WO2014105928A1 - Procédé et applications de système de coordonnées locales sur la base d'un flux de données optiques au moyen de caméras vidéo - Google Patents
Procédé et applications de système de coordonnées locales sur la base d'un flux de données optiques au moyen de caméras vidéo Download PDFInfo
- Publication number
- WO2014105928A1 WO2014105928A1 PCT/US2013/077755 US2013077755W WO2014105928A1 WO 2014105928 A1 WO2014105928 A1 WO 2014105928A1 US 2013077755 W US2013077755 W US 2013077755W WO 2014105928 A1 WO2014105928 A1 WO 2014105928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical flow
- agricultural machine
- camera
- image
- local coordinate
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01B—SOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
- A01B69/00—Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
- A01B69/001—Steering by means of optical assistance, e.g. television cameras
Definitions
- GNSS global navigation satellite systems
- GPS global positioning systems
- GLONASS global positioning systems
- Galileo Galileo
- FIG. 1 shown is an example agricultural machine embodied as a tractor 10 in which an embodiment of an optical flow measurement system may be implemented.
- a tractor 10 in which an embodiment of an optical flow measurement system may be implemented.
- the example tractor 10 shown in FIG. 1 is merely illustrative, and that other configurations (e.g., track-based) and/or other types of agricultural machines may serve as a host for an optical flow measurement system.
- certain embodiments of optical flow measurement systems may be mounted to a towed vehicle instead of the towing vehicle, or on both vehicles in some embodiments.
- the example tractor 10 comprises an operator's cab 12 that is mounted to a chassis 14.
- the images may be embodied as frames (or pictures) of a video acquisition, or as described below, as plural, sequential snapshots of the ground.
- plural images 18 e.g., 18A, 18B, and 18C
- FIGS. 2A and 2B Beneath each of the respective images 18A, 18B, and 18C in FIGS. 2A and 2B are labels, image (t), image (t+1 ), and image (t+2), signifying that each snapshot occurs in a time-progressive sequence referenced in this example from the first depicted frame at time equal to t as the tractor 10 (FIG. 1 ) traverses a field.
- An arrow, denoted with reference numeral 20, refers to the direction of movement of the tractor 10, which may, in one implementation, be forwardly as depicted in FIG. 2A.
- the images 18 are images of the ground being traversed by the tractor 10 (e.g., in real-time).
- certain features of the ground shown in images captured by the camera 16 may be tracked to determine one or more vectors associated with optical flow. These trackable features or identifiable areas are symbolically denoted in FIGS.
- the tractor 10 may drive in a forward direction along path 28A, the optical flow measurement system enabling continual corrections or adjustments to a local coordinate system, which is provided to a steering sub-system and/or drive train sub-system to maintain the tractor 10 in a straight-line path or direction according to a set speed.
- the optical flow measurement system cumulatively tracks the left and right movements sensed by the camera 16 and heading changes, enabling the guidance of the tractor 10 along the field.
- the operator may reach a headlands, requiring the tractor 10 to make a turn to start down an opposite direction along a path 28B. For instance, the operator may change direction using the steering wheel, which may suspend the optical flow measurement system until the tractor is traversing the field in an opposite direction, such as along the path 28B.
- an operator may load a field map into memory of the tractor 10, which enables the tractor 10 to traverse the field 26 according to a pre-recorded plan or wayline(s) (e.g., based on a prior traversal and recording of points), enabling the tracking of recorded points with the guidance system while supplementing the traversal controlled by the guidance system with the optical flow measurement system to ensure a smoother and more accurate traversal of the field 26 between the tracked points.
- a global coordinate system e.g., via an on-board positioning or guidance system
- an operator may load a field map into memory of the tractor 10, which enables the tractor 10 to traverse the field 26 according to a pre-recorded plan or wayline(s) (e.g., based on a prior traversal and recording of points), enabling the tracking of recorded points with the guidance system while supplementing the traversal controlled by the guidance system with the optical flow measurement system to ensure a smoother and more accurate traversal of the field 26 between the tracked points.
- the control system 28 comprises a controller 32 coupled in a network 34 (e.g., high-speed network, though other and/or additional networks may be used, and hence the control system 28 is not limited to a single network) to the camera 16, an optional guidance receiver 36 (e.g., which includes the ability to access one or more known constellations jointly or separately), machine controls 38, and a user interface 40.
