WO2014105442A1 - Transducer assembly for an imaging device - Google Patents
Transducer assembly for an imaging device Download PDFInfo
- Publication number
- WO2014105442A1 WO2014105442A1 PCT/US2013/074683 US2013074683W WO2014105442A1 WO 2014105442 A1 WO2014105442 A1 WO 2014105442A1 US 2013074683 W US2013074683 W US 2013074683W WO 2014105442 A1 WO2014105442 A1 WO 2014105442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- transducer
- transducer assembly
- bonding
- present disclosure
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title description 38
- 239000000758 substrate Substances 0.000 claims abstract description 144
- 238000002604 ultrasonography Methods 0.000 description 31
- 238000002608 intravascular ultrasound Methods 0.000 description 26
- 230000000712 assembly Effects 0.000 description 7
- 238000000429 assembly Methods 0.000 description 7
- 238000004377 microelectronic Methods 0.000 description 5
- 238000012285 ultrasound imaging Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000002592 echocardiography Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005476 soldering Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- CCEKAJIANROZEO-UHFFFAOYSA-N sulfluramid Chemical group CCNS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CCEKAJIANROZEO-UHFFFAOYSA-N 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
- A61B8/4494—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
- B06B1/02—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
- B06B1/06—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
- B06B1/0644—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using a single piezoelectric element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
- H01L2224/05553—Shape in top view being rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48135—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/48137—Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
- H01L2224/48465—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4899—Auxiliary members for wire connectors, e.g. flow-barriers, reinforcing structures, spacers, alignment aids
- H01L2224/48991—Auxiliary members for wire connectors, e.g. flow-barriers, reinforcing structures, spacers, alignment aids being formed on the semiconductor or solid-state body to be connected
- H01L2224/48992—Reinforcing structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49175—Parallel arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/85909—Post-treatment of the connector or wire bonding area
- H01L2224/85951—Forming additional members, e.g. for reinforcing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
Definitions
- the present disclosure relates generally to ultrasound imaging, and in particular, to a piezoelectric micromachined ultrasound transducer (PMUT) assembly.
- PMUT piezoelectric micromachined ultrasound transducer
- Intravascular ultrasound (IVUS) imaging is widely used in interventional cardiology as a diagnostic tool for assessing a vessel, such as an artery, within the human body to determine the need for treatment, to guide intervention, and/or to assess its effectiveness.
- An IVUS imaging system uses ultrasound echoes to form a cross-sectional image of the vessel of interest.
- IVUS imaging uses a transducer on an IVUS catheter that both emits ultrasound signals (waves) and receives the reflected ultrasound signals.
- the emitted ultrasound signals (often referred to as ultrasound pulses) pass easily through most tissues and blood, but they are partially reflected as the result of impedance variation arising from tissue structures (such as the various layers of the vessel wall), red blood cells, and other features of interest.
- the IVUS imaging system which is connected to the IVUS catheter by way of a patient interface module, processes the received ultrasound signals (often referred to as ultrasound echoes) to produce a cross-sectional image of the vessel where the IVUS catheter is located.
- IVUS catheters typically employ one or more transducers to transmit ultrasound signals and receive reflected ultrasound signals.
- conventional methods and apparatuses for providing transducer assemblies may be limited and may lack flexibility. Therefore, while conventional methods and apparatuses for providing transducer assemblies are generally adequate for their intended purposes, they have not been entirely satisfactory in every aspect.
- Ultrasounds transducers are used in Intravascular ultrasound (IVUS) imaging to help assess medical conditions inside a human body.
- the ultrasound transducer is implemented as a part of transducer assembly, which may also include an Integrated Circuit (IC) device.
- IC Integrated Circuit
- the present disclosure is directed to various types of transducer assemblies that offer improved flexibility and versatility that conventional transducer assemblies often lack.
- the ultrasound transducer the IC device of the transducer assembly of the present disclosure are implemented on separate substrates and are electrically coupled together through a flex circuit, wire bonds, flip chip bonding, or soldering or welding.
- the transducer assembly includes: a flex circuit; a first substrate that includes a piezoelectric micro- machined ultrasonic transducer (PMUT); and a second substrate that includes an Integrated Circuit (IC) device; wherein at least one of the first substrate and the second substrate is bonded to the flex circuit through wire bonding.
