WO2014106694A1 - Process for producing particles of chalcopyrite chosen from cu(inga)se2 and cu2znsns4 and pulverulent composition of particles thus obtained - Google Patents

Process for producing particles of chalcopyrite chosen from cu(inga)se2 and cu2znsns4 and pulverulent composition of particles thus obtained Download PDF

Info

Publication number
WO2014106694A1
WO2014106694A1 PCT/FR2013/000332 FR2013000332W WO2014106694A1 WO 2014106694 A1 WO2014106694 A1 WO 2014106694A1 FR 2013000332 W FR2013000332 W FR 2013000332W WO 2014106694 A1 WO2014106694 A1 WO 2014106694A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
solution
cigs
czts
metal ions
Prior art date
Application number
PCT/FR2013/000332
Other languages
French (fr)
Inventor
Aurélien AUGER
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2014106694A1 publication Critical patent/WO2014106694A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/006Compounds containing, besides tin, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • a process for producing chalcopite particles selected from Cu (InGa) Se 2 and Cu 2 ZnSnS 4 and pulverulent composition of particles thus obtained A process for producing chalcopite particles selected from Cu (InGa) Se 2 and Cu 2 ZnSnS 4 and pulverulent composition of particles thus obtained.
  • the invention relates to a process for producing chalcopyrite particles chosen from Cu (InGa) Se 2 and Cu 2 ZnSnS 4 and also relates to a pulverulent composition of particles thus obtained.
  • Quaternary semiconductor materials such as Cu (lnGa) Se 2 (CIGS) and Cu 2 ZnSnS 4 (CZTS), are increasingly used in the manufacture of high efficiency photovoltaic cells. Indeed, such semiconductor materials allow very good absorption of the incident light and has, moreover, excellent longevity.
  • the nanoparticles of CIGS or CZTS present, today, an increasing interest for such applications.
  • the use of crystallized CIGS nanoparticles, in the form chalcopyrite Culn 0 . 8 Ga 0 .2Se2 and of diameter less than 100 nm is particularly encouraging.
  • Benslim et al. discloses the synthesis of nanocrystalline powder of Culn 0 .5Gao 5 Se 2 by mechanical grinding. Nevertheless, the CIGS particles thus obtained have an inhomogeneous distribution of the different elements.
  • Ahn et al. (Thin Solid Films 2000, 515, 4036-4040) synthesized nanoparticles Cuo.9lno.64Ga 0 .23Se 2 by colloidally from Cul, lnl 3 Gal and 3 in the presence of pyridine, methanol and Na 2 Se at 0 ° C under an inert atmosphere.
  • the particles have diameters of less than 100 nm but have an imperfect crystalline structure.
  • the production process requires the use of toxic products.
  • the aim of the invention is to overcome the drawbacks of the prior art and, in particular, to propose a method for producing chalcopyrite particles chosen from CIGS and CZTS which is simple and easy to implement, reproducible and allowing obtain crystalline particles of CIGS (Cu (InGa) Se 2 ) or CZTS (Cu 2 ZnSn (S, Se) 4 ).
  • FIG. 1 represents a nanoparticle image of CIGS obtained by transmission electron microscopy according to one embodiment of the invention
  • FIG. 2 represents the diffraction diagram of the CIGS nanoparticles of FIG. 1 obtained by transmission electron microscopy
  • FIG. 3 represents the elemental analysis, obtained by transmission electron microscopy, of the CIGS nanoparticles of FIG.
  • the process for producing chalcopyrite particles chosen from CIGS and CZTS comprises the following successive steps:
  • the second solution containing a reducing agent for reducing said ions to form CIGS or CZTS particles
  • Chalcopyrite particles are particles of semiconductor material having a chalcopyrite structure.
  • CIGS particles are CIGS particles whose general formula is defined by Culn x Ga y Se z with 0.7 x x 0,8 0.8; 0.1 ⁇ y ⁇ 0.2 and 1.5 ⁇ z ⁇ 2.
  • the first solution contains water, a first alkane and a first surfactant to form inverse micelles.
  • micelle is meant an aggregate of molecules having a hydrophilic end directed towards water and a hydrophobic end directed towards a solvent.
  • Reverse micelle means that the water is present inside the micelle and that the micelle is surrounded by solvent: the hydrophilic end is directed towards the inside of the micelle while the hydrophobic end is directed to the outside of the micelle, ie to the solvent.
  • the first solution forms an emulsion.
  • Emulsion means that the first solution contains at least two elements in the liquid state and immiscible with each other. And more particularly, it is a reverse microemulsion.
  • Reverse microemulsion means that it is a suspension of microdroplets of a polar liquid, water in an apolar liquid, the alkane.
  • the metal ions of the first solution are copper, indium, gallium and selenium ions.
  • ionic precursor salts of CIGS that is to say ionic salts based on copper, indium, gallium and selenium, are dissolved in the water of the first solution.
  • the ionic salts are salts of CuCl 2 , InCl 3 , GaCl 3 and H 2 SeO 3 .
  • the molar ratios between the various CuCl 2 , InCl 3 , GaCl 3 and H 2 SeO 3 salts are, on introduction into the aqueous phase, of the order of 1: 0.8: 0.2: 2 respectively.
  • the metal ions of the first solution are copper, zinc and tin.
  • the first solution additionally comprises sulfur and / or selenium ions.
  • ionic precursor salts of CZTS that is to say ionic salts based on copper, zinc and tin as well as ionic salts based on sulfur and / or selenium, are dissolved in the water of the first solution.
  • the precursor ionic salts of CZTS are salts of CuCl 2 , ZnCl 2 , SnCl 4 and Na 2 S.
  • the metal salts being dissolved in the water of the first solution, are therefore located inside the reverse micelles.
  • the second solution contains water, a second alkane and a second surfactant in order to form inverse micelles.
  • the second solution also forms an inverse microemulsion.
  • the reducing agent is dissolved in water and is therefore inside the reverse micelle.
  • the reducing agent is hydrazine monohydrate.
  • the hydrazine monohydrate makes it possible to reduce the copper, indium, gallium and selenium ions relatively rapidly and forms, after reduction of the ions, mainly nitrogen and water. By relatively fast, we hear of the order of a few minutes, e.g. less than 10 minutes, or instantaneous.
  • the ⁇ , ⁇ -diethylhydroxylamine may be used as a reducing agent.
  • the reducing agent may also be N- (methyl) mercaptoacetamide, triethylsilane, sodium borohydride, aluminum hydride and lithium or lithium diisopropylamide.
  • a surfactant makes it possible to stabilize the reverse micelles, by interacting on the one hand with the solvent by its hydrophobic end and on the other hand with water by its hydrophilic end.
  • the surfactant is nonionic, that is to say it has no net charge and therefore does not ionize in water. It may be an ester-linked surfactant, ether or amide. For example, it may be a sorbitan ester, such as the polyoxyethylene sorbitan ester also called Tween. Preferably, it is an ether-linked surfactant.
  • At least one of the first or second surfactant is Triton X-100 or igepal C0520.
  • Triton X-100 is compatible with other anionic, cationic and nonionic surfactants.
  • Triton X-100 is an excellent surfactant: it significantly modifies the surface tension, which facilitates the formation of reverse micelles.
  • the first surfactant and the second surfactant are Triton X-100. This facilitates the fusion of the inverse micelles of the first solution with those of the second solution.
  • At least one of the first or second alkane is cyclohexane.
  • Cyclohexane is, advantageously, chemically inert and insoluble in water.
