WO2014104652A1 - Quantitative analysis method for molecular iodine contained in iodide compound - Google Patents

Quantitative analysis method for molecular iodine contained in iodide compound Download PDF

Info

Publication number
WO2014104652A1
WO2014104652A1 PCT/KR2013/011894 KR2013011894W WO2014104652A1 WO 2014104652 A1 WO2014104652 A1 WO 2014104652A1 KR 2013011894 W KR2013011894 W KR 2013011894W WO 2014104652 A1 WO2014104652 A1 WO 2014104652A1
Authority
WO
WIPO (PCT)
Prior art keywords
iodine
iodide
concentration
molecular iodine
iodide compound
Prior art date
Application number
PCT/KR2013/011894
Other languages
French (fr)
Korean (ko)
Inventor
류승원
차일훈
김종철
이지윤
김민정
이세호
Original Assignee
에스케이케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼주식회사 filed Critical 에스케이케미칼주식회사
Publication of WO2014104652A1 publication Critical patent/WO2014104652A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8675Evaluation, i.e. decoding of the signal into analytical information
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8859Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample inorganic compounds

Definitions

  • the present invention relates to a method for quantifying the molecular iodine (Iodine, 1 2 ) contained in the iodide compound. More specifically, the present invention relates to a method for quantitative determination of iodine in which trace amounts of molecular iodine and iodine anion are precisely measured among trace amounts of iodine present in the iodide compound.
  • the iodine titration method was limited to be measured when the molecular iodine content in the sample to the level of several hundred mg / kg (ppm). Therefore, when the iodine compound containing a small amount of molecular iodine in a few ppm level is quantified by the iodine titration method, there is a limit that the error is large and the accuracy is low and the reliability of the measurement result is not high.
  • the present invention is to provide a method for quantifying iodine which can precisely measure the content of each of molecular iodine and iodine anion in trace amounts of iodine contained in the iodide compound. [Measures of problem]
  • the present invention relates to an iodide compound containing molecular iodine (I 2 , Iodine) and a first solution in which sodium thiosulfate ( ⁇ 3 ⁇ 4) is reacted by ion chromatography, and the iodine ion ( ⁇ ) in the first solution is titrated. Measuring the first concentration of Iodide); An iodide compound containing molecular iodine (I 2 , Iodine) and a second solution in which water was reacted were titrated by ion chromatography to measure a second concentration of iodide ( ⁇ , Iodide) in the second solution.
  • the first solution obtained by reacting a iodide compound containing molecular iodine (12, Iodine) with sodium thiosulfate (Na 2 S 2 0 3 ) is titrated by ion chromatography, Measuring a first concentration of iodine ions (1— , Iodide) in the first solution; An iodide compound containing molecular iodine (1 2, Iodine) and a second solution that reacted with water were titrated by ion chromatography to measure the second concentration of iodine ions ( ⁇ , Iodide) in the second solution. step ; And a method of quantitating molecular iodine, wherein the value obtained by subtracting the second concentration from the first concentration is obtained as the content of molecular iodine contained in the iodide compound.
  • the iodide ion (1-, Iodide) The first and second terms of the concentration is to be used to identify the concentration of the iodine, an iodine compound Chemistry ions produced by banung the particular material, the analysis banung sequence or other restrictions It doesn't work.
  • the present inventors have recognized the limitations of the detection limits of several hundred ppm, which the conventional iodine titration method has, and in order to solve this problem, the present inventors have studied a method for quantifying trace amount of molecular iodine (I 2 , Iodine) contained in an iodide compound Proceeding, the solution in which the iodide compound and the specific compound are reacted is ionized. Analysis by chromatography confirmed that the content of molecular iodine present in trace amounts in the iodide compound can be measured, and the invention was completed.
  • iodine coexists in the state of molecular iodine (1 2 , Iodine) and iodine negative ( ⁇ Iodide), there is a limit to measure each content precisely, previously iodide There is no known quantitative method which can easily measure the content of molecular iodine contained in the compound.
  • the iodide compound containing molecular iodine (I 2 , Iodine) is reacted with sodium thiosulfate and water, respectively, and the concentration of iodine ions is measured by subsequent chromatography.
  • the content of molecular iodine contained in the iodide compound can be obtained.
  • the iodide compound includes both iodides of metals and iodides of nonmetals, and may also include iodides of various hydrocarbons including alkyl.
  • the iodide compound may be an iodide aryl compound which is an aryl group in which one or more iodine is substituted, and specific examples of the aryl group may include benzene or naphthalene. More preferably, it may be diiodine benzene, benzene iodide or naphthalene iodide.
  • a first solution of the reaction of an iodide compound with sodium thiosulfate may be titrated by ion chromatography to determine the first concentration of iodine ions ( ⁇ , Iodide) in the first solution. have.
  • the molecular iodine which is not in an anionic state, is reacted with sodium thiosulfate to be reduced to an ionic state and titrated by ion chromatography. That is, sodium thiosulfate may serve to reduce molecular iodine present in the iodide compound to generate iodine ions.
  • the first concentration of the iodine ion includes both the content of iodine ions present in the iodide compound before reacting with sodium thiosulfate and the molecular iodine reduced by sodium thiosulfate.
  • the iodide compound and sodium thiosulfate are preferably reacted in a weight ratio of 1: 5 to 1:20, and more preferably in a weight ratio of 1: 7 to 1:15. Reaction amount of the sodium thiosulfate iodide compound When less than 5 times compared to the reaction, the iodide compound is excessive compared to sodium thiosulfate, and molecular iodine cannot be reduced to all iodine ions, which may cause an error in the determination of molecular iodine content.
  • reaction amount of sodium thiosulfate exceeds 20 times that of the iodide compound, the sodium thiosulfate peak is very high upon titration by ion chromatography, and the base line becomes high, making it difficult to measure the peak of the trace amount of iodine ion. .
  • reaction amount of sodium thiosulfate is more than 20 times greater than that of the iodide compound, a trace amount of molecular iodine to be quantified in the iodide compound may be diluted to obtain an incorrect value.
  • the sodium thiosulfate may have a molar concentration of 0.0005M to 0.002M, or a concentration of 0.0009M to 0.0012M, or about 0.001M.
  • sodium thiosulfate at a concentration exceeding 0.002M the peak of sodium thiosulfate is very high during ion chromatography measurement, making it difficult to measure the peak of trace amount of iodine.
  • sodium thiosulfate of less than 0.0005M is used, the reaction of the iodide compound is excessive compared to sodium thiosulfate, and thus, molecular iodine cannot be reduced to iodine. Therefore, an error may occur in the determination of molecular iodine content.
  • the step of measuring the first concentration of iodine ions the concentration of iodine ions contained in sodium thiosulfate by ion chromatography by separating the sodium thiosulfate layer in the first solution of the iodide compound and sodium thiosulfate reaction It can be measured.
  • the sodium thiosulfate layer is measured separately, the experimental error is reduced, and the subsequent chromatographic titration can be efficiently performed.
  • the second solution in which the iodide compound and water are reacted is titrated by ion chromatography, and the second concentration of iodine ions ( ⁇ , Iodide) in the second solution can be measured.
  • Molecular iodine (I 2. Iodine) is not only soluble in water, but even when dissolved, it does not ionize through reaction with water, so it exists in molecular iodine (I 2 , Iodine) state.
  • the second concentration of iodine ions determined by ion chromatography titrating a second solution in which the iodide compound and water are reacted is determined by using water and The content of iodine ions ( ⁇ , Iodide) present in the iodide compound was measured before the reaction.
  • the iodide compound and water are preferably reacted at a weight ratio of 1: 5 to 1:20, and more preferably at a weight ratio of 1: 7 to 1:15.