- PMUT piezoelectric micro- machined ultrasonic transducer
- IC Integrated Circuit
- the transducer assembly includes: a flex circuit; a first substrate that includes a piezoelectric micro-machined ultrasonic transducer (PMUT); and a second substrate that includes an Integrated Circuit (IC) device; wherein at least one of the first substrate and the second substrate is bonded to the flex circuit through flip-chip.
- PMUT piezoelectric micro-machined ultrasonic transducer
- IC Integrated Circuit
- the transducer assembly includes: a support substrate; a first substrate that includes a
- PMUT piezoelectric micro-machined ultrasonic transducer
- IC Integrated Circuit
- FIG. 1 is a schematic illustration of an intravascular ultrasound (IVUS) imaging system according to various aspects of the present disclosure.
- IVUS intravascular ultrasound
- FIGS. 2-9 are various diagrammatic top and cross-sectional views of different embodiments of the transducer assembly according to various aspects of the present disclosure.
- FIGS. lOA-lOC illustrate diagrammatic perspective views of an embodiment of a transducer assembly according to various aspects of the disclosure.
- FIG. 11 illustrates a diagrammatic cross-sectional view of an embodiment of a further embodiment of a transducer assembly.
- the present disclosure provides an ultrasound imaging system described in terms of cardiovascular imaging, however, it is understood that such description is not intended to be limited to this application, and that such imaging system can be utilized for imaging throughout the body.
- the illustrated ultrasound imaging system is a side looking intravascular imaging system, although transducers formed according to the present disclosure can be mounted in other orientations including forward looking.
- the imaging system is equally well suited to any application requiring imaging within a small cavity.
- An exemplary solid-state catheter uses an array of transducers (typically 64) distributed around a circumference of the catheter and connected to an electronic multiplexer circuit.
- the multiplexer circuit selects transducers from the array for transmitting ultrasound signals and receiving reflected ultrasound signals.
- the solid-state catheter can synthesize the effect of a mechanically scanned transducer element, but without moving parts.
- An exemplary rotational catheter includes a single transducer located at a tip of a flexible driveshaft that spins inside a sheath inserted into the vessel of interest.
- the transducer is typically oriented such that the ultrasound signals propagate generally perpendicular to an axis of the catheter.
- a fluid-filled (e.g., saline-filled) sheath protects the vessel tissue from the spinning transducer and driveshaft while permitting ultrasound signals to freely propagate from the transducer into the tissue and back.
- the transducer As the driveshaft rotates (for example, at 30 revolutions per second), the transducer is periodically excited with a high voltage pulse to emit a short burst of ultrasound.
- the ultrasound signals are emitted from the transducer, through the fluid-filled sheath and sheath wall, in a direction generally perpendicular to an axis of rotation of the driveshaft.
- the same transducer then listens for returning ultrasound signals reflected from various tissue structures, and the imaging system assembles a two dimensional image of the vessel cross- section from a sequence of several hundred of these ultrasound pulse/echo acquisition sequences occurring during a single revolution of the transducer.
- FIG. 1 is a schematic illustration of an ultrasound imaging system 100 according to various aspects of the present disclosure.
- the ultrasound imaging system 100 includes an intravascular ultrasound imaging system (IVUS).
- the IVUS imaging system 100 includes an IVUS catheter 102 coupled by a patient interface module (PIM) 104 to an IVUS control system 106.
- the control system 106 is coupled to a monitor 108 that displays an IVUS image (such as an image generated by the IVUS system 100).
- the IVUS catheter 102 is a rotational IVUS catheter, which may be similar to a Revolution® Rotational IVUS Imaging Catheter available from Volcano Corporation and/or rotational IVUS catheters disclosed in U.S. Patent No. 5,243,988 and U.S. Patent No. 5,546,948, both of which are incorporated herein by reference in their entirety.
- the catheter 102 includes an elongated, flexible catheter sheath 110 (having a proximal end portion 114 and a distal end portion 116) shaped and configured for insertion into a lumen of a blood vessel (not shown).
- a longitudinal axis LA of the catheter 102 extends between the proximal end portion 114 and the distal end portion 116.
- the catheter 102 is flexible such that it can adapt to the curvature of the blood vessel during use.