  • the first alkane and the second alkane are cyclohexane to facilitate the miscibility of the first and second solutions.
  • the water is deionized water so as not to bring pollutant into the solution.
  • At least one of the first or second solution contains an alcohol.
  • the alcohol makes it possible to facilitate the formation of inverse micelles by increasing the flexibility of the interfacial layer.
  • the first solution and the second solution contain an alcohol.
  • the first and second solutions contain the same alcohol.
  • the surface tensions of the reverse micelles of the first and second solutions are identical and the coalescence of the micelles is facilitated.
  • the alcohol is 1-hexanol, also called n-hexanol.
  • 1-hexanol has a good affinity with the surfactant and a good miscibility.
  • the reduction of the metal ions makes it possible to form either CIGS particles or CZTS particles.
  • the particles created are confined inside the reverse micelles and protected from aggregation with the particles of the other inverse micelles by the surfactant film.
  • Inverse micelles act as microreactors.
  • the CIGS or CZTS particles in solution are subjected to a hydrothermal treatment initiated by microwave irradiation.
  • hydrothermal treatment is meant a heat treatment in an aqueous medium. After irradiation, the solution is at a temperature below 100 ° C, of the order of 80 ° C-90 ° C.
  • Microwave irradiation makes it possible to crystallize CIGS or CZTS particles.
  • the microwave irradiation is carried out at a power P of between 500W and 2000W, which makes it possible to obtain particles that are well crystallized while having relatively short irradiation times.
  • a power P between 500W and 2000W we mean that 500W ⁇ P ⁇ 2000W.
  • the irradiation does not destroy the micelles.
  • the duration of the microwave treatment is between 10 seconds and 2 minutes, and advantageously between 30 seconds and 1 minute 30 seconds.
  • a membrane separation step is performed to purify the solution containing the crystallized particles of CIGS.
  • the membrane separation is performed by dialysis.
  • the solution containing the particles is destabilized.
  • Destabilization means that the reverse micelles are destroyed.
  • the destabilization of the reverse micelles advantageously makes it possible to release the crystallized particles which were in the aqueous core from the reverse micelles.
  • the destabilization is carried out by adding ethanol to the solution containing the crystallized particles.
  • the volume of ethanol added to destabilize the solution containing the particles is at least equal to the volume of the solution containing the particles,
  • CIGS particles were produced according to the protocol described below.
  • Step 1 Prepare the first solution and the second solution
  • a first solution S1 is prepared by mixing Triton X-100 (8.4 mL), 1-hexanol (8.2 mL) and cyclohexane (38 mL), and then adding a aqueous solution containing CuCl 2 (54 mg, 134.45 gmol -1 (0.5 M), 1nCl 3 (71 mg, 221.18 gmol -1 or 0.4 M), GaCl 3 (14 mg, 176.08 gmol -1 or 0.1 M) , H 2 SeO 3 (103 mg, 128.97 gmol -1 , 1 M) and deionized water (0.8 mL). The solution S1 is then left stirring until stabilization at room temperature.
  • a second solution S2 is prepared by mixing Triton X-100 (8.4 mL), 1-hexanol (8.2 mL), cyclohexane (38 mL) and hydrazine monohydrate (0.8 mL to 12 M in water). The solution S2 is then left stirring until stabilization at room temperature.
  • Step 2 reduction of cuiyre, gallium, indium and selenium ions
  • the second solution S2 is added dropwise to the first solution S1. Preferentially, the solution S1 is stirred during the dropwise addition of the solution S2. The dropwise addition makes it possible to introduce the second solution homogeneously into the first solution.
  • a third solution S3 is then obtained.
  • Solution S3 is stirred vigorously at room temperature for 5 minutes in order to reduce all the ions present in solution.
  • the reducing agent is introduced in excess relative to the ions present in solution.
  • ambient temperature is meant a temperature of between 18 ° C and 25 ° C.
  • the copper, gallium, indium and selenium ions are therefore reduced, forming particles of Cu (lnGa) Se2.
  • the formation of CIGS particles is characterized by a blackening of the solution.
  • the third solution containing the Cu (InGa) Se 2 particles is then subjected to microwave irradiation for one minute. Different powers were used: 500 W, 1000 W, 1500 W and 2000 W so as to obtain four different samples of CIGS particles, respectively called A, B, C and D.
  • the microwave irradiation causing a heating of the third solution, the third solution is allowed to stand until it is at room temperature.
  • the third solution is destabilized by addition of ethanol (250 ml).
  • the particles are then washed several times with ethanol and once with water, each washing being followed by centrifugal sedimentation for 15 minutes at 6000 rpm (also denoted 6000 rpm). After the washing step, the purification of the CIGS particles is completed by dialysis (nominal MCWO 3500 Daltons) in degassed water (5 L) and with magnetic stirring for 3 days in order not to observe the natural phenomenon of oxidation.
  • the four powder compositions of CIGS particles are then characterized by transmission electron microscopy (TEM) analysis so as to obtain, for each sample:
  • TEM transmission electron microscopy
  • All the particles thus obtained have a diameter of less than 100 nm and, more particularly, a diameter of between 20 nm and 40 nm.
  • FIG. 1 represents, for example, CIGS particles having a diameter of between 30 and 40 nm. The scale corresponds to 20nm.
  • the inverse microemulsion method makes it possible to obtain particles whose size distribution is monodisperse.
  • monodisperse we mean that the particles, for the same conditions of elaboration, have almost all the same diameter, within a few nanometers.
  • the particles of samples A and B have a diameter of 25 nm ⁇ 5 nm and the particles of samples C and D have a diameter of 35 nm ⁇ 5 nm.
  • the diffraction patterns of the CIGS particles thus obtained show that the particles are crystallized.
  • the crystallized particles contain copper, indium, gallium and selenium, confirming the reduction of the ions initially present in solution.
  • the presence of nickel, silicon and carbon comes from the grid, having a carbon film, on which are deposited the particles to be observed under the transmission electron microscope.
  • the method is also readily applicable to the preparation of CIGS particles having compositions different from Cu1 lno.8Gao.2Se 2 chalcopyrite.
  • the process is devoid of selenization step and is applicable industrially.
  • This production method is not limited to the production of CIGS or CZTS particles, it can also be used for the elaboration of other semiconductor materials having a chalcopyrite structure.
  • the process applies to both binary and ternary or even quaternary materials.
  • the development of more complex materials can also be considered.
  • the materials thus obtained can be used for high efficiency solar cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A process for producing particles of chalcopyrite chosen from CIGS and CZTS, comprising the following successive steps: providing a first solution containing metal ions, which are CIGS or CZTS precursors, adding a second solution to the first solution, wherein the second solution contains a reducing agent for reducing said metal ions so as to form CIGS or CZTS particles, and subjecting said particles in solution to microwave irradiation configured so as to crystallize the CIGS or CZTS particles.