  • the reaction amount of water is less than five times that of the iodide compound, the reacting iodide compound is excessive compared to water, and molecular iodine cannot be reduced to all iodine ions, which may cause an error in the determination of molecular iodine content.
  • the reaction amount of water exceeds 20 times that of the iodide compound, a very small amount of molecular iodine to be quantified in the iodide compound may be diluted to obtain an inaccurate value.
  • Distilled water, ultrapure water, purified water, and the like may be used as the water, and among them, it is preferable to use ultrapure water of 18.5 ⁇ or more in order to prevent generation of other ions and to obtain precise experimental results.
  • the concentration of iodine ions in the water layer may be measured by ion chromatography by separating the water layer from the second solution in which the iodide compound and the water are reacted. have. By separating and measuring the water layer, the experimental error is reduced and the ion chromatography titration can be efficiently performed.
  • the first or second solution may further include an organic solvent.
  • an organic solvent any iodide compound to be analyzed can be dissolved without affecting the structure or other physical properties of the iodide compound, and any organic solvent which is an organic solvent which is not mixed with water can be used without limitation. Specifically, it is preferable to use a solvent such as benzene, p-Xylene, toluene, and the like. As described above, in the case where the iodide compound is dissolved in an organic solvent and reacted, the iodide compound which is not easily dissolved in water and which is not easily ion titrated through the reaction with sodium thiosulfate or water can be titrated.
  • the iodide compound and the organic solvent are preferably reacted at a weight ratio of 1: 5 to 1:15.
  • Iodide when dissolved in excess of organic solvent Molecular iodine, which is contained in trace amounts in the compound, is diluted dilutely, making it difficult to accurately determine by ion chromatography.
  • the value obtained by subtracting the second concentration from the measured first concentration of iodine ions may be obtained as the content of molecular iodine contained in the iodide compound.
  • the first solution may include iodine ions derived from molecular iodine and iodide compounds
  • the second solution may include iodine ions derived from non-ionized molecular iodine and iodide compounds.
  • the first concentration represents the concentration of the molecular iodide and the iodide ion derived from the iodide compound contained in the iodide compound
  • the second concentration includes only the iodide ion contained before the iodide compound reacts with water
  • the difference value of the first concentration minus the second concentration means the concentration of iodine silver derived from the molecular iodine present in the iodide compound. Therefore, the content of iodine ions ( ⁇ , Iodide) contained in the iodide compound can be obtained from the measured second concentration of the iodine silver, and molecular iodine (I 2, Iodine) content can be obtained.
  • the content of molecular iodine and iodine ions can be measured, respectively, and a very small amount of iodine content of O.Olppm level can be measured.
  • the method for quantifying molecular iodine may quantify molecular iodine of O. Olppm or more contained in the iodide compound.
  • the molecular iodine contained in the iodide compound could be measured up to 100 ppm level, but the reliability of the measurement result was not high, and there was a limit in which low molecular iodine could not be measured.
  • the quantitative method of the embodiment of the present invention not only the trace amount of iodine content can be measured, but also the same level of results can be obtained even if the quantitative is repeated under the same conditions, so that the reliability of the quantitative result is very high.
  • the content of each of molecular iodine (I 2 , Iodine) and iodine ion (1—, Iodide) in the trace amount of iodine contained in the iodide compound can be measured accurately.
  • FIG. 1 is a graph and a correlation coefficient for Iodide (peak area) 1 of 1) of Verification Example 1.
  • FIG. 2 is a graph and correlation coefficient for Iodide (peak area) 2 of 1) of Example 1.
  • Para-diiodine benzene (lg) was dissolved in p-Xylene (9 g), and the lower layer (sodium thiosulfate layer) of the solution reacted with sodium thiosulfate (Na 2 S 2 0 3 , 0.001 M, lOg) Analyzed by ion chromatography (Dionex ICS-5000).
  • Ion chromatography was performed using IonPac® AG11-HC (2 ⁇ x 50 ⁇ ), AS11-HC (2 ⁇ x 250 ⁇ ) columns, 0.35 ml / min Flow rate, 50 m Injection Volume, Column temperature 30 ° C, and Cell were measured the first concentration of iodine ions under the conditions of 35 ° C.
  • the second concentration of iodine ion was measured in the same manner as in the step of measuring the first concentration except that distilled water was used instead of sodium thiosulfate (Na2S203, O.OOIM).
  • the average value reflecting the dilution factor is shown in the measurement concentration up to the first decimal place in Table 1, rounded off from the second decimal place, and the molecular weight as a difference between the two decimal places. After determining the content of iodine, it was written down to the first decimal place in the content of iodine.
  • Example 2 Determination of molecular iodide (I ⁇ odiiie) in benzene iodide Beneficial determination of molecular iodine was carried out in the same manner as in Example 1 except that benzene iodide (lg) was used instead of paradecidiodidebenzene (lg). It was.
  • Example 3 Determination of Molecular Iodine (Ig ⁇ Iodine) in Naphthalene Iodide
  • the molecular weight of iodine was determined in the same manner as in Example 1 except that naphthalene iodide (lg) was used instead of para-diiodic benzene (lg). It was.
  • the concentration of iodine ions and the content of molecular iodine measured in Examples 2 to 3 are shown in Table 2 below.
  • the concentration of the analyte and the measurement result are in proportional relationship at the concentration of the application range. It is represented by the linear correlation coefficient (R 2 ), and when the R 2 is 0.99 or more, the concentration of the analyte and the measurement result are It can be said.
  • the peak area of iodine ion was obtained for 7 standard concentrations in the concentration range of 01 to 30.0 mg / kg, and the content of silver iodine was measured. 1 and FIG. 2.
  • an experiment showing the recovery of the measured value against the certified value of the molecular iodine standard and having a recovery range of 90% to 110% can be evaluated as accuracy.
  • Molecular iodine standards were prepared for each concentration, and each was analyzed by ion chromatography (IC), and the accuracy (recovery rate) was evaluated by comparing the analysis result with the production concentration of the molecular iodine standard.
  • the molecular iodine standard was repeatedly titrated five times in the concentration range of 1.0 mg / kg to 40.0 mg / kg, and the result reflecting the pluripotency was rounded to two decimal places in Table 5 below.
  • Molecular iodine content was determined by the difference of the decimal place of two digits, and the molecular iodine content was entered up to the first decimal place.
  • the molecular weight of the iodine standard was prepared for each concentration (1.0 mg / kg to 40.0 mg / kg) to confirm the accuracy (recovery rate), and the correlation coefficient (R 2 ) of the linear line for each iteration was also confirmed. All four repetitions showed a recovery rate within 92 to 107% to confirm the accuracy of the experimental method of the example. And it was confirmed that all four repetitions showed a result with a correlation coefficient (R 2 ) of 0.999 or more, and with linearity with the result of 1).
  • the experimental method of the embodiment was found to be effective by producing results higher than the parameter criteria in all items such as linearity, accuracy and precision.
  • Detect ion was used as the detection limit (L0D) for the instrument using the results of the precision experiment conducted above to determine the lowest concentration of the analyte that can be clearly distinguished from “0”. Limits of Quantitation (L0Q) was set to three times the limit of detection (L0D), which is generally recommended.
  • Method detection limit (MDL) indicating the detection limit for the test method was calculated in consideration of the weight of the sample and the dilution factor during pretreatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

