WO2014106363A1 - 移动设备定位系统及方法 - Google Patents

移动设备定位系统及方法 Download PDF

Info

Publication number
WO2014106363A1
WO2014106363A1 PCT/CN2013/072333 CN2013072333W WO2014106363A1 WO 2014106363 A1 WO2014106363 A1 WO 2014106363A1 CN 2013072333 W CN2013072333 W CN 2013072333W WO 2014106363 A1 WO2014106363 A1 WO 2014106363A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile device
rss
aps
access points
signal strength
Prior art date
Application number
PCT/CN2013/072333
Other languages
English (en)
French (fr)
Inventor
李丹
张得志
龙圣
陈尊裕
蔡雯璐
胡斯洋
周振邦
李维海
王红旗
Original Assignee
东莞市力王电池有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市力王电池有限公司 filed Critical 东莞市力王电池有限公司
Publication of WO2014106363A1 publication Critical patent/WO2014106363A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0252Radio frequency fingerprinting
    • G01S5/02521Radio frequency fingerprinting using a radio-map
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to a mobile device positioning system and method. Background technique
  • WIFI transceiver tags can intermittently communicate with the central server through certain settings to obtain current location information to achieve positioning.
  • Some mobile devices such as mobile phones using Android or IOS systems
  • WIFI tags can intermittently communicate with the central server through certain settings to obtain current location information to achieve positioning.
  • wireless signal propagation models such as time of arrival (TOA), angle of arrival (AOA), and triangulation based on RSS.
  • TOA time of arrival
  • AOA angle of arrival
  • RSS triangulation based on RSS.
  • machine learning-based RSS location algorithms have been extensively studied in recent years as a low-cost solution for indoor positioning.
  • the RSS feature localization algorithm avoids the wireless propagation model and related assumptions in the location of the access point.
  • the WLAN signal fluctuates.
  • An advantage of the present invention is that it can handle the computational burden imposed by a large number of grid points by processing the LBS position derivation problem as a correlation numerical filtering calculation on a multi-core computing platform.
  • the present invention provides a method for guiding the positioning of APs, classifying the target area into different areas to assist in the coarse positioning of the mobile device. Summary of the invention
  • the primary object of the present invention is to provide a system and method for realizing indoor tracking and positioning through a wireless network for a mobile device using Wi-Fi, and the present invention is achieved in order to achieve the above object.
  • the body plan is as follows:
  • a mobile device positioning system includes:
  • Access points which are wireless local area network (WLAN) access points, one or more;
  • WLAN wireless local area network
  • a location server comprising a wireless signal strength (RSS) feature database, the wireless signal strength (RSS) feature database providing wireless signal strength based on access points (APs) at a set of discrete locations within the target area (RSS) distribution map; a network adapter, the network adapter is configured to provide a network connection service between the mobile device and the access point (APs);
  • RSS wireless signal strength
  • APs access points
  • RSS target area
  • a Positioning Computation Engine that determines a mobile device location based on a Wireless Signal Strength (RSS) signature database and received signals from one or more access points.
  • RSS Wireless Signal Strength
  • the access points are IEEE 802.il wireless access points.
  • the network adapter is a WLAN adapter.
  • the hardware accelerator further accelerates an algorithm used by the PCE based on a Field-Programmable Gate Array (FPGA) or a Graphic Processing Unit (GPU) to calculate a target object in real time. s position.
  • FPGA Field-Programmable Gate Array
  • GPU Graphic Processing Unit
  • a mobile device positioning method comprising the steps of: offline phase, collecting, by using a calibration device, a wireless signal strength (RSS) sample read from an access point (APs) at a reference point in the LBS deployment area, a wireless signal strength (RSS) feature data set and associated location tags are stored in the training data set;
  • RSS wireless signal strength
  • the target area is classified into different areas according to the wireless signal strength (RSS) of each access point (AP);