Description

Procédé d'élaboration de particules de chalcop rite choisie parmi le Cu(lnGa)Se2 et le Cu2ZnSnS4 et composition pulvérulente de particules ainsi obtenues. A process for producing chalcopite particles selected from Cu (InGa) Se 2 and Cu 2 ZnSnS 4 and pulverulent composition of particles thus obtained.
Domaine technique de l'invention Technical field of the invention
L'invention est relative à un procédé d'élaboration de particules de chalcopyrite choisie parmi le Cu(lnGa)Se2 et le Cu2ZnSnS4 et est également relative à une composition pulvérulente de particules ainsi obtenues. The invention relates to a process for producing chalcopyrite particles chosen from Cu (InGa) Se 2 and Cu 2 ZnSnS 4 and also relates to a pulverulent composition of particles thus obtained.
État de la technique State of the art
Les matériaux semi-conducteurs quaternaires, comme le Cu(lnGa)Se2 (CIGS) et le Cu2ZnSnS4 (CZTS), sont de plus en plus utilisés dans la fabrication de cellules photovoltaïques à haute efficacité. En effet, de tels matériaux semiconducteurs permettent une très bonne absorption de la lumière incidente et présente, de plus, une excellente longévité. L'utilisation de couches minces cristallines de CIGS ou de CZTS, en tant que couches absorbantes dans les dispositifs photovoltaïques, permet donc d'améliorer significativement les performances de ces dispositifs. Et plus particulièrement, les nanoparticules de CIGS ou de CZTS, présentent, de nos jours, un intérêt croissant pour de telles applications. Par exemple, l'utilisation de nanoparticules de CIGS cristallisées, sous la forme chalcopyrite Culn0.8Ga0.2Se2, et de diamètre inférieur à lOOnm est particulièrement encourageante. Quaternary semiconductor materials, such as Cu (lnGa) Se 2 (CIGS) and Cu 2 ZnSnS 4 (CZTS), are increasingly used in the manufacture of high efficiency photovoltaic cells. Indeed, such semiconductor materials allow very good absorption of the incident light and has, moreover, excellent longevity. The use of crystalline thin films of CIGS or CZTS, as absorbing layers in photovoltaic devices, thus makes it possible to significantly improve the performance of these devices. And more particularly, the nanoparticles of CIGS or CZTS, present, today, an increasing interest for such applications. For example, the use of crystallized CIGS nanoparticles, in the form chalcopyrite Culn 0 . 8 Ga 0 .2Se2, and of diameter less than 100 nm is particularly encouraging.
Jiang et al. (Inorganic Chemistry 2000, 39, 2964-2965) ainsi que Chun et al. (Thin Solid Films 2005, 480-481 , 46-49) décrivent, respectivement, la synthèse de nano-bâtonnets de CulnSe2 et de nanoparticules de CulnGaSe2, en mélangeant des précurseurs sous forme de poudre dans des autoclaves en présence d'éthylène diamine et à des températures comprises entre 180°C et 280°C. Cependant, ces conditions de température, et surtout de pression, nécessitent l'utilisation d'équipements spéciaux et le procédé d'élaboration est relativement long. De plus, les matériaux obtenus ne sont pas sous la forme idéale Culn0.8Ga0.2Se2. Jiang et al. (Inorganic Chemistry 2000, 39, 2964-2965) as well as Chun et al. (Thin Solid Films 2005, 480-481, 46-49) describe, respectively, the synthesis of nano-rods of CulnSe 2 and nanoparticles CulnGaSe 2, by mixing the precursors in powder form in autoclaves presence of ethylene diamine and at temperatures between 180 ° C and 280 ° C. However, these temperature conditions, and especially pressure, require the use of special equipment and the process of elaboration is relatively long. In addition, the materials obtained are not in the ideal form Culn 0 .8Ga 0 . 2 Se 2 .
Benslim et al. (Journal of Alloys and Compounds 2010, 489, 437-440) présente la synthèse de poudre nanocristalline de Culn0.5Gao 5Se2 par broyage mécanique. Néanmoins, les particules de CIGS ainsi obtenues présentent une distribution inhomogène des différents éléments. Benslim et al. (Journal of Alloys and Compounds 2010, 489, 437-440) discloses the synthesis of nanocrystalline powder of Culn 0 .5Gao 5 Se 2 by mechanical grinding. Nevertheless, the CIGS particles thus obtained have an inhomogeneous distribution of the different elements.
Ahn et al. (Thin Solid Films 2000, 515, 4036-4040) a synthétisé des nanoparticules de Cuo.9lno.64Ga0.23Se2 par voie colloïdale à partir de Cul, lnl3 et Gal3 en présence de pyridine, de méthanol et de Na2Se à 0°C sous atmosphère inerte. Les particules ont des diamètres inférieurs à 100nm mais présentent une structure cristalline imparfaite. De plus, le procédé d'élaboration nécessite l'utilisation de produits toxiques. Ahn et al. (Thin Solid Films 2000, 515, 4036-4040) synthesized nanoparticles Cuo.9lno.64Ga 0 .23Se 2 by colloidally from Cul, lnl 3 Gal and 3 in the presence of pyridine, methanol and Na 2 Se at 0 ° C under an inert atmosphere. The particles have diameters of less than 100 nm but have an imperfect crystalline structure. In addition, the production process requires the use of toxic products.
Objet de l'invention Object of the invention
L'invention a pour but de remédier aux inconvénients de l'art antérieur et, en particulier, de proposer un procédé d'élaboration de particules de chalcopyrite choisie parmi le CIGS et le CZTS simple et facile à mettre en œuvre, reproductible et permettant d'obtenir des particules cristallines de CIGS (Cu(lnGa)Se2) ou de CZTS (Cu2ZnSn(S,Se)4). The aim of the invention is to overcome the drawbacks of the prior art and, in particular, to propose a method for producing chalcopyrite particles chosen from CIGS and CZTS which is simple and easy to implement, reproducible and allowing obtain crystalline particles of CIGS (Cu (InGa) Se 2 ) or CZTS (Cu 2 ZnSn (S, Se) 4 ).
On tend vers cet objet par les revendications annexées. Description sommaire des dessins This object is approached by the appended claims. Brief description of the drawings
D'autres avantages et caractéristiques assortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels : Other advantages and features will more clearly show the following description of particular embodiments of the invention given by way of nonlimiting example and represented in the accompanying drawings, in which:
- la figure 1 représente une image de nanoparticules de CIGS obtenue par microscopie électronique en transmission selon un mode de réalisation de l'invention,  FIG. 1 represents a nanoparticle image of CIGS obtained by transmission electron microscopy according to one embodiment of the invention,
- la figure 2 représente le diagramme de diffraction des nanoparticules de CIGS de la figure 1 obtenue par microscopie électronique en transmission,  FIG. 2 represents the diffraction diagram of the CIGS nanoparticles of FIG. 1 obtained by transmission electron microscopy,
- la figure 3 représente l'analyse élémentaire, obtenue par microscopie électronique en transmission, des nanoparticules de CIGS de la figure 1.  FIG. 3 represents the elemental analysis, obtained by transmission electron microscopy, of the CIGS nanoparticles of FIG.
Description d'un mode de réalisation préférentiel de l'invention Description of a preferred embodiment of the invention
Le procédé d'élaboration de particules de chalcopyrite choisie parmi le CIGS et le CZTS comporte les étapes successives suivantes : The process for producing chalcopyrite particles chosen from CIGS and CZTS comprises the following successive steps:
- fournir une première solution contenant des ions métalliques, précurseurs du CIGS ou du CZTS,  provide a first solution containing metal ions precursors of CIGS or CZTS,
- ajouter une deuxième solution à la première solution, la deuxième solution contenant un agent réducteur destiné à réduire lesdits ions pour former des particules de CIGS ou de CZTS,  adding a second solution to the first solution, the second solution containing a reducing agent for reducing said ions to form CIGS or CZTS particles,
- soumettre lesdites particules en solution à une irradiation micro-ondes configurée pour cristalliser les particules de CIGS ou de CZTS.  subjecting said particles in solution to a microwave irradiation configured to crystallize CIGS or CZTS particles.
Par particules de chalcopyrite, on entend des particules de matériau semiconducteur ayant une structure chalcopyrite. Chalcopyrite particles are particles of semiconductor material having a chalcopyrite structure.
Par particules de CIGS, on entend des particules CIGS dont la formule générale est définie par CulnxGaySez avec 0,7≤ x≤ 0,8 ; 0,1≤ y≤ 0,2 et 1 ,5≤ z≤ 2. Par particules de CZTS, on entend des particules CZTS dont la formule générale est définie par CuaZnpSn,(SaSeb)4 avec 0,7≤ α/(β+γ)≤ 1 ,2 ; 0,7≤ β/ γ ≤ 1 ,5 ; a+b=1 ; et a ou b pouvant être nul. CIGS particles are CIGS particles whose general formula is defined by Culn x Ga y Se z with 0.7 x x 0,8 0.8; 0.1 ≤ y ≤ 0.2 and 1.5 ≤ z ≤ 2. CZTS particles are understood to mean CZTS particles whose general formula is defined by Cu to Zn p Sn, (S a Se b ) 4 with 0.7≤ α / (β + γ) ≤ 1.2; 0.7 β / γ ≤ 1.5; a + b = 1; and a or b may be zero.
