the other hand, it is necessary to note that the absence of the band corresponding to the stretching of the ⁇ - ⁇ bond present in the raw material, allows confirming the double replacement of the starting alcohol.
  • the multiple signals at 3.38 and 3.75 ppm, which integrate for two protons each, correspond to the saturated methylene located between the oxygen and the epoxy skeleton.
  • the signal at 3.16 ppm is being integrated for a total of two protons, and is assigned to the methodic protons located within the epoxy ring.
  • the multiple signals at 2.81 and 2.61 ppm, which integrate for 2 protons each, are assigned to the methylene protons within the epoxide ring.
  • the 13 C NMR spectrum corresponding to this compound is shown in Figure 22.
  • Five signals can be observed in it. they fall within the range of 129.4 to 44.3 ppm.
  • the signal located at 67.0 ppm belongs to the carbon of the methylene group located between oxygen and the epoxy ring.
  • the signal presented in 50.9 ppm belongs to the carbon of the methine group that is located within the epoxide skeleton, while the signal at 44.3 ppm corresponds to the methylene group of the same epoxide.
  • the MB-Cis-OH compound is presented as a light yellow liquid with a molecular weight of 372.41 g / mol soluble in ethanol, acetone, DMF, chloroform and dichloromethane.
  • the yield for the second stage of synthesis is 66%, which gives us a final yield of 56.5%.
  • the composition and purity of the MB-Cis-OH compound was determined through the Elemental Analysis characterization technique. According to the results obtained, which are shown in Table 13, the purity with which the compound was obtained was 97.8%.
  • Figure 23 shows the IR-FT spectrum for the compound MB-Cis-OH.
  • the signal that is presented at a wave number of 3441 cm “1 corresponds to the stretching of the ⁇ - ⁇ bond present in this molecule
  • absorption band that is located at 2928 cm “1 corresponds to the asymmetric stretching of the OC-H link, at a wave number of 1637 and 815 cm “ 1 , bands are located that correspond to the stretching and torsion of the link respectively.
  • a signal corresponding to the stretch of the link is located 0.
  • a band can be observed at a wavelength of 1455 cm "1 , which corresponds to symmetric torsion within the plane of the 5CH 2 link.
  • the absence of the signal at a wave number of 910 cm " 1 which corresponds to the vibration of the skeleton of the epoxy ring, it can also confirm the formation of the expected compound.
  • the NMR spectrum for this compound is presented in Figure 24.
  • seven signals are seen that integrate for a total of twenty-eight protons, which correspond to the expected compound.
  • the signals are in the range of 6, 14 to 1.92 ppm.
  • the signals at 6, 14 and 5.71 ppm integrate for a total of four protons, these correspond to the two vinyl protons of the terminal unsaturated methylene (CH 2 CH).
  • the multiple signal at 4.22 ppm that integrates for four protons corresponds to the protons of the methylene group located next to the oxygen that comes from methacrylic acid (-CH 2 -0-).
  • the multiple signal at 4.05 ppm that integrates for two protons corresponds to the saturated methine that is presented in this monomer.
  • the signal that appears at a displacement of 3.68 ppm is composed of two protons, which correspond to the proton of the hydroxyl group (-OH).
  • the multiple signals at 3.52 and 3.45 ppm that integrate for four protons are assigned to the protons of the methylene group located between the oxygen and the methine of this molecule (-0-CH 2 -CH).
  • the simple signal located at 1.92 ppm that integrates for six protons is assigned to the protons of the methyl group present in the chain (-CH 3 ).
  • the 13 C NMR spectrum for this compound can be seen in Figure 24.
  • nine signals in the range of 167.4 to 18.3 ppm can be observed that correspond to those expected for the synthesized compound.
  • the MB-1, 7-OH monomer was synthesized in a two stage reaction. In the first one, the intermediate compound BE-l, 7-OH was synthesized and purified. Physical Properties
  • the intermediate compound BE-l, 7-OH is a light yellow liquid with a molecular weight of 244.33 g / mol, soluble in DMF, ethyl acetate, dichloromethane, chloroform and ethanol. The yield with which this compound was obtained was 37.5%.
  • composition and purity of the compound BE-l, 7-OH was obtained through the elemental analysis technique.
  • the values obtained by this technique are shown in Table 14. From the results obtained, it can be established that the purity of the compound is 96.5%.
  • the IR-FT spectrum of the compound BE-l, 7-OH is presented in Figure 26.
  • the bands that give evidence of the formation of the compound are: the bands in 1261, 1096 and 1021 cm “1 that correspond to the mode of symmetric and asymmetric elongation of the OC-OC bond Likewise, the vibration of the skeleton of the epoxy ring is represented by the band that appears at 808 cm "1 . Also, we have one more evidence with the absence of the band that corresponds to the stretching of the ⁇ - ⁇ bond present in the raw material, and that normally appears between 3200 and 3600 cm "1 .
  • NMR Spectroscopy of ⁇ and 13 C Figure 27 represents the 1 H NMR spectrum of said compound, in which there are seven signals that integrate for twenty-four protons, corresponding to the expected molecule. The signals are observed in the range of 3.71 to 1.33 ppm. The multiple signals that occur at 3.71 and 3.37 ppm that integrate for a total of four protons, are assigned to the protons of the methylene group located between the epoxide and the oxygen. The multiple signal present at 3.49 ppm, which integrates for four protons, corresponds to the methylene protons in the center of the alkyl chain located next to the oxygen (-0-CH 2 -CH 2 -).
  • the signal located at 3, 14 ppm integrates for two protons, and is assigned to the proton of the methine in the epoxide.
  • the signals that appear at 2.79 and 2.61 ppm integrate for a total of four protons and are assigned to the methylene protons located in the epoxide.
  • the 13 C NMR spectrum of this intermediate compound is shown in Figure 28. It shows seven different signals in the range of 71.56 and 26.0 ppm, these signals correspond to the expected compound.
  • the two signals presented at 71.6 and 71.4 ppm are assigned to the two carbons attached to oxygen (-CH 2 -0-CH 2 ;).
  • the signal that is presented at 50.8 ppm is attributed to the methoxy carbon of the epoxide.
  • the signal that appears at 44.3 ppm corresponds to the epoxy methylene carbon.
  • the signals found at 29.6 and 29.9 ppm correspond to the 4 carbons of the methylenes located in the center of the chain (-CH 2 -CH 2 - CH 2 -CH 2 -CH 2 -CH 2 - CH 2 -).
  • the signal that we can observe at 26.0 ppm corresponds to the methylene carbon located exactly in the center of the molecule's hydrocarbon chain (-CH 2 -CH 2 -CH 2 -).
  • the bifunctional monomer MF-l, 7-OH is an amber liquid with a molecular weight of 416.51 g / mol.
  • the yield for this second stage was 87.08%, giving a final yield for this monomer of 62.25%.
  • the compound MB-l, 7-OH was characterized by the Elemental Analysis technique to obtain its composition and purity. The results of this test are shown in Table 15. According to these, the bifunctional monomer was synthesized with a purity of 96%.
  • the IR-FT spectrum for the MB-Cis-OH monomer is shown in Figure 29. This spectrum allows us to observe some bands that give evidence of the formation of the expected compound: the signal that is presented at a wavelength of 3458 cm “1 , is due to the stretching of the ⁇ - ⁇ link; a signal corresponding to the asymmetric stretching of the uC-H link is located at a wave number of 2858 cm “ 1 . The presence of the double terminal links is evidenced by the bands that are located at a wave number of 1634 and 814 cm "1 , which correspond to the stretching and torsion of the link respectively.
  • the multiple signal at 3.68 ppm that integrates for two protons and is assigned to the protons of the hydroxyl group (-OH).
  • the multiple signal that appears at 3.52 ppm is composed of a total of eight protons, which are assigned to the methylene protons that are on each side of the oxygen (-CH 2 -0-CH 2 -).
  • the simple signal that is located at 1.96 ppm integrates for six protons, and is assigned to the methyl protons from methacrylic acid (-CH 3 ).
  • the multiple signal at 1.56 ppm is being integrated for four protons, which correspond to the methylene protons in the center of the hydrocarbon chain (C).
  • the signal at 1.32 ppm is integrated for four protons, and these come from the methylene located on both sides of the methylene in the center of the chain (-CH 2 -CH 2 -CH 2 ). Finally, the signal at 1.25 ppm is composed of two protons, which correspond to the methylene group that is exactly at the center of the hydrocarbon chain of the molecule (A).
  • the signals located at 71.6 and 71.4 ppm belong to the methylenes attached to the ether functional group (-CH 2 -0-CH 2 -).
  • the signal that is located in a displacement of 68.5 ppm belongs to the carbon of the methine group present in the bifunctional monomer (-CH 2 -CH-CH 2 -).
  • a signal corresponding to the methylene group attached to the oxygen coming from methacrylic acid (-CH-CH 2 -0) is presented.
  • the signal at 29.2 ppm corresponds to the saturated methylene groups located in the center of the molecule (carbons B and C).
  • a signal is presented that comes from saturated methylene that is located exactly in the center of the bifunctional compound (carbon A).
  • the signal presented at 17.9 ppm corresponds to the carbon of the methyl group located at the terminal ends of this compound (CH 3 -).
  • photopolymerizable composite materials were prepared manually using different organic matrices based on Bis-GMA, using as diluents a mixture of TEGDMA with the monomers MB-Fen-OH, MB-Cis-OH and MB-l, 7-OH .
  • the photoinitiator system used was composed of the ethyl camphorquinone / 4-dimethylaminobenzoate pair; both in a percentage of 0.5% of weight.
  • silanized silicon oxide particles of nanometric size were used in a percentage of 40% by weight with with respect to the total composite material. Table 16 shows the composition of the organic matrix of the different composites produced.
  • the flexural strength of the prepared composite materials was evaluated based on the provisions of section 7.11 of the International Standard ISO-4049 Dentistry-Polymer-based filling, restorative and luting materials (105), while the flexural modulus was evaluated according to what is established in specification no. 27 ANSI / ADA (106).
  • the specimens were irradiated with an intensity of 460 mW / mm 2 .
  • the specimens were kept in distilled water at 37 ° C until the time of the test.
  • the organic matrix composition contains the MB-Fen-OH monomer in a percentage of 15% by weight with respect to the entire organic component of the composite.
  • the reason that can explain the significant increase in the values of the flexural properties is due to the presence of an aromatic ring in the monomer, which reinforces the polymer structure of the Bis-GMA / TEGDMA pair.
  • Flexural Strength the rest of the materials MI, M3 and M4 do not present significant differences between them.
  • composition of the materials MI and M4 has, in addition to the Bis-GMA / TEGDMA pair, the monomers MB-Cis-OH and MB-l, 7-OH respectively; both monomers, being linear, do not provide greater resistance to the polymeric structure when compared to the resin used as the M3 control group.
  • M4 the material that presented the lowest statistically speaking value was called M4.
  • This material contains the MB-1, 7-OH monomer within its composition. Analyzing the structure of the compound, the presence of a seven-carbon hydrocarbon chain in the center of the molecule can be observed, this characteristic, makes the resulting polymer have a lot of flexibility, and therefore contributes to obtain a lower flexural modulus when compared with the resin used as a control.
  • Table 21 shows the arithmetic averages and standard deviations for the degree of conversion values of each of the materials evaluated.
  • Table 21 Arithmetic Mean and Standard Deviation for the Conversion Degree values of composite materials
  • material M2 presents values of degree of conversion significantly higher than the rest of the materials evaluated. This characteristic can justify the fact that this material presented the best mechanical properties, since according to several authors, There is a clear linear relationship between the degree of conversion, and the flexural properties of the materials.
  • the composite materials made in the present invention using the experimental monomers MB-Cis-OH and MB-l, 7-OH have mechanical properties similar to those observed in composite resins that use only BisGMA / TEGDMA as components of the organic matrix. That is, the new composite resins can be used for direct restoration of teeth, since they have the same mechanical properties as a conventional composite resin. In addition, since the reported monomers have a higher molecular weight than TEGDMA, the contraction is expected to be less than that of commercial resins.
  • the material containing the experimental monomer MB-Fen-OH has significantly greater mechanical properties than those presented by composite resins that use only BisGMA / TEGDMA as the organic matrix. This characteristic makes it a commercially competitive resin with the resins that are currently marketed.
  • liquid monomers described in the present invention can be used for the formulation of composite resins for direct dental use, improving the mechanical properties of commercial resins and therefore, increasing their strength and durability.
  • Seymour RB Carraher CE. Introduction to polymer chemistry: I reversed; nineteen ninety five.
  • Vasudeva G Monomer systems for dental composites and their future: a review. J Calif Dent Assoc. 2009 Jun; 37 (6): 389-98.
  • Wilson NH Dunne SM, Gainsford ID. Current materials and techniques for direct restorations in posterior teeth. Part 2: Resin composite systems. Int Dent J. 1997 Aug; 47 (4): 185-93.
  • Karabela MM Sideridou ID. Effect of the structure of silane coupling agent on surprise characteristics of solvents by dental resin-nanocomposites. Dent Mater. 2008 Dec; 24 (12): 1631-9.

Abstract

A Bis-glycidyl methacrylate monomer of formula (I) wherein R can be a biphenyl group unsubstituted or substituted by OH, oxygen, amino, or Cl- C4 alkyl; a phenyl group unsubstituted or substituted by OH, oxygen, amino, Cl-3 alkyl; a C2-10 alkyl group unsubstituted or substituted by OH, oxygen, amino, Cl- C4 alkyl; a C2-C10 alkenyl group unsubstituted or substituted by hydroxyl, amino, oxygen, C1-C4 alkyl; Also provided are methods for preparation thereof and uses for the formulation of direct resins for dental restoration, as a solvent and as additives improving the properties of the resin.