  • RSS wireless signal strength
  • a number of wireless signal strength (RSS) samples measured by the mobile device are compared to the training data set to obtain mobile device location information.
  • RSS wireless signal strength
  • the online phase includes: In the initial positioning phase, the mobile device area information is obtained according to the wireless signal strength (RSS) of each access point (AP);
  • RSS wireless signal strength
  • the hardware-accelerated algorithm determines the exact position and completes real-time tracking of the mobile device.
  • the preliminary positioning stage records accurate positioning information, path and trend information of the time step, thereby more accurately narrowing the target range.
  • the mobile device such as a WIFI tag, a smart phone, etc.
  • RSS feature data comparison determines the two-dimensional position of the plane in which the mobile device is located.
  • Example 1 is a schematic diagram of a system according to an embodiment of the present invention. The present invention will be described in detail with reference to the accompanying drawings and specific embodiments. Example
  • the mobile device positioning system includes:
  • Access points which are wireless local area network (WLAN) access points, the number of which is one or more, and each access point (APs) sends a signal conforming to the IEEE 802.11 communication protocol;
  • WLAN wireless local area network
  • the positioning server includes a wireless signal strength (RSS) feature database, and the wireless signal strength (RSS) feature database is provided based on the target a wireless signal strength (RSS) distribution map of access points (APs) in a discrete location within the area;
  • RSS wireless signal strength
  • a network adapter that accepts signals from one or more access points (APs) for providing network connection services between the mobile device and the access points (APs), and the network adapter may be a WLAN Adaptor
  • a Positioning Computation Engine that determines a mobile device location based on a Wireless Signal Strength (RSS) signature database and received signals from one or more access points.
  • RSS Wireless Signal Strength
  • the LBS deployment area is divided into rectangular grids, each individual rectangle in the grid is represented as a reference point (a centroid of a single rectangle), and a calibration device (such as a tablet) is used at a reference point within the LBS deployment area.
  • a calibration device such as a tablet
  • laptops, etc. collect wireless signal strength (RSS) samples read from access points (APs) to obtain sufficient data characteristics of RSS distributions on the grid, and the RSS feature data sets and related location labels obtained therefrom are Stored in a database called a training dataset
  • the feature data set ⁇ , 3 ⁇ 4/ 2 , ⁇ , ⁇ ⁇ , which is a collection of / matrices.
  • P the first RSS measurement received from access point j at reference point t, taking a total of V samples.
  • the set of averages of these Radio Signal Strength (RSS) samples are then tabulated and stored in a database called the wireless signal strength map for all access points (APs).
  • the wireless signal strength map provides sufficient representation of the spatial strength of the radio signal strength (RSS) within the target area and can be used to define multiple taxonomy criteria that classify the target area into different regions, according to each access point ( AP)'s wireless signal strength (RSS) classifies the target area into different regions;
  • the RSS average of each AP corresponding to the device on all grid point RSS vectors is tabulated.
  • the threshold for each AP is determined so that the RSS vectors for each reference point on the grid are mapped into a binary number vector. "1" indicates that the associated RSS value exceeds the threshold, and "0" indicates otherwise.
  • Related points with the same binary sequence are divided into one region. The size of a region is determined by the number of related points it can contain.
  • the threshold is iteratively adjusted until each region determined by the same binary vector is equal in size to the other regions. If the standard is not met at all times, the APs will be reset until the difference between the size of all regions and the size of the other regions is less than the threshold.
  • the design loop can be performed with the help of a WLAN simulator that simulates the propagation of WLAN signals for all APs within the target range;