Préférentiellement, la première solution contient de l'eau, un premier alcane et un premier tensio-actif afin de former des micelles inverses. Par micelle, on entend un agrégat de molécules possédant une extrémité hydrophile dirigée vers l'eau et une extrémité hydrophobe dirigée vers un solvant. Par micelle inverse, on entend que l'eau est présente à l'intérieur de la micelle et que la micelle est entourée de solvant : l'extrémité hydrophile est donc dirigée vers l'intérieur de la micelle alors que l'extrémité hydrophobe est dirigé vers l'extérieur de la micelle, i.e. vers le solvant. Preferably, the first solution contains water, a first alkane and a first surfactant to form inverse micelles. By micelle is meant an aggregate of molecules having a hydrophilic end directed towards water and a hydrophobic end directed towards a solvent. Reverse micelle means that the water is present inside the micelle and that the micelle is surrounded by solvent: the hydrophilic end is directed towards the inside of the micelle while the hydrophobic end is directed to the outside of the micelle, ie to the solvent.
La première solution forme une émulsion. Par émulsion, on entend que la première solution contient au moins deux éléments à l'état liquide et non miscibles entre eux. Et plus particulièrement, il s'agit d'une microémulsion inverse. Par microémulsion inverse, on entend qu'il s'agit d'une suspension de microgoutelettes d'un liquide polaire, l'eau, dans un liquide apolaire, l'alcane. The first solution forms an emulsion. Emulsion means that the first solution contains at least two elements in the liquid state and immiscible with each other. And more particularly, it is a reverse microemulsion. Reverse microemulsion means that it is a suspension of microdroplets of a polar liquid, water in an apolar liquid, the alkane.
Selon un mode de réalisation préférentiel, pour former des particules de CIGS, les ions métalliques de la première solution sont des ions cuivre, indium, gallium et sélénium. Pour obtenir ces ions métalliques, des sels ioniques précurseurs du CIGS, c'est-à-dire des sels ioniques à base de cuivre, indium, gallium et sélénium, sont dissous dans l'eau de la première solution. Préférentiellement, les sels ioniques sont des sels de CuCI2, lnCI3, GaCI3 et H2Se03. Encore plus préférentiellement, les rapports molaires entre les différents sels CuCI2, lnCI3, GaCI3 et H2Se03 sont, lors de leur introduction en phase aqueuse, de l'ordre de 1 : 0,8 : 0,2 : 2 respectivement. According to a preferred embodiment, to form CIGS particles, the metal ions of the first solution are copper, indium, gallium and selenium ions. To obtain these metal ions, ionic precursor salts of CIGS, that is to say ionic salts based on copper, indium, gallium and selenium, are dissolved in the water of the first solution. Preferably, the ionic salts are salts of CuCl 2 , InCl 3 , GaCl 3 and H 2 SeO 3 . Even more preferentially, the molar ratios between the various CuCl 2 , InCl 3 , GaCl 3 and H 2 SeO 3 salts are, on introduction into the aqueous phase, of the order of 1: 0.8: 0.2: 2 respectively.
Selon un autre mode de réalisation préférentiel, pour former des particules de CZTS, les ions métalliques de la première solution sont des ions cuivre, zinc et étain. La première solution comporte en plus des ions soufre et/ou sélénium. Pour obtenir ces ions métalliques, des sels ioniques précurseurs du CZTS, c'est-à-dire des sels ioniques à base de cuivre, zinc et étain ainsi que des sels ioniques à base de soufre et/ou de sélénium, sont dissous dans l'eau de la première solution. Préférentiellement, les sels ioniques précurseurs du CZTS sont, des sels de CuCI2, ZnCl2, SnCI4 et Na2S. According to another preferred embodiment, to form CZTS particles, the metal ions of the first solution are copper, zinc and tin. The first solution additionally comprises sulfur and / or selenium ions. To obtain these metal ions, ionic precursor salts of CZTS, that is to say ionic salts based on copper, zinc and tin as well as ionic salts based on sulfur and / or selenium, are dissolved in the water of the first solution. Preferably, the precursor ionic salts of CZTS are salts of CuCl 2 , ZnCl 2 , SnCl 4 and Na 2 S.
Les sels métalliques, étant dissous dans l'eau de la première solution, sont donc situés à l'intérieur des micelles inverses. The metal salts, being dissolved in the water of the first solution, are therefore located inside the reverse micelles.
Préférentiellement, la deuxième solution contient de l'eau, un deuxième alcane et un deuxième tensio-actif afin de former des micelles inverses. La deuxième solution forme également une microémulsion inverse. Preferably, the second solution contains water, a second alkane and a second surfactant in order to form inverse micelles. The second solution also forms an inverse microemulsion.
L'agent réducteur est dissous dans l'eau et est donc à l'intérieur de la micelle inverse.  The reducing agent is dissolved in water and is therefore inside the reverse micelle.
Selon un mode de réalisation préférentiel, l'agent réducteur est de l'hydrazine monohydratée. Avantageusement, l'hydrazine monohydratée permet de réduire les ions cuivre, indium, gallium et sélénium relativement rapidement et forme, après réduction des ions, principalement de l'azote et de l'eau. Par relativement rapidement, on entend de l'ordre de quelques minutes, e.g. inférieur à 10 minutes, voire instantanée.  According to a preferred embodiment, the reducing agent is hydrazine monohydrate. Advantageously, the hydrazine monohydrate makes it possible to reduce the copper, indium, gallium and selenium ions relatively rapidly and forms, after reduction of the ions, mainly nitrogen and water. By relatively fast, we hear of the order of a few minutes, e.g. less than 10 minutes, or instantaneous.
Alternativement, la η,η-diethylhydroxylamine peut être utilisée comme agent réducteur.  Alternatively, the η, η-diethylhydroxylamine may be used as a reducing agent.
L'agent réducteur peut également être du N-(methyl)mercaptoacétamide, du triéthylsilane, du borohydrure de sodium, de l'hydrure d'aluminium et de lithium ou du diisopropylamidure de lithium. Avantageusement, la présence d'un tensio-actif permet de stabiliser les micelles inverses, en interagissant d'une part avec le solvant par son extrémité hydrophobe et d'autre part avec l'eau par son extrémité hydrophile. The reducing agent may also be N- (methyl) mercaptoacetamide, triethylsilane, sodium borohydride, aluminum hydride and lithium or lithium diisopropylamide. Advantageously, the presence of a surfactant makes it possible to stabilize the reverse micelles, by interacting on the one hand with the solvent by its hydrophobic end and on the other hand with water by its hydrophilic end.
Préférentiellement, le tensio-actif est non ionique, c'est-à-dire qu'il ne comporte aucune charge nette et donc ne s'ionise pas dans l'eau. Il peut s'agir d'un tensio-actif à liaison ester, éther ou encore amide. Par exemple, il peut s'agir d'un ester de sorbitan, comme l'ester de sorbitan polyoxyéthylénique aussi appelé Tween. Préférentiellement, il s'agit d'un tensio-actif à liaison éther. Preferably, the surfactant is nonionic, that is to say it has no net charge and therefore does not ionize in water. It may be an ester-linked surfactant, ether or amide. For example, it may be a sorbitan ester, such as the polyoxyethylene sorbitan ester also called Tween. Preferably, it is an ether-linked surfactant.
Encore plus préférentiellement, au moins un des premier ou deuxième tensio- actif est du Triton X-100 ou de l'igepal C0520. Even more preferably, at least one of the first or second surfactant is Triton X-100 or igepal C0520.
Avantageusement, le Triton X-100 est compatible avec d'autres agents de surface anioniques, cationiques et non ioniques. Le Triton X-100 est un excellent tensio-actif : il modifie de façon importante la tension de surface, ce qui facilite la formation des micelles inverses.  Advantageously, Triton X-100 is compatible with other anionic, cationic and nonionic surfactants. Triton X-100 is an excellent surfactant: it significantly modifies the surface tension, which facilitates the formation of reverse micelles.
Encore plus préférentiellement, le premier tensio-actif et le deuxième tensio- actif sont du Triton X-100. Ceci permet de faciliter la fusion des micelles inverses de la première solution avec celles de la deuxième solution.  Even more preferably, the first surfactant and the second surfactant are Triton X-100. This facilitates the fusion of the inverse micelles of the first solution with those of the second solution.
Préférentiellement, au moins un des premier ou deuxième alcane est du cyclohexane. Le cyclohexane est, avantageusement, chimiquement inerte et non soluble dans l'eau. Encore plus préférentiellement, le premier alcane et le deuxième alcane sont du cyclohexane afin de faciliter la miscibilité des première et deuxième solutions. Preferably, at least one of the first or second alkane is cyclohexane. Cyclohexane is, advantageously, chemically inert and insoluble in water. Even more preferably, the first alkane and the second alkane are cyclohexane to facilitate the miscibility of the first and second solutions.