The present invention relates to a quantitative analysis method for molecular iodine (I2) in an iodide compound. More particularly, each portion of molecular iodine and iodide ion in a small amount of iodine contained in an iodine compound may be detected by: a step of titrating a first solution obtained by reacting an iodide compound containing molecular iodine (I2) with sodium thiosulfate (Na2S2O3) by means of ionic chromatography and detecting a first concentration of iodide ions (I-) in the first solution; a step of titrating a second solution obtained by reacting an iodide compound containing molecular iodine (I2) with water by means of ionic chromatography and detecting a second concentration of iodide ions (I-) in the second solution; and obtaining the amount of the molecular iodine contained in the iodide compound by subtracting the second concentration from the first concentration.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
요오드화 화합물에 함유된 분자상 요오드의 정량방법 【기술분야】  Method for Determination of Molecular Iodine in Iodide Compound
본 발명은 요오드화 화합물에 함유된 분자상 요오드 (Iodine, 12)의 정량방법에 관한 것이다. 보다 상세하게는, 요오드화 화합물 내에 존재하는 미량의 요오드 중, 분자상 요오드와 요오드 음이온 각각의 함량을 정밀하게 측정할 수 있는 요오드의 정량방법에 관한 것이다. The present invention relates to a method for quantifying the molecular iodine (Iodine, 1 2 ) contained in the iodide compound. More specifically, the present invention relates to a method for quantitative determination of iodine in which trace amounts of molecular iodine and iodine anion are precisely measured among trace amounts of iodine present in the iodide compound.
【발명의 배경이 되는 기술】 [Technique to become background of invention]
종래, 분자상 요오드의 분석은 요오드 적정법을 이용하여 진행하였지만, 요오드 적정법은 시료 내 분자상 요오드의 함량이 수백 mg/kg (ppm)수준이 되어야 측정이 가능한 제한이 있었다. 따라서, 분자상 요오드를 수 ppm 수준으로 미량 포함하는 요오드 화합물을 요오드 적정법을 이용하여 정량 하면, 오차도 크고, 정확도가 낮아 측정 결과치에 대한 신뢰도가 높지 않은 한계가 있었다.  Conventionally, the analysis of molecular iodine has been carried out by using the iodine titration method, the iodine titration method was limited to be measured when the molecular iodine content in the sample to the level of several hundred mg / kg (ppm). Therefore, when the iodine compound containing a small amount of molecular iodine in a few ppm level is quantified by the iodine titration method, there is a limit that the error is large and the accuracy is low and the reliability of the measurement result is not high.
또한, 이전에 알려진 요오드 적정법에 의하면, 요오드화 화합물에 존재하는 요오드 중 분자상 요오드와 요오드 이온을 분리하여 각각 함량을 정밀하게 정량함에 제한이 있었다.  In addition, according to the previously known iodine titration method, there was a limitation in separating the molecular iodine and iodine ions among the iodine present in the iodide compound to precisely quantify the content.
이에, 요오드화 화합물에 함유된 미량의 요오드 중, 분자상 요오드 (Iodine, 12)와 요오드 음이은 (Iodide, I-) 각각의 함량을 정밀하게 측정할 수 있는 요오드의 정량방법에 관한 개발이 요구되고 있다. 【발명의 내용】 Therefore, the development of a method for quantitative determination of iodine capable of precisely measuring the content of molecular iodine (Iodine, 1 2 ) and iodine negative (Iodide) among the trace amounts of iodine contained in the iodide compound is required. It is becoming. [Content of invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명은 요오드화 화합물에 함유된 미량의 요오드 중, 분자상 요오드와 요오드 음이온 각각의 함량을 정밀하게 측정할 수 있는 요오드의 정량방법을 제공하기 위한 것이다. 【과제의 해결 수단】 The present invention is to provide a method for quantifying iodine which can precisely measure the content of each of molecular iodine and iodine anion in trace amounts of iodine contained in the iodide compound. [Measures of problem]
본 발명은 분자상 요오드 (I2, Iodine)를 함유한 요오드화 화합물과, 티오황산나트륨 (sodium thiosulfate; Ν¾ )을 반웅시킨 제 1 용액을 이온 크로마토그래피로 적정하여, 상기 제 1 용액 중의 요오드 이온 (Γ, Iodide)의 제 1 농도를 측정하는 단계; 분자상 요오드 (I2, Iodine)를 함유한 요오드화 화합물과, 물을 반웅시킨 제 2 용액을 이온 크로마토그래피로 적정하여, 상기 제 2 용액 중의 요오드 이은 (Γ, Iodide)의 제 2 농도를 측정하는 단계; 및 상기 제 1 농도로부터 제 2 농도를 뺀 값을 상기 요오드화 화합물에 함유된 분자상 요오드의 함량으로 구하는 분자상 요오드의 정량 방법을 제공한다. 이하 발명의 구체적인 구현예에 따른 분자상 요오드의 정량 방법에 관하여 보다 상세하게 설명하기로 한다. The present invention relates to an iodide compound containing molecular iodine (I 2 , Iodine) and a first solution in which sodium thiosulfate (Ν¾) is reacted by ion chromatography, and the iodine ion (Γ) in the first solution is titrated. Measuring the first concentration of Iodide); An iodide compound containing molecular iodine (I 2 , Iodine) and a second solution in which water was reacted were titrated by ion chromatography to measure a second concentration of iodide (Γ, Iodide) in the second solution. step; And a method of quantifying molecular iodine obtained by subtracting the second concentration from the first concentration as the content of molecular iodine contained in the iodide compound. Hereinafter, a method for quantifying molecular iodine according to a specific embodiment of the present invention will be described in more detail.
발명의 일 구현예에 따르면, 분자상 요오드 (12, Iodine)를 함유한 요오드화 화합물과, 티오황산나트륨 (sodium thiosulfate; Na2S203)을 반응시킨 제 1용액을 이온 크로마토그래피로 적정하여, 상기 제 1용액 중의 요오드 이온 (1—, Iodide)의 제 1 농도를 측정하는 단계; 분자상 요오드 (12, Iodine)를 함유한 요오드화 화합물과, 물을 반웅시킨 제 2 용액을 이온 크로마토그래피로 적정하여, 상기 제 2용액 중의 요오드 이온 (Γ, Iodide)의 제 2 농도를 측정하는 단계 ; 및 상기 제 1 농도로부터 제 2 농도를 뺀 값을 상기 요오드화 화합물에 함유된 분자상 요오드의 함량으로 구하는 분자상 요오드의 정량 방법이 제공될 수 있다. According to one embodiment of the present invention, the first solution obtained by reacting a iodide compound containing molecular iodine (12, Iodine) with sodium thiosulfate (Na 2 S 2 0 3 ) is titrated by ion chromatography, Measuring a first concentration of iodine ions (1— , Iodide) in the first solution; An iodide compound containing molecular iodine (1 2, Iodine) and a second solution that reacted with water were titrated by ion chromatography to measure the second concentration of iodine ions (Γ, Iodide) in the second solution. step ; And a method of quantitating molecular iodine, wherein the value obtained by subtracting the second concentration from the first concentration is obtained as the content of molecular iodine contained in the iodide compound.
상기 요오드 이온 (1—, Iodide) 농도의 제 1 및 제 2 의 용어는, 요오드 '화 화합물이 특정 물질과 반웅하여 생성된 요오드 이온의 농도를 구분하기 위한 것으로, 반웅순서 또는 다른 제한사항으로 해석되지 않는다. 본 발명자들은 기존의 요오드 적정법이 가지고 있던, 수백 ppm 의 검출한계에 의한 한계점을 인식하고, 이를 해결하기 위하여 요오드화 화합물이 함유하는 미량의 분자상 요오드 (I2, Iodine)의 정량 방법에 관한 연구를 진행하여, 요오드화 화합물과 특정 화합물을 반웅시킨 용액을 이온 크로마토그래피로 분석하면, 요오드화 화합물에 미량 존재하는 분자상 요오드의 함량을 측정할 수 있음을 확인하고, 발명을 완성하였다. The iodide ion (1-, Iodide) The first and second terms of the concentration is to be used to identify the concentration of the iodine, an iodine compound Chemistry ions produced by banung the particular material, the analysis banung sequence or other restrictions It doesn't work. The present inventors have recognized the limitations of the detection limits of several hundred ppm, which the conventional iodine titration method has, and in order to solve this problem, the present inventors have studied a method for quantifying trace amount of molecular iodine (I 2 , Iodine) contained in an iodide compound Proceeding, the solution in which the iodide compound and the specific compound are reacted is ionized. Analysis by chromatography confirmed that the content of molecular iodine present in trace amounts in the iodide compound can be measured, and the invention was completed.
