WO2014105928A1 - Procédé et applications de système de coordonnées locales sur la base d'un flux de données optiques au moyen de caméras vidéo - Google Patents

Procédé et applications de système de coordonnées locales sur la base d'un flux de données optiques au moyen de caméras vidéo Download PDF

Info

Publication number
WO2014105928A1
WO2014105928A1 PCT/US2013/077755 US2013077755W WO2014105928A1 WO 2014105928 A1 WO2014105928 A1 WO 2014105928A1 US 2013077755 W US2013077755 W US 2013077755W WO 2014105928 A1 WO2014105928 A1 WO 2014105928A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical flow
agricultural machine
camera
image
local coordinate
Prior art date
Application number
PCT/US2013/077755
Other languages
English (en)
Inventor
Paul Matthews
Original Assignee
Agco Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agco Corporation filed Critical Agco Corporation
Publication of WO2014105928A1 publication Critical patent/WO2014105928A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/001Steering by means of optical assistance, e.g. television cameras

Definitions

  • GNSS global navigation satellite systems
  • GPS global positioning systems
  • GLONASS global positioning systems
  • Galileo Galileo
  • FIG. 1 shown is an example agricultural machine embodied as a tractor 10 in which an embodiment of an optical flow measurement system may be implemented.
  • a tractor 10 in which an embodiment of an optical flow measurement system may be implemented.
  • the example tractor 10 shown in FIG. 1 is merely illustrative, and that other configurations (e.g., track-based) and/or other types of agricultural machines may serve as a host for an optical flow measurement system.
  • certain embodiments of optical flow measurement systems may be mounted to a towed vehicle instead of the towing vehicle, or on both vehicles in some embodiments.
  • the example tractor 10 comprises an operator's cab 12 that is mounted to a chassis 14.
  • the images may be embodied as frames (or pictures) of a video acquisition, or as described below, as plural, sequential snapshots of the ground.
  • plural images 18 e.g., 18A, 18B, and 18C
  • FIGS. 2A and 2B Beneath each of the respective images 18A, 18B, and 18C in FIGS. 2A and 2B are labels, image (t), image (t+1 ), and image (t+2), signifying that each snapshot occurs in a time-progressive sequence referenced in this example from the first depicted frame at time equal to t as the tractor 10 (FIG. 1 ) traverses a field.
  • An arrow, denoted with reference numeral 20, refers to the direction of movement of the tractor 10, which may, in one implementation, be forwardly as depicted in FIG. 2A.
  • the images 18 are images of the ground being traversed by the tractor 10 (e.g., in real-time).
  • certain features of the ground shown in images captured by the camera 16 may be tracked to determine one or more vectors associated with optical flow. These trackable features or identifiable areas are symbolically denoted in FIGS.
  • the tractor 10 may drive in a forward direction along path 28A, the optical flow measurement system enabling continual corrections or adjustments to a local coordinate system, which is provided to a steering sub-system and/or drive train sub-system to maintain the tractor 10 in a straight-line path or direction according to a set speed.
  • the optical flow measurement system cumulatively tracks the left and right movements sensed by the camera 16 and heading changes, enabling the guidance of the tractor 10 along the field.
  • the operator may reach a headlands, requiring the tractor 10 to make a turn to start down an opposite direction along a path 28B. For instance, the operator may change direction using the steering wheel, which may suspend the optical flow measurement system until the tractor is traversing the field in an opposite direction, such as along the path 28B.
  • an operator may load a field map into memory of the tractor 10, which enables the tractor 10 to traverse the field 26 according to a pre-recorded plan or wayline(s) (e.g., based on a prior traversal and recording of points), enabling the tracking of recorded points with the guidance system while supplementing the traversal controlled by the guidance system with the optical flow measurement system to ensure a smoother and more accurate traversal of the field 26 between the tracked points.
  • a global coordinate system e.g., via an on-board positioning or guidance system
  • an operator may load a field map into memory of the tractor 10, which enables the tractor 10 to traverse the field 26 according to a pre-recorded plan or wayline(s) (e.g., based on a prior traversal and recording of points), enabling the tracking of recorded points with the guidance system while supplementing the traversal controlled by the guidance system with the optical flow measurement system to ensure a smoother and more accurate traversal of the field 26 between the tracked points.
  • the control system 28 comprises a controller 32 coupled in a network 34 (e.g., high-speed network, though other and/or additional networks may be used, and hence the control system 28 is not limited to a single network) to the camera 16, an optional guidance receiver 36 (e.g., which includes the ability to access one or more known constellations jointly or separately), machine controls 38, and a user interface 40.
  • a network 34 e.g., high-speed network, though other and/or additional networks may be used, and hence the control system 28 is not limited to a single network
  • an optional guidance receiver 36 e.g., which includes the ability to access one or more known constellations jointly or separately
  • machine controls 38 e.g., which includes the ability to access one or more known constellations jointly or separately
  • the camera 16 has been described already, and may include visible and non-visible spectrum devices, such as still photo type cameras, video cameras, infrared cameras, etc.
  • the machine controls 38 collectively comprise the various actuators, sensors, and/or subsystems residing on
  • the controller 32 receives and processes the information from the camera 16 and delivers control signals to the machine controls 38 (e.g., directly, or indirectly through an intermediary device in some embodiments).
  • the controller 32 may receive input from the machine controls 38 (e.g., such as to enable feedback as to the position or status of certain devices, such as a header height and/or width) and/or receive input from the guidance receiver 36 as explained above.
  • the controller 32 may also receive input from the user interface 40, such as during the process of adjustment to enable intervention of machine operation by the operator, to provide feedback of a change in speed or direction and/or or an impending change or need or recommendation for change.
  • the optical flow measurement software 52 enables the selection and tracking of features in captured images, the determination of vectors associated with the tracked features, comparison of the vectors, speed determinations, directional determinations, and determination (ad/or adjustment) of local coordinate systems.
  • One embodiment of pseudo code for performing optical flow measurements and adjusting a local coordinate system comprises the following:

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Guiding Agricultural Machines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

Le procédé selon l'invention comprend les étapes consistant à : recevoir une première image du sol à partir d'une caméra orientée vers le bas montée en dessous d'une machine agricole et recevoir une seconde image du sol à partir de la caméra. Un flux de données optiques est déterminé sur la base de la première et de la seconde image et le pilotage automatisé de la machine agricole est assuré sur la base du flux de données optiques.
PCT/US2013/077755 2012-12-28 2013-12-26 Procédé et applications de système de coordonnées locales sur la base d'un flux de données optiques au moyen de caméras vidéo WO2014105928A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261746684P 2012-12-28 2012-12-28
US61/746,684 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014105928A1 true WO2014105928A1 (fr) 2014-07-03

Family

ID=51022052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/077755 WO2014105928A1 (fr) 2012-12-28 2013-12-26 Procédé et applications de système de coordonnées locales sur la base d'un flux de données optiques au moyen de caméras vidéo

Country Status (1)

Country Link
WO (1) WO2014105928A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104145550A (zh) * 2014-08-07 2014-11-19 昆明理工大学 一种农田轨道装置
CN105277735A (zh) * 2014-07-24 2016-01-27 南车株洲电力机车研究所有限公司 一种轨道列车速度和位移的检测方法和装置
US10398084B2 (en) 2016-01-06 2019-09-03 Cnh Industrial America Llc System and method for speed-based coordinated control of agricultural vehicles
US11357153B2 (en) 2019-12-11 2022-06-14 Cnh Industrial Canada, Ltd. System and method for determining soil clod size using captured images of a field