Selon un mode de réalisation préférentiel, l'eau est de l'eau déionisée afin de ne pas apporter de polluant dans la solution. According to a preferred embodiment, the water is deionized water so as not to bring pollutant into the solution.
Préférentiellement, au moins une des première ou deuxième solution contient un alcool. Avantageusement, l'alcool permet de faciliter la formation de micelles inverses en augmentant la flexibilité de la couche interfaciale. Selon un mode de réalisation encore plus préférentiel, la première solution et la deuxième solution contiennent un alcool. Avantageusement, les première et deuxième solutions contiennent le même alcool. Ainsi, les tensions de surface des micelles inverses des première et deuxième solutions sont identiques et la coalescence des micelles est facilitée. Preferably, at least one of the first or second solution contains an alcohol. Advantageously, the alcohol makes it possible to facilitate the formation of inverse micelles by increasing the flexibility of the interfacial layer. According to an even more preferred embodiment, the first solution and the second solution contain an alcohol. Advantageously, the first and second solutions contain the same alcohol. Thus, the surface tensions of the reverse micelles of the first and second solutions are identical and the coalescence of the micelles is facilitated.
Selon un mode préférentiel, l'alcool est du 1-hexanol, aussi appelé n-hexanol. Avantageusement, le 1-hexanol présente une bonne affinité avec le surfactant et une bonne miscibilité.  In a preferred embodiment, the alcohol is 1-hexanol, also called n-hexanol. Advantageously, 1-hexanol has a good affinity with the surfactant and a good miscibility.
Lorsque la deuxième solution est ajoutée à la première solution, il y a collision des micelles inverses de la première solution avec les micelles inverses de la deuxième solution et donc coalescence des micelles inverses, entraînant un mélange des phases aqueuses des première et deuxième solution et donc réduction des ions métalliques par l'agent réducteur. When the second solution is added to the first solution, there is collision of the inverse micelles of the first solution with the inverse micelles of the second solution and thus coalescence of the reverse micelles, resulting in a mixing of the aqueous phases of the first and second solution and therefore reduction of metal ions by the reducing agent.
La réduction des ions métalliques permet de former soit des particules de CIGS soit des particules de CZTS.  The reduction of the metal ions makes it possible to form either CIGS particles or CZTS particles.
Avantageusement, comme la réaction est réalisée à l'intérieur des micelles inverses, les particules créées sont confinées à l'intérieur des micelles inverses et protégées de l'agrégation avec les particules des autres micelles inverses par le film de tensio-actif. Les micelles inverses agissent comme des microréacteurs.  Advantageously, since the reaction is carried out inside the inverse micelles, the particles created are confined inside the reverse micelles and protected from aggregation with the particles of the other inverse micelles by the surfactant film. Inverse micelles act as microreactors.
Les particules de CIGS ou de CZTS en solution, ainsi obtenues, sont soumises à un traitement hydrothermal initié par une irradiation micro-ondes. Par traitement hydrothermal, on entend un traitement thermique en milieu aqueux. Après irradiation, la solution est à une température inférieure à 100°C, de l'ordre de 80°C-90°C. The CIGS or CZTS particles in solution, thus obtained, are subjected to a hydrothermal treatment initiated by microwave irradiation. By hydrothermal treatment is meant a heat treatment in an aqueous medium. After irradiation, the solution is at a temperature below 100 ° C, of the order of 80 ° C-90 ° C.
L'irradiation micro-ondes permet de cristalliser les particules de CIGS ou de CZTS.  Microwave irradiation makes it possible to crystallize CIGS or CZTS particles.
Préférentiellement, l'irradiation micro-ondes est réalisée à une puissance P comprise entre 500W et 2000W, ce qui permet d'obtenir des particules bien cristallisées tout en ayant des temps d'irradiation relativement courts. Par une puissance P comprise entre 500W et 2000W on entend que 500W≤ P≤ 2000W. Preferably, the microwave irradiation is carried out at a power P of between 500W and 2000W, which makes it possible to obtain particles that are well crystallized while having relatively short irradiation times. With a power P between 500W and 2000W we mean that 500W≤ P≤ 2000W.
Avantageusement, l'irradiation ne détruit pas les micelles.  Advantageously, the irradiation does not destroy the micelles.
La durée du traitement micro-ondes est comprise entre 10 secondes et 2 minutes, et, avantageusement, entre 30 secondes et 1 minutes 30 secondes.  The duration of the microwave treatment is between 10 seconds and 2 minutes, and advantageously between 30 seconds and 1 minute 30 seconds.
Après irradiation micro-ondes, une étape de séparation membranaire est réalisée afin de purifier la solution contenant les particules cristallisées de CIGS. Préférentiellement, la séparation membranaire est réalisée par dialyse. After microwave irradiation, a membrane separation step is performed to purify the solution containing the crystallized particles of CIGS. Preferably, the membrane separation is performed by dialysis.
Selon un mode de réalisation préférentiel, après l'étape d'irradiation microondes, et avant l'étape de séparation membranaire, la solution contenant les particules est déstabilisée. Par déstabilisation, on entend que les micelles inverses sont détruites. According to a preferred embodiment, after the microwave irradiation step, and before the membrane separation step, the solution containing the particles is destabilized. Destabilization means that the reverse micelles are destroyed.
La déstabilisation des micelles inverses permet, avantageusement, de libérer les particules cristallisées qui étaient dans le cœur aqueux des micelles inverses.  The destabilization of the reverse micelles advantageously makes it possible to release the crystallized particles which were in the aqueous core from the reverse micelles.
Préférentiellement, la déstabilisation est réalisée par ajout d'éthanol dans la solution contenant les particules cristallisées. Le volume d'éthanol ajouté pour déstabiliser la solution contenant les particules est au moins égal au volume de la solution contenant les particules,  Preferably, the destabilization is carried out by adding ethanol to the solution containing the crystallized particles. The volume of ethanol added to destabilize the solution containing the particles is at least equal to the volume of the solution containing the particles,
Exemple Example
Dans la méthode de synthèse de particules de CIGS, des particules de CIGS ont été réalisées selon le protocole décrit ci-après. In the CIGS particle synthesis method, CIGS particles were produced according to the protocol described below.
Etape 1 : préparation de la première solution et de la deuxième solution Step 1: Prepare the first solution and the second solution
Une première solution S1 est préparée en mélangeant du Triton X-100 (8.4 mL), du 1-hexanol (8.2 mL) et du cyclohexane (38 mL), puis en ajoutant une solution aqueuse contenant du CuCI2 (54 mg, 134.45 gmol"1 soit 0.5 M), du lnCI3 (71 mg, 221.18 gmol"1 soit 0.4 M), du GaCI3 (14 mg, 176.08 gmol"1 soit 0.1 M), du H2Se03 (103 mg, 128.97 gmol"1 soit 1 M) et de l'eau déionisée (0.8 mL). La solution S1 est ensuite laissée sous agitation jusqu'à stabilisation à température ambiante. A first solution S1 is prepared by mixing Triton X-100 (8.4 mL), 1-hexanol (8.2 mL) and cyclohexane (38 mL), and then adding a aqueous solution containing CuCl 2 (54 mg, 134.45 gmol -1 (0.5 M), 1nCl 3 (71 mg, 221.18 gmol -1 or 0.4 M), GaCl 3 (14 mg, 176.08 gmol -1 or 0.1 M) , H 2 SeO 3 (103 mg, 128.97 gmol -1 , 1 M) and deionized water (0.8 mL). The solution S1 is then left stirring until stabilization at room temperature.
Une seconde solution S2 est préparée en mélangeant du Triton X-100 (8.4 mL), du 1 -hexanol (8.2 mL), du cyclohexane (38 mL) et de l'hydrazine monohydratée (0.8 mL à 12 M dans de Veau). La solution S2 est ensuite laissée sous agitation jusqu'à stabilisation à température ambiante. A second solution S2 is prepared by mixing Triton X-100 (8.4 mL), 1-hexanol (8.2 mL), cyclohexane (38 mL) and hydrazine monohydrate (0.8 mL to 12 M in water). The solution S2 is then left stirring until stabilization at room temperature.
Etape 2 : réduction des ions cuiyre, gallium, indium et sélénium Step 2: reduction of cuiyre, gallium, indium and selenium ions