특히, 상기 요오드화 화합물에서 요오드는 분자상 요오드 (12, Iodine)상태와 요오드 음이은 (Γ Iodide) 상태로 공존하여 이를 분리하여 각각의 함량을 정밀하게 측정하는 것은 한계가 있었고, 이전에는 상기 요오드화 화합물에 포함돤 분자상 요오드의 함량을 용이하게 측정할 수 있는 정량 방법이 알려져 있지 아니하였다. In particular, in the iodide compound, iodine coexists in the state of molecular iodine (1 2 , Iodine) and iodine negative (Γ Iodide), there is a limit to measure each content precisely, previously iodide There is no known quantitative method which can easily measure the content of molecular iodine contained in the compound.
상기 분자상 요오드의 정량 방법에서는, 분자상 요오드 (I2, Iodine)를 함유한 요오드화 화합물을 티오황산나트륨과, 물에 각각 반웅시키고 요오드 이온의 농도를 이은 크로마토그래피로 측정하여, 그 측정 결과로부터 상기 요오드화 화합물에 함유된 분자상 요오드의 함량을 구할 수 있다. In the method for quantifying molecular iodine, the iodide compound containing molecular iodine (I 2 , Iodine) is reacted with sodium thiosulfate and water, respectively, and the concentration of iodine ions is measured by subsequent chromatography. The content of molecular iodine contained in the iodide compound can be obtained.
상기 요오드화 화합물은 금속의 요오드화물과 비금속의 요오드화물을 모두 포함하며, 그 밖에 알킬을 비롯한 각종 탄화수소의 요오드화물을 포함할 수 있다. 특히, 상기 요오드화 화합물은 하나 이상의 요오드가 치환된 아릴기인 요오드화 아릴 화합물 일 수 있으며, 상기 아릴기의 구체적인 예로는 벤젠 또는 나프탈렌을 들 수 있다. 보다 바람직하게는 디요오드화 벤젠, 요오드화 벤젠 또는 요오드화 나프탈렌일 수 있다.  The iodide compound includes both iodides of metals and iodides of nonmetals, and may also include iodides of various hydrocarbons including alkyl. In particular, the iodide compound may be an iodide aryl compound which is an aryl group in which one or more iodine is substituted, and specific examples of the aryl group may include benzene or naphthalene. More preferably, it may be diiodine benzene, benzene iodide or naphthalene iodide.
요오드화 화합물과 티오황산나트륨 (sodium thiosulfate; Na2S203)을 반응시킨 제 1용액을 이온 크로마토그래피로 적정하여, 상기 제 1용액 중의 요오드 이온 (Γ, Iodide)의 제 1 농도를 측정할 수 있다. 상기 제 1 농도의 측정에서, 아온상태가 아닌, 분자상 요오드는 티오황산나트륨과 반웅시켜 이온상태로 환원시켜 이온 크로마토그래피로 적정한다. 즉, 티오황산나트륨은 요오드화 화합물에 존재하는 분자상 요오드를 환원시켜, 요오드 이온을 생성하는 역할을 할 수 있다. 따라서, 상기 요오드 이온의 제 1 농도는 티오황산나트륨과 반웅시키기 전부터 요오드화 화합물에 존재하던 요오드 이온과, 티오황산나트륨에 의해 환원된 분자상 요오드의 함량을 모두 포함한 것이다. A first solution of the reaction of an iodide compound with sodium thiosulfate (Na 2 S 2 O 3 ) may be titrated by ion chromatography to determine the first concentration of iodine ions (Γ, Iodide) in the first solution. have. In the measurement of the first concentration, the molecular iodine, which is not in an anionic state, is reacted with sodium thiosulfate to be reduced to an ionic state and titrated by ion chromatography. That is, sodium thiosulfate may serve to reduce molecular iodine present in the iodide compound to generate iodine ions. Therefore, the first concentration of the iodine ion includes both the content of iodine ions present in the iodide compound before reacting with sodium thiosulfate and the molecular iodine reduced by sodium thiosulfate.
상기 요오드화 화합물과 티오황산나트륨은 1:5 내지 1:20 의 중량 비로 반응시키는 것이 바람직하고, 1:7 내지 1:15 의 중량 비로 반웅시키는 것이 더욱 바람직하다. 상기 티오황산나트륨의 반응량이 요오드화 화합물 대비 5 배 미만인 경우, 반웅하는 요오드화 화합물이 티오황산나트륨에 비하여 과도하여, 분자상 요오드가 모두 요오드 이온으로 환원 될 수 없어 분자상 요오드 함량의 정량에 오차가 생길 수 있다. 그리고, 상기 티오황산나트륨의 반웅량이 요오드화 화합물 대비 20 배를 초과하는 경우 이온 크로마토그래피로 적정 시 티오황산나트륨 피크가 매우 높게 나오게 되어 바탕값 (base line)이 높아져 미량인 요오드 이온의 피크의 측정이 어려워진다. 또한, 상기 티오황산나트륨의 반응량이 요오드화 화합물 대비 20배 초과하게 과량 반웅시키는 경우 요오드화 화합물내의 정량하고자 하는 극미량의 분자상 요오드가 희석되어 부정확한 값을 얻을 수 있다. The iodide compound and sodium thiosulfate are preferably reacted in a weight ratio of 1: 5 to 1:20, and more preferably in a weight ratio of 1: 7 to 1:15. Reaction amount of the sodium thiosulfate iodide compound When less than 5 times compared to the reaction, the iodide compound is excessive compared to sodium thiosulfate, and molecular iodine cannot be reduced to all iodine ions, which may cause an error in the determination of molecular iodine content. In addition, when the reaction amount of sodium thiosulfate exceeds 20 times that of the iodide compound, the sodium thiosulfate peak is very high upon titration by ion chromatography, and the base line becomes high, making it difficult to measure the peak of the trace amount of iodine ion. . In addition, when the reaction amount of sodium thiosulfate is more than 20 times greater than that of the iodide compound, a trace amount of molecular iodine to be quantified in the iodide compound may be diluted to obtain an incorrect value.
그리고, 상기 티오황산나트륨은 0.0005M 내지 0.002M 의 몰 농도, 또는 0.0009M 내지 0.0012M, 또는 약 0.001M 의 농도를 가질 수 있다. 0.002M 을 초과하는 농도의 티오황산나트륨을 사용하는 경우 이온 크로마토그래피 측정 시 티오황산나트륨의 피크가 매우 높게 나오게 되어 미량인 요오드 이은의 피크의 측정이 어려워진다. 또한, 0.0005M 미만의 티오황산나트륨을 사용하는 경우 반웅하는 요오드화 화합물이 티오황산나트륨에 비하여 과도하여 , 분자상 요오드가 모두 요오드 이은으로 환원 될 수 없어 분자상 요오드 함량의 정량에 오차가 생길 수 있다.  The sodium thiosulfate may have a molar concentration of 0.0005M to 0.002M, or a concentration of 0.0009M to 0.0012M, or about 0.001M. When using sodium thiosulfate at a concentration exceeding 0.002M, the peak of sodium thiosulfate is very high during ion chromatography measurement, making it difficult to measure the peak of trace amount of iodine. In addition, when sodium thiosulfate of less than 0.0005M is used, the reaction of the iodide compound is excessive compared to sodium thiosulfate, and thus, molecular iodine cannot be reduced to iodine. Therefore, an error may occur in the determination of molecular iodine content.
또한, 상기 요오드 이온의 제 1 농도를 측정하는 단계는, 상기 요오드화 화합물과 티오황산나트륨을 반응시킨 제 1 용액 중에서, 티오황산나트륨층을 분리하여 이온 크로마토그래피로 티오황산나트륨충에 포함된 요오드 이온의 농도를 측정할 수 있다. 티오황산나트륨층을 따로 분리하여 측정하면, 실험오차도 줄어들고, 효율적으로 이은 크로마토그래피 적정할 수 있다.  In addition, the step of measuring the first concentration of iodine ions, the concentration of iodine ions contained in sodium thiosulfate by ion chromatography by separating the sodium thiosulfate layer in the first solution of the iodide compound and sodium thiosulfate reaction It can be measured. When the sodium thiosulfate layer is measured separately, the experimental error is reduced, and the subsequent chromatographic titration can be efficiently performed.