- the curved configuration illustrated in FIG. 1 is for exemplary purposes and in no way limits the manner in which the catheter 102 may curve in other embodiments.
- the catheter 102 may be configured to take on any desired straight or arcuate profile when in use.
- a rotating imaging core 112 extends within the sheath 110.
- the imaging core 112 has a proximal end portion 118 disposed within the proximal end portion 114 of the sheath 110 and a distal end portion 120 disposed within the distal end portion 116 of the sheath 110.
- the distal end portion 116 of the sheath 110 and the distal end portion 120 of the imaging core 112 are inserted into the vessel of interest during operation of the IVUS imaging system 100.
- the usable length of the catheter 102 (for example, the portion that can be inserted into a patient, specifically the vessel of interest) can be any suitable length and can be varied depending upon the application.
- the proximal end portion 114 of the sheath 110 and the proximal end portion 118 of the imaging core 112 are connected to the interface module 104.
- the proximal end portions 114, 118 are fitted with a catheter hub 124 that is removably connected to the interface module 104.
- the catheter hub 124 facilitates and supports a rotational interface that provides electrical and mechanical coupling between the catheter 102 and the interface module 104.
- the distal end portion 120 of the imaging core 112 includes a transducer assembly 122.
- the transducer assembly 122 is configured to be rotated (either by use of a motor or other rotary device) to obtain images of the vessel.
- the transducer assembly 122 can be of any suitable type for visualizing a vessel and, in particular, a stenosis in a vessel.
- the transducer assembly 122 includes a piezoelectric micromachined ultrasonic transducer ("PMUT") transducer and associated circuitry, such as an application- specific integrated circuit (ASIC).
- An exemplary PMUT used in IVUS catheters may include a polymer piezoelectric membrane, such as that disclosed in U.S. Patent No. 6,641,540, hereby incorporated by reference in its entirety.
- the PMUT transducer can provide greater than 100% bandwidth for optimum resolution in a radial direction, and a spherically-focused aperture for optimum azimuthal and elevation resolution.
- the transducer assembly 122 may also include a housing having the PMUT transducer and associated circuitry disposed therein, where the housing has an opening that ultrasound signals generated by the PMUT transducer travel through.
- the transducer assembly 122 includes an ultrasound transducer array (for example, arrays having 16, 32, 64, or 128 elements are utilized in some embodiments).
- the rotation of the imaging core 112 within the sheath 110 is controlled by the interface module 104, which provides user interface controls that can be manipulated by a user.
- the interface module 104 can receive, analyze, and/or display information received through the imaging core 112. It will be appreciated that any suitable functionality, controls, information processing and analysis, and display can be incorporated into the interface module 104.
- the interface module 104 receives data corresponding to ultrasound signals (echoes) detected by the imaging core 112 and forwards the received echo data to the control system 106. In an example, the interface module 104 performs preliminary processing of the echo data prior to transmitting the echo data to the control system 106. The interface module 104 may perform amplification, filtering, and/or aggregating of the echo data. The interface module 104 can also supply high- and low- voltage DC power to support operation of the catheter 102 including the circuitry within the transducer assembly 122.
- wires associated with the IVUS imaging system 100 extend from the control system 106 to the interface module 104 such that signals from the control system 106 can be communicated to the interface module 104 and/or visa versa. In some embodiments, the control system 106 communicates wirelessly with the interface module 104. Similarly, it is understood that, in some embodiments, wires associated with the IVUS imaging system 100 extend from the control system 106 to the monitor 108 such that signals from the control system 106 can be communicated to the monitor 108 and/or vice versa. In some embodiments, the control system 106 communicates wirelessly with the monitor 108.
- the transducer assembly 122 includes a miniature ultrasound transducer and associated electronic circuitry.
- the transducer and the circuitry may be formed separately and later electrically interconnected together as a part of the transducer assembly 122. According to the various aspects of the present disclosure, several different embodiments of the transducer assembly 122 will now be discussed in more detail below.
- the FTG. 2 is a simplified diagrammatic top view of one embodiment of the transducer assembly 122A of the present disclosure.
- the transducer assembly 122A includes a micro- component 200 and a micro-component 201.
- the micro- components 200-201 include micro-substrates and may thereafter be referred to as such. These micro-substrates have miniature dimensions, for example they may have a thickness ranging from about 75 microns (um) to about 600 um.