La deuxième solution S2 est ajoutée goutte à goutte à la première solution S1. Préférentiellement, la solution S1 est sous agitation lors de l'ajout goutte à goutte de la solution S2. L'ajout goutte à goutte permet d'introduire la deuxième solution de façon homogène dans la première solution. The second solution S2 is added dropwise to the first solution S1. Preferentially, the solution S1 is stirred during the dropwise addition of the solution S2. The dropwise addition makes it possible to introduce the second solution homogeneously into the first solution.
Une troisième solution S3 est alors obtenue. La solution S3 est laissée sous agitation vive à température ambiante pendant 5 minutes afin de réduire tous les ions présents en solution. Préférentiellement, l'agent réducteur est introduit en excès par rapport aux ions présents en solution. Par température ambiante, on entend une température comprise entre 18°C et 25°C. Les ions cuivre, gallium, indium et sélénium sont donc réduits, formant des particules de Cu(lnGa)Se2. La formation des particules de CIGS est caractérisée par un noircissement de la solution. A third solution S3 is then obtained. Solution S3 is stirred vigorously at room temperature for 5 minutes in order to reduce all the ions present in solution. Preferably, the reducing agent is introduced in excess relative to the ions present in solution. By ambient temperature is meant a temperature of between 18 ° C and 25 ° C. The copper, gallium, indium and selenium ions are therefore reduced, forming particles of Cu (lnGa) Se2. The formation of CIGS particles is characterized by a blackening of the solution.
Etape 3 : irradiation micro-ondes Step 3: microwave irradiation
La troisième solution contenant les particules de Cu(lnGa)Se2 est ensuite soumise à une irradiation micro-onde pendant une minute. Différentes puissances ont été utilisées : 500 W, 1000 W, 1500 W et 2000 W de manière à obtenir quatre échantillons différents de particules de CIGS, respectivement appelés A, B, C et D. L'irradiation micro-ondes entraînant un échauffement de la troisième solution, la troisième solution est laissée au repos jusqu'à être à température ambiante. The third solution containing the Cu (InGa) Se 2 particles is then subjected to microwave irradiation for one minute. Different powers were used: 500 W, 1000 W, 1500 W and 2000 W so as to obtain four different samples of CIGS particles, respectively called A, B, C and D. The microwave irradiation causing a heating of the third solution, the third solution is allowed to stand until it is at room temperature.
Etape 4 : lavage Step 4: washing
La troisième solution est déstabilisée par addition d'éthanol (250 ml_).  The third solution is destabilized by addition of ethanol (250 ml).
Les particules sont ensuite lavées plusieurs fois à l'éthanol et une fois à l'eau, chaque lavage étant suivi par une sédimentation à la centrifugeuse pendant 15 minutes à 6000 tours par minutes (aussi noté 6000rpm). Après l'étape de lavage, la purification des particules de CIGS est achevée par dialyse (nominal MCWO 3500 Daltons) dans de l'eau dégazée (5 L) et sous agitation magnétique pendant 3 jours afin de ne pas observer le phénomène naturel d'oxydation. The particles are then washed several times with ethanol and once with water, each washing being followed by centrifugal sedimentation for 15 minutes at 6000 rpm (also denoted 6000 rpm). After the washing step, the purification of the CIGS particles is completed by dialysis (nominal MCWO 3500 Daltons) in degassed water (5 L) and with magnetic stirring for 3 days in order not to observe the natural phenomenon of oxidation.
Finalement, une composition pulvérulente de particules de Cu(lnGa)Se2 est obtenue pour chaque puissance utilisée. Finally, a pulverulent composition of Cu (lnGa) Se 2 particles is obtained for each power used.
Les quatre compositions pulvérulentes de particules de CIGS sont ensuite caractérisées par analyse en microscope électronique en transmission (MET) de manière à obtenir, pour chaque échantillon :  The four powder compositions of CIGS particles are then characterized by transmission electron microscopy (TEM) analysis so as to obtain, for each sample:
- des images afin de déterminer le diamètre des particules,  - images to determine the particle diameter,
- des diagrammes de diffraction afin de déterminer si les particules sont sous forme cristalline,  - diffraction patterns to determine if the particles are in crystalline form,
- et des analyses élémentaires afin de déterminer la composition des particules.  - and elementary analyzes to determine the composition of the particles.
Les résultats obtenus sont répertoriés dans le tableau I. Tableau I The results obtained are listed in Table I. Table I
Figure imgf000012_0001
Figure imgf000012_0001
Toutes les particules ainsi obtenues ont un diamètre inférieur à 100 nm et, plus particulièrement, un diamètre compris entre 20nm et 40nm. La figure 1 représente, par exemple, des particules de CIGS ayant un diamètre compris entre 30 et 40nm. L'échelle correspond à 20nm. All the particles thus obtained have a diameter of less than 100 nm and, more particularly, a diameter of between 20 nm and 40 nm. FIG. 1 represents, for example, CIGS particles having a diameter of between 30 and 40 nm. The scale corresponds to 20nm.
Avantageusement, la méthode des microémulsions inverses permet d'obtenir des particules dont la distribution de taille est monodisperse. Par monodisperse, on entend que les particules, pour les mêmes conditions d'élaboration, ont presque toutes le même diamètre, à quelques nanomètres près. Par exemple, les particules des échantillons A et B ont un diamètre de 25nm ± 5nm et les particules des échantillons C et D ont un diamètre de 35nm ± 5nm. Advantageously, the inverse microemulsion method makes it possible to obtain particles whose size distribution is monodisperse. By monodisperse, we mean that the particles, for the same conditions of elaboration, have almost all the same diameter, within a few nanometers. For example, the particles of samples A and B have a diameter of 25 nm ± 5 nm and the particles of samples C and D have a diameter of 35 nm ± 5 nm.
De plus, les diagrammes de diffraction des particules de CIGS ainsi obtenues, comme par exemple celui de la figure 2, montrent que les particules sont cristallisées. In addition, the diffraction patterns of the CIGS particles thus obtained, such as that of FIG. 2, show that the particles are crystallized.
Comme représenté sur la figure 3, les particules cristallisées contiennent du cuivre, de l'indium, du gallium et du sélénium, confirmant la réduction des ions initialement présents en solution. La présence de nickel, de silicium et de carbone provient de la grille, ayant un film carboné, sur laquelle sont déposées les particules à observer au microscope électronique en transmission. Les particules obtenues ont pour formule générale CulnxGaySe2 avec x = 0.75 ±As shown in FIG. 3, the crystallized particles contain copper, indium, gallium and selenium, confirming the reduction of the ions initially present in solution. The presence of nickel, silicon and carbon comes from the grid, having a carbon film, on which are deposited the particles to be observed under the transmission electron microscope. The particles obtained have the general formula Culn x Ga y Se 2 with x = 0.75 ±
0.04, y = 0.165 ± 0.035 et z = 1.73 ± 0.13. 0.04, y = 0.165 ± 0.035 and z = 1.73 ± 0.13.
Le procédé est également facilement applicable à l'élaboration de particules de CIGS ayant des compositions différentes de la chalcopyrite Cu1 lno.8Gao.2Se2. Par exemple, il est possible de modifier les proportions des réactifs introduits,The method is also readily applicable to the preparation of CIGS particles having compositions different from Cu1 lno.8Gao.2Se 2 chalcopyrite. For example, it is possible to modify the proportions of the reactants introduced,
1. e. les rapports molaires entre les ions cuivre, indium, gallium et sélénium initialement présents en solution. 1. e. the molar ratios between the copper, indium, gallium and selenium ions initially present in solution.
Avantageusement, le procédé est dépourvu d'étape de sélénisation et est applicable industriellement. Advantageously, the process is devoid of selenization step and is applicable industrially.
Ce procédé d'élaboration n'est pas limité à l'élaboration de particules de CIGS ou de CZTS, il peut également être utilisé pour l'élaboration d'autres matériaux semi-conducteurs ayant une structure chalcopyrite. Le procédé s'applique à des matériaux aussi bien binaires que ternaires ou même quaternaires. L'élaboration de matériaux plus complexes peut aussi être envisagée. This production method is not limited to the production of CIGS or CZTS particles, it can also be used for the elaboration of other semiconductor materials having a chalcopyrite structure. The process applies to both binary and ternary or even quaternary materials. The development of more complex materials can also be considered.
Les matériaux ainsi obtenus sont utilisables pour des cellules solaires à haute efficacité. The materials thus obtained can be used for high efficiency solar cells.