Description

MONÓMEROS DE BIS-GLICIDILMETACRI LATOS PARA LA FORMULACIÓN DE RESINAS COMPUESTAS PARA USO DENTAL, MÉTODO PARA LA PREPARACIÓN DE DICHOS MONÓMEROS BIS- GLICIDILMETACRI LATOS, FORMULACIÓN DE RESINAS DE RESTAURACIÓN DENTAL DIRECTA QUE LOS COMPRENDEN Y USOS DE DICHOS MONÓMEROS  BIS-GLICIDILMETACRI MONOMERS FOR THE FORMULATION OF COMPOSITE RESINS FOR DENTAL USE, METHOD FOR THE PREPARATION OF SUCH BIS-GLICIDILMETACRI MONOMETERS FORMS, FORMULATION OF DIRECT DENTAL RESTORATION RESINES THAT I UNDERTAKE AND MON
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención se refiere a nuevos monómeros con propiedades mejoradas para la obtención de resinas compuestas de restauración dental directa, procesos para su preparación y a formulaciones de resinas dentales que contienen dichos monómeros. The present invention relates to new monomers with improved properties for obtaining composite resins of direct dental restoration, processes for their preparation and dental resin formulations containing said monomers.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Las resinas compuestas son materiales que se utilizan en una gran variedad de aplicaciones en odontología y comprenden una combinación de varios monómeros bimetacrílicos, materiales de relleno y un sistema fotoiniciador. Gracias al continuo desarrollo en la Ciencia de los Materiales, materiales compuestos han mejorado significativamente sus propiedades físicas, mecánicas y de biocompatibilidad. A pesar de éstos avances, hoy en día las resinas compuestas tienen limitaciones en su aplicación clínica ; problemas como la decoloración, la abrasión y la contracción por polimerización aún persisten. Los principales avances realizados en su formulación, se centran en el continuo desarrollo de nuevos materiales de relleno inorgánico, dejando a la matriz orgánica prácticamente sin cambios. Una de las alternativas con que se cuenta para poder contrarrestar los problemas que presentan las resinas compuestas, es la de sustituir los monómeros que forman la matriz orgánica por otros de diferente estructura que, por sus características, representen alguna ventaja comparándolos con los monómeros actualmente usados. Los materiales de restauración odontológica utilizados actualmente Composite resins are materials that are used in a wide variety of dental applications and comprise a combination of several bimetacrylic monomers, fillers and a photoinitiator system. Thanks to the continuous development in Materials Science, composite materials have significantly improved their physical, mechanical and biocompatibility properties. Despite these advances, composite resins nowadays have limitations in their clinical application; Problems such as discoloration, abrasion and polymerization shrinkage still persist. The main advances made in its formulation, focus on the continuous development of new inorganic filler materials, leaving the organic matrix virtually unchanged. One of the alternatives available to be able to counteract the problems presented by composite resins, is to replace the monomers that form the organic matrix with others of different structures that, due to their characteristics, represent some advantage compared to the monomers currently used . Dental restoration materials currently used
i poseen una matriz orgánica compuesta, en gran proporción, por metacrilato de bisfenolglicidilo (Bis-GMA) . i they have an organic matrix composed, in large proportion, of bisphenolglycidyl methacrylate (Bis-GMA).
El Bis-GMA es un monómero de alto peso molecular y por lo tanto posee una baja contracción post-polimerización, sin embargo la viscosidad es un factor que impide la correcta manipulación en la clínica, por lo que es diluido con otros monómeros de menor peso molecular como el dimetacrilato de trielilenglicol (TEGDMA) o el dimetacrilato de uretano (UDGMA) (conocidos como diluyentes), sin embargo esto produce que la contracción del material al polimerizar aumente considerablemente. La contracción de polimerización es todavía una causa importante de fracaso clínico de las restauraciones. Debido a la disminución de volumen, se forma un intersticio entre la pared de la cavidad y el material de relleno. Esta brecha es de fácil acceso para las bacterias, que pueden iniciar los procesos de biodegradación, y en consecuencia, el empeoramiento de la adaptación marginal de un compuesto. Bis-GMA is a monomer of high molecular weight and therefore has a low post-polymerization contraction, however viscosity is a factor that prevents proper handling in the clinic, so it is diluted with other monomers of lower weight Molecular such as trielylene glycol dimethacrylate (TEGDMA) or urethane dimethacrylate (UDGMA) (known as diluents), however this causes the shrinkage of the material to polymerize greatly. Polymerization contraction is still an important cause of clinical failure of restorations. Due to the decrease in volume, an interstitium is formed between the wall of the cavity and the filling material. This gap is easily accessible to bacteria, which can initiate biodegradation processes, and consequently, the worsening of the marginal adaptation of a compound.
Figure imgf000004_0001
Figure imgf000004_0001
Monómeros Bis-GMA, TEGDMA y UDMA Bis-GMA, TEGDMA and UDMA monomers
Como se mencionó anteriormente, Bis-GMA encuentra amplio uso en los actuales compuestos comerciales de resina dental aunque este monómero es demasiado viscoso para su uso sin que se diluya, y no se puede purificar por destilación o por cristalización. Para solucionar este problema se utilizan de manera comercial el TEGDMA y el UDMA, principalmente. Sin embargo, en investigaciones recientes, se han utilizado de manera experimental diversos diésteres aromáticos, entre los cuales podemos mencionar al bis (2- metacrililoxietil) éster del ácido ftálico (MEP), y de los ácidos isoftálico (MEI) y tereftálico (MET), que presentan la capacidad de formar eutéctico ternario, que es un líquido a temperatura ambiente, y cuya viscosidad es adecuada para utilizarse en resinas de uso dental. As mentioned earlier, Bis-GMA finds wide use in today's commercial dental resin compounds although this monomer is too viscous for use without dilution, and cannot be purified by distillation or crystallization. To solve this problem, TEGDMA and UDMA are used commercially, mainly. However, in recent research, various aromatic diesters have been used experimentally, among which we can mention bis (2- methacryloxyethyl) ester of phthalic acid (MEP), and isophthalic acid (MEI) and terephthalic acid (MET), which have the ability to form ternary eutectic, which is a liquid at room temperature, and whose viscosity is suitable for use in resins of dental use.
Figure imgf000005_0001
Figure imgf000005_0001
Estructura de diésteres aromáticos Structure of aromatic diesters
También en el arte previo se han descripto ensayos con derivados modificados del Bis-GMA cambiando el grupo hidroxi por grupos alcoxi (metoxi, propoxi, butoxi) en combinación con espiro ortocarbonatos, obteniendo materiales con contracciones reducidas y una mejor resistencia mecánica.  Also in the prior art, tests with modified derivatives of Bis-GMA have been described by changing the hydroxy group to alkoxy groups (methoxy, propoxy, butoxy) in combination with spiro orthocarbonates, obtaining materials with reduced contractions and better mechanical strength.
Por otra parte Dupont desarrolló una resina dimetacrílica uretánica, DX-510, cuyo peso molecular (PM 895) duplica al del Bis-GMA o del UDMA, y cuya estructura presenta un parte rígida y una flexible donde se encuentran los grupos polimerizables. Este monómero muestra una reducción de la contracción de polimerización debido a que posee un menor número de dobles enlaces carbono-carbono por unidad de masa. On the other hand, Dupont developed a urethane dimethacrylic resin, DX-510, whose molecular weight (PM 895) doubles that of Bis-GMA or UDMA, and whose structure has a rigid and flexible part where the polymerizable groups are located. This monomer shows a reduction in polymerization shrinkage because it has a lower number of carbon-carbon double bonds per unit mass.
Otros monómeros que han sido recientemente patentados son el CD-di-HEMA y el TCD-di-HEA, los que contienen una parte rígida (conteniendo el tr¡c¡clo[5.2.10]2,10 decano) y cadenas laterales de tamaño optimizado, para mejorar la elasticidad, reducir la tensión de contracción y disminuir el filtrado marginal.
Figure imgf000006_0001
Other monomers that have been recently patented are the CD-di-HEMA and the TCD-di-HEA, which contain a rigid part (containing the tricycle [5.2.10] 2.10 dean) and side chains of Optimized size, to improve elasticity, reduce shrinkage tension and decrease marginal filtration.
Figure imgf000006_0001
Estructura del triciclo[5.2.10] Tricycle structure [5.2.10]
También se menciona la patente japonesa JP5320020 (a) titulada "Denture- base resin composition and artificial tooth" que revela una composición de resina que comprende un monomero (A) monofuncional (donde Rl es acriloilo, metacriloilo, maleoilo, fumaroilo, itaconoilo, vinilo, vinilbencilo o alilo; R2 es H, C1-C8 es alquilo, C3-C8 es cicloalquilo o fenilo; R3 es H o metilo; n es 1 a 50) según fórmula I, y un monómero (B) bifuncional de formula II (R4 y R5 son Rl; R6 es R3),por ejemplo etiloxi-dimetacrilato entre otros componentes. Also mentioned is Japanese patent JP5320020 (a) entitled "Denture-base resin composition and artificial tooth" which discloses a resin composition comprising a monofunctional (A) monomer (where Rl is acryloyl, methacryloyl, maleoyl, fumaroyl, itaconoyl, vinyl , vinylbenzyl or allyl; R2 is H, C1-C8 is alkyl, C3-C8 is cycloalkyl or phenyl; R3 is H or methyl; n is 1 to 50) according to formula I, and a bifunctional (B) monomer of formula II ( R4 and R5 are Rl; R6 is R3), for example ethyloxy dimethacrylate among other components.
(R1)-(OCH2CH(R3)H)n-OR2 (I) (R4)-(OCH2CH(R6)H)n-OR5 (II) (R 1 ) - (OCH 2 CH (R 3 ) H) n -OR 2 (I) (R 4 ) - (OCH 2 CH (R 6 ) H) n -OR 5 (II)
Por su parte, el documento US4001483 (A) revela una composición para un uso como sellador dental que comprende un a. dimetacrilato de alquilenglicol de fórmula : For its part, US4001483 (A) discloses a composition for use as a dental sealant comprising an a. alkylene glycol dimethacrylate of formula:
CH2=C(CH3)COO(CH2CH20)nCOC(CH3)=CH2 donde n es un número entero de 2 a 4, b. un iniciador de polimerización ; c. un acelerador de polimerización, y d. un aditivo monómero secundario seleccionado del grupo que consiste en metacrilato de glicidilo y metacrilato de tetra h id rofurfu rilo, en una concentración de aproximadamente veinte por ciento a aproximadamente un setenta por ciento basado en el peso total de la composición, los componentes (b) y (c) están presentes en cantidades eficaces menores y el resto de la composición es esencialmente dimetacrilato. CH 2 = C (CH 3 ) COO (CH 2 CH 2 0) n COC (CH 3 ) = CH 2 where n is an integer from 2 to 4, b. a polymerization initiator; C. a polymerization accelerator, and d. a secondary monomer additive selected from the group consisting of glycidyl methacrylate and tetra h id rofurfu rile, in a concentration of about twenty percent to about seventy percent based on the total weight of the composition, components (b) and (c) they are present in smaller effective amounts and the rest of the composition is essentially dimethacrylate.
La patente US 5865623 titulada "Flexible dental composite compositions and restorative methods using fexible dental composition", revela composiciones de composites dentales flexibles que comprenden (a) entre el 2 al 15 por ciento en peso de una porción de monómero flexible que comprende uno o más co-monómeros flexibles de formula general US patent 5865623 entitled "Flexible dental composite compositions and restorative methods using fexible dental composition", discloses compositions of flexible dental composites comprising (a) between 2 and 15 per weight percent of a portion of flexible monomer comprising one or more flexible co-monomers of general formula
R1 -0-[(CH-R2)n -0-]z -R3 donde R1 y R3 son grupos funcionales acrilato o metacrilato, R2 se selecciona del grupo que consiste de hidrógeno, metilo, y etilo, n es de 3 o 5 y z es de 3 a 20 y el monómero tiene un peso molecular promedio de al menos 300, (b) entre 30 y 80 porciento en peso de una porción de relleno, c) del 18 al 60 porciento en peso de un co-monómero que comprende uno o más co- monómeros capaces de polimerizar con la porción de monómero flexible y (d) un sistema de catalizador de polimerización. La composición es útil para restauraciones dentales de clase V y otras clases. R 1 -0 - [(CH-R 2 ) n -0-] z -R 3 where R 1 and R 3 are acrylate or methacrylate functional groups, R 2 is selected from the group consisting of hydrogen, methyl, and ethyl, n is 3 or 5 and z is 3 to 20 and the monomer has an average molecular weight of at least 300, (b) between 30 and 80 percent by weight of a filler portion, c) from 18 to 60 percent by weight of a co-monomer comprising one or more co-monomers capable of polymerizing with the flexible monomer portion and (d) a polymerization catalyst system. The composition is useful for dental restorations of class V and other classes.
La patente JP59070645 (A) revela un monómero que posee la siguiente estructura 4,4-'bis-(2-hidroxi-3-metacriloiloxipropiloxi) bifenil éter. JP59070645 (A) discloses a monomer having the following structure 4,4-'bis- (2-hydroxy-3-methacryloxyxypropyloxy) biphenyl ether.
Figure imgf000007_0001
Figure imgf000007_0001
Estructura de 4,4-'-bis-(2-hidroxi-3-metacriloiloxipropiloxi) bifenilo éter Structure of 4,4 -'- bis- (2-hydroxy-3-methacryloxypropyloxy) biphenyl ether
Este monómero se utiliza como agente adhesivo de refuerzo para mejorar la adhesividad de adhesivos especialmente utilizados para la terapia dental. También, se revela un proceso que comprende la preparación de un éster alfa, beta-insaturado de ácido monocarboxílico por reacción de metacrilato de glicidilo con 4,4'-dihidroxifenil éter en presencia de un catalizador (por ejemplo una sal de amonio cuaternario) o por reacción de 4,4'-dihidroxibifenil éter con epiclorhidrina en presencia de una base, y haciendo reaccionar el resultante de 4,4'-diglicidiloxibifenil éter con ácido metacrílico en presencia de un catalizador (por ejemplo una sal de amonio cuaternario). Por lo tanto, existe en el arte previo la necesidad de proveer nuevos monómeros que exhiban una adecuada combinación de propiedades físicas, mecánicas y de biocompatibilidad para la elaboración de composites útiles en aplicaciones odontológicas. This monomer is used as a reinforcing adhesive agent to improve the adhesiveness of adhesives especially used for dental therapy. Also, a process is disclosed comprising the preparation of an alpha, beta-unsaturated monocarboxylic acid ester by reaction of glycidyl methacrylate with 4,4'-dihydroxyphenyl ether in the presence of a catalyst (for example a quaternary ammonium salt) or by reacting 4,4'-dihydroxybiphenyl ether with epichlorohydrin in the presence of a base, and reacting the resulting 4,4'-diglycidyloxybiphenyl ether with methacrylic acid in the presence of a catalyst (for example a quaternary ammonium salt). Therefore, there is a need in the prior art to provide new monomers that exhibit a suitable combination of physical, mechanical and biocompatibility properties for the preparation of composites useful in dental applications.
La presente invención tiene por objeto proveer nuevos monómeros que permitan obtener resinas que exhiban mejoradas propiedades de manipulación del material y las propiedades mecánicas, ópticas y de biocompatibilidad que las resinas de uso odontológico. The present invention aims to provide new monomers that allow to obtain resins that exhibit improved material handling properties and the mechanical, optical and biocompatibility properties of dental resins.
La presente invención tiene por objeto proveer nuevos monómeros, que permitan obtener resinas que exhiban un aumento en las propiedades mecánicas sin alterar adversamente las características ópticas, de manipulación y de biocompatibilidad de las resinas de uso odontológico. The present invention aims to provide new monomers, which make it possible to obtain resins that exhibit an increase in mechanical properties without adversely altering the optical, handling and biocompatibility characteristics of dental resins.
Específicamente, la presente invención, tiene como objetivo la preparación de resinas dentales basadas en una nueva matriz orgánica a partir de nuevos monómeros bis-glicidilmetacrilatos que puedan ser utilizados como disolventes y como aditivos mejoradores de las propiedades de la resina, y que por sus características bifuncionales, también podrían ser utilizados en otras reacciones de polimerización como agentes reticulantes bifuncionales, dando lugar a diversas aplicaciones. Specifically, the present invention aims at the preparation of dental resins based on a new organic matrix from new bis-glycidyl methacrylate monomers that can be used as solvents and as additives that improve the properties of the resin, and which by their characteristics bifunctional, could also be used in other polymerization reactions as bifunctional crosslinking agents, giving rise to various applications.
La inclusión de estos monómeros en otras polimerizaciones vinílicas permitiría producir un aumento de los pesos moleculares promedio, lo que conduciría a materiales más viscosos o que produzcan soluciones más viscosas. Teniendo en cuenta las estructuras de estos nuevos compuestos podrían ser utilizados para modificar las propiedades de otros polímeros acrílicos, tales como dureza, resistencia a la abrasión, viscosidad, temperaturas de uso, etc. The inclusion of these monomers in other vinyl polymerizations would produce an increase in average molecular weights, which would lead to more viscous materials or to produce more viscous solutions. Taking into account the structures of these new compounds could be used to modify the properties of other acrylic polymers, such as hardness, abrasion resistance, viscosity, use temperatures, etc.
BREVE DESCRIPCION DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Figura 1 Espectro infrarrojo del compuesto BE-4,4-0H Figura 2 Espectro de RMN H del compuesto BE-4,4-0H Figure 1 Infrared spectrum of compound BE-4,4-0H Figure 2 H NMR spectrum of compound BE-4,4-0H
Figura 3 Espectro de RMN 13C del compuesto BE-4,4-0H Figure 3 13 C NMR spectrum of compound BE-4,4-0H
Figura 4 Comparación de los espectros de FT-IR para la materia prima, compuesto intermediario y monómero bifuncional a partir del 4,4-bifenol . Figure 4 Comparison of the FT-IR spectra for the raw material, intermediate compound and bifunctional monomer from 4,4-biphenol.
Figura 5 Espectro de RMN 1 del compuesto MB-4,4-OH Figure 5 NMR spectrum 1 of compound MB-4,4-OH
Figura 6 Espectro de RMN 13C del compuesto MB-4,4-0H Figure 6 13 C NMR spectrum of compound MB-4.4-0H
Figura 7 Espectro infrarrojo del compuesto BE-Fen-OH Figure 7 Infrared spectrum of the BE-Fen-OH compound
Figura 8 Espectro de RMN 1 del compuesto BE-Fen-OH Figure 8 NMR spectrum 1 of the BE-Fen-OH compound
Figura 9 Espectro de RMN 13C del compuesto BE-Fen-OH Figure 9 13 C NMR spectrum of the BE-Fen-OH compound
Figura 10 Espectro infrarrojo del compuesto MB-Fen-OH Figure 10 Infrared spectrum of compound MB-Fen-OH
Figura 11 Espectro de RMN 1 del compuesto MB-Fen-OH Figure 11 NMR spectrum 1 of compound MB-Fen-OH
Figura 12 Espectro de RMN 13C del compuesto MB-Fen-OH Figure 12 13 C NMR spectrum of the MB-Fen-OH compound
Figura 13 Comparación de los espectros de RMN 1 para la materia prima, compuesto intermediario y monómero bifuncional a partir del 1,4- benzenodimetanol. Figure 13 Comparison of NMR 1 spectra for the raw material, intermediate compound and bifunctional monomer from 1,4-benzenedimethanol.
Figura 14 Espectro infrarrojo del compuesto BE-1,4-0H Figura 15 Espectro de RMN 1 del compuesto BE-1,4-0H Figura 2 Espectro de RMN 13C del compuesto BE-1,4-0H Figura 17 Espectro infrarrojo del compuesto MB-1,4-0H Figura 18 Espectro de RMN H del compuesto MB- 1,4-0H Figura 19 Espectro de RMN 13C del compuesto MB- 1,4-0H Figura 20 Espectro infrarrojo del compuesto BE-Cis-OH Figura 21 Espectro de RMN 1 del compuesto BE-Cis-OH Figura 22 Espectro de RMN 13C del compuesto BE-Cis-OH Figure 14 Infrared spectrum of compound BE-1,4-0H Figure 15 NMR spectrum 1 of compound BE-1,4-0H Figure 2 NMR spectrum 13 C of compound BE-1,4-0H Figure 17 Infrared spectrum of compound MB-1.4-0H Figure 18 NMR spectrum H of compound MB- 1.4-0H Figure 19 NMR spectrum 13C of compound MB-1.4-0H Figure 20 Infrared spectrum of compound BE-Cis-OH Figure 21 NMR spectrum 1 of compound BE-Cis-OH Figure 22 13 C NMR spectrum of the BE-Cis-OH compound
Figura 23 Espectro infrarrojo del compuesto MB-Cis-OH Figure 23 Infrared spectrum of compound MB-Cis-OH
Figura 24 Espectro de RMN 1H del compuesto MB-Cis-OH Figure 24 1H NMR spectrum of MB-Cis-OH compound
Figura 25 Espectro de RMN 13C del compuesto MB-Cis-OH Figure 25 13 C NMR spectrum of MB-Cis-OH compound
Figura 26 Espectro infrarrojo del compuesto BE-l,7-OH Figure 26 Infrared spectrum of compound BE-l, 7-OH
Figura 27 Espectro de RMN *H del compuesto BE-l,7-OH Figure 27 * H NMR spectrum of compound BE-l, 7-OH
Figura 28 Espectro de RMN 13C del compuesto BE-l,7-OH Figure 28 13 C NMR spectrum of compound BE-l, 7-OH
Figura 29 Espectro infrarrojo del compuesto MB-l,7-OH Figure 29 Infrared spectrum of compound MB-l, 7-OH
Figura 30 Espectro de RMN *H del compuesto MB-l,7-OH Figure 30 * H NMR spectrum of compound MB-l, 7-OH
Figura 31 Espectro de RMN 13C del compuesto MB-l,7-OH Figure 31 13 C NMR spectrum of compound MB-l, 7-OH
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Las propiedades de un material compuesto están dada en función de las propiedades de las fases que lo constituyen, la cantidad relativa de cada uno de ellos, así como de la geometría de la fase dispersa, tal como su forma y tamaño, así como su distribución y orientación (9, 15-17, 19) . The properties of a composite material are given based on the properties of the phases that constitute it, the relative amount of each of them, as well as the geometry of the dispersed phase, such as its shape and size, as well as its distribution and orientation (9, 15-17, 19).
La matriz en un material compuesto comprende entre el 30 y el 40% de su estructura, y tiene numerosas funciones (17) : The matrix in a composite material comprises between 30 and 40% of its structure, and has numerous functions (17):
• Une a los componentes y determina la estabilidad termo-mecánica del material compuesto. • Joins the components and determines the thermo-mechanical stability of the composite material.
• Protege al material de refuerzo del desgaste y abrasión, así como del medio ambiente.  • Protects the reinforcement material from wear and abrasion, as well as the environment.
• Ayuda a distribuir las cargas actuando como un medio de transferencia de tensiones.  • Helps distribute loads acting as a means of transferring stresses.
• Provee de durabilidad y de resistencia mecánica al sistema en general. El rol que juega la matriz orgánica dentro las propiedades finales del material compuesto, es mucho más importante que el de la fase dispersa o refuerzo (15). Una de las características que poseen los refuerzos es que tienen un módulo elástico muy alto, y por lo tanto son sólidos muy frágiles que ante la presencia de una carga se fracturan con facilidad; la combinación con una matriz de diferente naturaleza y características resultará en un material con la característica de soportar mayores cargas sin presentar fractura inmediata (17). • Provides durability and mechanical resistance to the system in general. The role played by the organic matrix within the final properties of the composite material is much more important than that of the dispersed or reinforcement phase (15). One of the characteristics that reinforcements have is that they have a very high elastic modulus, and therefore they are very fragile solids that, in the presence of a load, fracture easily; the combination with a matrix of different nature and characteristics will result in a material with the characteristic of bearing greater loads without presenting immediate fracture (17).
La matriz de un material compuesto puede componerse de materiales cerámicos, metales o polímeros, de esta forma tenemos materiales compuestos de matriz cerámica, matriz metálica o matriz polimérica (15). The matrix of a composite material can be composed of ceramic materials, metals or polymers, in this way we have composite materials of ceramic matrix, metal matrix or polymer matrix (15).
La fase dispersa de los materiales compuestos, está constituida por un material de refuerzo, éste puede ser discontinuo (partículas, escamas, fibras cortas) o continuo (fibras u hojas largas) (17, 19). Usualmente, los materiales de refuerzo en forma de fibra son más fuertes y duros que cualquier otro tipo de relleno, y ésta es la razón principal por la cual la mayoría de los materiales compuestos contiene rellenos con esta geometría (15, 16). The dispersed phase of the composite materials is constituted by a reinforcement material, which can be discontinuous (particles, scales, short fibers) or continuous (fibers or long sheets) (17, 19). Usually, fiber-like reinforcement materials are stronger and harder than any other type of filler, and this is the main reason why most composite materials contain fillers with this geometry (15, 16).
El material de refuerzo es también más fuerte, más duro y más rígido que la matriz y su tamaño, forma, concentración y distribución dentro del material compuesto, representa uno de los mayores parámetros para determinar su efectividad (18, 20) . The reinforcement material is also stronger, harder and more rigid than the matrix and its size, shape, concentration and distribution within the composite material, represents one of the greatest parameters to determine its effectiveness (18, 20).
El tamaño de las partículas de relleno puede variar en el orden de las mieras hasta los nanómetros, su forma puede variar y presentarse en forma de fibras o partículas cúbicas o esféricas, de igual forma, el arreglo puede ir desde ser totalmente aleatorio, hasta tener una determinada orientación, y las propiedades mecánicas del material compuesto van a variar de acuerdo a estas características (15, 17, 19). The size of the filler particles can vary in the order of the microns to the nanometers, their shape can vary and present in the form of fibers or cubic or spherical particles, in the same way, the arrangement can range from being completely random, to having a certain orientation, and the mechanical properties of the composite material will vary according to these characteristics (15, 17, 19).
Tal es el caso de las resinas acrílicas, en las que la incorporación de rellenos inorgánicos vitreos, afecta a propiedades como el coeficiente de expansión térmica, la contracción por polimerización y la dureza, de manera casi lineal con respecto al porcentaje de relleno incluido (11). Such is the case of acrylic resins, in which the incorporation of vitreous inorganic fillers, affects properties such as the coefficient of expansion thermal, polymerization contraction and hardness, almost linearly with respect to the percentage of filler included (11).
En general, los materiales compuestos son clasificados de acuerdo al tipo de material que este conformando a la matriz (15, 17). In general, composite materials are classified according to the type of material that is conforming to the matrix (15, 17).
En los materiales compuestos de matriz metálica (MCM), el uso de metales para conformar la matriz, se debe principalmente a las siguientes razones : tienen aplicaciones en un amplio rango de temperaturas, en general poseen mayores valores de dureza, el efecto de la humedad y el peligro de inflamabilidad están ausentes, tienen alta conductividad térmica y eléctrica y además, comparado con metales puros o aleaciones, tienen mayor resistencia a la fatiga y a la abrasión, así como menor coeficiente de expansión térmica (9, 16, 17) . In metal matrix composite materials (MCM), the use of metals to form the matrix is mainly due to the following reasons: they have applications in a wide range of temperatures, in general they have higher hardness values, the effect of moisture and the danger of flammability is absent, they have high thermal and electrical conductivity and also, compared to pure metals or alloys, they have greater resistance to fatigue and abrasion, as well as lower coefficient of thermal expansion (9, 16, 17).
De igual forma, el uso de metales dentro de un material compuesto representa ciertas desventajas (19). Entre éstas, podemos citar que los materiales resultan ser muy pesados y son susceptibles a la corrosión (17) . Similarly, the use of metals within a composite material represents certain disadvantages (19). Among these, we can mention that the materials turn out to be very heavy and are susceptible to corrosion (17).
Los materiales compuestos con matriz cerámica (MCC) pueden estar compuestos por elementos metálicos o no metálicos. Entre las características que poseen los materiales cerámicos y que los hacen ser útiles para la elaboración de materiales compuestos, se encuentran : tienen un rango de aplicación muy grande, poseen densidades muy bajas y además, presentan un módulo de elasticidad muy alto (15, 17, 19). Composite materials with ceramic matrix (MCC) can be composed of metallic or non-metallic elements. Among the characteristics that ceramic materials possess and that make them useful for the production of composite materials, are: they have a very large application range, have very low densities and also have a very high elastic modulus (15, 17 , 19).
La mayor desventaja de este tipo de materiales es su fragilidad, lo que los hace ser muy susceptibles a poseer defectos estructurales (17). The greatest disadvantage of this type of materials is its fragility, which makes them very susceptible to structural defects (17).
Los materiales de matriz polimérica (MCP) pueden considerarse como los materiales compuestos más desarrollados, además de que encuentran una gran variedad de aplicaciones (19). Además de ello, los MCP, pueden ser fabricados de manera muy sencilla (17). Polymeric matrix (MCP) materials can be considered as the most developed composite materials, in addition to finding a wide variety of applications (19). In addition, the CCMs can be manufactured very easily (17).
Los MCP resultan de una combinación sinérgica entre un relleno de alto desempeño y una matriz orgánica polimérica. En este tipo de sistemas, el refuerzo provee de mejores propiedades mecánicas al material, mientras que la matriz orgánica distribuye las cargas y aumenta la resistencia al desgaste y a la corrosión. De tal manera que, en los MCP, las propiedades mecánicas son directamente proporcionales a las propiedades del material de refuerzo (9, 15, 16, 19) . CCMs result from a synergistic combination between a high performance filler and a polymeric organic matrix. In these types of systems, the reinforcement provides better mechanical properties to the material, while the organic matrix distributes the loads and increases resistance to wear and corrosion. Thus, in MCPs, the mechanical properties are directly proportional to the properties of the reinforcement material (9, 15, 16, 19).
Las limitaciones de éste tipo de materiales también vienen de la mano del tipo de matriz polimérica que se esté empleando (15, 17, 19). Por citar un ejemplo, si se utilizan polímeros termoplásticos, entonces el material compuesto tendría un rango de temperatura de aplicación muy limitado (17). The limitations of this type of materials also come from the type of polymer matrix being used (15, 17, 19). To cite an example, if thermoplastic polymers are used, then the composite material would have a very limited application temperature range (17).
Estructuralmente hablando, una resina compuesta para uso dental es un material polimérico entrecruzado reforzado con partículas dispersas de relleno unidas a la matriz polimérica mediante agentes de acoplamiento del tipo silano (7) . Structurally speaking, a composite resin for dental use is a crosslinked polymeric material reinforced with dispersed filler particles bonded to the polymer matrix by means of silane type coupling agents (7).
Según la clasificación abordada anteriormente, los materiales de este tipo corresponden a un material compuesto de matriz polimérica con un refuerzo particulado. En Odontología, el término de resina compuesta hace referencia a un sistema polimérico reforzado utilizado para la restauración de tejidos dentales duros, tales como esmalte y dentina (6) . According to the classification addressed above, materials of this type correspond to a polymer matrix composite material with a particulate reinforcement. In Dentistry, the term composite resin refers to a reinforced polymeric system used for the restoration of hard dental tissues, such as enamel and dentin (6).
Las resinas compuestas son utilizadas para sustituir estructuras dentales perdidas, y una de las ventajas de este material es la versatilidad para su aplicación, ya sea en zonas donde la estética se ha visto comprometida, como en zonas sometidas a muchas fuerzas, este tipo de materiales pueden ser utilizados con buenos resultados (21) . Además de estas, las resinas compuestas son usadas en otra gran variedad de aplicaciones, tales como senadores de fosetas y fisuras, cementado de restauraciones cerámicas y de otro tipo de restauraciones fijas (7) . Composite resins are used to replace lost dental structures, and one of the advantages of this material is the versatility for its application, whether in areas where aesthetics has been compromised, such as in areas subject to many forces, such materials they can be used with good results (21). In addition to these, composite resins are used in a variety of other applications, such as pit and fissure senators, cemented ceramic restorations and other types of fixed restorations (7).
Las resinas compuestas para uso dental fueron desarrolladas a principios de los años sesenta (21-24) . Los primeros materiales restauradores de éste tipo eran autocurables; para la siguiente generación, eran materiales fotoactivados con luz ultravioleta. Éstos fueron luego reemplazados por materiales activados mediante luz visible. Las siguientes mejoras hechas, han contribuido para conseguir una resina compuesta con una excelente durabilidad, resistencia a la abrasión y estética que permite mimetizar perfectamente a los dientes naturales (7, 11, 12) . Composite resins for dental use were developed in the early sixties (21-24). The first restorative materials of this type were self-healing; for the next generation, they were photoactivated materials with ultraviolet light. These were then replaced by materials activated by visible light. The following improvements made, have contributed to achieve a composite resin with excellent durability, abrasion resistance and aesthetics that allows to perfectly mimic natural teeth (7, 11, 12).
Resinas Resins
Una resina compuesta está formada por cuatro componentes principales: matriz polimérica o matriz orgánica, partículas de relleno inorgánico, agente de acoplamiento y un sistema iniciador-acelerador (6, 7, 22). Todas las propiedades y el rendimiento de este tipo de materiales dependen de la naturaleza de estos componentes; algunas se relacionan ampliamente con el relleno y el agente de unión, mientras que otras dependen únicamente de la matriz orgánica (25). A composite resin consists of four main components: polymeric matrix or organic matrix, inorganic filler particles, coupling agent and an initiator-accelerator system (6, 7, 22). All properties and performance of these types of materials depend on the nature of these components; some are broadly related to the filler and the binding agent, while others depend solely on the organic matrix (25).
Uno de los principales beneficios de la utilización de la matriz polimérica es la habilidad de que el material pueda ser moldeado a temperatura ambiente, junto con la posibilidad de hacerlo en un tiempo considerablemente corto. Los beneficios proporcionados por el relleno inorgánico son aumento de la rigidez, dureza y fuerza, además de un valor bajo de coeficiente de expansión térmica (11). One of the main benefits of using the polymer matrix is the ability that the material can be molded at room temperature, together with the possibility of doing so in a considerably short time. The benefits provided by the inorganic filler are increased stiffness, hardness and strength, as well as a low thermal expansion coefficient (11).
La mayoría de resinas compuestas para uso dental disponibles comercialmente hoy en día, utilizan una mezcla de monómeros aromáticos y alifáticos como componentes de su matriz orgánica (5, 7, 11, 21, 22, 26) . The majority of composite resins for dental use commercially available today use a mixture of aromatic and aliphatic monomers as components of their organic matrix (5, 7, 11, 21, 22, 26).
Los principales monómeros utilizados para éste fin, se enlistan a continuación : The main monomers used for this purpose are listed below:
• Bis-GMA • Bis-GMA
•TEGDMA • TEGDMA
• UDMA  • UDMA
• BÍS-EMA6  • BÍS-EMA6
• Bis-EMA  • Bis-EMA
•PEGMA La resina Filtek Supreme XT 3M contiene bis-GMA, UDMA, TEGDMA, BISEN! A, PEGDMA
Figure imgf000015_0001
bis-EMA2,2-bis(4-(2-metacriloxietoxi)fenilpropano
Figure imgf000015_0002
• PEGMA Filtek Supreme XT 3M resin contains bis-GMA, UDMA, TEGDMA, BISEN! A, PEGDMA
Figure imgf000015_0001
bis-EMA2,2-bis (4- (2-methacryloxyethoxy) phenylpropane
Figure imgf000015_0002
PEGMA PEGMA
Estructura de los monómeros bis-EMA2,2-bis(4-(2- metacriloxietoxi)fenilpropano y PEGMA Structure of bis-EMA2,2-bis (4- (2- methacryloxyethoxy) phenylpropane and PEGMA monomers
Dos de los monómeros más utilizados para este fin son el bisfenol A- metacrilato de glicidilo (Bis-GMA) y el uretano dimetacrilato (UDMA). Ambos monómeros, poseen dobles enlaces carbono-carbono en cada uno de los extremos de la molécula y pueden polimerizar fácilmente mediante radicales libres (6, 7) . En dichas moléculas, cada uno de los enlaces dobles forman parte de la polimerización por adición, lo que le da la posibilidad de formar redes entrecruzadas (11) . Two of the most commonly used monomers for this purpose are glycidyl bisphenol A-methacrylate (Bis-GMA) and urethane dimethacrylate (UDMA). Both monomers have carbon-carbon double bonds at each end of the molecule and can easily polymerize by free radicals (6, 7). In said molecules, each of the double bonds forms part of the polymerization by addition, which gives it the possibility of forming crosslinked networks (11).
La viscosidad de éstos monómeros, en especial del Bis-GMA, es muy elevada, por lo que formular una resina con una consistencia clínica adecuada así como para poder incorporar la mayor cantidad de relleno inorgánico, se utilizan otros monómeros bifuncionales de bajo peso molecular, tales como el trietilenglicol dimetacrilato (TEGDMA) o el Bis-EMA6 (12) . La estructura de éstos monómeros, se muestra a continuación.
Figure imgf000016_0001
The viscosity of these monomers, especially Bis-GMA, is very high, so formulating a resin with a suitable clinical consistency as well as to be able to incorporate the greatest amount of inorganic filler, other bifunctional low molecular weight monomers are used, such as triethylene glycol dimethacrylate (TEGDMA) or Bis-EMA6 (12). The structure of these monomers is shown below.
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0003
Figure imgf000016_0002
Figure imgf000016_0003
Figure imgf000016_0004
Figure imgf000016_0004
Estructura úel n n-6m-eFci BSs-E3"íSAó  Structure n n-6m-eFci BSs-E3 "íSAó
Estructura de los monómeros Bis-GMA, UDMA, TEGDMA y Bis-EMA6Structure of the Bis-GMA, UDMA, TEGDMA and Bis-EMA6 monomers
El uso de monómeros bimetacrílicos tiene la ventaja de producir cadenas de polímeros con un alto grado de entrecruzamiento. El resultado es una matriz rígida altamente resistente al ablandamiento y/o degradación por calor o solventes como el agua o el alcohol (7) . The use of bimetacrylic monomers has the advantage of producing polymer chains with a high degree of crosslinking. The result is a rigid matrix highly resistant to softening and / or degradation by heat or solvents such as water or alcohol (7).
Rellenos Stuffed
Adicionalmente, los materiales compuestos incluyen materiales de relleno inorgánicos con el fin de mejorar sus propiedades fisicoquímica y mecánicas. Additionally, composite materials include inorganic fillers in order to improve their physicochemical and mechanical properties.
El relleno inorgánico forma la mayor parte en volumen o peso de un material compuesto, dependiendo del tipo de resina, la cantidad total de material de relleno inorgánico incorporado en las resinas compuestas comerciales oscila entre el 42 y el 85%. La incorporación de las partículas de relleno dentro de una matriz orgánica mejora significativamente las propiedades mecánicas del material (5, 11). Entre las propiedades de una resina compuesta, que el relleno inorgánico puede mejorar, están (7) : The inorganic filler forms most of the volume or weight of a composite material, depending on the type of resin, the total amount of inorganic filler material incorporated into commercial composite resins ranges between 42 and 85%. The incorporation of the filler particles into an organic matrix significantly improves the mechanical properties of the material (5, 11). Among the properties of a composite resin, which the inorganic filler can improve, are (7):
• Aumento de la dureza y la resistencia . • Increase of hardness and resistance.
• Reducción de la abrasión.  • Abrasion reduction.
• Reducción de la contracción por polimerización y la expansión térmica. • Reduction of polymerization shrinkage and thermal expansion.
• Facilidad del manejo al aumentar la viscosidad. • Ease of handling by increasing viscosity.
• Reducción de la solubilidad y sorción acuosa.  • Reduction of solubility and aqueous sorption.
• Incremento de la radiopacidad.  • Increase in radiopacity.
Las partículas de relleno utilizadas con mayor frecuencia en la fabricación de estos materiales compuestos son producidas por la molienda, trituración o pulverizado de minerales como el cuarzo, vidrio de bario, vidrio de bario/sílice, mezcla de bario vidrio, cuarzo/bario vidrio, sílice, zirconia/sílice, mezcla de sílice, aluminosilicato de litio, alumino silicato de sodio y/o zinc y aluminosilicato de bario o derivados sol-gel de materiales cerámicos, lo que produce partículas con un tamaño en el rango de 0,1 a 100 μπι (7, 11) . Recientemente, partículas de tamaño nanométrico de sílica han sido incorporadas a materiales de éste tipo (11, 22). The filler particles most frequently used in the manufacture of these composite materials are produced by grinding, crushing or pulverizing minerals such as quartz, barium glass, barium glass / silica, barium glass, quartz / barium glass, silica, zirconia / silica, mixture of silica, lithium aluminosilicate, sodium silicate and / or zinc alumino and barium aluminosilicate or sol-gel derivatives of ceramic materials, which produces particles with a size in the range of 0.1 to 100 μπι (7, 11). Recently, particles of nanometric size of silica have been incorporated into materials of this type (11, 22).
Muchos de los vidrios utilizados como relleno inorgánico poseen óxidos de metales pesados como bario o zinc, lo que provee de radio-opacidad para poder ser visualizados cuando son expuestos a rayos-X (6) . Many of the glasses used as inorganic fillers have heavy metal oxides such as barium or zinc, which provides radiopacity to be visualized when exposed to X-rays (6).
Durante el desarrollo inicial de las resinas compuestas, Bowen demostró que las propiedades óptimas del material, dependían de la formación de una unión fuerte entre el relleno inorgánico y la matriz orgánica, si esto no ocurría, las partículas de relleno no actúan como refuerzo, sino como debilitadores del material (7) . During the initial development of the composite resins, Bowen showed that the optimum properties of the material depended on the formation of a strong bond between the inorganic filler and the organic matrix, if this did not happen, the filler particles do not act as reinforcement, but as material debilitators (7).
La superficie de estos materiales de relleno suelen ser tratada con un agente de acoplamiento que puede ser empleado en cantidades que oscilan entre 40 a 95 % en peso basado en el peso total de la composición. The surface of these fillers is usually treated with a coupling agent that can be used in amounts ranging from 40 to 95% by weight based on the total weight of the composition.
Agentes de acoplamiento La unión de la fase inorgánica con la fase orgánica se logra recubriendo las partículas de relleno con un agente de acoplamiento que tiene características tanto de relleno como de matriz. El agente responsable de esta unión es una molécula bifuncional denominada silano (22). Coupling agents The union of the inorganic phase with the organic phase is achieved by coating the filler particles with a coupling agent having both filler and matrix characteristics. The agent responsible for this binding is a bifunctional molecule called silane (22).
Los silanos, son un grupo de compuestos orgánicos que tienen la particularidad de reaccionar con sustratos orgánicos e inorgánicos, así como consigo mismos y con otros silanos, esto lo logran a través de complejas reacciones de hidrólisis y condensación para formar una gran variedad de estructuras híbridas orgánicas e inorgánicas (27). Silanes, are a group of organic compounds that have the particularity of reacting with organic and inorganic substrates, as well as with themselves and with other silanes, this is achieved through complex hydrolysis and condensation reactions to form a wide variety of hybrid structures organic and inorganic (27).
En las resinas a base de metacrilatos, el agente de unión entre la matriz orgánica y las partículas de relleno es el 3-metacril-oxipropil trimetoxi-silano (MPTMS), la cual es una molécula bifuncional capaz de reaccionar consigo misma, con el agente de relleno y con los grupos metacrilato. La cantidad de reacciones que se produzcan entre éstos grupos determinará la eficacia del agente acoplante (6). La estructura del MPTMS es ¡lustrada a continuación : In methacrylate-based resins, the binding agent between the organic matrix and the filler particles is 3-methacryloxypropyl trimethoxy silane (MPTMS), which is a bifunctional molecule capable of reacting with itself, with the agent filling and methacrylate groups. The amount of reactions that occur between these groups will determine the effectiveness of the coupling agent (6). The structure of the MPTMS is illustrated below:
Figure imgf000018_0001
Figure imgf000018_0001
Estructura del MPTMS MPTMS structure
La silanizacion de un material de relleno puede observarse en la figura que se indica a continuación. En presencia de agua, los grupos metoxi (-0-CH3) son hidrolizados y convertidos a grupos silanol (Si-OH), los cuales pueden unirse a otros grupos silanol localizados en la superficie de las partículas de relleno y formar enlaces covalentes denominados siloxanos (-Si-O-Si-) (7).
Figure imgf000019_0001
The silanization of a filler material can be seen in the figure below. In the presence of water, the methoxy groups (-0-CH 3 ) are hydrolyzed and converted to silanol (Si-OH) groups, which can bind to other silanol groups located on the surface of the filler particles and form covalent bonds called siloxanes (-Si-O-Si-) (7).
Figure imgf000019_0001
Silanización del relleno inorgánico Silanization of inorganic filler
De acuerdo a la imagen anterior, es posible observar que el grupo metacrilato de la molécula del silano, queda libre para formar enlaces covalentes, una vez que polimeriza, con otros metacrilatos provenientes de la matriz resinosa, completando así el proceso de acoplamiento (22) .  According to the previous image, it is possible to observe that the methacrylate group of the silane molecule is free to form covalent bonds, once it polymerizes, with other methacrylates from the resinous matrix, thus completing the coupling process (22) .
El silano mejora las propiedades físicas y mecánicas de la resina compuesta, pues establece una transferencia de tensiones de la fase que se deforma fácilmente (matriz resinosa), para la fase más rígida (partículas de relleno) . Además, estos agentes de acoplamiento previenen la penetración de agua en la interfase BisGMA / partículas de relleno, promoviendo una estabilidad hidrolítica en el interior de la resina. Los ejemplos representativos son 3- metacril-oxipropil trimetoxi-silano (MPTMS), vinil trietoxisilano, dimetil diclorosilano, hexametileno disilazano, dimetil polisiloxano entre otros. The silane improves the physical and mechanical properties of the composite resin, as it establishes a stress transfer of the easily deformed phase (resinous matrix), for the more rigid phase (filler particles). In addition, these coupling agents prevent the penetration of water into the BisGMA / filler particles interface, promoting hydrolytic stability inside the resin. Representative examples are 3- methacryloxypropyl trimethoxy silane (MPTMS), vinyl triethoxysilane, dimethyl dichlorosilane, hexamethylene disilazane, dimethyl polysiloxane among others.
Se han experimentado otros agentes tales como el 4-META, varios titanatos y zirconatos, sin embargo, ninguno de estos agentes demostró ser superior al MPS (22) . Other agents such as 4-META, various titanates and zirconates have been experienced, however, none of these agents proved to be superior to MPS (22).
Sistema fotoiniciador El endurecimiento de los materiales de éste tipo, se lleva a cabo mediante la polimerización por adición iniciada por radicales libres. Éstos radicales libres pueden ser generados a través de una reacción química o a través de energía externa en forma de luz (6, 7, 11). La activación mediante luz es llevada a cabo al exponer el material a la luz azul con longitud de onda de 465 nm, dicha luz es absorbida por una molécula fotosensible, como lo es la canforquinona, la cual genera los radicales libres que inician el proceso de polimerización . La reacción es acelerada por la presencia de una amina orgánica, como el 2-N,N'- dimetilaminometacrilato de etilo, la N,N '-dimetil-para-toluidina y el ρ-Ν,Ν '- dimetilaminobenzoato de etilo. La cantidad total de activador y acelerador que es añadida a una formulación comercial de una resina compuesta, varía entre el 0.1 y el 1% en peso de cada uno de ellos, basado en el peso total de la composición de la resina compuesta. (7). Photoinitiator system Hardening of materials of this type is carried out by addition polymerization initiated by free radicals. These free radicals can be generated through a chemical reaction or through external energy in the form of light (6, 7, 11). The activation by light is carried out by exposing the material to blue light with a wavelength of 465 nm, said light is absorbed by a photosensitive molecule, such as canforquinone, which generates the free radicals that initiate the process of polymerization The reaction is accelerated by the presence of an organic amine, such as ethyl 2-N, N'-dimethylaminomethacrylate, N, N ' -dimethyl-para-toluidine and ethyl ρ-Ν, Ν ' - dimethylaminobenzoate. The total amount of activator and accelerator that is added to a commercial formulation of a composite resin varies between 0.1 and 1% by weight of each of them, based on the total weight of the composite resin composition. (7).
Por su parte, la activación química se lleva a cabo cuando una amina orgánica reacciona con un peróxido para formar radicales libres, los cuales a su vez atacan a los dobles enlaces carbono-carbono y provocan el proceso de polimerización (5). En este tipo de materiales, la presentación comercial siempre viene bajo dos componentes separados, uno de ellos contiene la amina orgánica mientras que el otro posee al grupo peróxido, una vez que son mezclados, el proceso de polimerización ocurre inmediatamente (6, 11) . For its part, chemical activation is carried out when an organic amine reacts with a peroxide to form free radicals, which in turn attack the carbon-carbon double bonds and cause the polymerization process (5). In this type of materials, the commercial presentation always comes under two separate components, one of them contains the organic amine while the other has the peroxide group, once they are mixed, the polymerization process occurs immediately (6, 11).