  • redo step 2 If the area difference is greater than a threshold, or if there is a region separation with the same binary vector, redo step 2.
  • the algorithm operation mode for estimating the location of the mobile device is divided into two phases:
  • Initial positioning stage use the multiple classification method to narrow the target area
  • the PCE uses one or more algorithms to determine the location of the mobile device based on the measurements of the RSS. Since the solution to the location estimation problem at any time corresponds to only a small portion of the entire training data set, in the precise positioning step, we use a sparse representation classification based on machine learning.
  • the present invention uses Kolmogorov-Smirnov correlation filtering as a tool for performing a Matching Pursuit Greedy Search to solve the sparse representation problem under the influence of system noise. .
  • the coarse positioning can be achieved by matching the corresponding RSS binary vector with the binary encoding of each region determined in the offline phase.
  • Correction page (Article 91) ISA/CN
  • the precise positioning information of the step size is used as a priori information for estimating the current time step position.
  • the mobile device online RSS read value can be expressed as:
  • y Wb where y is a column vector that contains the RSS values of all APs in the known location.
  • is a matrix representing the training data set, the number of rows is equal to the number of access points AP, and its number of columns is equal to the number of reference points on the grid.
  • b is a sparse column vector whose length is equal to the number of reference points on the grid.
  • ie b (0,...,0,1,0,..).
  • the positioning system of the present invention uses Kolmov-Smirnov correlation filtering to compare the statistics of the online RSS sample data for each AP with the statistics of the same AP on the reference point in the region determined during the coarse positioning phase. Kolmov-Smirnov correlation filtering returns the following results, whether the two vector data (3 ⁇ 4) or (3 ⁇ 4) (which can be of different lengths) belong to the same distribution at a certain confidence level.
  • the filter calculation is given below:
  • the ratio of the formula is less than or equal to ⁇ c3 ⁇ 4) is less than or equal to At JC. If M is greater than a threshold, the two data vectors are considered to be very different.
  • the online data vector of the RSS value and the RSS database will be used as input variables for the Kolmov-Smirnov (KS) correlation filter calculation. If it is calculated that the corresponding RSS vector in the training data set of one point satisfies the similar distribution condition with the online measurement value, then the point will be selected as the candidate point.
  • KS Kolmov-Smirnov
  • the margin of error can be defined as the distance between the online estimated position and the farthest point among the three candidate points.
  • the location estimation algorithm flow is shown in Figure 2.
  • geographic location information on indoor maps can also be used to set up for estimation The boundary condition of the candidate point of the location.
  • the positioning system of the present invention can be extended to a tracking system by using Karman filtering or particle filtering and linear motion models for better estimation of position information.
  • the physical location approximation can be used as a second criterion to further reduce the size of the region determined by the coarse positioning phase, narrowing down to a walking distance of a previous time point.
  • the present invention can be used as a server-side application to provide location data information to operators of industrial or residential buildings that can install WLAN facilities. For example, it can be used to track medical devices, patients, or employees in hospitals; provide location information for passengers using smartphones at airports; or for train stations and shopping centers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种移动设备定位系统,包括:接入点(APs),所述接入点(APs)是指无线局域网(WLAN)接入点,数量为一个或一个以上;定位服务器,所述定位服务器包括无线信号强度(RSS)特征数据库,所述无线信号强度(RSS)特征数据库提供基于在目标区域内,一套离散位置上的接入点(APs)的无线信号强度(RSS)分布图;网络适配器,所述网络适配器用以提供移动设备与所述接入点(APs)的网络连接服务;定位计算引擎(PCE),所述定位计算引擎(PCE)基于无线信号强度(RSS)特征数据库以及来自一个或多个接入点的接收信号来确定移动设备位置。本发明提供的移动设备定位系统及方法,将移动设备,如 WIFI标签、智能手机等,接收的附近多个接入点(APs)的无线信号强度(RSS)与数据库中目标区域内离散位置的RSS特征数据比较,可以确定移动设备所在平面的二维位置。