Claims

Revendications claims
1. Procédé d'élaboration de particules de chalcopyrite choisie parmi le i CIGS et le CZTS comportant les étapes successives suivantes : A method for producing chalcopyrite particles selected from CIGS and CZTS comprising the following successive steps:
- fournir une première solution contenant des ions métalliques, précurseurs du CIGS ou du CZTS,  provide a first solution containing metal ions precursors of CIGS or CZTS,
- ajouter une deuxième solution à la première solution, la deuxième solution contenant un agent réducteur destiné à réduire lesdits ions métalliques pour former des particules de CIGS ou de CZTS,  adding a second solution to the first solution, the second solution containing a reducing agent for reducing said metal ions to form CIGS or CZTS particles,
- soumettre lesdites particules en solution à une irradiation micro-ondes configurée pour cristalliser les particules de CIGS ou de CZTS.  subjecting said particles in solution to a microwave irradiation configured to crystallize CIGS or CZTS particles.
2. Procédé selon la revendication 1 , caractérisé en ce que les ions métalliques sont des ions cuivre, indium, gallium et sélénium afin de former des particules de CIGS. 2. Method according to claim 1, characterized in that the metal ions are copper, indium, gallium and selenium ions in order to form CIGS particles.
3. Procédé selon la revendication 1 , caractérisé en ce que les ions métalliques sont des ions cuivre, zinc et étain et des ions soufre et/ou sélénium afin de former des particules de CZTS. 3. Process according to claim 1, characterized in that the metal ions are copper, zinc and tin ions and sulfur and / or selenium ions in order to form CZTS particles.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que la première solution comprend de l'eau, un premier alcane et un premier tensio- actif afin de former des micelles inverses. 4. Method according to one of claims 1 to 3, characterized in that the first solution comprises water, a first alkane and a first surfactant to form inverse micelles.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la deuxième solution comprend de l'eau, un deuxième alcane et un deuxième tensio-actif afin de former des micelles inverses. 5. Method according to one of claims 1 to 4, characterized in that the second solution comprises water, a second alkane and a second surfactant to form inverse micelles.
6. Procédé selon l'une quelconque des revendications 4 à 5, caractérisé en ce qu'au moins un des premier ou deuxième alcane est du cyclohexane. 6. Method according to any one of claims 4 to 5, characterized in that at least one of the first or second alkane is cyclohexane.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce qu'au moins une des première ou deuxième solution contient un alcool. 7. Method according to one of claims 1 to 6, characterized in that at least one of the first or second solution contains an alcohol.
8. Procédé selon la revendication 7, caractérisé en ce que l'alcool est du 1 - hexanol. 8. Process according to claim 7, characterized in that the alcohol is 1-hexanol.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'agent réducteur est de l'hydrazine monohydratée. 9. Process according to any one of claims 1 to 8, characterized in that the reducing agent is hydrazine monohydrate.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'irradiation micro-ondes est réalisée à une puissance comprise entre 500W et 2000W. 10. Method according to any one of claims 1 to 9, characterized in that the microwave irradiation is carried out at a power between 500W and 2000W.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que, après irradiation micro-ondes, une étape de séparation membranaire est réalisée afin de purifier la solution contenant les particules, ladite séparation membranaire étant réalisée par dialyse. 11. A method according to any one of claims 1 to 10, characterized in that, after microwave irradiation, a membrane separation step is performed to purify the solution containing the particles, said membrane separation being performed by dialysis.
12. Composition pulvérulente de particules de CIGS obtenues selon l'une quelconque des revendications 1 à 1 1 , caractérisée en ce que les particules ont pour formule générale CulnxGaySez avec x = 0.75 ± 0.04, y = 0.165 ± 0.035 et z = 1 .73 ± 0.13. 12. Pulverulent composition of CIGS particles obtained according to any one of claims 1 to 1 1, characterized in that the particles have the general formula Culn x Ga y Se z with x = 0.75 ± 0.04, y = 0.165 ± 0.035 and z = 1.73 ± 0.13.
13. Composition pulvérulente de particules de CIGS selon la revendication 12, caractérisée en ce que les particules cristallines ont un diamètre compris entre 20nm et 40nm. 13. powdery composition of CIGS particles according to claim 12, characterized in that the crystalline particles have a diameter between 20nm and 40nm.
PCT/FR2013/000332 2013-01-02 2013-12-11 Process for producing particles of chalcopyrite chosen from cu(inga)se2 and cu2znsns4 and pulverulent composition of particles thus obtained WO2014106694A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1300013A FR3000486A1 (en) 2013-01-02 2013-01-02 PROCESS FOR PRODUCING CHALCOPYRITE PARTICLES SELECTED AMONG CU (INGA) SE2 AND CU2ZNSNS4 AND PARTICULATE PULVERULENT COMPOSITION THUS OBTAINED
FR1300013 2013-01-02