그리고, 요오드화 화합물과 물을 반웅시킨 제 2 용액을 이온 크로마토그래피로 적정하여, 상기 제 2 용액중의 요오드 이온 (Γ, Iodide)의 제 2 농도를 측정할 수 있다. 분자상 요오드 (I2. Iodine)는 물에 잘 용해 되지 않을 뿐만 아니라, 용해가 되어도 물과의 반웅을 통해 이온화 되지 않아 분자상 요오드 (I2, Iodine)상태로 존재한다. Then, the second solution in which the iodide compound and water are reacted is titrated by ion chromatography, and the second concentration of iodine ions (Γ, Iodide) in the second solution can be measured. Molecular iodine (I 2. Iodine) is not only soluble in water, but even when dissolved, it does not ionize through reaction with water, so it exists in molecular iodine (I 2 , Iodine) state.
따라서, 상기 요오드화 화합물과 물을 반웅시킨 제 2 용액을 이온 크로마토그래피로 적정하여 측정한 요오드 이온의 제 2 농도는, 물과 반웅하기 전부터 요오드화 화합물에 존재하는 요오드 이온 (Γ, Iodide)의 함량을 측정한 것이다. Therefore, the second concentration of iodine ions determined by ion chromatography titrating a second solution in which the iodide compound and water are reacted is determined by using water and The content of iodine ions (Γ, Iodide) present in the iodide compound was measured before the reaction.
상기 요오드화 화합물과 물은 1:5 내지 1:20 의 중량 비로 반웅시키는 것이 바람직하고, 1:7 내지 1:15 의 중량 비로 반웅시키는 것이 더욱 바람직하다. 상기 물의 반응량이 요오드화 화합물 대비 5 배 미만인 경우, 반응하는 요오드화 화합물이 물에 비하여 과도하여, 분자상 요오드가 모두 요오드 이온으로 환원 될 수 없어 분자상 요오드 함량의 정량에 오차가 생길 수 있다. 그리고, 상기 물의 반응량이 요오드화 화합물 대비 20 배를 초과하는 경우 요오드화 화합물내의 정량하고자 하는 극미량의 분자상 요오드가 희석되어 부정확한 값을 얻을 수 있다.  The iodide compound and water are preferably reacted at a weight ratio of 1: 5 to 1:20, and more preferably at a weight ratio of 1: 7 to 1:15. When the reaction amount of water is less than five times that of the iodide compound, the reacting iodide compound is excessive compared to water, and molecular iodine cannot be reduced to all iodine ions, which may cause an error in the determination of molecular iodine content. In addition, when the reaction amount of water exceeds 20 times that of the iodide compound, a very small amount of molecular iodine to be quantified in the iodide compound may be diluted to obtain an inaccurate value.
상기 물은 증류수, 초순수, 정제수 등을 사용할 수 있고, 그 중에서 다른 이온의 생성을 방지하여 정밀한 실험결과를 얻기 위하여, 18.5 ΜΩ 이상의 초순수를 사용하는 것이 바람직하다.  Distilled water, ultrapure water, purified water, and the like may be used as the water, and among them, it is preferable to use ultrapure water of 18.5 ΜΩ or more in order to prevent generation of other ions and to obtain precise experimental results.
또한, 상기 요오드 이온의 제 2 농도를 측정하는 단계는, 상기 요오드화 화합물과 물을 반웅시킨 제 2용액 중에서, 물 층을 분리하여 이온 크로마토그래피로 물 층에 포함된 요오드 이온의 농도를 측정할 수 있다. 물 층을 따로 분리하여 측정하면, 실험오차도 줄어들고, 효율적으로 이온 크로마토그래피 적정할 수 있다.  In the measuring of the second concentration of iodine ions, the concentration of iodine ions in the water layer may be measured by ion chromatography by separating the water layer from the second solution in which the iodide compound and the water are reacted. have. By separating and measuring the water layer, the experimental error is reduced and the ion chromatography titration can be efficiently performed.
그리고, 상기 제 1 또는 제 2 용액은 유기 용매를 더 포함할 수 있다. 상기 유기 용매로는 분석 하고자 하는 요오드화 화합물을 요오드화 화합물의 구조나 기타 물성에 영향을 주지 않고 용해할 수 있고, 물과 섞이지 않는 유기용매인 비 수용성 용매라면 제한 없이 사용할 수 있다. 구체적으로, benzene, p-Xylene, Toluene 등과 같은 용매를 사용하는 것이 바람직하다. 이와 같이, 요오드화 화합물을 유기 용매에 용해시켜 반웅하는 경우, 물에 잘 용해되지 않아 바로 티오황산나트륨 또는 물과의 반응을 통해 이온 크로마토그래피 적정이 용이치 않은 요오드화 화합물을 적정 할 수 있다.  In addition, the first or second solution may further include an organic solvent. As the organic solvent, any iodide compound to be analyzed can be dissolved without affecting the structure or other physical properties of the iodide compound, and any organic solvent which is an organic solvent which is not mixed with water can be used without limitation. Specifically, it is preferable to use a solvent such as benzene, p-Xylene, toluene, and the like. As described above, in the case where the iodide compound is dissolved in an organic solvent and reacted, the iodide compound which is not easily dissolved in water and which is not easily ion titrated through the reaction with sodium thiosulfate or water can be titrated.
상기 요오드화 화합물과 유기 용매는 1:5 내지 1:15 의 중량 비로 반웅시키는 것이 바람직하다. 과량의 유기 용매에 용해시키면 요오드화 화합물 내에 미량 포함되어 있는 분자상 요오드가 묽게 희석되어 이온 크로마토그래피로 정밀하게 작정하는데 어려움이 있다 . The iodide compound and the organic solvent are preferably reacted at a weight ratio of 1: 5 to 1:15. Iodide when dissolved in excess of organic solvent Molecular iodine, which is contained in trace amounts in the compound, is diluted dilutely, making it difficult to accurately determine by ion chromatography.
그리고, 상기 측정된 요오드 이온의 제 1 농도로부터 제 2 농도를 뺀 값을 요오드화 화합물에 함유된 분자상 요오드의 함량으로 구할 수 있다. 상기 제 1 용액은 분자상 요오드 및 요오드화 화합물에서 유래한 요오드 이온을 포함할 수 있고, 제 2 용액은 비이온화된 분자상 요오드 및 요오드화 화합물에서 유래한 요오드 이온을 포함할 수 있다.  The value obtained by subtracting the second concentration from the measured first concentration of iodine ions may be obtained as the content of molecular iodine contained in the iodide compound. The first solution may include iodine ions derived from molecular iodine and iodide compounds, and the second solution may include iodine ions derived from non-ionized molecular iodine and iodide compounds.
즉, 제 1 농도는 요오드화 화합물이 함유하는 분자상 요오드 및 요오드화 화합물에서 유래한 요오드 이온의 농도를 나타내고, 제 2 농도는 요오드화 화합물이 물과 반응하기 전부터 함유하는 요오드 이온만을 포함하여, 이 둘의 차이 값인 제 1 농도에서 제 2 농도를 뺀 값은 요오드화 화합물에 존재하는 분자상 요오드로부터 유래한 요오드 이은의 농도를 의미한다. 따라서, 상기 측정된 요오드 이은의 제 2 농도로부터 요오드화 화합물이 함유하는 요오드 이온 (Γ, Iodide)의 함량을 구할 수 있고, 상기 제 1 농도와, 제 2 농도의 차이로 분자상 요오드 (I2, Iodine)의 함량을 구할 수 있다. That is, the first concentration represents the concentration of the molecular iodide and the iodide ion derived from the iodide compound contained in the iodide compound, and the second concentration includes only the iodide ion contained before the iodide compound reacts with water, The difference value of the first concentration minus the second concentration means the concentration of iodine silver derived from the molecular iodine present in the iodide compound. Therefore, the content of iodine ions (Γ, Iodide) contained in the iodide compound can be obtained from the measured second concentration of the iodine silver, and molecular iodine (I 2, Iodine) content can be obtained.
상기의 분자상 요오드의 정량방법을 이용하면, 분자상 요오드와 요오드 이온의 함량을 각각 측정할 수 있으며, O.Olppm 수준의 극미량의 요오드 함량을 측정할 수 있다. 즉, 상기 분자상 요오드의 정량 방법은 상기 요오드화 화합물에 함유된 O.Olppm 이상의 분자상 요오드를 정량할 수 있다.  By using the above quantitative method for molecular iodine, the content of molecular iodine and iodine ions can be measured, respectively, and a very small amount of iodine content of O.Olppm level can be measured. In other words, the method for quantifying molecular iodine may quantify molecular iodine of O. Olppm or more contained in the iodide compound.