Description

移动设备定位系统及方法 技术领域 本发明涉及一种移动设备定位系统及方法。 背景技术
智能手机以及低功耗 WIFI接发器标签的广泛使用使基于低成本 局域无线网(WLAN )设备的室内定位服务成为可能, 它将涵盖室内 定位、 追踪、 导航以及安保等多种服务方案。 一些移动设备(例如使 用安卓或 IOS系统的手机)和 WIFI标签通过一定的设置, 可间歇性 地与中心服务器通讯,获得当前位置信息,从而达到定位效果。然而, 由于室内环境的复杂性,通常难以通过基于无线信号传播模型的方法 (例如到达时间 (TOA ), 到达角度(AOA ), 以及基于 RSS的三角 测量法等 )提供令人满意的定位准确性。 因此, 基于机器学习的 RSS 定位算法近年来被广泛研究, 以作为室内定位的低成本解决方案。对 比其他基于模型的算法而言, RSS特征定位算法避开了无线传播模型 以及接入点位置中的有关假设。
WLAN信号波动。 本发明的优势为, 它可以通过将 LBS的位置推导 问题处理为在多核运算平台上的相关数值滤波计算,从而处理由大量 网格点带来的运算负担。 此外, 本发明对引导 APs的定位提供了方 法, 将目标区域分类为不同地区来协助移动设备的粗略定位。 发明内容
本发明的首要目的在于为使用 Wi-Fi的移动设备提供一种通过无 线网络实现室内跟踪定位的系统及方法,为实现上述目的本发明的具 体方案如下:
一种移动设备定位系统, 包括:
接入点 (APs), 所述接入点 (APs)是指无线局域网 (WLAN) 接入点, 数量为一个或一个以上;
定位服务器, 所述定位服务器包括无线信号强度(RSS)特征数 据库,所述无线信号强度( RSS )特征数据库提供基于在目标区域内, 一套离散位置上的接入点 (APs) 的无线信号强度 (RSS)分布图; 网络适配器, 所述网络适配器用以提供移动设备与所述接入点 (APs) 的网络连接服务;
定位计算引擎(PCE), 所述定位计算引擎(PCE)基于无线信 号强度(RSS)特征数据库以及来自一个或多个接入点的接收信号来 确定移动设备位置。
优选的, 所述接入点 (APs) 为 IEEE802.il无线接入点。
优选的, 所述网络适配器为 WLAN配适器。
优选的,还包括硬件加速器, 所述硬件加速器基于现场可编程门 阵列( Field-Programmable Gate Array, FPGA )或图形处理器( Graphic Processing Unit, GPU)对 PCE所用算法实施加速, 以实时计算目标对 象的位置。
以及一种移动设备定位方法, 其特征在于包括以下步骤: 离线阶段, 在 LBS部署区域内的参考点上用校准设备收集从接 入点 (APs)读取的无线信号强度(RSS)样本, 获得无线信号强度 (RSS )特征数据集合和相关位置标签被储存在训练数据集合;
根据每一个接入点(AP)的无线信号强度(RSS)将目标区域分 类为不同地区;
在线阶段, 移动设备测量到的若干无线信号强度(RSS)样本与 训练数据集合比较, 获得移动设备位置信息。
优选的, 所述在线阶段包括: 初步定位阶段,根据每一个接入点( AP )的无线信号强度 ( RSS ) 获得移动设备地区信息;
精确定位阶段, 通过硬件加速后的算法确定准确位置, 完成对移 动设备的实时追踪。
优选的, 所述初步定位阶段记录有时间步长的精确定位信息、路 径及趋势信息, 从而更准确地缩小目标范围。
本发明提供的移动设备定位系统及方法, 将移动设备, 如 WIFI 标签、 智能手机等, 接收的附近多个接入点 (APs ) 的无线信号强度 ( RSS )与数据库中目标区域内离散位置的 RSS特征数据比较, 可以 确定移动设备所在平面的二维位置。 附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请 的一部分, 并不构成对本发明的不当限定, 在附图中:
图 1为本发明实施例系统示意图。 具体实施方式 下面将结合附图以及具体实施例来详细说明本发明,在此本发明 的示意性实施例以及说明用来解释本发明,但并不作为对本发明的限 定。 实施例
如图 1所示, 移动设备定位系统, 包括:
接入点 (APs ), 所述接入点 (APs )是指无线局域网 (WLAN ) 接入点, 数量为一个或一个以上, 每个接入点( APs )发送符合 IEEE 802.11通讯协议的信号;