- a network 34 e.g., high-speed network, though other and/or additional networks may be used, and hence the control system 28 is not limited to a single network
- an optional guidance receiver 36 e.g., which includes the ability to access one or more known constellations jointly or separately
- machine controls 38 e.g., which includes the ability to access one or more known constellations jointly or separately
- the camera 16 has been described already, and may include visible and non-visible spectrum devices, such as still photo type cameras, video cameras, infrared cameras, etc.
- the machine controls 38 collectively comprise the various actuators, sensors, and/or subsystems residing on
- the controller 32 receives and processes the information from the camera 16 and delivers control signals to the machine controls 38 (e.g., directly, or indirectly through an intermediary device in some embodiments).
- the controller 32 may receive input from the machine controls 38 (e.g., such as to enable feedback as to the position or status of certain devices, such as a header height and/or width) and/or receive input from the guidance receiver 36 as explained above.
- the controller 32 may also receive input from the user interface 40, such as during the process of adjustment to enable intervention of machine operation by the operator, to provide feedback of a change in speed or direction and/or or an impending change or need or recommendation for change.
- the optical flow measurement software 52 enables the selection and tracking of features in captured images, the determination of vectors associated with the tracked features, comparison of the vectors, speed determinations, directional determinations, and determination (ad/or adjustment) of local coordinate systems.
- One embodiment of pseudo code for performing optical flow measurements and adjusting a local coordinate system comprises the following:
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Soil Sciences (AREA)
- Environmental Sciences (AREA)
- Guiding Agricultural Machines (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Le procédé selon l'invention comprend les étapes consistant à : recevoir une première image du sol à partir d'une caméra orientée vers le bas montée en dessous d'une machine agricole et recevoir une seconde image du sol à partir de la caméra. Un flux de données optiques est déterminé sur la base de la première et de la seconde image et le pilotage automatisé de la machine agricole est assuré sur la base du flux de données optiques.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261746684P | 2012-12-28 | 2012-12-28 | |
US61/746,684 | 2012-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014105928A1 true WO2014105928A1 (fr) | 2014-07-03 |
Family
ID=51022052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/077755 WO2014105928A1 (fr) | 2012-12-28 | 2013-12-26 | Procédé et applications de système de coordonnées locales sur la base d'un flux de données optiques au moyen de caméras vidéo |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014105928A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104145550A (zh) * | 2014-08-07 | 2014-11-19 | 昆明理工大学 | 一种农田轨道装置 |
CN105277735A (zh) * | 2014-07-24 | 2016-01-27 | 南车株洲电力机车研究所有限公司 | 一种轨道列车速度和位移的检测方法和装置 |
US10398084B2 (en) | 2016-01-06 | 2019-09-03 | Cnh Industrial America Llc | System and method for speed-based coordinated control of agricultural vehicles |
US11357153B2 (en) | 2019-12-11 | 2022-06-14 | Cnh Industrial Canada, Ltd. | System and method for determining soil clod size using captured images of a field |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5442552A (en) * | 1993-03-16 | 1995-08-15 | The Regents Of The University Of California | Robotic cultivator |
US5911669A (en) * | 1996-04-19 | 1999-06-15 | Carnegie Mellon University | Vision-based crop line tracking for harvesters |
US6101795A (en) * | 1997-05-13 | 2000-08-15 | Claas Kgaa | Automatic steering mechanism and method for harvesting machine |
US6141614A (en) * | 1998-07-16 | 2000-10-31 | Caterpillar Inc. | Computer-aided farming system and method |
US6336051B1 (en) * | 1997-04-16 | 2002-01-01 | Carnegie Mellon University | Agricultural harvester with robotic control |
US20090319170A1 (en) * | 2008-06-20 | 2009-12-24 | Tommy Ertbolle Madsen | Method of navigating an agricultural vehicle, and an agricultural vehicle implementing the same |