이전에 알려진 전위차 적정방법 등에 의하면, 요오드화 화합물에 함유된 분자상 요오드를 lOOppm수준까지 측정 가능하였으나, 측정 결과치에 대한 신뢰도가 높지 않았으며, 낮은 함량의 분자상 요오드를 측정하지 못하는 한계가 있었다. 이에 반하여, 상기 발명의 일 구현예의 정량 방법에 따르면, 극미량의 요오드 함량도 측정 가능할 뿐만 아니라, 동일 조건하에서 정량을 반복하여도 동일한 수준의 결과치를 얻을 수 있어서 정량 결과의 신뢰도가 매우 높다. 【발명의 효과】 본 발명에 따르면, 요오드화 화합물이 함유하는 미량의 요오드 중, 분자상 요오드 (I2, Iodine)와 요오드 이온 (1—, Iodide) 각각의 함량을 정밀하게 측정할 수 있다. 【도면의 간단한 설명】 According to the previously known potentiometric titration method, the molecular iodine contained in the iodide compound could be measured up to 100 ppm level, but the reliability of the measurement result was not high, and there was a limit in which low molecular iodine could not be measured. On the contrary, according to the quantitative method of the embodiment of the present invention, not only the trace amount of iodine content can be measured, but also the same level of results can be obtained even if the quantitative is repeated under the same conditions, so that the reliability of the quantitative result is very high. 【Effects of the Invention】 According to the present invention, the content of each of molecular iodine (I 2 , Iodine) and iodine ion (1—, Iodide) in the trace amount of iodine contained in the iodide compound can be measured accurately. [Brief Description of Drawings]
도 1 은 검증예 1 의 1)의 Iodide(peak area)l 에 대한 그래프 및 상관계수이다.  1 is a graph and a correlation coefficient for Iodide (peak area) 1 of 1) of Verification Example 1. FIG.
도 2 는 검증예 1 의 1)의 Iodide(peak area)2 에 대한 그래프 및 상관계수이다.  FIG. 2 is a graph and correlation coefficient for Iodide (peak area) 2 of 1) of Example 1. FIG.
,  ,
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.  The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
[실시예 1] : 파라-디요오드화벤젠 내 분자상 요오드 (I^ Iodine)의 정량 Example 1 Determination of Molecular Iodine in Para-Diiodide Benzene
1) 요오드 이온 (Γ, Iodide)의 제 1농도를측정하는 단계  1) measuring the first concentration of iodine ions (Γ, Iodide)
파라-디요오드화벤젠 (lg)을 p-Xylene(9g)에 용해시켜 티오황산나트륨 (Sodium thiosulfate, Na2S203, 0.001M, lOg)과 반응시킨 용액의 하층 (티오황산나트륨층)을 분리하여 이온 크로마토그래피 (Dionex ICS-5000)로 분석하였다. 이온 크로마토그래피는 IonPac® AG11-HC (2瞧 x 50腿), AS11-HC (2匪 X 250腿) 컬럼을 사용하였고, 0.35 ml/min 의 Flow rate, 50 m의 Injection Volume, Column 온도 30 °C , 및 Cell 은도 35 °C의 조건 하에서 요오드 이온의 제 1농도를 측정하였다. Para-diiodine benzene (lg) was dissolved in p-Xylene (9 g), and the lower layer (sodium thiosulfate layer) of the solution reacted with sodium thiosulfate (Na 2 S 2 0 3 , 0.001 M, lOg) Analyzed by ion chromatography (Dionex ICS-5000). Ion chromatography was performed using IonPac® AG11-HC (2 瞧 x 50 腿), AS11-HC (2 匪 x 250 腿) columns, 0.35 ml / min Flow rate, 50 m Injection Volume, Column temperature 30 ° C, and Cell were measured the first concentration of iodine ions under the conditions of 35 ° C.
2) 요오드 이은 (Γ, Iodide)의 제 2농도를측정하는 단계  2) measuring the second concentration of iodine silver (Γ, Iodide)
티오황산나트륨 (Sodium thiosulfate, Na2S203, O.OOIM)대신 증류수 (distilled water)을 사용한 것을 제외하고는 상기 제 1 농도를 측정하는 단계와 동일하게 요오드 이온의 제 2농도를 측정하였다.  The second concentration of iodine ion was measured in the same manner as in the step of measuring the first concentration except that distilled water was used instead of sodium thiosulfate (Na2S203, O.OOIM).
3) 파라-디요오드화벤젠 내 요오드 ( , Iodine)의 정량 요오드 이온의 제 1 농도로부터 제 2 농도를 뺀 값을 구하여 파라- 디요오드화벤젠의 분자상 요오드 (12, Iodine)의 함량을 구하였다. 3) Determination of Iodine in Para-Diiodide Benzene Molecular iodine (1 2 , Iodine) content of para-diiodide benzene was obtained by subtracting the second concentration from the first concentration of iodine ions.
상기 1) 내지 3)의 단계를 3 회 반복 하여 희석 배수를 반영한 평균값을 하기 표 1 에 소수 둘째자리에서 반을림하여 소수 첫째자리까지 측정농도에 나타내었고, 소수 둘째 자리 값의 차이로 분자상 요오드의 함량을 구한 후 요오드의 함량에 소수 첫째자리까지 기입하였다.  Repeating the steps 1) to 3) three times, the average value reflecting the dilution factor is shown in the measurement concentration up to the first decimal place in Table 1, rounded off from the second decimal place, and the molecular weight as a difference between the two decimal places. After determining the content of iodine, it was written down to the first decimal place in the content of iodine.
[표 1]: 파라-디요오드화벤젠 시료분석결과 (단위 : mg/kg) [Table 1]: Para-diiodide benzene sample analysis result (unit: mg / kg)
Figure imgf000009_0001
Figure imgf000009_0001
[실시예 2]: 요오드화벤젠 내 분자상요오드 (I^ odiiie)의 정량 파라ᅳ디요오드화벤젠 (lg) 대신 요오드화벤젠 (lg)을 사용한 것을 제외하고는 실시예 1과 동일하게 분자상 요오드를 정량하였다. [Example 2]: Determination of molecular iodide (I ^ odiiie) in benzene iodide Beneficial determination of molecular iodine was carried out in the same manner as in Example 1 except that benzene iodide (lg) was used instead of paradecidiodidebenzene (lg). It was.
[실시예 3]:요오드화나프탈렌 내 분자상요오드 (Ig^Iodine)의 정량 파라-디요오드화벤젠 (lg) 대신 요오드화나프탈렌 (lg)을 사용한 것을 제외하고는 실시예 1과 동일하게 분자상 요오드를 정량하였다. 상기 실시예 2 내지 3 에서 측정된 요오드 이온의 농도 및 분자상 요오드의 함량을 하기 표 2에 나타내었다. Example 3 Determination of Molecular Iodine (Ig ^ Iodine) in Naphthalene Iodide The molecular weight of iodine was determined in the same manner as in Example 1 except that naphthalene iodide (lg) was used instead of para-diiodic benzene (lg). It was. The concentration of iodine ions and the content of molecular iodine measured in Examples 2 to 3 are shown in Table 2 below.
[표 2] : 요오드화벤젠 및 요오드화나프탈렌 시료 분석결과 (단위 mg/kg)
Figure imgf000010_0001
상기 표 1 에 나타난 바와 같이, 파라ᅳ디요오드화벤젠 내 분자상 요오드와 요오드 이온 함량의 분석결과, 분자상 요오드의 경우 0.8 내지 4.4 mg/kg 을 포함하는 것으로 나타났고, 요오드 이은의 경우 0.9 내지 2.3 mg/kg을 포함하는 것으로 나타났다.
[Table 2]: Results of analysis of benzene iodide and naphthalide iodide (unit mg / kg)
Figure imgf000010_0001
As shown in Table 1, the results of the analysis of the molecular iodine and iodine ion content in the parabendi iodide benzene, the molecular iodine was found to contain 0.8 to 4.4 mg / kg, the iodine is 0.9 to 2.3 It was shown to contain mg / kg.
또한, 상기 표 2 에서 확인할 수 있듯, 요오드화 밴젠의 분자상 요오드의 함량과 요오드 이온의 함량이 2.2 와 0.1 mg/kg 으로 나타났고, 요오드화 나프탈렌의 분자상 요오드의 함량과 요오드 이은의 함량 또한, 16.2 와 9.9 mg/kg의 결과를 나타내었다.  In addition, as can be seen in Table 2, the content of molecular iodine and iodine ion of the banyan iodide appeared 2.2 and 0.1 mg / kg, the content of molecular iodine and silver iodine of naphthalene iodide, also 16.2 And 9.9 mg / kg.
따라서, 실시예 1내지 3의 결과로부터 상기의 분자상 요오드의 정량 방법은 수 ppm 의 농도까지 측정할 수 있음을 확인하였고, 이는 종래 최저 수백 ppm 농도의 분석만 가능하였던 요오드 적정법과 비교하여 현저히 개선된 것으로, 최저 O.Olppm 의 극미량의 요오드 함량을 측정할 수 있다. [검증예 1]: 실험방법의 유효성 검토  Therefore, it was confirmed from the results of Examples 1 to 3 that the quantitative method of molecular iodine can be measured up to several ppm concentration, which is remarkably improved compared to the iodine titration method, which was only capable of analyzing the concentration of several hundred ppm in the past. As a result, it is possible to measure the trace amount of iodine at the lowest O.Olppm. [Validation Example 1]: Validation of the experimental method
1) 직선성 (Linearity)  1) Linearity