Publications (1)

Publication Number Publication Date
WO2014106694A1 true WO2014106694A1 (en) 2014-07-10

Family

ID=48289250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/000332 WO2014106694A1 (en) 2013-01-02 2013-12-11 Process for producing particles of chalcopyrite chosen from cu(inga)se2 and cu2znsns4 and pulverulent composition of particles thus obtained

Country Status (2)

Country Link
FR (1) FR3000486A1 (en)
WO (1) WO2014106694A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470112A (en) * 2015-11-18 2016-04-06 广东工业大学 Method and application for preparing copper zinc tin sulfur semiconductor film on FTO substrate

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
AHN ET AL., THIN SOLID FILMS, vol. 515, 2000, pages 4036 - 4040
AHN ET AL: "Effects of heat treatments on the properties of Cu(In,Ga)Se2 nanoparticles", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 91, no. 19, 14 September 2007 (2007-09-14), pages 1836 - 1841, XP022245080, ISSN: 0927-0248, DOI: 10.1016/J.SOLMAT.2007.06.014 *
AHN ET AL: "Nanoparticle derived Cu(In, Ga)Se2 absorber layer for thin film solar cells", COLLOIDS AND SURFACES. A, PHYSICACHEMICAL AND ENGINEERING ASPECTS, ELSEVIER, AMSTERDAM, NL, vol. 313-314, 27 December 2007 (2007-12-27), pages 171 - 174, XP022402245, ISSN: 0927-7757 *
BENSLIM ET AL., JOURNAL OF ALLOYS AND COMPOUNDS, vol. 489, 2010, pages 437 - 440
BRENDAN FLYNN ET AL: "Microwave assisted synthesis of Cu 2 ZnSnS 4 colloidal nanoparticle inks", PHYSICA STATUS SOLIDI (A), vol. 209, no. 11, 2 November 2012 (2012-11-02), pages 2186 - 2194, XP055076793, ISSN: 1862-6300, DOI: 10.1002/pssa.201127734 *
CHUN ET AL., THIN SOLID FILMS, vol. 480-481, 2005, pages 46 - 49
CHUN Y G ET AL: "Synthesis of CuInGaSe2 nanoparticles by solvothermal route", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 480-481, 1 June 2005 (2005-06-01), pages 46 - 49, XP027865194, ISSN: 0040-6090, [retrieved on 20050601] *
JIANG ET AL., INORGANIC CHEMISTRY, vol. 39, 2000, pages 2964 - 2965
R. SARAVANA KUMAR ET AL: "Rapid synthesis of sphere-like Cu2ZnSnS4 microparticles by microwave irradiation", MATERIALS LETTERS, vol. 86, 1 November 2012 (2012-11-01), pages 174 - 177, XP055076815, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2012.07.059 *
SEUNG WOOK SHIN ET AL: "Quaternary CuZnSnSnanocrystals: Facile and low cost synthesis by microwave-assisted solution method", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 516, 28 November 2011 (2011-11-28), pages 96 - 101, XP028436237, ISSN: 0925-8388, [retrieved on 20111206], DOI: 10.1016/J.JALLCOM.2011.11.143 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105470112A (en) * 2015-11-18 2016-04-06 广东工业大学 Method and application for preparing copper zinc tin sulfur semiconductor film on FTO substrate

Also Published As

Publication number Publication date
FR3000486A1 (en) 2014-07-04

Similar Documents

Publication Publication Date Title
Chang et al. Controlled synthesis of CuInS 2, Cu 2 SnS 3 and Cu 2 ZnSnS 4 nano-structures: insight into the universal phase-selectivity mechanism
JP6629374B2 (en) Coarse-sized crystallized metal chalcogenide film, colloidal solution of amorphous particles and preparation method
Xu et al. Large-scale synthesis and phase transformation of CuSe, CuInSe2, and CuInSe2/CuInS2 core/shell nanowire bundles
Vanalakar et al. Non-vacuum mechanochemical route to the synthesis of Cu2SnS3 nano-ink for solar cell applications
Bensebaa et al. A new green synthesis method of CuInS 2 and CuInSe 2 nanoparticles and their integration into thin films
Wang et al. A facile and general approach to polynary semiconductor nanocrystals via a modified two-phase method
WO2008021604A2 (en) Rapid synthesis of ternary, binary and multinary chalcogenide nanoparticles
JP6688832B2 (en) Antimony-doped nanoparticles
JP2013538893A (en) Liquid metal emulsion
WO2011030055A1 (en) Solid material in divided state, method for manufacturing such a material and use of such a material in a photovoltaic cell
KR101848460B1 (en) Preparation of copper selenide nanoparticles
Dong et al. Colloidally stable selenium@ copper selenide core@ shell nanoparticles as selenium source for manufacturing of copper–indium–selenide solar cells
JP2009114056A (en) SYNTHESIS OF Pb ALLOY AND CORE/SHELL NANOWIRE
WO2016072654A2 (en) Precursor for preparing light-absorbing layer of solar cell and method for manufacturing same
Musaev et al. Au, Ge, and AuGe nanoparticles fabricated by laser ablation
Engberg et al. Synthesis of large CZTSe nanoparticles through a two-step hot-injection method
EP3114704A1 (en) Method for preparing a thin absorber layer made from sulfide(s) and selenide(s) of copper, zinc and tin, annealed thin layer and photovoltaic device obtained
JP5713756B2 (en) Copper selenide particle powder and method for producing the same
EP3423409A1 (en) Method for preparing silicon and/or germanium nanowires
WO2014106694A1 (en) Process for producing particles of chalcopyrite chosen from cu(inga)se2 and cu2znsns4 and pulverulent composition of particles thus obtained
CN111303864A (en) Method for synthesizing zinc oxide quantum dots with adjustable polarity
WO2014127585A1 (en) Zinc selenide fluorescent nanoparticles and preparation method thereof
Schuster et al. Synthesis of In2Se3 and Cu2-xSe Micro-and Nanoparticles with Microwave-Assisted Solvothermal and Aqueous Redox Reactions for the Preparation and Stabilization of Printable Precursors for a CuInSe2 Solar Cell Absorber Layer
Cha et al. CuGaS2 hollow spheres from Ga–CuS core–shell nanoparticles
JP5786637B2 (en) Method for producing silver-copper composite nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819045

Country of ref document: EP

Kind code of ref document: A1