入网的定位服务器, 所述定位服务器包括无线信号强度(RSS ) 特征数据库, 所述无线信号强度(RSS )特征数据库提供基于在目标 区域内, 一套离散位置上的接入点 (APs) 的无线信号强度(RSS) 分布图;
可接受一个或多个接入点 (APs)传来的信号的网络适配器, 所 述网络适配器用以提供移动设备与所述接入点 (APs) 的网络连接服 务, 网络配适器可以是 WLAN配适器;
定位计算引擎(PCE), 所述定位计算引擎(PCE)基于无线信 号强度(RSS)特征数据库以及来自一个或多个接入点的接收信号来 确定移动设备位置。
以及一种移动设备定位方法, 包括以下步骤:
离线阶段, LBS部署区域被分割为矩形网格, 网格中的每个单个 矩形表示为一个参考点(单个矩形的矩心), 在 LBS部署区域内的参 考点上用校准设备(如平板电脑、笔记本电脑等)收集从接入点( APs ) 读取的无线信号强度( RSS )样本, 从而获取足够的网格上 RSS分布 的数据特征, 由之获得的 RSS特征数据集合和相关位置标签被储存 在数据库中, 该数据库被称为训练数据集合( training dataset ) ,
RSS特征数据集合的建立流程:
特征数据集合 ={^,¾/2, ·,ν },它是/个矩阵的集合。
Figure imgf000006_0001
P =第 个在参考点 t从接入点 j接收的 RSS测量值, 获取一共 V个样本。
N: 样本数
Z)- 参考点数
J= WLAN接入点数 之后, 这些无线信号强度(RSS )样本的平均值集合被制表储存 在数据库中, 被称为所有接入点 (APs ) 的无线信号强度图。 无线信 号强度图提供了在目标区域内无线信号强度(RSS )空间属性的足够 代表性, 并可用于定义多重分类法准则, 该分类法将目标区域分类为 不同地区, 根据每一个接入点(AP )的无线信号强度(RSS )将目标 区域分类为不同地区;
训练数据集合被收集后, 将所有网格点 RSS向量上设备对应的 每个 AP的 RSS平均值制成表。 确定每个 AP的阈值, 使网格上每个 参考点的 RSS向量被映射到一个二进制数字向量中。 "1" 表示相关 的 RSS值超过阈值, 而 "0" 表示其它情况。 具有相同二进制序列的 相关点被分到一个地区中。地区的大小由它能包含的相关点的数量确 定。反复调整阈值, 直到由相同二进制向量确定的每个地区大小与其 它地区相当为止。 如果始终不能达成标准, 将重置 APs, 直到全部地 区大小与其它地区大小差值小于阈值。 设计循环可以在 WLAN模拟 器帮助下执行, 该模拟器能模拟在目标范围内所有 APs的 WLAN信 号传播;
li
Figure imgf000007_0001
6. 如果地区面积差距大于一个阀值,或者出现有相同二进制向量 的地区分离, 重做步骤 2。
7. 重新放置 WLAN接入点, 重做步骤 1, 直到步骤 6汇聚。
在线阶段, 移动设备测量到的若干无线信号强度(RSS )样本与 训练数据集合比较,获得移动设备位置信息。在在线阶段移动设备测 量了范围内所有 APs的一定数量样本的 RSS值。 将这些值与训练数 据集合中存储的数据作比较。在本发明中,用于估计移动设备的位置 的算法运行模式被分为两个阶段:
( 1 )初步定位阶段: 使用多重分类法缩小目标领域范围; 以及
( 2 )精确定位阶段: 通过硬件加速后的算法确定准确位置, 准 确程度为一个小方格, 从而完成对移动设备的实时追踪。 此外, 在精 确定位阶段, 之前时间步长移动设备移动中记录的路径与趋势可以被 反馈给本时间阶段的粗略定位阶段, 从而更准确地缩小目标范围。
PCE使用一个或多个算法基于 RSS的测量值确定移动设备位置。 因为任何时候对于定位估计问题的求解方案只对应于整个训练数据 集合的一小部分,在精确定位步骤中,我们使用了一个基于机器学习 的稀疏表示分类法。 本发明运用柯尔莫夫-斯米尔诺夫相关滤波 ( Kolmogorov-Smirnov correlation filtering )作为在系统噪声影响下实 施匹配追踪贪婪搜索法( Matching Pursuit Greedy Search )解决稀疏表 示问题 ( sparse representation problem )的工具。