적용범위의 농도에서 분석물질의 농도와 측정결과가 비례관계에 있음을 증명하는 것으로, 직선의 상관계수 (R2)로 나타내고, R2 가 0.99 이상인 경우 분석물질의 농도와 측정결과가 비례관계에 있다고 할 수 있다. 요오드 이온의 표준물질을 이용하여 으 01 내지 30.0 mg/kg 농도 범위에서 7 개 농도의 표준물질에 대하여 요오드 이온의 peak area 를 구하여, 요오드 이은의 함량을 측정하고 그 결과를 하기의 표 3 과 도 1 및 도 2에 나타내었다. [표 3] 요오드 이온표준물질의 Peak area에 대한상관계수 (R2)
Figure imgf000011_0001
It is proved that the concentration of the analyte and the measurement result are in proportional relationship at the concentration of the application range. It is represented by the linear correlation coefficient (R 2 ), and when the R 2 is 0.99 or more, the concentration of the analyte and the measurement result are It can be said. Using the standard of iodine ion, the peak area of iodine ion was obtained for 7 standard concentrations in the concentration range of 01 to 30.0 mg / kg, and the content of silver iodine was measured. 1 and FIG. 2. [Table 3] Correlation coefficient for peak area of iodine ion standard (R 2 )
Figure imgf000011_0001
2) 정밀성 (Precision) 2) Precision
동일 조건하에서 여러 번 측정된 값이 어느 정도 일치하는지에 대한 척도로 반복측정에 대한 상대표준편차 (% RSD)로 나타내고, % RSD 가 5 % 이하인 실험에 대하여 정밀성 (Precision)이 있다고 평가할 수 있다.  As a measure of the degree to which the values measured several times under the same conditions are expressed as relative standard deviation (% RSD) for repeated measurements, precision can be evaluated for experiments with% RSD of 5% or less.
직선성을 나타내는 낮은 농도범위에서 각 표준물질에 대하여 5 회씩 Peak Area 를 반복 측정 하여 상대표준편차 °h RSD)를 계산하여 하기의 표 4에 나타내었다.  In the low concentration range indicating linearity, the peak area was repeatedly measured five times for each standard, and the relative standard deviation, ° h RSD, was calculated and shown in Table 4 below.
[표 4]: 요오드 이온표준물질의 Peak area 에 대한상대표준편차 (%Table 4: Relative standard deviation of peak area of iodine ion standard (%
RSD) RSD)
Figure imgf000011_0002
3) 정확성 (Accuracy)
Figure imgf000011_0002
3) Accuracy
참값과 측정값의 근접함을 평가하는 것으로, 분자상 요오드 표준물질의 인증 값에 대한 측정 값의 회수율로 나타내고, 회수율 범위 90 % ~ 110 %를 나타내는 실험을 정확성 (Accuracy)이 있다고 평가할 수 있다. 분자상 요오드 표준물질을 농도 별로 제작하여 각각을 이온 크로마토그래피 (IC)로 분석 하고, 그 분석결과와 분자상 요오드 표준물질의 제작농도를 비교하여 정확성 (회수율)을 평가 하였다. 분자상 요오드 표준물질을 1.0 mg/kg 내지 40.0 mg/kg 의 농도 범위에서 5 회 반복하여 적정하고, 회석배수를 반영한 결과를 하기의 표 5 에 소수 둘째자리에서 반올림하여 소수 첫째자리까지 측정농도에 나타내었고, 소수 둘째자리 값의 차이로 분자상 요오드의 함량을 구한 후 소수 첫째 자리까지 분자상 요오드의 함량에 기입하였다.  By evaluating the closeness of the true value to the measured value, an experiment showing the recovery of the measured value against the certified value of the molecular iodine standard and having a recovery range of 90% to 110% can be evaluated as accuracy. Molecular iodine standards were prepared for each concentration, and each was analyzed by ion chromatography (IC), and the accuracy (recovery rate) was evaluated by comparing the analysis result with the production concentration of the molecular iodine standard. The molecular iodine standard was repeatedly titrated five times in the concentration range of 1.0 mg / kg to 40.0 mg / kg, and the result reflecting the pluripotency was rounded to two decimal places in Table 5 below. Molecular iodine content was determined by the difference of the decimal place of two digits, and the molecular iodine content was entered up to the first decimal place.
[표 5] 농도 별 분자상요오드표준물질의 분석 회수율 [Table 5] Analysis recovery rate of molecular iodine standards by concentration
Figure imgf000012_0001
Figure imgf000013_0001
Figure imgf000012_0001
Figure imgf000013_0001
* 상기 측정 농도 및 분자상 요오드의 함량은 반을림하여 기재하였으며, 상기 회수율을 실제 측정치를 바탕으로 구하였다. 상기 검증예 1 의 1)에서, 직선의 상관계수 (R2)가 0.999 이상으로 확인되어 요오드 이은 표준물질의 농도와, 실제 이온 크로마토그래피의 요오드 이온의 peak area 는 비례관계에 있고, 실시예의 실험방법의 직선성 (Linearity)이 확인되었다. 그리고, 2)에서 요오드 이온 표준물질의 Peak area 에 대한 상대표준편차가 5%이하로 낮게 나타나, 실시예의 실험방법이 정밀성 (Precision)이 있음을 확인할 수 있었다. * The measurement concentration and the content of molecular iodine are described in half, and the recovery rate was obtained based on actual measurements. In 1) of the verification example 1, the correlation coefficient (R 2 ) of the straight line was found to be 0.999 or more, so that the concentration of the standard material after iodine and the peak area of the iodine ion in the actual ion chromatography were proportional to each other. The linearity of the method was confirmed. In addition, the relative standard deviation with respect to the peak area of the iodine ion standard in 2) is shown to be less than 5%, it was confirmed that the experimental method of the example has a precision (Precision).
또한, 3)에서 , 분자상 요오드 표준물질을 농도 별로 (1.0 mg/kg 내지 40.0 mg/kg) 제작 하여 정확성 (회수율)을 확인 하고, 반복 별 직선의 상관계수 (R2)도 확인하였다. 4 회 반복 모두 92 내지 107 %이내의 회수율을 보여 실시예의 실험방법의 정확성 (Accuracy)을 확인할 수 있었다. 그리고, 4 회 반복 모두 상관계수 (R2) 0.999 이상의 결과를 나타내어 1)의 결과와 함께, 직선성을 갖는 것으로 확인되었다. In addition, in 3), the molecular weight of the iodine standard was prepared for each concentration (1.0 mg / kg to 40.0 mg / kg) to confirm the accuracy (recovery rate), and the correlation coefficient (R 2 ) of the linear line for each iteration was also confirmed. All four repetitions showed a recovery rate within 92 to 107% to confirm the accuracy of the experimental method of the example. And it was confirmed that all four repetitions showed a result with a correlation coefficient (R 2 ) of 0.999 or more, and with linearity with the result of 1).
따라서, 상기 실시예의 실험방법은 직선성, 정확성, 정밀성 등 모든 항목에서 parameter 기준보다 높은 결과들을 내어, 유효성이 있는 것으로 확인되었다.  Therefore, the experimental method of the embodiment was found to be effective by producing results higher than the parameter criteria in all items such as linearity, accuracy and precision.
[검증예 2]: 검출한계 (L0D) 및 정량한계 (L0Q) Verification Example 2 Detection Limit (L0D) and Quantitative Limit (L0Q)
상기 시험 방법 (분석 조건)에 대한 검출한계 (LOD: Limits of Limits of detection for the test method (analysis conditions)
Detect ion)는 "0" 과는 확실하게 구분할 수 있는 분석 대상성분의 최저농도를 확인하기 위해, 위에서 실시한 정밀성 (Precision) 실험의 결과를 이용하여 기기에 대한 검출한계 (L0D)로 사용하였고, 정량한계 (L0Q: Limits of Quantitation)는 일반적으로 권장되는 방식인 검출한계 (L0D)의 3 배로 정하였다. 시험방법에 대한 검출 한계를 나타내는 MDL (Method detection limit)은 시료의 무게와 전처리 시의 희석 배수 등을 고려하여 산출하였다. Detect ion) was used as the detection limit (L0D) for the instrument using the results of the precision experiment conducted above to determine the lowest concentration of the analyte that can be clearly distinguished from "0". Limits of Quantitation (L0Q) was set to three times the limit of detection (L0D), which is generally recommended. Method detection limit (MDL) indicating the detection limit for the test method was calculated in consideration of the weight of the sample and the dilution factor during pretreatment.
[표 6]: 시험방법에 대한 LOD, LOQ, MDL TABLE 6 LOD, LOQ, MDL for test methods
Figure imgf000014_0001
Figure imgf000014_0001

