WO2014105842A1 - Synergistic fungicidal mixtures for fungal control in cereals - Google Patents

Synergistic fungicidal mixtures for fungal control in cereals Download PDF

Info

Publication number
WO2014105842A1
WO2014105842A1 PCT/US2013/077537 US2013077537W WO2014105842A1 WO 2014105842 A1 WO2014105842 A1 WO 2014105842A1 US 2013077537 W US2013077537 W US 2013077537W WO 2014105842 A1 WO2014105842 A1 WO 2014105842A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluxapyroxad
mixture
compound
formula
ratio
Prior art date
Application number
PCT/US2013/077537
Other languages
French (fr)
Inventor
David G. Ouimette
J. Todd MATHIESON
Gregory M. Kemmitt
Original Assignee
Dow Agrosciences Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK13867094.8T priority Critical patent/DK2938191T3/en
Priority to NZ708979A priority patent/NZ708979A/en
Priority to CA2894515A priority patent/CA2894515C/en
Priority to BR112015015351A priority patent/BR112015015351B8/en
Priority to ES13867094.8T priority patent/ES2666144T3/en
Priority to JP2015550742A priority patent/JP6352302B2/en
Priority to PL13867094T priority patent/PL2938191T3/en
Priority to EP13867094.8A priority patent/EP2938191B1/en
Priority to LTEP13867094.8T priority patent/LT2938191T/en
Priority to CN201380068403.3A priority patent/CN104883884B/en
Application filed by Dow Agrosciences Llc filed Critical Dow Agrosciences Llc
Priority to AU2013370491A priority patent/AU2013370491B2/en
Priority to RU2015131103A priority patent/RU2650402C2/en
Priority to KR1020157020048A priority patent/KR102148190B1/en
Priority to MX2015008442A priority patent/MX2015008442A/en
Priority to UAA201507547A priority patent/UA114661C2/en
Publication of WO2014105842A1 publication Critical patent/WO2014105842A1/en
Priority to CR20150304A priority patent/CR20150304A/en
Priority to ZA2015/04334A priority patent/ZA201504334B/en
Priority to IL239560A priority patent/IL239560B/en
Priority to PH12015501475A priority patent/PH12015501475A1/en
Priority to HK16103306.5A priority patent/HK1215356A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/24Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with two or more hetero atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Toxicology (AREA)
  • Soil Sciences (AREA)

Abstract

A fungicidal composition containing a fungicidally effective amount of (a) the compound of Formula I, (3S,6S,7R,8R)-8-benzyl-3-(3-((isobutyryloxy)methoxy)-4-methoxypicolinamido)-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl isobutyrate, and (b) fluxapyroxad, provides synergistic control of selected fungi. The method of treating a plant includes applying the above composition to a surface such as, at least one portion of a plant, soil adjacent to a plant, soil in contact with a plant, seeds, and equipment used in contact with a plant or a surface adjacent to a plant.