Otros aditivos que se puede añadir a la resina pueden ser inhibidores de polimerización, agentes fotoestabilizador, agentes antioxidante, y pigmentos para conformar el color de la resina compuesta. Un inhibidor de la polimerización tal como hidroquinona (HQ), éter monometílico de hidroquinona o monoetil-éter de hidroquinona puede añadirse en una cantidad de 0, 1 hasta 10% en peso de basado en el peso total de la composición. Un fotoestabilizador como Tinubin se puede añadir en una cantidad de 0,01 a 5 % en peso basado en el peso total de la composición . Un antioxidante tal como Irganox (Propionato de tetrakis(3-(3,5-di-terc-but¡l- 4-hidroxifenil)pentaeritritol) y 2,6-di-terc-butil-4-met¡l fenol, butilhidroxitolueno (BHT) se puede añadir en una cantidad de 0,01 a 5% en peso basado en el peso total de la composición. Los pigmentos inorgánicos de color amarillo, azul marino, o color rojo-óxidos de hierro y dióxido de titanio se puede añadir en una cantidad de% en peso de desde 0,005 hasta 0,5 basado en el peso total de la composición . Other additives that can be added to the resin may be polymerization inhibitors, photostabilizing agents, antioxidant agents, and pigments to form the color of the composite resin. A polymerization inhibitor such as hydroquinone (HQ), hydroquinone monomethyl ether or hydroquinone monoethyl ether can be added in an amount of 0.1 to 10% by weight based on the total weight of the composition. A photostabilizer such as Tinubin can be added in an amount of 0.01 to 5% by weight based on the total weight of the composition. An antioxidant such as Irganox (Tetrakis Propionate (3- (3,5-di-tert-butyl-4-hydroxyphenyl) pentaerythritol) and 2,6-di-tert-butyl-4-methyl phenol, butylhydroxytoluene (BHT) can be added in an amount of 0.01 to 5% by weight based on the total weight of the composition: Inorganic pigments yellow, navy blue, or red-iron oxides and iron dioxide Titanium can be added in an amount of% by weight of from 0.005 to 0.5 based on the total weight of the composition.
Algunas resinas compuestas de reciente introducción, son de curado dual, es decir, polimerizan mediante una reacción química así como por la exposición a la luz visible. La formulación en éste tipo de productos contienen iniciadores y aceleradores que permiten la generación de radicales libres por las dos vías descritas anteriormente (6) . Some recently introduced composite resins are dual curing, that is, they polymerize by chemical reaction as well as by exposure to visible light. The formulation in this type of products contains initiators and accelerators that allow the generation of free radicals by the two routes described above (6).
Clasificación de resinas Resin Classification
Las resinas compuestas para uso dental son clasificadas usando como principal criterio el promedio del tamaño de partículas que se encuentran formando a la matriz inorgánica del mismo (28-30). De acuerdo a la Tabla 1 se pueden distinguir varios grupos de resinas compuestas dentales, cada una con diferentes aplicaciones clínicas (6, 7). Composite resins for dental use are classified using as a main criterion the average size of particles that are forming in the inorganic matrix thereof (28-30). According to Table 1, several groups of dental composite resins can be distinguished, each with different clinical applications (6, 7).
Tabla 1 Clasificación de las Resinas Compuestas Table 1 Classification of Composite Resins
Tipo de Tamaño de Usos Clínicos  Type of Clinical Uses Size
Material Partícula  Particle Material
Tradicional 1-50 μπι Áreas de alto estrés Traditional 1-50 μπι High stress areas
Híbridas (1) 1-10 μπι Áreas de alto estrés a Hybrids (1) 1-10 μπι High stress areas a
donde se requiere buen where good is required
(2) 0,04-0,2 μπι (2) 0.04-0.2 μπι
pulido.  polished.
Microhíbridas (1) 0,1-2 μπι Áreas de alto estrés a Microhybrid (1) 0.1-2 μπι High stress areas a
donde se requiere buen where good is required
(2) 0,04-0,1 μπι (2) 0.04-0.1 μπι
pulido.  polished.
Nanorelleno 1-100 nm Áreas de alto estrés a Nanofill 1-100 nm High stress areas at
donde se requiere buen pulido. Nanohíbridas (1) 0,4 μηι Areas de alto estrés a where good polishing is required. Nanohybrid (1) 0.4 μηι High stress areas a
donde se requiere buen where good is required
(2) 1-100 mm (2) 1-100 mm
pulido.  polished.
Resinas Tradicionales: Este tipo de resinas corresponde a uno de los productos de este tipo más antiguos, razón por la cual reciben ese nombre. Utilizan partículas de cuarzo o cristales de estroncio o bario cuyo tamaño varía entre los 10 y 50 micrómetros (31) . Traditional Resins: This type of resins corresponds to one of the oldest products of this type, which is why they receive that name. They use quartz particles or strontium or barium crystals whose size varies between 10 and 50 micrometers (31).
Si bien este tipo de resinas presentan propiedades mecánicas aceptables, su uso clínico ha caído en el desuso. Debido a las grandes dimensiones de las partículas de carga, éste tipo de resinas son difíciles de pulir, además de que el desprendimiento de alguna partícula de relleno ocasiona la formación de pequeños cráteres. Esto da como resultado la posibilidad de atrapar diversos compuestos, ocasionando una importante pigmentación del material (7). Although these types of resins have acceptable mechanical properties, their clinical use has fallen into disuse. Due to the large dimensions of the charge particles, these types of resins are difficult to polish, in addition to the fact that the detachment of some filler particle causes the formation of small craters. This results in the possibility of trapping various compounds, causing significant pigmentation of the material (7).
Resinas compuestas híbridas y microhíbridas; esta clasificación incluye a materiales en cuya composición existen dos tamaños diferentes de partículas de relleno inorgánico. La combinación de tamaños confiere propiedades únicas a los materiales, ya que mejora la transferencia de tensiones entre las partículas en el composite, aumentando con esto la resistencia de la resinaHybrid and microhybrid composite resins; This classification includes materials in whose composition there are two different sizes of inorganic filler particles. The combination of sizes confers unique properties to the materials, since it improves the transfer of tensions between the particles in the composite, thereby increasing the resistance of the resin
(7) . (7).
Los aspectos que caracterizan a estos materiales son : disponer de gran variedad de colores y capacidad de mimetizacion con la estructura dental, menor contracción de polimerización, baja sorción acuosa, excelentes características de pulido y texturización; abrasión, desgaste y coeficiente de expansión térmica muy similar al de las estructuras dentarias, fórmulas de uso universal tanto en el sector anterior como en el posterior y diferentes grados de opacidad y translucidez en diferentes matices y fluorescencia (30). The aspects that characterize these materials are: to have a great variety of colors and ability to mimic the dental structure, less polymerization contraction, low aqueous sorption, excellent polishing and texturing characteristics; abrasion, wear and coefficient of thermal expansion very similar to that of dental structures, formulas for universal use in both the anterior and posterior sectors and different degrees of opacity and translucency in different shades and fluorescence (30).
Resinas de nanorelleno: Éstas contienen partículas de relleno de entre 1 y 100 nm de tamaño a lo largo de la matriz orgánica (29, 30). Una de las principales razones por las cuales se incorporan partículas de tan pequeña escala es debido a que su tamaño se encuentra por debajo de la escala de la luz visible (400-800 nm), lo que hace posible crear materiales con alta traslucidez (6). Nanofill Resins: These contain filler particles between 1 and 100 nm in size along the organic matrix (29, 30). One of the main reasons why particles of such a small scale are incorporated is because their size is below the scale of visible light (400-800 nm), which makes it possible to create materials with high translucency (6 ).
Existen dos tipos diferentes de nanopartículas que son agregadas a resinas compuestas dentales. El primero de ellos se basa en partículas monodispersas no agregadas de sílica o zirconia, mientras que un segundo tipo, consiste en un agregado de tamaño controlado de estas nanopartículas conocido como nanocluster (24) . There are two different types of nanoparticles that are added to dental composite resins. The first one is based on monodispersed non-aggregated particles of silica or zirconia, while a second type consists of a controlled size aggregate of these nanoparticles known as nanocluster (24).
En los nanoclusters, las partículas mantienen su forma y tamaño original, y estas se aglomeran de tal forma que permiten hacer partículas más grandes de 0,6 mieras de tamaño (24) . In nanoclusters, the particles maintain their original shape and size, and these agglomerate in such a way that they allow to make particles larger than 0.6 microns in size (24).
Los materiales de nanorelleno pueden considerarse únicos, ya que tienen propiedades mecánicas bastante aceptables, al mismo tiempo que presenta propiedades ópticas excelentes y que con el paso del tiempo se conservan (6) . Nanofill materials can be considered unique, since they have quite acceptable mechanical properties, while presenting excellent optical properties and that over time they are preserved (6).
Resumiendo, los nanorellenos utilizados en formulaciones comerciales, son : In summary, the nanofills used in commercial formulations are:
• Óxido de Silicio • Silicon oxide
• Óxido de Zirconio • Zirconium Oxide
Como se mencionó previamente, las partículas nanométricas ofrecen a este tipo de materiales la posibilidad de mostrar traslucidez; esta característica permite crear resinas con una amplia variedad de colores y opacidades que permiten restauraciones que logran igualar la apariencia de los tejidos dentales (11). As previously mentioned, nanometric particles offer this type of materials the possibility of showing translucency; This feature allows resins to be created with a wide variety of colors and opacities that allow restorations that match the appearance of dental tissues (11).
Para los materiales que se activan químicamente, la polimerización comienza inmediatamente después del mezclado de los dos componentes del material. El grado de polimerización es uniforme a lo largo de todo el material, causando un incremento gradual de su viscosidad (5, 11). Por lo anterior el tiempo de trabajo para éste grupo de materiales es limitado, de 3 a 5 minutos (6) . For chemically activated materials, polymerization begins immediately after mixing of the two components of the material. The degree of polymerization is uniform throughout the entire material, causing a gradual increase in its viscosity (5, 11). For the above the Working time for this group of materials is limited, from 3 to 5 minutes (6).
Para el caso de los materiales activados por luz, la polimerización inicia únicamente cuando el material es expuesto a la luz y endurece segundos después de que esto ocurre. Aunque el material tenga una apariencia dura y completamente polimerizado, es importante mencionar que la reacción continua por un periodo de 24 horas (7). Lo que ocurre es que no todos los dobles enlaces disponibles polimerizan, de hecho, un 25% de éstos permanecen sin reaccionar dentro de la restauración (24), además, una pequeña capa de material inhibida por el oxígeno, permanece sin polimerizar en la superficie de la resina, lo cual es beneficioso para poder aplicar la técnica de colocación ¡ncremental en estos sistemas restauradores (7). In the case of light activated materials, polymerization begins only when the material is exposed to light and hardens seconds after this occurs. Although the material has a hard and completely polymerized appearance, it is important to mention that the reaction continues for a period of 24 hours (7). What happens is that not all available double bonds polymerize, in fact, 25% of these remain unreacted within the restoration (24), in addition, a small layer of oxygen-inhibited material remains unpolymerized on the surface of the resin, which is beneficial to be able to apply the technique of ncremental placement in these restorative systems (7).
El tiempo y profundidad de polimerización de los materiales activados por luz, dependen en mayor medida de la intensidad de la lámpara así como de la cantidad de penetración del haz dentro del material (5). También es importante considerar que la exposición a la luz ambiental por entre 60 y 90 segundos, hacen que la superficie del material compuesta pierda su capacidad de fluir y por lo tanto, se vuelva difícil su manipulación (6) . The time and depth of polymerization of the materials activated by light, depend to a greater extent on the intensity of the lamp as well as the amount of penetration of the beam into the material (5). It is also important to consider that exposure to ambient light for between 60 and 90 seconds, makes the surface of the composite material lose its ability to flow and therefore, its handling becomes difficult (6).
La contracción de polimerización es el mayor inconveniente de estos materiales de restauración y, hasta el día de hoy, todas las resinas sufren de contracción con valores diferentes según el tipo a la que pertenecen (32-34) . Polymerization shrinkage is the major drawback of these restoration materials and, to this day, all resins suffer from contraction with different values depending on the type to which they belong (32-34).
Los valores de contracción por polimerización de algunos sistemas restauradores actuales, pueden presentar una reducción final del volumen desde el 0,5% hasta el 3% de acuerdo con publicaciones recientes (21, 24, 32, 35-38) . The polymerization shrinkage values of some current restorative systems may present a final reduction in volume from 0.5% to 3% according to recent publications (21, 24, 32, 35-38).
Cuando la resina todavía no ha activado sus sistemas iniciadores, las moléculas de la matriz de una resina compuesta se encuentran separadas por una distancia promedio de 0,340 nm, esta distancia está dada por la fuerzas de Van der Waals ejercidas por los elementos que conforman a cada monómero; al polimerizar y establecer uniones covalentes entre sí, esa distancia se reduce a 0,154 nm. Al final y en conjunto, el material polimerizado es más compacto y con volumen menor respecto al mismo material cuando no ha polimerizado (22, 39). When the resin has not yet activated its initiator systems, the matrix molecules of a composite resin are separated by an average distance of 0.340 nm, this distance is given by the forces of Van der Waals exerted by the elements that make up each monomer; by polymerizing and establishing covalent bonds with each other, that distance is reduced to 0.154 nm. At the end and together, the polymerized material is more compact and with a smaller volume compared to the same material when it has not polymerized (22, 39).
Si nos ubicamos dentro de una restauración con resina compuesta, la contracción por polimerización origina estrés de tipo residual, es decir, que las resinas al polimerizar producen y acumulan estrés que permanece dentro de la restauración sin poder disiparse por completo (40, 41). A esto debemos sumarle que si la adhesión de la resina a las paredes cavitarias restringe los cambios volumétricos, el estrés es entonces transferido directamente al diente. En los bismetacrilatos, alrededor del 80% de la contracción por polimerización resulta en la formación de estrés dentro de la estructura del diente (23). If we are located within a composite resin restoration, the polymerization contraction causes residual stress, that is, when the polymerization resins produce and accumulate stress that remains within the restoration without being able to dissipate completely (40, 41). To this we must add that if the adhesion of the resin to the cavity walls restricts the volumetric changes, the stress is then transferred directly to the tooth. In bismetacrylates, about 80% of polymerization contraction results in the formation of stress within the tooth structure (23).
La contracción volumétrica produce un estrés por contracción de alrededor de 13 MPa, lo suficiente como para deformar severamente la interfase resina- diente, originando brechas que puedan provocar la aparición de caries marginal, así mismo, el estrés puede superar la resistencia tensil del esmalte y provocar fracturas(37). The volumetric contraction produces a contraction stress of around 13 MPa, enough to severely deform the resin-tooth interface, causing gaps that can cause the appearance of marginal caries, likewise, stress can overcome the tensile strength of the enamel and cause fractures (37).
Otra propiedad que debe ser considerada en el diseño de composites de uso dental es el coeficiente de expansión térmica. El coeficiente de expansión térmica es la velocidad de cambio dimensional por unidad de cambio de temperatura. Cuanto más se aproxime el coeficiente de expansión térmica de la resina al coeficiente de expansión térmica de los tejidos dentarios, habrá menos probabilidades de formación de brechas marginales entre el diente y la restauración, al cambiar la temperatura (22) . Another property that should be considered in the design of dental composites is the coefficient of thermal expansion. The coefficient of thermal expansion is the rate of dimensional change per unit of temperature change. The closer the coefficient of thermal expansion of the resin is close to the coefficient of thermal expansion of dental tissues, the less likely there will be marginal gaps between the tooth and the restoration, as the temperature changes (22).
El coeficiente de expansión térmica lineal para las resinas compuestas varía de entre 25 a 68xlO"6/°C. Dicho valor es superior a los valores establecidos para el esmalte (Il,4xl0"6/°C) y para la dentina 8,3xlO"6/°C) (11) . The coefficient of linear thermal expansion for composite resins ranges from 25 to 68xlO "6 / ° C. This value is higher than the values established for enamel (Il, 4xl0 " 6 / ° C) and for dentin 8.3xlO "6 / ° C) (11).
La diferencia en los valores para esta propiedad, puede llevar a formar estrés adicional en la interfase resina-diente, lo cual puede llevar a la aparición de brechas en la restauración y permitir la percolación de fluidos orales (6) . La matriz polimérica de una resina compuesta para uso dental es capaz de absorber agua, fenómeno relacionado con la reducción de la dureza en la superficie y de la resistencia al desgaste del material (11) . The difference in the values for this property can lead to additional stress at the resin-tooth interface, which can lead to the appearance of gaps in the restoration and allow the percolation of oral fluids (6). The polymer matrix of a composite resin for dental use is capable of absorbing water, a phenomenon related to the reduction of surface hardness and wear resistance of the material (11).
La incorporación de agua en la resina, puede causar solubilidad de la matriz afectando negativamente las propiedades de la resina, este fenómeno es conocido como degradación hidrolítica. La calidad y estabilidad del agente de acoplamiento es muy importante para minimizar el deterioro de la unión entre el relleno y la matriz orgánica y, por lo tanto, la cantidad de agua que puede absorber (27) . The incorporation of water in the resin, can cause solubility of the matrix negatively affecting the properties of the resin, this phenomenon is known as hydrolytic degradation. The quality and stability of the coupling agent is very important to minimize the deterioration of the joint between the filler and the organic matrix and, therefore, the amount of water it can absorb (27).
La sorción acuosa es una propiedad atribuida a la fase orgánica, por lo que a mayor porcentaje de relleno incorporado al material, menor será ésta. En el caso de las resinas compuestas híbridas, este valor oscila entre los 5 y 17 μι /mm3, y para las resinas de micro-relleno se eleva hasta los 30 m/mm3 (6) . Aqueous sorption is a property attributed to the organic phase, so the higher the percentage of filler incorporated into the material, the lower it will be. In the case of hybrid composite resins, this value ranges between 5 and 17 μι / mm 3 , and for micro-filling resins it rises to 30 m / mm 3 (6).
La expansión provocada por la absorción de agua por parte del material, puede aliviar parcialmente el estrés provocado por la contracción por polimerización (42, 43); sin embargo, el fenómeno de la sorción acuosa es un proceso lento, y muchas de las resinas requieren de cuatro días para mostrar la mayor expansión posible (6). The expansion caused by the absorption of water by the material can partially relieve the stress caused by polymerization contraction (42, 43); However, the phenomenon of aqueous sorption is a slow process, and many of the resins require four days to show the greatest possible expansion (6).
Las propiedades mecánicas de éste tipo de materiales reflejan la cantidad de relleno inorgánico del que se componen, el tipo de relleno, la eficiencia del proceso de acoplamiento matriz-relleno así como de la porosidad del material polimerizado (5, 11) . La Tabla 2 presenta las principales propiedades mecánicas de diversas resinas compuestas. Tabla 2 Principales propiedades mecánicas de las resinas compuestasThe mechanical properties of this type of materials reflect the amount of inorganic filler of which they are composed, the type of filler, the efficiency of the matrix-filler coupling process as well as the porosity of the polymerized material (5, 11). Table 2 presents the main mechanical properties of various composite resins. Table 2 Main mechanical properties of composite resins
Propiedad Resina Resina Esmalte Dentina compuesta compuesta Property Resin Resin Enamel Composite composite dentin
de híbrida  of hybrid
microrrelleno  micro-filled
Resistencia a 260 300 384 297 Resistance to 260 300 384 297
la compresión  compression
(MPa)  (MPa)
Módulo de 6 14 84 18 Module 6 14 84 18
Young (GPa)  Young (GPa)
Resistencia 40 50 10 51 Stamina 40 50 10 51
tensil (MPa)  tensile (MPa)
Resistencia 80 150 - - Flexural (MPa) Resistance 80 150 - - Flexural (MPa)
Dureza (VHN) 30 90 408 60 Hardness (VHN) 30 90 408 60
Un material con un módulo elástico bajo se deforma ante la presencia de una carga. Comparado con el esmalte, las resinas compuestas presentan solo una fracción muy pequeña de éste valor. Esto representa un problema, ya que durante las cargas masticatorias, la deformación de la restauración genera estrés en la interfase resina-diente (7, 10) . A material with a low elastic modulus deforms in the presence of a load. Compared to enamel, composite resins have only a very small fraction of this value. This represents a problem, since during the masticatory loads, the deformation of the restoration generates stress in the resin-tooth interface (7, 10).
La resistencia a la compresión es un valor importante en este grupo de materiales ya que por efecto de la masticación, es el principal tipo de fuerza al que están sometidas (6). Compressive strength is an important value in this group of materials since, as a result of chewing, it is the main type of force to which they are subjected (6).
La dureza, es una propiedad directamente relacionada con la cantidad de relleno inorgánico y el grado de polimerización (5). El valor de dureza en la escala de Vickers para una resina sin relleno inorgánico es de 18, mientras que para una resina de tipo microhíbrida, éste valor se eleva hasta casi 100 (11). Hardness is a property directly related to the amount of inorganic filler and the degree of polymerization (5). The hardness value on the Vickers scale for a resin without inorganic filler is 18, while that for a microhybrid type resin, this value rises to almost 100 (11).
Desde su aparición, éste tipo de sistemas restauradores ha sido objeto de numerosos cambios en su composición, siendo las mejoras en el relleno inorgánico y en los mecanismos de iniciación los principales avances que se han logrado (24). Since its inception, this type of restorative systems has undergone numerous changes in its composition, with improvements in inorganic filler and initiation mechanisms being the main advances that have been achieved (24).
Con algunas excepciones como Filtek Silorane® (3M ESPE), la cual se basa en un monómero cíclico llamado silorano; Kalore® (GC América), presenta en su matriz orgánica un monómero bismetacrílico de alto peso molecular denominado DX-511 ; Venus Diamond® (Kulzer), material basado en el monómero de uretano TCD-DI-HEA; y N'Durance® (Septodont), en cuya matriz orgánica se utiliza monómeros dimetacrílicos aralifáticos o aromáticos y dímeros ácidos de metacrilatos uretánicos; el resto de los sistemas restauradores a base de resina compuesta que podemos encontrar comercialmente tienen como componentes principales al par Bis- GMA/TEGDMA (21, 25, 26) . With some exceptions such as Filtek Silorane® (3M ESPE), which is based on a cyclic monomer called silorane; Kalore® (GC América), presents in its organic matrix a high molecular weight bismetacrylic monomer called DX-511; Venus Diamond® (Kulzer), material based on the urethane monomer TCD-DI-HEA; and N'Durance® (Septodont), in whose organic matrix araliphatic or aromatic dimethacrylic monomers and acid dimers of urethane methacrylates are used; The rest of the composite resin-based restorative systems that we can find commercially have as main components the BisGMA / TEGDMA pair (21, 25, 26).
En los últimos años, el desarrollo de nuevos monómeros se ha convertido en un foco de investigación en los materiales de éste tipo. Recientes investigaciones permiten demostrar que el uso de alternativas diferentes al Bis-GMA/TEGDMA como matriz polimérica, logra mejorar algunas de las propiedades de las resinas compuestas para uso dental, tales como la resistencia flexural y el módulo de flexión, así como también, reducir significativamente los niveles de contracción por polimerización (44-52) . In recent years, the development of new monomers has become a research focus on materials of this type. Recent research allows to demonstrate that the use of alternatives other than Bis-GMA / TEGDMA as a polymer matrix, manages to improve some of the properties of composite resins for dental use, such as flexural strength and flexural modulus, as well as reduce significantly the levels of polymerization contraction (44-52).
La gran mayoría de la evidencia científica con que se cuenta, conduce a pensar que la manera más apropiada de mejorar este tipo de materiales se encuentra en la síntesis de nuevos monómeros que por su estructura química, puedan mejorar las propiedades de los materiales de los que se dispone actualmente. Los nuevos monómeros que se diseñan para este fin, se diseñan con la finalidad de que puedan poseer algunas de las siguientes características: reducción de la contracción por polimerización, liberación de fluoruro o algunas otras sustancias cariostáticas, mejorar las propiedades mecánicas y mejorar la biocompatibilidad al reducir el número de componentes que se liberan al medio oral (14, 23) . The vast majority of the scientific evidence available, leads us to think that the most appropriate way to improve this type of materials is in the synthesis of new monomers that, due to their chemical structure, can improve the properties of the materials of which It is currently available. The new monomers that are designed for this purpose are designed so that they can have some of the following characteristics: reduction of polymerization shrinkage, release of fluoride or some other cariostatic substances, improve mechanical properties and improve biocompatibility by reducing the number of components that are released into the oral environment (14, 23).
De acuerdo a estas características, numerosos investigadores han diseñado, sintetizado y aplicado diversos monómeros que cumplan con las características arriba mencionadas. Dichos monómeros, según Vasudeva, pueden clasificarse en 4 tipos (26) : According to these characteristics, numerous researchers have designed, synthesized and applied various monomers that meet the above mentioned characteristics. These monomers, according to Vasudeva, can be classified into 4 types (26):
1. Sistemas de monómeros con baja contracción por polimerización. 1. Monomer systems with low polymerization shrinkage.
2. Sistemas de monómeros anticariogénicos.  2. Systems of anticariogenic monomers.
3. Sistemas de monómeros hidrofóbicos.  3. Hydrophobic monomer systems.
4. Sistemas de monómeros de alta resistencia y alto grado de conversión.  4. Monomer systems of high resistance and high degree of conversion.
Sistemas de monómeros con baja contracción por polimerización . Monomer systems with low polymerization shrinkage.
La reducción de la contracción por polimerización de los sistemas restauradores actuales es uno de los principales retos a vencer a la hora de sintetizar nuevos monómeros, ya que, por lar razones que se expondrán en otro apartado de éste trabajo, esta característica de los sistemas restauradores actuales es uno de los principales factores que determinan la longevidad de una restauración hecha con éste tipo de material (32, 38, 53, 54) . The reduction of the polymerization contraction of the current restorative systems is one of the main challenges to overcome when synthesizing new monomers, since, for the reasons that will be exposed in another section of this work, this characteristic of the restorative systems Current is one of the main factors that determine the longevity of a restoration made with this type of material (32, 38, 53, 54).
El primer acercamiento hecho para conseguir esto, fue el uso de compuestos bíciclicos que polimerizaban por un mecanismo llamada apertura de anillos. Dichos compuestos fueron reportados por Baileys e incluían una gran variedad de monómeros que incluían ortoespirocarbonatos, bicicloacetalactonas, trioxabicicloctanos y acétales insaturados de benzoquinona (23, 55) . The first approach made to achieve this was the use of bicyclic compounds that polymerized by a mechanism called ring opening. Such compounds were reported by Baileys and included a wide variety of monomers that included ortho-spirocarbonates, bicycloacetalactones, trioxabicycloctanes and unsaturated acetals of benzoquinone (23, 55).
El interés por la aplicación de éste tipo de compuestos en resinas dentales se deriva por que presentan de 30 o 40% menos contracción que los metacrilatos que actualmente se ocupan (39). Una de las resinas compuestas para uso dental que encontramos en el mercado es Filtek Silorane® (3M ESPE) . Dicha resina usa, dentro de su composición una matriz orgánica basada en monomeros que polimerizan por la vía de la apertura de anillos conocidos como siloranos (56). The interest in the application of this type of compound in dental resins is derived because they have 30 or 40% less shrinkage than the methacrylates currently used (39). One of the composite resins for dental use that we find in the market is Filtek Silorane® (3M ESPE). Said resin uses, within its composition, an organic matrix based on monomers that polymerize via the opening of rings known as silorans (56).
La principal ventaja de este nuevo tipo de compuestos, es la baja contracción por polimerización. Las resinas compuestas basadas en siloranos poseen una contracción volumétrica que va del 0,94% al 0,99% según el método empleado (48, 57, 58) . The main advantage of this new type of compounds is the low polymerization shrinkage. Composite resins based on siloranos have a volumetric contraction ranging from 0.94% to 0.99% according to the method used (48, 57, 58).
Los siloranos revelan propiedades físicas comparables a las resinas compuestas que están basadas en metacrilatos (59) ; también, estudios toxicologicos revelan que los composites basados en siloranos son totalmente biocompatibles (58, 60). Siloranos reveal physical properties comparable to composite resins that are based on methacrylates (59); Also, toxicological studies reveal that silorane-based composites are fully biocompatible (58, 60).
La Tabla 3 describe otros monomeros de estas características que han sido sintetizados y aplicados de forma experimental por diversos autores. Algunos de éstos monomeros poseen un alto peso molecular, y otros dentro de su estructura, presentan compuestos cíclicos que se abren a la hora de polimerizar. Los resultados de pruebas mecánicas hechos con materiales compuestos basados en estos nuevos monomeros, revelan que su porcentaje de contracción, es significativamente menor que el del par BisGMA/TEGDMA, mientras que el comportamiento en cuanto a su módulo de flexión y resistencia flexural no se ven afectados significativamente al compararlos con un grupo control. (50, 61-73) . Table 3 describes other monomers of these characteristics that have been synthesized and applied experimentally by various authors. Some of these monomers have a high molecular weight, and others within their structure, have cyclic compounds that open at the time of polymerization. The results of mechanical tests made with composite materials based on these new monomers, reveal that their contraction percentage is significantly lower than that of the BisGMA / TEGDMA pair, while the behavior in terms of its flexural modulus and flexural strength is not visible. significantly affected when compared to a control group. (50, 61-73).
Tabla 3 Monómeros con baja contracción de polimerización Table 3 Monomers with low polymerization shrinkage
Figure imgf000031_0001
THMPEIB
Figure imgf000031_0001
THMPEIB
NA-EG n NA-BG n NA-HG n NA-EG n NA-BG n NA-HG n
TTEMA TTEMA
Sistemas de monómeros anticariogénicos. Anti-cryogenic monomer systems.
Una de las diferentes ¡deas que surgieron para compensar el efecto adverso de la contracción por polimerización que presentan los sistemas restauradores es la de incluir sustancias anticariogénicas que pudieran ser liberadas y así prevenir la acumulación de placa bacteriana en los alrededores de una interfase resina-diente deteriorada (26, 39). One of the different ideas that emerged to compensate for the adverse effect of polymerization contraction that restorative systems present is to include anti-cryogenic substances that could be released and thus prevent the accumulation of bacterial plaque around a resin-tooth interface impaired (26, 39).
Para éste fin, diferentes compuestos como la clorhexidina han sido incluidos en materiales experimentales, observando cierta actividad antibacterial provocada por la liberación de esta sustancia; sin embargo, la actividad se va reduciendo con el paso del tiempo así como de la misma forma, al incrementar la sorción acuosa de éstos materiales, sus propiedades mecánicas van reduciéndose con el paso del tiempo (74, 75) . For this purpose, different compounds such as chlorhexidine have been included in experimental materials, observing a certain antibacterial activity caused by the release of this substance; however, the activity is reduced over time as well as Increase the aqueous sorption of these materials, their mechanical properties are reduced over time (74, 75).
En el siguiente esquema se pueden apreciar diferentes monómeros que incluyen en su estructura elementos anticariogénicos que han sido sintetizados para evaluar sus propiedades bactericidas. Éstos nuevos monómeros presentan en su mayoría al elemento flúor dentro de su estructura, lo que les da la capacidad de ser utilizados como agentes cariostáticos. En éstos nuevos sistemas monoméricos estudiados, su capacidad de liberar fluoruro al medio bucal resulta suficiente para poder establecer un beneficio potencial, al mismo tiempo que las propiedades mecánicas obtenidas con ellos son equiparables con las del par BisGMA/TEGDMA (76-78) .
Figure imgf000033_0001
In the following scheme you can see different monomers that include in their structure anticariogenic elements that have been synthesized to evaluate their bactericidal properties. These new monomers present mostly the fluorine element within their structure, which gives them the ability to be used as cariostatic agents. In these new monomer systems studied, their ability to release fluoride to the oral environment is sufficient to establish a potential benefit, while the mechanical properties obtained with them are comparable with those of the BisGMA / TEGDMA pair (76-78).
Figure imgf000033_0001
BisFDFA FBBMA
Figure imgf000033_0002
BisFDFA FBBMA
Figure imgf000033_0002
FBDFA FBDFA
Figure imgf000033_0003
Figure imgf000033_0003
BísFGMÁ BísFGMÁ
Figure imgf000033_0004
Figure imgf000033_0004
FBGMA  FBGMA
Sistemas de monómeros hidrofóbicos. La sorción acuosa es un fenómeno relacionado con la reducción de la dureza en la superficie y de la resistencia al desgaste del material (11), razón por la cual, uno de los intentos que se hacen para reducir esta característica en los materiales compuestos de matriz polimérica es la de conseguir sistemas monoméricos que no tengan la capacidad de formar uniones secundarias con el agua (39). Hydrophobic monomer systems. Aqueous sorption is a phenomenon related to the reduction of surface hardness and wear resistance of the material (11), which is why one of the attempts made to reduce this characteristic in matrix composite materials Polymeric is to achieve monomer systems that do not have the capacity to form secondary joints with water (39).
Las modificaciones en éste sentido, se han reducido en cambiar algunas de las estructuras del monómero BisGMA. Muchas de estas modificaciones se centran en sustituir los grupos hidroxilos pendientes y los grupos metilo presentes en el centro de la cadena de la molécula por otros átomos de diferente naturaleza(14). Modifications in this regard have been reduced in changing some of the structures of the BisGMA monomer. Many of these modifications focus on replacing the pending hydroxyl groups and the methyl groups present in the center of the molecule chain with other atoms of different nature (14).
Un ejemplo de ello es el estudio realizado por Sankaparandian, quien estudió la sorción acuosa y la dureza de varios monómeros análogos al BisGMA, en donde los grupos metilo centrales fueron substituidos por flúor y anillos aromáticos. Dicho estudio permitió demostrar que aquellos monómeros fluorados resultaron tener un 10% menos de sorción acuosa con respecto al BisGMA (51). An example of this is the study by Sankaparandian, who studied the aqueous sorption and hardness of several monomers analogous to BisGMA, where the central methyl groups were replaced by fluorine and aromatic rings. This study allowed to demonstrate that those fluorinated monomers were found to have 10% less aqueous sorption with respect to BisGMA (51).
Sistemas de monómeros de alta resistencia y alto grado de conversión. Monomer systems of high resistance and high degree of conversion.
Las propiedades mecánicas de los polímeros dependen en gran medida de su grado de polimerización y peso molecular, así como del número de ramificaciones y el grado de entrecruzamiento que presente (2) . The mechanical properties of the polymers depend largely on their degree of polymerization and molecular weight, as well as the number of branches and the degree of crosslinking that it presents (2).
Actualmente, el grado de conversión para el sistema BisGMA/TEGDMA oscila entre el 42 y el 85% dependiendo del tipo de estudio (33, 41, 79-81). Se ha demostrado que la presencia de monómero residual perjudica las propiedades químicas, físicas y mecánicas de éstos materiales, por lo que se han propuesto nuevos monómeros con un mejor grado de conversión (26) . Currently, the degree of conversion for the BisGMA / TEGDMA system ranges from 42 to 85% depending on the type of study (33, 41, 79-81). It has been shown that the presence of residual monomer impairs the chemical, physical and mechanical properties of these materials, so new monomers with a better degree of conversion have been proposed (26).
Se sabe que el incremento del monómero TEGDMA en la formulación de una resina compuesta, mejora el grado de conversión de los materiales, sin embargo, al aumentar la concentración de éste monómero lineal, disminuyen las propiedades mecánicas (82, 83). It is known that the increase of the TEGDMA monomer in the formulation of a composite resin improves the degree of conversion of the materials, without However, as the concentration of this linear monomer increases, the mechanical properties decrease (82, 83).
Basándose en esto, varias investigaciones se centran en la sustitución del monómero TEGDMA como diluyente del BisGMA, por otros cuya estructura permita aumentar el grado de conversión, a su vez que no perjudica en las propiedades mecánicas de los materiales resultantes (63, 82, 84, 85). Based on this, several investigations focus on the substitution of the TEGDMA monomer as a diluent of BisGMA, with others whose structure allows to increase the degree of conversion, at the same time that does not harm the mechanical properties of the resulting materials (63, 82, 84 , 85).
Si bien las resinas compuestas se encuentran formadas por la combinación tridimensional de materiales químicamente diferentes entre sí, es posible considerar, dentro de este grupo de componentes, a la matriz orgánica como a la columna vertebral de este tipo de sistema restaurador (22), y por lo tanto, atribuirle a ésta, la gran mayoría de los inconvenientes que estos materiales restauradores presentan . Although composite resins are formed by the three-dimensional combination of chemically different materials from each other, it is possible to consider, within this group of components, the organic matrix and the backbone of this type of restorative system (22), and therefore, to attribute to it, the great majority of the inconveniences that these restorative materials present.
La matriz orgánica de los sistemas restauradores actuales se encuentra conformada por el par Bis-GMA/TEGDMA. Uno de los grandes inconvenientes de éstos monómeros es su grado de conversión incompleto, que deriva en la formación de polímeros menos resistentes; además, de que, su alta viscosidad impide la adición de mayor porcentaje de relleno inorgánico, disminuyendo la resistencia del mismo (50) . The organic matrix of current restorative systems is made up of the Bis-GMA / TEGDMA pair. One of the great disadvantages of these monomers is their degree of incomplete conversion, which results in the formation of less resistant polymers; In addition, its high viscosity prevents the addition of a higher percentage of inorganic filler, reducing its resistance (50).
La contracción por polimerización, es otro de los problemas derivados de la matriz orgánica; factores como el peso molecular y el grado de entrecruzamiento de los monómeros, así como la cantidad de relleno inorgánico contenida en el material compuesto, determinan el porcentaje de contracción del material (23, 24, 32). Polymerization shrinkage is another problem derived from the organic matrix; Factors such as the molecular weight and the degree of crosslinking of the monomers, as well as the amount of inorganic filler contained in the composite material, determine the percentage of contraction of the material (23, 24, 32).
En los últimos años, este tipo de materiales ha sido objeto de numerosas modificaciones experimentales, y una de las alternativas que se ha presentado para contrarrestar éste tipo de problemas, se centra en la sustitución de la matriz orgánica, por una que contenga nuevos monómeros que por sus características químicas, puedan resultar en materiales con mejores propiedades (23) . In recent years, this type of materials has undergone numerous experimental modifications, and one of the alternatives that has been presented to counteract these types of problems, focuses on the replacement of the organic matrix, with one that contains new monomers that due to their chemical characteristics, may result in materials with better properties (23).
Con la creciente demanda de restauraciones cada vez más funcionales y estéticas, los investigadores y fabricantes se han enfocado al desarrollo de nuevas tecnologías que permitan hacer de la resina compuesta, un material de restauración idóneo. El desarrollo de nuevos monómeros que logren mejorar alguna característica de los sistemas de resinas compuestas actuales, es considerado como una de las alternativas que podrían mejorar las características y propiedades de los materiales de éste tipo. With the growing demand for increasingly functional and aesthetic restorations, researchers and manufacturers have focused on the development of new technologies that make composite resin an ideal restoration material. The development of new monomers that manage to improve some characteristic of the current composite resin systems, is considered as one of the alternatives that could improve the characteristics and properties of materials of this type.
Por lo tanto, la presente invención tiene por finalidad proveer nuevos monómeros que permitan obtener un ventajoso desempeño mecánico de materiales basados en ellos superando los problemas del arte previo. Las mejoras introducidas en las propiedades de los materiales compuestos a base de resina, permitirá dar un paso adelante en la búsqueda de nuevos y mejores materiales que permitan ser usados en una mayor cantidad de aplicaciones clínicas con buenos resultados a largo plazo. Therefore, the present invention aims to provide new monomers that allow to obtain an advantageous mechanical performance of materials based on them overcoming the problems of the prior art. The improvements introduced in the properties of resin-based composite materials will allow a step forward in the search for new and better materials that can be used in a greater number of clinical applications with good long-term results.
Por lo tanto, la presente invención provee novedosos monómeros que poseen la fórmula general (I) : Therefore, the present invention provides novel monomers that have the general formula (I):
Figure imgf000036_0001
Figure imgf000036_0001
donde R puede ser where R can be
un grupo bifenilo insustituido o sustituido por OH, oxígeno, armiño, o alquilo C1-C4, carbonilo o carboxilo; un grupo fenilo insustituido o sustituido por OH, oxígeno, amino, alquilo Cl- 4, carbonilo o carboxilo; a biphenyl group unsubstituted or substituted by OH, oxygen, ermine, or C1-C4 alkyl, carbonyl or carboxyl; a phenyl group unsubstituted or substituted by OH, oxygen, amino, Cl-4 alkyl, carbonyl or carboxyl;
un grupo alquilo C2-10 insustituido o substituido por OH, oxígeno, amino, alquilo C1-C4, carbonilo o carboxilo; a C2-10 alkyl group unsubstituted or substituted by OH, oxygen, amino, C1-C4 alkyl, carbonyl or carboxyl;
un grupo alquenilo C2-C10 insustituido o substituido por hidroxilo, amino, oxigeno, alquilo C1-C4, carbonilo o carboxilo; a C2-C10 alkenyl group unsubstituted or substituted by hydroxyl, amino, oxygen, C1-C4 alkyl, carbonyl or carboxyl;
Siendo los monomeros preferidos aquellos donde R tiene los siguientes significados: Preferred monomers are those where R has the following meanings:
Figure imgf000037_0001
Figure imgf000037_0001
Obteniendo los siguientes monomeros : Obtaining the following monomers:
Figure imgf000038_0001
Figure imgf000038_0001
-Cis-OH -Cis-OH
Figure imgf000038_0002
Figure imgf000038_0002
B-1.7-OH  B-1.7-OH
Otro objeto de la invención refiere a métodos para la preparación de dichos monómeros bis-glicidilmetacrilatos. Another object of the invention relates to methods for the preparation of said bis-glycidyl methacrylate monomers.
El método general para la obtención del monómero de la fórmula general (I)
Figure imgf000038_0003
The general method for obtaining the monomer of the general formula (I)
Figure imgf000038_0003
donde R puede ser where R can be
un grupo bifenilo insustituido o sustituido por OH, oxígeno, amino, o alquilo C1-C4, carbonilo o carboxilo; un grupo fenilo insustituido o sustituido por OH, oxígeno, amino, alquilo Cl- 4, carbonilo o carboxilo; un grupo alquilo C2-10 insustituido o substituido por OH, oxígeno, armiño, alquilo C1-C4, carbonilo o carboxilo ; un grupo alquenilo C2-C10 insustituido o substituido por hidroxilo, armiño, oxigeno, alquilo C1-C4 carbonilo o carboxilo, comprende las etapas de: a) hacer reaccionar un compuesto de fórmula general OH-R-OH con epiclorhidrina para dar un compuesto intermediario en presencia de un solvente y b) hacer reaccionar el compuesto intermediario obtenido de la etapa a) con ácido metacrílico en presencia de un solvente y un catalizador para dar el compuesto de fórmula general (I) de acuerdo con el siguiente esquema de reacción : a biphenyl group unsubstituted or substituted by OH, oxygen, amino, or C1-C4 alkyl, carbonyl or carboxyl; a phenyl group unsubstituted or substituted by OH, oxygen, amino, Cl-4 alkyl, carbonyl or carboxyl; a C2-10 alkyl group unsubstituted or substituted by OH, oxygen, ermine, C1-C4 alkyl, carbonyl or carboxyl; a C2-C10 alkenyl group unsubstituted or substituted by hydroxyl, ermine, oxygen, C1-C4 alkylcarbonyl or carboxyl, comprises the steps of: a) reacting a compound of the general formula OH-R-OH with epichlorohydrin to give an intermediate compound in the presence of a solvent and b) reacting the intermediate compound obtained from step a) with methacrylic acid in the presence of a solvent and a catalyst to give the compound of general formula (I) according to the following reaction scheme:
Figure imgf000039_0001
Figure imgf000039_0002
donde R tiene los significados definidos precedentemente .
Figure imgf000039_0001
Figure imgf000039_0002
where R has the meanings defined above.
En una modalidad preferida de la presente invención, el monómero In a preferred embodiment of the present invention, the monomer
4,4'-bis[2-hidroxi-3-metacriloxipropoxi] bifenilo es obtenido de acuerdo con un procedimiento general que comprende las etapas de: a) hacer reaccionar un compuesto de 4,4 bisfenol con epiclorhidrina en presencia de un solvente para obtener el compuesto intermediario de fórmula BE-4,4-0H 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl is obtained according to a general procedure comprising the steps of: a) reacting a compound of 4.4 bisphenol with epichlorohydrin in the presence of a solvent to obtain the intermediate compound of formula BE-4,4-0H
Figure imgf000040_0001
y
Figure imgf000040_0001
Y
b) hacer reaccionar el compuesto intermediario con ácido metacrílico en presencia de un disolvente para obtener el compuesto 4,4'-bis[2-hidrox¡-3- metacriloxipropoxi] bifenilo de fórmula MB-4,4-0H : b) reacting the intermediate compound with methacrylic acid in the presence of a solvent to obtain the compound 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl of formula MB-4,4-0H:
Figure imgf000040_0002
Figure imgf000040_0002
Preferentemente en la etapas a) del método de obtención del monómero MB-4,4-0H, se hace reaccionar un compuesto de 4,4 bisfenol con epiclorhidrina en presencia de dimetilformamida como solvente y carbonato de potasio para obtener el compuesto intermediario BE-4,4-0H y en la etapa b) se hace reaccionar dicho compuesto intermediario BE-4,4-0H con ácido metacrílico en relación estequiométrica en presencia de dimetilformamida como solvente y de trietanol amina para dar el compuesto 4,4'-bis[2-hidroxi-3-metacriloxipropoxi] bifenilo (MB-4,4-0H) de acuerdo con el siguiente esquema de reacción : Preferably in steps a) of the method of obtaining the MB-4,4-0H monomer, a 4.4 bisphenol compound is reacted with epichlorohydrin in the presence of dimethylformamide as solvent and potassium carbonate to obtain the intermediate compound BE-4 , 4-0H and in step b) said intermediate compound BE-4.4-0H is reacted with stoichiometric methacrylic acid in the presence of dimethylformamide as solvent and triethanol amine to give compound 4,4'-bis [ 2-hydroxy-3-methacryloxypropoxy] biphenyl (MB-4,4-0H) according to the following reaction scheme:
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0001
Figure imgf000041_0002
En otra modalidad preferida de la invención el monómero 4,4'-bis[2-hidrox¡- 3-metacriloxipropoxi] bifenilo de fórmula MB-4,4-0H es obtenido por un método que comprende la etapa de hacer reaccionar el compuesto de 4,4- bifenol con el glicidilmetacrilato en presencia de un solvente para obtener el compuesto 4,4'-bis[2-hidroxi-3-metacriloxipropoxi] bifenilo de fórmula MB- 4,4-OH : In another preferred embodiment of the invention, the 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl monomer of formula MB-4,4-0H is obtained by a method comprising the step of reacting the compound of 4,4- biphenol with glycidylmethacrylate in the presence of a solvent to obtain the compound 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl of formula MB-4,4-OH:
Figure imgf000041_0003
Figure imgf000041_0003
Preferentemente, el compuesto de 4,4-bifenol con el glicidilmetacrilato se hace reaccionar en una relación estequiométrica de 1 : 2,5, utilizando trietilamina e hidroquinona como inhibidor y dimetilformamida como solvente de acuerdo con el siguiente esquema de reacción : Preferably, the 4,4-biphenol compound with the glycidyl methacrylate is reacted in a stoichiometric ratio of 1: 2.5, using triethylamine and hydroquinone as an inhibitor and dimethylformamide as a solvent according to the following reaction scheme:
Figure imgf000042_0001
Figure imgf000042_0001
En otra modalidad preferida de la invención, el monómero l,4-bis[(2- hidroxi-3-metacriloxi propoxi)metil]fenilo de fórmula MB-Fen-OH se obtiene por medio de un procedimiento que comprende las etapas de a) hacer reaccionar 1,4-benzenodimetanol y la epiclorhidrina en presencia de un solvente para dar el compuesto intermediario BE-Fen-OH de fórmula :
Figure imgf000042_0002
In another preferred embodiment of the invention, the 1,4-bis [(2- hydroxy-3-methacryloxy propoxy) methyl] phenyl monomer of formula MB-Fen-OH is obtained by means of a process comprising the steps of a) Reacting 1,4-benzenedimethanol and epichlorohydrin in the presence of a solvent to give the intermediate compound BE-Fen-OH of the formula:
Figure imgf000042_0002
BE-Fen-OH b) hacer reaccionar dicho compuesto intermediario BE-Fen-OH con ácido metacrílico en presencia de un solvente para obtener el compuesto 1,4- bis[(2-hidrox¡-3-metacr¡lox¡ propoxi)metil]fenilo de fórmula MB-Fen-OH :  BE-Fen-OH b) reacting said BE-Fen-OH intermediate compound with methacrylic acid in the presence of a solvent to obtain the 1,4-bis [(2-hydroxy-3-methacryloxyl propoxy) methyl compound ] phenyl of formula MB-Fen-OH:
Figure imgf000042_0003
Figure imgf000042_0003
Preferentemente, en la etapa a) del procedimiento de obtención del monómero l,4-bis[(2-hidrox¡-3-metacr¡lox¡ propoxi)metil]fenilo de fórmula MB-Fen-OH se hace reaccionar el compuesto 1,4-bencenodimetanol y epiclorhidrina, en presencia de hidruro de sodio como catalizador y DMF como solvente para obtener el compuesto intermediario BE-Fen-OH y en la etapa b) se hace reaccionar dicho intermediario de fórmula BE-Fen-OH con ácido metacrílico en presencia de dimetilformamida y trietanol amina de acuerdo con el siguiente esquema de reacción : Preferably, in step a) of the process for obtaining the monomer 1, 4-bis [(2-hydroxy-3-methacryloxypropoxy) methyl] phenyl of formula MB-Fen-OH, compound 1 is reacted, 4-benzenedimethanol and epichlorohydrin, in the presence of sodium hydride as catalyst and DMF as solvent to obtain the intermediate compound BE-Fen-OH and in step b) said intermediate of formula BE-Fen-OH is reacted with methacrylic acid in presence of dimethylformamide and triethanol amine according to the following reaction scheme:
Figure imgf000043_0001
Figure imgf000043_0001
En otra modalidad preferida de la presente invención, - el monómero 1,4- bis[2-hidroxi-3-metacriloxipropoxi] butano de fórmula MB-1,4-0H se obtiene mediante un procedimiento que comprende a) hacer reaccionar 1,4-butanodiol y la epiclorhidrina en presencia de un solvente para obtener el compuesto intermediario de fórmula BE-1,4- OH : In another preferred embodiment of the present invention, the 1,4-bis [2-hydroxy-3-methacryloxypropoxy] butane monomer of formula MB-1,4-0H is obtained by a method comprising a) reacting 1.4 -butanediol and epichlorohydrin in the presence of a solvent to obtain the intermediate compound of formula BE-1,4-OH:
Figure imgf000043_0002
Figure imgf000043_0002
BE- -OH y b) hacer reaccionar dicho compuesto intermediario BE-1,4-0H con ácido acrílico en presencia de un solvente para obtener dicho compuesto de fórmula MB-1,4-0H BE- -OH and b) reacting said intermediate compound BE-1,4-0H with acrylic acid in the presence of a solvent to obtain said compound of formula MB-1,4-0H
Figure imgf000043_0003
Figure imgf000043_0003
MB-L4-ÜM Preferentemente, en la etapa a) se hace reaccionar 1,4-butanodiol y epiclorhidrina en presencia de hidruro de sodio como catalizador y dimetilformamida como solvente para obtener el compuesto intermediario de fórmula BE-1,4-0H, y en la etapa b) se hace reaccionar dicho compuesto intermediario BE-1,4-0H con ácido acrílico en una relación estequiométrica de 1 a 2,5 en presencia de trietanolamina y dimetilformamida como solvente para obtener dicho compuesto de fórmula MB-1,4-0H de acuerdo con el siguiente esquema de reacción : MB-L4-ÜM Preferably, in step a) 1,4-butanediol and epichlorohydrin are reacted in the presence of sodium hydride as catalyst and dimethylformamide as solvent to obtain the intermediate compound of formula BE-1,4-0H, and in step b) Said intermediate compound BE-1,4-0H is reacted with acrylic acid in a stoichiometric ratio of 1 to 2.5 in the presence of triethanolamine and dimethylformamide as solvent to obtain said compound of formula MB-1,4-0H according to The following reaction scheme:
Paso ) Paso 2
Figure imgf000044_0001
Step) Step 2
Figure imgf000044_0001
En otra modalidad preferida de la invención el monómero (Z)-l,4-bis[2- hidroxi-3-metacriloxi propoxi]-2-buteno de fórmula MB-Cis-OH, se obtiene mediante un procedimiento que comprende las etapas de: a) hacer reaccionar el compuesto cis-2-buten-l,4-diol y la epiclorhidrina en presencia de un solvente para obtener el compuesto intermediario de fórmula BE-cis-OH
Figure imgf000044_0002
y b) hacer reaccionar dicho compuesto intermediario BE-Cis-OH con ácido acrílico en presencia de un solvente para obtener el compuesto de fórmula MB-Cis-OH
In another preferred embodiment of the invention, the monomer (Z) -l, 4-bis [2- hydroxy-3-methacryloxy propoxy] -2-butene of the formula MB-Cis-OH is obtained by a process comprising the steps of : a) reacting the cis-2-buten-l, 4-diol and epichlorohydrin compound in the presence of a solvent to obtain the intermediate compound of formula BE-cis-OH
Figure imgf000044_0002
Y b) reacting said BE-Cis-OH intermediate compound with acrylic acid in the presence of a solvent to obtain the compound of formula MB-Cis-OH
Figure imgf000045_0001
Figure imgf000045_0001
· ί L-OH  Ί L-OH
Preferentemente, en la etapa a) se hace reaccionar el compuesto cis-2- buten-1, 4-diol y la epiclorhidrina en presencia de hidruro de sodio como catalizador y dimetilformamida como un solvente para obtener el compuesto intermediario de fórmula BE-cis-OH, y en la etapa b) se hace reaccionar dicho compuesto intermediario BE-Cis-OH con ácido acrílico en una relación estequiométrica de 1 a 2,5 en presencia de trietanolamina como catalizador y dimetilformamida un solvente para obtener el compuesto de fórmula MB-Cis- OH de acuerdo con el siguiente esquema de reacción : Preferably, in step a) the cis-2- buten-1,4-diol compound and the epichlorohydrin are reacted in the presence of sodium hydride as catalyst and dimethylformamide as a solvent to obtain the intermediate compound of formula BE-cis- OH, and in step b) said BE-Cis-OH intermediate compound is reacted with acrylic acid in a stoichiometric ratio of 1 to 2.5 in the presence of triethanolamine as catalyst and dimethylformamide a solvent to obtain the compound of formula MB- Cis-OH according to the following reaction scheme:
Paso 2 Step 2
CC
o
Figure imgf000045_0002
or
Figure imgf000045_0002
y o" y "o-I " and" o-
OH OHOH OH
IVIB-Cis-OH IVIB-Cis-OH
Una ulterior modalidad de la invención el monómero l,7-bis[2-hidrox¡-3- metacriloxi propoxi]heptano de fórmula MB-l,7-OH, se obtiene por medio de un procedimiento que comprende las etapas de: a) hacer reaccionar 1,7-heptanodiol y la epiclorhidrina en presencia de un solvente para obtener el compuesto intermediario de fórmula BE-1,7- OH
Figure imgf000046_0001
A further embodiment of the invention the monomer l, 7-bis [2-hydroxy-3-methacryloxy propoxy] heptane of formula MB-l, 7-OH, is obtained by means of a process comprising the steps of: a) react 1,7-heptanediol and epichlorohydrin in the presence of a solvent to obtain the intermediate compound of formula BE-1,7-OH
Figure imgf000046_0001
BE-1/7-OH y b) hacer reaccionar el compuesto intermediario BE-l,7-OH en presencia de un disolvente y un catalizador para obtener el compuesto de fórmula MB-l,7-OH : BE-1/7-OH and b) react the intermediate compound BE-l, 7-OH in the presence of a solvent and a catalyst to obtain the compound of formula MB-l, 7-OH:
Figure imgf000046_0002
Figure imgf000046_0002
Preferentemente, en la etapa a) se hace reaccionar 1,7-heptanodiol y la epiclorhidrina en presencia de un dimetilformamida como solvente e hidruro de sodio como catalizador para obtener el compuesto intermediario de fórmula BE-l,7-OH y en la etapa b) se hace reaccionar el compuesto intermediario BE-l,7-OH en presencia de dimetilformamida como disolvente y trietanolamina para obtener el compuesto de fórmula MB-l,7-OH de acuerdo con el siguiente esquema de reacción : Preferably, in step a) 1,7-heptanediol and epichlorohydrin are reacted in the presence of a dimethylformamide as solvent and sodium hydride as catalyst to obtain the intermediate compound of formula BE-1, 7-OH and in step b ) the intermediate compound BE-l, 7-OH is reacted in the presence of dimethylformamide as solvent and triethanolamine to obtain the compound of formula MB-l, 7-OH according to the following reaction scheme:
Figure imgf000046_0003
Figure imgf000046_0003
Un objeto adicional de la invención se refiere a formulaciones de resinas de restauración dental que comprende dichos monómeros. Parte experimental A further object of the invention relates to dental restoration resin formulations comprising said monomers. Experimental part
Equipo Team
Los espectros de Resonancia Magnética Nuclear (RMN) se realizaron en un espectrómetro JEOL Eclipse +400, utilizando como disolvente cloroformo deuterado (CDCI3) a 400 MHz para - H y a 100 MHz para -13C, usando al compuesto tetrametilsilano (TMS) como referencia . Los desplazamientos químicos (δ) se expresan en ppm. Las constantes de acoplamiento (J) están expresadas en Hz. La multiplicidad de las señales en los espectros de RMN- se abrevia como s : singulete, d : doblete, t: triplete y m : multiplete. Nuclear Magnetic Resonance (NMR) spectra were performed on a JEOL Eclipse +400 spectrometer, using as deuterated chloroform solvent (CDCI 3 ) at 400 MHz for - H and at 100 MHz for - 13 C, using the tetramethylsilane compound (TMS) as reference Chemical shifts (δ) are expressed in ppm. The coupling constants (J) are expressed in Hz. The multiplicity of the signals in the NMR spectra is abbreviated as s: singlet, d: doublet, t: triplet and m: multiplet.
Los espectros de IR se obtuvieron en un espectrofotómetro infrarrojo con transformada de Fourier (IR-FT) Perkin Elmer FT-IR System 2000. preparando pastillas de KBr.  IR spectra were obtained on a Perkin Elmer FT-IR System 2000 infrared spectrophotometer with Fourier transform (IR-FT). Preparing KBr tablets.
Las imágenes de microscopía electrónica de barrido (SEM) fueron obtenidas de un equipo JEOL modelo JSM6300.  Scanning electron microscopy (SEM) images were obtained from a JEOL model JSM6300.
Las imágenes de las nanopartículas del relleno inorgánico silanizado y sin silanizar fueron obtenidas de un Microscopio Electrónico de Transmisión (TEM) marca JEOL modelo JEM 21-00. Las muestras fueron preparadas colocando una gota de solución coloidal sobre una rejilla de cobre cubierta con una capa de carbón amorfo y secando a vacío.  The images of the nanoparticles of the inorganic filler silanized and without silanizing were obtained from a Transmission Electron Microscope (TEM) brand JEOL model JEM 21-00. The samples were prepared by placing a drop of colloidal solution on a copper grid covered with a layer of amorphous carbon and drying under vacuum.
Todas las reacciones fueron monitoreadas por cromatografía en capa fina utilizando como fase estacionaria cromatoplacas de sílica gel y alúmina con espesor de capa de 0,22 mm; como fase móvil se usaron diversas mezclas de disolventes. Como revelador se utilizó una solución Blue-Stain y una lámpara de luz UV.  All reactions were monitored by thin layer chromatography using silica gel and alumina chromatoplacs with a 0.22 mm layer thickness as the stationary phase; various solvent mixtures were used as the mobile phase. As a developer, a Blue-Stain solution and a UV lamp were used.
Las polimerizaciones fueron hechas con una unidad de fotopolimerización Bluephase® (Ivoclar-Vivadent) equipada con una luz visible de LED, que cuenta con la posibilidad de variar la intensidad de la luz emitida en un rango de 1200 mW/cm2 a 460 mW/cm2. The polymerizations were made with a Bluephase® light curing unit (Ivoclar-Vivadent) equipped with a visible LED light, which has the possibility of varying the intensity of the light emitted in a range of 1200 mW / cm 2 to 460 mW / cm 2
Las dimensiones de las probetas fueron medidas utilizando un calibrador digital Mitutoyo (Mod . CD-6"C Mitutoyo corp. Japan) .  The dimensions of the specimens were measured using a Mitutoyo digital caliper (Mod. CD-6 "C Mitutoyo corp. Japan).
El ensayo de flexión de 3 puntos fue realizado en una máquina de pruebas universales Instron (Instron modelo 1100 Mas USA) . Reactivos y disolventes. The 3-point bending test was performed on an Instron universal testing machine (Instron model 1100 Mas USA). Reagents and solvents.
Los diferentes reactivos y disolventes utilizados para la síntesis de los compuestos reportados en el presente trabajo se encuentran descritos en las Tablas 4 y 5. Los disolventes se purificaron y secaron de acuerdo a las técnicas descritas en la literatura (87, 88) ; el resto de los reactivos fueron utilizados tal y como se recibieron.  The different reagents and solvents used for the synthesis of the compounds reported in the present work are described in Tables 4 and 5. The solvents were purified and dried according to the techniques described in the literature (87, 88); The rest of the reagents were used as received.
Tabla 4 Disolventes utilizados Table 4 Solvents used
Figure imgf000048_0001
metanol etanol
Figure imgf000048_0001
methanol ethanol
CH3OH H CH3-CH2-OH CH3OH H CH 3- CH 2 -OH
Marca: Sigma ,P 0 Marca: Sigma Aldrich Brand: Sigma, P 0 Brand: Sigma Aldrich
H  H
Aldrich  Aldrich
Peso Molecular:  Molecular weight:
Peso Molecular: 32,04 g/mol 46,07 g/mol H H H Molecular Weight: 32.04 g / mol 46.07 g / mol HH H
H-C-C-O' H-C-C-O '
Densidad: 0,791 g/cm3 Densidad: 0,789 " g/cm3 Density: 0.791 g / cm 3 Density: 0.789 "g / cm 3
Punto de Ebullición: 65°C  Boiling Point: 65 ° C
Punto de Ebullición: 78°C  Boiling Point: 78 ° C
acetato de etilo ethyl acetate
CH3COOC2H5 CH 3 COOC 2 H 5
Marca: Sigma 0  Brand: Sigma 0
Aldrich  Aldrich
Peso Molecular: 88,11 g/mol  Molecular Weight: 88.11 g / mol
Densidad: 0,897 g/cm3 Density: 0.897 g / cm 3
Punto de Ebullición: 77°C Boiling Point: 77 ° C
Tabla 5 Lista de Reactivos utilizados Table 5 List of Reagents used
Figure imgf000049_0001
Densidad: 1,072 M0 -OH Densidad: 1,017 HO - -0H g/cm3 g/cm3
Figure imgf000049_0001
Density: 1,072 M0 -OH Density: 1,017 HO - - 0 H g / cm 3 g / cm 3
Punto de Ebullición: 235°C Punto de Ebullición: 235°C Boiling Point: 235 ° C Boiling Point: 235 ° C
1,7-heptanodiol 4,4-bifenol 1,7-heptanediol 4,4-biphenol
Marca: Sigma Aldrich Marca: Sigma  Brand: Sigma Aldrich Brand: Sigma
Aldrich ^...^..^-o» Aldrich ^ ... ^ .. ^ - o »
Peso Molecular: Molecular weight:
132,20 g/mol ho Peso Molecular: 186,21 g/mol 132.20 g / mol or Molecular Weight: 186.21 g / mol
Densidad: 0,951 g/cm3 Punto de fusión: 280°C Density: 0.951 g / cm 3 Melting point: 280 ° C
Punto de Ebullición: 259°C Boiling Point: 259 ° C
hidruro de sodio sodium hydride
1,4-benzenodimetanol  1,4-benzenedimethanol
Marca: Sigma  Brand: Sigma
Marca: Sigma ^v"-. Aldrich  Brand: Sigma ^ v "-. Aldrich
Aldrich Peso Molecular: 24 g/mol  Aldrich Molecular Weight: 24 g / mol
Peso Molecular: 138,16  Molecular Weight: 138.16
Punto de fusión: 800°C g/mol  Melting point: 800 ° C g / mol
Punto de Fusión: 114°C  Melting Point: 114 ° C
trietilamina epiclorhidrina triethylamine epichlorohydrin
Marca: Sigma Aldrich Marca: Sigma Aldrich  Brand: Sigma Aldrich Brand: Sigma Aldrich
Peso Molecular: Peso Molecular:  Molecular Weight: Molecular Weight:
101,19 g/mol
Figure imgf000050_0001
92,52 g/mol
101.19 g / mol
Figure imgf000050_0001
92.52 g / mol
Densidad: 0,7255 g/cm3 Densidad: 1,1812 g/cm3 Density: 0.7255 g / cm 3 Density: 1.1812 g / cm 3
Punto de Ebullición: 90°C Punto de Ebullición: 117, 9°C Boiling Point: 90 ° C Boiling Point: 117, 9 ° C
glicidilmetacrilato ácido metacrílico h¿C JÍ-OH Marca: Sigma Aldrich Marca: Sigma Aldrich glycidyl methacrylate methacrylic acid hC JÍ -OH Brand: Sigma Aldrich Brand: Sigma Aldrich
Peso Molecular: o Peso Molecular: 86,09 g/mol r- 1  Molecular Weight: o Molecular Weight: 86.09 g / mol r- 1
142,15 g/mol b  142.15 g / mol b
Densidad: 1,015 g/cm3 Density: 1,015 g / cm 3
Densidad: 1,042 g/cm3 Density: 1,042 g / cm 3
Punto de Ebullición: 163°C Boiling Point: 163 ° C
Punto de Ebullición: 189°C Boiling Point: 189 ° C
4-dimetilaminobenzoato de : hidroquinona 4-dimethylaminobenzoate from: hydroquinone
"■■f etilo Marca: Sigma Aldrich OH "■■ f ethyl Brand: Sigma Aldrich OH
Marca: Sigma ¡ Peso Molecular: 110,11 g/molBrand: Sigma Molecular Weight: 110.11 g / mol
Aldrich ^ Aldrich ^
Punto de Fusión: 172°C Peso Molecular: 193,24 g/mol  Melting Point: 172 ° C Molecular Weight: 193.24 g / mol
Punto de Fusión: 63°C Melting Point: 63 ° C
canforquinona camphorquinone
3-(trimetoxisilil)propil  3- (trimethoxysilyl) propyl
Marca: Sigma metacrilato  Brand: Sigma Methacrylate
Aldrich Aldrich
Figure imgf000051_0001
Figure imgf000051_0001
Marca: Sigma Peso Molecular: Brand: Sigma Molecular Weight:
Aldrich ^ -^r*1 166,22 g/mol Aldrich ^ - ^ r * 1 166.22 g / mol
Peso Molecular: 248,35 g/mol  Molecular Weight: 248.35 g / mol
Punto de Fusión: 197°C Melting Point: 197 ° C
Densidad: 1,045 g/mL Density: 1,045 g / mL
Punto de Fusión: 190°C Melting Point: 190 ° C
bisfenol A Dimetacrilato de ; Dimetacrilato de trietilenglicol ; glicerilo Marca : Sigma Aldrich bisphenol A Dimethacrylate; Triethylene glycol dimethacrylate; Glyceryl Brand: Sigma Aldrich
Marca : Sigma Aldrich Peso Molecular: 286,32 g/mol Brand: Sigma Aldrich Molecular Weight: 286.32 g / mol
Peso Molecular: 512,59 g/mol Molecular Weight: 512.59 g / mol
De From
i^ J...-. ...... "^ÜL....-.J ...^ nsi Densidad : 1,092 g/mL i ^ J ...-. ...... " ^ ÜL ....-. J ... ^ nsi Density: 1,092 g / mL
" " da  " " gives
d : 1,161 g/mL  d: 1,161 g / mL
Síntesis de los Monómeros. Synthesis of the Monomers.
Síntesis del monómero 4,4'-bis[2-hidroxi-3-metacriloxipropoxi] bifenilo) [MB-4,4-OH]. Synthesis of the 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl) [MB-4,4-OH] monomer.
La síntesis del monómero MB-4,4-0H se llevó a cabo en dos diferentes rutas sintéticas diferentes. La primera ruta de síntesis es ¡lustrada a continuación y consiste en una reacción de dos etapas. La primera etapa de reacción consiste en la síntesis del intermediario BE-4,4-0H mediante una reacción de eterificación entre el 4,4'-bifenol y la epiclorhidrina. The synthesis of the MB-4,4-0H monomer was carried out in two different synthetic routes. The first route of synthesis is illustrated below and consists of a two-stage reaction. The first reaction stage consists in the synthesis of intermediate BE-4,4-0H by means of an etherification reaction between 4,4'-biphenol and epichlorohydrin.
Figure imgf000053_0001
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000053_0002
Ruta sintética de dos pasos para el monómero MB-4,4-OH Two-step synthetic route for MB-4,4-OH monomer
En un balón de dos bocas equipado con agitador magnético, se agregaron : 1 g (5 mmoles) de 4,4-bifenol y 6 g (21 mmoles) de K2C03 y 10 mL de DMF como disolvente. El matraz fue colocado en un baño de agua donde la temperatura de reacción fue llevada a 55°C. Una vez alcanzada dicha temperatura, se adicionaron lentamente 1,18 g (12 mmoles) de epiclorhidrina disueltos en 5 mL de DMF. La reacción se mantuvo bajo una atmósfera de argón y agitación constante durante 12 horas a 55°C y continuó a temperatura ambiente durante 48 horas más. Transcurrido éste tiempo, se adicionaron 40 mL de acetona al medio de reacción y se mantuvo en agitación por un periodo de 1 hora. Al finalizar este lapso de tiempo, el medio de reacción fue filtrado al vacío utilizando un embudo buchner y un papel filtro Whatman® del número 5. La acetona filtrada fue evaporada obteniéndose un sólido de color blanco. El compuesto final, fue purificado mediante la técnica de recristalización con etanol, presentándose como un sólido de color blanco.
Figure imgf000054_0001
In a two-mouth ball equipped with magnetic stirrer, 1 g (5 mmol) of 4,4-biphenol and 6 g (21 mmol) of K 2 C0 3 and 10 mL of DMF were added as solvent. The flask was placed in a water bath where the reaction temperature was brought to 55 ° C. Once this temperature was reached, 1.18 g (12 mmol) of epichlorohydrin dissolved in 5 mL of DMF was slowly added. The reaction was maintained under an atmosphere of argon and constant stirring for 12 hours at 55 ° C and continued at room temperature for an additional 48 hours. After this time, 40 mL of acetone was added to the reaction medium and kept under stirring for a period of 1 hour. At the end of this period, the reaction medium was filtered under vacuum using a buchner funnel and a Whatman® filter paper of number 5. The filtered acetone was evaporated to obtain a white solid. The final compound was purified by the technique of recrystallization with ethanol, presenting itself as a white solid.
Figure imgf000054_0001
El compuesto fue caracterizado por RMN H, RMN 13C, FTIR y Análisis elemental. RMN (CDCI3, 400 MHz) δ (ppm): 7,46 (d, 4H, JB,C 8,7 Hz, H- B), 6,97 (d, 4H, JC,B 8,7 Hz, H-C), 4,25(dd, 2H, JEa,Eb l l,0 Hz, JEa,F 3, 1 Hz, H- Ea), 3,99 (dd, 2H, JEa,Eb 11,0 Hz, JEa,F 5,7 Hz, H-Eb), 3,38 (m, 2H, H-F), 2,92 (t, 1H, JGa,Gb ≡ JGa,F 4,5 Hz, H-Ga), 2,92 (dd, 2H, JGb,Ga 4,9 Hz, JGb,F 2,7 Hz, H-Gb) . RMN 13C (CDCI3, 100 MHz) δ (ppm): 157,61 (C-A), 133,82 (C-D), 127,75 (C-B), 114,86 (C-C), 68,80 (C-E), 50, 16 (C-F), 44,73 (C-G) . IR (KBr, cm 1): 2909 (usim -C-H) 1606, 1500
Figure imgf000054_0002
C Ar), 1247 y 1037 (OasimC- O-C), 1133 (OsimC-0-C), 910, 863 y 762 (vibración esqueleto epóxido) . Análisis Elemental: calculado para Ci8Hi804: C, 72,47; H, 6,08. . Encontrado : C, 71,67 ; H, 5,96.
The compound was characterized by H NMR, 13 C NMR, FTIR and Elemental Analysis. NMR (CDCI 3 , 400 MHz) δ (ppm): 7.46 (d, 4H, J B , C 8.7 Hz, H- B), 6.97 (d, 4H, J C , B 8.7 Hz, HC), 4.25 (dd, 2H, J Ea , Eb ll, 0 Hz, J Ea , F 3, 1 Hz, H- Ea), 3.99 (dd, 2H, J Ea , E b 11 , 0 Hz, J Ea , F 5.7 Hz, H-Eb), 3.38 (m, 2H, HF), 2.92 (t, 1H, JG a , Gb ≡ J Ga , F 4.5 Hz , H-Ga), 2.92 (dd, 2H, JG b , Ga 4.9 Hz, JG b , F 2.7 Hz, H-Gb). 13 C NMR (CDCI 3 , 100 MHz) δ (ppm): 157.61 (CA), 133.82 (CD), 127.75 (CB), 114.86 (CC), 68.80 (CE), 50, 16 (CF), 44.73 (CG). IR (KBr, cm 1 ): 2909 (u sim -CH) 1606, 1500
Figure imgf000054_0002
C Ar), 1247 and 1037 (C- O OC asym), 1133 (C-O sim 0-C), 910, 863 and 762 (epoxide skeleton vibration). Elemental Analysis: calculated for Ci 8 Hi 8 0 4 : C, 72.47; H, 6.08. . Found: C, 71.67; H, 5.96.
En una segunda etapa, se llevó a cabo la formación de un grupo éster unido al grupo vinílico al hacer reaccionar el compuesto intermediario BE-4,4-0H con el ácido metacrílico en una relación estequiométrica de 1 : 2,5, utilizando trietilamina, en una concentración de 2% y DMF como solvente. En un balón de dos bocas protegido de la luz con papel aluminio, y equipado con agitador magnético y termómetro, fueron agregados 0,5 g (16 mmoles) del compuesto intermediario BE-4,4-0H, 0,3 g (41 mmoles) de ácido metacrílico, 0, 16 g (16 mmoles) de trietilamina y 2,5 mi de DMF como solvente. La temperatura del medio de reacción fue elevada a 60°C bajo una atmósfera de argón y agitación constante durante 12 horas. Una vez transcurrido ese lapso de tiempo, se dejó en agitación constante a temperatura ambiente por 48 horas más. Al finalizar la reacción, fueron agregados 20 ml_ de agua destilada, formándose un precipitado blanco. Dicho sólido fue filtrado con un embudo coors y papel filtro Whatman del número 5. Después de haber sido filtrado y secado, el monómero bifuncional fue obtenido como un sólido blanco. In a second step, the formation of an ester group attached to the vinyl group was carried out by reacting the intermediate compound BE-4,4-0H with methacrylic acid in a stoichiometric ratio of 1: 2.5, using triethylamine, in a concentration of 2% and DMF as solvent. In a two-mouth ball protected from light with aluminum foil, and equipped with magnetic stirrer and thermometer, 0.5 g (16 mmol) of intermediate compound BE-4.4-0H, 0.3 g (41 mmol) were added ) of methacrylic acid, 0.16 g (16 mmol) of triethylamine and 2.5 ml of DMF as solvent. The temperature of the reaction medium was raised to 60 ° C under an atmosphere of argon and constant stirring for 12 hours. After this period of time, it was left under constant stirring at room temperature for an additional 48 hours. At the end of the reaction, 20 ml_ of distilled water were added, forming a white precipitate. Said solid was filtered with a funnel coors and Whatman filter paper of number 5. After having been filtered and dried, the bifunctional monomer was obtained as a white solid.
Una segunda ruta para obtener el monómero MB-4,4-0H consiste en una reacción de un paso en la cual, se hizo reaccionar el 4,4-bifenol con el glicidilmetacrilato, en una relación estequiométrica de 1 : 2,5, utilizando trietilamina al 2% en peso como catalizador e hidroquinona al 2% en peso como inhibidor. A second route to obtain the MB-4,4-0H monomer consists of a one-step reaction in which the 4,4-biphenol was reacted with the glycidyl methacrylate, in a stoichiometric ratio of 1: 2.5, using 2% triethylamine by weight as catalyst and 2% hydroquinone by weight as inhibitor.
Figure imgf000055_0001
Figure imgf000055_0001
Segunda ruta para obtener el monómero MB-4,4-OH Second route to obtain the MB-4,4-OH monomer
En un balón de dos bocas, equipado con agitador magnético y termómetro, fueron agregados 1 g (5 mmoles) de 4,4-bifenol, 1,9 g (13 mmoles) de glicidilmetacrilato, 0,05 g de hidroquinona, 0,05 g de trietilamina y 2 ml_ de DMF como solvente. El matraz fue protegido de la luz y colocado en una manta de calentamiento a una temperatura de 60°C. La reacción fue mantenida bajo una atmósfera de argón y agitación constante durante 18 horas. Transcurrido ese tiempo fueron adicionados 40 ml_ de agua destilada, observándose la precipitación de un sólido café claro. Dicho sólido, una vez seco, fue lavado sucesivamente con etanol. El sólido resultante fue filtrado utilizando un matraz kitasato y un embudo coors equipado con un papel Whatman del número 5; una vez seco, se obtuvo al monómero bifuncional como un sólido blanco.
Figure imgf000056_0001
In a two-mouth ball, equipped with a magnetic stirrer and thermometer, 1 g (5 mmol) of 4,4-biphenol, 1.9 g (13 mmol) of glycidyl methacrylate, 0.05 g of hydroquinone, 0.05 were added g of triethylamine and 2 ml_ of DMF as solvent. The flask was protected from light and placed in a heating blanket at a temperature of 60 ° C. The reaction was maintained under an atmosphere of argon and constant stirring for 18 hours. After that time, 40 ml_ of distilled water were added, observing the precipitation of a light brown solid. Said solid, once dry, was washed successively with ethanol. The resulting solid was filtered using a kitasate flask and a coors funnel equipped with a Whatman paper of number 5; once dried, the bifunctional monomer was obtained as a white solid.
Figure imgf000056_0001
Por espectroscopia de IR y RMN se comprobó la obtención del monómero. RMN (CDCI3, 400 MHz) δ (ppm): 7,46 (d, 4H, JBC 8,7 Hz, H-B), 6,97 (d, 4H, JC,B8,7 HZ, H-C), 4,41 (dd, 2H, JEA,EB 11,5 Hz, JEA,F 4,9 Hz, H-Ea), 4,37 (dd, 2H, JEb,Ea 11,5 Hz, JEb,F 5,2 Hz, H-Eb), 4,31 (m, 2H, H-F), 4,11 (dd, 2H, JGa,Gb 9,6 Hz, JGa,F 4,6 Hz, H-Ga), 4,09 (dd, 2H, JGb,Ga 9,5 Hz, JGb,F 5,8 Hz, H- Gb), 6,16 (s, 2H, H-Ka), 5,62 (t, 2H, JKJ 1,4 Hz, H-Kb), 1,97 (s, 6H, H-J). RMN 13C (CdCI3, 100 MHz) δ (ppm): 133,6 (C-A), 127,8 (C-B), 114,5 (C- C), 157,5 (C-D), 65,5 (C-E, C-G), 68,6 (C-F), 167,2 (C-H), 135, 9 (C-I), 18,2 (C-J), 126,2 (C-K). IR (KBr, cm-1): 3471(υΟ-Η), 2926(O-C-H), 1697 (υ- C=0), 1638(uC=C), 1600, 1500 (uC=C Ar), 1456 (δ-C-H), 811 (5C=C). Análisis Elemental: calculado para Ci8Hi804: C, 66,37; H, 6,43. . Encontrado: C, 65,89; H, 6,16. IR and NMR spectroscopy proved to obtain the monomer. NMR (CDCI3, 400 MHz) δ (ppm): 7.46 (d, 4H, J BC 8.7 Hz, HB), 6.97 (d, 4H, J C , B8.7 HZ, HC), 4 , 41 (dd, 2H, J EA , EB 11.5 Hz, J EA , F 4.9 Hz, H-Ea), 4.37 (dd, 2H, J Eb , Ea 11.5 Hz, J Eb , F 5.2 Hz, H-Eb), 4.31 (m, 2H, HF), 4.11 (dd, 2H, J Ga , Gb 9.6 Hz, J Ga , F 4.6 Hz, H- Ga), 4.09 (dd, 2H, J Gb , Ga 9.5 Hz, J Gb , F 5.8 Hz, H- Gb), 6.16 (s, 2H, H-Ka), 5.62 (t, 2H, J KJ 1.4 Hz, H-Kb), 1.97 (s, 6H, HJ). 13 C NMR (CdCI 3 , 100 MHz) δ (ppm): 133.6 (CA), 127.8 (CB), 114.5 (C-C), 157.5 (CD), 65.5 (CE , CG), 68.6 (CF), 167.2 (CH), 135, 9 (CI), 18.2 (CJ), 126.2 (CK). IR (KBr, cm-1): 3471 (υΟ-Η), 2926 (OCH), 1697 (υ- C = 0), 1638 (uC = C), 1600, 1500 (uC = C Ar), 1456 (δ -CH), 811 (5C = C). Elemental Analysis: calculated for Ci 8 Hi 8 0 4 : C, 66.37; H, 6.43. . Found: C, 65.89; H, 6.16.
Síntesis del monómero l,4-bis[(2-hidroxi-3-metacriloxi propoxi) metil]fenilo [MB-Fen-OH]. Synthesis of the monomer l, 4-bis [(2-hydroxy-3-methacryloxy propoxy) methyl] phenyl [MB-Fen-OH].
Se describe la ruta de síntesis utilizada para obtener al monómero MB-Fen- OH. La ruta sintética consistió en una reacción de dos etapas. La primera etapa consiste en sintetizar al compuesto intermediario BE-Fen-OH a partir de la reacción de eterificación entre el 1,4-benzenodimetanol y la epiclorhidrina, usando hidruro de sodio como base y DMF como solvente Paso i Paso ; The synthesis route used to obtain the MB-Fen-OH monomer is described. The synthetic route consisted of a two stage reaction. The first step is to synthesize the intermediate compound BE-Fen-OH from the etherification reaction between 1,4-benzenedimethanol and epichlorohydrin, using sodium hydride as the base and DMF as solvent. Step i Step;
Figure imgf000057_0001
Figure imgf000057_0001
Síntesis del monómero MB-FE-OH Synthesis of MB-FE-OH monomer
En un balón de dos bocas equipado con agitador magnético y bajo una atmósfera de argón, fueron adicionados 1 g (7 mmoles) de 1,4- benzenodimetanol junto con 0,43 g (18 mmoles) de hidruro de sodio suspendidos en 10 mL de DMF. El sistema fue colocado dentro de un baño de agua a una temperatura de 60°C. Posteriormente, la reacción fue llevada a temperatura ambiente y fueron adicionados 1,6 g (18 mmoles) de epiclorhidrina. La reacción continuó a temperatura ambiente durante 24 horas. Al concluir éste tiempo, fueron adicionados 30 mL de agua destilada y posteriormente se realizaron extracciones (3 veces) con éter etílico. La fracción orgánica fue separada y se adicionaron 5 gramos de sulfato de sodio para secar. Una vez seca, la fracción orgánica fue filtrada y luego concentrada con ayuda de un evaporador rotatorio, resultando en un líquido viscoso de color ámbar.  In a two-mouth ball equipped with a magnetic stirrer and under an argon atmosphere, 1 g (7 mmol) of 1,4-benzenedimethanol was added together with 0.43 g (18 mmol) of sodium hydride suspended in 10 mL of DMF The system was placed inside a water bath at a temperature of 60 ° C. Subsequently, the reaction was brought to room temperature and 1.6 g (18 mmol) of epichlorohydrin were added. The reaction continued at room temperature for 24 hours. At the end of this time, 30 mL of distilled water were added and subsequently extracted (3 times) with ethyl ether. The organic fraction was separated and 5 grams of sodium sulfate were added to dry. Once dried, the organic fraction was filtered and then concentrated with the help of a rotary evaporator, resulting in a viscous amber liquid.
Para la purificación del compuesto se utilizó la técnica de cromatografía por columna, utilizando como fase estacionaria alúmina y una mezcla de ciclohexano:acetona (9: 1) como fase móvil. La identificación de las porciones en las que se presenta el compuesto puro fue hecha mediante la elaboración de cromatoplacas. Una vez colectadas las fracciones que contenían al compuesto esperado, estas fueron evaporadas y el BE-Fen-OH fue obtenido como un líquido viscoso amarillo.
Figure imgf000058_0001
The column chromatography technique was used for purification of the compound, using alumina and a mixture of cyclohexane: acetone (9: 1) as the mobile phase as the stationary phase. The identification of the portions in which the pure compound is presented was made by making chromatoplates. Once the fractions containing the expected compound were collected, they were evaporated and BE-Fen-OH was obtained as a yellow viscous liquid.
Figure imgf000058_0001
El compuesto fue caracterizado por RMN H, RMN 13C, FTIR y Análisis elemental. RMN (CDCI3, 400 MHz) δ (ppm): 7,34 (s, 4H, H-A), 4,62 (d, 2H, JCa,cb 11,9 Hz, H-Ca), 4,54 (d, 2H, JCb,ca 11,9 Hz, H-Cb), 3,77 (dd, 2H, JDa,Db 11,4 Hz, JDa,E 2,9 Hz, H-Da), 3,43 (dd, 2H, JDb,Da 11,9 Hz, JDbE5 5,9 Hz, H-Db), 3, 19 (m, 2H, H-5), 2,81 (dd, 2H, JFaFb 4,9 Hz, JCa-E5 4,2 Hz, H-Fa), 2,62 (dd, 2H, JFab,Fa 5,0 Hz, JFb,E 2,6 Hz, H-Fb) . RMN 13C (CDCI3, 100 MHz) δ (ppm) : 128,00 (C-A), 137,57 (C-B), 73, 17 (C-C), 70,90 (C-D), 50,88 (C-E), 44,30 (C-F) . IR (KBr, cm-1) : 1701 (uC=C), 1364(OasimC-0-C), 914(OsimC- O-C), 914(grupo epóxido) . Análisis Elemental: Ci4Hi804 (calculado) experimental : %C (67, 18) 64,21, %H (7,25) 9,01, %0 (25,57) 26,78. The compound was characterized by H NMR, 13 C NMR, FTIR and Elemental Analysis. NMR (CDCI 3 , 400 MHz) δ (ppm): 7.34 (s, 4H, HA), 4.62 (d, 2H, J Ca , cb 11.9 Hz, H-Ca), 4.54 ( d, 2H, J Cb , c at 11.9 Hz, H-Cb), 3.77 (dd, 2H, J Da , Db 11.4 Hz, J Da , E 2.9 Hz, H-Da), 3.43 (dd, 2H, J Db , Da 11.9 Hz, J DbE5 5.9 Hz, H-Db), 3.19 (m, 2H, H-5), 2.81 (dd, 2H, J FaFb 4.9 Hz, J Ca-E 5 4.2 Hz, H-Fa), 2.62 (dd, 2H, J Fab , Fa 5.0 Hz, J Fb , E 2.6 Hz, H- Fb). 13 C NMR (CDCI 3 , 100 MHz) δ (ppm): 128.00 (CA), 137.57 (CB), 73, 17 (CC), 70.90 (CD), 50.88 (CE), 44.30 (CF). IR (KBr, cm-1): 1701 (uC = C), 1364 (C-O asym 0-C), 914 (O sim C- OC), 914 (epoxide group). Elemental Analysis: Ci 4 Hi 8 0 4 (calculated) experimental:% C (67, 18) 64.21,% H (7.25) 9.01,% 0 (25.57) 26.78.
En una segunda etapa, el compuesto intermediario sintetizado previamente se hizo reaccionar con el ácido metacrílico, en presencia de trietilamina, para formar un éster bimetacrílico. In a second step, the intermediate compound previously synthesized was reacted with methacrylic acid, in the presence of triethylamine, to form a bimetacrylic ester.
Figure imgf000058_0002
Figure imgf000058_0002
El compuesto fue caracterizado por RMN H, RMN 13C, FTIR y Análisis elemental. RMN (CDCI3, 400 MHz) δ (ppm) : δ : 7,24 (s, 4H, H-A), 4,49 (s, 4H, H-C), 3,52 (dd, 2H, JDa,Db 9,5 Hz, JDa,E 4,4 Hz, H-Da), 3,45 (dd, 2H, JDb,Da 9,5 Hz, JDb,E 5,9 Hz, H-Db), 4,01 (m, 1H, H-E), 4,20 (dd, 2H, JFa,Fb 11,5 Hz, JFa,E 5,3 Hz, H-Fa), 4, 14 (dd, 2H, JFab,Fa 11,7 Hz, JFb, 5, 1 Hz, H-Fb), 6,04 (s, 2H, H-Ib), 5,52 (t, 2H, JHJ 1,5 Hz, H-Ia), 1,87 (s, 6H, H-J). RMN 13C (CDCI3, 100 MHz) δ (ppm): 127,87 (C-A), 137,34 (C-B), 73,18 (C-C), 70,89 (C-D), 68,90 (C-E), 65,71 (C-F), 167,39 (C-G), 135,9 (C-H), 126,03 (C-I), 18,27 (C-J). IR (KBr, cm-1): 3464 (υΟ-Η), 2865 (uasimC-H), 1716(uC=0), 1636(uC=C), 1455 (5-CH2-), 813 (5C=C). Análisis Elemental: C22H30O8 (calculado) experimental : %C (62,55) 63,34, %H (7,16) 7,47, %0 (30,30) 29,19. The compound was characterized by H NMR, 13 C NMR, FTIR and Elemental Analysis. NMR (CDCI 3 , 400 MHz) δ (ppm): δ: 7.24 (s, 4H, HA), 4.49 (s, 4H, HC), 3.52 (dd, 2H, J Da , Db 9 , 5 Hz, J Da , E 4.4 Hz, H-Da), 3.45 (dd, 2H, J Db , Da 9.5 Hz, J Db , E 5.9 Hz, H-Db), 4 , 01 (m, 1H, HE), 4.20 (dd, 2H, J Fa , Fb 11.5 Hz, J Fa , E 5.3 Hz, H-Fa), 4, 14 (dd, 2H, J Fab , Fa 11.7 Hz, J Fb , 5, 1 Hz, H-Fb), 6.04 (s, 2H, H-Ib), 5.52 (t, 2H, J HJ 1.5 Hz, H-Ia), 1.87 (s, 6H, HJ). 13 C NMR (CDCI 3 , 100 MHz) δ (ppm): 127.87 (CA), 137.34 (CB), 73.18 (CC), 70.89 (CD), 68.90 (CE), 65.71 (CF), 167.39 (CG), 135.9 (CH), 126.03 (CI), 18.27 (CJ). IR (KBr, cm-1): 3464 (υΟ-Η), 2865 (or equivalent CH), 1716 (uC = 0), 1636 (uC = C), 1455 (5-CH 2 -), 813 (5C = C). Elemental Analysis: C 22 H 30 O 8 (calculated) experimental:% C (62.55) 63.34,% H (7.16) 7.47,% 0 (30.30) 29.19.
Síntesis del monómero l,4-bis[2-hidroxi-3-metacriloxipropoxi] butano [ΜΒ-1,4-ΟΗ]. Synthesis of the monomer l, 4-bis [2-hydroxy-3-methacryloxypropoxy] butane [ΜΒ-1,4-ΟΗ].
Se describe la ruta de síntesis para la obtención del monómero MB-1,4-0H. Dicha ruta sintética consistió en una reacción de dos etapas. En la primera etapa, se sintetizó el compuesto intermediario BE-1,4-0H a partir de una reacción de eterificación entre el 1,4-butanodiol y la epiclorhidrina, en presencia de hidruro de sodio como base y DMF como solvente. The synthesis route for obtaining the MB-1,4-0H monomer is described. Said synthetic route consisted of a two stage reaction. In the first stage, the intermediate compound BE-1,4-0H was synthesized from an etherification reaction between 1,4-butanediol and epichlorohydrin, in the presence of sodium hydride as a base and DMF as a solvent.
Paso 1 Paso 2 Step 1 Step 2
Figure imgf000059_0001
Figure imgf000059_0001
MB-1.4-OH  MB-1.4-OH
Ruta de síntesis para la obtención del monómero MB-l,4-OH Synthesis route for obtaining the MB-l, 4-OH monomer
En un balón de dos bocas equipado con agitador magnético, bajo una atmósfera de argón, fueron adicionados 1 g (11 mmoles) de 1,4-butanodiol junto con 0,66 g (27 mmoles) de hidruro de sodio disueltos en 5 ml_ de DMF. El sistema fue colocado dentro de un baño de agua a una temperatura de 55°C. Posteriormente, se adicionaron a la mezcla de reacción 2,5 g (27 moles) de epiclorhidrina previamente disueltos en 5 ml_ de DMF. La adición de los componentes al medio de reacción se hizo lentamente. La temperatura fue mantenida en un rango de 50-55°C durante dos horas y posterior a ello, se mantuvo a temperatura ambiente por 24 horas más. Al finalizar la reacción, se adicionaron 30 mL de agua destilada . Posteriormente se realizaron extracciones (3 veces) con acetato de etilo y éter. La fracción orgánica fue separada y se adicionaron 5 gramos de sulfato de sodio anhidro con la finalidad de eliminar la mayor cantidad de agua . Posteriormente, la fracción orgánica fue filtrada y concentrada con ayuda de un evaporador rotatorio, observando un líquido amarillo. In a two-mouth ball equipped with a magnetic stirrer, under an argon atmosphere, 1 g (11 mmol) of 1,4-butanediol was added together with 0.66 g (27 mmol) of sodium hydride dissolved in 5 ml_ of DMF The system was placed inside a water bath at a temperature of 55 ° C. Subsequently, 2.5 g (27) were added to the reaction mixture. moles) of epichlorohydrin previously dissolved in 5 ml_ of DMF. The addition of the components to the reaction medium was done slowly. The temperature was maintained in a range of 50-55 ° C for two hours and after that, it was kept at room temperature for an additional 24 hours. At the end of the reaction, 30 mL of distilled water was added. Subsequently, extractions (3 times) were carried out with ethyl acetate and ether. The organic fraction was separated and 5 grams of anhydrous sodium sulfate were added in order to remove as much water. Subsequently, the organic fraction was filtered and concentrated with the help of a rotary evaporator, observing a yellow liquid.
La purificación del compuesto se logró mediante la cromatografía por columna, utilizando como fase estacionaria alúmina y una mezcla de ciclohexano :acetona (9 : 1) como fase móvil . Mediante cromatoplacas de alúmina fueron identificadas las porciones en las que se presenta el compuesto aislado y una vez colectados y evaporados, el compuesto [BE- 1,4-OH] fue obtenido como un líquido amarillo. Purification of the compound was achieved by column chromatography, using alumina and a mixture of cyclohexane: acetone (9: 1) as the mobile phase as the stationary phase. By means of alumina chromatoplates the portions in which the isolated compound is presented and once collected and evaporated, the compound [BE-1,4-OH] was obtained as a yellow liquid.
Figure imgf000060_0001
Figure imgf000060_0001
El compuesto fue caracterizado por RMN ιΗ, RMN 13C, FTIR y Análisis. RMN 'H (CDCI3, 400 MHz) δ (ppm): 3,73 (m, 2H, H-Ca), 3,52 (m. 4H, H-B), 3,39 (m, 2H, H-Cb), 3, 15 (m, 2H, H-D), 2,81 (m, 2H, H-Ea), 2,62 (m, 2H, H- Eb), 1,67 (m, 4H, H-A) . RMN 13C (CDCI3, 100 MHz) δ (ppm): 26,27 (C-A), 71, 18 (C-B), 71,38 (C-C), 50,85 (C-D), 44,24 (C-E) . FTIR (KBr, cm 1): 1254, 1204 (OsimC-0-C), 1107 (OsimC-0-C), 856 (grupo epóxido) . Análisis Elemental: Ci0Hi8O4 (calculado) experimental : %C (59,37) 57,78, %H (8,98) 8, 13, %0 (31,65) 34,09. The compound was characterized by ι Η NMR, 13 C NMR, FTIR and Analysis. NMR 'H (CDCI 3 , 400 MHz) δ (ppm): 3.73 (m, 2H, H-Ca), 3.52 (m. 4H, HB), 3.39 (m, 2H, H-Cb ), 3.15 (m, 2H, HD), 2.81 (m, 2H, H-Ea), 2.62 (m, 2H, H-Eb), 1.67 (m, 4H, HA). 13 C NMR (CDCI 3 , 100 MHz) δ (ppm): 26.27 (CA), 71, 18 (CB), 71.38 (CC), 50.85 (CD), 44.24 (CE). FTIR (KBr, cm 1 ): 1254, 1204 (O sim C-0-C), 1107 (O sim C-0-C), 856 (epoxy group). Elemental Analysis: Ci 0 Hi 8 O 4 (calculated) experimental:% C (59.37) 57.78,% H (8.98) 8, 13,% 0 (31.65) 34.09.
En la segunda etapa, se formó un monómero dimetacrílico a partir del compuesto intermediario [BE-1,4-0H] y el ácido metacrílico, la reacción se realizó en una relación estequiométrica de 1 a 2,5. Se utilizó un 2% en peso de trietilamina como base y DMF como solvente. In the second stage, a dimethacrylic monomer was formed from the intermediate compound [BE-1,4-0H] and methacrylic acid, the reaction was performed in a stoichiometric ratio of 1 to 2.5. 2% by weight of triethylamine was used as base and DMF as solvent.
En un balón de dos bocas equipado con agitador magnético, termómetro y cubierto de la luz, fueron agregados 0,3 g (1,4 milimoles) del compuesto intermediario, 0,38 g (4,4 milimoles) y 0,03 mL de trietilamina disueltos en 5 mL de DMF. La temperatura de reacción fue llevada hasta los 60°C y fue mantenida bajo una atmosfera de argón durante 24 horas. In a two-mouth ball equipped with magnetic stirrer, thermometer and light cover, 0.3 g (1.4 mmol) of the intermediate compound, 0.38 g (4.4 mmol) and 0.03 mL of Triethylamine dissolved in 5 mL of DMF. The reaction temperature was brought to 60 ° C and was maintained under an argon atmosphere for 24 hours.
Figure imgf000061_0001
Figure imgf000061_0001
El compuesto fue caracterizado por RMN ιΗ, RMN 13C, FTIR y Análisis elemental. RMN (CDCI3, 400 MHz) δ (ppm): 1,66 (t, 1H, JA,B 3,7; H-A), 3,50 (m, 2H ; H-Ca, H-Cb), 4,04 (m, 3H; H-B, H-D), 4,23 (d, 2H; H-Ea, H- Eb), 6, 14 (s, 1H ; H-Ha), 5,60 (t, 1H, JHb,i 1,4 Hz; H-Hb), 1,95 (s, 3H; H-I) . RMN 13C (CDCI3, 100 MHz) δ (ppm): 26, 17 (C-A), 71,54, 71,20 (C-B y C- C), 68,69 (C-D), 65,65 (C-E), 167,32 (C-F), 135,86 (C-G), 125,91 (C-H), 18,20 (C-I) . IR (KBr, cm 1): 3444 (υΟ-Η), 2928 (uC-H), 1718 (uC=0),
Figure imgf000061_0002
. Análisis Elemental: Ci8H3o08 (calculado) experimental : %C (57,74) 56,81, %H (8,08) 8,28, %0 (34, 18) 34,91.
The compound was characterized by ι Η NMR, 13 C NMR, FTIR and elemental analysis. NMR (CDCI 3 , 400 MHz) δ (ppm): 1.66 (t, 1H, J A , B 3.7; HA), 3.50 (m, 2H; H-Ca, H-Cb), 4 , 04 (m, 3H; HB, HD), 4.23 (d, 2H; H-Ea, H- Eb), 6, 14 (s, 1H; H-Ha), 5.60 (t, 1H, J Hb , i 1.4 Hz; H-Hb), 1.95 (s, 3H; HI). 13 C NMR (CDCI 3 , 100 MHz) δ (ppm): 26, 17 (CA), 71.54, 71.20 (CB and C-C), 68.69 (CD), 65.65 (CE) , 167.32 (CF), 135.86 (CG), 125.91 (CH), 18.20 (CI). IR (KBr, cm 1 ): 3444 (υΟ-Η), 2928 (uC-H), 1718 (uC = 0),
Figure imgf000061_0002
. Elemental Analysis: Ci 8 H 3 o0 8 (calculated) experimental:% C (57.74) 56.81,% H (8.08) 8.28,% 0 (34, 18) 34.91.
Síntesis del monómero (Z)-l,4-bis[2-hidroxi-3-metacriloxi propoxi]- 2-buteno [MB-Cis-OH] . Synthesis of monomer (Z) -l, 4-bis [2-hydroxy-3-methacryloxy propoxy] -2-butene [MB-Cis-OH].
El método de síntesis para éste monómero consiste en una reacción de dos etapas. En la primera etapa, se sintetizó un éter a partir de la reacción entre el cis-2-buten-l,4-diol y la epiclorhidrina en una relación molar de 2,5 a 1, utilizando al hidruro de sodio y DMF como solvente. Paso 1 Paso 2 The synthesis method for this monomer consists of a two stage reaction. In the first stage, an ether was synthesized from the reaction between cis-2-buten-l, 4-diol and epichlorohydrin in a 2.5 to 1 molar ratio, using sodium hydride and DMF as solvent. . Step 1 Step 2
CC
Figure imgf000062_0001
Figure imgf000062_0001
MB-Cis-OH  MB-Cis-OH
Método de síntesis para el monómero MB-Cis-OH Synthesis method for MB-Cis-OH monomer
En un balón de dos bocas equipado con agitador magnético, fueron agregados 1 g (11 mmoles) de cis-2-buten-l,4-diol junto con 0,68 g (28 mmoles) de HNa disueltos en 5 mL de DMF. El balón fue colocado dentro de un baño de agua y la temperatura de reacción se llevó a 55°C. A esta temperatura, fueron adicionados, 2,62 g (28 mmoles) de epiclorhidrina disueltos en 5 mL de DMF. La reacción se mantuvo bajo una atmósfera de argón y agitación constante durante 2 horas a 55 °C y después a temperatura ambiente por 24 horas más. Una vez transcurrido este tiempo, se adicionaron 30 mL de agua destilada para eliminar el exceso de hidruro y se realizaron extracciones con acetato de etilo (3 veces) y éter (3 veces) . Se colectó la parte orgánica, se secó con sulfato de sodio anhidro se evaporó el solvente.  In a two-mouth ball equipped with a magnetic stirrer, 1 g (11 mmol) of cis-2-buten-1, 4-diol were added together with 0.68 g (28 mmol) of HNa dissolved in 5 mL of DMF. The balloon was placed in a water bath and the reaction temperature was brought to 55 ° C. At this temperature, 2.62 g (28 mmol) of epichlorohydrin dissolved in 5 mL of DMF were added. The reaction was maintained under an atmosphere of argon and constant stirring for 2 hours at 55 ° C and then at room temperature for an additional 24 hours. After this time, 30 mL of distilled water was added to remove excess hydride and extractions were carried out with ethyl acetate (3 times) and ether (3 times). The organic part was collected, dried with anhydrous sodium sulfate, the solvent was evaporated.
La purificación del compuesto fue llevada a cabo mediante la técnica de cromatografía en columna, utilizando como fase estacionaria alúmina y una mezcla ciclohexano: acetona (9: 1) como fase móvil. Una vez identificados los tubos que contenían al compuesto diepóxido, fueron colectados en un matraz de bola y el solvente fue evaporado en rotavapor. El compuesto esperado se obtuvo como un líquido amarillo.
Figure imgf000063_0001
Purification of the compound was carried out by the column chromatography technique, using alumina and a cyclohexane: acetone (9: 1) mixture as the mobile phase as the stationary phase. Once the tubes containing the diepoxide compound were identified, they were collected in a ball flask and the solvent was evaporated in a rotary evaporator. The expected compound was obtained as a yellow liquid.
Figure imgf000063_0001
El compuesto fue caracterizado por RMN H, RMN 13C, FTIR y Aná lisis Elemental . RMN (CDCI3, 400 MHz) δ (ppm) : 5,74 (m, 2H, JA,B 4,8 Hz, H-A), 4, 13 (d, 4H, JB,A 4,8 Hz, H-B), 3,75 (dd, 2H, JCa,cb 11,5 Hz, JCa,D 2,9 Hz, H-Ca), 3,38 (dd, 2H, JCb,ca 11,4 Hz, JCb,D 5,9 Hz, H-Cb), 3, 16 (m, 1H, H-D), 2,81 (dd, 1H, JEa,Eb 4,9 Hz, JEa,D 4,2 Hz, H-Ea), 2,61 (dd, 1H, , JEab,Ea 5,0 Hz, JEb,D 2,6 Hz, H-Eb) . RMN 13C (CDCI3, 100 MHz) δ (ppm) : 129,37 (C- l), 66,97 (C-2), 71,00 (C-3), 50,88 (C-4) 44,30 (C-5) . IR (KBr, cm 1) : 1254, 1095 (OsimC-0-C), 1011 (i½mC-0-C), 761 (grupo epóxido) . Análisis Elemental: Ci0Hi6O4 (calculado) experimental : %C (59,98) 55,02, %H (8,05) 11,32, %0 (31,97) 33,66. The compound was characterized by H NMR, 13 C NMR, FTIR and Elemental Analysis. NMR (CDCI 3 , 400 MHz) δ (ppm): 5.74 (m, 2H, J A , B 4.8 Hz, HA), 4.13 (d, 4H, J B , A 4.8 Hz, HB), 3.75 (dd, 2H, J Ca , c b 11.5 Hz, J Ca , D 2.9 Hz, H-Ca), 3.38 (dd, 2H, J Cb , c to 11, 4 Hz, J Cb , D 5.9 Hz, H-Cb), 3, 16 (m, 1H, HD), 2.81 (dd, 1H, J Ea , Eb 4.9 Hz, J Ea , D 4 , 2 Hz, H-Ea), 2.61 (dd, 1H ,, J Eab , Ea 5.0 Hz, J Eb , D 2.6 Hz, H-Eb). 13 C NMR (CDCI 3 , 100 MHz) δ (ppm): 129.37 (C-1), 66.97 (C-2), 71.00 (C-3), 50.88 (C-4) 44.30 (C-5). IR (KBr, cm 1 ): 1254, 1095 (O sim C-0-C), 1011 (½ m C-0-C), 761 (epoxy group). Elemental Analysis: Ci 0 Hi 6 O 4 (calculated) experimental:% C (59.98) 55.02,% H (8.05) 11.32,% 0 (31.97) 33.66.
Para la segunda etapa, se formó el monómero bismetacrílico a partir del BE- Cis-OH y el ácido metacríl ico en una relación estequiométrica de 1 a 2,5, uti lizando como catalizador trietilamina al 2% en peso con respecto de los reactivos anteriores y usando a la DMF como solvente. For the second stage, bismetacrylic monomer was formed from BE-Cis-OH and methacrylic acid in a stoichiometric ratio of 1 to 2.5, using 2% by weight triethylamine catalyst with respect to the above reagents and using DMF as a solvent.
En u n balón de dos bocas equipado con agitador mecánico y termómetro, fueron agregados 0,5 g (2,4 mmoles) del BE-Cis-OH, 0,5 mL (6 mmoles) de ácido metacríl ico y 0,02 mL de trietilamina disueltos en 2,5 mL de DMF. El matraz fue colocado en una manta de calentamiento y la temperatura fue llevada hasta los 55°C. La reacción se mantuvo bajo agitación, con atmósfera de argón y cu bierta de la luz con papel alu mi nio durante un tiempo de 18 horas. Para la purificación del compuesto, se utilizó la técnica de cromatografía por columna, utilizando al gel de sílice como fase estacionaria y una mezcla de d iclorometano : acetona (9 : 1) como fase móvil . Una vez separadas las impurezas, se hicieron pasar 150 mL de etanol para arrastrar al compuesto esperado. El etanol fue recolectado y después de evaporarlo, se obtuvo u n líqu ido de color ámbar.
Figure imgf000064_0001
In a two-mouth balloon equipped with a mechanical stirrer and thermometer, 0.5 g (2.4 mmol) of BE-Cis-OH, 0.5 mL (6 mmol) of methacrylic acid and 0.02 mL of triethylamine dissolved in 2.5 mL of DMF. The flask was placed in a heating blanket and the temperature was brought to 55 ° C. The reaction was kept under stirring, with an argon atmosphere and covered with light with aluminum paper for a period of 18 hours. For the purification of the compound, the column chromatography technique was used, using silica gel as stationary phase and a mixture of dichloromethane: acetone (9: 1) as mobile phase. Once the impurities were separated, 150 mL of ethanol was passed to carry the expected compound. The ethanol was collected and after evaporation, an amber liquid was obtained.
Figure imgf000064_0001
El compuesto fue caracterizado por RMN H, RMN 13C, FTIR y Análisis Elemental . RMN (CDCI3, 400 MHz) δ (ppm): CDCI3) δ: 6, 14 (s, 2H ; hija), 5,75 (t, 2H, H-A), 5,60 (t, 2H, H-Jb), 4,22 (m, 4H; H-F), 4, 11 (m, 4H; H-B), 4.05 (m, 2H ; H-D), 3,52 (dd, 4H, H-C), 1,92 (s, 6H; H-I) . RMN 13C (CDCI3, 100 MHz) δ (ppm): 167,39 (C-G), 135,93 (C-H), 129,34 (C-A), 125,96 (C-J), 71, 17 (C-B), 68,82 (C-D), 66,94 (C-F), 65,71 (C-C), 18,26 (C- I) . IR (KBr, cm 1): 3441 (υΟ-Η), 2928 (DC-H), 1718
Figure imgf000064_0002