在粗略定位阶段, 我们将挑选符合在线 RSS观测的地区以及它 的临近集合。 粗略定位可通过将相应的 RSS二进制向量与离线阶段 确定的每个地区的二进制编码进行匹配实现。
除了将移动设备指定到匹配的地区之外, 本系统也将把以往时间
更正页 (细则第 91条) ISA/CN 步长的精确定位信息作为估计当前时间步长位置的先验信息。
因为移动设备的位置在任何时间在离散的空间领域里都是唯一 的, 所以基于 RSS的精确定位可以被构建为稀疏表示性问题。 因而, 移动设备在线 RSS读取值可以被表示为:
y= Wb 式中 y是一个列向量,它包含了该已知地点所有 AP的 RSS值,
^是代表训练数据集合的矩阵,它的行数等于接入点 AP的数量, 它的列数等于网格上参考点数量,
b是一个稀疏列向量, 它的长度等于网格上参考点的数量。
理想来说,假设移动设备准确位于其中一个参考点中心时, 移动 设备的位置可以被构建为一个 1-稀疏向量, 即 b= ( 0,...,0,1,0,.. )。 典 型地, 我们用匹配追踪贪婪搜索方法求解该问题。
然而, 在真实条件下, 移动设备会处在一些不常在的位置上并且 系统数据充斥着噪声,所以我们需要一个概率方法来解决稀疏表示问 题。 在此条件下, 恢复的位置不再是准确的 1-稀疏向量, 而含有一些 非零系数。 移动设备所在位置可以被更好地定义, 通过计算候选点位 置的线性加权组合, 可以确定移动设备所在位置, 并报告该结果的误 差界限。 本发明的定位系统使用柯尔莫夫 -斯米尔诺夫相关滤波将每个 AP的在线 RSS样本数据的统计数字与在粗略定位阶段确定的地区中 的参考点上相同 AP的统计数字作比较。柯尔莫夫 -斯米尔诺夫相关滤 波返回下列结果, 两个向量数据 (¾)(¾) (可以是不同的长度 )是否 属于一定置信水平下相同分布中。 以下给出该滤波计算:
M = (F (x) - F2 (x))
式中 为 的比例小于或等于 ^c¾)的比例小于或等 于 JC。如果 M大于一个阈值, 两个数据向量被认为差别很大。 RSS值 的在线数据向量和 RSS数据库将作为柯尔莫夫 -斯米尔诺夫(KS )相 关滤波计算的输入变量。如果计算判断一个点的训练数据集合中相应 的 RSS向量与在线测量值满足相似分布条件, 那么该点将被选中为 候选点。
绘制所有 KS滤波计算输出的候选点出现次数直方图。直方图中 出现概率最高的 3个候选点被整理出来, 计算的位置被定义为:
(χ, = Σ p . R . X (X'^ ) 式中, y')是参考点 的坐标; /¾是参考点 在候选点集合中的 出现次数。
误差界限可以定义为在线估计位置与 3个候选点中最远点的之 间的距离。 定位估计算法流程如如图 2所示。
更正页 (细则第 91条) ISA/CN 含噪稀疏表示问题求解方法的优势在于,它可以作为在一个支持 定位计算引擎(PCE ) 的多核平台上的单指令多数据 (SIMD )程序 被执行。 程序副本数等于:
,入鍾》 X (地区内參考点数), 并且, 他们被分配到平台上不同处理器核上, 如图形处理器 ( GPU )或现场可编程门阵列(FPGA )。 从数据库装载相应的训练集 合到本地附在处理器核上的内存条上计算,然后被送回到中央处理单 元, 作进一步处理。 程序步骤如下:
Figure imgf000011_0001
此外,在室内地图上的地理位置信息也可以被用于设置用于估计 位置的候选点的边界条件。 本发明的定位系统可通过使用卡曼滤波或粒子滤波和线性运动 模型被拓展为跟踪系统, 以用于更好地估计位置信息。 可使用物理位 置近似作为第二个标准来进一步缩小粗略定位阶段确定的地区大小, 缩小到一个先前时间点的步行范围内。 本发明可作为服务器端的应用程序使用,提供位置数据信息给可 安装 WLAN设施的工业或民用建筑群的操作人员。 例如, 它可以用 于跟踪医疗器械, 病人, 或医院内员工; 为机场内使用智能手机的旅 客提供位置信息; 或者用于火车站和购物中心。
以上对本发明实施例所提供的技术方案进行了详细介绍,本文中应用
施例的说明只适用于帮助理解本发明实施例的原理; 同时, 对于本领 域的一般技术人员,依据本发明实施例, 在具体实施方式以及应用范 围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明 的限制。