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442552A (en) * 1993-03-16 1995-08-15 The Regents Of The University Of California Robotic cultivator
US5911669A (en) * 1996-04-19 1999-06-15 Carnegie Mellon University Vision-based crop line tracking for harvesters
US6101795A (en) * 1997-05-13 2000-08-15 Claas Kgaa Automatic steering mechanism and method for harvesting machine
US6141614A (en) * 1998-07-16 2000-10-31 Caterpillar Inc. Computer-aided farming system and method
US6336051B1 (en) * 1997-04-16 2002-01-01 Carnegie Mellon University Agricultural harvester with robotic control
US20090319170A1 (en) * 2008-06-20 2009-12-24 Tommy Ertbolle Madsen Method of navigating an agricultural vehicle, and an agricultural vehicle implementing the same
US20120095652A1 (en) * 2010-10-14 2012-04-19 Noel Wayne Anderson Material identification system
US20120253612A1 (en) * 2011-03-28 2012-10-04 Byrne Terrence K Mobile pothole patching machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442552A (en) * 1993-03-16 1995-08-15 The Regents Of The University Of California Robotic cultivator
US5911669A (en) * 1996-04-19 1999-06-15 Carnegie Mellon University Vision-based crop line tracking for harvesters
US6336051B1 (en) * 1997-04-16 2002-01-01 Carnegie Mellon University Agricultural harvester with robotic control
US6101795A (en) * 1997-05-13 2000-08-15 Claas Kgaa Automatic steering mechanism and method for harvesting machine
US6141614A (en) * 1998-07-16 2000-10-31 Caterpillar Inc. Computer-aided farming system and method
US20090319170A1 (en) * 2008-06-20 2009-12-24 Tommy Ertbolle Madsen Method of navigating an agricultural vehicle, and an agricultural vehicle implementing the same
US20120095652A1 (en) * 2010-10-14 2012-04-19 Noel Wayne Anderson Material identification system
US20120253612A1 (en) * 2011-03-28 2012-10-04 Byrne Terrence K Mobile pothole patching machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105277735A (zh) * 2014-07-24 2016-01-27 南车株洲电力机车研究所有限公司 一种轨道列车速度和位移的检测方法和装置
CN104145550A (zh) * 2014-08-07 2014-11-19 昆明理工大学 一种农田轨道装置
US10398084B2 (en) 2016-01-06 2019-09-03 Cnh Industrial America Llc System and method for speed-based coordinated control of agricultural vehicles
US11357153B2 (en) 2019-12-11 2022-06-14 Cnh Industrial Canada, Ltd. System and method for determining soil clod size using captured images of a field

Similar Documents

Publication Publication Date Title
US10631462B2 (en) Method and stereo vision system for facilitating unloading of agricultural material from a vehicle
US11173953B2 (en) System and method for calibrating a steering wheel neutral position
JP2019061695A (ja) 誘導制御システム
US10139234B2 (en) Path planning based on obstruction mapping
RU2753004C2 (ru) Система и способ позиционирования и управления летательным аппаратом при его движении по рулежной дорожке
US20200039517A1 (en) Automated Reversing By Choice of Target Location
CN111373338A (zh) 用于操作移动系统的方法和设备
EP3790745A1 (fr) Dispositif de suivi d'objet visuel
US10219422B2 (en) Machine-to-machine sharing of wayline deviation information
US20080086249A1 (en) Farm apparatus having implement sidehill drift compensation
US20090326763A1 (en) System and method for providing towed implement compensation
WO2014105928A1 (fr) Procédé et applications de système de coordonnées locales sur la base d'un flux de données optiques au moyen de caméras vidéo
AU2016256796A1 (en) Single-mode implement steering
US20210214008A1 (en) Transverse steering method and transverse steering device for moving a vehicle into a target position, and vehicle for this purpose
WO2018228869A1 (fr) Estimation d'erreur pour un système de détection d'environnement de véhicule
CN115280960B (zh) 一种基于田间视觉slam的联合收获机转向控制方法
US20220361392A1 (en) Method and system for driving view-based agricultural machinery and device for agricultural machinery applying method
EP2788830A1 (fr) Procédé et dispositif de commande pour guider une machine agricole
US20230016335A1 (en) Dynamically modifiable map
Niu et al. Camera-based lane-aided multi-information integration for land vehicle navigation
de Saxe et al. Estimation of trailer off-tracking using visual odometry
EP3290297B1 (fr) Procédés et appareils de détection de perturbation et de stabilité par des systèmes de guidage de véhicules
CN105137468A (zh) 光电式gps盲区环境下车辆可持续导航数据采集装置及方法
US20230406410A1 (en) Method for displaying an environment of a vehicle having a coupled trailer, computer program, computing device and vehicle
US20230294767A1 (en) Vehicle Trailer Angle Estimation via Projective Geometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868138

Country of ref document: EP

Kind code of ref document: A1