The compound was characterized by H NMR, 13 C NMR, FTIR and Elemental Analysis. NMR (CDCI 3 , 400 MHz) δ (ppm): CDCI 3 ) δ: 6, 14 (s, 2H; daughter), 5.75 (t, 2H, HA), 5.60 (t, 2H, H- Jb), 4.22 (m, 4H; HF), 4, 11 (m, 4H; HB), 4.05 (m, 2H; HD), 3.52 (dd, 4H, HC), 1.92 (s , 6H; HI). 13 C NMR (CDCI 3 , 100 MHz) δ (ppm): 167.39 (CG), 135.93 (CH), 129.34 (CA), 125.96 (CJ), 71, 17 (CB), 68.82 (CD), 66.94 (CF), 65.71 (CC), 18.26 (C-I). IR (KBr, cm 1 ): 3441 (υΟ-Η), 2928 (DC-H), 1718
Figure imgf000064_0002
815(5C=C) . Análisis Elemental: Ci8H 2808 (calculado) experimental : %C (58,05) 56,80, %H (7,58) 7,77, %0 (34,37) 35,43. 815 (5C = C). Elemental Analysis: Ci 8 H 28 0 8 (calculated) experimental:% C (58.05) 56.80,% H (7.58) 7.77,% 0 (34.37) 35.43.
Síntesis del monómero l,7-bis[2-hidroxi-3-metacriloxi propoxi] heptano [MB-l,7-OH]. Synthesis of the monomer l, 7-bis [2-hydroxy-3-methacryloxy propoxy] heptane [MB-l, 7-OH].
La ruta de síntesis para éste monómero consiste en una reacción de dos etapas. Durante la primera etapa tiene lugar la síntesis del intermediario BE- 1,7-OH mediante una reacción de eterificacion entre el 1,7-heptanodiol y la epiclorhidrina . The synthesis route for this monomer consists of a two stage reaction. During the first stage, synthesis of intermediate BE-1,7-OH takes place by means of an etherification reaction between 1,7-heptanediol and epichlorohydrin.
Paso 1 Paso 2  Step 1 Step 2
Figure imgf000064_0003
Figure imgf000064_0003
Ruta de síntesis para el monómero MB.1,7-OH En un balón de dos bocas equipado con agitador magnético, fueron agregados 0,90 g (28 mmoles) de hidruro de sodio disueltos en 10 mL de DMF. Comenzada la agitación, fueron añadidos lentamente 2 g (15 mmoles) de 1,7-heptanodiol y 3,4 g (37 moles) de epiclorhidrina . El matraz fue colocado en un baño de agua y la reacción fue mantenida bajo una atmósfera de argón y agitación constante durante 12 horas a 55 °C. Al término de la reacción, fueron añadidos 50 mL de acetona, la cual fue filtrada y evaporada, obteniéndose un líquido de color amarillo claro. Con la finalidad de eliminar la DMF y facilitar el proceso de purificación, se realizaron 4 extracciones con ciclohexano, que al evaporar, condujo a un líquido de color café oscuro. Synthesis path for MB.1,7-OH monomer In a two-mouth ball equipped with magnetic stirrer, 0.90 g (28 mmol) of sodium hydride dissolved in 10 mL of DMF was added. After stirring, 2 g (15 mmol) of 1,7-heptanediol and 3.4 g (37 moles) of epichlorohydrin were added slowly. The flask was placed in a water bath and the reaction was maintained under an atmosphere of argon and constant stirring for 12 hours at 55 ° C. At the end of the reaction, 50 mL of acetone was added, which was filtered and evaporated, obtaining a light yellow liquid. In order to eliminate DMF and facilitate the purification process, 4 extractions were made with cyclohexane, which, when evaporated, led to a dark brown liquid.
La purificación fue realizada mediante el proceso de cromatografía por columna, utilizando sílica como fase estacionaria y una mezcla de diclorometano-acetato de etilo (8 : 2) como fase móvil . Una vez identificados los tubos que contenían al diepóxido del 1,7-heptanodiol, fueron recolectados en un matraz y al evaporarse el solvente, se obtuvo el compuesto esperado como un líquido de color café claro.
Figure imgf000065_0001
The purification was carried out by the column chromatography process, using silica as the stationary phase and a dichloromethane-ethyl acetate mixture (8: 2) as the mobile phase. Once the tubes containing 1,7-heptanediol diepoxide were identified, they were collected in a flask and when the solvent evaporated, the expected compound was obtained as a light brown liquid.
Figure imgf000065_0001
El compuesto fue caracterizado por RMN ιΗ, RMN 13C, FTIR y Análisis Elemental . RMN (CDCI3, 400 MHz) δ (ppm): 3,71 (m, 2H, H-Ea), 3,49 (m, 4H, H-D), 3,37 (m. 2H, H-Eb), 3, 14 (m, 2H, H-F), 2,79 (m, 2H, H-Ga), 2,61 (m, 2H, H-Gb), 1,59 (m, 4H, H-C), 1,33 (m, 6H, H-A, H-B) . RMN 13C (CDCI3, 100 MHz) δ (ppm): 25,96 (C-A), 29,21 (C-B), 29,56 (C-C), 71,57 y 71,41 (C-D y C-E), 50,85 (C-F), 44,28 (C-G) . FTIR (KBr, cm-1): 1254, 1204 (OsimC-0-C), 1107 (OsimC-0-C), 856 (grupo epóxido) . Análisis Elemental: Ci0H18O4 (calculado) experimental : %C (59,37) 57,78, %H (8,98) 8, 13, %0 (31,65) 34,09. The compound was characterized by ι Η NMR, 13 C NMR, FTIR and Elemental Analysis. NMR (CDCI 3 , 400 MHz) δ (ppm): 3.71 (m, 2H, H-Ea), 3.49 (m, 4H, HD), 3.37 (m. 2H, H-Eb), 3.14 (m, 2H, HF), 2.79 (m, 2H, H-Ga), 2.61 (m, 2H, H-Gb), 1.59 (m, 4H, HC), 1, 33 (m, 6H, HA, HB). 13 C NMR (CDCI 3 , 100 MHz) δ (ppm): 25.96 (CA), 29.21 (CB), 29.56 (CC), 71.57 and 71.41 (CD and CE), 50 , 85 (CF), 44.28 (CG). FTIR (KBr, cm-1): 1254, 1204 (O sim C-0-C), 1107 (O sim C-0-C), 856 (epoxy group). Elemental Analysis: Ci 0 H 18 O 4 (calculated) experimental:% C (59.37) 57.78,% H (8.98) 8, 13,% 0 (31.65) 34.09.
En una segunda etapa, la formación del monómero vinílico se consiguió a partir de la reacción entre el compuesto BE-l,7-OH y el ácido metacrílico en una relación estequiométrica de 1:2,5, utilizando trietilamina al 2% en peso y acetona como solvente. In a second stage, the formation of the vinyl monomer was achieved from the reaction between the compound BE-l, 7-OH and methacrylic acid in a stoichiometric ratio of 1: 2.5, using 2% triethylamine by weight and acetone as solvent.
En un balón de dos bocas cubierto de la luz con papel aluminio, y equipado con agitador magnético y termómetro, fueron agregados 0,4 g (1,6 mmoles) del compuesto BE-l,7-OH, 0,3 g (4 mmoles) de ácido metacrílico, 0,15 g (1,6 mmoles) de trietilamina y 5 mi de acetona como solvente. La reacción se mantuvo en agitación durante 24 horas a 55 °C y a temperatura ambiente por otras 48 horas. In a two-mouth ball covered in light with aluminum foil, and equipped with magnetic stirrer and thermometer, 0.4 g (1.6 mmol) of the compound BE-l, 7-OH, 0.3 g (4) were added mmol) of methacrylic acid, 0.15 g (1.6 mmol) of triethylamine and 5 ml of acetone as solvent. The reaction was kept under stirring for 24 hours at 55 ° C and at room temperature for another 48 hours.
La purificación del compuesto se consiguió mediante la técnica de cromatografía por columna utilizando sílica como fase estacionaria y una mezcla de hexano: acetona (1:1) como fase móvil. El compuesto esperado queda retenido en la columna, por lo que una vez identificados los tubos que contenían al ácido metacrílico y al BE-l,7-OH sin reaccionar, la fase móvil es cambiada por etanol. Una vez recolectado, se concentró en el evaporador rotatorio y el monómero es obtenido como un líquido café. Purification of the compound was achieved by column chromatography using silica as the stationary phase and a mixture of hexane: acetone (1: 1) as the mobile phase. The expected compound is retained in the column, so once the tubes containing methacrylic acid and unreacted BE-1, 7-OH have been identified, the mobile phase is changed to ethanol. Once collected, it was concentrated in the rotary evaporator and the monomer is obtained as a brown liquid.
Figure imgf000066_0001
Figure imgf000066_0001
El compuesto fue caracterizado por RMN ιΗ, RMN 13C, FTIR y Análisis Elemental. RMN (CDCI3, 400 MHz) δ (ppm): 6,14 (s, 2H, H-Ja) 5,59 (t, 2H, H-Jb), 4,22 (m, 4H, H-E), 4,05 (m, 2H, H-F), 3,87 (m, 2H, H-G), 3,68 (m, 4H, H-H), 1,96 (s, 6H, H-I), 1,56 (m, 4H, H-C), 1,32 (m, 4H, H-B), 1,25 (m, 2H, H A). RMN 13C (CDCI3, 100 MHz) δ (ppm): 26,17 (C-A), 71,54, 71,20 (C-B y C-C), 68,69 (C-D), 65,65 (C-E), 167,32 (C-F), 135,86 (C-G), 125,91 (C-H), 18,20 (C-I). IR (KBr, cm 1): 3444 (υΟ-Η), 2928 (uC-H), 1718
Figure imgf000066_0002
Análisis Elemental: Ci8H30O8 (calculado) experimental: %C (57,74) 56,81, %H (8,08) 8,28, %0 (34,18) 34,91. Preparación y valoración de los materiales compuestos.
The compound was characterized by ι Η NMR, 13 C NMR, FTIR and Elemental Analysis. NMR (CDCI 3 , 400 MHz) δ (ppm): 6.14 (s, 2H, H-Ja) 5.59 (t, 2H, H-Jb), 4.22 (m, 4H, HE), 4 , 05 (m, 2H, HF), 3.87 (m, 2H, HG), 3.68 (m, 4H, HH), 1.96 (s, 6H, HI), 1.56 (m, 4H , HC), 1.32 (m, 4H, HB), 1.25 (m, 2H, HA). 13 C NMR (CDCI 3 , 100 MHz) δ (ppm): 26.17 (CA), 71.54, 71.20 (CB and CC), 68.69 (CD), 65.65 (EC), 167 , 32 (CF), 135.86 (CG), 125.91 (CH), 18.20 (CI). IR (KBr, cm 1 ): 3444 (υΟ-Η), 2928 (uC-H), 1718
Figure imgf000066_0002
Elemental Analysis: Ci 8 H 30 O 8 (calculated) experimental:% C (57.74) 56.81,% H (8.08) 8.28,% 0 (34.18) 34.91. Preparation and valuation of composite materials.
Silanización del material de relleno. Silanization of the filling material.
La preparación y silanización del material de relleno fue hecho de acuerdo a la técnica descrita por Miyasaka (89). The preparation and silanization of the filler material was done according to the technique described by Miyasaka (89).
En un matraz de bola de una boca fueron agregados 4 g de sílica de tamaño nanométrico (0,2-0,3 μηη) dispersos en una solución de etanol/agua (95/5%) en una relación de masa al 5%. El matraz se mantuvo en agitación durante 4 horas a temperatura ambiente. Transcurrido ese tiempo, fueron adicionados 0,4 g de metacrilato de 3-trimetoxisililpropilo, y la reacción fue mantenida en agitación durante otra hora. Posteriormente, el balón fue llevado al rotavapor y el etanol fue eliminado mediante evaporación. El material de relleno ya silanizado fue secado en una estufa al alto vacío a una temperatura de 60°C durante 12 horas.  In a one-mouth ball flask, 4 g of nanometer-sized silica (0.2-0.3 μηη) dispersed in an ethanol / water solution (95/5%) were added in a 5% mass ratio. The flask was kept under stirring for 4 hours at room temperature. After that time, 0.4 g of 3-trimethoxysilylpropyl methacrylate were added, and the reaction was kept under stirring for another hour. Subsequently, the balloon was taken to the rotary evaporator and the ethanol was removed by evaporation. The filler material already silanized was dried in a high vacuum oven at a temperature of 60 ° C for 12 hours.
Preparación de los materiales compuestos. Preparation of composite materials.
El método para la preparación de los materiales compuestos fue llevada a cabo de acuerdo a la técnica descrita por Wilson y colaboradores (90).  The method for the preparation of composite materials was carried out according to the technique described by Wilson et al. (90).
En un balón se agregaron 500 mg del material de relleno silanizado junto con una solución de la matriz orgánica (monómeros, CQ y E4DMA) disueltos en etanol al 90% seguidos de agitación mecánica por un periodo de dos horas. Luego de éste tiempo el etanol fue removido mediante evaporación al alto vacío y el sistema fue luego mezclado manualmente hasta obtener el material compuesto con una consistencia adecuada. Los materiales compuestos obtenidos fueron colocados en viales de color ámbar y mantenidos en refrigeración hasta su utilización. In a balloon 500 mg of the silanized filler material was added together with a solution of the organic matrix (monomers, CQ and E4DMA) dissolved in 90% ethanol followed by mechanical stirring for a period of two hours. After this time the ethanol was removed by evaporation under high vacuum and the system was then mixed manually until the composite material was obtained with adequate consistency. The composite materials obtained were placed in amber vials and kept refrigerated until use.
Valoración de la resistencia flexural y el módulo de flexión . Assessment of flexural strength and flexural modulus.
La resistencia flexural de los materiales compuestos preparados fue evaluada en base a lo establecido en el punto 7.11 de la Norma Internacional ISO- 4049 Dentistry-Polymer-based filling,restorat¡ve and luting materials (91), mientras que el módulo de flexión se evaluó de acuerdo a lo establecido en la especificación N° 27 ANSI/ADA (92). The flexural strength of the prepared composite materials was evaluated based on the provisions of section 7.11 of the International Standard ISO-4049 Dentistry-Polymer-based filling, restoratve and luting materials (91), while the flexural modulus was evaluated according to the provisions of specification No. 27 ANSI / ADA (92).
Fueron preparadas probetas de cada material compuesto de 2 x 2 x 25 mm en un conformador o molde de acero inoxidable sobre una tira de celuloide y un portaobjetos de 1 mm de espesor. Sobre el material sin polimerizar, se colocó otra tira de celuloide junto con otro portaobjetos ejerciendo presión digital para la eliminación de excedentes. Tanto como la tira de celuloide como el portaobjetos fueron mantenidas durante la polimerización de las probetas. Specimens of each 2 x 2 x 25 mm composite material were prepared in a stainless steel shaper or mold on a celluloid strip and a 1 mm thick slide. On the unpolymerized material, another celluloid strip was placed along with another slide exerting digital pressure for the removal of surpluses. Both the celluloid strip and the slide were maintained during the polymerization of the specimens.
Las probetas fueron irradiadas con una intensidad de 460 mW/mm2 tres veces por lado para dar un tiempo total de 90 segundos por cada una. La polimerización se inició en el centro de la probeta y alternadamente a cada lado, sobreponiendo zonas ya irradiadas para un total de 3 por cada lado hasta completar la longitud total por ambos lados de la probeta. Los excedentes se retiraron con papel abrasivo grano 600 y 1200 y se midieron sus dimensiones con una exactitud de 0,01 mm utilizando un calibrador digital. Las probetas fueron mantenidas en agua destilada a 37°C hasta el momento de realizarse la prueba. The specimens were irradiated with an intensity of 460 mW / mm 2 three times per side to give a total time of 90 seconds for each. The polymerization began in the center of the test tube and alternately on each side, overlapping already irradiated areas for a total of 3 on each side until the total length on both sides of the test piece was completed. Surpluses were removed with 600 and 1200 grain abrasive paper and their dimensions measured with an accuracy of 0.01 mm using a digital caliper. The specimens were kept in distilled water at 37 ° C until the time of the test.
Las probetas fueron colocadas sobre dos soportes cilindricos de 2 mm de diámetro, paralelos entre sí y a una distancia entre sus centros de 20 mm para el ensayo de flexión de tres puntos en una máquina de pruebas universales, utilizando una celda de carga de 1 kN, con una velocidad del cabezal de 1 mm por minuto, utilizando el programa Series IX para la captura de datos. The specimens were placed on two 2 mm diameter cylindrical supports, parallel to each other and at a distance between their centers of 20 mm for the three-point bending test in a universal testing machine, using a 1 kN load cell, with a spindle speed of 1 mm per minute, using the Series IX program for data capture.
La resistencia flexural fue calculada mediante la siguiente fórmula : Flexural strength was calculated using the following formula:
3FÍ 3FÍ
¿.tsh1' .Tsh 1 '
Donde: Where:
σ = Resistencia flexural [MPa] F = Fuerza al momento de la fractura [N] σ = Flexural resistance [MPa] F = Force at the time of fracture [N]
I = distancia entre los soportes [mm]  I = distance between supports [mm]
b = ancho de las probetas [ mm]  b = width of the specimens [mm]
h = altu ra de las probetas [mm]  h = height of the specimens [mm]
El módulo de flexión fue calcu lado con la sigu iente fórmu la : The flexural module was calculated using the following formula:
Donde : Where :
E= Módu lo de flexión (MPa)  E = Flexural modulus (MPa)
Fi= Fuerza registrada donde la deformación deja de ser directamente proporcional a la fuerza registrada en el gráfico (N) .  Fi = Registered force where the deformation ceases to be directly proportional to the force recorded in the graph (N).
1 = Distancia entre los dos soportes .  1 = Distance between the two supports.
b= Ancho de la probeta (mm)  b = Width of the specimen (mm)
h = Altura de la probeta (mm)  h = Height of the specimen (mm)
d = Deflexión de la probeta (mm)  d = Deflection of the specimen (mm)
Las determinaciones de resistencia flexural y módulo de flexión para cada gru po evaluado fueron hechas por triplicado. Dichos valores fueron evaluados mediante la prueba estadística ANOVA para observar diferencias entre los gru pos . The determinations of flexural strength and flexural modulus for each group evaluated were made in triplicate. These values were evaluated using the ANOVA statistical test to observe differences between the groups.
RESULTADOS RESULTS
Síntesis de los monómeros.  Synthesis of the monomers.
Las estructuras químicas de los nuevos monómeros sintetizados, fueron confirmadas mediante el empleo de la Espectroscopia de Resonancia Magnética Nuclear de protón ^ y 13C, Espectroscopia Infrarroja por transformada de Fou rier y Análisis elemental . The chemical structures of the new synthesized monomers were confirmed by using the proton ^ and 13 C Nuclear Magnetic Resonance Spectroscopy, Fou rier Transformed Infrared Spectroscopy and Elemental Analysis.
Figure imgf000070_0001
Figure imgf000070_0001
-Cis-OH -Cis-OH
Figure imgf000070_0002
Figure imgf000070_0002
MB-1.7-OH  MB-1.7-OH
Estructura de los monómeros bisglicidilmetacrílatos sintetizados Structure of synthesized bisglycidyl methacrylate monomers
Caracterización del compuesto 4,4'-bis(oxirano-2-ilmetoxi)bifenilo [BE-4,4-OH] Characterization of the compound 4,4'-bis (oxirane-2-ylmethoxy) biphenyl [BE-4,4-OH]
Como se describió en la sección experimental, el monómero MB-4,4- OH fue obtenido en una reacción de dos pasos, donde el compuesto BE-4,4- OH es utilizado como precursor.  As described in the experimental section, the MB-4,4-OH monomer was obtained in a two-step reaction, where the compound BE-4,4-OH is used as a precursor.
Propiedades Físicas Physical Properties
El compuesto intermediario BE-4,4-0H es un polvo blanco soluble en etanol, metanol y parcialmente soluble en acetona. Su punto de fusión es de 160°C y su peso molecular de 298,33 g/mol . Éste compuesto fue obtenido con un rendimiento del 37,23% . The intermediate compound BE-4,4-0H is a white powder soluble in ethanol, methanol and partially soluble in acetone. Its melting point is of 160 ° C and its molecular weight of 298.33 g / mol. This compound was obtained with a yield of 37.23%.
Análisis Elemental . Elemental Analysis
La composición y pureza del compuesto BE-4,4-0H se obtuvo a través de la técnica de análisis elemental . En la Tabla 6 se observan los valores experimentales que se obtuvieron, los cuales, coinciden con los calculados para el compuesto esperado. También, de acuerdo a esto valores, la pureza con la que se obtuvo éste compuesto fue de 98,89%. The composition and purity of compound BE-4,4-0H was obtained through the elemental analysis technique. Table 6 shows the experimental values that were obtained, which coincide with those calculated for the expected compound. Also, according to this values, the purity with which this compound was obtained was 98.89%.
Tabla 6 Análisis Elemental para el compuesto BE-4,4-OH Table 6 Elemental Analysis for compound BE-4,4-OH
Elemento % %  Element%%
Calculado Experimental  Experimental Calculated
C 72,47 71,67 C 72.47 71.67
O 21,45 22,37* Or 21.45 22.37 *
H 6,08 5,96 H 6.08 5.96
Análisis por Espectroscopia Infrarroja Infrared Spectroscopy Analysis
El espectro de IR-FT del compuesto BE-4,4-0H se presenta en la Figura 1. Las principales bandas que dan evidencia de la formación de éste compuesto son : las bandas de elongación simétrica y asimétrica en 1133, 1247 y 1037 cm"1 correspondientes al grupo OC-O-C, así como la banda en 910 cm"1 que corresponde a la vibración del esqueleto del anillo epóxido. De igual forma, la ausencia de la banda entre 3200 y 3600 correspondiente al estiramiento del enlace υΟ-Η presente en la materia prima, el 4,4 ' -bifenol, confirma la estructura del compuesto esperado. The IR-FT spectrum of compound BE-4,4-0H is presented in Figure 1. The main bands that give evidence of the formation of this compound are: symmetric and asymmetric elongation bands at 1133, 1247 and 1037 cm "1 corresponding to the OC-OC group, as well as the 910 cm band " 1 corresponding to the vibration of the skeleton of the epoxy ring. Similarly, the absence of the band between 3200 and 3600 corresponding to stretch υΟ-Η bond present in the starting material, 4,4' -bifenol confirms the structure of the expected compound.
Espectroscopia RMN de lH y 13C El espectro de RMN lH del compuesto BE-4,4-0H se muestra en la Figura 2, en éste se presentan siete señales con una integración total de dieciocho protones que corresponden al compuesto esperado. Las señales se presentan en el rango de 7,46 a 2,77 ppm . Las señales dobles en 7,46 y 6,97 ppm corresponden a los protones de los anillos aromáticos, ambas señales integran para un total de ocho. Las señales múltiples en 4,25 y 3,99 ppm corresponden al metileno saturado -CH2- unido al oxígeno, ambas señales tienen una integración de dos protones. La señal múltiple en 3,38 ppm integra para dos protones y corresponde al protón del metino presente en el esqueleto del epóxido. Finalmente, en 2,92 y 2,77 ppm se encuentran dos señales múltiples que integran para un total de cuatro protones y corresponden a los grupos metilenos ubicados dentro del esqueleto del epóxido. NMR spectroscopy of 1 H and 13 C The 1 H NMR spectrum of the BE-4.4-0H compound is shown in Figure 2, in which seven signals with a total integration of eighteen protons corresponding to the expected compound are presented. The signals are presented in the range of 7.46 to 2.77 ppm. The double signals at 7.46 and 6.97 ppm correspond to the protons of the aromatic rings, both signals integrate for a total of eight. Multiple signals at 4.25 and 3.99 ppm correspond to saturated methylene -CH 2 - bound to oxygen, both signals have an integration of two protons. The multiple signal at 3.38 ppm integrates for two protons and corresponds to the proton of the methine present in the epoxy skeleton. Finally, at 2.92 and 2.77 ppm there are two multiple signals that integrate for a total of four protons and correspond to the methylene groups located within the epoxy skeleton.
La Figura 3 muestra el espectro de RMN 13C del compuesto biepóxido sintetizado a partir del 4,4 ' -bifenol . En él, se encuentran presentes siete señales en un rango de 157,6 a 44,7 ppm. La señal en 157,6 ppm corresponde al carbono cuaternario del anillo aromático situado a un lado del grupo funcional éter (aromático) . La señal en 133,9 ppm, proviene de la señal que emiten los carbonos cuaternarios de los anillos aromáticos en el centro de la molécula (aromático) . Las señales en 122,7 y 114,9 ppm provienen del resto de los carbonos que conforman al anillo aromático. La señal en 68,8 ppm corresponde al carbono del metileno situado al lado del grupo funcional éter. La señal en 50,2 ppm, corresponde al carbono del metino presente en el esqueleto del epóxido (epóxido) . Finalmente, la señal que se presenta en 44.7 ppm, es proveniente del carbono del metileno correspondiente al epóxido. Figure 3 shows the 13 C NMR spectrum of biepóxido compound synthesized from 4,4' -bifenol. In it, seven signals are present in a range of 157.6 to 44.7 ppm. The signal at 157.6 ppm corresponds to the quaternary carbon of the aromatic ring located on the side of the ether (aromatic) functional group. The signal at 133.9 ppm comes from the signal emitted by the quaternary carbons of the aromatic rings in the center of the (aromatic) molecule. The signals at 122.7 and 114.9 ppm come from the rest of the carbons that make up the aromatic ring. The 68.8 ppm signal corresponds to the methylene carbon located next to the ether functional group. The signal at 50.2 ppm corresponds to the carbon of the methine present in the skeleton of the epoxide (epoxide). Finally, the signal presented at 44.7 ppm is from the carbon of the methylene corresponding to the epoxide.
Caracterización del compuesto 4,4'-bis[2-hidroxi-3- metacriloxipropoxi]bifenilo) [MB-4,4-OH]. El monómero MB-4,4-0H fue obtenido a partir de dos rutas sintéticas; la primera de ellas fue una reacción de dos pasos, en donde se requería la síntesis y purificación del compuesto intermediario descrito en la sección anterior. En una segunda ruta sintética, el monómero fue obtenido a partir de una reacción de un solo paso. En ambas rutas sintéticas se obtuvo el monómero bifuncional . Characterization of the compound 4,4'-bis [2-hydroxy-3- methacryloxypropoxy] biphenyl) [MB-4,4-OH]. The MB-4,4-0H monomer was obtained from two synthetic routes; The first one was a two-step reaction, where synthesis and purification of the intermediate compound described in the previous section was required. In a second synthetic route, the monomer was obtained from a single step reaction. In both synthetic routes the bifunctional monomer was obtained.
Propiedades Físicas Physical Properties
El compuesto MB-4,4-0H es un polvo blanco con punto de fusión entre 134 y 138°C, con un peso molecular de 470, 19 g/mol. Es soluble en THF, parcialmente soluble en acetona e insoluble en hexano, ciclohexano, diclorometano, etanol y metanol. El rendimiento para la obtención de éste monómero fue del 67% para la ruta sintética de dos pasos, mientras que para la ruta de un solo paso, el rendimiento fue de 45%.  The compound MB-4,4-0H is a white powder with a melting point between 134 and 138 ° C, with a molecular weight of 470, 19 g / mol. It is soluble in THF, partially soluble in acetone and insoluble in hexane, cyclohexane, dichloromethane, ethanol and methanol. The yield for obtaining this monomer was 67% for the synthetic two-step route, while for the one-step route, the yield was 45%.
Análisis Elemental Elemental Analysis
La composición y pureza del compuesto MB-4,4-0H fue obtenida mediante la técnica de análisis elemental. Los valores obtenidos por esta técnica son observados en la Tabla 7. Dichos valores coinciden con los valores calculados para el compuesto esperado. The composition and purity of compound MB-4,4-0H was obtained by elemental analysis technique. The values obtained by this technique are observed in Table 7. These values coincide with the values calculated for the expected compound.
Tabla 7 Análisis Elemental para el compuesto MB-4,4-OH Table 7 Elemental Analysis for compound MB-4,4-OH
Elemento % %  Element%%
Calculado Experimental  Experimental Calculated
C 66,37 65,89 C 66.37 65.89
O 27,20 27,95* Or 27.20 27.95 *
H 6,43 6,16 H 6.43 6.16
De éstos resultados, se puede establecer que la pureza del compuesto es de 99,2%. Análisis por Espectroscopia Infrarroja From these results, it can be established that the purity of the compound is 99.2%. Infrared Spectroscopy Analysis
El espectro de infrarrojo para el compuesto MB-4,4-0H es mostrado en la Figura 4. Las bandas presentes en éste espectro que dan evidencia de la formación de éste compuesto son : la presencia de la señal en 3471 cm"1, la cual corresponde al estiramiento del enlace υΟ-Η, que se forma en la molécula, además de las bandas localizadas en 1638 y 811 cm"1, que corresponden al estiramiento y torsión del enlace C= C respectivamente. Así mismo, la presencia de la señal en 1697 cm"1, que corresponde al estiramiento del enlace
Figure imgf000074_0001
proveniente del ácido metacrílico, confirma la formación del monómero. Finalmente, una evidencia más es la ausencia de la señal en 910 cm"1, que corresponde a la vibración del esqueleto del anillo epóxido presente en el compuesto intermediario y que no se presenta en el monómero bifuncional .
The infrared spectrum for the compound MB-4,4-0H is shown in Figure 4. The bands present in this spectrum that give evidence of the formation of this compound are: the presence of the signal at 3471 cm "1 , the which corresponds to the stretching of the υΟ-Η bond, which is formed in the molecule, in addition to the bands located at 1638 and 811 cm "1 , which correspond to the stretching and torsion of the C = C bond respectively. Likewise, the presence of the signal in 1697 cm "1 , which corresponds to the stretching of the link
Figure imgf000074_0001
from methacrylic acid, confirms the formation of the monomer. Finally, further evidence is the absence of the signal at 910 cm "1 , which corresponds to the vibration of the skeleton of the epoxy ring present in the intermediate compound and which does not occur in the bifunctional monomer.
Análisis por Espectroscopia de RMN de ^ y 13C NMR Spectroscopy of ^ and 13 C
En el espectro de RMN del monómero MB-4,4-0H se presentan nueve señales con una integración total de treinta protones que corresponden al compuesto esperado. Las señales se presentan en el rango de 7,46 a 1,97 ppm. Las señales dobles que aparecen en 7,46 y 6,97 ppm, integran para un total de ocho protones y son asignadas a los protones de los dos anillos aromáticos presentes en la molécula . Las señales simples que aparecen en 6, 16 y 5,62 ppm representan a los dos diferente protones provenientes del metileno insaturado (CH2 = C) en cada uno de los extremos de la molécula, dicha señal integra para cuatro protones. Las señales múltiples presentes en 4,41 y 4, 37 ppm integran para un total de cuatro protones, y provienen de los protones del grupo metileno unido al oxígeno proveniente del alcohol (Ar-0-CH2-) . En un desplazamiento de 4, 31 ppm se distingue una señal múltiple que integra para dos protones, dicha señal corresponde al protón del grupo metino (-CH-) que presenta el monómero) . En 4, 11 y 4,09 ppm se encuentran dos señales múltiples que integran para un total de cuatro protones, los cuales corresponden a los protones del grupo metileno unido al oxígeno proveniente del ácido metacrílico (-CH2-0-C) . Finalmente, una señal simple en 1,97 ppm es asignada a los protones del grupo metilo que se encuentran en los extremos de la molécula (-CH3), dicha señal da una integración total para seis protones. El espectro correspondiente es presentado en la Figura 5. In the NMR spectrum of the MB-4,4-0H monomer nine signals are presented with a total integration of thirty protons corresponding to the expected compound. The signals are presented in the range of 7.46 to 1.97 ppm. The double signals that appear at 7.46 and 6.97 ppm, integrate for a total of eight protons and are assigned to the protons of the two aromatic rings present in the molecule. The simple signals that appear at 6, 16 and 5.62 ppm represent the two different protons from unsaturated methylene (CH 2 = C) at each end of the molecule, said signal integrates for four protons. The multiple signals present at 4.41 and 4.37 ppm integrate for a total of four protons, and come from the protons of the methylene group attached to the oxygen from the alcohol (Ar-0-CH 2 -). In a displacement of 4.31 ppm a multiple signal is distinguished that integrates for two protons, said signal corresponds to the proton of the methine group (-CH-) presented by the monomer). In 4, 11 and 4.09 ppm there are two multiple signals that integrate for a total of four protons, which correspond to the protons of the methylene group attached to oxygen from methacrylic acid (-CH 2 -0-C). Finally, a simple signal at 1.97 ppm is assigned to the protons of the methyl group that are at the ends of the molecule (-CH 3 ), which signal gives a total integration for six protons. The corresponding spectrum is presented in Figure 5.
El espectro de RMN 13C para este compuesto es presentado en la Figura 6. En él pueden observarse un total de diez señales en un rango de 167,2 a 18,3 ppm, las cuales corresponden a las señales esperadas para el compuesto sintetizado. En campos bajos, la primera señal, en 167,2 ppm, proviene del carbono del grupo carbonilo perteneciente al ácido metacrílico (-C=0). La señal a un desplazamiento de 157,5 ppm, corresponde al carbono del anillo aromático que se encuentra unido al oxígeno (Ar) . La señal que se localiza en 135,9 ppm es asignada al carbono cuaternario del enlace vinílico proveniente del ácido metacrílico (C=CH2) . A un desplazamiento químico de 133,6 ppm, se localiza la señal que proviene de los carbonos de los anillos aromáticos que están unidos entre sí (Ar-Ar) . En un desplazamiento químico de 127,8 ppm aparece una señal que proviene de uno de los carbonos centrales del anillo aromático (B). En 126,2 ppm se localiza la señal proveniente del carbono del grupo metileno insaturado en los extremos de la molécula (C=CH2). A un desplazamiento de 114,5 ppm, se puede observar la señal correspondiente a uno de los carbonos del anillo aromático (Ar-C). Hacia campos altos, la señal que se presenta en un desplazamiento químico de 68,6 ppm pertenece al grupo metino presente en el monómero (-CH-) . La señal que aparece en 65,5 ppm corresponde a los carbonos de los grupos metilenos que se encuentran unidos al oxígeno (0-CH2-CH-CH2-0) . Por último, a un desplazamiento de 18,3 ppm, se encuentra una señal que representa al carbono del grupo metilo terminal (-CH3). The 13 C NMR spectrum for this compound is presented in Figure 6. A total of ten signals in a range of 167.2 to 18.3 ppm can be observed, which correspond to the expected signals for the synthesized compound. In low fields, the first signal, at 167.2 ppm, comes from the carbon of the carbonyl group belonging to methacrylic acid (-C = 0). The signal at a displacement of 157.5 ppm corresponds to the carbon of the aromatic ring that is attached to oxygen (Ar). The signal located at 135.9 ppm is assigned to the quaternary carbon of the vinyl bond from methacrylic acid (C = CH 2 ). At a chemical shift of 133.6 ppm, the signal that comes from the carbons of the aromatic rings that are linked together (Ar-Ar) is located. In a chemical displacement of 127.8 ppm a signal appears that comes from one of the central carbons of the aromatic ring (B). At 126.2 ppm, the signal from the carbon of the unsaturated methylene group is located at the ends of the molecule (C = CH 2 ). At a displacement of 114.5 ppm, the signal corresponding to one of the aromatic ring carbons (Ar-C) can be observed. Towards high fields, the signal that occurs in a chemical shift of 68.6 ppm belongs to the methine group present in the monomer (-CH-). The signal that appears at 65.5 ppm corresponds to the carbons of the methylene groups that are bound to oxygen (0-CH 2 -CH-CH 2 -0). Finally, at a displacement of 18.3 ppm, there is a signal that represents the carbon of the terminal methyl group (-CH 3 ).
Caracterización del compuesto l,4-bis(ox¡rano-2-¡lmetoxi)benceno [BE-Fen- OH] Characterization of compound l, 4-bis (ox¡rano-2-lmethoxy) benzene [BE-Fen-OH]
El precursor BE-Fen-OH fue sintetizado por reacción del bis alcohol con epiclorhidrina en DMF, utilizando HNa para generar la especie reactiva. Una vez purificado, este producto se utilizó para la síntesis del monómero MB- Fen-OH. The precursor BE-Fen-OH was synthesized by reacting bis alcohol with epichlorohydrin in DMF, using HNa to generate the reactive species. A Once purified, this product was used for the synthesis of the MB-Fen-OH monomer.
Propiedades Físicas Physical Properties
El compuesto BE-Fen-OH es un líquido amarillo que posee un peso molecular de 250,29 g/mol. Éste es soluble en diclorometano, acetona y DMF e insoluble en hexano y acetato de etilo. El rendimiento para esta reacción, resultó de 27%. The compound BE-Fen-OH is a yellow liquid that has a molecular weight of 250.29 g / mol. This is soluble in dichloromethane, acetone and DMF and insoluble in hexane and ethyl acetate. The yield for this reaction was 27%.
Análisis Elemental Elemental Analysis
La composición y pureza del compuesto BE-Fen-OH fue obtenida mediante la técnica de análisis elemental. Los resultados de ésta pueden observarse en la Tabla 8. Los valores obtenidos coinciden con los calculados para éste compuesto, demostrando que éste se obtuvo con una pureza del 95,5%. The composition and purity of the BE-Fen-OH compound was obtained by elemental analysis technique. The results of this can be seen in Table 8. The values obtained coincide with those calculated for this compound, demonstrating that it was obtained with a purity of 95.5%.
Tabla 8 Análisis Elemental para el compuesto BE-Fen-OH Table 8 Elemental Analysis for the BE-Fen-OH compound
Elemento % %  Element%%
Calculado Experimental  Experimental Calculated
C 67,18 64,21 C 67.18 64.21
O 25,57 26,78 O 25.57 26.78
H 7,25 9,01 H 7.25 9.01
Análisis por Espectroscopia Infrarroja Infrared Spectroscopy Analysis
El compuesto BE-Fen-OH fue caracterizado mediante la técnica de espectroscopia de infrarrojo por transformada de Fourier. El espectro obtenido por esta técnica se presenta en la Figura 7. En dicho espectro pueden observarse algunas bandas importantes que permiten demostrar la formación del compuesto esperado, entre éstas están : la elongación del enlace
Figure imgf000077_0001
del anillo aromático del compuesto se ve representada por una señal muy grande localizada en un número de onda de 1701 cm"1, las bandas de elongación simétrica y asimétrica en 914 y 1364 cm"1 correspondientes a un anillo epóxido terminal .
The BE-Fen-OH compound was characterized by the Fourier transform infrared spectroscopy technique. The spectrum obtained by this technique is presented in Figure 7. In this spectrum some important bands can be observed that allow demonstrating the formation of the expected compound, among them are: elongation of the link
Figure imgf000077_0001
of the aromatic ring of the compound is represented by a very large signal located at a wave number of 1701 cm "1 , the symmetrical and asymmetric elongation bands at 914 and 1364 cm " 1 corresponding to a terminal epoxy ring.
Análisis por Espectroscopia de RMN de ^ y 13C NMR Spectroscopy of ^ and 13 C
La figura 8 muestra el espectro de RMN ^ que corresponde al compuesto BE-Fen-OH. En el espectro pueden observarse siete señales distintas que integran para dieciocho protones, mismos que corresponden al compuesto esperado. Las señales aparecen en un rango de 7,34 a 2,62 ppm. En campos bajos, la señal simple que se presenta en 7,34 ppm, y que se encuentra integrada por cuatro protones, corresponde a los protones presentes dentro del anillo aromático (Ar) . La señal doble que aparece en 4,62 ppm está integrada por cuatro protones y corresponden a los protones del grupo metileno ubicados entre el oxígeno y el anillo aromático (Ar-CH2-0- ) . Las señales múltiples en 3,77 y 3,43 ppm corresponden a los protones de los grupos metilenos que se encuentran entre el oxígeno y el anillo epóxido (-0-CH2-), ambas señales integran para un total de cuatro protones. La señal múltiple localizada en 3, 19 ppm la encuentran integrando dos protones, los cuales corresponden a los grupos metino ubicados en el esqueleto del anillo epóxido (D) . Finalmente, las dos señales múltiples en 2,81 y 2,62 ppm, están integradas por dos protones cada una y corresponden a los protones del grupo metileno que se encuentra en el anillo del esqueleto del epóxido (E) . Figure 8 shows the NMR spectrum corresponding to the compound BE-Fen-OH. In the spectrum seven different signals can be observed that integrate for eighteen protons, which correspond to the expected compound. The signals appear in a range of 7.34 to 2.62 ppm. In low fields, the simple signal that is presented at 7.34 ppm, and which is composed of four protons, corresponds to the protons present within the aromatic ring (Ar). The double signal that appears at 4.62 ppm is composed of four protons and corresponds to the protons of the methylene group located between the oxygen and the aromatic ring (Ar-CH 2 -0-). The multiple signals at 3.77 and 3.43 ppm correspond to the protons of the methylene groups that are between the oxygen and the epoxy ring (-0-CH 2 -), both signals integrate for a total of four protons. The multiple signal located at 3.19 ppm is found by integrating two protons, which correspond to the metino groups located in the skeleton of the epoxy ring (D). Finally, the two multiple signals at 2.81 and 2.62 ppm, are integrated by two protons each and correspond to the protons of the methylene group found in the ring of the epoxy skeleton (E).
El espectro de RMN 13C para éste mismo compuesto se puede observar en la figura 9. En éste espectro aparecen seis señales diferentes que corresponden a las esperadas para el compuesto sintetizado. Las señales aparecen en un rango que va de 137,6 ppm a 44,3 ppm. La señal que se presenta en 137,6 ppm corresponde al carbono del anillo aromático que está ubicado junto al grupo metileno (B) . En 128,0 ppm, se presenta una señal que proviene de los carbonos centrales del anillo aromático (A) . La señal que se presenta en 73,7 ppm corresponde al carbono del grupo metileno que se encuentra entre el oxígeno y el anillo aromático (Ar-CH2-0-). En 70,9 ppm, aparece una señal que proviene del carbono del grupo metileno ubicado entre el oxígeno y el anillo epóxido (-0-CH2-). La señal que se presenta en 50,9 ppm pertenece al carbono del metino localizado dentro del anillo epóxido, mientras que la señal en 44,3 ppm la origina el carbono del grupo metileno del esqueleto del epóxido. The 13 C NMR spectrum for this same compound can be seen in Figure 9. Six different signals appear in this spectrum that correspond to those expected for the synthesized compound. The signals appear in a range from 137.6 ppm to 44.3 ppm. The signal presented at 137.6 ppm corresponds to the carbon of the aromatic ring that is located next to the methylene group (B). At 128.0 ppm, a signal from the central carbons of the aromatic ring (A) is presented. The signal that It is presented at 73.7 ppm corresponds to the carbon of the methylene group that is between oxygen and the aromatic ring (Ar-CH 2 -0-). At 70.9 ppm, a signal appears that comes from the carbon of the methylene group located between oxygen and the epoxy ring (-0-CH 2 -). The signal presented at 50.9 ppm belongs to the carbon of the methine located inside the epoxide ring, while the signal at 44.3 ppm is originated by the carbon of the methylene group of the epoxy skeleton.
Caracterización del compuesto l,4-bis[(2-hidrox¡-3-metacr¡lox¡ propoxi)metil] fenilo [MB-Fen-OH] Characterization of the compound l, 4-bis [(2-hydroxy-3-methacryloxpropoxy) methyl] phenyl [MB-Fen-OH]
Propiedades Físicas Physical Properties
El monómero MB-Fen-OH es un líquido viscoso color amarillo claro que posee un peso molecular de 422,47 g/mol. Éste compuesto presenta solubilidad en acetona, diclorometano y cloroformo. El rendimiento para la segunda etapa de síntesis es del 75,9%. El rendimiento final para la síntesis de éste monómero es del 51,45%. The MB-Fen-OH monomer is a light yellow viscous liquid that has a molecular weight of 422.47 g / mol. This compound has solubility in acetone, dichloromethane and chloroform. The yield for the second stage of synthesis is 75.9%. The final yield for the synthesis of this monomer is 51.45%.
Análisis Elemental Elemental Analysis
El compuesto MB-Fen-OH fue caracterizad mediante la técnica de análisis elemental con la finalidad de conocer su composición y determinar la pureza con la que se obtuvo. La Tabla 9 muestra los resultados de éste análisis; según estos, la pureza del monómero sintetizado fue de 98,75%. The MB-Fen-OH compound was characterized by elemental analysis technique in order to know its composition and determine the purity with which it was obtained. Table 9 shows the results of this analysis; according to these, the purity of the synthesized monomer was 98.75%.
Tabla 9 Análisis Elemental para el compuesto MB-Fen-OH Table 9 Elemental Analysis for the compound MB-Fen-OH
Elemento % %  Element%%
Calculado Experimental  Experimental Calculated
C 62,55 63,34 C 62.55 63.34
O 30,30 29,19 O 30.30 29.19
H 7,16 7,47 Análisis por Espectroscopia Infrarroja H 7.16 7.47 Infrared Spectroscopy Analysis
La Figura 10 muestra el espectro de IR-FT obtenido a partir del compuesto MB-Fen-OH. El espectro muestra evidencia de la formación del monómero al presentarse las siguiente bandas de absorción : en primer lugar, la señal que se presenta a un número de onda de 3464 cm"1, corresponde al estiramiento del enlace υΟ-Η que se encuentra como grupo pendiente en la estructura del monómero; de igual forma, la banda de absorción que se localiza en 2865 cm"1 es asignada al estiramiento asimétrico del enlace OC-H, a un número de onda de 1636 y 813 cm"1, se encuentran presentes las bandas que corresponden al estiramiento y torsión del enlace O-6C = C respectivamente. En un número de onda de 1716 cm"1, se presenta una señal que es asignada al estiramiento del enlace
Figure imgf000079_0001
Finalmente, a un número de onda de 1455 cm- 1 se presenta una banda que corresponde a la torsión simétrica dentro del plano del enlace 5-CH2- . Una evidencia más que se tiene de la formación del compuesto es la ausencia de la señal en un número de onda de 910 cm"1, que corresponde a la vibración del esqueleto del anillo epóxido, confirmando la correcta conversión del anillo epóxido en éster bimetacrílico.
Figure 10 shows the IR-FT spectrum obtained from the compound MB-Fen-OH. The spectrum shows evidence of the formation of the monomer when the following absorption bands occur: first, the signal that is presented at a wavelength of 3464 cm "1 , corresponds to the stretching of the υΟ-Η bond that is found as a group slope in the monomer structure; similarly, the absorption band located at 2865 cm "1 is assigned to the asymmetric stretch of the OC-H bond, at a wave number of 1636 and 813 cm " 1 , are present the bands corresponding to the stretching and torsion of the link O-6C = C respectively. In a wave number of 1716 cm "1 , a signal is presented that is assigned to the link stretching
Figure imgf000079_0001
Finally, a band corresponding to the symmetric torsion within the plane of the 5-CH 2 - link is presented at a wave number of 1455 cm -1. One more evidence of the formation of the compound is the absence of the signal at a wavelength of 910 cm "1 , which corresponds to the vibration of the skeleton of the epoxy ring, confirming the correct conversion of the epoxy ring into bimetacrylic ester.
Análisis por Espectroscopia de RMN de ^ y 13C NMR Spectroscopy of ^ and 13 C
Las Figuras 1 1, 12 y 13 muestran los espectros de RMN de ^ y 13C del compuesto MB-Fen-OH . En el espectro de RMN pueden distinguirse ocho señales que integran para treinta protones, mismas que se esperaban para el compuesto sintetizado. Las señales aparecen en un rango de 7, 24 a 1,87 ppm. En campos bajos, la primera señal que aparece se encuentra en 7, 24 ppm con una integración de cuatro protones, éstos corresponden a los protones del anillo aromático (Ar) . Las señales en 6,04 y 5, 52 ppm, provienen de los protones vinílicos que se localizan en cada uno de los extremos de la molécula, dichas señales tienen, en total, una integración para cuatro protones. En 4,49 ppm, aparece una señal múltiple que se encuentra integrando para cuatro protones, dicha señal proviene de los protones del grupo metileno ubicado entre el oxígeno y el anillo aromático (Ar-CH2-0-). En 4,20 ppm se localiza una señal múltiple que se encuentra integrando para cuatro protones, la señal proviene de los protones del grupo metileno que se localiza al lado del oxígeno proveniente del ácido metacrílico (CH-CH2-0) . La señal múltiple que se localiza en 4,01 ppm, con una integración de dos protones, pertenece al protón del grupo metino que contiene esta molécula (-CH-). La señal en 3,52 ppm representa a los protones del grupo metileno que se encuentran entre el oxígeno y el grupo metino de la molécula (0-CH2-CH), dicha señal se encuentra integrada por cuatro protones. Por último, la señal que se observa en un desplazamiento químico de 1,87 ppm, está integrada por seis protones y representa a los protones del grupo metilo (-CH3) . Figures 1 1, 12 and 13 show the NMR spectra of ^ and 13 C of the compound MB-Fen-OH. In the NMR spectrum, eight signals can be distinguished that integrate for thirty protons, which were expected for the synthesized compound. The signals appear in a range of 7, 24 to 1.87 ppm. In low fields, the first signal that appears is at 7.24 ppm with an integration of four protons, these correspond to the protons of the aromatic ring (Ar). The signals at 6.04 and 5.52 ppm, come from the vinyl protons that are located at each end of the molecule, these signals have, in total, an integration for four protons. At 4.49 ppm, a multiple signal appears that is integrating for four protons, this signal comes from the protons of the methylene group located between oxygen and the aromatic ring (Ar-CH 2 -0-). At 4.20 ppm a multiple signal is located that is integrated for four protons, the signal comes from the protons of the methylene group that is located next to the oxygen coming from methacrylic acid (CH-CH 2 -0). The multiple signal that is located at 4.01 ppm, with an integration of two protons, belongs to the proton of the methine group that contains this molecule (-CH-). The signal at 3.52 ppm represents the protons of the methylene group that are between oxygen and the methine group of the molecule (0-CH 2 -CH), said signal is composed of four protons. Finally, the signal observed in a chemical shift of 1.87 ppm is composed of six protons and represents the protons of the methyl group (-CH 3 ).
En el espectro de RMN 13C para éste mismo compuesto, se pueden observar diez señales en el rango de 167,4 a 18,3 ppm, mismas que corresponden a las esperadas para el compuesto sintetizado. En campos altos, la primera señal que se observa en 167,4 ppm corresponde al carbono del grupo carbonilo proveniente del ácido metacrílico (-C=0) . La señal que se localiza en 137,3 ppm corresponde al carbono del anillo aromático unido al grupo metileno (B). La señal ubicada en 135,9 ppm es asignada al carbono cuaternario del enlace vinílico (C=CH2) . En un desplazamiento químico de 127,9 ppm aparece la señal que proviene de los carbonos centrales del anillo aromático (A). En 126,0 ppm se encuentra la señal que corresponde al carbono del grupo metileno insaturado de la molécula (C=CH2) . La señal que se presenta en 73,2 ppm es asignada al carbono del grupo metileno ubicado entre el anillo aromático y el oxígeno (Ar-CH2-0) . La señal que se encuentra en 70,9 ppm es asignada al carbono del grupo metileno que se localiza entre el oxígeno y el grupo metino de esta molécula (0-CH2-CH-). En un desplazamiento químico de 68,9 ppm, se localiza la señal proveniente del grupo metino que posee éste monómero (-CH-) . La señal que se localiza en 65,7 ppm es asignada al carbono del grupo metileno que se encuentra junto al oxígeno que proviene del ácido metacrílico (-CH2-0-). Finalmente, la señal que se encuentra en un desplazamiento químico de 18,3 ppm, representa al carbono del grupo metilo (-CH3) que posee éste monómero. In the 13 C NMR spectrum for this same compound, ten signals in the range of 167.4 to 18.3 ppm can be observed, which correspond to those expected for the synthesized compound. In high fields, the first signal observed at 167.4 ppm corresponds to carbon of the carbonyl group from methacrylic acid (-C = 0). The signal located at 137.3 ppm corresponds to the carbon of the aromatic ring attached to the methylene group (B). The signal located at 135.9 ppm is assigned to the quaternary carbon of the vinyl bond (C = CH 2 ). A signal from the central carbons of the aromatic ring (A) appears in a chemical shift of 127.9 ppm. At 126.0 ppm the signal corresponding to the carbon of the unsaturated methylene group of the molecule is found (C = CH 2 ). The signal presented at 73.2 ppm is assigned to the carbon of the methylene group located between the aromatic ring and oxygen (Ar-CH 2 -0). The signal at 70.9 ppm is assigned to the carbon of the methylene group that is located between oxygen and the methine group of this molecule (0-CH 2 -CH-). In a chemical displacement of 68.9 ppm, the signal from the methine group that possesses this monomer (-CH-) is located. The signal that is located at 65.7 ppm is assigned to the carbon of the methylene group that is next to oxygen that comes from methacrylic acid (-CH 2 -0-). Finally, the signal that is in a chemical shift of 18.3 ppm, represents the carbon of the methyl group (-CH 3 ) that possesses this monomer.
Caracterización del compuesto l,4-bis(oxirano-2-¡lmetox¡)butano [BE-1,4- OH] . Characterization of compound l, 4-bis (oxirane-2-lmethox!) Butane [BE-1,4-OH].