US20120095652A1 (en) * | 2010-10-14 | 2012-04-19 | Noel Wayne Anderson | Material identification system |
US20120253612A1 (en) * | 2011-03-28 | 2012-10-04 | Byrne Terrence K | Mobile pothole patching machine |
-
2013
- 2013-12-26 WO PCT/US2013/077755 patent/WO2014105928A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5442552A (en) * | 1993-03-16 | 1995-08-15 | The Regents Of The University Of California | Robotic cultivator |
US5911669A (en) * | 1996-04-19 | 1999-06-15 | Carnegie Mellon University | Vision-based crop line tracking for harvesters |
US6336051B1 (en) * | 1997-04-16 | 2002-01-01 | Carnegie Mellon University | Agricultural harvester with robotic control |
US6101795A (en) * | 1997-05-13 | 2000-08-15 | Claas Kgaa | Automatic steering mechanism and method for harvesting machine |
US6141614A (en) * | 1998-07-16 | 2000-10-31 | Caterpillar Inc. | Computer-aided farming system and method |
US20090319170A1 (en) * | 2008-06-20 | 2009-12-24 | Tommy Ertbolle Madsen | Method of navigating an agricultural vehicle, and an agricultural vehicle implementing the same |
US20120095652A1 (en) * | 2010-10-14 | 2012-04-19 | Noel Wayne Anderson | Material identification system |
US20120253612A1 (en) * | 2011-03-28 | 2012-10-04 | Byrne Terrence K | Mobile pothole patching machine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105277735A (zh) * | 2014-07-24 | 2016-01-27 | 南车株洲电力机车研究所有限公司 | 一种轨道列车速度和位移的检测方法和装置 |
CN104145550A (zh) * | 2014-08-07 | 2014-11-19 | 昆明理工大学 | 一种农田轨道装置 |
US10398084B2 (en) | 2016-01-06 | 2019-09-03 | Cnh Industrial America Llc | System and method for speed-based coordinated control of agricultural vehicles |
US11357153B2 (en) | 2019-12-11 | 2022-06-14 | Cnh Industrial Canada, Ltd. | System and method for determining soil clod size using captured images of a field |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10631462B2 (en) | Method and stereo vision system for facilitating unloading of agricultural material from a vehicle | |
US11173953B2 (en) | System and method for calibrating a steering wheel neutral position | |
JP2019061695A (ja) | 誘導制御システム | |
US10139234B2 (en) | Path planning based on obstruction mapping | |
RU2753004C2 (ru) | Система и способ позиционирования и управления летательным аппаратом при его движении по рулежной дорожке | |
US20200039517A1 (en) | Automated Reversing By Choice of Target Location | |
CN111373338A (zh) | 用于操作移动系统的方法和设备 | |
EP3790745A1 (fr) | Dispositif de suivi d'objet visuel | |
US10219422B2 (en) | Machine-to-machine sharing of wayline deviation information | |
US20080086249A1 (en) | Farm apparatus having implement sidehill drift compensation | |
US20090326763A1 (en) | System and method for providing towed implement compensation | |
WO2014105928A1 (fr) | Procédé et applications de système de coordonnées locales sur la base d'un flux de données optiques au moyen de caméras vidéo | |
AU2016256796A1 (en) | Single-mode implement steering | |
US20210214008A1 (en) | Transverse steering method and transverse steering device for moving a vehicle into a target position, and vehicle for this purpose | |
WO2018228869A1 (fr) | Estimation d'erreur pour un système de détection d'environnement de véhicule | |
CN115280960B (zh) | 一种基于田间视觉slam的联合收获机转向控制方法 | |
US20220361392A1 (en) | Method and system for driving view-based agricultural machinery and device for agricultural machinery applying method | |
EP2788830A1 (fr) | Procédé et dispositif de commande pour guider une machine agricole | |
US20230016335A1 (en) | Dynamically modifiable map | |
Niu et al. | Camera-based lane-aided multi-information integration for land vehicle navigation | |
de Saxe et al. | Estimation of trailer off-tracking using visual odometry | |
EP3290297B1 (fr) | Procédés et appareils de détection de perturbation et de stabilité par des systèmes de guidage de véhicules | |
CN105137468A (zh) | 光电式gps盲区环境下车辆可持续导航数据采集装置及方法 | |
US20230406410A1 (en) | Method for displaying an environment of a vehicle having a coupled trailer, computer program, computing device and vehicle | |
US20230294767A1 (en) | Vehicle Trailer Angle Estimation via Projective Geometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13868138 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13868138 Country of ref document: EP Kind code of ref document: A1 |