- the micro- components 200-201 may include dies or other miniature devices suitable for the growth or placement of microelectronic devices.
- An ultrasonic transducer 210 is formed on the micro-substrate 200.
- the ultrasonic transducer 210 has a small size and achieves a high resolution, so that it is well suited for intravascular imaging.
- the ultrasonic transducer 210 has a size on the order of tens or hundreds of microns, can operate in a frequency range between about 1 mega-Hertz (MHz) to about 135 MHz, and can provide sub 50 micron resolution while providing depth penetration of up to 10 millimeters (mm).
- the ultrasonic transducer 210 is also shaped in a manner to allow a developer to define a target focus area based on a deflection depth of a transducer aperture, thereby generating an image that is useful for defining vessel morphology, beyond the surface characteristics.
- the ultrasound transducer 210 is a piezoelectric micromachined ultrasound transducer (PMUT).
- the transducer 200 may include an alternative type of transducer. Additional details of the ultrasonic transducer 210 are described in Provisional U.S.
- the micro-substrate 201 contains micro-electronic circuitry for controlling and interacting with the transducer 210.
- such micro-electronic circuitry is implemented as an Application- Specific Integrated Circuit (ASIC) 220, where the micro-substrate 201 serves as a substrate for the ASIC 220.
- the ASIC 220 may be electrically coupled to the micro-substrate through conductive pads 230. It is understood that in other embodiments, the micro-substrate 201 itself may be an Integrated Circuit (IC) chip.
- IC Integrated Circuit
- the substrate 200 including the transducer 210 is electrically and mechanically coupled to the substrate 201 including the ASIC 220 through wire -bonding.
- the opposite distal ends of wire bonds (or bond wires) 225 are attached to bonding pads 230 on the substrate 200 and bonding pads 231 on the substrate 201, respectively.
- the bonding pads 230-231 are smaller than about 60 um x 60 um.
- the wire bonds 225 are electrically conductive and allow electrical communication to be established between the transducer 210 and the ASIC 220.
- the ASIC 220 can send electrical signals to, and/or receive electrical signals from, the transducer 210 to control and interact with the transducer 210.
- the wire bonds 225 are somewhat flexible and may allow the substrates 200 and 201 to be moved, rotated, or shifted with respect to one another to some degree.
- the bonding loops are smaller than about 300 um in height.
- the wire bonding is performed at temperatures less than about 70 degrees Celsius to avoid overheating the transducer 210 or the ASIC 220.
- FIGS. 3A-3B are simplified diagrammatic top and cross-sectional views, respectively, of another embodiment of the transducer assembly 122B of the present disclosure.
- the embodiment of the transducer assembly 122B shown in FIGS. 3A-3B is similar to the embodiment of the transducer assembly 122A shown in FIG. 2. Therefore, for reasons of consistency and clarity, similar components in these two embodiments are labeled the same.
- the transducer assembly 122B also includes a substrate 200 (having the transducer 210) that is bonded to a substrate 201 (having the ASIC 220) through wire bonds 225.
- a support substrate 240 (also referred to as a supporting backing component) is attached to the substrates 200 and 201. As shown in FIG. 3B, the support substrate 240 supports the bottom sides of the substrates 200-201. Alternatively stated, the substrates 201- 200 are disposed over or on the support substrate 240.
- the support substrate 240 provides mechanical strength and support for the substrates 200 and 201 disposed thereon.
- an opening or hole may be formed in the support substrate 240 to expose the transducer 210.
- FIG. 4B illustrates a bottom view of the transducer assembly 122B where an opening 260 (or hole) has been formed behind the transducer 210 in the back side of the support substrate 240.
- FIG. 4A is also provided alongside FIG. 4B, where FIG. 4A shows a simplified top view of the transducer assembly 122B to illustrate the positional placement of the opening 260 relative to the transducer 210.
- the support substrate 240 is a continuous piece with no openings or holes formed therein.
- FIG. 5 is a simplified diagrammatic cross-sectional view of another embodiment of the transducer assembly 122C of the present disclosure. To the extent that the transducer assembly 122C of FIG. 5 is similar to the transducer assembly 122A shown in FIG. 2, similar components in these two embodiments are labeled the same.