El monómero bifuncional a partir del 1,4-butanodiol es obtenido en una ruta sintética que consiste en 2 pasos. El primero de ellos consiste en obtener al compuesto intermediario l,4-bis(oxiran-2-ilmetoxi)butano [BE- 1,4-OH] .  The bifunctional monomer from 1,4-butanediol is obtained in a synthetic route consisting of 2 steps. The first of these consists in obtaining the intermediate compound 1,4-bis (oxyran-2-ylmethoxy) butane [BE-1,4-OH].
Propiedades Físicas. Physical Properties
El BE-1,4-0H es un líquido de color amarillo claro con un peso molecular de 202,25 g/mol, soluble en acetona, cloroformo y diclorometano. El rendimiento obtenido para éste compuesto fue de 54%. BE-1,4-0H is a light yellow liquid with a molecular weight of 202.25 g / mol, soluble in acetone, chloroform and dichloromethane. The yield obtained for this compound was 54%.
Análisis Elemental. Elemental Analysis
La composición y pureza del compuesto BE-1,4-0H fue obtenida mediante la técnica de análisis elemental. Los valores obtenidos a través de esta técnica son observados en la Tabla 10. Los valores coinciden con los valores calculados para el compuesto esperado. De estos resultados, se puede establecer que la pureza del compuesto es de 97,3%. The composition and purity of compound BE-1,4-0H was obtained by elemental analysis technique. The values obtained through this technique are observed in Table 10. The values coincide with the values calculated for the expected compound. From these results, it can be established that the purity of the compound is 97.3%.
Tabla 10 Análisis Elemental para el compuesto BE-l,4-OH Table 10 Elemental Analysis for compound BE-l, 4-OH
Elemento % %  Element%%
Calculado Experimental  Experimental Calculated
C 59,37 57,78 C 59.37 57.78
O 31,65 34,09* Or 31.65 34.09 *
H 8,98 8,13 Análisis por Espectroscopia Infrarroja H 8.98 8.13 Infrared Spectroscopy Analysis
El espectro de IR-FT del compuesto BE-1,4-0H se muestra en la Figura 14. En éste espectro, es posible observar algunas bandas que dan evidencia de la formación del compuesto, dichas bandas de absorción son : en 1254, 1204 y 1107 cm"1 se localizan unas bandas de absorción que corresponden a los modos de elongación simétrica Os i m y asimétrica Oas i m del enlace C-O-C. Así mismo, la vibración del esqueleto del anillo epoxido se ve representada por la banda que aparece en 856 cm"1. Por otro lado, una evidencia más se tiene con la ausencia de la banda que corresponde al estiramiento del enlace υΟ-Η presente en la materia prima, y que normalmente aparece entre 3200 y 3600 cm"1. The IR-FT spectrum of compound BE-1,4-0H is shown in Figure 14. In this spectrum, it is possible to observe some bands that give evidence of the formation of the compound, said absorption bands are: in 1254, 1204 and 1107 cm "1 are located absorption bands that correspond to the symmetric O sim and asymmetric O as im elongation modes of the COC link. Likewise, the vibration of the skeleton of the epoxy ring is represented by the band that appears at 856 cm "1 . On the other hand, there is more evidence with the absence of the band that corresponds to the stretching of the υΟ-Η bond present in the raw material, which normally appears between 3200 and 3600 cm "1 .
Espectroscopia por RMN de ^ y 13C NMR spectroscopy of ^ and 13 C
El espectro de RMN ^ del compuesto intermediario BE-1,4-0H se presenta en la Figura 15. En él, se pueden observar un total de siete señales que integran para dieciocho protones, que corresponden al compuesto esperado. Las señales van de un rango entre 3,7 y 1,6 ppm. Las señales en 3,72 y 3,38 ppm que integran para dos protones cada una, están asignadas a los protones del metileno situados entre el oxígeno y el anillo epoxido (-0- CH2-). La señal múltiple ubicada en 3,52 ppm, que integra para cuatro protones, corresponde a los protones del metileno ubicados a un lado del oxígeno en el centro de la molécula (-0-CH2-CH2-). La señal que se encuentra en 3,16 ppm, integra para dos protones y corresponde al protón del metino en el anillo del epoxido. Las señales que se encuentran en 2,81 y 2,62 ppm, integran para un total de cuatro protones y corresponden a los protones del metileno ubicado en el anillo del epoxido. Finalmente, en campos más altos, se encuentra una señal múltiple en 1,6 ppm, la cual da una integración de cuatro protones, ésta es asignada a los protones de los metilenos que se encuentran en el centro de la cadena hidrocarbonada (O- CH2-CH2-CH2-CH2-0) . La figura 16 muestra el espectro de RMN C del compuesto intermediario BE-1,4-0H. En dicho espectro, se presentan solo cinco señales distintas debido a la simetría de la molécula; mismas que corresponden a las señales esperadas para éste compuesto. El rango en el que aparecen va desde 71,4 hasta 26,3 ppm. En campos bajos, las señales que aparecen en 71,4 y 71,2 ppm son asignadas a los carbonos de los metilenos unidos al oxígeno del grupo funcional éter (-CH2-0-CH2-) . La señal en 50,8 ppm, es asignada al carbono del metino del anillo del epóxido. La señal que se encuentra en 44,2 ppm es asignada al carbono del metileno del anillo epóxido. Finalmente, en campos altos, aparece una señal en 26,3 ppm, la cual es asignada a los carbonos de los metilenos que se encuentran en el centro de la molécula (-0-CH2-CH2-_CH2-CH2-0-) . The NMR spectrum of the intermediate compound BE-1,4-0H is presented in Figure 15. In it, a total of seven signals can be observed that integrate for eighteen protons, corresponding to the expected compound. The signals range between 3.7 and 1.6 ppm. The signals at 3.72 and 3.38 ppm that integrate for two protons each, are assigned to the methylene protons located between the oxygen and the epoxide ring (-0- CH 2 -). The multiple signal located at 3.52 ppm, which integrates for four protons, corresponds to the methylene protons located next to the oxygen in the center of the molecule (-0-CH 2 -CH 2 -). The signal found at 3.16 ppm, integrates for two protons and corresponds to the proton of the methine in the epoxide ring. The signals found at 2.81 and 2.62 ppm, integrate for a total of four protons and correspond to the methylene protons located in the epoxide ring. Finally, in higher fields, a multiple signal is found at 1.6 ppm, which gives an integration of four protons, this is assigned to the protons of the methylenes that are in the center of the hydrocarbon chain (O-CH 2 -CH 2 -CH 2 -CH 2 -0). Figure 16 shows the C-NMR spectrum of intermediate compound BE-1,4-0H. In this spectrum, only five different signals are presented due to the symmetry of the molecule; same that correspond to the expected signals for this compound. The range in which they appear ranges from 71.4 to 26.3 ppm. In low fields, the signals that appear at 71.4 and 71.2 ppm are assigned to the carbons of the methylene-bound oxygen of the ether functional group (-CH 2 -0-CH 2 -). The signal at 50.8 ppm, is assigned to the methine carbon of the epoxy ring. The signal found at 44.2 ppm is assigned to the methylene carbon of the epoxy ring. Finally, in high fields, a signal appears at 26.3 ppm, which is assigned to the carbons of the methylene found in the center of the molecule (-0-CH 2 -CH 2 -_CH 2 -CH 2 - 0-).
Caracterización del compuesto l,4-bis[2-hidroxi-3-metacriloxi propoxi]butano [MB-l,4-OH]. Characterization of compound 1, 4-bis [2-hydroxy-3-methacryloxy propoxy] butane [MB-1, 4-OH].
Propiedades Físicas. Physical Properties
El compuesto MB-1,4-0H es un líquido amarillo claro, con un peso molecular de 374,43 g/mol. Es soluble en acetona, cloroformo y diclorometano. El rendimiento para la segunda etapa de síntesis es del 67%. El monómero, finalmente, fue obtenido con un rendimiento total del 60,5%. The compound MB-1,4-0H is a light yellow liquid, with a molecular weight of 374.43 g / mol. It is soluble in acetone, chloroform and dichloromethane. The yield for the second stage of synthesis is 67%. The monomer, finally, was obtained with a total yield of 60.5%.
Análisis Elemental. Elemental Analysis
La composición y pureza del compuesto MB-1,4-0H fue obtenida a través de la técnica de análisis elemental. La Tabla 11 muestra los valores obtenidos. The composition and purity of compound MB-1,4-0H was obtained through the elemental analysis technique. Table 11 shows the values obtained.
Tabla 11 Análisis Elemental para el compuesto MB-l,4-OH Table 11 Elemental Analysis for compound MB-l, 4-OH
Elemento % %  Element%%
Calculado Experimental c 57,74 56,81 Experimental Calculated c 57.74 56.81
O 34, 18* 34,91* Or 34, 18 * 34.91 *
H 8,08 8,28 H 8.08 8.28
De los resultados obtenidos, se puede establecer que la pureza del compuesto es de 98,3% . From the results obtained, it can be established that the purity of the compound is 98.3%.
Análisis por Espectroscopia Infrarroja Infrared Spectroscopy Analysis
La figura 17 muestra el espectro de IR-FT para el compuesto MB- 1,4- OH. Las bandas presentes en éste espectro que dan evidencia de la formación del compuesto son : la señal que se puede observar en 3444 cm"1, corresponde al estiramiento del enlace υΟ-Η que aparece en esta molécula, la banda que se localiza en 2928 cm"1 corresponde al estiramiento del enlace OC-H, las bandas localizadas en 1637 y 815 cm"1, las cuales corresponden al estiramiento y torsión del enlace C=C respectivamente. Así mismo, aparece, en 1718 cm"1, una señal que corresponde al estiramiento del enlace
Figure imgf000084_0001
0. Finalmente, la ausencia de la señal en 910 cm"1, que corresponde a la vibración del esqueleto del anillo epóxido presente en el compuesto intermediario, confirma la formación del compuesto esperado.
Figure 17 shows the IR-FT spectrum for compound MB-1,4-OH. The bands present in this spectrum that give evidence of the formation of the compound are: the signal that can be observed in 3444 cm "1 , corresponds to the stretching of the υΟ-Η bond that appears in this molecule, the band that is located at 2928 cm "1 corresponds to the stretching of the OC-H link, the bands located at 1637 and 815 cm " 1 , which correspond to the stretching and torsion of the C = C link respectively. Likewise, a signal appears at 1718 cm "1 , corresponds to link stretching
Figure imgf000084_0001
0. Finally, the absence of the signal at 910 cm "1 , which corresponds to the vibration of the skeleton of the epoxy ring present in the intermediate compound, confirms the formation of the expected compound.
Análisis por Espectroscopia de RMN de ^ y 13C NMR Spectroscopy of ^ and 13 C
La Figura 18 muestra el espectro de RMN ^ del monómero MB-1,4-0H . En el pueden observarse ocho diferentes señales que integran para un total de treinta protones, correspondientes al compuesto esperado. Las señales van en un rango de 6, 14 a 1,66 ppm. En campos bajos, las señales que se presentan en 6, 14 y 5,60 ppm, integrando para dos protones cada una de ellas, son asignadas a los dos diferentes protones olefínicos en el extremo terminal de la molécula CH2=C . La señal múltiple que está en 4,22 ppm, integra para un total de cuatro protones, y corresponde a los protones del grupo metileno unido al oxigeno derivado del ácido metacrílico (0-CH2-CH-) . La señal múltiple observada en 4,04 ppm y que integra para dos protones, es asignada al protón del grupo metino que se presenta en esta molécula (OH-CH-). La señal múltiple observada en 3,51 ppm integra para ocho protones, y es asignada a los protones de los grupos metilenos ubicados a cada lado del grupo funcional éter (-CH2-0-CH2-) . La señal múltiple en 2,84 ppm integra para dos protones y corresponde al protón del grupo hidroxilo (-OH). Hacia campos altos, la señal simple que se presenta en 1,95 ppm que integra para seis protones corresponde a los protones del grupo metilo (-CH3) . Finalmente, la señal que se presenta en 1,66 ppm se encuentra integrada por cuatro protones, mismos que corresponden a los protones de los metilenos ubicados en el centro de la cadena alquílica (-CH2-CH2-). Figure 18 shows the NMR spectrum of the MB-1,4-0H monomer. In it eight different signals can be observed that integrate for a total of thirty protons, corresponding to the expected compound. The signals range in 6, 14 to 1.66 ppm. In low fields, the signals that are presented at 6, 14 and 5.60 ppm, integrating for each two protons, are assigned to the two different olefinic protons at the terminal end of the CH 2 = C molecule. The multiple signal that is at 4.22 ppm, integrates for a total of four protons, and corresponds to the protons of the methylene group attached to the oxygen derived from methacrylic acid (0-CH 2 -CH-). The multiple signal observed at 4.04 ppm and which integrates for two protons, is assigned to the proton of the methine group that is present in this molecule (OH-CH-). The multiple signal observed at 3.51 ppm integrates for eight protons, and is assigned to the protons of the methylene groups located on each side of the ether functional group (-CH 2 -0-CH 2 -). The multiple signal at 2.84 ppm integrates for two protons and corresponds to the proton of the hydroxyl group (-OH). Towards high fields, the simple signal presented at 1.95 ppm that integrates for six protons corresponds to the protons of the methyl group (-CH 3 ). Finally, the signal presented at 1.66 ppm is composed of four protons, which correspond to the protons of the methylene located in the center of the alkyl chain (-CH 2 -CH 2 -).
El espectro de RMN 13C para el compuesto MB-1,4-0H se puede observar en la figura 19. En él se presentan nueve señales que corresponden al compuesto esperado. El desplazamiento de las señales se localiza en el rango de 167,3 a 18,3 ppm. La señal observada en 167,3 ppm corresponde al carbono del grupo carbonilo proveniente del ácido metacrílico (-C=0) . La señal que se presenta en 135,9 ppm corresponde al carbono cuaternario del grupo metacrilato (CH2=C). La señal en 125,9 ppm es asignada al carbono vinílico en los extremos terminales de la cadena (CH2=C-). Las señales que pueden observarse en 71,5 y 71,2 ppm corresponden a los dos carbonos unidos al grupo funcional éter (-CH2-0-CH2-) . La señal en 68,7 ppm corresponde al carbono metínico que se encuentra unido al alcohol (-CH-OH). La señal en 65,6 ppm es asignada al carbono del grupo metileno unido al oxigeno proveniente del ácido metacrílico (0-CH2-CH) . La señal que aparece en 26,2 ppm es asignada a los carbonos de los grupos metilenos que se encuentran en el centro de la cadena alquílica (-CH2-CH2) . Finalmente, la señal que se observa en 18,3 ppm, corresponde al carbono del grupo metilo en el extremos de la cadena (-CH3) . Caracterización del compuesto (Z)-l,4-bis(oxiran-2-¡lmetox¡) -2-buteno [BE- Cis-OH] . The 13 C NMR spectrum for compound MB-1,4-0H can be seen in Figure 19. It shows nine signals that correspond to the expected compound. The displacement of the signals is located in the range of 167.3 to 18.3 ppm. The signal observed at 167.3 ppm corresponds to carbon of the carbonyl group from methacrylic acid (-C = 0). The signal presented at 135.9 ppm corresponds to the quaternary carbon of the methacrylate group (CH 2 = C). The signal at 125.9 ppm is assigned to vinyl carbon at the terminal ends of the chain (CH 2 = C-). The signals that can be observed at 71.5 and 71.2 ppm correspond to the two carbons attached to the ether functional group (-CH 2 -0-CH 2 -). The signal at 68.7 ppm corresponds to the methyl carbon that is bound to the alcohol (-CH-OH). The 65.6 ppm signal is assigned to the carbon of the methylene group attached to the oxygen from methacrylic acid (0-CH 2 -CH). The signal that appears at 26.2 ppm is assigned to the carbons of the methylene groups that are in the center of the alkyl chain (-CH 2 -CH 2 ). Finally, the signal observed at 18.3 ppm corresponds to the carbon of the methyl group at the ends of the chain (-CH 3 ). Characterization of the compound (Z) -l, 4-bis (oxiran-2-lmethox¡) -2-butene [BE-Cis-OH].
Como ya fue descrito previamente, para la síntesis de este monómero fue necesaria la elaboración de un compuesto intermediario (Z)-l,4- bis(oxiran-2-¡lmetox¡) 2-buteno, denominado de ahora en adelante como BE- Cis-OH.  As previously described, for the synthesis of this monomer it was necessary to prepare an intermediate compound (Z) -l, 4- bis (oxirane-2-lmethox!) 2-butene, hereinafter referred to as BE- Cis-OH.
Propiedades Físicas Physical Properties
El compuesto BE-Cis-OH, resultó un liquido amarillo claro con un peso molecular de 200,23 g/mol. Es soluble en acetona, cloroformo, diclorometano, etanol, y metanol. El rendimiento con el que se obtuvo éste compuesto fue de 47%.  The compound BE-Cis-OH was a light yellow liquid with a molecular weight of 200.23 g / mol. It is soluble in acetone, chloroform, dichloromethane, ethanol, and methanol. The yield with which this compound was obtained was 47%.
Análisis Elemental Elemental Analysis
La composición y pureza del compuesto BE-Cis-OH fue obtenida mediante la técnica de análisis elemental. La Tabla 12 muestra los valores obtenidos mediante esta técnica. De los resultados obtenidos, se puede establecer que la pureza del compuesto es del 92%.  The composition and purity of the BE-Cis-OH compound was obtained by elemental analysis technique. Table 12 shows the values obtained by this technique. From the results obtained, it can be established that the purity of the compound is 92%.
Tabla 12 Análisis Elemental para el compuesto BE-Cis-OH Table 12 Elemental Analysis for the BE-Cis-OH compound
Elemento % %  Element%%
Calculado Experimental  Experimental Calculated
C 59,98 55,02 C 59.98 55.02
O 31,97* 33,66* Or 31.97 * 33.66 *
H 8,05 11,32 H 8.05 11.32
Análisis por Espectroscopia Infrarroja Infrared Spectroscopy Analysis
El compuesto Be-Cis-OH fue caracterizado por la técnica de espectroscopia por infrarrojo con transformada de Fourier, el espectro obtenido por esta técnica de caracterización se muestra en la figura 20. Dicho espectro nos permite confirmar la formación del compuesto debido a la presencia de las siguientes bandas: en primer lugar, las bandas de absorción en 1254, 1095 y 1011 cm"1 corresponden a los modos de vibración de elongación simétrica Os i m y asimétrica Oas i m del enlace C-O-C que se forma en el compuesto epóxido al eterificar el alcohol presente en el reactivo de partida. De igual forma, la vibración del esqueleto del anillo epóxido representado por la banda que aparece en 761 cm"1 nos confirma la presencia de éste grupo funcional en la molécula. Por otro lado, es necesario hacer notar que la ausencia de la banda que corresponde al estiramiento del enlace υΟ-Η presente en la materia prima, permite confirmar la doble sustitución del alcohol de partida. The Be-Cis-OH compound was characterized by the infrared spectroscopy technique with Fourier transform, the spectrum obtained by this characterization technique is shown in figure 20. This spectrum allows us to confirm the formation of the compound due to the presence of the following bands: first, the absorption bands in 1254, 1095 and 1011 cm "1 correspond to the vibration modes of symmetrical elongation O sim and asymmetric O as im of the COC bond that forms in the epoxy compound when etherifying the alcohol present in the reagent. Similarly, the vibration of the skeleton of the epoxy ring represented by the band which appears in 761 cm "1 confirms the presence of this functional group in the molecule. On the other hand, it is necessary to note that the absence of the band corresponding to the stretching of the υΟ-Η bond present in the raw material, allows confirming the double replacement of the starting alcohol.
Análisis por Espectroscopia de RMN de ^ y 13C NMR Spectroscopy of ^ and 13 C
En el espectro de RMN ^ del compuesto intermediario BE-Cis-OH, mostrado en la Figura 21 se presentan siete señales que integran para dieciséis protones, número que corresponde al compuesto esperado. Las señales se encuentran en el rango de 5,74 a 2,61 ppm. La señal múltiple en 5,74 ppm, que integra para dos protones, es asignada a los protones olefínicos que se encuentran en el centro de la molécula (-CH=CH-). La señal doble en 4,13 ppm, está integrada por cuatro protones y corresponde a los protones de los metilenos saturados unidos a los metinos del centro de la molécula (-CH2-CH=CH-CH2) . In the NMR spectrum of the intermediate compound BE-Cis-OH, shown in Figure 21, seven signals are presented that integrate for sixteen protons, a number that corresponds to the expected compound. The signals are in the range of 5.74 to 2.61 ppm. The multiple signal at 5.74 ppm, which integrates for two protons, is assigned to the olefinic protons that are in the center of the molecule (-CH = CH-). The double signal at 4.13 ppm is composed of four protons and corresponds to the protons of the saturated methylenes attached to the metins of the center of the molecule (-CH 2 -CH = CH-CH 2 ).
Las señales múltiples en 3,38 y 3,75 ppm, que integran para dos protones cada una, corresponden al metileno saturado ubicado entre el oxígeno y el esqueleto del epóxido. La señal en 3,16 ppm se encuentra integrando para un total de dos protones, y es asignada a los protones metínicos ubicados dentro del anillo del epóxido. Por último, las señales múltiples en 2,81 y 2,61 ppm, que integran para 2 protones cada una, son asignadas a los protones metilénicos dentro del anillo del epóxido.  The multiple signals at 3.38 and 3.75 ppm, which integrate for two protons each, correspond to the saturated methylene located between the oxygen and the epoxy skeleton. The signal at 3.16 ppm is being integrated for a total of two protons, and is assigned to the methodic protons located within the epoxy ring. Finally, the multiple signals at 2.81 and 2.61 ppm, which integrate for 2 protons each, are assigned to the methylene protons within the epoxide ring.
El espectro de RMN 13C correspondiente a éste compuesto es mostrado en la Figura 22. En él se pueden observar cinco señales que se encuentran dentro del rango de 129,4 a 44,3 ppm. La señal que se presenta en 129,4 ppm corresponde al carbono olefínico del centro de la molécula (-CH=CH-) . La señal ubicada en 67,0 ppm pertenece al carbono del grupo metileno ubicado entre el oxígeno y el anillo epóxido. La señal en 71,0 ppm es asignada al grupo metileno que localiza entre el oxígeno y el metino insaturado del centro de la molécula (=CH-CH2-0-) . Hacia campos altos, la señal que se presenta en 50,9 ppm pertenece al carbono del grupo metino que se localiza dentro del esqueleto del epóxido, mientras que la señal en 44,3 ppm corresponde al grupo metileno del mismo epóxido. The 13 C NMR spectrum corresponding to this compound is shown in Figure 22. Five signals can be observed in it. they fall within the range of 129.4 to 44.3 ppm. The signal presented at 129.4 ppm corresponds to the olefinic carbon of the center of the molecule (-CH = CH-). The signal located at 67.0 ppm belongs to the carbon of the methylene group located between oxygen and the epoxy ring. The signal at 71.0 ppm is assigned to the methylene group that locates between oxygen and unsaturated methine in the center of the molecule (= CH-CH 2 -0-). Towards high fields, the signal presented in 50.9 ppm belongs to the carbon of the methine group that is located within the epoxide skeleton, while the signal at 44.3 ppm corresponds to the methylene group of the same epoxide.
Caracterización del compuesto (Z)-l,4-bis[2-hidroxi-3-metacriloxipropoxi]-2- buteno [MB-Cis-OH] . Characterization of compound (Z) -l, 4-bis [2-hydroxy-3-methacryloxypropoxy] -2-butene [MB-Cis-OH].
Propiedades Físicas  Physical Properties
El compuesto MB-Cis-OH se presenta como un líquido amarillo claro con un peso molecular de 372,41 g/mol soluble en etanol, acetona, DMF, cloroformo y diclorometano. El rendimiento para la segunda etapa de síntesis es de 66%, lo que nos da un rendimiento final de 56,5%.  The MB-Cis-OH compound is presented as a light yellow liquid with a molecular weight of 372.41 g / mol soluble in ethanol, acetone, DMF, chloroform and dichloromethane. The yield for the second stage of synthesis is 66%, which gives us a final yield of 56.5%.
Análisis Elemental Elemental Analysis
A través de la técnica de caracterización de Análisis Elemental fue determinada la composición y pureza del compuesto MB-Cis-OH. De acuerdo a los resultados obtenidos, los cuales se muestran en la Tabla 13, la pureza con el que se obtuvo el compuesto fue de 97,8%.  The composition and purity of the MB-Cis-OH compound was determined through the Elemental Analysis characterization technique. According to the results obtained, which are shown in Table 13, the purity with which the compound was obtained was 97.8%.
Tabla 13 Análisis Elemental para el compuesto MB-Cis-OH Table 13 Elemental Analysis for compound MB-Cis-OH
Elemento % %  Element%%
Calculado Experimental  Experimental Calculated
C 58,05 56,80 C 58.05 56.80
O 34,37 35,43* Or 34.37 35.43 *
H 7,58 7,77 Análisis por Espectroscopia Infrarroja H 7.58 7.77 Infrared Spectroscopy Analysis
La figura 23 muestra el espectro de IR-FT para el compuesto MB-Cis- OH. En dicho espectro, pueden observarse algunas bandas de importancia que dan evidencia de la formación del compuesto esperado: la señal que se presenta a un número de onda de 3441 cm"1, corresponde al estiramiento del enlace υΟ-Η presente en esta molécula; la banda de absorción que se localiza en 2928 cm"1 corresponde al estiramiento asimétrico del enlace OC-H, a un número de onda de 1637 y 815 cm"1, se localizan unas bandas que corresponden al estiramiento y torsión del enlace
Figure imgf000089_0001
respectivamente. De igual forma, en 1718 cm"1, se localiza una señal que corresponde al estiramiento del enlace
Figure imgf000089_0002
0. A un número de onda de 1455 cm"1 puede observarse una banda, la cual corresponde a la torsión simétrica dentro del plano del enlace 5CH2- . La ausencia de la señal en un número de onda de 910 cm"1, que corresponde a la vibración del esqueleto del anillo epóxido, puede también confirmar la formación del compuesto esperado.
Figure 23 shows the IR-FT spectrum for the compound MB-Cis-OH. In this spectrum, some bands of importance can be observed that give evidence of the formation of the expected compound: the signal that is presented at a wave number of 3441 cm "1 , corresponds to the stretching of the υΟ-Η bond present in this molecule; absorption band that is located at 2928 cm "1 corresponds to the asymmetric stretching of the OC-H link, at a wave number of 1637 and 815 cm " 1 , bands are located that correspond to the stretching and torsion of the link
Figure imgf000089_0001
respectively. Similarly, at 1718 cm "1 , a signal corresponding to the stretch of the link is located
Figure imgf000089_0002
0. A band can be observed at a wavelength of 1455 cm "1 , which corresponds to symmetric torsion within the plane of the 5CH 2 link. - The absence of the signal at a wave number of 910 cm " 1 , which corresponds to the vibration of the skeleton of the epoxy ring, it can also confirm the formation of the expected compound.
Análisis por Espectroscopia de RMN de ^ y 13C NMR Spectroscopy of ^ and 13 C
El espectro de RMN ^ para este compuesto se presenta en la figura 24. En el espectro se observan siete señales que integran para un total de veintiocho protones, los cuales corresponden al compuesto esperado. Las señales se encuentran en el rango de 6, 14 a 1,92 ppm. Las señales en 6, 14 y 5,71 ppm integran para un total de cuatro protones, éstas corresponden a los dos protones vinílicos del metileno insaturado terminal (CH2=CH). La señal en 5,57 ppm que integra para 2 protones, proviene de los protones olefínicos que se encuentran en el centro de la cadena (-CH=CH-). La señal múltiple a 4,22 ppm que integra para cuatro protones, corresponde a los protones del grupo metileno ubicado a un lado del oxígeno que proviene del ácido metacrílico (-CH2-0-) . La señal múltiple en 4, 11 ppm está integrada por cuatro protones, correspondientes a los grupos metilenos ubicados entre el oxígeno y el grupo vinilo (=CH-CH2-0-) . La señal múltiple en 4,05 ppm que integra para dos protones corresponde al metino saturado que se presenta en éste monómero. La señal que aparece a un desplazamiento de 3,68 ppm está integrada por dos protones, los cuales corresponden al protón del grupo hidroxilo (-OH). Las señales múltiples en 3,52 y 3,45 ppm que integran para cuatro protones son asignadas a los protones del grupo metileno ubicado entre el oxígeno y el metino de esta molécula (-0-CH2-CH) . Por último, la señal simple ubicada en 1,92 ppm que integra para seis protones, es asignada a los protones del grupo metilo presente en la cadena (-CH3). The NMR spectrum for this compound is presented in Figure 24. In the spectrum seven signals are seen that integrate for a total of twenty-eight protons, which correspond to the expected compound. The signals are in the range of 6, 14 to 1.92 ppm. The signals at 6, 14 and 5.71 ppm integrate for a total of four protons, these correspond to the two vinyl protons of the terminal unsaturated methylene (CH 2 = CH). The signal at 5.57 ppm that integrates for 2 protons, comes from the olefinic protons that are in the center of the chain (-CH = CH-). The multiple signal at 4.22 ppm that integrates for four protons, corresponds to the protons of the methylene group located next to the oxygen that comes from methacrylic acid (-CH 2 -0-). The multiple signal at 4.11 ppm is composed of four protons, corresponding to the methylene groups located between oxygen and the vinyl group (= CH-CH 2 -0-). The multiple signal at 4.05 ppm that integrates for two protons corresponds to the saturated methine that is presented in this monomer. The signal that appears at a displacement of 3.68 ppm is composed of two protons, which correspond to the proton of the hydroxyl group (-OH). The multiple signals at 3.52 and 3.45 ppm that integrate for four protons are assigned to the protons of the methylene group located between the oxygen and the methine of this molecule (-0-CH 2 -CH). Finally, the simple signal located at 1.92 ppm that integrates for six protons, is assigned to the protons of the methyl group present in the chain (-CH 3 ).
El espectro de RMN 13C para éste compuesto se puede observar en la Figura 24. En el pueden observarse nueve señales en el rango de 167,4 a 18,3 ppm que corresponden con las esperadas para el compuesto sintetizado. La señal que se presenta en 167,4 ppm corresponde al carbono del grupo carbonilo proveniente del ácido metacrílico (-C=0) . La señal en 135,9 ppm es asignada al carbono cuaternario vinílico del extremo de la molécula (-C=CH2) . La señal que se presenta a un desplazamiento de 129,3 ppm corresponde al carbono olefínico del centro de la cadena (-CH=CH-). En 126,0 ppm se encuentra una señal que corresponde al metileno insaturado ubicado en el extremo de la molécula (-C=CH2) . A un desplazamiento de 71,2 ppm se observa una señal que corresponde al carbono del grupo metileno ubicado al lado del grupo vinilo en el centro de la cadena (=CH- CH2) . En 68,8 ppm aparece una señal que corresponde al carbono del grupo metino saturado (-CH2-CH-CH2). En un desplazamiento de 66,9 ppm se localiza la señal que proviene del carbono del grupo metileno localizado a un lado del oxígeno proveniente del ácido metacrílico (-CH2-0). En 65,7 ppm se encuentra una señal que corresponde al metileno localizado entre el oxígeno y el metino saturado de esta molécula (0-CH2-CH-) . Por último, la señal localizada en 18,3 ppm corresponde la carbono del grupo metilo (-CH3). The 13 C NMR spectrum for this compound can be seen in Figure 24. In it, nine signals in the range of 167.4 to 18.3 ppm can be observed that correspond to those expected for the synthesized compound. The signal presented at 167.4 ppm corresponds to the carbonyl group carbon from methacrylic acid (-C = 0). The 135.9 ppm signal is assigned to the vinyl quaternary carbon at the end of the molecule (-C = CH 2 ). The signal presented at a displacement of 129.3 ppm corresponds to the olefinic carbon of the center of the chain (-CH = CH-). A signal corresponding to unsaturated methylene located at the end of the molecule is found at 126.0 ppm (-C = CH 2 ). At a displacement of 71.2 ppm, a signal corresponding to the carbon of the methylene group located next to the vinyl group in the center of the chain is observed (= CH-CH 2 ). At 68.8 ppm a signal appears corresponding to the carbon of the saturated methine group (-CH 2 -CH-CH 2 ). In a displacement of 66.9 ppm, the signal that comes from the carbon of the methylene group located next to the oxygen from methacrylic acid (-CH 2 -0) is located. At 65.7 ppm there is a signal that corresponds to the methylene located between oxygen and saturated methine of this molecule (0-CH 2 -CH-). Finally, the signal located at 18.3 ppm corresponds to the carbon of the methyl group (-CH 3 ).
Caracterización del compuesto l,7-bis(ox¡rano-2-¡lmetoxi)heptano [BE-1,7- OH] . Characterization of compound l, 7-bis (ox¡rano-2-lmethoxy) heptane [BE-1,7-OH].
El monómero MB-l,7-OH fue sintetizado en una reacción de dos etapas. En la primera de ellas se sintetizó y purificó al compuesto intermediario BE-l,7-OH. Propiedades Físicas. The MB-1, 7-OH monomer was synthesized in a two stage reaction. In the first one, the intermediate compound BE-l, 7-OH was synthesized and purified. Physical Properties
El compuesto intermediario BE- l,7-OH es un líquido de color amarillo claro con un peso molecular de 244,33 g/mol, soluble en DMF, acetato de etilo, diclorometano, cloroformo y etanol . El rendimiento con el que fue obtenido éste compuesto fue de 37,5%. The intermediate compound BE-l, 7-OH is a light yellow liquid with a molecular weight of 244.33 g / mol, soluble in DMF, ethyl acetate, dichloromethane, chloroform and ethanol. The yield with which this compound was obtained was 37.5%.
Análisis Elemental Elemental Analysis
La composición y pureza del compuesto BE-l,7-OH fue obtenida a través de la técnica de análisis elemental . En la Tabla 14 se muestran los valores obtenidos mediante esta técnica . De los resultados obtenidos, se puede establecer que la pureza del compuesto es de 96,5%.  The composition and purity of the compound BE-l, 7-OH was obtained through the elemental analysis technique. The values obtained by this technique are shown in Table 14. From the results obtained, it can be established that the purity of the compound is 96.5%.
Tabla 14 Análisis Elemental para el compuesto BE-l,7-OH Table 14 Elemental Analysis for compound BE-l, 7-OH
Elemento % %  Element%%
Calculado Experimental c 63,91 61,71 o 26, 19* 27,95*  Calculated Experimental c 63.91 61.71 or 26, 19 * 27.95 *
H 9,9 10,34 H 9.9 10.34
Análisis por Espectroscopia Infrarroja Infrared Spectroscopy Analysis
El espectro de IR-FT del compuesto BE-l,7-OH se presenta en la Figura 26. Las bandas que dan evidencia de la formación del compuesto son : las bandas en 1261, 1096 y 1021 cm"1 que corresponden al modo de elongación simétrica y asimétrica del enlace OC-O-C. Igualmente, la vibración del esqueleto del anillo epóxido se ve representada por la banda que aparece en 808 cm"1. Así mismo, una evidencia más la tenemos con la ausencia de la banda que corresponde al estiramiento del enlace υΟ-Η presente en la materia prima, y que normalmente aparece entre 3200 y 3600 cm"1. The IR-FT spectrum of the compound BE-l, 7-OH is presented in Figure 26. The bands that give evidence of the formation of the compound are: the bands in 1261, 1096 and 1021 cm "1 that correspond to the mode of symmetric and asymmetric elongation of the OC-OC bond Likewise, the vibration of the skeleton of the epoxy ring is represented by the band that appears at 808 cm "1 . Also, we have one more evidence with the absence of the band that corresponds to the stretching of the υΟ-Η bond present in the raw material, and that normally appears between 3200 and 3600 cm "1 .
Análisis por Espectroscopia de RMN de ^ y 13C La Figura 27 representa al espectro de RMN lH de dicho compuesto, en éste se presentan siete señales que integran para veinticuatro protones, correspondientes a la molécula esperada . Las señales se observan en el rango de 3,71 a 1,33 ppm. Las señales múltiples que se presentan en 3,71 y 3,37 ppm que integran para un total de cuatro protones, son asignadas a los protones del grupo metileno ubicado entre el epóxido y el oxígeno. La señal múltiple presente en 3,49 ppm, y que integra para cuatro protones, corresponde a los protones del metileno del centro de la cadena alquílica ubicado a un lado del oxígeno (-0-CH2-CH2-) . La señal ubicada en 3, 14 ppm, integra para dos protones, y es asignada al protón del metino en el epóxido. Las señales que aparecen en 2,79 y 2,61 ppm integran para un total de cuatro protones y son asignadas a los protones metilénicos ubicados en el epóxido. Hacia campos altos, encontramos dos señales, en 1,59 y 1,33 ppm que integran para un total de diez protones, siendo asignadas a los protones metilénicos que se encuentran ubicados en el centro de la cadena alquílica (-CH2-CH2-CH2-CH2-CH2-) . NMR Spectroscopy of ^ and 13 C Figure 27 represents the 1 H NMR spectrum of said compound, in which there are seven signals that integrate for twenty-four protons, corresponding to the expected molecule. The signals are observed in the range of 3.71 to 1.33 ppm. The multiple signals that occur at 3.71 and 3.37 ppm that integrate for a total of four protons, are assigned to the protons of the methylene group located between the epoxide and the oxygen. The multiple signal present at 3.49 ppm, which integrates for four protons, corresponds to the methylene protons in the center of the alkyl chain located next to the oxygen (-0-CH 2 -CH 2 -). The signal located at 3, 14 ppm, integrates for two protons, and is assigned to the proton of the methine in the epoxide. The signals that appear at 2.79 and 2.61 ppm integrate for a total of four protons and are assigned to the methylene protons located in the epoxide. Towards high fields, we found two signals, at 1.59 and 1.33 ppm that integrate for a total of ten protons, being assigned to the methylene protons that are located in the center of the alkyl chain (-CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -).
El espectro de RMN 13C de este compuesto intermediario es mostrado en la figura 28. En él se pueden observar siete señales diferentes en el rango de 71,56 y 26,0 ppm, dichas señales corresponden al compuesto esperado. Las dos señales que se presentan en 71,6 y 71,4 ppm son asignadas a los dos carbonos unidos al oxígeno (-CH2-0-CH2;) . La señal que se presenta en 50,8 ppm, se le atribuye al carbono metínico del epóxido. La señal que aparece en 44,3 ppm, corresponde al carbono del metileno del epóxido. Las señales que se encuentran en 29,6 y 29,9 ppm, corresponden a los 4 carbonos de los metilenos localizados en el centro de la cadena (-CH2-CH2- CH2-CH2-CH2-CH2-CH2-) . Finalmente, la señal que podemos observar en 26,0 ppm corresponde al carbono del metileno localizado exactamente en el centro de la cadena hidrocarbonada de la molécula (-CH2-CH2-CH2-) . The 13 C NMR spectrum of this intermediate compound is shown in Figure 28. It shows seven different signals in the range of 71.56 and 26.0 ppm, these signals correspond to the expected compound. The two signals presented at 71.6 and 71.4 ppm are assigned to the two carbons attached to oxygen (-CH 2 -0-CH 2 ;). The signal that is presented at 50.8 ppm is attributed to the methoxy carbon of the epoxide. The signal that appears at 44.3 ppm corresponds to the epoxy methylene carbon. The signals found at 29.6 and 29.9 ppm correspond to the 4 carbons of the methylenes located in the center of the chain (-CH 2 -CH 2 - CH 2 -CH 2 -CH 2 -CH 2 - CH 2 -). Finally, the signal that we can observe at 26.0 ppm corresponds to the methylene carbon located exactly in the center of the molecule's hydrocarbon chain (-CH 2 -CH 2 -CH 2 -).
Caracterización del compuesto ( l,7-bis[2-hidroxi-3-metacriloxipropoxi] heptano[MB-l,7-OH] . Characterization of the compound (l, 7-bis [2-hydroxy-3-methacryloxypropoxy] heptane [MB-l, 7-OH].
Propiedades Físicas El monómero bifuncional MF- l,7-OH es un líquido de color ámbar con un peso molecular de 416,51 g/mol . El rendimiento para esta segunda etapa fue del 87,08%, dando un rendimiento final para éste monómero de 62,25%. Physical Properties The bifunctional monomer MF-l, 7-OH is an amber liquid with a molecular weight of 416.51 g / mol. The yield for this second stage was 87.08%, giving a final yield for this monomer of 62.25%.
Análisis Elemental Elemental Analysis
El compuesto MB-l,7-OH fue caracterizado mediante la técnica de Análisis Elemental para obtener su composición y pureza . Los resultados de esta prueba son mostrados en la Tabla 15. De acuerdo a éstos, el monómero bifuncional fue sintetizado con una pureza del 96% .  The compound MB-l, 7-OH was characterized by the Elemental Analysis technique to obtain its composition and purity. The results of this test are shown in Table 15. According to these, the bifunctional monomer was synthesized with a purity of 96%.
Tabla 15 Análisis Elemental para el compuesto MB-l,7-OH Table 15 Elemental Analysis for compound MB-l, 7-OH
Elemento % %  Element%%
Calculado Experimental  Experimental Calculated
C 60,56 58,34 C 60.56 58.34
O 30,73* 30,3* Or 30.73 * 30.3 *
H 8,71 11,36 H 8.71 11.36
Análisis por Espectroscopia Infrarroja Infrared Spectroscopy Analysis
El espectro de IR-FT para el monómero MB-Cis-OH se muestra en la Figura 29. Dicho espectro, permite observar algunas bandas que dan evidencia de la formación del compuesto esperado : la señal que se presenta a un número de onda de 3458 cm"1, se debe al estiramiento del enlace υΟ-Η ; a un número de onda de 2858 cm"1 se localiza una señal que corresponde al estiramiento asimétrico del enlace uC-H . La presencia de los dobles enlaces terminales se encuentra evidenciada por las bandas que se localizan a un número de onda de 1634 y 814 cm"1, las cuales corresponden al estiramiento y torsión del enlace
Figure imgf000093_0001
respectivamente. Finalmente, en 1711 cm"1, se presenta la señal que corresponde al estiramiento del enlace
Figure imgf000093_0002
La ausencia de la señal a un número de onda de 910 cm1, que corresponde a la vibración del esqueleto del anillo epóxido, puede confirmar la completa funcionalización de éste grupo y la correcta inserción de los grupos metacrilato en el compuesto final.
The IR-FT spectrum for the MB-Cis-OH monomer is shown in Figure 29. This spectrum allows us to observe some bands that give evidence of the formation of the expected compound: the signal that is presented at a wavelength of 3458 cm "1 , is due to the stretching of the υΟ-Η link; a signal corresponding to the asymmetric stretching of the uC-H link is located at a wave number of 2858 cm " 1 . The presence of the double terminal links is evidenced by the bands that are located at a wave number of 1634 and 814 cm "1 , which correspond to the stretching and torsion of the link
Figure imgf000093_0001
respectively. Finally, in 1711 cm "1 , the signal corresponding to the stretching of the link is presented
Figure imgf000093_0002
The Absence of the signal at a wavelength of 910 cm 1 , which corresponds to the vibration of the epoxy ring skeleton, can confirm the complete functionalization of this group and the correct insertion of methacrylate groups into the final compound.
Análisis por Espectroscopia de RMN de H y 13C NMR Spectroscopy Analysis of H and 13 C
El espectro de RMN H para este compuesto se presenta en la figura 30. En el podemos observar la presencia de diez señales, cuya integración corresponde a un total de treinta y seis protones, correspondientes al compuesto esperado. La totalidad de las señales se presentan en un rango de 6,14 a 1,2 ppm. En campos bajos, las primeras dos señales en 6,14 y 5,59 ppm corresponden a los dos protones olefínicos en el extremo de la cadena (CH2=C-). Las señales múltiples que aparecen en 4,22 integran para un total de dos protones, y son asignadas a los protones del grupo metino. La señal triple que aparece en 3,87 ppm, y que integra para dos protones, corresponde a los protones metínicos unidos el grupo hidroxilo pendiente (- CH2-CH-CH2-) . Hacia campos altos, existe una señal múltiple en 3,68 ppm que integra para dos protones y que es asignada a los protón del grupo hidroxilo (-OH). La señal múltiple que aparece en 3,52 ppm, es integrada por un total de ocho protones, los cuales son asignados a los protones metilénicos que están a cada lado del oxígeno (-CH2-0-CH2-). La señal simple que se encuentra localizada en 1,96 ppm integra para seis protones, y es asignada a los protones metílicos provenientes del ácido metacrílico (-CH3). La señal múltiple en 1,56 ppm se encuentra integrando para cuatro protones, los cuales corresponden a los protones metilénicos del centro de la cadena hidrocarbonada (C). La señal en 1,32 ppm se encuentra integrando para cuatro protones, y éstos provienen de los metilenos ubicados a ambos lados del metileno del centro de la cadena (-CH2-CH2-CH2). Finalmente, la señal que se encuentra en 1,25 ppm está integrada por dos protones, mismos que corresponden al grupo metileno que se encuentra exactamente en el centro de la cadena hidrocarbonada de la molécula (A) . El espectro de RMN 13C para éste monómero se presenta en la Figura 31. En dicho espectro pueden localizarse un total de once señales en un rango de 167,2 a 17,9 ppm, las cuales corresponden a las esperadas para el compuesto sintetizado. Hacia campos bajos, la señal que se presenta en un desplazamiento químico de 167,1 ppm corresponde al grupo carbonilo proveniente del ácido metacrílico (-C=0). A un desplazamiento químico de 135,8 ppm se localiza la señal que proviene del carbono cuaternario del enlace vinílico terminal del monómero (C=CH2). La señal que se localiza a un desplazamiento de 125,8 ppm corresponde al carbono del grupo metileno insaturado que se localiza en el extremo terminal del monómero (C=CH2). Hacia campos altos, las señales que se localizan en 71,6 y 71,4 ppm pertenecen a los metilenos unidos al grupo funcional éter (-CH2-0-CH2-). La señal que se localiza en un desplazamiento de 68,5 ppm pertenece al carbono del grupo metino presente en el monómero bifuncional (-CH2-CH- CH2-). A un desplazamiento químico de 65,8 ppm, se presenta una señal que corresponde al grupo metileno unido la oxígeno proveniente del ácido metacrílico (-CH-CH2-0) . La señal en 29,2 ppm, corresponde a los grupos metilenos saturados localizados en el centro de la molécula (carbonos B y C). A un desplazamiento químico de 25,9, se presenta una señal que proviene del metileno saturado que se localiza exactamente en el centro del compuesto bifuncional (carbono A) . Finalmente, la señal que se presenta en 17,9 ppm, corresponde al carbono del grupo metilo ubicado en los extremos terminales de éste compuesto (CH3-). The H NMR spectrum for this compound is presented in Figure 30. In it we can see the presence of ten signals, whose integration corresponds to a total of thirty-six protons, corresponding to the expected compound. All signals are presented in a range of 6.14 to 1.2 ppm. In low fields, the first two signals at 6.14 and 5.59 ppm correspond to the two olefinic protons at the end of the chain (CH 2 = C-). Multiple signals that appear in 4.22 integrate for a total of two protons, and are assigned to the protons of the methine group. The triple signal that appears at 3.87 ppm, and which integrates for two protons, corresponds to the methine protons attached to the pending hydroxyl group (- CH 2 -CH-CH 2 -). Towards high fields, there is a multiple signal at 3.68 ppm that integrates for two protons and is assigned to the protons of the hydroxyl group (-OH). The multiple signal that appears at 3.52 ppm is composed of a total of eight protons, which are assigned to the methylene protons that are on each side of the oxygen (-CH 2 -0-CH 2 -). The simple signal that is located at 1.96 ppm integrates for six protons, and is assigned to the methyl protons from methacrylic acid (-CH 3 ). The multiple signal at 1.56 ppm is being integrated for four protons, which correspond to the methylene protons in the center of the hydrocarbon chain (C). The signal at 1.32 ppm is integrated for four protons, and these come from the methylene located on both sides of the methylene in the center of the chain (-CH 2 -CH 2 -CH 2 ). Finally, the signal at 1.25 ppm is composed of two protons, which correspond to the methylene group that is exactly at the center of the hydrocarbon chain of the molecule (A). The 13 C NMR spectrum for this monomer is presented in Figure 31. In said spectrum a total of eleven signals can be located in a range of 167.2 to 17.9 ppm, which correspond to those expected for the synthesized compound. Towards low fields, the signal that occurs in a chemical shift of 167.1 ppm corresponds to the carbonyl group from methacrylic acid (-C = 0). At a chemical shift of 135.8 ppm, the signal that comes from the quaternary carbon of the monomer terminal vinyl bond is located (C = CH 2 ). The signal that is located at a displacement of 125.8 ppm corresponds to the carbon of the unsaturated methylene group that is located at the terminal end of the monomer (C = CH 2 ). Towards high fields, the signals located at 71.6 and 71.4 ppm belong to the methylenes attached to the ether functional group (-CH 2 -0-CH 2 -). The signal that is located in a displacement of 68.5 ppm belongs to the carbon of the methine group present in the bifunctional monomer (-CH 2 -CH-CH 2 -). At a chemical shift of 65.8 ppm, a signal corresponding to the methylene group attached to the oxygen coming from methacrylic acid (-CH-CH 2 -0) is presented. The signal at 29.2 ppm corresponds to the saturated methylene groups located in the center of the molecule (carbons B and C). At a chemical displacement of 25.9, a signal is presented that comes from saturated methylene that is located exactly in the center of the bifunctional compound (carbon A). Finally, the signal presented at 17.9 ppm corresponds to the carbon of the methyl group located at the terminal ends of this compound (CH 3 -).
Preparación de los materiales compuestos. Preparation of composite materials.
Se prepararon de forma manual cuatro materiales compuestos fotopolimerizables utilizando diferentes matrices orgánicas basadas en Bis- GMA, utilizando como diluyentes del mismo una mezcla de TEGDMA con los monómeros MB-Fen-OH, MB-Cis-OH y MB-l,7-OH. El sistema fotoiniciador empleado estuvo compuesto por el par canforquinona/4- dimetilaminobenzoato de etilo; ambos en un porcentaje del 0,5% de peso. Como material de relleno, fueron utilizadas partículas silanizadas de óxido de silicio de tamaño nanométrico en un porcentaje del 40% en peso con respecto al total del material compuesto. La Tabla 16 muestra la composición de la matriz orgánica de los diferentes materiales compuestos elaborados. Four photopolymerizable composite materials were prepared manually using different organic matrices based on Bis-GMA, using as diluents a mixture of TEGDMA with the monomers MB-Fen-OH, MB-Cis-OH and MB-l, 7-OH . The photoinitiator system used was composed of the ethyl camphorquinone / 4-dimethylaminobenzoate pair; both in a percentage of 0.5% of weight. As filler material, silanized silicon oxide particles of nanometric size were used in a percentage of 40% by weight with with respect to the total composite material. Table 16 shows the composition of the organic matrix of the different composites produced.
Tabla 16 Composición de la matriz orgánica de los materiales compuestos evaluados Table 16 Composition of the organic matrix of the composites evaluated
Material Monómero Monómero Monómero Material Monomer Monomer Monomer
1 2 3  1 2 3
(%) (%) (%)  (%) (%) (%)
MI Bis-GMA TEGDMA  MY Bis-GMA TEGDMA
(65%) (35%)  (65%) (35%)
M2 Bis-GMA TEGDMA MB-Fen-OH  M2 Bis-GMA TEGDMA MB-Fen-OH
(65%) (20%) (15%)  (65%) (20%) (15%)
M3 Bis-GMA TEGDMA MB-Cis-OH  M3 Bis-GMA TEGDMA MB-Cis-OH
(65%) (20%) (15%)  (65%) (20%) (15%)
M4 Bis-GMA TEGDMA MB-l,7-OH  M4 Bis-GMA TEGDMA MB-l, 7-OH
(65%) (20%) (15%)  (65%) (20%) (15%)
Valoración de la resistencia flexural y el módulo de flexión Assessment of flexural strength and flexural modulus
La resistencia flexural de los materiales compuestos preparados fue evaluada en base a lo establecido en el punto 7.11 de la Norma Internacional ISO- 4049 Dentistry-Polymer-based filling, restorative and luting materials (105), mientras que el módulo de flexión se evaluó de acuerdo a lo establecido en la especificación no. 27 ANSI/ADA (106). The flexural strength of the prepared composite materials was evaluated based on the provisions of section 7.11 of the International Standard ISO-4049 Dentistry-Polymer-based filling, restorative and luting materials (105), while the flexural modulus was evaluated according to what is established in specification no. 27 ANSI / ADA (106).