Claims

权利要求书
1、 一种移动设备定位系统, 其特征在于包括:
接入点 (APs), 所述接入点 (APs)是指无线局域网 (WLAN) 接入点, 数量为一个或一个以上;
定位服务器, 所述定位服务器包括无线信号强度(RSS)特征数 据库,所述无线信号强度( RSS )特征数据库提供基于在目标区域内, 一套离散位置上的接入点 (APs) 的无线信号强度 (RSS)分布图; 网络适配器, 所述网络适配器用以提供移动设备与所述接入点 (APs) 的网络连接服务;
定位计算引擎(PCE), 所述定位计算引擎(PCE)基于无线信 号强度(RSS)特征数据库以及来自一个或多个接入点的接收信号来 确定移动设备位置。
2、 如权利要求 1所述的移动设备定位系统, 其特征在于: 所述接入点 ( APs ) 为 IEEE 802.11无线接入点。
3、 如权利要求 1所述的移动设备定位系统, 其特征在于: 所述网络适配器为 WLAN配适器。
4、 如权利要求 1所述的移动设备定位系统, 其特征在于: 还包括硬件加速器, 所述硬件加速器基于现场可编程门阵列
( FPGA )或图形处理器 (GPU)对 PCE所用算法实施加速, 以实时 计算目标对象的位置。
5、 一种移动设备定位方法, 其特征在于包括以下步骤: 离线阶段, 在基于位置服务(LBS)部署区域内的参考点上, 用 校准设备收集从接入点 (APs)发出的无线信号强度(RSS)样本, 获得的无线信号强度(RSS)特征数据集合和相关位置标签一起被储 存在训练数据集合;
根据每一个参考点上收到的无线信号强度(RSS)将目标区域分 类为不同地区;
在线阶段, 移动设备测量到的若干无线信号强度(RSS )样本与 训练数据集合比较, 获得移动设备位置信息。
6、 如权利要求 5所述的移动设备定位方法, 其特征在于: 所述在线阶段包括:
初步定位阶段,根据每一个接入点( AP )的无线信号强度( RSS ) 获得移动设备地区信息;
精确定位阶段, 通过硬件加速后的算法确定准确位置, 完成对移 动设备的实时追踪。
7、 如权利要求 5所述的移动设备定位方法, 其特征在于: 所述初步定位阶段记录有时间步长的精确定位信息、 路径及走向信 息, 从而更准确地缩小目标范围。
PCT/CN2013/072333 2013-01-05 2013-03-08 移动设备定位系统及方法 WO2014106363A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310001716.9 2013-01-05
CN2013100017169A CN103220777A (zh) 2013-01-05 2013-01-05 一种移动设备定位系统

Publications (1)

Publication Number Publication Date
WO2014106363A1 true WO2014106363A1 (zh) 2014-07-10

Family

ID=48818100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/072333 WO2014106363A1 (zh) 2013-01-05 2013-03-08 移动设备定位系统及方法

Country Status (2)