Description

SYNERGISTIC FUNGICIDAL MIXTURES FOR
FUNGAL CONTROL IN CEREALS
Cross Reference To Related Applications
[001] This application claims the benefit of U.S. Provisional Patent Application
Serial No. 61/747,094 filed December 28, 2012, which is expressly incorporated by reference herein.
Field
[002] This disclosure concerns a synergistic fungicidal composition containing (a) the compound of Formula I and (b) fluxapyroxad.
Background
[003] Fungicides are compounds, of natural or synthetic origin, which act to protect plants against damage caused by fungi. Current methods of agriculture rely heavily on the use of fungicides. In fact, some crops cannot be grown usefully without the use of fungicides.
Using fungicides allows a grower to increase the yield and the quality of the crop and consequently, increase the value of the crop. In most situations, the increase in value of the crop is worth at least three times the cost of the use of the fungicide.
[004] However, no one fungicide is useful in all situations and repeated usage of a single fungicide frequently leads to the development of resistance to that and related fungicides. Consequently, research is being conducted to produce fungicides and
combinations of fungicides that are safer, that have better performance, that require lower dosages, that are easier to use, and that cost less.
[005] Synergism occurs when the activity of two, or more, compounds exceeds the activities of the compounds when used alone.
Summary
[0061 One object of this disclosure is to provide synergistic compositions comprising fungicidal compounds. Another object of this disclosure is to provide processes that use these synergistic compositions. The synergistic compositions are capable of preventing or curing, or both, diseases caused by fungi of the class Ascomycetes. In addition, the synergistic compositions have improved efficacy against the Ascomycete pathogens, including leaf blotch of wheat. In accordance with this disclosure, synergistic compositions are provided along with methods for their use.
[007] Some embodiments include a synergistic fungicidal mixture comprising a fungicidally effective amount of the compound of Formula I and fluxapyroxad.
Figure imgf000003_0001
[008] Some embodiments include a mixture of the compound of Formula I and fluxapyroxad in which the weight ratios of the compound of Formula I to fluxapyroxad is from about 1:1 to about 16:1. In some more particular embodiments, the weight ratio is from about 1 :2 to about 16:1, from about 1 :4 to about 16: 1, or from about 1:8 to 16:1. In other more particular embodiments, the weight ratio is from about 1:1 to about 8:1, from about 1:1 to about 4: 1 , or about 1 : 1 to about 1 :2.
[009] Some embodiments include a mixture of the compound of Formula I and fluxapyroxad in which the weight ratios of the compound of Formula I to fluxapyroxad includes ratios selected from the group of ratios consisting of: about 1:1, about 1:2, about 1:3, about 1:4, about 1:5, about 1:6, about 1:7, about 1:8, about 1:9, about 1:10, about 1:11, about 1:12, about 1:13, about 1:14, about 1:16, about 2:1, about 3:1, about 4:1, about 5:1, about 6:1, about 7:1, about 8:1, about 9:1, about 10:1, about 11:1, about 12:1, about 13:1, about 14:1, and about 16: 1, or within any range defined between any two of the foregoing values. [0010] Some embodiments include a mixture wherein the ratio of the compound of
Formula I to fluxapyroxad is about 1 to about 1. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 2. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 3. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 4. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 5. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 6. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 7. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 8. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 9. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 10. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 11. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 12. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 13. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 14. Some embodiments include a mixture wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 16. Still other
embodiments include a fungicidal composition comprising a fungicidally effective amount of the fungicidal mixture and an agriculturally acceptable adjuvant or carrier.
[0011] Yet other embodiments include methods of treating a plant, comprising the step of: applying a fungicidally effective amount of a mixture that includes the compound of Formula 1 and fluxapyroxad to a surface selected from at least one surface selected from the group of surfaces consisting of: at least one portion of a plant, soil adjacent to a plant, soil in contact with a plant, seeds, and equipment used in contact with a plant or a surface adjacent to a plant. In some embodiments, the fungicidally effective amount of the mixture is applied in the range of about 30 grams/hectare (g/ha) to about 200 g/ha of fluxapyroxad and about 35 g/ha to about 300 g/ha of the compound of Formula 1.
Detailed Description [0012] The present disclosure concerns a synergistic fungicidal mixture comprising a fungicidally effective amount of (a) the compound of Formula I, (35,,65',7R,8R)-8-benzyl-3- (3-((isobutyryloxy)methoxy)-4-methoxypicolinamido)-6-methyl-4,9-dioxo-l,5-dioxonan-7-yl isobutyrate, and (b) fluxapyroxad, 3-(difluoromethyl)-l-methyl-N-(3',4',5'-trifluorobiphenyl- 2-yl)pyrazole-4-carboxamide. [0013] The compound of Formula I is described in US Patent No.6,861,390 (which is incorporated herein by reference in its entirety).
Figure imgf000005_0001
[0014] Fluxapyroxad is described in The e-Pesticide Manual, Version 5.2, 2011. The structure of fluxapyroxad is as follows:
Figure imgf000005_0002
[0015] In the composition described herein, the weight ratios of the compound of Formula I to fluxapyroxad at which the fungicidal effect is synergistic includes ratios in the ranges of about 1:1, about 1:2, about 1:3, about 1:4, about 1:5, about 1:6, about 1:7, about 1:8, about 1:9, about 1:10, about 1:11, about 1:12, about 1:13, about 1:14, about 1:16, about 2:1, about 3:1, about 4:1, about 5:1, about 6:1, about 7:1, about 8:1, about 9:1, about 10:1, about 11:1, about 12:1, about 13:1, about 14:1, and about 16:1. Unless clearly noted or clearly implied otherwise, the term "about", as used herein, refers to a range of plus or minus 10%, e.g., about 1 includes the range of values from 0.9 to 1.1.
[0016] The rate at which the synergistic composition is applied will depend upon the particular type of fungus to be controlled, the degree of control required and the timing and method of application. In general, the composition of the disclosure can be applied at an application rate of between about 50 grams per hectare (g/ha) and about 1500 g/ha based on the total amount of active ingredients in the composition. In other embodiments, the composition of the disclosure can be applied at an application rate of between about 65 grams per hectare (g/ha) and about 500 g/ha based on the total amount of active ingredients in the composition. Fluxapyroxad is applied at a rate between about 30 g/ha and about 200 g/ha and the compound of Formula I is applied at a rate between about 35 g/ha and about 300 g/ha.
[0017] The components of the synergistic mixture of the present disclosure can be applied either separately or as part of a multipart fungicidal system. The synergistic mixture of the present disclosure can be applied in conjunction with one or more other fungicides to control a wider variety of undesirable diseases. When used in conjunction with other fungicide(s), the presently claimed compounds may be formulated with the other
fungicide(s), tank mixed with the other fungicide(s) or applied sequentially with the other fungicide(s). Such other fungicides may include (RS)-N-(3,5-dichlorophenyl)-2- (methoxymethyl)-succinimide, 1 ,2-dichloropropane, 1 ,3-dichloro- 1, 1,3,3 -tetrafluoroacetone hydrate, l-chloro-2,4-dinitronap/zthalene, 1 -chloro-2-nitropropane, 2-(2-heptadecyl-2- imidazolin-l-yl)ethanol, 2,3-dihydro-5-phenyl-l,4-dithi-ine 1 , 1 ,4,4-tetraoxide, 2- methoxyethylmercury acetate, 2-methoxyethylmercury chloride, 2-methoxyethylmercury silicate, 3-(4-chlorophenyl)-5-methylrhodanine, 4-(2-nitroprop-l-enyl)phenyl thiocyanateme, N-3, 5-dichlorophenyl-succinimide, N-3-nitrophenylitaconimide, 2-(thiocyanatomethylthio)- benzothiazole, (3-ethoxypropyl)mercury bromide, 2-methoxyemylmercury chloride, 2- phenylpheno/, 8-hydroxyquinoline sulfate, 8-phenylmercurioxyquinoline, acibenzolar, acibenzolar-S-methyl, acypetacs, acypetacs-copper, acypetacs-zinc, albendazole, aldimorph, allicin, allyl alcohol, ametoctradin, amisulbrom, amobam, Ampelomyces quisqualis, ampropylfos, anilazine, antimycin, asomate, aureofungin, azaconazole, azithiram, azoxystrobin, Bacillus subtilis, Bacillus subtilis strain QST713, barium polysulfide, Bayer 32394, benalaxyl, benalaxyl-M, benquinox, benodanil, benomyl, bentalurow, benthiavalicwb, benthiavalicarb-isopropyl, benthiazole, benzamacril, benzamacril-isobutyl, benzamorf, benzohydroxamic acid, benzovindiflupyr, benzylaminobenzene-sulfonate (BABS) salt, berberine, berberine chloride, bethoxazin, bicarbonates, bifujunzhi, binapacryl, biphenyl, bismerthiazol, bis(methylmercury) sulfate, bis(tributyltin) oxide, bitertanol, bithionol, bixafen, blasticidin-S, borax, Bordeaux mixture, boscalid, bromothalonil, bromuconazole, bupirimate, Burgundy mixture, buthiobate, butylamine, cadmium calcium copper zinc chromate sulfate, calcium polysulfide, Candida oleophila, captafol, captan, carbamorph, carbendazim, carbendazim benzenesulfonate, carbendazim sulfite, carboxin, carpropamid, carvacrol, carvone, CECA, C/zeshunt mixture, chinomethionat, chitosan, chlazafenone, chlobenthiazone, chloraniformethan, chloranil, chlorfenazole, chlorodinitronaphthalenes, chlorquinox, chloroneb, chloropicrin, chlorothalonil, chlozolinate, climbazole, clotrimazole, Coniothyrium minitans, copper acetate, copper bis(3-phenylsalicylate), copper carbonate, basic, copper hydroxide, copper naphthenate, copper octanoate, copper oleate, copper oxychloride, copper silicate, copper sulfate, copper sulfate (tribasic), copper zinc chromate, coumoxystrobin, cresol, cufraneb, cupric hydrazinium sulfate, cuprobam, cuprous oxide, cyazofamid, cyclafuramid, cycloheximide, cyflufenamid, cymoxanil, cypendazole, cyproconazole, cyprodinil, cyprofuram, dazomet, dazomet-sodium, DBCP, debacarb, decafentin, dehydroacetic acid, diammonium ethylenebis-(dithiocarbamate), dichlofluanid, dichlone, dichloran, dichlorophen, dichlozoline, diclobutrazol, diclocymet, diclomezine, diclomezine-sodium, diethofencarb, diethyl pyrocarbonate, difenoconazole, difenzoquat ion, diflumetorim, dimetachlone, dimethirimol, dimethomorph, dimoxystrobin, dingjunezuo, diniconazole, diniconazole-M, dinobuton, dinocap, dinocap-4, dinocap-6, dinocton, dinopenton, dinosulfon, dinoterbon, diphenylamine, dipyrithione, disulfiram, ditalimfos, dithianon, dithioether, DNOC, DNOC-ammonium, DNOC-potassium, DNOC-sodium, dodemorph, dodemorph acetate, dodicin, dodicin hydrochloride, dodicin-sodium, dodine, dodine free base, drazoxolon, EBP, edifenphos, enestrobin, enestroburin, enoxastrobin, epoxiconazole, ESBP, etaconazole, etem, ethaboxam, ethirim, ethirimol, ethoxyquin, ethirimol, ethylmercury 2,3-dihydroxypropyl mercaptide, ethylmercury acetate, ethylmercury bromide, ethylmercury chloride, ethylmercury phosphate, etridiazole, famoxadone, fenamidone, fenaminosulf, fenaminstrobin, fenapanil, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenitropan, fenjuntong, fenoxanil, fenpiclonil, fenpropidin, fenpropimorph, fenpyrazamine, fentin, fentin acetate, fentin chloride, fentin hydroxide, ferbam, ferimzone, fluazinam, fludioxonil, flufenoxystrobin, flumetover, flumorph, fluopicolide, fluopyram, fluoroimide, fluotrimazole, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, fluthiacet-methyl, flutianil, flutolanil, flutriafol, folpet, formaldehyde, fosetyl, fosetyl- aluminium, fuberidazole, furalaxyl, furametpyr, furcarbanil, furconazole, furconazole-cis, furfural, furmecyclox, furophanate, Fusarium oxysporum, Gliocladium spp., glyodine, griseofulvin, guazatine, guazatine acetates, GY-81, halacrinate, Hercules 3944,