Las probetas fueron irradiadas con una intensidad de 460 mW/mm2. Las probetas fueron mantenidas en agua destilada a 37°C hasta el momento de realizarse la prueba The specimens were irradiated with an intensity of 460 mW / mm 2 . The specimens were kept in distilled water at 37 ° C until the time of the test.
La media aritmética y desviación estándar para los valores de la Resistencia Flexural (MPa) de cada uno de los grupos evaluados es mostrada en la Tabla 17, mientras que la Tablal8 presenta los valores obtenidos para el Módulo de Flexión (MPa). Tabla 17 Media Aritmética y Desviación Estándar para los valores de Resistencia Flexural (MPa) de los materiales compuestos The arithmetic mean and standard deviation for the Flexural Resistance (MPa) values of each of the groups evaluated is shown in Table 17, while Table 8 presents the values obtained for the Flexural Module (MPa). Table 17 Arithmetic Mean and Standard Deviation for Flexural Strength (MPa) values of composite materials
Grupo Media Desviación N Medium Deviation Group N
típica  typical
MI 52,33 5,39 3  MI 52.33 5.39 3
M2 65,30 6,30 3  M2 65.30 6.30 3
M3 51,96 2,76 3  M3 51.96 2.76 3
M4 49,44 4,31 3  M4 49.44 4.31 3
Total 54,75 7,69 12  Total 54.75 7.69 12
Tabla 18 Media Aritmética y Desviación Estándar para los valores de Módulo de Flexión (MPa) de los materiales compuestos Table 18 Arithmetic Mean and Standard Deviation for the Flexural Modulus (MPa) values of composite materials
Grupo Media Desviación N Medium Deviation Group N
típica  typical
MI 4949,72 274,85 3  MI 4949.72 274.85 3
M2 5717,81 172,07 3  M2 5717.81 172.07 3
M3 4969,53 147,94 3  M3 4969.53 147.94 3
M4 4390,46 231,94 3  M4 4390.46 231.94 3
Total 5006,88 524,99 12  Total 5006.88 524.99 12
Se realiza una prueba posthoc, y los resultados se presentan en las tablas 19 y 20 para resistencia y módulo de flexión respectivamente. A posthoc test is performed, and the results are presented in tables 19 and 20 for resistance and flexural modulus respectively.
Tabla 19 Cuadro de subconjuntos homogéneos para la Resistencia Flexural (MPa) de los materiales Table 19 Table of homogeneous subsets for Flexural Strength (MPa) of materials
Material N Subconjunto Material N Subset
1 2  1 2
M4 3 49,44  M4 3 49.44
M3 3 51,96 MI 3 52,33 M3 3 51.96 MI 3 52.33
M2 3 65,30  M2 3 65.30
Sig. 0,884 1,000  Sig. 0.884 1.000
Tabla 20 Cuadro de subconjuntos homogéneos para el Módulo de Flexión (MPa) de los materiales Table 20 Table of homogeneous subsets for the Flexural Module (MPa) of the materials
Material N Material N
Subconjunto  Subset
1 2 3  1 2 3
M4 3 4390,46  M4 3 4390.46
MI 3 4949,72  MI 3 4949.72
M3 3 4969,52  M3 3 4969.52
M2 3 5717,80  M2 3 5717.80
Sig. 1,00 0,999 1,000  Sig. 1.00 0.999 1,000
Los resultados de la prueba de comparación múltiple realizada para la resistencia flexural de estos materiales, permite determinar que la propiedad disminuye, de manera decreciente, de la siguiente forma : M2>M3=M1 = M4. Mientras que para el módulo de flexión, el orden decreciente para los materiales, es el siguiente: M2>M1 = M3>M4. The results of the multiple comparison test performed for the flexural strength of these materials, allows to determine that the property decreases, in a decreasing manner, as follows: M2> M3 = M1 = M4. While for the flexural modulus, the decreasing order for the materials is as follows: M2> M1 = M3> M4.
Para ambas propiedades flexurales, es importante destacar que el material denominado M2, presenta diferencias estadísticamente significativas al resto, logrando mejores propiedades comparándolo con la resina control. La composición de la matriz orgánica contiene al monómero MB-Fen-OH en un porcentaje del 15% en peso con respecto a la totalidad del componente orgánico del material compuesto. La razón que puede explicar el aumento significativo de los valores de las propiedades flexurales se debe a la presencia de un anillo aromático en el monómero, el cual viene a reforzar la estructura polimérica del par Bis-GMA/TEGDMA. Tratándose de la Resistencia Flexural, el resto de los materiales MI, M3 y M4 no presentan diferencias significativas entre sí. La composición de los materiales MI y M4 presenta, además del par Bis-GMA/TEGDMA, a los monómeros MB-Cis-OH y MB-l,7-OH respectivamente; ambos monómeros, al ser lineales, no aportan mayor resistencia a la estructura polimérica al ser comparados con la resina utilizada como grupo control M3. For both flexural properties, it is important to note that the material called M2, presents statistically significant differences to the rest, achieving better properties compared to the control resin. The organic matrix composition contains the MB-Fen-OH monomer in a percentage of 15% by weight with respect to the entire organic component of the composite. The reason that can explain the significant increase in the values of the flexural properties is due to the presence of an aromatic ring in the monomer, which reinforces the polymer structure of the Bis-GMA / TEGDMA pair. In the case of Flexural Strength, the rest of the materials MI, M3 and M4 do not present significant differences between them. The composition of the materials MI and M4 has, in addition to the Bis-GMA / TEGDMA pair, the monomers MB-Cis-OH and MB-l, 7-OH respectively; both monomers, being linear, do not provide greater resistance to the polymeric structure when compared to the resin used as the M3 control group.
Finalmente, para el Módulo de Flexión, el material que presentó el valor más bajo estadísticamente hablando fue el denominado M4. Éste material contiene al monómero MB-l,7-OH dentro de su composición. Analizando la estructura del compuesto, se puede observar la presencia de una cadena hidrocarbonada de siete carbonos en el centro de la molécula, esta característica, hace que el polímero resultante tenga mucha flexibilidad, y por lo tanto aporte para obtener un módulo de flexión más bajo al compararlo con la resina utilizada como control. Finally, for the Flexion Module, the material that presented the lowest statistically speaking value was called M4. This material contains the MB-1, 7-OH monomer within its composition. Analyzing the structure of the compound, the presence of a seven-carbon hydrocarbon chain in the center of the molecule can be observed, this characteristic, makes the resulting polymer have a lot of flexibility, and therefore contributes to obtain a lower flexural modulus when compared with the resin used as a control.
Determinación del grado de conversión Conversion Degree Determination
Para valorar el grado de conversión de los materiales se utilizó un Espectrómetro Infrarrojo con Trasformada de Fourier Perkin Elmer FT-IR System 2000. Se obtuvo un espectro de infrarrojo a partir de los materiales antes y después de polimerizar. En cada uno de los espectros obtenidos, se determinaron la altura de la banda de absorción del enlace C=C alifático en 1638 cm"1, y de la banda de absorción del enlace C=C aromático ubicado en 1609 cm"1. La vibración del enlace C=C aromático fue usada como referencia interna. El porcentaje de conversión de monómero fue determinado de acuerdo a la siguiente ecuación : To assess the degree of conversion of the materials an Infrared Spectrometer with Fourier Transformer Perkin Elmer FT-IR System 2000 was used. An infrared spectrum was obtained from the materials before and after polymerization. In each of the spectra obtained, the height of the absorption band of the aliphatic C = C bond at 1638 cm "1 , and of the absorption band of the aromatic C = C bond located at 1609 cm " 1 were determined . The aromatic C = C bond vibration was used as internal reference. The monomer conversion percentage was determined according to the following equation:
Grado de conversión. (* 1 -
Figure imgf000099_0001
Conversion Degree (* one -
Figure imgf000099_0001
La Tabla 21, muestra las medias aritméticas y las desviaciones estándar para los valores de grado de conversión de cada uno de los materiales evaluados. Tabla 21 Media Aritmética y Desviación Estándar para los valores de Grado de Conversión de los materiales compuestos Table 21 shows the arithmetic averages and standard deviations for the degree of conversion values of each of the materials evaluated. Table 21 Arithmetic Mean and Standard Deviation for the Conversion Degree values of composite materials
Grupo Media Desviación N Medium Deviation Group N
típica  typical
MI 70,26 0,17 3  MI 70.26 0.17 3
M2 74,19 0,03 3  M2 74.19 0.03 3
M3 69,36 2,47 3  M3 69.36 2.47 3
M4 67,92 0,87 3  M4 67.92 0.87 3
Total 70,43 2,67 12  Total 70.43 2.67 12
La prueba post-hoc fue realizada para determinar entre que grupos existen estas diferencias, los resultados se muestran en la Tabla 22. The post-hoc test was performed to determine between which groups these differences exist, the results are shown in Table 22.
Tabla 22. Cuadro de subconjuntos homogéneos para el Grado de Conversión de los materiales Table 22. Table of homogeneous subsets for the Degree of Conversion of materials
Material N Subconjunto Material N Subset
1 2  1 2
M4 3 67,92  M4 3 67.92
M3 3 69,36  M3 3 69.36
MI 3 70,26  MI 3 70.26
M2 3 74,19  M2 3 74.19
Sig. 0,884 1,000  Sig. 0.884 1.000
Según los resultados de la prueba de comparación múltiple realizada para grado de conversión, esta propiedad disminuye, de manera decreciente, de la siguiente forma : M2>M3=M1=M4. According to the results of the multiple comparison test performed for the degree of conversion, this property decreases, in a decreasing manner, as follows: M2> M3 = M1 = M4.
De acuerdo con esto, el material M2, presenta valores de grado de conversión significativamente mayores al resto de los materiales evaluados. Esta característica puede justificar el hecho de que éste material presentó las mejores propiedades mecánicas, ya que de acuerdo con varios autores, existe una clara relación lineal entre el grado de conversión, y las propiedades flexurales de los materiales. Accordingly, material M2, presents values of degree of conversion significantly higher than the rest of the materials evaluated. This characteristic can justify the fact that this material presented the best mechanical properties, since according to several authors, There is a clear linear relationship between the degree of conversion, and the flexural properties of the materials.
Conclusiones Conclusions
Las mezclas de los monómeros sintetizados con BisGMA y TEGDMA permiten la incorporación de 40% en peso de óxido de silicio de tamaño nanométrico silanizado para elaborar resinas compuestas de fácil manipulación. Otras publicaciones referentes a la preparación manual de resinas compuestas con monómeros experimentales, informan que el porcentaje de relleno inorgánico utilizado oscila entre un 40 y 50%. Para una resina comercial, y de acuerdo con las especificaciones de los fabricantes, el porcentaje en peso de contenido inorgánico, varía entre un 70 y 80%.  Mixtures of the monomers synthesized with BisGMA and TEGDMA allow the incorporation of 40% by weight of silanized nanometric size silicon oxide to make easily handled composite resins. Other publications concerning the manual preparation of composite resins with experimental monomers, report that the percentage of inorganic filler used ranges between 40 and 50%. For a commercial resin, and according to the manufacturer's specifications, the percentage by weight of inorganic content varies between 70 and 80%.
Los materiales compuestos elaborados en la presente invención, utilizando los monómeros experimentales MB-Cis-OH y MB-l,7-OH presentan propiedades mecánicas similares a las observadas en resinas compuestas que utilizan únicamente BisGMA/TEGDMA como componentes de la matriz orgánica. Es decir, las nuevas resinas compuestas pueden ser utilizadas para la restauración directa de dientes, ya que presentan las mismas propiedades mecánicas que una resina compuesta convencional. Además como los monómeros reportados tienen mayor peso molecular al TEGDMA, se espera que la contracción sea menor al de las resinas comerciales The composite materials made in the present invention, using the experimental monomers MB-Cis-OH and MB-l, 7-OH have mechanical properties similar to those observed in composite resins that use only BisGMA / TEGDMA as components of the organic matrix. That is, the new composite resins can be used for direct restoration of teeth, since they have the same mechanical properties as a conventional composite resin. In addition, since the reported monomers have a higher molecular weight than TEGDMA, the contraction is expected to be less than that of commercial resins.
El material que contiene al monómero experimental MB-Fen-OH presenta propiedades mecánicas significativamente mayores a las presentadas por la resinas compuestas que utilizan únicamente BisGMA/TEGDMA como matriz orgánica. Esta característica, la hace ser una resina comercialmente competitiva con las resinas que actualmente se comercializan . The material containing the experimental monomer MB-Fen-OH has significantly greater mechanical properties than those presented by composite resins that use only BisGMA / TEGDMA as the organic matrix. This characteristic makes it a commercially competitive resin with the resins that are currently marketed.
Por lo anterior los monómeros líquidos descritos en la presente invención, se pueden utilizar para la formulación de resinas compuestas de uso dental directo, mejorando las propiedades mecánicas de las resinas comerciales y por lo tanto, aumentado su resistencia y durabilidad. Referencias Therefore, the liquid monomers described in the present invention can be used for the formulation of composite resins for direct dental use, improving the mechanical properties of commercial resins and therefore, increasing their strength and durability. References
1. Jones RG, Kahovec J, Stepto R, Wilks ES, Hess M, Kitayama T, et al . 1 : Glossary of Basic Terms in Polymer Science (1996). In : Jones RG, Kahovec J, Stepto R, Wilks ES, Hess M, Kitayama T, et al., editors. Compendium of Polymer Terminology and Nomenclature: IUPAC RECOMMENDATIONS 2008: The Royal Society of Chemistry; 2009.  1. Jones RG, Kahovec J, Stepto R, Wilks ES, Hess M, Kitayama T, et al. 1: Glossary of Basic Terms in Polymer Science (1996). In: Jones RG, Kahovec J, Stepto R, Wilks ES, Hess M, Kitayama T, et al., Editors. Compendium of Polymer Terminology and Nomenclature: IUPAC RECOMMENDATIONS 2008: The Royal Society of Chemistry; 2009
2. Odian GG. Principies of polymerization. 4th ed. Hoboken, N.J . : Wiley- Interscience; 2004.  2. They hate GG. Principles of polymerization. 4th ed. Hoboken, N.J. : Wiley-Interscience; 2004
3. Seymour RB, Carraher CE. Introducción a la química de los polímeros : Reverté; 1995.  3. Seymour RB, Carraher CE. Introduction to polymer chemistry: I reversed; nineteen ninety five.
4. Billmeyer FW. Ciencia de los polímeros: Reverté; 1975.  4. Billmeyer FW. Polymer science: I reversed; 1975
5. O'Brien WJ . Dental materials and their selection. 4th ed. Hanover Park, IL: Quintessence Pub. Co. ; 2008.  5. O'Brien WJ. Dental materials and their selection. 4th ed. Hanover Park, IL: Quintessence Pub. Co.; 2008
6. Craig RG, Powers JM. Restorative dental materials. 13th ed. St. Louis: Mosby; 2011.  6. Craig RG, Powers JM. Restorative dental materials. 13th ed. St. Louis: Mosby; 2011
7. Anusavice KJ, Phillips RW. Phillips Ciencia de los materiales dentales, llth ed. Madrid, España. : Saunders; 2004.  7. Anusavice KJ, Phillips RW. Phillips Dental Materials Science, llth ed. Madrid Spain. : Saunders; 2004
8. Vela MCV, Blanco SÁ, Carbonell JLZ. Ciencia y tecnología de polímeros : Editorial UPV; 2006.  8. MCV candle, Blanco SÁ, Carbonell JLZ. Polymer science and technology: UPV Editorial; 2006
9. Callister WD. Introducción a la ciencia e ingeniería de los materiales: Reverté; 1996.  9. Callister WD. Introduction to materials science and engineering: I reversed; nineteen ninety six.
10. Park JB, Bronzino JD. Biomaterials: principies and applications : CRC Press; 2003.  10. Park JB, Bronzino JD. Biomaterials: principies and applications: CRC Press; 2003
11. McCabe JF, Walls A. Applied dental materials. 9th ed . Oxford, UK ; Ames, Iowa : Blackwell Pub. ; 2008.  11. McCabe JF, Walls A. Applied dental materials. 9th ed. Oxford, UK; Ames, Iowa: Blackwell Pub .; 2008
12. Macchi RL. Materiales dentales : Editorial Medica Panamericana Sa de; 2007.  12. Macchi RL. Dental materials: Editorial Medica Panamericana Sa de; 2007
13. Jenkins AD, Kratochvíl P, Stepto RFT, Suter UW. Glossary of basic terms in polymer science. Puré Appl Chem. 1996;68: 25.  13. Jenkins AD, Kratochvíl P, Stepto RFT, Suter UW. Glossary of basic terms in polymer science. Mashed Appl Chem. 1996; 68: 25.
14. Shalaby SW, Salz U. Polymers for dental and orthopedic applications: CRC Press; 2006.  14. Shalaby SW, Salz U. Polymers for dental and orthopedic applications: CRC Press; 2006
15. Chung DDL. Composite materials : science and applications. 2nd ed. London ; New York: Springer; 2010.  15. Chung DDL. Composite materials: science and applications. 2nd ed. London; New York: Springer; 2010
16. Askeland DR, Phulé PP. Ciencia e ingeniería de los materiales : Thomson; 2004.  16. Askeland DR, Phulé PP. Materials science and engineering: Thomson; 2004
17. Akovali G. Handbook of composite fabrication : Rapra Technology; 2001.  17. Akovali G. Handbook of composite fabrication: Rapra Technology; 2001
18. Matthews FL, Rawlings RD. Composite materials: engineering and science: CRC Press; 1999.  18. Matthews FL, Rawlings RD. Composite materials: engineering and science: CRC Press; 1999.
19. Chawla KK. Composite materials: science and engineering : Springer; 1998.  19. Chawla KK. Composite materials: science and engineering: Springer; 1998
20. Berthelot JM. Composite materials: mechanical behavior and structural analysis: Springer; 1999. 21. Ferracane JL. Resin composite— state of the art. Dent Mater. 2011 Jan;27(l) : 29-38. 20. Berthelot JM. Composite materials: mechanical behavior and structural analysis: Springer; 1999. 21. Ferracane JL. Resin composite— state of the art. Dent Mater. 2011 Jan; 27 (l): 29-38.
22. Hervas-Garcia A, Martinez-Lozano MA, Cabanes-Vila J, Barjau- Escribano A, Fos-Galve P. Composite resins. A review of the materials and clinical indications. Med Oral Patol Oral Cir Bucal. 2006 Mar; ll(2) : E215-20. 22. Hervas-Garcia A, Martinez-Lozano MA, Cabanes-Vila J, Barjau- Escribano A, Fos-Galve P. Composite resins. A review of the materials and clinical indications. Med Oral Patol Oral Cir Bucal. 2006 Mar; ll (2): E215-20.
23. Shalaby S. Composite for Dental Restoratives. In : Press C, editor. Polymers for dental and orthopedic applications. Boca Ratón, FL2007. p. 13- 69. 23. Shalaby S. Composite for Dental Restoratives. In: Press C, editor. Polymers for dental and orthopedic applications. Boca Raton, FL2007. p. 13-69.
24. Zimmerli B, Strub M, Jeger F, Stadler O, Lussi A. Composite materials: composition, properties and clinical applications. A literature review. Schweiz Monatsschr Zahnmed. 2010; 120(l l) :972-86.  24. Zimmerli B, Strub M, Jeger F, Stadler O, Lussi A. Composite materials: composition, properties and clinical applications. A literature review. Schweiz Monatsschr Zahnmed. 2010; 120 (l l): 972-86.
25. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997 Apr; 105(2) :97-116.  25. Peutzfeldt A. Resin composites in dentistry: the monomer systems. Eur J Oral Sci. 1997 Apr; 105 (2): 97-116.
26. Vasudeva G. Monomer systems for dental composites and their future: a review. J Calif Dent Assoc. 2009 Jun;37(6) : 389-98.  26. Vasudeva G. Monomer systems for dental composites and their future: a review. J Calif Dent Assoc. 2009 Jun; 37 (6): 389-98.
27. Antonucci JM, Dickens SH, Fowler BO, Xu HHK, McDonough WG. Chemistry of Shanes : Interfaces in Dental Polymers and Composites. J Res Nati Inst Stand Technol. 2005; 110: 541-58.  27. Antonucci JM, Dickens SH, Fowler BO, Xu HHK, McDonough WG. Chemistry of Shanes: Interfaces in Dental Polymers and Composites. J Res Nati Inst Stand Technol. 2005; 110: 541-58.
28. Lang BR, Jaarda M, Wang RF. Filler particle size and composite resin classification systems. J Oral Rehabil. 1992 Nov; 19(6) : 569-84.  28. Lang BR, Jaarda M, Wang RF. Filler particle size and composite resin classification systems. J Oral Rehabil. 1992 Nov; 19 (6): 569-84.
29. Willems G, Lambrechts P, Braem M, Celis JP, Vanherle G. A classification of dental composites according to their morphological and mechanical characteristics. Dent Mater. 1992 Sep;8(5) : 310-9.  29. Willems G, Lambrechts P, Braem M, Celis JP, Vanherle G. A classification of dental composites according to their morphological and mechanical characteristics. Dent Mater. 1992 Sep; 8 (5): 310-9.
30. Wei S, Tang E. Composite Resins: A Review of the Types, Properties and Restoration Techniques. University of Malaya Faculty of Dentistry [serial on the Internet] . 1998; 1 : Available from : http://eium.fsktm.um.edu.my/ArticleInformation.aspx?Art¡cleID=523.  30. Wei S, Tang E. Composite Resins: A Review of the Types, Properties and Restoration Techniques. University of Malaya Faculty of Dentistry [serial on the Internet]. 1998; 1: Available from: http://eium.fsktm.um.edu.my/ArticleInformation.aspx?Art¡cleID=523.
31. Chain M, Baratieri L. Restauraciones Estéticas con Resina Compuesta en Dientes Posteriores. Lationamerica AM, editor. Sao Paulo, BR. : Artes Médicas Lationamerica; 2001.  31. Chain M, Baratieri L. Aesthetic Restorations with Composite Resin in Posterior Teeth. Lationamerica AM, editor. Sao Paulo, BR. : Lationamerica Medical Arts; 2001
32. Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005 Oct;21(10) :962-70.  32. Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005 Oct; 21 (10): 962-70.
33. Braga RR, Ferracane JL. Contraction stress related to degree of conversión and reaction kinetics. J Dent Res. 2002 Feb;81(2) : 114-8.  33. Braga RR, Ferracane JL. Contraction stress related to degree of conversion and reaction kinetics. J Dent Res. 2002 Feb; 81 (2): 114-8.
34. Calheiros FC, Daronch M, Rueggeberg FA, Braga RR. Influence of irradiant energy on degree of conversión, polymerization rate and shrinkage stress in an experimental resin composite system. Dent Mater. 2008 Sep;24(9) : 1164-8.  34. Calheiros FC, Daronch M, Rueggeberg FA, Braga RR. Influence of irradiant energy on degree of conversion, polymerization rate and shrinkage stress in an experimental resin composite system. Dent Mater. 2008 Sep; 24 (9): 1164-8.
35. Amore R, Pagani C, Youssef MN, Anauate Netto C, Lewgoy HR. Polymerization shrinkage evaluation of three packable composite resins using a gas pycnometer. Pesqui Odontol Bras. 2003 Jul-Sep; 17(3) : 273-7.  35. Amore R, Pagani C, Youssef MN, Anauate Netto C, Lewgoy HR. Polymerization shrinkage evaluation of three packable composite resins using a gas pycnometer. Pesqui Odontol Bras. 2003 Jul-Sep; 17 (3): 273-7.
36. Chiang YC, Rosch P, Dabanoglu A, Lin CP, Hickel R, Kunzelmann KH. Polymerization composite shrinkage evaluation with 3D deformation analysis from microCT images. Dent Mater. 2010 Mar;26(3) : 223-31.  36. Chiang YC, Rosch P, Dabanoglu A, Lin CP, Hickel R, Kunzelmann KH. Polymerization composite shrinkage evaluation with 3D deformation analysis from microCT images. Dent Mater. 2010 Mar; 26 (3): 223-31.
37. Pereira RA, Araujo PA, Castañeda-Espinosa JC, Mondelli RF. Comparative analysis of the shrinkage stress of composite resins. J Appl Oral Sci. 2008 Jan-Feb; 16(l) : 30-4. 38. Linden LA, Jakubiak J . Contraction (shrinkage) in polymerization - Part II. Dental resin composites. Polimery. 2001;46: 590-5. 37. Pereira RA, Araujo PA, Castañeda-Espinosa JC, Mondelli RF. Comparative analysis of the shrinkage stress of composite resins. J Appl Oral Sci. 2008 Jan-Feb; 16 (l): 30-4. 38. Linden LA, Jakubiak J. Contraction (shrinkage) in polymerization - Part II. Dental resin composites. Polimery 2001; 46: 590-5.
39. Moszner N, Salz U. New development of polymeric dental composites. Prog Polym Sci. 2001 ;26: 535-76.  39. Moszner N, Salz U. New development of polymeric dental composites. Prog Polym Sci. 2001; 26: 535-76.
40. Aloman Q, Ajlouni R, Ornar R. Managing the polymerization shrinkage of resin composite restorations: a review. SADJ . 2007 Feb;62(l) : 12, 4, 6 passim.  40. Aloman Q, Ajlouni R, Ornar R. Managing the polymerization shrinkage of resin composite restorations: a review. SADJ. 2007 Feb; 62 (l): 12, 4, 6 passim.
41. Borkowski K, Kotousov A, Kahler B. Effect of material properties of composite restoration on the strength of the restoration-dentine interface due to polymerization shrinkage, thermal and occlusal loading. Med Eng Phys. 2007 Jul;29(6) : 671-6.  41. Borkowski K, Kotousov A, Kahler B. Effect of material properties of composite restoration on the strength of the restoration-dentine interface due to polymerization shrinkage, thermal and occlusal loading. Med Eng Phys. 2007 Jul; 29 (6): 671-6.
42. Sideridou ID, Karabela MM, Bikiaris DN. Aging studies of light cured dimethacrylate-based dental resins and a resin composite in water or ethanol/water. Dent Mater. 2007 Sep;23(9) : 1142-9.  42. Sideridou ID, Karabela MM, Bikiaris DN. Aging studies of light cured dimethacrylate-based dental resins and a resin composite in water or ethanol / water. Dent Mater. 2007 Sep; 23 (9): 1142-9.
43. Asaoka K, Hirano S. Diffusion coefficient of water through dental composite resin. Biomaterials. 2003 Mar;24(6) :975-9.  43. Asaoka K, Hirano S. Diffusion coefficient of water through dental composite resin. Biomaterials 2003 Mar; 24 (6): 975-9.
44. Lien W, Vandewalle KS. Physical properties of a new silorane-based restorative system. Dent Mater. 2010 Apr;26(4) : 337-44.  44. Lien W, Vandewalle KS. Physical properties of a new silorane-based restorative system. Dent Mater. 2010 Apr; 26 (4): 337-44.
45. Eick JD, Kotha SP, Chappelow CC, Kilway KV, Giese GJ, Glaros AG, et al . Properties of silorane-based dental resins and composites containing a stress-reducing monomer. Dent Mater. 2007 Aug;23(8) : 1011-7.  45. Eick JD, Kotha SP, Chappelow CC, Kilway KV, Giese GJ, Glaros AG, et al. Properties of silorane-based dental resins and composites containing a stress-reducing monomer. Dent Mater. 2007 Aug; 23 (8): 1011-7.
46. Burgess J, Cakir D. Comparative properties of low-shrinkage composite resins. Compend Contin Educ Dent. 2010 May;31 Spec No 2 : 10-5.  46. Burgess J, Cakir D. Comparative properties of low-shrinkage composite resins. Compend Contin Educ Dent. 2010 May; 31 Spec No 2: 10-5.
47. Gao BT, Lin H, Han JM, Zheng G. Polymerization characteristics, flexural modulus and microleakage evaluation of silorane-based and methacrylate-based composites. Am J Dent. 2011 Apr;24(2) :97-102.  47. Gao BT, Lin H, Han JM, Zheng G. Polymerization characteristics, flexural modulus and microleakage evaluation of silorane-based and methacrylate-based composites. Am J Dent. 2011 Apr; 24 (2): 97-102.
48. Gao BT, Lin H, Zheng G, Xu YX, Yang JL. Comparison between a silorane-based composite and methacrylate-based composites: Shrinkage characteristics, thermal properties, gel point and vitrification point. Dent Mater J . 2012 Jan 21.  48. Gao BT, Lin H, Zheng G, Xu YX, Yang JL. Comparison between a silorane-based composite and methacrylate-based composites: Shrinkage characteristics, thermal properties, gel point and vitrification point. Dent Mater J. 2012 Jan 21.
49. Moszner N, Fischer UK, Angermann J, Rheinberger V. A partially aromatic urethane dimethacrylate as a new substitute for Bis-GMA in restorative composites. Dent Mater. 2008 May;24(5) :694-9.  49. Moszner N, Fischer UK, Angermann J, Rheinberger V. A partially aromatic urethane dimethacrylate as a new substitute for Bis-GMA in restorative composites. Dent Mater. 2008 May; 24 (5): 694-9.
50. Yoo S, Park K, Kim J, Kim C. Characteristics of dental restorative composites fabricated from Bis-GMA alternatives and spiro orthocarbonates. Macromolecular Research. 2011; 19(l) : 27-32.  50. Yoo S, Park K, Kim J, Kim C. Characteristics of dental restorative composites fabricated from Bis-GMA alternatives and spiro orthocarbonates. Macromolecular Research. 2011; 19 (l): 27-32.
51. Sankarapandian M, Shobha HK, Kalachandra S, McGrath JE, Taylor DF. Characterization of some aromatic dimethacrylates for dental composite applications. Journal of Materials Science: Materials in Medicine. 1997;8(8) :465-8.  51. Sankarapandian M, Shobha HK, Kalachandra S, McGrath JE, Taylor DF. Characterization of some aromatic dimethacrylates for dental composite applications. Journal of Materials Science: Materials in Medicine. 1997; 8 (8): 465-8.
52. Lopez-Suevos F, Dickens SH. Degree of cure and fracture properties of experimental acid-resin modified composites under wet and dry conditions. Dent Mater. 2008 Jun;24(6) :778-85.  52. Lopez-Suevos F, Dickens SH. Degree of cure and fracture properties of experimental acid-resin modified composites under wet and dry conditions. Dent Mater. 2008 Jun; 24 (6): 778-85.
53. Nagem Filho H, Nagem HD, Francisconi PA, Franco EB, Mondelli RF, Coutinho KQ. Volumetric polymerization shrinkage of contemporary composite resins. J Appl Oral Sci. 2007 Oct; 15(5) :448-52.  53. Nagem Filho H, Nagem HD, Francisconi PA, Franco EB, Mondelli RF, Coutinho KQ. Volumetric polymerization shrinkage of contemporary composite resins. J Appl Oral Sci. 2007 Oct; 15 (5): 448-52.
54. Palin WM, Fleming GJ. Low-shrink monomers for dental restorations. Dent Update. 2003 Apr;30(3) : 118-22. 55. Stansbury JW. Cyclopolymerizable monomers for use in dental resin composites. J Dent Res. 1990 Mar;69(3) :844-8. 54. Palin WM, Fleming GJ. Low-shrink monomers for dental restorations. Dent Update 2003 Apr; 30 (3): 118-22. 55. Stansbury JW. Cyclopolymerizable monomers for use in dental resin composites. J Dent Res. 1990 Mar; 69 (3): 844-8.
56. Duarte S, Jr., Botta AC, Phark JH, Sadan A. Selected mechanical and physical properties and clinical application of a new low-shrinkage composite restoration. Quintessence Int. 2009 Sep;40(8) :631-8.  56. Duarte S, Jr., Botta AC, Phark JH, Sadan A. Selected mechanical and physical properties and clinical application of a new low-shrinkage composite restoration. Quintessence Int. 2009 Sep; 40 (8): 631-8.
57. Ilie N, Hickel R. Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent Mater. 2009 Jun ;25(6) : 810-9.  57. Ilie N, Hickel R. Macro-, micro- and nano-mechanical investigations on silorane and methacrylate-based composites. Dent Mater. 2009 Jun; 25 (6): 810-9.
58. Ilie N, Hickel R. Silorane-based dental composite: behavior and abilities. Dent Mater J. 2006 Sep;25(3) :445-54.  58. Ilie N, Hickel R. Silorane-based dental composite: behavior and abilities. Dent Mater J. 2006 Sep; 25 (3): 445-54.
59. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater. 2005 Jan;21(l) : 68-74.  59. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater. 2005 Jan; 21 (l): 68-74.
60. Rodríguez D, Pereira N. Evolución y tendencias actuales en Resinas Compuestas. Acta Odontológica Venezolana. 2008 2008;46: 19.  60. Rodríguez D, Pereira N. Current evolution and trends in Composite Resins. Venezuelan Dental Act. 2008 2008; 46: 19.
61. Thompson VP, Williams EF, Bailey WJ . Dental resins with reduced shrinkage during hardening. J Dent Res. 1979 May;58(5) : 1522-32.  61. Thompson VP, Williams EF, Bailey WJ. Dental resins with reduced shrinkage during hardening. J Dent Res. 1979 May; 58 (5): 1522-32.
62. Okamura H, Miyasaka T, Hagiwara T. Development of dental composite resin utilizing low-shrinking and low-viscous monomers. Dent Mater J. 2006 Sep;25(3) :437-44.  62. Okamura H, Miyasaka T, Hagiwara T. Development of dental composite resin utilizing low-shrinking and low-viscous monomers. Dent Mater J. 2006 Sep; 25 (3): 437-44.
63. Lu H, Stansbury JW, Nie J, Berchtold KA, Bowman CN. Development of highly reactive mono-(meth)acrylates as reactive diluents for dimethacrylate- based dental resin systems. Biomaterials. 2005 Apr;26(12) : 1329-36.  63. Lu H, Stansbury JW, Nie J, Berchtold KA, Bowman CN. Development of highly reactive mono- (meth) acrylates as reactive diluents for dimethacrylate-based dental resin systems. Biomaterials 2005 Apr; 26 (12): 1329-36.
64. Millich F, Jeang L, Eick JD, Chappelow CC, Pinzino CS. Elements of light-cured epoxy-based dental polymer systems. J Dent Res. 1998 Apr;77(4) :603-8.  64. Millich F, Jeang L, Eick JD, Chappelow CC, Pinzino CS. Elements of light-cured epoxy-based dental polymer systems. J Dent Res. 1998 Apr; 77 (4): 603-8.
65. Davy KWM. Novel aromatic dimethacrylate esters as dental resins. Journal of Materials Science: Materials in Medicine. 1994;5(6) : 350-2.  65. Davy KWM. Novel aromatic dimethacrylate esters as dental resins. Journal of Materials Science: Materials in Medicine. 1994; 5 (6): 350-2.
66. Tilbrook DA, Clarke RL, Howle NE, Braden M. Photocurable epoxy- polyol matrices for use in dental composites I. Biomaterials. 2000 Sep;21(17) : 1743-53.  66. Tilbrook DA, Clarke RL, Howle NE, Braden M. Photocurable epoxy-polyol matrices for use in dental composites I. Biomaterials. 2000 Sep; 21 (17): 1743-53.
67. Fu J, Jia F, Xu H, J¡ B, Liu X. Properties of a new dental photocurable matrix resin with low shrinkage. Journal of Wuhan University of Technology-- Materials Science Edition. 2011;26(2) : 236-41.  67. Fu J, Jia F, Xu H, J¡B, Liu X. Properties of a new dental photocurable matrix resin with low shrinkage. Journal of Wuhan University of Technology-- Materials Science Edition. 2011; 26 (2): 236-41.
68. Hussain LA, Dickens SH, Bowen RL. Properties of eight methacrylated beta-cyclodextrin composite formulations. Dent Mater. 2005 Mar;21(3) : 210- 6.  68. Hussain LA, Dickens SH, Bowen RL. Properties of eight methacrylated beta-cyclodextrin composite formulations. Dent Mater. 2005 Mar; 21 (3): 210-6.
69. Yoo S, Kim C. Synthesis of a novel spiro orthocarbonate containing bisphenol-a unit and its application to the dental composites. Macromolecular Research. 2010; 18(10) : 1013-20.  69. Yoo S, Kim C. Synthesis of a novel spiro orthocarbonate containing bisphenol-a unit and its application to the dental composites. Macromolecular Research. 2010; 18 (10): 1013-20.
70. He J, Luo Y, Liu F, Jia D. Synthesis and characterization of a new trimethacrylate monomer with low polymerization shrinkage and its application in dental restoration materials. J Biomater Appl. 2010 Sep;25(3) : 235-49.  70. He J, Luo Y, Liu F, Jia D. Synthesis and characterization of a new trimethacrylate monomer with low polymerization shrinkage and its application in dental restoration materials. J Biomater Appl. 2010 Sep; 25 (3): 235-49.
71. Podgorski M. Synthesis and characterization of novel dimethacrylates of different chain lengths as possible dental resins. Dent Mater. 2010 Jun ;26(6) :el88-94.  71. Podgorski M. Synthesis and characterization of novel dimethacrylates of different chain lengths as possible dental resins. Dent Mater. 2010 Jun; 26 (6): el88-94.
72. Stansbury JW. Synthesis and evaluation of new oxaspiro monomers for double ring-opening polymerization. J Dent Res. 1992 Jul;71(7) : 1408-12. 73. Chung CM, Kim JG, Kim MS, Kim KM, Kim KN. Development of a new photocurable composite resin with reduced curing shrinkage. Dent Mater. 2002 Mar; 18(2) : 174-8. 72. Stansbury JW. Synthesis and evaluation of new oxaspiro monomers for double ring-opening polymerization. J Dent Res. 1992 Jul; 71 (7): 1408-12. 73. Chung CM, Kim JG, Kim MS, Kim KM, Kim KN. Development of a new photocurable composite resin with reduced curing shrinkage. Dent Mater. 2002 Mar; 18 (2): 174-8.
74. Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM. Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials. 2005 Dec;26(34) : 7145-53.  74. Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM. Chlorhexidine-releasing methacrylate dental composite materials. Biomaterials 2005 Dec; 26 (34): 7145-53.
75. Anusavice KJ, Zhang NZ, Shen C. Controlled reléase of chlorhexidine from UDMA-TEGDMA resin. J Dent Res. 2006 Oct;85(10) :950-4.  75. Anusavice KJ, Zhang NZ, Shen C. Controlled relay of chlorhexidine from UDMA-TEGDMA resin. J Dent Res. 2006 Oct; 85 (10): 950-4.
76. Kurata S, Yamazaki N. Characteristics of novel di-alpha-fluoroacrylate derivatives with polyfluoroalkyl aromatic backbone as a binder resin of direct filling materials. Dent Mater J. 2011;30(3) : 343-9.  76. Kurata S, Yamazaki N. Characteristics of novel di-alpha-fluoroacrylate derivatives with polyfluoroalkyl aromatic backbone as a binder resin of direct filling materials. Dent Mater J. 2011; 30 (3): 343-9.
77. Ling L, Xu X, Choi GY, Billodeaux D, Guo G, Diwan RM. Novel F- releasing composite with improved mechanical properties. J Dent Res. 2009 Jan;88(l) :83-8.  77. Ling L, Xu X, Choi GY, Billodeaux D, Guo G, Diwan RM. Novel F- releasing composite with improved mechanical properties. J Dent Res. 2009 Jan; 88 (l): 83-8.
78. L¡ T, Craig RG. Synthesis of fluorinated Bis-GMA and its use with other fluorinated monomers to formúlate hydrophobic composites. J Oral Rehabil. 1996 Mar;23(3) : 158-62.  78. L¡T, Craig RG. Synthesis of fluorinated Bis-GMA and its use with other fluorinated monomers to formulate hydrophobic composites. J Oral Rehabil. 1996 Mar; 23 (3): 158-62.
79. Kim LU, Kim JW, Kim CK. Effects of molecular structure of the resins on the volumetric shrinkage and the mechanical strength of dental restorative composites. Biomacromolecules. 2006 Sep;7(9) : 2680-7.  79. Kim LU, Kim JW, Kim CK. Effects of molecular structure of the resins on the volumetric shrinkage and the mechanical strength of dental restorative composites. Biomacromolecules 2006 Sep; 7 (9): 2680-7.
80. Goncalves F, Pfeifer CS, Ferracane JL, Braga RR. Contraction stress determinants in dimethacrylate composites. J Dent Res. 2008 Apr;87(4) : 367- 71.  80. Goncalves F, Pfeifer CS, Ferracane JL, Braga RR. Contraction stress determinants in dimethacrylate composites. J Dent Res. 2008 Apr; 87 (4): 367-71.
81. Atai M, Watts DC. A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater. 2006 Aug;22(8) : 785-91.  81. Atai M, Watts DC. A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater. 2006 Aug; 22 (8): 785-91.
82. Anseth KS, Goodner MD, Reil MA, Kannurpatti AR, Newman SM, Bowman CN. The influence of comonomer composition on dimethacrylate resin properties for dental composites. J Dent Res. 1996 Aug;75(8) : 1607-12. 82. Anseth KS, Goodner MD, Reil MA, Kannurpatti AR, Newman SM, Bowman CN. The influence of comonomer composition on dimethacrylate resin properties for dental composites. J Dent Res. 1996 Aug; 75 (8): 1607-12.
83. Asmussen E, Peutzfeldt A. Influence of UEDMA BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater. 1998 Jan; 14(l) : 51-6. 83. Asmussen E, Peutzfeldt A. Influence of UEDMA BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent Mater. 1998 Jan; 14 (l): 51-6.
84. Pereira SG, Osorio R, Toledano M, Nunes TG. Evaluation of two BisGMA analogues as potential monomer diluents to improve the mechanical properties of light-cured composite resins. Dent Mater. 2005 Sep;21(9) :823- 30.  84. Pereira SG, Osorio R, Toledano M, Nunes TG. Evaluation of two BisGMA analogues as potential monomer diluents to improve the mechanical properties of light-cured composite resins. Dent Mater. 2005 Sep; 21 (9): 823-30.
85. Kilambi H, Cramer NB, Schneidewind LH, Shah P, Stansbury JW, Bowman CN. Evaluation of highly reactive mono-methacrylates as reactive diluents for BisGMA-based dental composites. Dent Mater. 2009 Jan;25(l) : 33-8.  85. Kilambi H, Cramer NB, Schneidewind LH, Shah P, Stansbury JW, Bowman CN. Evaluation of highly reactive mono-methacrylates as reactive diluents for BisGMA-based dental composites. Dent Mater. 2009 Jan; 25 (l): 33-8.
86. Bowen RL, inventor Method of preparing a monomer having phenoxy and methacrylate groups Nnked by hydroxy glyceryl groups. United States of Americal965.  86. Bowen RL, inventor Method of preparing a monomer having phenoxy and methacrylate groups Nnked by hydroxy glyceryl groups. United States of Americal965.
87. Riddick JA, Bugner WB. Organic Solvents : Physical Properties and Methods of Purification. Techniques of Chemistry. 5th ed. New York: Wiley Interscience; 1986.  87. Riddick JA, Bugner WB. Organic Solvents: Physical Properties and Methods of Purification. Techniques of Chemistry. 5th ed. New York: Wiley Interscience; 1986
88. Coetzee JF. Recommended Methods of the Purification of Solvents and Test of Impurities. Oxford : Pergamon Press; 1982. 89. Miyasaka T. Effect of shape and size of silanated fillers on mechanical properties of experimental photo cure composite resins. Dent Mater J . 1996 Dec; 15(2) :98-110. 88. Coetzee JF. Recommended Methods of the Purification of Solvents and Test of Impurities. Oxford: Pergamon Press; 1982 89. Miyasaka T. Effect of shape and size of silanated fillers on mechanical properties of experimental photo cure composite resins. Dent Mater J. 1996 Dec; 15 (2): 98-110.
90. Wilson KS, Zhang K, Antonucci JM. Systematic variation of interfacial phase reactivity in dental nanocomposites. Biomaterials. 2005 Sep;26(25) : 5095-103.  90. Wilson KS, Zhang K, Antonucci JM. Systematic variation of interfacial phase reactivity in dental nanocomposites. Biomaterials 2005 Sep; 26 (25): 5095-103.
91. ISO-Standars. ISO 4049 Dentistry-Polymer-based filling, restorative and luting materials. : Switzerland International Organization for Standardizaron 2000.  91. ISO-Standars. ISO 4049 Dentistry-Polymer-based filling, restorative and luting materials. : Switzerland International Organization for Standardized 2000.
92. ANSI/ADA. Direct Filling Resins. American National Standard Institute; 1997. p. 36.  92. ANSI / ADA. Direct Filling Resins American National Standard Institute; 1997. p. 36.
93. Kim JW, Kim LU, Kim CK, Cho BH, Kim OY. Characteristics of novel dental composites containing 2,2-bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane as a base resin. Biomacromolecules. 2006 Jan;7(l) : 154-60.  93. Kim JW, Kim LU, Kim CK, Cho BH, Kim OY. Characteristics of novel dental composites containing 2,2-bis [4- (2-methoxy-3-methacryloyloxy propoxy) phenyl] propane as a resin based. Biomacromolecules 2006 Jan; 7 (l): 154-60.
94. Liu F, He JW, Lin ZM, Ling JQ, Jia DM. Synthesis and characterization of dimethacrylate monomer with high molecular weight for root canal filling materials. Molecules. 2006; ll(12) :953-8.  94. Liu F, He JW, Lin ZM, Ling JQ, Jia DM. Synthesis and characterization of dimethacrylate monomer with high molecular weight for root canal filling materials. Molecules 2006; ll (12): 953-8.
95. He J, Liao L, Liu F, Luo Y, Jia D. Synthesis and characterization of a new dimethacrylate monomer based on 5,50-bis(4-hydroxylphenyl)- hexahydro-4,7-methanoindan for root canal sealer application. J Mater Sci Mater Med. 2010 Apr;21(4) : 1135-42.  95. He J, Liao L, Liu F, Luo Y, Jia D. Synthesis and characterization of a new dimethacrylate monomer based on 5,50-bis (4-hydroxylphenyl) - hexahydro-4,7-methanoindan for root canal sealer application . J Mater Sci Mater Med. 2010 Apr; 21 (4): 1135-42.
96. He J, Luo Y, Liu F, Jia D. Synthesis, characterization and photopolymerization of a new dimethacrylate monomer based on (alpha- methyl-benzylidene)bisphenol used as root canal sealer. J Biomater Sci Polym Ed. 2010;21(8-9) : 1191-205.  96. He J, Luo Y, Liu F, Jia D. Synthesis, characterization and photopolymerization of a new dimethacrylate monomer based on (alpha-methyl-benzylidene) bisphenol used as root canal sealer. J Biomater Sci Polym Ed. 2010; 21 (8-9): 1191-205.
97. Kurata S, Yamazaki N. Synthesis of dimethacryloxy ethyl-1, 1,6,6- tetrahydro-perfluorohexamethylene-l,6-dicarbamate as dental base monomers and the mechanical properties of the copolymers of the monomer and methyl methacrylate. Dent Mater J. 2011;30(l) : 103-8.  97. Kurata S, Yamazaki N. Synthesis of dimethacryloxy ethyl-1, 1,6,6-tetrahydro-perfluorohexamethylene-l, 6-dicarbamate as dental base monomers and the mechanical properties of the copolymers of the monomer and methyl methacrylate. Dent Mater J. 2011; 30 (l): 103-8.
98. Xie D, Chung ID, Wang G, Mays J . Synthesis and evaluation of novel bifunctional oligomer-based composites for dental applications. J Biomater Appl. 2006 Jan;20(3) : 221-36.  98. Xie D, Chung ID, Wang G, Mays J. Synthesis and evaluation of novel bifunctional oligomer-based composites for dental applications. J Biomater Appl. 2006 Jan; 20 (3): 221-36.
99. Debnath S, Wunder SL, McCool JI, Baran GR. Silane treatment effects on glass/resin interfacial shear strengths. Dent Mater. 2003 Jul; 19(5) :441-8. 99. Debnath S, Wunder SL, McCool JI, Baran GR. Silane treatment effects on glass / resin interfacial shear strengths. Dent Mater. 2003 Jul; 19 (5): 441-8.
100. Mohsen NM, Craig RG. Effect of silanation of fillers on their dispersability by monomer systems. J Oral Rehabil. 1995 Mar;22(3) : 183-9.100. Mohsen NM, Craig RG. Effect of silanation of fillers on their dispersability by monomer systems. J Oral Rehabil. 1995 Mar; 22 (3): 183-9.
101. Karabela MM, Sideridou ID. Synthesis and study of properties of dental resin composites with different nanosilica particles size. Dent Mater. 2011 Aug;27(8) :825-35. 101. Karabela MM, Sideridou ID. Synthesis and study of properties of dental resin composites with different nanosilica particles size. Dent Mater. 2011 Aug; 27 (8): 825-35.
102. Zhang H, Zhang M. Effect of surface treatment of hydroxyapatite whiskers on the mechanical properties of bis-GMA-based composites. Biomed Mater. 2010 Oct;5(5) :054106.  102. Zhang H, Zhang M. Effect of surface treatment of hydroxyapatite whiskers on the mechanical properties of bis-GMA-based composites. Biomed Mater. 2010 Oct; 5 (5): 054106.
103. Wilson NH, Dunne SM, Gainsford ID. Current materials and techniques for direct restorations in posterior teeth. Part 2 : Resin composite systems. Int Dent J . 1997 Aug;47(4) : 185-93. 104. Karabela MM, Sideridou ID. Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites. Dent Mater. 2008 Dec;24(12) : 1631-9. 103. Wilson NH, Dunne SM, Gainsford ID. Current materials and techniques for direct restorations in posterior teeth. Part 2: Resin composite systems. Int Dent J. 1997 Aug; 47 (4): 185-93. 104. Karabela MM, Sideridou ID. Effect of the structure of silane coupling agent on surprise characteristics of solvents by dental resin-nanocomposites. Dent Mater. 2008 Dec; 24 (12): 1631-9.
105. Karahan O, Aydin K, Edizer S, Odabasi N, Avci D. Development of reactive methacrylates based on glycidyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry. 2010;48(17) : 3787-96.  105. Karahan O, Aydin K, Edizer S, Odabasi N, Avci D. Development of reactive methacrylates based on glycidyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry. 2010; 48 (17): 3787-96.
106. Domingo C, Arcis RW, Lopez-Macipe A, Osorio R, Rodriguez-Clemente R, Murtra J, et al. Dental composites reinforced with hydroxyapatite: mechanical behavior and absorption/elution characteristics. J Biomed Mater Res. 2001 Aug;56(2) : 297-305.  106. Domingo C, Arcis RW, Lopez-Macipe A, Osorio R, Rodriguez-Clemente R, Murtra J, et al. Dental composites reinforced with hydroxyapatite: mechanical behavior and absorption / elution characteristics. J Biomed Mater Res. 2001 Aug; 56 (2): 297-305.
107. Antonucci JM, Fowler BO, Weir MD, Skrtic D, Stansbury JW. Effect of ethyl-alpha-hydroxymethylacrylate on selected properties of copolymers and ACP resin composites. J Mater Sci Mater Med. 2008 Oct; 19(10) : 3263-71. 107. Antonucci JM, Fowler BO, Weir MD, Skrtic D, Stansbury JW. Effect of ethyl-alpha-hydroxymethylacrylate on selected properties of copolymers and ACP resin composites. J Mater Sci Mater Med. 2008 Oct; 19 (10): 3263-71.
108. Prakki A, Pereira PN, Kalachandra S. Effect of propionaldehyde or 2,3- butanedione additives on the mechanical properties of Bis-GMA analog-based composites. Dent Mater. 2009 Jan;25(l) : 26-32. 108. Prakki A, Pereira PN, Kalachandra S. Effect of propionaldehyde or 2,3-butanedione additives on the mechanical properties of Bis-GMA analog-based composites. Dent Mater. 2009 Jan; 25 (l): 26-32.
109. Atai M, Nekoomanesh M, Hashemi SA, Amani S. Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent Mater. 2004 Sep;20(7) :663-8.  109. Atai M, Nekoomanesh M, Hashemi SA, Amani S. Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent Mater. 2004 Sep; 20 (7): 663-8.
110. Rodrigues Júnior SA, Zanchi CH, Carvalho RV, Demarco FF. Flexural strength and modulus of elasticity of different types of resin-based composites. Braz Oral Res. 2007 Jan-Mar;21(l) : 16-21.  110. Rodrigues Júnior SA, Zanchi CH, Carvalho RV, Demarco FF. Flexural strength and modulus of elasticity of different types of resin-based composites. Braz Oral Res. 2007 Jan-Mar; 21 (l): 16-21.
111. Adabo GL, dos Santos Cruz CA, Fonseca RG, Vaz LG. The volumetric fraction of inorganic particles and the flexural strength of composites for posterior teeth. J Dent. 2003 Jul;31(5) : 353-9.  111. Adabo GL, two Santos Cruz CA, Fonseca RG, Vaz LG. The volumetric fraction of inorganic particles and the flexural strength of composites for posterior teeth. J Dent. 2003 Jul; 31 (5): 353-9.
112. Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent. 2002 Jun;87(6) :642-9.  112. Kim KH, Ong JL, Okuno O. The effect of filler loading and morphology on the mechanical properties of contemporary composites. J Prosthet Dent. 2002 Jun; 87 (6): 642-9.
113. Hosseinalipour M, Javadpour J, Rezaie H, Dadras T, Hayati AN. Investigation of mechanical properties of experimental Bis-GMA/TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. J Prosthodont. 2010 Feb; 19(2) : 112-7.  113. Hosseinalipour M, Javadpour J, Rezaie H, Dadras T, Hayati AN. Investigation of mechanical properties of experimental Bis-GMA / TEGDMA dental composite resins containing various mass fractions of silica nanoparticles. J Prosthodont. 2010 Feb; 19 (2): 112-7.
114. Chung KH, Greener EH. Correlation between degree of conversión, filler concentraron and mechanical properties of posterior composite resins. J Oral Rehabil. 1990 Sep; 17(5) :487-94.  114. Chung KH, Greener EH. Correlation between degree of conversion, filler concentrated and mechanical properties of posterior composite resins. J Oral Rehabil. 1990 Sep; 17 (5): 487-94.
115. Taylor DF, Kalachandra S, Sankarapandian M, McGrath JE. Relationship between filler and matrix resin characteristics and the properties of uncured composite pastes. Biomaterials. 1998 Jan-Feb; 19(l-3) : 197-204.  115. Taylor DF, Kalachandra S, Sankarapandian M, McGrath JE. Relationship between filler and matrix resin characteristics and the properties of uncured composite pastes. Biomaterials 1998 Jan-Feb; 19 (L-3): 197-204.
116. Palin WM, Fleming GJ, Burke FJ, Marquis PM, Randall RC. Monomer conversión versus flexure strength of a novel dental composite. J Dent. 2003 Jul;31(5) : 341-51.  116. Palin WM, Fleming GJ, Burke FJ, Marquis PM, Randall RC. Monomer conversion versus flexure strength of a novel dental composite. J Dent. 2003 Jul; 31 (5): 341-51.
117. Souza RO, Ozcan M, Michida SM, de Meló RM, Pavanelli CA, Bottino MA, et al. Conversión degree of indirect resin composites and effect of thermocycling on their physical properties. J Prosthodont. 2010 Apr; 19(3) : 218-25.  117. Souza RO, Ozcan M, Michida SM, Meló RM, Pavanelli CA, Bottino MA, et al. Conversion degree of indirect resin composites and effect of thermocycling on their physical properties. J Prosthodont. 2010 Apr; 19 (3): 218-25.
118. Kim JG, Chung CM. Trifunctional methacrylate monomers and their photocured composites with reduced curing shrinkage, water sorption, and water solubility. Biomaterials. 2003 Sep;24(21) : 3845-51. 119. Tian M, Gao Y, Liu Y, Liao Y, Hedin NE, Fong H. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. Dent Mater. 2008 Feb;24(2) : 235-43. 118. Kim JG, Chung CM. Trifunctional methacrylate monomers and their photocured composites with reduced curing shrinkage, water surprise, and water solubility. Biomaterials 2003 Sep; 24 (21): 3845-51. 119. Tian M, Gao Y, Liu Y, Liao Y, Hedin NE, Fong H. Fabrication and evaluation of Bis-GMA / TEGDMA dental resins / composites containing nano fibrillar silicate. Dent Mater. 2008 Feb; 24 (2): 235-43.