Country Link
CN (1) CN103220777A (zh)
WO (1) WO2014106363A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103514378B (zh) * 2013-10-15 2016-08-24 合肥工业大学 一种基于wlan室内定位技术的远程医疗看护系统
CN103630875B (zh) * 2013-11-21 2017-02-15 天津中兴智联科技有限公司 一种射频识别定位方法及装置
CN103841639A (zh) * 2013-12-05 2014-06-04 镇江高科科技信息咨询有限公司 用于室内定位的无线局域网技术
CN104811901A (zh) * 2014-01-29 2015-07-29 西门子公司 用于定位的方法和装置
CN104811906A (zh) * 2014-01-29 2015-07-29 西门子公司 用于定位的方法和装置
TWI497462B (zh) * 2014-02-05 2015-08-21 Ind Tech Res Inst 產生室內地圖的方法及系統
TWI554136B (zh) * 2014-09-24 2016-10-11 緯創資通股份有限公司 室內定位方法以及使用該方法的裝置
US9521648B1 (en) * 2015-06-26 2016-12-13 Intel Corporation Location estimation and wireless display device connection method and device
CN105607499B (zh) * 2016-01-05 2018-10-12 北京小米移动软件有限公司 设备分组方法及装置
CN105790837B (zh) * 2016-03-04 2019-02-19 南京邮电大学 基于图像匹配和指纹库的led可见光室内定位方法和系统
CN106374297A (zh) * 2016-08-30 2017-02-01 宁波博禄德电子有限公司 一种可定位的连接头
CN106364526B (zh) * 2016-09-22 2018-01-16 深圳市虹鹏能源科技有限责任公司 一种隧道建设新能源轨道电机车实时高精度自动定位系统
CN106792553A (zh) * 2016-11-22 2017-05-31 上海斐讯数据通信技术有限公司 一种基于wifi的多楼层定位方法及服务器
CN108882165B (zh) * 2018-06-29 2021-02-05 华勤技术股份有限公司 一种导航方法和装置
CN108826618B (zh) * 2018-07-25 2020-07-28 浙江工商大学 基于神经网络的节能加热方法
CN112986910A (zh) * 2021-02-08 2021-06-18 余纯龙 用于医疗设备的定位方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1642342A (zh) * 2004-01-14 2005-07-20 英业达股份有限公司 无线局域网络位置服务系统及其方法
CN1744763A (zh) * 2005-09-30 2006-03-08 上海贝豪通讯电子有限公司 在td-scdma和wifi系统下的联合定位方法
CN1818712A (zh) * 2005-02-08 2006-08-16 阿尔卡特公司 地理定位服务
CN102419180A (zh) * 2011-09-02 2012-04-18 无锡智感星际科技有限公司 一种基于惯性导航系统和wifi的室内定位方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080161011A1 (en) * 2006-12-29 2008-07-03 Motorola, Inc. Method enabling indoor local positioning and movement tracking in wifi capable mobile terminals
CN101267374B (zh) * 2008-04-18 2010-08-04 清华大学 基于神经网络和无线局域网基础架构的2.5d定位方法
CN101772156B (zh) * 2008-12-30 2013-09-11 安移通网络科技(中国)有限公司 一种无线局域网设备定位方法及装置
CN102802260B (zh) * 2012-08-15 2015-05-13 哈尔滨工业大学 基于矩阵相关的wlan室内定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1642342A (zh) * 2004-01-14 2005-07-20 英业达股份有限公司 无线局域网络位置服务系统及其方法
CN1818712A (zh) * 2005-02-08 2006-08-16 阿尔卡特公司 地理定位服务
CN1744763A (zh) * 2005-09-30 2006-03-08 上海贝豪通讯电子有限公司 在td-scdma和wifi系统下的联合定位方法
CN102419180A (zh) * 2011-09-02 2012-04-18 无锡智感星际科技有限公司 一种基于惯性导航系统和wifi的室内定位方法

Also Published As

Publication number Publication date
CN103220777A (zh) 2013-07-24

Similar Documents

Publication Publication Date Title
WO2014106363A1 (zh) 移动设备定位系统及方法
Zhou et al. Integrated statistical test of signal distributions and access point contributions for Wi-Fi indoor localization
Cui et al. Received signal strength based indoor positioning using a random vector functional link network
US9677890B2 (en) Positioning and mapping based on virtual landmarks
WO2019062734A1 (zh) 基于Wi-Fi热点的室内定位方法及装置
KR101556711B1 (ko) 도달 시간 기초의 무선 위치결정 시스템
CN104507050B (zh) 一种WiFi室内定位中概率型指纹匹配方法
WO2016165459A1 (zh) 一种室内定位方法和设备
CN104519571B (zh) 一种基于rss的室内定位方法
CN103596267A (zh) 一种基于欧氏距离的指纹图匹配方法
CN102231912A (zh) 一种基于rssi测距的室内无线传感器网络定位方法
Xu et al. Self-adapting multi-fingerprints joint indoor positioning algorithm in WLAN based on database of AP ID
CN109195110A (zh) 基于层次聚类技术和在线极限学习机的室内定位方法
CN104540221A (zh) 基于半监督sde算法的wlan室内定位方法
KR20110116565A (ko) 베이지안 알고리즘을 이용한 실내 측위 방법
Hoang et al. A hidden Markov model for indoor user tracking based on WiFi fingerprinting and step detection
Ding et al. AP weighted multiple matching nearest neighbors approach for fingerprint-based indoor localization
Monica et al. Swarm intelligent approaches to auto-localization of nodes in static UWB networks
CN107872873A (zh) 物联网终端定位方法和装置
CN105704676A (zh) 利用信号时间相关性提高指纹室内定位精度的方法
TWI425241B (zh) Combining the signal intensity characteristic comparison and position prediction analysis of hybrid indoor positioning method
WO2017049914A1 (zh) 一种终端定位方法、装置及系统
WO2015062088A1 (zh) 一种定位终端位置的方法和设备
Li et al. A fast indoor tracking algorithm based on particle filter and improved fingerprinting
Yunxiao et al. An improved indoor positioning method based on received signal strengths

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870123

Country of ref document: EP

Kind code of ref document: A1