hexachlorobenzene, hexachlorobutadiem, hexachlorophem, hexaconazole, hexylthiofos, huanjunzuo, hydrargaphen, hymexazol, ICIA0858, imazalil, imazalil nitrate, imazalil sulfate, imibenconazole, iminoctadine, iminoctadine triacetate, iminoctadine tris(albesilate), inezin, iodocarb, iodomethane, ipconazole, ipfenpyrazolone, iprobenfos, iprodione, iprovalicarb, isopamphos, isoprothiolane, isopyrazam, isotianil, isovaledione, jiaxiangjunzhi,
kasugamycin, kasugamycin hydrochloride hydrate, kejunlin, kresoxim-methyl, laminarin, lvdingjunzhi, mancopper, mancozeb, mandipropamid, maneb, mebenil, mecarbinzid, mefenoxam, mepanipyrim, mepronil, meptyl-dinocap, mercuric chloride, mercuric oxide, mercurous chloride, metalaxyl, metalaxyl-M, metam, metam-ammonium, metam-potassium, metam-sodium, metazoxolon, metconazole, methasulfocarb, methfuroxam, methyl bromide, methyl iodide, methyl isothiocyanate, methylmercury benzoate, methylmercury
dicyandiamide, methylmercury pentachlorophenoxide, metiram, metominostrobin, metrafenone, metsulfovax, mildiomycin, milneb, moroxydine, moroxydine hydrochloride, mucochloric anhydride, myclobutanil, myclozolin, N-ethylmercurio-4-toluenesulfonanilide, N-(ethylmercury)-p-toluenesulphonanilide, nabam, natamycin, nickel
bis(dimethyldithiocarbamate), nitrostyrene, nitrothal-isopropyl, nuarimol, OCH, octhilinone, ofurace, oleic acid (fatty acids), orysastrobin, osthol, oxadixyl, oxathiapiprolin, oxine-copper, oxpoconazole fumarate, oxycarboxin, parinol, pefurazoate, penconazole, pencycuron, penflufen, pentachlorophenol, pentachlorophenyl laurate, penthiopyrad, phenamacril, phenylmercuriurea, phenylmercury acetate, phenylmercury chloride, phenylmercury derivative of pyrocatechol, phenylmercury dimethyldithiocarbamate, phenylmercury nitrate, phenylmercury salicylate, Phlebiopsis gigantea, phosdiphen, phosphonic acid, phthalide, picoxystrobin, piperalin, polycarbamate, polyoxin B, polyoxins, polyoxorim, polyoxorim- zinc, potassium azide, potassium bicarbonate, potassium hydroxyquinoline sulfate, potassium polysulfide, potassium thiocyanate, probenazole, prochloraz, prochloraz-manganese, procymidone, propamidine, propamidine dihydrochloride, propamocarb, propamocarb hydrochloride, propiconazole, propineb, proquinazid, prothiocarb, prothiocarb hydrochloride, prothioconazole, pyracarbolid, pyraclostrobin, pyrametostrobin, pyraoxystrobin, pyrazophos, pyribencarb, pyributicarb, pyridinitril, pyrifenox, pyrimethanil, pyriofenone, pyrisoxazole, pyroquilon, pyroxychlor, pyroxyfur, quinacetol, quinacetol sulfate, quinazamid,
quinoclamine, quinconazole, quinoxyfen, quintozene, rabenzazole, Reynoutria sachalinensis extract, saisentong, salicylanilide, santonin, sedaxane, silthiofam, simeconazole, sodium 2- phenylphenoxide, sodium azide, sodium bicarbonate, sodmm orthophenylphenoxide, sodium pentachlorophenoxide, sodium polysulfide, spiroxamine, Streptomyces griseoviridis , streptomycin, streptomycin sesquisulfate, SSF-109, sulfur, sultropen, SYP-Z048, tar oils, tebuconazole, tebufloquin, tecloftalam, tecnazene, tecoram, tetraconazole, thiabendazole, thiadifluor, thicyofen, thifluzamide, thiochlorfenphim, thiodiazole-copper, thiomersal, thiophanate, thiophanate-methyl, thioquinox, thiram, tiadinil, tioxymid, tolclofos-methyl, tolylfluanid, tolylmercury acetate, triadimefon, triadimenol, triamiphos, triarimol, triazbutil, triazoxide, tributyltin oxide, trichlamide, triclopyricarb, Trichoderma spp., tricyclazole, tridemorph, trifloxystrobin, triflumizole, triforine, triticonazole, uniconazole, uniconazole-P, urbacid, validamycz'w, va/z ewalate, valiphenal, vangard, vinclozolin, xiwojunan, zarilamid, zineb, zinc naphthenate, zinc thiazole, ziram, and zoxamide, and any combinations thereof.
[0018] The compositions described herein are preferably applied in the form of a formulation comprising a composition of (a) the compound of Formula I and (b)
fluxapyroxad, together with a phytologically acceptable carrier.
[0019] Concentrated formulations can be dispersed in water, or another liquid, for application, or formulations can be dust-like or granular, which can then be applied without further treatment. The formulations are prepared according to procedures which are conventional in the agricultural chemical art, but which are novel and important because of the presence therein of a synergistic composition.
[0020] The formulations that are applied most often are aqueous suspensions or emulsions. Either such water-soluble, water suspendable, or emulsifiable formulations are solids, usually known as wettable powders, or liquids, usually known as emulsifiable concentrates, aqueous suspensions, or suspension concentrates. The present disclosure contemplates all vehicles by which the synergistic compositions can be formulated for delivery and use as a fungicide.
[0021 ] As will be readily appreciated, any material to which these synergistic compositions can be added may be used, provided they yield the desired utility without significant interference with the activity of these synergistic compositions as antifungal agents.
[0022] Wettable powders, which may be compacted to form water dispersible granules, comprise an intimate mixture of the synergistic composition, a carrier and agriculturally acceptable surfactants. The concentration of the synergistic composition in the wettable powder is usually from about 10% to about 90% by weight, more preferably about 25% to about 75% by weight, based on the total weight of the formulation. In the preparation of wettable powder formulations, the synergistic composition can be compounded with any of the finely divided solids, such as prophyllite, talc, chalk, gypsum, Fuller's earth, bentonite, attapulgite, starch, casein, gluten, montmorillonite clays, diatomaceous earths, purified silicates or the like. In such operations, the finely divided carrier is ground or mixed with the synergistic composition in a volatile organic solvent. Effective surfactants, comprising from about 0.5% to about 10% by weight of the wettable powder, include sulfonated lignins, naphthalenesulfonates, alkylbenzenesulfonates, alkyl sulfates, and non-ionic surfactants, such as ethylene oxide adducts of alkyl phenols.
[0023] Emulsifiable concentrates of the synergistic composition comprise a convenient concentration, such as from about 10% to about 50% by weight, in a suitable liquid, based on the total weight of the emulsifiable concentrate formulation. The components of the synergistic compositions, jointly or separately, are dissolved in a carrier, which is either a water miscible solvent or a mixture of water- immiscible organic solvents, and emulsifiers. The concentrates may be diluted with water and oil to form spray mixtures in the form of oil-in-water emulsions. Useful organic solvents include aromatics, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, such as, for example, terpenic solvents, including rosin derivatives, aliphatic ketones, such as cyclohexanone, and complex alcohols, such as 2- ethoxyethanol.
[0024] Emulsifiers which can be advantageously employed herein can be readily determined by those skilled in the art and include various nonionic, anionic, cationic and amphoteric emulsifiers, or a blend of two or more emulsifiers. Examples of nonionic emulsifiers useful in preparing the emulsifiable concentrates include the polyalkylene glycol ethers and condensation products of alkyl and aryl phenols, aliphatic alcohols, aliphatic amines or fatty acids with ethylene oxide, propylene oxides such as the ethoxylated alkyl phenols and carboxylic esters solubilized with the polyol or polyoxyalkylene. Cationic emulsifiers include quaternary ammonium compounds and fatty amine salts. Anionic emulsifiers include the oil-soluble salts (e.g., calcium) of alkylaryl sulfonic acids, oil soluble salts or sulfated polyglycol ethers and appropriate salts of phosphated polyglycol ether.
[0025] Representative organic liquids which can be employed in preparing the emulsifiable concentrates of the present disclosure are the aromatic liquids such as xylene, propyl benzene fractions, or mixed naphthalene fractions, mineral oils, substituted aromatic organic liquids such as dioctyl phthalate, kerosene, dialkyl amides of various fatty acids, particularly the dimethyl amides of fatty glycols and glycol derivatives such as the w-butyl ether, ethyl ether or methyl ether of diethylene glycol, and the methyl ether of triethylene glycol. Mixtures of two or more organic liquids are also often suitably employed in the preparation of the emulsifiable concentrate. The preferred organic liquids are xylene, and propyl benzene fractions, with xylene being most preferred. The surface-active dispersing agents are usually employed in liquid formulations and in the amount of from 0.1 to 20 percent by weight of the combined weight of the dispersing agent with the synergistic compositions. The formulations can also contain other compatible additives, for example, plant growth regulators and other biologically active compounds used in agriculture.
[0026] Aqueous suspensions comprise suspensions of one or more water-insoluble compounds, dispersed in an aqueous vehicle at a concentration in the range from about 5% to about 70% by weight, based on the total weight of the aqueous suspension formulation. Suspensions are prepared by finely grinding the components of the synergistic combination either together or separately, and vigorously mixing the ground material into a vehicle comprised of water and surfactants chosen from the same types discussed above. Other ingredients, such as inorganic salts and synthetic or natural gums, may also be added to increase the density and viscosity of the aqueous vehicle. It is often most effective to grind and mix at the same time by preparing the aqueous mixture and homogenizing it in an implement such as a sand mill, ball mill, or piston-type homogenizer.
[0027] The synergistic composition may also be applied as a granular formulation, which is particularly useful for applications to the soil. Granular formulations usually contain from about 0.5% to about 10% by weight of the compounds, based on the total weight of the granular formulation, dispersed in a carrier which consists entirely or in large part of coarsely divided attapulgite, bentonite, diatomite, clay or a similar inexpensive substance. Such formulations are usually prepared by dissolving the synergistic composition in a suitable solvent and applying it to a granular carrier which has been preformed to the appropriate particle size, in the range of from about 0.5 to about 3 mm. Such formulations may also be prepared by making a dough or paste of the carrier and the synergistic composition, and crushing and drying to obtain the desired granular particle.
[0028] Dusts containing the synergistic composition are prepared simply by intimately mixing the synergistic composition in powdered form with a suitable dusty agricultural carrier, such as, for example, kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% by weight of the synergistic composition/carrier combination.
[0029] The formulations may contain agriculturally acceptable adjuvant surfactants to enhance deposition, wetting and penetration of the synergistic composition onto the target crop and organism. These adjuvant surfactants may optionally be employed as a component of the formulation or as a tank mix. The amount of adjuvant surfactant will vary from 0.01 percent to 1.0 percent volume/volume (v/v) based on a spray -volume of water, preferably 0.05 to 0.5 percent. Suitable adjuvant surfactants include ethoxylated nonyl phenols, ethoxylated synthetic or natural alcohols, salts of the esters or sulfosuccinic acids, ethoxylated organosilicones, ethoxylated fatty amines and blends of surfactants with mineral or vegetable oils.
[0030] The formulations may optionally include combinations that can comprise at least 1% by weight of one or more of the synergistic compositions with another pesticidal compound. Such additional pesticidal compounds may be fungicides, insecticides, nematocides, miticides, arthropodicides, bactericides or combinations thereof that are compatible with the synergistic compositions of the present disclosure in the medium selected for application, and not antagonistic to the activity of the present compounds. Accordingly, in such embodiments the other pesticidal compound is employed as a supplemental toxicant for the same or for a different pesticidal use. The pesticidal compound and the synergistic composition can generally be mixed together in a weight ratio of from 1 : 100 to 100: 1.
[0031] The present disclosure includes within its scope methods for the control or prevention of fungal attack. These methods comprise applying to the fungus or the area adjacent to the the fungus, or to a plant or area adjacent to a plant in which the infestation is to be prevented (for example applying to wheat or barley plants), a fungicidally effective amount of the synergistic composition. The synergistic composition is suitable for treatment of various plants at fungicidal levels, while exhibiting low phytotoxicity. The synergistic composition is useful in a protectant or eradicant fashion. The synergistic composition is applied by any of a variety of known techniques, either as the synergistic composition or as a formulation comprising the synergistic composition. For example, the synergistic
compositions may be applied to the roots, seeds or foliage of plants for the control of various fungi, without damaging the commercial value of the plants. The synergistic composition is applied in the form of any of the generally used formulation types, for example, as solutions, dusts, wettable powders, flowable concentrates, or emulsifiable concentrates. These materials are conveniently applied in various known fashions.
[0032] The synergistic composition has been found to have significant fungicidal effect particularly for agricultural use. The synergistic composition is particularly effective for use with agricultural crops and horticultural plants, or with wood, paint, leather or carpet backing.
[0033] In particular, the synergistic composition is effective in controlling a variety of undesirable fungi that infect useful plant crops. The synergistic composition can be used against a variety of Ascomycete and Basidiomycete fungi, including for example the following representative fungi species: wheat brown rust (Puccinia reconduct; Bayer code PUCCRT); stripe rust of wheat (Puccinia striiformis; Bayer code PUCCST); leaf blotch of wheat (Mycosphaerella graminicola; anamorph: Septoria tritici; Bayer code SEPTTR); glume blotch of wheat (Leptosphaeria nodorum; Bayer code LEPTNO; anamorph:
Stagonospora nodorum) and black sigatoka disease of banana (Mycosphaerella fljiensis; BAYER code MYCOFI). It will be understood by those in the art that the efficacy of the synergistic compositions for one or more of the foregoing fungi establishes the general utility of the synergistic compositions as fungicides.
[0034] The synergistic compositions have a broad range of efficacy as a fungicide.
The exact amount of the synergistic composition to be applied is dependent not only on the relative amounts of the components, but also on the particular action desired, the fungal species to be controlled, and the stage of growth thereof, as well as the part of the plant or other product to be contacted with the synergistic composition. Thus, formulations containing the synergistic composition may not be equally effective at similar concentrations or against the same fungal species.
[0035] The synergistic compositions are effective in use with plants in a disease inhibiting and phytologically acceptable amount. The term "disease inhibiting and phytologically acceptable amount" refers to an amount of the synergistic composition that kills or inhibits the plant disease for which control is desired, but is not significantly toxic to the plant. The exact concentration of synergistic composition required varies with the fungal disease to be controlled, the type of formulation employed, the method of application, the particular plant species, climate conditions, and the like.
[0036] The present compositions can be applied to fungi or the area adjacent to the fungus, or a plant or area adjacent to the plant, by the use of conventional ground sprayers, granule applicators, and by other conventional means known to those skilled in the art.
[003 ] The following examples are provided to further illustrate the disclosure. They are not meant to be construed as limiting the disclosure.
Examples
[0038] Representative synergistic interactions, including application rates employed and resulting disease control of wheat brown rust and wheat leaf blotch is presented in Table 1.
[0039] For the mixture studies with the compound of Formula I: Treatments consisted of fungicides, including the compound of Formula I and fluxapyroxad. Technical grades of materials were dissolved in acetone to make stock solutions, which were then used to perform 4-fold dilutions in acetone for each individual fungicide component or for the two-way mixture. Desired fungicide rates were obtained after mixing dilutions with 9 volumes of water containing 1 10 parts per million (ppm) Triton X-100. The fungicide solutions (20 milliliters (mL)) were applied to 12 pots of plants using an automated booth sprayer, which utilized two 6218-1/4 JAUPM spray nozzles operating at 20 pounds per square inch (psi) set at opposing angles to cover both leaf surfaces. All sprayed plants were allowed to air dry prior to further handling. Control plants were sprayed in the same manner with a solvent blank.
[0040] Evaluation of Curative and Protectant Activity of Fungicide Mixtures vs. Leaf
Blotch of Wheat (Mycosphaerella graminicola anamorph: Septoria tritici: Bayer code: SEPTTR).
[0041] Wheat plants (variety Yuma) were grown from seed in a greenhouse in plastic pots with a surface area of 27.5 square centimeters (cm2) containing 50% mineral soil/50% soil-less Metro mix, with 8 - 12 seedlings per pot. The plants were utilized for testing when the first leaf was fully emerged, which typically occurred 7 - 8 days after planting. Test plants were inoculated with an aqueous spore suspension of Septoria tritici either (a) 3 days prior to fungicide treatments (3 -day curative test, 3 DC) or (b) 1 day after fungicide treatments (1-day protectant test, 1DP). After inoculation the plants were placed in a dew room from 1 - 3 days to allow for infection to occur. The plants were then placed in the greenhouse for symptom development to occur, which in the case of SEPTTR typically required 25 - 30 days.
[0042] Evaluation of Curative Activity of Fungicide Mixtures vs. Wheat Brown Rust
(Puccinia recondita: Bayer code: PUCCRT).
[0043] Yuma wheat seedlings were grown as described above and inoculated with an aqueous spore suspension of Puccinia recondita 3 days prior to fungicide treatment (3DC). After inoculation, plants were placed in a dew room for 1 day to allow for infection to occur. The plants were then placed in the greenhouse for symptom development to occur, which in the case of PUCCRT typically required 7 - 10 days.
[0044] When disease severity reached 50 - 100% on the control plants, infection levels were assessed on treated plants visually and scored on a scale of 0 to 100 percent. The percentage of disease control was then calculated using the ratio of disease on treated plants relative to control plants.
[0045] The Colby equation was used to determine the fungicidal effects expected from the mixtures. (See Colby, S. R. Calculation of the synergistic and antagonistic response of herbicide combinations. Weeds 1967, 15, 20 - 22.)
[0046] The following equation was used to calculate the expected activity of mixtures containing two active ingredients, A and B:
[0047] Expected = A + B - (A x B/100)
[0048] A = observed efficacy of active component A at the same concentration as used in the mixture;
[0049] B = observed efficacy of active component B at the same concentration as used in the mixture.
The treatments that were evaluated, the application rates employed, the pathogens evaluated, and resulting diseases in both the treated and the control plants are presented in Table 1. [00501 Table 1 : Synergistic interactions of compound I and fluxapyroxad in 1 -day protectant (1DP) Septoria tritici (SEPTTR) and 3 -day curative Puccinia reconduct
(PUCCRT) tests.
Figure imgf000015_0001
Figure imgf000016_0001
%DC Obs= Percent disease control observed %DC Exp= Percent disease control expected

Claims

WHAT IS CLAIMED:
1. A synergistic fungicidal mixture comprising a fungicidally effective amount of the compound of Formula I, (3S,6S,7R,8R)-8-benzyl-3-(3-((isobutyryloxy)methoxy)-4- methoxypicolinamido)-6-methyl-4,9-dioxo- l,5-dioxonan-7-yl isobutyrate, and fluxapyroxad.
Figure imgf000017_0001
2. The mixture of Claim 1 in which the weight ratio of the compound of Formula I to fluxapyroxad is from about 1 : 1 to about 16: 1.
3. The mixture of Claim 1 , wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 1.
4. The mixture of Claim 1 , wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 2.
5. The mixture of Claim I, wherein the ratio of the compound of Formula 1 1 to fluxapyroxad is about 1 to about 3.
6. The mixture of Claim 1 , wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 4.
7. The mixture of Claim 1 , wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 5.
8. The mixture of Claim 1 , wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 6.
9. The mixture of Claim 1 , wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 7.
10. The mixture of Claim 1, wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 8.
11. The mixture of Claim 1, wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 9.
12. The mixture of Claim 1, wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 10.
13. The mixture of Claim 1, wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 11.
14. The mixture of Claim 1, wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 12.
15. The mixture of Claim 1, wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 13.
16. The mixture of Claim 1, wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 14.
17. The mixture of Claim 1, wherein the ratio of the compound of Formula I to fluxapyroxad is about 1 to about 16.
18. A fungicidal composition comprising a fungicidally effective amount of the fungicidal mixture of Claim 1 and an agriculturally acceptable adjuvant or carrier.
19. A method of treating a plant, comprising the step of: Applying a fungicidally effective amount of a mixture that includes the compound of Formula 1 and fluxapyroxad to a surface selected from at least one surface selected from the group of surfaces consisting of: at least one portion of a plant, soil adjacent to a plant, soil in contact with a plant, seeds, and equipment used in contact with a plant or a surface adjacent to a plant.
20. The method according to claim 19, wherein the fungicidally effective amount of the mixture applied in the range of about 30 g/ha to about 200 g/ha of fluxapyroxad and about 35 g/ha to about 300 g/ha of the compound of Formula 1.
PCT/US2013/077537 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals WO2014105842A1 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
AU2013370491A AU2013370491B2 (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals
NZ708979A NZ708979A (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals
BR112015015351A BR112015015351B8 (en) 2012-12-28 2013-12-23 SYNERGIC FUNGICIDAL MIXTURE, FUNGICIDAL COMPOSITION, AND METHOD FOR TREATMENT OF A PLANT
ES13867094.8T ES2666144T3 (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals
JP2015550742A JP6352302B2 (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixture for fungal control in cereals
PL13867094T PL2938191T3 (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals
EP13867094.8A EP2938191B1 (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals
RU2015131103A RU2650402C2 (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals
CN201380068403.3A CN104883884B (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for the fungus control in cereal
DK13867094.8T DK2938191T3 (en) 2012-12-28 2013-12-23 SYNERGISTIC FUNGICIDE MIXTURES FOR FERTILIZER IN GRAIN PLANTS
CA2894515A CA2894515C (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures comprising (3s, 6s, 7r, 8r)-8-benzyl-3-(3-((isobutyryloxy)methoxy)-4-methoxypicolinamido)-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl isobutyrate and fluxapyroxad for fungal control in cereals
LTEP13867094.8T LT2938191T (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals
KR1020157020048A KR102148190B1 (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals
MX2015008442A MX2015008442A (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals.
UAA201507547A UA114661C2 (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals
CR20150304A CR20150304A (en) 2012-12-28 2015-06-09 SYNERGIC FUNGICIDE BLENDS FOR FUNCTIONAL CONTROL IN CEREALS
ZA2015/04334A ZA201504334B (en) 2012-12-28 2015-06-15 Synergistic fungicidal mixtures for fungal control in cereals
IL239560A IL239560B (en) 2012-12-28 2015-06-21 Synergistic fungicidal mixtures for fungal control in cereals
PH12015501475A PH12015501475A1 (en) 2012-12-28 2015-06-26 Synergistic fungicidal mixtures for fungal control in cereals
HK16103306.5A HK1215356A1 (en) 2012-12-28 2016-03-22 Synergistic fungicidal mixtures for fungal control in cereals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261747094P 2012-12-28 2012-12-28
US61/747,094 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014105842A1 true WO2014105842A1 (en) 2014-07-03

Family

ID=51017870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/077537 WO2014105842A1 (en) 2012-12-28 2013-12-23 Synergistic fungicidal mixtures for fungal control in cereals

Country Status (29)

Country Link
US (1) US10172354B2 (en)
EP (1) EP2938191B1 (en)
JP (1) JP6352302B2 (en)
KR (1) KR102148190B1 (en)
CN (1) CN104883884B (en)
AR (1) AR094305A1 (en)
AU (1) AU2013370491B2 (en)
BR (1) BR112015015351B8 (en)
CA (1) CA2894515C (en)
CL (1) CL2015001841A1 (en)
CR (1) CR20150304A (en)
DK (1) DK2938191T3 (en)
EC (1) ECSP15032758A (en)
ES (1) ES2666144T3 (en)
HK (1) HK1215356A1 (en)
HU (1) HUE038806T2 (en)
IL (1) IL239560B (en)
LT (1) LT2938191T (en)
MX (1) MX2015008442A (en)
NZ (1) NZ708979A (en)
PH (1) PH12015501475A1 (en)
PL (1) PL2938191T3 (en)
PT (1) PT2938191T (en)
RU (1) RU2650402C2 (en)
TW (2) TWI586275B (en)
UA (1) UA114661C2 (en)
UY (1) UY35247A (en)
WO (1) WO2014105842A1 (en)
ZA (1) ZA201504334B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005355A1 (en) * 2013-07-10 2015-01-15 Meiji Seikaファルマ株式会社 Synergistic plant disease-controlling composition comprising picolinic acid derivative
WO2016174042A1 (en) 2015-04-27 2016-11-03 BASF Agro B.V. Pesticidal compositions
EP3141118A1 (en) 2015-09-14 2017-03-15 Bayer CropScience AG Compound combination for controlling control phytopathogenic harmful fungi
KR20170099906A (en) * 2014-12-30 2017-09-01 다우 아그로사이언시즈 엘엘씨 Fungicidal compositions
EP3245872A1 (en) 2016-05-20 2017-11-22 BASF Agro B.V. Pesticidal compositions

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3178321T (en) 2009-10-07 2019-08-01 Dow Agrosciences Llc Synergistic fungicidal mixtures of epoxiconazole for fungal control in cereals
ES2666144T3 (en) 2012-12-28 2018-05-03 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
WO2014105817A1 (en) 2012-12-31 2014-07-03 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
WO2015100184A1 (en) 2013-12-26 2015-07-02 Dow Agrosciences Llc Use of macrocyclic picolinamides as fungicides
EP3089587B1 (en) 2013-12-31 2019-07-24 Dow AgroSciences LLC Synergistic fungicidal mixtures for fungal control in cereals
US20150322051A1 (en) 2014-05-06 2015-11-12 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
CA2954167C (en) 2014-07-08 2023-01-03 Dow Agrosciences Llc Process for the preparation of 4-alkoxy-3-hydroxypicolinic acids
BR112017000169A2 (en) 2014-07-08 2017-10-31 Dow Agrosciences Llc macrocyclic picolinamides as fungicides
ES2726927T3 (en) 2014-07-08 2019-10-10 Dow Agrosciences Llc Process for the preparation of 3-hydroxypicolinic acids
WO2016007531A1 (en) 2014-07-08 2016-01-14 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
US20160037774A1 (en) * 2014-08-08 2016-02-11 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
CA2972034A1 (en) 2014-12-30 2016-07-07 Dow Agrosciences Llc Picolinamides with fungicidal activity
BR112017013608B8 (en) 2014-12-30 2022-08-23 Dow Agrosciences Llc PICOLINAMIDES AS FUNGICIDES
CA2972403A1 (en) 2014-12-30 2016-07-07 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
BR122019026066B1 (en) 2014-12-30 2022-01-18 Dow Agrosciences Llc PICOLINAMIDE COMPOUNDS
WO2016109288A1 (en) 2014-12-30 2016-07-07 Dow Agrosciences Llc Use of picolinamide compounds with fungicidal activity
CN104569271B (en) * 2015-01-09 2016-03-09 韩超 Organophosphorous pesticides-tandem mass spectrum the detection method of pyrazoles germifuge in grape wine
WO2017094576A1 (en) * 2015-12-01 2017-06-08 住友化学株式会社 Plant disease control composition, and plant disease control method
WO2018045010A1 (en) 2016-08-30 2018-03-08 Dow Agrosciences Llc Pyrido-1,3-oxazine-2,4-dione compounds with fungicidal activity
US10111432B2 (en) 2016-08-30 2018-10-30 Dow Agrosciences Llc Picolinamide N-oxide compounds with fungicidal activity
WO2018044991A1 (en) 2016-08-30 2018-03-08 Dow Agrosciences Llc Thiopicolinamide compounds with fungicidal activity
WO2018044996A1 (en) 2016-08-30 2018-03-08 Dow Agrosciences Llc Picolinamides as fungicides
BR102018000183B1 (en) 2017-01-05 2023-04-25 Dow Agrosciences Llc PICOLINAMIDES, COMPOSITION FOR CONTROLLING A FUNGAL PATHOGEN, AND METHOD FOR CONTROLLING AND PREVENTING A FUNGAL ATTACK ON A PLANT
TWI774760B (en) * 2017-05-02 2022-08-21 美商科迪華農業科技有限責任公司 Synergistic mixtures for fungal control in vegetables
TWI774761B (en) 2017-05-02 2022-08-21 美商科迪華農業科技有限責任公司 Synergistic mixtures for fungal control in cereals
WO2018204438A1 (en) 2017-05-02 2018-11-08 Dow Agrosciences Llc Use of an acyclic picolinamide compound as a fungicide for fungal diseases on turfgrasses
TW201842851A (en) * 2017-05-02 2018-12-16 美商陶氏農業科學公司 Synergistic mixtures for fungal control in cereals
BR102019004480B1 (en) 2018-03-08 2023-03-28 Dow Agrosciences Llc PICOLINAMIDES AS FUNGICIDES
EP3866597A4 (en) 2018-10-15 2022-06-29 Corteva Agriscience LLC Methods for sythesis of oxypicolinamides
CN112136819B (en) * 2019-06-26 2024-04-09 海利尔药业集团股份有限公司 Sterilization composition containing fenpicoxamid and penflufen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082162A1 (en) * 2009-10-07 2011-04-07 Dow Agrosciences Llc Synergistic fungicidal composition containing 5-fluorocytosine for fungal control in cereals
US20120245031A1 (en) * 2009-12-08 2012-09-27 Basf Se Pesticidal Mixtures

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051173A (en) 1974-04-02 1977-09-27 Merck Patent Gesellschaft Mit Beschrankter Haftung Phenoxyalkanol derivatives
US4588735A (en) 1983-02-28 1986-05-13 Chevron Research Company Fungicidal (trihalophenoxy or trihalophenthio) alkylaminoalkyl pyridines and pyrroles
FR2649699A1 (en) 1989-07-13 1991-01-18 Rhone Poulenc Agrochimie Fungicidal 4-phenylpyrimidines
IL91418A (en) 1988-09-01 1997-11-20 Rhone Poulenc Agrochimie (hetero) cyclic amide derivatives, process for their preparation and fungicidal compositions containing them
JPH0626884A (en) 1992-07-07 1994-02-04 San Tesuto Kk Position detection device
ES2120523T3 (en) 1993-02-25 1998-11-01 Goldschmidt Ag Th ORGANOPOLISILOXANO-POLIETERES AND THEIR USE AS STABLE RETICULATION AGENTS TO HYDROLYSIS IN AQUEOUS SYSTEMS.
US5466823A (en) 1993-11-30 1995-11-14 G.D. Searle & Co. Substituted pyrazolyl benzenesulfonamides
CA2276945C (en) 1993-11-30 2006-08-01 G.D. Searle & Co. Tricyclic-substituted pyrazolyl benzenesulfonamides and pharmaceutical compositions thereof
DE4434637A1 (en) 1994-09-28 1996-04-04 Hoechst Schering Agrevo Gmbh Substituted pyridines, processes for their preparation and their use as pesticides and fungicides
JPH11510788A (en) 1995-05-24 1999-09-21 ノバルティス アクチェンゲゼルシャフト Pyridine fungicide
AU7710596A (en) 1995-11-29 1997-06-19 Nihon Nohyaku Co., Ltd. Phenylalanine derivatives, optically active substances, salts or coordination compounds thereof, and their use as fungicides
JP2000509047A (en) 1996-04-30 2000-07-18 ヘキスト・アクチエンゲゼルシヤフト 3-Alkoxypyridine-2-carboxamide esters, their preparation and their use as medicaments
JPH1045747A (en) 1996-08-06 1998-02-17 Pola Chem Ind Inc Antimycin-a group compound mixture
JPH1053583A (en) 1996-08-09 1998-02-24 Mitsubishi Chem Corp Pyrazole compound and antimicrobial, insecticidal and acaricidal agent containing the same as active ingredient
GB9622636D0 (en) 1996-10-30 1997-01-08 Scotia Holdings Plc Presentation of bioactives
ATE242962T1 (en) 1997-03-03 2003-07-15 Rohm & Haas PESTICIDE COMPOSITIONS
AU8887898A (en) 1997-08-29 1999-03-22 Meiji Seika Kaisha Ltd. Rice blast control agent and wheat scab control agent
TW491686B (en) 1997-12-18 2002-06-21 Basf Ag Fungicidal mixtures based on amide compounds and tetrachloroisophthalonitrile
US7250389B1 (en) 1998-02-06 2007-07-31 Meiji Seika Kaisha, Ltd. Antifungal compound and process for producing the same
CA2353627C (en) 1998-11-04 2010-10-26 Keiichi Imamura Picolinamide derivative and harmful organism control agent comprising said picolinamide derivative as active component
WO2000076979A1 (en) 1999-06-09 2000-12-21 Bayer Aktiengesellschaft Pyridine carboxamides and their use as plant protection agents
EP1516875A1 (en) 1999-07-20 2005-03-23 Dow AgroSciences LLC Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
US20020177578A1 (en) 1999-07-20 2002-11-28 Ricks Michael J. Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
US6355660B1 (en) 1999-07-20 2002-03-12 Dow Agrosciences Llc Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
WO2001005769A2 (en) 1999-07-20 2001-01-25 Dow Agrosciences Llc Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
US20050239873A1 (en) 1999-08-20 2005-10-27 Fred Hutchinson Cancer Research Center 2 Methoxy antimycin a derivatives and methods of use
EP1204643B1 (en) 1999-08-20 2008-06-04 Dow AgroSciences LLC Fungicidal heterocyclic aromatic amides and their compositions, methods of use and preparation
JP2003507474A (en) 1999-08-20 2003-02-25 フレッド ハッチンソン キャンサー リサーチ センター Compositions and methods for modulating apoptosis in cells overexpressing a bcl-2 family member protein
FR2803592A1 (en) 2000-01-06 2001-07-13 Aventis Cropscience Sa NOVEL DERIVATIVES OF 3-HYDROXYPICOLINIC ACID, PROCESS FOR THEIR PREPARATION AND FUNGICIDAL COMPOSITIONS CONTAINING SAME
US20020119979A1 (en) 2000-10-17 2002-08-29 Degenhardt Charles Raymond Acyclic compounds and methods for treating multidrug resistance
EP1275653A1 (en) 2001-07-10 2003-01-15 Bayer CropScience S.A. Oxazolopyridines and their use as fungicides
FR2827286A1 (en) 2001-07-11 2003-01-17 Aventis Cropscience Sa New 3,4-disubstituted pyridine-2-carboxylic acid derivatives, useful as broad-spectrum plant fungicides and medicinal antifungal agents
KR20040018538A (en) 2001-07-31 2004-03-03 다우 아그로사이언시즈 엘엘씨 Reductive cleavage of the exocyclic ester of UK-2A or its derivatives and products formed therefrom
AU2002341989A1 (en) 2001-10-05 2003-04-22 Dow Agrosciences Llc Process to produce derivatives from uk-2a derivatives
AR037328A1 (en) * 2001-10-23 2004-11-03 Dow Agrosciences Llc COMPOSITE OF [7-BENCIL-2,6-DIOXO-1,5-DIOXONAN-3-IL] -4-METOXIPIRIDIN-2-CARBOXAMIDE, COMPOSITION THAT UNDERSTANDS AND METHOD THAT USES IT
WO2004105490A1 (en) 2003-05-28 2004-12-09 Basf Aktiengesellschaft Fungicidal mixtures for controlling rice pathogens
WO2005014569A1 (en) 2003-07-17 2005-02-17 Akzo Nobel N.V. 1,2,4,-trioxepanes as precursors for lactones
DE10347090A1 (en) 2003-10-10 2005-05-04 Bayer Cropscience Ag Synergistic fungicidal drug combinations
JP4781352B2 (en) 2004-06-04 2011-09-28 ゼノポート,インコーポレーテッド Levodopaprodrug and compositions thereof and uses thereof
GB0419694D0 (en) 2004-09-06 2004-10-06 Givaudan Sa Anti-bacterial compounds
BRPI0607008A2 (en) 2005-02-04 2009-08-04 Mitsui Chemicals Inc plant disease prevention composition and disease prevention method
BRPI0622303B1 (en) 2005-04-18 2016-03-01 Basf Se cp copolymers in the form of a polymer obtained by radical polymerization of at least three different monoethylenically unsaturated m monomers
WO2007054835A2 (en) 2005-06-21 2007-05-18 Cheminova Agro A/S Synergistic combination of a glyphosate herbicide and a triazole fungicide
AP2008004381A0 (en) 2005-08-05 2008-04-30 Basf Se Fungicidal mixtures comprising substituted 1-methlpyrazol-4-ylcarboxanillides
US8008231B2 (en) 2005-10-13 2011-08-30 Momentive Performance Materials Inc. Extreme environment surfactant compositions comprising hydrolysis resistant organomodified disiloxane surfactants
US7829592B2 (en) 2006-12-21 2010-11-09 Xenoport, Inc. Catechol protected levodopa diester prodrugs, compositions, and methods of use
WO2008105964A1 (en) 2007-02-26 2008-09-04 Stepan Company Adjuvants for agricultural applications
AU2008303528B2 (en) 2007-09-26 2013-05-23 Basf Se Ternary fungicidal compositions comprising boscalid and chlorothalonil
EP2296467B1 (en) 2008-05-30 2015-11-04 Dow AgroSciences LLC Methods to control qoi-resistant fungal pathogens
EP2346872B1 (en) 2008-10-08 2015-11-25 Bristol-Myers Squibb Company Azolotriazinone melanin concentrating hormone receptor-1 antagonists
TWI504598B (en) 2009-03-20 2015-10-21 Onyx Therapeutics Inc Crystalline tripeptide epoxy ketone protease inhibitors
US8465562B2 (en) 2009-04-14 2013-06-18 Indiana University Research And Technology Corporation Scalable biomass reactor and method
CN101530104B (en) 2009-04-21 2013-07-31 上虞颖泰精细化工有限公司 Herbicide composition containing sulfonylurea, pyridine and cyhalofop-butyl and use thereof
US9006259B2 (en) 2009-08-07 2015-04-14 Dow Agrosciences Llc N1-sulfonyl-5-fluoropyrimidinone derivatives
UA112284C2 (en) 2009-08-07 2016-08-25 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі 5-fluoro-pyrimidinone derivatives
US8470840B2 (en) * 2009-09-01 2013-06-25 Dow Agrosciences, Llc. Synergistic fungicidal compositions containing a 5-fluoropyrimidine derivative for fungal control in cereals
WO2011037968A1 (en) 2009-09-22 2011-03-31 Valent U.S.A, Corporation Metconazole compositions and methods of use
UA109416C2 (en) 2009-10-06 2015-08-25 STABLE EMULSIONS OF OIL-IN-WATER TYPE
PT3178321T (en) * 2009-10-07 2019-08-01 Dow Agrosciences Llc Synergistic fungicidal mixtures of epoxiconazole for fungal control in cereals
BR112012020509B1 (en) 2010-02-26 2018-01-23 Nippon Soda Co., Ltd. TETRAZOLYLXIMAX AND FUNGICIDE DERIVATIVE
PL2563771T3 (en) 2010-04-24 2016-06-30 Viamet Pharmaceuticals Nc Inc Metalloenzyme inhibitor compounds
WO2011159067A2 (en) 2010-06-18 2011-12-22 Green Cross Corporation Thiazole derivatives as sglt2 inhibitors and pharmaceutical composition comprising same
UA111593C2 (en) 2010-07-07 2016-05-25 Баєр Інтеллекчуел Проперті Гмбх ANTRANILIC ACID AMIDES IN COMBINATION WITH FUNGICIDES
US20130130898A1 (en) * 2010-08-03 2013-05-23 Markus Gewehr Fungicidal Compositions
HUE039384T2 (en) 2010-08-05 2018-12-28 Bayer Cropscience Ag Active compound combinations comprising prothioconazole and fluxapyroxad for controlling corn diseases
UA111167C2 (en) 2010-08-05 2016-04-11 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі PESTICIDIC COMPOSITIONS OF MECHANIZED PARTICLES WITH STRENGTH
JP2012036143A (en) * 2010-08-10 2012-02-23 Sumitomo Chemical Co Ltd Plant disease control composition and application for same
JP2014503504A (en) 2010-11-24 2014-02-13 ステマージ バイオテクノロジー エスエー Inhibitors of the activity of complex III of the mitochondrial electron transport system and use thereof for treating diseases
JP6013032B2 (en) * 2011-07-08 2016-10-25 石原産業株式会社 Disinfectant composition and method for controlling plant diseases
EA201491386A1 (en) 2012-01-20 2014-11-28 Вайамет Фармасьютикалс, Инк. METALLIC ENZYME INHIBITING COMPOUNDS
TWI568721B (en) 2012-02-01 2017-02-01 杜邦股份有限公司 Fungicidal pyrazole mixtures
WO2013169662A2 (en) 2012-05-07 2013-11-14 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
RU2014149194A (en) 2012-05-07 2016-06-27 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи MACROCYCLIC PICOLINAMIDES AS FUNGICIDES
JP6129300B2 (en) 2012-05-07 2017-05-17 ダウ アグロサイエンシィズ エルエルシー Macrocyclic picolinamides as fungicides
WO2013169658A1 (en) 2012-05-07 2013-11-14 Dow Agrosciences Llc Use of pro-fungicides of uk-2a for control of soybean rust
AU2013259790B2 (en) 2012-05-07 2016-09-08 Corteva Agriscience Llc Use of pro-fungicides of UK-2A for control of Black Sigatoka
US8900625B2 (en) 2012-12-15 2014-12-02 Nexmed Holdings, Inc. Antimicrobial compounds and methods of use
EP3689142A1 (en) 2012-12-28 2020-08-05 Adama Makhteshim Ltd. 1-(substituted-benzoyl)-5-fluoro-4-imino-3-methyl-3,4-dihydropyrimidin-2(1h)-one derivatives
EP2945634A4 (en) 2012-12-28 2016-05-25 Dow Agrosciences Llc N-(substituted)-5-fluoro-4-imino-3-methyl-2-oxo-3,4-dihydropyrimidine-1 (2h)-carboxamides derivatives
CL2015001862A1 (en) 2012-12-28 2015-10-02 Dow Agrosciences Llc Derivatives of n- (substitutes) -5-fluoro-4-imino-3-methyl-2-oxo-3, 4-dihydropyrimidon-1 (2h) -carboxylate
CN110003118A (en) 2012-12-28 2019-07-12 阿达玛马克西姆股份有限公司 The method for preparing carboxylic ester derivative
ES2666144T3 (en) 2012-12-28 2018-05-03 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
US9750248B2 (en) 2012-12-31 2017-09-05 Dow Agrosciences Llc Synergistic fungicidal compositions
WO2014105817A1 (en) 2012-12-31 2014-07-03 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
CN105745205A (en) 2013-10-01 2016-07-06 美国陶氏益农公司 Use of macrocyclic picolinamides as fungicides
US9549555B2 (en) 2013-12-26 2017-01-24 Dow Agrosciences Llc Macrocyclic picolinamide compounds with fungicidal activity
EP3089587B1 (en) 2013-12-31 2019-07-24 Dow AgroSciences LLC Synergistic fungicidal mixtures for fungal control in cereals
US20150322051A1 (en) 2014-05-06 2015-11-12 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
WO2016007525A1 (en) 2014-07-08 2016-01-14 Dow Agrosciences Llc Macrocyclic picolinamides as a seed treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110082162A1 (en) * 2009-10-07 2011-04-07 Dow Agrosciences Llc Synergistic fungicidal composition containing 5-fluorocytosine for fungal control in cereals
US20120245031A1 (en) * 2009-12-08 2012-09-27 Basf Se Pesticidal Mixtures

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"BASF new fungicide Xemium got full approval in EU.", AGRONEWS., 18 July 2012 (2012-07-18), XP055268171, Retrieved from the Internet <URL:http://news.agropages.com/News/NewsDetail---7386.htm> *
KISSLING: "News Release. Crop Protection pipeline value jumps to E 2.4 billion.", BASF., 10 March 2010 (2010-03-10), pages 4PP, XP008180104, Retrieved from the Internet <URL:http://www.agro.basf.com/agr/AP-Internet/en/content/news_room/news/basf-crop-protection-pipeline-value> *
See also references of EP2938191A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005355A1 (en) * 2013-07-10 2015-01-15 Meiji Seikaファルマ株式会社 Synergistic plant disease-controlling composition comprising picolinic acid derivative
JPWO2015005355A1 (en) * 2013-07-10 2017-03-02 Meiji Seikaファルマ株式会社 Synergistic plant disease control composition comprising a picolinic acid derivative
KR20170099906A (en) * 2014-12-30 2017-09-01 다우 아그로사이언시즈 엘엘씨 Fungicidal compositions
KR20170100548A (en) * 2014-12-30 2017-09-04 다우 아그로사이언시즈 엘엘씨 Fungicidal compositions
KR20170102243A (en) * 2014-12-30 2017-09-08 다우 아그로사이언시즈 엘엘씨 Fungicidal compositions
JP2018500366A (en) * 2014-12-30 2018-01-11 ダウ アグロサイエンシィズ エルエルシー Fungicidal composition
KR102534494B1 (en) 2014-12-30 2023-05-22 코르테바 애그리사이언스 엘엘씨 Fungicidal compositions
KR102536683B1 (en) 2014-12-30 2023-05-25 코르테바 애그리사이언스 엘엘씨 Fungicidal compositions
KR102542978B1 (en) 2014-12-30 2023-06-14 코르테바 애그리사이언스 엘엘씨 Fungicidal compositions
WO2016174042A1 (en) 2015-04-27 2016-11-03 BASF Agro B.V. Pesticidal compositions
EP3141118A1 (en) 2015-09-14 2017-03-15 Bayer CropScience AG Compound combination for controlling control phytopathogenic harmful fungi
EP3245872A1 (en) 2016-05-20 2017-11-22 BASF Agro B.V. Pesticidal compositions

Also Published As

Publication number Publication date
ES2666144T3 (en) 2018-05-03
IL239560A0 (en) 2015-08-31
PL2938191T3 (en) 2018-07-31
CR20150304A (en) 2015-08-24
IL239560B (en) 2020-05-31
HUE038806T2 (en) 2018-11-28
CL2015001841A1 (en) 2015-10-02
PT2938191T (en) 2018-05-09
BR112015015351A2 (en) 2017-07-11
CN104883884A (en) 2015-09-02
CN104883884B (en) 2018-03-23
JP6352302B2 (en) 2018-07-04
EP2938191A1 (en) 2015-11-04
RU2015131103A (en) 2017-01-31
PH12015501475A1 (en) 2016-02-01
EP2938191A4 (en) 2016-07-27
UY35247A (en) 2014-07-31
TWI586275B (en) 2017-06-11
CA2894515A1 (en) 2014-07-03
TWI660671B (en) 2019-06-01
US20140187587A1 (en) 2014-07-03
TW201427597A (en) 2014-07-16
CA2894515C (en) 2021-10-19
AR094305A1 (en) 2015-07-22
JP2016505606A (en) 2016-02-25
BR112015015351B1 (en) 2020-06-16
NZ708979A (en) 2020-01-31
BR112015015351B8 (en) 2022-08-23
ZA201504334B (en) 2016-09-28
AU2013370491B2 (en) 2016-10-06
DK2938191T3 (en) 2018-05-07
KR102148190B1 (en) 2020-08-26
LT2938191T (en) 2018-05-10
US10172354B2 (en) 2019-01-08
ECSP15032758A (en) 2015-11-30
UA114661C2 (en) 2017-07-10
EP2938191B1 (en) 2018-01-31
AU2013370491A1 (en) 2015-07-02
RU2650402C2 (en) 2018-04-11
KR20150100865A (en) 2015-09-02
HK1215356A1 (en) 2016-08-26
MX2015008442A (en) 2015-09-23
TW201725987A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
AU2013370491B2 (en) Synergistic fungicidal mixtures for fungal control in cereals
EP3089587B1 (en) Synergistic fungicidal mixtures for fungal control in cereals
AU2013369670B2 (en) Synergistic fungicidal compositions
DK2485592T3 (en) Synergistic fungicidal compounds for mushrooms fight in cereals
CA2776562A1 (en) Synergistic fungicidal composition containing 5-fluorocytosine for fungal control in cereals
CA2772611A1 (en) Synergistic fungicidal compositions containing a 5-fluoropyrimidine derivative for fungal control in cereals
DK2938193T3 (en) SYNERGISTIC FUNGICIDE COMPOSITIONS
AU2016381080B2 (en) Synergistic fungicidal mixtures for fungal control of rice blast
CA2821240A1 (en) Synergistic fungicidal interactions of 5-fluorocytosine and other fungicides
CA2821391A1 (en) Synergistic fungicidal interactions of aminopyrimidines and other fungicides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2894515

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: CR2015-000304

Country of ref document: CR

WWE Wipo information: entry into national phase

Ref document number: 239560

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2015550742

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12015501475

Country of ref document: PH

Ref document number: MX/A/2015/008442

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013370491

Country of ref document: AU

Date of ref document: 20131223

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015015351

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2013867094

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157020048

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15171751

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: A201507547

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2015131103

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201504621

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 112015015351

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150625