Claims

REIVINDICACIONES
1.- Un monómero bis-glicidilmetacrilatos, caracterizado por la fórmula (I)  1.- A bis-glycidylmethacrylate monomer, characterized by the formula (I)
Figure imgf000110_0001
Figure imgf000110_0001
donde R puede ser where R can be
un radical bifenilo insustituido o sustituido por OH, oxígeno, amino, o alquilo C1-C4, carbonilo o carboxilo; un grupo fenilo sustituido por OH, oxígeno, amino, alquilo Cl-3, carbonilo o carboxilo; un grupo alquilo C2-10 insustituido o substituido por hidroxilo, oxígeno, amino, alquilo C1-C4, carbonilo o carboxilo; un grupo alquenilo C2-C10 insustituido o substituido por hidroxilo, amino, oxigeno, alquilo C1-C4, carbonilo o carboxilo; a biphenyl radical unsubstituted or substituted by OH, oxygen, amino, or C1-C4 alkyl, carbonyl or carboxyl; a phenyl group substituted by OH, oxygen, amino, Cl-3 alkyl, carbonyl or carboxyl; a C2-10 alkyl group unsubstituted or substituted by hydroxyl, oxygen, amino, C1-C4 alkyl, carbonyl or carboxyl; a C2-C10 alkenyl group unsubstituted or substituted by hydroxyl, amino, oxygen, C1-C4 alkyl, carbonyl or carboxyl;
2. - Un monómero de acuerdo con la reivindicación 1, caracterizado porque2. - A monomer according to claim 1, characterized in that
R se selecciona entre bifenilo, 1,4-dimetil-fenilo, alquilo C4-C7, alquenilo C2- C4. R is selected from biphenyl, 1,4-dimethyl-phenyl, C4-C7 alkyl, C2-C4 alkenyl.
3. - Un monómero de acuerdo con la reivindicación 1, caracterizado porque es 4,4'-bis[2-hidroxi-3-metacriloxipropoxi]bifenilo de fórmula MB-4,4-0H 3. - A monomer according to claim 1, characterized in that it is 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl of formula MB-4,4-0H
Figure imgf000110_0002
Figure imgf000110_0002
4.- Un monomero de acuerdo con la reivindicación 1, caracterizado porque es l,4-bis[(2-hidroxi-3-metacriloxipropoxi)metil]fenilo de fórmula MB-Fen-OH 4. A monomer according to claim 1, characterized in that it is 1, 4-bis [(2-hydroxy-3-methacryloxypropoxy) methyl] phenyl of formula MB-Fen-OH
Figure imgf000111_0001
Figure imgf000111_0001
5.- Un monomero de acuerdo con la reivindicación 1, caracterizado porque es 5. A monomer according to claim 1, characterized in that it is
Figure imgf000111_0002
Figure imgf000111_0002
6. - Un monomero de acuerdo con la reivindicación 1, caracterizado porque es
Figure imgf000111_0003
6. - A monomer according to claim 1, characterized in that it is
Figure imgf000111_0003
7. - Un monomero de acuerdo con la reivindicación 1, caracterizado porque es
Figure imgf000111_0004
7. - A monomer according to claim 1, characterized in that it is
Figure imgf000111_0004
?·<¾;.· · j-OH  ? · <¾;. · · J-OH
8.- Un método para la obtención del monomero de la fórmula general (I), caracterizado porque comprende las etapas de: a) hacer reaccionar un compuesto de fórmula general OH-R-OH con epiclorhidrina para dar un compuesto intermediario en presencia de un solvente y b) hacer reaccionar el compuesto intermediario obtenido de la etapa a) con ácido metacrílico en presencia de un solvente y un catalizador para dar el compuesto de fórmula general (I) de acuerdo con el siguiente esquema de reacción : 8.- A method for obtaining the monomer of the general formula (I), characterized in that it comprises the steps of: a) reacting a compound of the general formula OH-R-OH with epichlorohydrin to give an intermediate compound in the presence of a solvent and b) reacting the intermediate compound obtained from step a) with methacrylic acid in the presence of a solvent and a catalyst to give the compound of general formula (I) according to the following reaction scheme:
Figure imgf000112_0001
Figure imgf000112_0002
donde R tiene los significados indicados en la reivindicación 1.
Figure imgf000112_0001
Figure imgf000112_0002
wherein R has the meanings indicated in claim 1.
9.- Un método para la obtención del monómero 4,4'-bis[2-hidrox¡-3- metacriloxipropoxi]bifenilo de acuerdo con la reivindicación 3, caracterizado porque comprende las etapas de: a) hacer reaccionar un compuesto de 4,4-bisfenol con epiclorhidrina en presencia de un solvente para obtener el compuesto intermediario de fórmula BE-4,4-0H 9. A method for obtaining the 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl monomer according to claim 3, characterized in that it comprises the steps of: a) reacting a compound of 4, 4-bisphenol with epichlorohydrin in the presence of a solvent to obtain the intermediate compound of formula BE-4,4-0H
Figure imgf000113_0001
y
Figure imgf000113_0001
Y
b) hacer reaccionar el compuesto intermediario con ácido metacrílico en presencia de un disolvente para obtener el compuesto 4,4'-bis[2-hidrox¡-3- metacriloxipropoxi]bifenilo de fórmula MB-4,4-0H : b) reacting the intermediate compound with methacrylic acid in the presence of a solvent to obtain the compound 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl of formula MB-4,4-0H:
Figure imgf000113_0002
Figure imgf000113_0002
10.- El método para la obtención del monómero 4,4'-bis[2-hidrox¡-3- metacriloxipropoxi]bifenilo de acuerdo con la reivindicación 9, caracterizado porque en la etapa a) se hace reaccionar un compuesto de 4,4-bisfenol con epiclorhidrina en presencia de dimetilformamida como solvente y carbonato de potasio para obtener el compuesto intermediario BE-4,4-0H y en la etapa b) se hacer reaccionar dicho compuesto intermediario BE-4,4-0H con ácido metacrílico en relación estequiométrica en presencia de dimetilformamida como solvente y de trietanolamina para dar el compuesto 4,4'-bis[2-hidrox¡- 3-metacriloxipropoxi]bifenilo (MB-4,4-0H) de acuerdo con el siguiente esquema de reacción : 10. The method for obtaining the 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl monomer according to claim 9, characterized in that in step a) a compound of 4.4 is reacted -bisphenol with epichlorohydrin in the presence of dimethylformamide as solvent and potassium carbonate to obtain the intermediate compound BE-4,4-0H and in step b) said intermediate compound BE-4,4-0H is reacted with methacrylic acid in relation stoichiometric in the presence of dimethylformamide as solvent and triethanolamine to give the compound 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl (MB-4,4-0H) according to the following reaction scheme:
Figure imgf000114_0001
Figure imgf000114_0002
Figure imgf000114_0001
Figure imgf000114_0002
11.- Un método para la obtención del monómero 4,4'-bis[2-hidrox¡-3- metacriloxipropoxi]bifenilo de fórmula MB-4,4-0H de acuerdo con la reivindicación 3, caracterizado porque comprende la etapa de hacer reaccionar el compuesto de 4,4-bifenol con el glicidilmetacrilato en presencia de un solvente para obtener el compuesto 4,4'-bis[2-hidrox¡-3- metacriloxipropoxi]bifenilo de fórmula MB-4,4-0H : 11. A method for obtaining the 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl monomer of formula MB-4,4-0H according to claim 3, characterized in that it comprises the step of making Reacting the 4,4-biphenol compound with the glycidyl methacrylate in the presence of a solvent to obtain the 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl compound of formula MB-4,4-0H:
Figure imgf000114_0003
Figure imgf000114_0003
12.- El método para la obtención del monómero 4,4'-bis[2-hidrox¡-3- metacriloxipropoxi]bifenilo de acuerdo con la reivindicación 11, caracterizado porque se hace reaccionar el compuesto de 4,4-bifenol con el glicidilmetacrilato en una relación estequiométrica de 1 : 2,5, utilizando trietilamina e hidroquinona como inhibidor y dimetilformamida como solvente de acuerdo con el siguiente esquema de reacción : 12. The method for obtaining the 4,4'-bis [2-hydroxy-3-methacryloxypropoxy] biphenyl monomer according to claim 11, characterized in that the 4,4-biphenol compound is reacted with the glycidylmethacrylate in a stoichiometric ratio of 1: 2.5, using triethylamine and hydroquinone as inhibitor and dimethylformamide as solvent according to the following reaction scheme:
Figure imgf000115_0001
Figure imgf000115_0001
13.- Un método para la obtención del monómero l,4-bis[(2-hidrox¡-3- metacriloxipropoxi)metil]fenilo de fórmula MB-Fen-OH de acuerdo con la reivindicación 4, caracterizado porque comprende las etapas de a) hacer reaccionar 1,4-bencenodimetanol y epiclorhidrina en presencia de un solvente para dar el compuesto intermediario BE-Fen-OH de fórmula :
Figure imgf000115_0002
13. A method for obtaining the l, 4-bis [(2-hydroxy-3-methacryloxypropoxy) methyl] phenyl monomer of formula MB-Fen-OH according to claim 4, characterized in that it comprises the steps of a ) reacting 1,4-benzenedimethanol and epichlorohydrin in the presence of a solvent to give the intermediate compound BE-Fen-OH of the formula:
Figure imgf000115_0002
BE-Fen-OH b) hacer reaccionar dicho compuesto intermediario BE-Fen-OH con ácido metacrílico en presencia de un solvente para obtener el compuesto 1,4- bis[(2-hidroxi-3-metacriloxipropoxi)metil]fenilo de fórmula MB-Fen-OH :  BE-Fen-OH b) reacting said BE-Fen-OH intermediate compound with methacrylic acid in the presence of a solvent to obtain the 1,4-bis [(2-hydroxy-3-methacryloxypropoxy) methyl] phenyl compound of formula MB -Fen-OH:
Figure imgf000115_0003
Figure imgf000115_0003
14.- Un método para la obtención del monómero l,4-bis[(2-hidrox¡-3- metacriloxipropoxi)metil]fenilo de fórmula MB-Fen-OH de acuerdo con la reivindicación 13, caracterizado porque comprende las etapas de: a) hacer reaccionar el compuesto 1,4-bencenodimetanol y epiclorhidrina, en presencia de hidruro de sodio como catalizador y DMF como solvente para obtener el compuesto intermediario BE-Fen-OH y b) hacer reaccionar dicho intermediario de fórmula BE-Fen-OH con ácido metacrílico en presencia de dimetilformamida y trietanolamina de acuerdo con el siguiente esquema de reacción : 14. A method for obtaining the l, 4-bis [(2-hydroxy-3-methacryloxypropoxy) methyl] phenyl monomer of formula MB-Fen-OH according to claim 13, characterized in that it comprises the steps of: a) reacting the 1,4-benzenedimethanol and epichlorohydrin compound, in the presence of sodium hydride as a catalyst and DMF as a solvent to obtain the intermediate compound BE-Fen-OH and b) reacting said intermediate of formula BE-Fen-OH with methacrylic acid in the presence of dimethylformamide and triethanolamine according to the following reaction scheme:
Paso 1 Paso  Step 1 step
Figure imgf000116_0001
Figure imgf000116_0001
15.- Un método para la obtención del monómero l,4-bis[2-hidrox¡-3- metacriloxipropoxi]butano de fórmula MB-1,4-0H de acuerdo con la reivindicación 5 , caracterizado porque comprende a) hacer reaccionar 1,4-butanodiol y epiclorhidrina en presencia de un solvente para obtener el compuesto intermediario de fórmula BE-1,4-0H : 15. A method for obtaining the monomer l, 4-bis [2-hydroxy-3-methacryloxypropoxy] butane of formula MB-1,4-0H according to claim 5, characterized in that it comprises a) reacting 1 , 4-butanediol and epichlorohydrin in the presence of a solvent to obtain the intermediate compound of formula BE-1,4-0H:
Figure imgf000116_0002
Figure imgf000116_0002
BE-1.4-OH y b) hacer reaccionar dicho compuesto intermediario BE-1,4-0H con ácido acrílico en presencia de un solvente para obtener dicho compuesto de fórmula MB-1,4-0H BE-1.4-OH and b) reacting said intermediate compound BE-1,4-0H with acrylic acid in the presence of a solvent to obtain said compound of formula MB-1,4-0H
Figure imgf000116_0003
Figure imgf000116_0003
MLÍ-1.4-ÜH MLÍ-1.4-ÜH
16.- Un método para la obtención del monómero l,4-bis[2-hidrox¡-3- metacriloxipropoxi]butano de fórmula MB-1,4-0H de acuerdo con la reivindicación 15, caracterizado porque comprende a) hacer reaccionar 1,4-butanodiol y epiclorhidrina en presencia de hidruro de sodio como catalizador y dimetilformamida como solvente para obtener el compuesto intermediario de fórmula BE-1,4-0H, y b) hacer reaccionar dicho compuesto intermediario BE-1,4-0H con ácido acrílico en una relación estequiométrica de 1 a 2,5 en presencia de trietanolamina y dimetilformamida como solvente para obtener dicho compuesto de fórmula MB-1,4-0H de acuerdo con el siguiente esquema de reacción 16. A method for obtaining the 1, 4-bis [2-hydroxy-3-methacryloxypropoxy] butane monomer of formula MB-1,4-0H according to claim 15, characterized in that it comprises a) reacting 1 , 4-butanediol and epichlorohydrin in the presence of sodium hydride as catalyst and dimethylformamide as solvent to obtain the intermediate compound of formula BE-1,4-0H, and b) reacting said intermediate compound BE-1,4-0H with acrylic acid in a stoichiometric ratio of 1 to 2.5 in the presence of triethanolamine and dimethylformamide as solvent to obtain said compound of formula MB-1,4-0H according to the following reaction scheme
Figure imgf000117_0001
Figure imgf000117_0001
17.- Un método para la obtención del monómero (Z)-l,4-bis[2-hidrox¡-3- metacriloxipropoxi]-2-buteno de fórmula MB-Cis-OH, de acuerdo con la reivindicación 6, caracterizado porque comprende las etapas de: a) hacer reaccionar el compuesto cis-2-buten-l,4-diol y epiclorhidrina en presencia de un solvente para obtener el compuesto intermediario de fórmula BE-cis-OH
Figure imgf000118_0001
y
17. A method for obtaining the monomer (Z) -l, 4-bis [2-hydroxy-3-methacryloxypropoxy] -2-butene of the formula MB-Cis-OH, according to claim 6, characterized in that It comprises the steps of: a) reacting the compound cis-2-buten-l, 4-diol and epichlorohydrin in the presence of a solvent to obtain the intermediate compound of formula BE-cis-OH
Figure imgf000118_0001
Y
b) hacer reaccionar dicho compuesto intermediario BE-Cis-OH con ácido acrílico en presencia de un solvente para obtener el compuesto de fórmula MB-Cis-OH b) reacting said BE-Cis-OH intermediate compound with acrylic acid in the presence of a solvent to obtain the compound of formula MB-Cis-OH
Figure imgf000118_0002
Figure imgf000118_0002
M8-Cw-Oíi  M8-Cw-Oíi
18.- Un método para la obtención del monómero (Z)-l,4-bis[2-hidrox¡-3- metacriloxipropoxi]-2-buteno de fórmula MB-Cis-OH, de acuerdo con la reivindicación 17, caracterizado porque comprende las etapas de 18. A method for obtaining the monomer (Z) -l, 4-bis [2-hydroxy-3-methacryloxypropoxy] -2-butene of the formula MB-Cis-OH, according to claim 17, characterized in that understand the stages of
a) hacer reaccionar el compuesto cis-2-buten-l,4-diol y epiclorhidrina en presencia de hidruro de sodio como catalizador y dimetilformamida como un solvente para obtener el compuesto intermediario de fórmula BE-cis-OH, y a) reacting the compound cis-2-buten-l, 4-diol and epichlorohydrin in the presence of sodium hydride as catalyst and dimethylformamide as a solvent to obtain the intermediate compound of formula BE-cis-OH, and
b) hacer reaccionar dicho compuesto intermediario BE-Cis-OH con ácido acrílico en una relación estequiométrica de 1 a 2,5 en presencia de trietanolamina como catalizador y dimetilformamida como un solvente para obtener el compuesto de fórmula MB-Cis-OH de acuerdo con el siguiente esquema de reacción : b) reacting said BE-Cis-OH intermediate compound with acrylic acid in a stoichiometric ratio of 1 to 2.5 in the presence of triethanolamine as catalyst and dimethylformamide as a solvent to obtain the compound of formula MB-Cis-OH according to The following reaction scheme:
Paso 1 Paso 2 Step 1 Step 2
C
Figure imgf000119_0001
C
Figure imgf000119_0001
MB-Cis-OH  MB-Cis-OH
19.- Un método para la obtención del monómero l,7-bis[2-hidroxi-3- metacrilox¡propox¡]heptano de fórmula MB-l,7-OH, de acuerdo con la reivindicación 7, caracterizado porque comprende las etapas de: a) hacer reaccionar 1,7-heptanodiol y epiclorhidrina en presencia de un solvente para obtener el compuesto intermediario de fórmula BE-1,7- OH
Figure imgf000119_0002
19. A method for obtaining the l, 7-bis [2-hydroxy-3-methacryloxypropox!] Heptane monomer of formula MB-l, 7-OH, according to claim 7, characterized in that it comprises the steps from: a) reacting 1,7-heptanediol and epichlorohydrin in the presence of a solvent to obtain the intermediate compound of formula BE-1,7-OH
Figure imgf000119_0002
BE-1.7-OH y b) hacer reaccionar el compuesto intermediario BE-l,7-OH en presencia de un disolvente y un catalizador para obtener el compuesto de fórmula MB-l,7-OH : BE-1.7-OH and b) react the intermediate compound BE-l, 7-OH in the presence of a solvent and a catalyst to obtain the compound of formula MB-l, 7-OH:
Figure imgf000119_0003
Figure imgf000119_0003
20.- Un método para la obtención del monomero l,7-bis[2-hidrox¡-3- metacriloxipropoxi]heptano de fórmula MB-l,7-OH, de acuerdo con la reivindicación 7, caracterizado porque comprende las etapas de: a) hacer reaccionar 1,7-heptanodiol y epiclorhidrina en presencia de dimetilformamida como solvente e hidruro de sodio como catalizador para obtener el compuesto intermediario de fórmula BE-l,7-OH y b) hacer reaccionar el compuesto intermediario BE-l,7-OH en presencia de dimetilformamida como disolvente y trietanolamina para obtener el compuesto de fórmula MB-l,7-OH de acuerdo con el siguiente esquema de reacción : 20. A method for obtaining the monomer l, 7-bis [2-hydroxy-3-methacryloxypropoxy] heptane of formula MB-l, 7-OH, according to claim 7, characterized in that it comprises the steps of: a) reacting 1,7-heptanediol and epichlorohydrin in the presence of dimethylformamide as solvent and sodium hydride as catalyst to obtain the intermediate compound of formula BE-1, 7-OH and b) reacting the intermediate compound BE-1, 7- OH in the presence of dimethylformamide as solvent and triethanolamine to obtain the compound of formula MB-1, 7-OH according to the following reaction scheme:
Figure imgf000120_0001
Figure imgf000120_0001
21. - Una formulación de resina de restauración dental directa, caracterizada porque comprende al menos un primer monomero de bis-metacrilato seleccionado del grupo formado por Bis-GMA, TEGDMA, UDMA, Bis-EMA6, Bis-EMA, PEGMA; al menos un segundo monomero de bis-metacrilato de acuerdo con la reivindicación 1, que es capaz de actuar como solvente de y polimerizar con dicho primer monomero de bis-metacrilato, y un sistema fotoiniciador. 21. - A direct dental restoration resin formulation, characterized in that it comprises at least a first bis-methacrylate monomer selected from the group consisting of Bis-GMA, TEGDMA, UDMA, Bis-EMA6, Bis-EMA, PEGMA; at least a second bis-methacrylate monomer according to claim 1, which is capable of acting as a solvent for and polymerizing with said first bis-methacrylate monomer, and a photoinitiating system.
22. - Una formulación de resina de restauración dental directa de acuerdo con la reivindicación 21, caracterizada porque dicho sistema fotoiniciador comprende canforquinona y una amina orgánica, seleccionada entre 2-N,N'- dimetilaminometacrilato de etilo, la Ν,Ν'-dimetil-para-toluidina y el ρ-Ν,Ν'- dimetilaminobenzoato de etilo. 22. - A direct dental restoration resin formulation according to claim 21, characterized in that said photoinitiator system It comprises camphorquinone and an organic amine, selected from 2-N, ethyl N'-dimethylaminomethacrylate, Ν, Ν'-dimethyl-para-toluidine and ρ-Ν, Ν'-ethyl dimethylaminobenzoate.
23. - Una formulación de resina de restauración dental directa de acuerdo con la reivindicación 21, caracterizada porque además comprende entre el 42 y el 85% en peso de un material de relleno. 23. - A direct dental restoration resin formulation according to claim 21, characterized in that it also comprises between 42 and 85% by weight of a filling material.
24. - Una formulación de resina de restauración dental directa de acuerdo con la reivindicación 23, caracterizada porque dicho relleno se selecciona entre cuarzo, vidrio de bario, vidrio de bario/sílice, mezcla de bario vidrio, cuarzo/bario vidrio, sílice, zirconia/sílice, mezcla de sílice, aluminosilicato de litio, aluminosilicato de sodio y/o de zinc y aluminosilicato de bario o derivados sol-gel de materiales cerámicos. 24. - A direct dental restoration resin formulation according to claim 23, characterized in that said filling is selected from quartz, barium glass, barium glass / silica, barium glass mixture, quartz / barium glass, silica, zirconia / silica, mixture of silica, lithium aluminosilicate, sodium and / or zinc aluminosilicate and barium aluminosilicate or sol-gel derivatives of ceramic materials.
25. - Una formulación de resina de restauración dental directa de acuerdo con la reivindicación 23, caracterizada porque dicho relleno se selecciona entre nanopartículas dispersas o nanoclúster de Óxido de Silicio y Óxido de Zirconio que poseen un tamaño de partícula que varia entre 1 a 100 nm. 25. - A direct dental restoration resin formulation according to claim 23, characterized in that said filling is selected from dispersed nanoparticles or silicon oxide and Zirconium nanocluster having a particle size ranging from 1 to 100 nm .
26. - Una formulación de resina de restauración dental directa de acuerdo con la reivindicación 24, caracterizada porque dicho relleno posee un tamaño de partícula que varía entre 1 a 100 μηι. 26. - A direct dental restoration resin formulation according to claim 24, characterized in that said filling has a particle size ranging from 1 to 100 μηι.
27. - Una formulación de resina de restauración dental directa de acuerdo con las reivindicación 24, caracterizada porque dicho relleno además comprende entre un 40 a 85% en peso basado en el peso total de la composición de un agente de acoplamiento. 27. - A direct dental restoration resin formulation according to claim 24, characterized in that said filling also comprises between 40 and 85% by weight based on the total weight of the composition of a coupling agent.
28. - Una formulación de resina de restauración dental directa de acuerdo con las reivindicación 27, caracterizada porque dicho un agente de acoplamiento se selecciona entre [3-metacriloxipropiltrimetoxisilano (MPTMS), vinil trietoxisilano, dimetil diclorosilano, hexametileno disilazano, dimetil polisiloxano. 28. - A direct dental restoration resin formulation according to claim 27, characterized in that said a coupling agent is selected from [3-methacryloxypropyltrimethoxysilane (MPTMS), vinyl triethoxysilane, dimethyl dichlorosilane, hexamethylene disilazane, dimethyl polysiloxane.
PCT/IB2013/061347 2012-12-28 2013-12-26 Bis-glycidyl methacrylate monomers for composite resin formulations for dental use, methods for preparing said monomers, resin formulations for direct dental restoration comprising the same and uses thereof WO2014106799A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2015007858A MX2015007858A (en) 2012-12-28 2013-12-26 Bis-glycidyl methacrylate monomers for composite resin formulations for dental use, methods for preparing said monomers, resin formulations for direct dental restoration comprising the same and uses thereof.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ARP20120105084 2012-12-28
ARP120105084A AR089616A1 (en) 2012-12-28 2012-12-28 BIS-GLICIDILMETACRILATOS MONOMEROS FOR THE FORMULATION OF COMPOSITE RESINS FOR DENTAL USE, METHOD FOR THE PREPARATION OF SUCH BIS-GLICIDILMETACRILATOS MONOMEROS, FORMULATION OF DIRECT DENTAL RESTORATION RESINS THAT INCLUDE THEM AND USES OF DICHES

Publications (3)

Publication Number Publication Date
WO2014106799A2 true WO2014106799A2 (en) 2014-07-10
WO2014106799A3 WO2014106799A3 (en) 2014-09-12
WO2014106799A9 WO2014106799A9 (en) 2019-01-03

Family

ID=50114429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/061347 WO2014106799A2 (en) 2012-12-28 2013-12-26 Bis-glycidyl methacrylate monomers for composite resin formulations for dental use, methods for preparing said monomers, resin formulations for direct dental restoration comprising the same and uses thereof

Country Status (3)

Country Link
AR (1) AR089616A1 (en)
MX (1) MX2015007858A (en)
WO (1) WO2014106799A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052226A1 (en) * 2014-10-03 2016-04-07 Dic株式会社 Epoxy ester compound, cellulose ester resin composition, optical film, and liquid-crystal display device
WO2018230322A1 (en) * 2017-06-12 2018-12-20 Dic株式会社 Polymerizable compound and liquid-crystal composition
CN112876364A (en) * 2021-01-15 2021-06-01 吉林大学 Acrylate monomer and preparation method thereof, and acrylate monomer repair material and application thereof
US11655320B2 (en) 2017-07-03 2023-05-23 Hilti Aktiengesellschaft Mixture of radically curable compounds and use thereof
US11739270B2 (en) 2018-03-01 2023-08-29 Dic Corporation Polymerizable compound as well as liquid crystal composition and liquid crystal display device each including polymerizable compound
US11760934B2 (en) 2017-11-17 2023-09-19 Dic Corporation Polymerizable compound, and liquid crystal composition and liquid crystal display element in which the compound is used

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853962A (en) * 1972-02-03 1974-12-10 Johnson & Johnson Novel methacrylate monomer
US20120156619A1 (en) * 2010-11-19 2012-06-21 Lg Chem, Ltd. Acrylate-based compounds and photosensitive composition comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853962A (en) * 1972-02-03 1974-12-10 Johnson & Johnson Novel methacrylate monomer
US20120156619A1 (en) * 2010-11-19 2012-06-21 Lg Chem, Ltd. Acrylate-based compounds and photosensitive composition comprising the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EIKO RENBUTSU ET AL: "Preparation and Biocompatibility of Novel UV-Curable Chitosan Derivatives +", BIOMACROMOLECULES, vol. 6, no. 5, 1 September 2005 (2005-09-01), pages 2385-2388, XP055106114, ISSN: 1525-7797, DOI: 10.1021/bm0500796 *
K.W.M. DAVY: "Novel aromatic dimethacrylate esters as dental resins", JOURNAL OF MATERIALS SCIENCE IN MEDICINE, vol. 5, 1994, pages 350-352, XP002721359, ISSN: 0957-4530 *
MARTA GROCHOWICZ ET AL: "Permanently porous copolymeric microspheres based on aromatic methacrylates", REACTIVE & FUNCTIONAL POLYMERS, ELSEVIER SCIENCE PUBLISHERS BV, NL, vol. 71, no. 6, 5 March 2011 (2011-03-05), pages 625-633, XP028195355, ISSN: 1381-5148, DOI: 10.1016/J.REACTFUNCTPOLYM.2011.03.001 [retrieved on 2011-03-15] *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102399287B1 (en) 2014-10-03 2022-05-19 디아이씨 가부시끼가이샤 Epoxy ester compound, cellulose ester resin composition, optical film, and liquid-crystal display device
CN106795092A (en) * 2014-10-03 2017-05-31 Dic株式会社 Epoxy ester compounds, cellulose ester resin composition, optical thin film and liquid crystal display device
WO2016052226A1 (en) * 2014-10-03 2016-04-07 Dic株式会社 Epoxy ester compound, cellulose ester resin composition, optical film, and liquid-crystal display device
KR20170066363A (en) * 2014-10-03 2017-06-14 디아이씨 가부시끼가이샤 Epoxy ester compound, cellulose ester resin composition, optical film, and liquid-crystal display device
US9815973B2 (en) 2014-10-03 2017-11-14 Dic Corporation Epoxy ester compound, cellulose ester resin composition, optical film, and liquid-crystal display device
JP5971538B1 (en) * 2014-10-03 2016-08-17 Dic株式会社 Epoxy ester compound, cellulose ester resin composition, optical film and liquid crystal display device
CN106795092B (en) * 2014-10-03 2019-05-17 Dic株式会社 Epoxy ester compounds, cellulose ester resin composition, optical thin film and liquid crystal display device
WO2018230322A1 (en) * 2017-06-12 2018-12-20 Dic株式会社 Polymerizable compound and liquid-crystal composition
US11174217B2 (en) 2017-06-12 2021-11-16 Dic Corporation Polymerizable compound and liquid crystal composition
JPWO2018230322A1 (en) * 2017-06-12 2019-11-14 Dic株式会社 Polymerizable compound and liquid crystal composition
CN110573490A (en) * 2017-06-12 2019-12-13 Dic株式会社 Polymerizable compound and liquid crystal composition
CN110573490B (en) * 2017-06-12 2023-01-13 Dic株式会社 Polymerizable compound and liquid crystal composition
US11655320B2 (en) 2017-07-03 2023-05-23 Hilti Aktiengesellschaft Mixture of radically curable compounds and use thereof
US11760934B2 (en) 2017-11-17 2023-09-19 Dic Corporation Polymerizable compound, and liquid crystal composition and liquid crystal display element in which the compound is used
US11739270B2 (en) 2018-03-01 2023-08-29 Dic Corporation Polymerizable compound as well as liquid crystal composition and liquid crystal display device each including polymerizable compound
CN112876364A (en) * 2021-01-15 2021-06-01 吉林大学 Acrylate monomer and preparation method thereof, and acrylate monomer repair material and application thereof
CN112876364B (en) * 2021-01-15 2022-03-11 吉林大学 Acrylate monomer and preparation method thereof, and acrylate monomer repair material and application thereof

Also Published As

Publication number Publication date
WO2014106799A3 (en) 2014-09-12
MX2015007858A (en) 2017-10-12
WO2014106799A9 (en) 2019-01-03
AR089616A1 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2014106799A2 (en) Bis-glycidyl methacrylate monomers for composite resin formulations for dental use, methods for preparing said monomers, resin formulations for direct dental restoration comprising the same and uses thereof
Moszner et al. Recent developments of new components for dental adhesives and composites
Lavigueur et al. Recent advances in the development of dental composite resins
US7541392B2 (en) Materials leading to improved dental composites and dental composites made therefrom
US9877898B2 (en) Dental materials based on low-odour thiols
ES2879378T3 (en) Dental materials based on redox systems with low odor cumene hydroperoxide derivatives
US20060058415A1 (en) Materials leading to improved dental composites and dental composites made therefrom
JP6688737B2 (en) Adhesive bonding composition and use thereof
CN103370041A (en) Dental compositions comprising ethylenically unsaturated addition-fragmentation agent
TW200840594A (en) Composition and dental material
BR112013000094B1 (en) dental composition, parts kit and use
US20170172855A1 (en) Compositions With Controlled Network Structure
US8163815B2 (en) Dental resin composition, method of manufacture, and method of use thereof
BR112013005887B1 (en) Substituted saccharide compounds and dental compositions
US20050124721A1 (en) Bulky monomers leading to resins exhibiting low polymerization shrinkage
US20060058418A1 (en) Materials leading to improved dental composites and dental composites made therefrom
US20060058416A1 (en) Materials leading to improved dental composites and dental composites made therefrom
JP2017507138A (en) Dental composition and use thereof
ES2427290T3 (en) Dental composition
US5886212A (en) Multifunctional vinyl cyclopropane derivatives
US20060058417A1 (en) Materials leading to improved dental composites and dental composites made therefrom
US6660785B2 (en) Self-adhesive polymerizable monomer and dental/medical compositions therefrom
JPWO2002034207A1 (en) Dental materials and compositions
US20050124722A1 (en) Branched highly-functional monomers exhibiting low polymerization shrinkage
WO2005090281A1 (en) (meth)acrylic compound and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830120

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/007858

Country of ref document: MX

122 Ep: pct application non-entry in european phase

Ref document number: 13830120

Country of ref document: EP

Kind code of ref document: A2