- the transducer assembly 122C also includes a substrate 200 (having the transducer 210, which is not shown in FIG. 5 for reasons of simplicity) that is bonded to a substrate 201 (having the ASIC 220, which is not shown in FIG. 5 for reasons of simplicity) through flip-chip bonding.
- a conductive bonding pad 270 of the substrate 200 is bonded to a conductive bonding pad 271 of the substrate 201.
- the bonding pads 270-271 also mechanically hold the substrates 200-201 together.
- FIG. 6 is a simplified diagrammatic cross-sectional view of another embodiment of the transducer assembly 122D of the present disclosure. To the extent that the transducer assembly 122D of FIG. 6 is similar to the transducer assembly 122A shown in FIG. 2, similar components in these two embodiments are labeled the same.
- the transducer assembly 122D includes a substrate 200 (having the transducer 210, which is not shown in FIG. 6 for reasons of simplicity), as well as a substrate 201 (having the ASIC 220, which is not shown in FIG. 6 for reasons of simplicity).
- the substrate 200 includes a conductive bonding pad 280
- the substrate 201 includes conductive bonding pads 281-282. Through these bonding pads 280-282, the substrates 200- 201 are bonded to a flex circuit 300 through flip-chip bonding.
- the flex circuit 300 includes conductive bonding pads 310-312, to which the bonding pads 280-282 are bonded, respectively.
- the flex circuit 300 is flexible and can be bent or "flexed" to conform to a desired shape.
- the flex circuit 300 itself may contain micro-electronic components and associated electrical routing, such as vias and metal lines (not shown herein for reasons of simplicity). Through the flex circuit 300, electrical communication between the transducer on the substrate 200 and the ASIC on the substrate 201 may be established.
- FIG. 7 is a simplified diagrammatic cross-sectional view of another embodiment of the transducer assembly 122E of the present disclosure. To the extent that the transducer assembly 122E of FIG. 7 is similar to the transducer assembly 122A shown in FIG. 2, similar components in these two embodiments are labeled the same.
- the transducer assembly 122E includes a substrate 200 (having the transducer 210, which is not shown in FIG. 7 for reasons of simplicity), as well as a substrate 201 (having the ASIC 220, which is not shown in FIG. 7 for reasons of simplicity).
- the substrate 200 includes a conductive bonding pad 320
- the substrate 201 includes conductive bonding pads 321-322. Through these bonding pads 320-322, the substrates 200- 201 are bonded to a flex circuit 300.
- the flex circuit 300 includes conductive bonding pads 330-332, to which the bonding pads 320-322 are bonded, respectively.
- the substrate 200 is bonded to the bonding pad 330 of the flex circuit 300 through a wire bond 340 (or bond wire), and the substrate 201 is bonded to the bonding pads 331-332 of the flex circuit 300 through the flip-chip technology.
- the substrate 200 may be bonded to the flex circuit 300 through flip-chip, and the substrate 201 may be bonded to the flex circuit 300 through wire bonding.
- both the substrate 200 and the substrate 201 may be bonded to the flex circuit 300 through wire bonding.
- the flex circuit 300 is flexible and can be bent or "flexed" to conform to a desired shape.
- the flex circuit 300 itself may contain micro-electronic components and associated electrical routing, such as vias and metal lines (not shown herein for reasons of simplicity). Through the flex circuit 300, electrical communication between the transducer on the substrate 200 and the ASIC on the substrate 201 may be established.
- FIGS. 8A-8D and 9A-9D illustrate simplified cross-sectional views of various embodiments of transducer assemblies, some of which may be similar to those discussed above with reference to FIGS. 1-7. To the extent that the transducer assemblies illustrated in FIGS. 8A-8D and 9A-9D are similar to the transducer assemblies discussed above with reference to FIGS. 1-7, similar components are labeled the same for reasons of consistency and clarity.
- the substrates 200 and 201 are coupled together through wire-bonding.
- the substrates 200 and 201 are coupled together through wire -bonding, and the substrate 201 is also coupled to the flex circuit 300 through flip-chip.
- the substrate 200 is coupled to the flex circuit 300 through wire bonding, and the substrate 201 is coupled to the flex circuit through flip-chip.