Claims

【특허청구범위】  Patent Claim
【청구항 11  [Claim 11
분자상 요오드 (I2, Iodine)를 함유한 요오드화 화합물과, 티오황산나트륨 (sodium thiosulfate; Na2S203)을 반응시킨 제 1 용액을 이은 크로마토그래피로 적정하여, 상기 제 1 용액 중의 요오드 이온 (Γ, Iodide)의 제 1농도를 측정하는 단계 ; The first solution in which the iodide compound containing molecular iodine (I 2, Iodine) was reacted with sodium thiosulfate (Na 2 S 2 0 3 ) was titrated by subsequent chromatography, and the iodine ion in the first solution was titrated. Measuring a first concentration of (Γ, Iodide);
분자상 요오드 (I2, Iodine)를 함유한 요오드화 화합물과, 물을 반웅시킨 제 2용액을 이온 크로마토그래피로 적정하여, 상기 제 2용액 중의 요오드 이온 (Γ, Iodide)의 제 2농도를 측정하는 단계 ; 및 An iodide compound containing molecular iodine (I 2, Iodine) and a second solution containing water were titrated by ion chromatography to measure the second concentration of iodine ions (Γ, Iodide) in the second solution. step ; And
상기 제 1 농도로부터 제 2 농도를 뺀 값을 상기 요오드화 화합물에 함유된 분자상 요오드의 함량으로 구하는, 분자상 요오드의 정량 방법.  A method for quantifying molecular iodine, wherein the value obtained by subtracting the second concentration from the first concentration is obtained as the content of molecular iodine contained in the iodide compound.
【청구항 2】 [Claim 2]
제 1 항에 있어서,  The method of claim 1,
상기 요오드화 화합물은 요오드화 아릴 화합물인 분자상 요오드의 정량 방법.  The iodide compound is a method for quantifying molecular iodine is an aryl iodide compound.
【청구항 3】 [Claim 3]
제 1 항에 있어서,  The method of claim 1,
상기 요오드화 화합물은 하나 이상의 요오드가 치환된 벤젠 또는 나프탈렌인 분자상 요오드의 정량 방법.  Wherein said iodinated compound is at least one iodine substituted benzene or naphthalene.
【청구항 4】 [Claim 4]
제 1 항에 있어서,  The method of claim 1,
상기 요오드화 화합물은 디요오드화 벤젠, 요오드화 벤젠 또는 요오드화 나프탈렌인 분자상 요오드의 정량 방법.  The iodide compound is a method for quantifying molecular iodine is diiodine benzene, iodide benzene or iodide naphthalene.
【청구항 5】 [Claim 5]
제 1항에 있어서, 상기 요오드화 화합물과 티오황산나트륨을 1:5 내지 1:20 의 중량 비율로 반웅시키는 분자상 요오드의 정량 방법. The method of claim 1, A method for quantifying molecular iodine by reacting the iodide compound and sodium thiosulfate in a weight ratio of 1: 5 to 1:20.
【청구항 6] [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 티오황산나트륨은 0.0005M 내지 0.002M 의 몰 농도를 갖는, 분자상 요오드의 정량 방법 .  Wherein said sodium thiosulfate has a molar concentration of 0.0005M to 0.002M.
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 제 1 농도의 측정 단계에서는, 상기 제 1 용액 중에서 티오황산나트륨 층을 분리하고 이온 크로마토그래피로 상기 티오황산나트륨 층에 포함된 요오드 이온 (Γ, Iodide) 농도를 측정하는, 분자상 요오드의 정량 방법.  In the measuring of the first concentration, the sodium thiosulfate layer is separated from the first solution and ion chromatography (Io) ion (Γ, Iodide) contained in the sodium thiosulfate layer is measured, the method of quantitative molecular iodine.
【청구항 8】 [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 요오드화 화합물과 물을 1:5 내지 1:20 의 중량 비율로 반웅시키는 분자상 요오드의 정량 방법 .  A method for quantifying molecular iodine by reacting the iodide compound and water in a weight ratio of 1: 5 to 1:20.
【청구항 9] [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 제 2 농도의 측정 단계에서는ᅳ 상기 제 2 용액 중에서 물 층을 분리하고 이은 크로마토그래피로 상기 물 층에 포함된 요오드 이온 (Γ, Iodide) 농도를 측정하는, 분자상 요오드의 정량 방법 .  In the measuring step of the second concentration ᅳ separating the water layer in the second solution and then measuring the concentration of iodine ion (Γ, Iodide) contained in the water layer by chromatography, quantitative method of molecular iodine.
【청구항 10] [Claim 10]
제 1항에 있어서 상기 제 1 또는 제 2 용액은 p-Xylene, benzene, Toluene 으로 이루어진 군에서 선택된 1종 이상의 유기 용매를 포함하는 분자상 요오드의 정량 방법. 【청구항 11】 The method of claim 1 The first or second solution is a method for quantifying molecular iodine comprising at least one organic solvent selected from the group consisting of p-Xylene, benzene, Toluene. [Claim 11]
제 10항에 있어서 ,  The method of claim 10,
상기 제 1 또는 제 2 용액은 상기 요오드화 화합물과 상기 유기 용매를 1:5 내지 1:15의 중량 비로 포함하는 분자상 요오드의 정량 방법 .  Wherein said first or second solution comprises said iodide compound and said organic solvent in a weight ratio of 1: 5 to 1:15.
PCT/KR2013/011894 2012-12-26 2013-12-19 Quantitative analysis method for molecular iodine contained in iodide compound WO2014104652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120153231A KR101929508B1 (en) 2012-12-26 2012-12-26 Method for quantitative analysis of iodine in iodine compound
KR10-2012-0153231 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014104652A1 true WO2014104652A1 (en) 2014-07-03

Family

ID=51021635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011894 WO2014104652A1 (en) 2012-12-26 2013-12-19 Quantitative analysis method for molecular iodine contained in iodide compound

Country Status (2)

Country Link
KR (1) KR101929508B1 (en)
WO (1) WO2014104652A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358635A (en) * 2021-04-16 2021-09-07 重庆聚源建设工程质量检测有限公司 Iodide ion detection method for environmental sample detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003427A (en) * 2003-06-10 2005-01-06 Denki Kagaku Kogyo Kk Method for quantitatively analyzing with forms iodine compound in high boiling point organic solvent
KR100696747B1 (en) * 2004-11-19 2007-03-19 옵티맥스 테크놀러지 코포레이션 Monitoring the variation of dye solution in the process of a polarizer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003427A (en) * 2003-06-10 2005-01-06 Denki Kagaku Kogyo Kk Method for quantitatively analyzing with forms iodine compound in high boiling point organic solvent
KR100696747B1 (en) * 2004-11-19 2007-03-19 옵티맥스 테크놀러지 코포레이션 Monitoring the variation of dye solution in the process of a polarizer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOMEZ-JACINTO ET AL.: "Iodine speciation in iodine-enriched microalgae Chlorella vulgaris", PURE AND APPLIED CHEMISTRY, vol. 82, no. 2, 2010, pages 473 - 482 *
NIEMANN ET AL.: "Determination of iodide and thiocyanate in powdered milk and infant formula by on-line enrichment ion chromatography with photodiode array detection", JOURNAL OF CHROMATOGRAPHY A, vol. 1200, no. 2, 2008, pages 1193 - 197 *
REBARY ET AL.: "Determination of iodide and iodate in edible salt by ion chromatography with integrated amperometric detection", FOOD CHEMISTRY, vol. 123, no. 2, 2010, pages 529 - 534 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358635A (en) * 2021-04-16 2021-09-07 重庆聚源建设工程质量检测有限公司 Iodide ion detection method for environmental sample detection

Also Published As

Publication number Publication date
KR101929508B1 (en) 2018-12-14
KR20140083455A (en) 2014-07-04

Similar Documents

Publication Publication Date Title
Zhu et al. A colorimetric method for fluoride determination in aqueous samples based on the hydroxyl deprotection reaction of a cyanine dye
Kristiana et al. Analysis of halogen-specific TOX revisited: method improvement and application
CN107064339B (en) Method for detecting volatile organic chloride in resin by headspace gas chromatography
Afkhami et al. A novel spectrophotometric method for the simultaneous kinetic analysis of ternary mixtures by mean centering of ratio kinetic profiles
Cathum et al. Determination of Cr 3+, CrO 4 2–, and Cr 2 O 7 2–in environmental matrixes by high-performance liquid chromatography with diode-array detection (HPLC–DAD)
Shriwastav et al. A modified Winkler’s method for determination of dissolved oxygen concentration in water: Dependence of method accuracy on sample volume
CN104215627A (en) Method for microwave digestion-inductively coupled plasma mass spectrometer (ICP-MS) determination of metal ions such as lead, arsenic, cadmium and chromium in cigarette case
CN103940770B (en) The quantitative analysis method of petroleum crude oil emulsification system emulsifiability and defining method
CN105021740A (en) High-performance liquid chromatography analytical method for N1,N1-diisopropyl ethylenediamine
Afkhami et al. Spectrophotometric determination of periodate and iodate by a differential kinetic method
CN101936962A (en) Method for determining weight percent of sodium chloride in common salt
WO2014104652A1 (en) Quantitative analysis method for molecular iodine contained in iodide compound
Gavrilenko et al. Transparent polymer sensor for visual and photometrical detection of thiocyanate in oilfield water
CN105223143B (en) A kind of method of pressure break liquid hold-up in measure oilfield sewage
Xie et al. Quantification of the amine value in aliphatic amine epoxy hardeners by using a reaction-based headspace gas chromatographic technique
JP6777915B2 (en) Analytical method and analyzer
Ganesh et al. Developed new procedure for low concentrations of hydrazine determination by spectrophotometry: hydrazine-potassium permanganate system
CN104198488B (en) A kind of measure the method for content of dissociative chlorine ion in aniline
Deyrup Determination of acidity in ethyl alcohol by velocity of acetal formation
CN114441675A (en) Pretreatment method and automatic pretreatment device for haloacetic acid detection
CN105954437A (en) Method for measuring content of hydroxypropyl guar gum fracturing fluid
CN107271530A (en) A kind of method of Oil repellent in fluorine-containing organic solvent of Accurate Determining
CN102998351B (en) Auxiliary reagent for ISE module of biochemical analyzer
CN103776925A (en) Detection method for content of target substances of industrial potassium chloride
Basavaiah et al. Rapid titrimetric and spectrophotometric assay methods for the determination of lamivudine in Pharmaceuticals using iodate and two dyes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868606

Country of ref document: EP

Kind code of ref document: A1