- the flex circuit 300 does not provide support to the substrate 200 in this embodiment.
- the substrate 200 is coupled to the flex circuit 300 through wire bonding, and the substrate 201 is coupled to the flex circuit through flip-chip.
- the flex circuit 300 does provide support to the substrate 200 in this embodiment.
- the substrates 200 and 201 are coupled together through flip-chip.
- the substrates 200 and 201 are both coupled to the flex circuit 300 through flip-chip.
- the substrates 200 and 201 are coupled together through wire-bonding, and they are both supported by a support substrate 240.
- the support substrate 240 in this embodiment does not have a through-hole.
- the substrates 200 and 201 are coupled together through wire -bonding, and they are both supported by a support substrate 240.
- the support substrate 240 in this embodiment does have a through-hole.
- FIGS. 10A, 10B, IOC illustrate diagrammatic perspective views of an embodiment of a transducer assembly 122F from different viewing angles according to various aspects of the present disclosure.
- the transducer assembly 122F of FIGS. lOA-lOC is similar to the transducer assembly 122A shown in FIG. 2, similar components in these two embodiments are labeled the same.
- the transducer assembly 122F includes a substrate 200 having the transducer 210, as well as a substrate 201 (having the ASIC 220, which is not shown in FIG. 7 for reasons of simplicity).
- the substrates 200-201 are electrically coupled together through wire bonding, i.e., by wire bonds 225.
- a hole or opening 350 is formed to expose the transducer 210 on the back side. This hole or opening 350 may also be referred to as a well.
- FIG. 11 illustrates a simplified diagrammatic cross-sectional view of an embodiment of an imaging core 400 that shows another embodiment of a transducer assembly, where the substrate having the transducer can be positioned at an angle with respect to the substrate having the ASIC.
- the substrate having the transducer is thereafter referred to as the MEMS 438
- the substrate having the ASIC is thereafter referred to as the ASIC.
- the imaging core 400 includes a MEMS 438 having a transducer 442 formed thereon and an ASIC 444 electrically coupled to the MEMS 438.
- the ASIC 444 and the MEMS 438 components are wire-bonded together, mounted to the transducer housing 416, and secured in place with epoxy 448 or other bonding agent to form an ASIC/MEMS hybrid assembly 446.
- the leads of the cable 434 are soldered or otherwise electrically coupled directly to the ASIC 444 in this embodiment.
- the MEMS component carrying the transducer can be mounted at an oblique angle with respect to the longitudinal axis of the housing 416 and imaging core 400 such that the ultrasound beam 430 propagates at an oblique angle with respect to a perpendicular to the central longitudinal axis of the imaging core.
- This tilt angle helps to diminish the sheath echoes that can reverberate in the space between the transducer and the catheter sheath 412, and it also facilitates Doppler color flow imaging as disclosed in Provisional U.S. Patent Application No. 61/646,080 titled "DEVICE AND SYSTEM FOR IMAGING AND BLOOD FLOW VELOCITY MEASUREMENT" (Attorney Docket No.
- the transducer assembly comprises: a first substrate that includes a piezoelectric micro-machined ultrasonic transducer (PMUT); and a second substrate that includes an Integrated Circuit (IC) device; wherein the first substrate and the second substrate are bonded together through wire bonding.
- PMUT piezoelectric micro-machined ultrasonic transducer
- IC Integrated Circuit
- the wire bonding is completed at temperatures below 70 C°. In some embodiments, the bonding pads are smaller than 60 um x 60 um.
- the bonding loops are 300 um or smaller in height
- the transducer assembly comprises: a flex circuit; a first substrate that includes a piezoelectric micro- machined ultrasonic transducer (PMUT); and a second substrate that includes an Integrated Circuit (IC) device; wherein at least one of the first substrate and the second substrate is bonded to the flex circuit through wire bonding.
- PMUT piezoelectric micro- machined ultrasonic transducer
- IC Integrated Circuit
- the wire bonding is completed at temperatures below 70 C°.
- the bonding pads are smaller than 60 um x 60 um.
- the bonding loops are 300 um or smaller in height.
- the transducer assembly comprises: a support substrate; a first substrate that includes a piezoelectric micro- machined ultrasonic transducer (PMUT); and a second substrate that includes an Integrated Circuit (IC) device; wherein the first substrate and the second substrate are each bonded to the support substrate, and wherein the first substrate and the second substrate are electrically coupled together through wire bonding.
- PMUT piezoelectric micro- machined ultrasonic transducer
- IC Integrated Circuit
- the wire bonding is completed at temperatures below 70 C°.
- the bonding pads are smaller than 60 um x 60 um.
- the bonding loops are 300 um or smaller in height.
- the transducer assembly comprises: a first substrate that includes a piezoelectric micro-machined ultrasonic transducer (PMUT); and a second substrate that includes an Integrated Circuit (IC) device; wherein the first substrate and the second substrate are bonded together through soldering or welding.
- PMUT piezoelectric micro-machined ultrasonic transducer
- IC Integrated Circuit
- the bonding pads are smaller than 60 um x 60 um.
- the transducer assembly comprises: a support substrate; a first substrate that includes a piezoelectric micro- machined ultrasonic transducer (PMUT); and a second substrate that includes an Integrated Circuit (IC) device; wherein the first substrate and the second substrate are each bonded to the support substrate, and wherein the first substrate and the second substrate are electrically coupled together through welding or soldering.
- the bonding pads are smaller than 60 um x 60 um.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Gynecology & Obstetrics (AREA)
- Mechanical Engineering (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015550442A JP2016508048A (en) | 2012-12-28 | 2013-12-12 | Transducer assembly for imaging apparatus |
CA2896515A CA2896515A1 (en) | 2012-12-28 | 2013-12-12 | Transducer assembly for an imaging device |
EP13868760.3A EP2939444A4 (en) | 2012-12-28 | 2013-12-12 | Transducer assembly for an imaging device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261747153P | 2012-12-28 | 2012-12-28 | |
US61/747,153 | 2012-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014105442A1 true WO2014105442A1 (en) | 2014-07-03 |
Family
ID=51021930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/074683 WO2014105442A1 (en) | 2012-12-28 | 2013-12-12 | Transducer assembly for an imaging device |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140257107A1 (en) |
EP (1) | EP2939444A4 (en) |
JP (1) | JP2016508048A (en) |
CA (1) | CA2896515A1 (en) |
WO (1) | WO2014105442A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107921477B (en) * | 2015-08-11 | 2020-04-10 | 皇家飞利浦有限公司 | Capacitive micromachined ultrasonic transducer with improved patient safety |
CN105411628A (en) * | 2015-12-31 | 2016-03-23 | 深圳开立生物医疗科技股份有限公司 | Intravascular ultrasound system |
EP3576630B1 (en) * | 2017-02-06 | 2021-06-16 | Koninklijke Philips N.V. | Intraluminal imaging device with wire interconnection for imaging assembly |
EP3530178A1 (en) * | 2018-02-27 | 2019-08-28 | Koninklijke Philips N.V. | A sensor arrangement for mounting on a guidewire or catheter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5368037A (en) * | 1993-02-01 | 1994-11-29 | Endosonics Corporation | Ultrasound catheter |
JP2003325526A (en) * | 2002-05-10 | 2003-11-18 | Olympus Optical Co Ltd | Ultrasound transducer and method for manufacturing the same |
US20090039738A1 (en) * | 2004-03-08 | 2009-02-12 | Angelsen Bjorn A J | High frequency ultrasound transducers based on ceramic films |
US20090309217A1 (en) * | 2006-06-26 | 2009-12-17 | Koninklijke Philips Electronics N.V. | Flip-chip interconnection with a small passivation layer opening |
US20110204456A1 (en) * | 2010-02-23 | 2011-08-25 | Avago Technologies Wireless Ip (Singapore) Pte. Ltd. | Packaged device with acoustic transducer and amplifier |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59141257A (en) * | 1983-02-01 | 1984-08-13 | Seiko Epson Corp | Mounting method of circuit block for watch |
US5160870A (en) * | 1990-06-25 | 1992-11-03 | Carson Paul L | Ultrasonic image sensing array and method |
US6645145B1 (en) * | 1998-11-19 | 2003-11-11 | Siemens Medical Solutions Usa, Inc. | Diagnostic medical ultrasound systems and transducers utilizing micro-mechanical components |
US20030006267A1 (en) * | 2001-06-14 | 2003-01-09 | Chen Kim H. | Room temperature gold wire bonding |
US6573113B1 (en) * | 2001-09-04 | 2003-06-03 | Lsi Logic Corporation | Integrated circuit having dedicated probe pads for use in testing densely patterned bonding pads |
US7211884B1 (en) * | 2002-01-28 | 2007-05-01 | Pacesetter, Inc. | Implantable medical device construction using a flexible substrate |
CN102670259A (en) * | 2006-11-03 | 2012-09-19 | 研究三角协会 | Enhanced ultrasonic imaging probe using flexural-mode piezoelectric transducer |
US7451651B2 (en) * | 2006-12-11 | 2008-11-18 | General Electric Company | Modular sensor assembly and methods of fabricating the same |
US7669751B2 (en) * | 2007-09-25 | 2010-03-02 | Silverbrook Research Pty Ltd | Method of forming low profile wire bonds between integrated circuits dies and printed circuit boards |
CN102197660B (en) * | 2008-11-04 | 2014-02-26 | 奥林巴斯医疗株式会社 | Acoustic oscillator and image generation device |
US8403856B2 (en) * | 2009-03-11 | 2013-03-26 | Volcano Corporation | Rotational intravascular ultrasound probe with an active spinning element |
GB0916480D0 (en) * | 2009-09-21 | 2009-10-28 | Univ Dundee | Wire bond free connection of high frequency piezoelectric ultrasound transducer arrays |
-
2013
- 2013-12-11 US US14/103,330 patent/US20140257107A1/en not_active Abandoned
- 2013-12-12 JP JP2015550442A patent/JP2016508048A/en not_active Withdrawn
- 2013-12-12 EP EP13868760.3A patent/EP2939444A4/en not_active Withdrawn
- 2013-12-12 WO PCT/US2013/074683 patent/WO2014105442A1/en active Application Filing
- 2013-12-12 CA CA2896515A patent/CA2896515A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5368037A (en) * | 1993-02-01 | 1994-11-29 | Endosonics Corporation | Ultrasound catheter |
JP2003325526A (en) * | 2002-05-10 | 2003-11-18 | Olympus Optical Co Ltd | Ultrasound transducer and method for manufacturing the same |
US20090039738A1 (en) * | 2004-03-08 | 2009-02-12 | Angelsen Bjorn A J | High frequency ultrasound transducers based on ceramic films |
US20090309217A1 (en) * | 2006-06-26 | 2009-12-17 | Koninklijke Philips Electronics N.V. | Flip-chip interconnection with a small passivation layer opening |
US20110204456A1 (en) * | 2010-02-23 | 2011-08-25 | Avago Technologies Wireless Ip (Singapore) Pte. Ltd. | Packaged device with acoustic transducer and amplifier |
Non-Patent Citations (1)
Title |
---|
See also references of EP2939444A4 * |
Also Published As
Publication number | Publication date |
---|---|
CA2896515A1 (en) | 2014-07-03 |
EP2939444A4 (en) | 2016-08-17 |
EP2939444A1 (en) | 2015-11-04 |
US20140257107A1 (en) | 2014-09-11 |
JP2016508048A (en) | 2016-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240115232A1 (en) | Catheter with integrated controller for imaging and pressure sensing | |
US20210282746A1 (en) | Intravascular imaging devices having a low reverberation housing and associated systems and methods | |
JP6211599B2 (en) | Ultrasound catheter for imaging and blood flow measurement | |
US20210059642A1 (en) | Intravascular ultrasound device with impedance matching structure | |
JP2019535382A (en) | Wireless intraluminal imaging device and system | |
US12097072B2 (en) | Interconnects for intravascular ultrasound (IVUS) devices | |
US9370337B2 (en) | Wirebonding fixture and casting mold | |
US20140257107A1 (en) | Transducer Assembly for an Imaging Device | |
US20140173888A1 (en) | Method and Apparatus for Coupling Micro-Components Together Using a Micro-Clip | |
US20140182100A1 (en) | Pre-Polarized Film Flex Circuit Based Ultrasonic Transducer | |
CN117917957A (en) | Intracavity ultrasound imaging assembly with electrical connections for multiple rows of transducer arrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13868760 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013868760 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013868760 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2896515 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2015550442 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |