WO2014104454A1 - Routing system and method using geographic information - Google Patents

Routing system and method using geographic information Download PDF

Info

Publication number
WO2014104454A1
WO2014104454A1 PCT/KR2012/011841 KR2012011841W WO2014104454A1 WO 2014104454 A1 WO2014104454 A1 WO 2014104454A1 KR 2012011841 W KR2012011841 W KR 2012011841W WO 2014104454 A1 WO2014104454 A1 WO 2014104454A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
distance
packet
cost
increases
Prior art date
Application number
PCT/KR2012/011841
Other languages
French (fr)
Korean (ko)
Inventor
강현국
최대인
김민수
이수진
Original Assignee
인텔렉추얼디스커버리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인텔렉추얼디스커버리 주식회사 filed Critical 인텔렉추얼디스커버리 주식회사
Priority to PCT/KR2012/011841 priority Critical patent/WO2014104454A1/en
Publication of WO2014104454A1 publication Critical patent/WO2014104454A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • H04W40/16Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point

Definitions

  • the present invention relates to a routing system and method using geographic information.
  • Routing using geographical information can solve the limitation of topology based routing by using additional information.
  • Each node participating in the communication uses its own location information, and each node obtains its own location information through GPS or other types of location services. In other words, the location service information is included in the sender's packet.
  • the location-based routing protocol uses location information and movement information for routing processing.
  • LAR Location Aided Routing
  • GREA Distence Routing Effect Algorithm for Mobility
  • GRS Grid Location Service
  • the LAR is one of the reactive routing protocols, and transmits a route request packet in a limited manner to perform route discovery more efficiently.
  • the transmitting node includes its location information in the transport packet.
  • Every node contains location information of every node participating in the network. At this time, the update period of the location information is determined according to the characteristics of the distance and mobility between nodes.
  • GLS is a location information service, not a routing protocol, and every node in GLS has a number of servers that provide location information in the network.
  • GLS can be used in dense, large-scale mobile ad hoc networks.
  • GLS has a server that provides a variety of location information in the network to obtain location information through this server.
  • LAR and DREAM use flooding to update and query location information, but GLS does not use flooding.
  • 1 is a diagram illustrating a conventional routing method.
  • the routing system includes a source node 10, a destination node 15, and a plurality of intermediate nodes.
  • the source node 10 serves to transmit a packet.
  • the destination node 15 serves to receive a packet.
  • a plurality of intermediate nodes are located between the source node 10 and the destination node 15 to provide a packet transmission path.
  • the source node 10 transmits a packet to the destination node 15, the source node 10 selects an intermediate node based on the shortest distance or the shortest hop.
  • the source node 10 selects and transmits the first intermediate node 11, which is the node closest to the destination node 15, among the plurality of intermediate nodes included in the packet transmission distance that is the distance at which the radio waves can be reached.
  • the first intermediate node 11 selects the next intermediate node in the same way as the source node 10 selects the intermediate node. Accordingly, the second intermediate node 13, which is the node closest to the destination node, is selected and transmitted among the nodes whose radio waves can be reached.
  • the first intermediate node 11 and the second intermediate node 13 there are buildings, trees, and the like, which can cause radio interference, so that radio waves are disturbed during packet transmission. Therefore, there is a problem in that the probability that a packet transmitted from the first intermediate node 11 to the second intermediate node 13 arrives normally decreases.
  • Korean Laid-Open Patent Publication No. 2012-0042089 name of the invention: a cluster head node and a communication method thereof
  • a cluster head node and a communication method thereof is used in communication between communication interfaces in a cluster head node that performs communication using two different types of communication interfaces.
  • Korean Patent Application Publication No. 2010-0034324 (name of the invention: apparatus and method for transmitting a packet in a node of a wireless sensor network) uses a priority queue in a node to minimize delay of a packet requiring real time
  • a packet transmission apparatus and method for a node of a wireless sensor network that implements reliable routing using queue information.
  • the present invention is to solve the above-described problems of the prior art, some embodiments of the present invention, when an obstacle is located in the packet path at the time of packet transmission in each node, select the node with the minimum distance cost and interference cost to transmit It is an object of the present invention to provide a routing system and method using geographical information.
  • a first aspect of the present invention provides a source node for transmitting a packet, a destination node for receiving a packet, and routing in a plurality of intermediate nodes located between the source node and the destination node.
  • a system comprising: a node selector for selecting an intermediate node located at a shortest distance from the destination node among a plurality of intermediate nodes included in a packet transmission distance of the source node or each intermediate node, and a routing path via the selected intermediate node And a packet transmitter for transmitting a packet by selecting a node, wherein the node selector selects an intermediate node having a minimum distance cost and an interference cost when an obstacle is located in a packet path corresponding to the shortest distance, and selects the distance cost.
  • the node selector selects an intermediate node having a minimum distance cost and an interference cost when an obstacle is located in a packet path corresponding to the shortest distance, and selects the distance cost.
  • a second aspect of the present invention provides a routing method in a source node for transmitting a packet, a destination node for receiving a packet, and a plurality of intermediate nodes located between the source node and the destination node, wherein the source node or each intermediate node is provided. Selecting an intermediate node located at the shortest distance from the destination node among a plurality of intermediate nodes included in the packet transmission distance of the node, and transmitting a packet by selecting a routing path through the selected intermediate node; When an obstacle is located in the packet path corresponding to the shortest distance, an intermediate node having a minimum distance cost and an interference cost is selected, and the distance cost is between a plurality of intermediate nodes included in the packet transmission distance and the destination node. Increases as the distance is greater, and the interference cost is located in the packet path. The more likely to cause interference due to the obstacles to provide a routing method to increase.
  • the packet can be transmitted by avoiding the section causing the radio interference, so that the packet can reach the destination node normally.
  • 1 is a diagram illustrating a conventional routing method.
  • FIG. 2 is a block diagram of a routing system according to an embodiment of the present invention.
  • 3A and 3B are diagrams illustrating an increase in distance cost in the present invention.
  • 4A and 4B are diagrams illustrating an increase in interference cost in the present invention.
  • FIG. 5 is a diagram illustrating a node selection method in the present invention.
  • FIG. 6 is a flowchart of a routing method according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a routing system 100 in accordance with an embodiment of the present invention.
  • the routing system 100 using geographic information according to the present invention includes a node selector 110 and a packet transmitter 120.
  • the components illustrated in FIG. 2 mean software components or hardware components such as a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC), and perform predetermined roles. .
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • 'components' are not meant to be limited to software or hardware, and each component may be configured to be in an addressable storage medium or may be configured to reproduce one or more processors.
  • a component may include components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and subs. Routines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • Components and the functionality provided within those components may be combined into a smaller number of components or further separated into additional components.
  • the node selector 110 selects an intermediate node located at the shortest distance from the destination node among a plurality of intermediate nodes included in the packet transmission distance of the source node or each intermediate node. In this case, when an obstacle is located in the packet path corresponding to the shortest distance, the node selector 110 selects an intermediate node having a minimum distance cost and an interference cost.
  • the node selector 110 may be located in a form included in each of the source node and the plurality of intermediate nodes to select an intermediate node to transmit the next packet from each node.
  • the position of the node selector 110 is not limited thereto and may be included in one server or the control management unit, instead of being included in each node, to select an intermediate node to transmit the next packet.
  • the node selector 110 determines whether an obstacle is located between packet paths based on a terrain map previously held. Therefore, the interference cost can be calculated by determining the presence of obstacles as well as the distance cost based on the terrain map stored in the DB.
  • the topographic map includes topographic information on the presence or absence of a road, a building, and the like. Specifically, the topographic map may include information about a structure such as a height of a building, a width of a building, and a number of buildings. However, the topographic map is not limited to storing only the information of the structure, but may also include information about natural objects. Therefore, the topographic map may also include information about the size, width, and location of natural objects such as trees, mountains, and rivers.
  • the distance cost used as a criterion for selecting an intermediate node in the node selector 110 increases as the distance between a plurality of intermediate nodes and a destination node included in the packet transmission distance increases.
  • the cost of interference increases as the probability of causing interference by obstacles located in the packet path increases.
  • the distance cost and the interference cost will be described with reference to FIGS. 3A to 4B.
  • 3A and 3B are diagrams illustrating an increase in distance cost in the present invention.
  • the distance cost is used both when there is a possibility of causing radio interference between the current node and a neighboring node and when there is no possibility of causing interference.
  • the distance cost may increase in five types as shown in FIGS. 3A and 3B.
  • the distance cost may appear in a form in which the considered cost increases as the distance increases. That is, the cost may increase in the form of a straight line in proportion to the distance, or the cost may increase in the form of an exponential function or a logarithmic function.
  • the distance cost may appear in a form in which the cost increases as the distance increases as shown in FIG. 3B.
  • the increased form of the distance cost is not limited thereto, and the cost increases as the distance increases to a predetermined distance as shown in FIG. 3A, and the cost may increase stepwise as the distance increases as shown in FIG. 3B. .
  • the cost increases as the distance increases up to a certain distance as shown in FIG. 3A, and after that, the cost may be maintained even if the distance increases.
  • up to a certain distance as the distance increases, as shown in FIG. 3B, the cost increases in a stepped manner, and after that, the same cost may be maintained even if the distance increases.
  • 4A and 4B are diagrams illustrating an increase in interference cost in the present invention.
  • the interference cost is used only if there is a possibility of causing radio interference between the current node and the neighbor node. In this case, the interference cost may be greatly increased in five forms as shown in FIGS. 4A and 4B.
  • the interference cost may appear in a form in which the cost considered increases as the degree of interference increases. That is, the cost may increase in a linear form in proportion to the degree of radio wave interference, or the cost may increase in the form of a quadratic function.
  • the interference cost may appear in a form in which the cost increases as the degree of interference increases as shown in FIG. 4B.
  • the type of increase in the cost of interference is not limited thereto, and the cost increases as the level of interference increases as shown in FIG. 4A until a certain level of interference, and the cost increases stepwise as the level of interference increases in FIG. 4B. You may.
  • the cost increases as the degree of interference increases, as shown in FIG. 4A. After that, the same cost may be maintained even if the degree of interference increases.
  • up to a certain degree of interference as the degree of interference increases as shown in FIG. 4B, the cost increases in a stepped manner, and after that, the same cost may be maintained even if the degree of interference increases.
  • the node selector 110 selects an intermediate node located in a packet path without an obstacle among a plurality of intermediate nodes included in the packet transmission distance. Can be. At this time, the selected intermediate node is selected to be located at the shortest distance from the destination node.
  • the node selector 110 may select the intermediate node based on the distance cost without considering the interference cost. Meanwhile, the node selector 110 will be described with reference to FIG. 5.
  • FIG. 5 is a view showing an example of a node selection method in the present invention.
  • the node selection unit 110 has been described as being located in a form included in each node, but is not necessarily limited thereto.
  • the node selector 110 included in the source node 50 selects an intermediate node located at the shortest distance from the destination node 57 among the plurality of intermediate nodes included in the packet transmission distance 60 of the source node to select a packet. send.
  • the node selector 110 included in the source node 50 may be configured for each intermediate node.
  • the intermediate node is selected by considering only the distance cost without considering the interference cost. Therefore, since the first intermediate node 51 has a minimum distance cost, the node selector 110 included in the source node 50 selects the first intermediate node 51 as the next transmission node.
  • the node selector 110 included in the first intermediate node 51 transmits a packet by selecting one intermediate node among a plurality of intermediate nodes included in the packet transmission distance 70 of the first intermediate node 51. Done. In this case, the node selector 110 included in the first intermediate node 51 determines whether an obstacle is located between packet paths with a plurality of intermediate nodes included in the packet transmission distance 70 of the first intermediate node 51. To judge.
  • the node selector 110 included in the first intermediate node 51 selects the intermediate node in consideration of the distance cost as well as the interference cost. If the node selector 110 included in the first intermediate node 51 selects the third intermediate node 55 and transmits the packet, since there is an obstacle in the packet path, the second intermediate node has no obstacle in the packet path. The cost of interference is greater than that of node 53. Therefore, the node selector 110 included in the first intermediate node 51 does not select the third intermediate node 55 having the minimum distance cost, and selects the second intermediate node 53 in consideration of the interference cost. To send the packet.
  • the intermediate node may be selected by considering only the distance cost of which the distance from the destination node is the closest. However, when there is an obstacle, not only the distance cost but also the interference cost is considered. To select an intermediate node.
  • the packet transmitter 120 selects a routing path via the selected intermediate node and transmits a packet.
  • a routing path via the selected intermediate node and transmits a packet.
  • FIG. 6 is a flowchart of a routing method according to an embodiment of the present invention.
  • the source node or each intermediate node determines whether an obstacle exists between packet paths to a plurality of intermediate nodes included in the packet transmission distance (S610).
  • the intermediate node when there is no obstacle between the packet paths, the intermediate node is selected in consideration of only the distance cost (S630 and S640).
  • the interference cost is first considered (S620), and then the intermediate node is selected in consideration of the distance cost (S630 and S640).
  • the distance cost increases as the distance between the plurality of intermediate nodes and the destination node included in the packet transmission distance increases
  • the interference cost increases as the possibility of causing interference by obstacles located in the packet path increases.
  • the distance cost and the interference cost are not limited thereto, and may be represented by various types of increase as described above with reference to FIGS. 3A to 4B.
  • the routing path via the selected intermediate node is selected to transmit the packet (S630).
  • the packet is transmitted using geographic information, a section causing radio wave interference can be avoided, thereby increasing the probability that the packet arrives normally.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer readable media may include both computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.

Abstract

The present invention relates to a routing system for routing a source node for transmitting a packet, a destination node for receiving the packet, and a plurality of middle nodes located between the source node and the destination node, and the routing system comprises: a node selection unit for selecting the middle node, located at the shortest distance from the destination node, from among the plurality of middle nodes within a possible packet transmission distance of the source node or each of the middle nodes; and a packet transmitting unit for transmitting the packet by selecting a routing path which passes through the selected middle node, wherein the node selection unit selects the middle node which minimizes a distance cost and an interference cost when an obstacle is present on a packet path that corresponds to the shortest distance, wherein the distance cost increases as the distance between the plurality of middle nodes within the possible packet transmission distance and the destination node increases, and wherein the interference cost increases as the possibility of the obstacle on the packet path causing interference increases.

Description

지리적 정보를 이용한 라우팅 시스템 및 방법Routing System and Method Using Geographic Information
본 발명은 지리적 정보를 이용한 라우팅 시스템 및 방법에 관한 것이다. The present invention relates to a routing system and method using geographic information.
지리적 정보를 이용한 라우팅은 추가적인 정보를 이용함으로써 토폴로지 기반의 라우팅의 제약을 해결할 수 있다. 통신에 참여하는 각 노드들은 자신의 위치 정보를 이용하며, 각 노드들은 GPS 또는 다른 형태의 위치 서비스를 통해 자신의 위치 정보를 취득한다. 즉, 위치 서비스의 정보를 송신자의 패킷에 포함하여 보내게 되는 것이다.Routing using geographical information can solve the limitation of topology based routing by using additional information. Each node participating in the communication uses its own location information, and each node obtains its own location information through GPS or other types of location services. In other words, the location service information is included in the sender's packet.
한편, 위치 기반 라우팅 프로토콜은 라우팅 처리를 위하여 위치 정보와 이동 정보를 사용한다. 이에 대해, LAR(Location Aided Routing), DREAM(The Distence Routing Effect Algorithm for Mobility), GLS(The Grid Location Service)가 있으며, 이들은 위치 기반 라우팅 프로토콜이지만 각각 다른 방법으로 정보를 사용하고 있으며, 서로 다른 서비스를 제공하고 있다.Meanwhile, the location-based routing protocol uses location information and movement information for routing processing. For this, there are Location Aided Routing (LAR), The Distence Routing Effect Algorithm for Mobility (GREA), and The Grid Location Service (GLS), which are location-based routing protocols, but each use information in different ways. Providing.
LAR은 리액티브 라우팅 프로토콜 중 하나로서 루트 요청 패킷을 제한적으로 전송하여 좀 더 효율적으로 루트 발견을 수행하는데 목적이 있으며, 이때 전송 노드는 전송 패킷에 자신의 위치 정보를 포함시키고 있다.The LAR is one of the reactive routing protocols, and transmits a route request packet in a limited manner to perform route discovery more efficiently. The transmitting node includes its location information in the transport packet.
DREAM은 프로액티브 루트 프로토콜 중의 하나로서, 모든 노드는 네트워크에 참여하는 모든 노드의 위치 정보를 포함하고 있다. 이때, 위치 정보의 갱신 주기는 노드들 간의 거리 및 이동성의 특성에 따라 결정된다.DREAM is one of the proactive root protocols. Every node contains location information of every node participating in the network. At this time, the update period of the location information is determined according to the characteristics of the distance and mobility between nodes.
GLS는 라우팅 프로토콜이 아닌 위치 정보 서비스로서, GLS에서의 모든 노드는 네트워크에서 위치 정보를 제공하는 다수의 서버를 가지고 있다.GLS is a location information service, not a routing protocol, and every node in GLS has a number of servers that provide location information in the network.
위치 정보를 이용한 LAR과 DREAM은 모두 플러딩(flooding)을 통하여 라우팅 경로를 탐색하기 때문에 대규모 애드혹 네트워크(large scale ad-hoc network)에는 적합하지 않다. 반면, GLS는 고밀도의 대규모 모바일 애드혹 네트워크에서 사용할 수 있다. GLS는 네트워크에 여러 위치 정보를 제공하는 서버가 있어, 이 서버를 통해 위치 정보를 획득하게 된다. 또한, LAR과 DREAM은 위치 정보의 갱신과 질의를 위하여 플러딩을 사용하나, GLS는 플러딩을 사용하지 않는다. Both LAR and DREAM using location information are not suitable for large scale ad-hoc networks because both routing paths are searched through flooding. GLS, on the other hand, can be used in dense, large-scale mobile ad hoc networks. GLS has a server that provides a variety of location information in the network to obtain location information through this server. In addition, LAR and DREAM use flooding to update and query location information, but GLS does not use flooding.
도 1은 종래기술인 라우팅 방법을 도시한 도면이다.1 is a diagram illustrating a conventional routing method.
라우팅 시스템은 소스 노드(source node)(10), 목적지 노드(destination node)(15) 및 복수의 중간 노드(receiver node)를 포함하고 있다. 먼저, 소스 노드(10)는 패킷을 전송하는 역할을 수행한다. 다음으로, 목적지 노드(15)는 패킷을 수신하는 역할을 수행한다. 또한, 복수의 중간 노드는 소스 노드(10)와 목적지 노드(15) 사이에 위치하여 패킷의 전송 경로를 제공하는 역할을 수행한다.The routing system includes a source node 10, a destination node 15, and a plurality of intermediate nodes. First, the source node 10 serves to transmit a packet. Next, the destination node 15 serves to receive a packet. In addition, a plurality of intermediate nodes are located between the source node 10 and the destination node 15 to provide a packet transmission path.
한편, 소스 노드(10)가 목적지 노드(15)로 패킷을 전송할 경우, 최단 거리 또는 최단 홉(hop)을 기준으로 중간 노드를 선택하게 된다. 소스 노드(10)는 자신의 전파가 도달 가능한 거리인 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드 중 목적지 노드(15)와 가장 가까운 노드인 제 1 중간 노드(11)를 선택하여 전송한다. Meanwhile, when the source node 10 transmits a packet to the destination node 15, the source node 10 selects an intermediate node based on the shortest distance or the shortest hop. The source node 10 selects and transmits the first intermediate node 11, which is the node closest to the destination node 15, among the plurality of intermediate nodes included in the packet transmission distance that is the distance at which the radio waves can be reached.
제 1 중간 노드(11)는 소스 노드(10)가 중간 노드를 선택하는 방법과 동일한 방법으로 다음 중간 노드를 선택하게 된다. 이에 따라, 자신의 전파가 도달 가능한 노드 중, 목적지 노드에 가장 가까운 노드인 제 2 중간 노드(13)을 선택하여 전송한다. 그러나 제 1 중간 노드(11)와 제 2 중간 노드(13) 사이에는 전파 간섭을 일으킬 수 있는 건물, 나무 등이 위치하여 있어 패킷 전송시 전파 방해를 받게 된다. 따라서, 제 1 중간 노드(11)에서 제 2 중간 노드(13)로 전송한 패킷은 정상적으로 도달할 확률이 감소하게 된다는 문제점이 있다.The first intermediate node 11 selects the next intermediate node in the same way as the source node 10 selects the intermediate node. Accordingly, the second intermediate node 13, which is the node closest to the destination node, is selected and transmitted among the nodes whose radio waves can be reached. However, between the first intermediate node 11 and the second intermediate node 13, there are buildings, trees, and the like, which can cause radio interference, so that radio waves are disturbed during packet transmission. Therefore, there is a problem in that the probability that a packet transmitted from the first intermediate node 11 to the second intermediate node 13 arrives normally decreases.
이와 관련하여 한국공개특허공보 제2012-0042089호(발명의 명칭: 클러스터 헤드노드 및 이의 통신 방법)는 서로 다른 2가지 종류의 통신 인터페이스를 사용하여 통신을 수행하는 클러스터 헤드노드에서 있어서 통신 인터페이스 사이에 발생하는 간섭을 최소화하고, 통신 성능을 향상시킬 수 있는 클러스터 헤드노드 및 이의 통신 방법을 개시하고 있다. In this regard, Korean Laid-Open Patent Publication No. 2012-0042089 (name of the invention: a cluster head node and a communication method thereof) is used in communication between communication interfaces in a cluster head node that performs communication using two different types of communication interfaces. Disclosed are a cluster head node and a communication method thereof capable of minimizing interference and improving communication performance.
또한 한국공개특허공보 제2010-0034324호(발명의 명칭: 무선 센서 네트워크의 노드의 패킷 전송 장치 및 방법)는 노드 내의 우선순위 큐들을 이용하여 실시간을 요하는 패킷의 지연을 최소화하고, 이웃 노드의 큐 정보를 이용하여 신뢰성 있는 라우팅을 구현하는 무선 센서 네트워크의 노드의 패킷 전송 장치 및 방법을 개시하고 있다.In addition, Korean Patent Application Publication No. 2010-0034324 (name of the invention: apparatus and method for transmitting a packet in a node of a wireless sensor network) uses a priority queue in a node to minimize delay of a packet requiring real time, Disclosed is a packet transmission apparatus and method for a node of a wireless sensor network that implements reliable routing using queue information.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 일부 실시예는 각 노드에서 패킷 전송시 패킷 경로에 장애물이 위치한 경우, 거리 비용 및 간섭 비용이 최소가 되는 노드를 선택하여 전송하는 지리적 정보를 이용한 라우팅 시스템 및 방법을 제공하는 것을 그 목적으로 한다.The present invention is to solve the above-described problems of the prior art, some embodiments of the present invention, when an obstacle is located in the packet path at the time of packet transmission in each node, select the node with the minimum distance cost and interference cost to transmit It is an object of the present invention to provide a routing system and method using geographical information.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제 1 측면은 패킷을 전송하는 소스 노드, 패킷을 수신하는 목적지 노드 및 상기 소스 노드와 상기 목적지 노드 사이에 위치한 복수의 중간 노드에서의 라우팅 시스템에 있어서, 상기 소스 노드 또는 각 중간 노드의 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드 중 상기 목적지 노드와 최단 거리에 위치한 중간 노드를 선택하는 노드 선택부 및 상기 선택된 중간 노드를 경유하는 라우팅 경로를 선택하여 패킷을 전송하는 패킷 전송부를 포함하되, 상기 노드 선택부는, 상기 최단 거리에 대응되는 패킷 경로에 장애물이 위치한 경우, 거리 비용 및 간섭 비용이 최소가 되는 중간 노드를 선택하고, 상기 거리 비용은 상기 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드와 상기 목적지 노드 사이의 거리가 멀어질수록 증가하며, 상기 간섭 비용은 상기 패킷 경로에 위치한 장애물에 의한 간섭을 일으킬 가능성이 높아질수록 증가하는 것인 라우팅 시스템을 제공한다.As a technical means for achieving the above-described technical problem, a first aspect of the present invention provides a source node for transmitting a packet, a destination node for receiving a packet, and routing in a plurality of intermediate nodes located between the source node and the destination node. A system, comprising: a node selector for selecting an intermediate node located at a shortest distance from the destination node among a plurality of intermediate nodes included in a packet transmission distance of the source node or each intermediate node, and a routing path via the selected intermediate node And a packet transmitter for transmitting a packet by selecting a node, wherein the node selector selects an intermediate node having a minimum distance cost and an interference cost when an obstacle is located in a packet path corresponding to the shortest distance, and selects the distance cost. Is a plurality of intermediate nodes included in the packet transmittable distance and the destination; The distance between the edge nodes increases as the distance increases, and the interference cost increases as the probability of causing interference by obstacles located in the packet path increases.
또한, 본 발명의 제 2 측면은 패킷을 전송하는 소스 노드, 패킷을 수신하는 목적지 노드 및 상기 소스 노드와 상기 목적지 노드 사이에 위치한 복수의 중간 노드에서의 라우팅 방법에 있어서, 상기 소스 노드 또는 각 중간 노드의 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드 중 상기 목적지 노드와 최단 거리에 위치한 중간 노드를 선택하는 단계 및 상기 선택된 중간 노드를 경유하는 라우팅 경로를 선택하여 패킷을 전송하는 단계를 포함하되, 상기 최단 거리에 대응되는 패킷 경로에 장애물이 위치한 경우, 거리 비용 및 간섭 비용이 최소가 되는 중간 노드를 선택하고, 상기 거리 비용은 상기 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드와 상기 목적지 노드 사이의 거리가 멀어질수록 증가하며, 상기 간섭 비용은 상기 패킷 경로에 위치한 장애물에 의한 간섭을 일으킬 가능성이 높아질수록 증가하는 것인 라우팅 방법을 제공한다.In addition, a second aspect of the present invention provides a routing method in a source node for transmitting a packet, a destination node for receiving a packet, and a plurality of intermediate nodes located between the source node and the destination node, wherein the source node or each intermediate node is provided. Selecting an intermediate node located at the shortest distance from the destination node among a plurality of intermediate nodes included in the packet transmission distance of the node, and transmitting a packet by selecting a routing path through the selected intermediate node; When an obstacle is located in the packet path corresponding to the shortest distance, an intermediate node having a minimum distance cost and an interference cost is selected, and the distance cost is between a plurality of intermediate nodes included in the packet transmission distance and the destination node. Increases as the distance is greater, and the interference cost is located in the packet path. The more likely to cause interference due to the obstacles to provide a routing method to increase.
전술한 본 발명의 과제 해결 수단에 의하면, 패킷 전송시 지리적 정보를 이용함으로써 전파 간섭을 일으키는 구간을 회피하여 패킷을 전송할 수 있으므로, 패킷이 목적지 노드까지 정상적으로 도달할 수 있게 된다. According to the above-described problem solving means of the present invention, by using the geographic information in the packet transmission, the packet can be transmitted by avoiding the section causing the radio interference, so that the packet can reach the destination node normally.
또한, 플루딩 기반으로 위치 정보를 공유하는 것이 아니기 때문에 확정성 및 효율성이 좋다.In addition, since the location information is not shared on the basis of flooding, determinism and efficiency are good.
도 1은 종래기술인 라우팅 방법을 도시한 도면이다.1 is a diagram illustrating a conventional routing method.
도 2는 본 발명의 일 실시예에 따른 라우팅 시스템의 블록도이다.2 is a block diagram of a routing system according to an embodiment of the present invention.
도 3a 및 도 3b는 본 발명에서의 거리 비용 증가 형태를 도시한 도면이다.3A and 3B are diagrams illustrating an increase in distance cost in the present invention.
도 4 a 및 도 4b는 본 발명에서의 간섭 비용 증가 형태를 도시한 도면이다.4A and 4B are diagrams illustrating an increase in interference cost in the present invention.
도 5는 본 발명에서의 노드 선택 방법을 도시한 도면이다.5 is a diagram illustrating a node selection method in the present invention.
도 6은 본 발명의 일 실시예에 따른 라우팅 방법의 순서도이다.6 is a flowchart of a routing method according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.Throughout the specification, when a part is "connected" to another part, this includes not only "directly connected" but also "electrically connected" with another element in between. . In addition, when a part is said to "include" a certain component, which means that it may further include other components, except to exclude other components unless otherwise stated. As used throughout this specification, the term "step to" or "step of" does not mean "step for."
도 2는 본 발명의 일 실시예에 따른 라우팅 시스템(100)의 블록도이다.2 is a block diagram of a routing system 100 in accordance with an embodiment of the present invention.
본 발명에 따른 지리적 정보를 이용한 라우팅 시스템(100)은 노드 선택부(110) 및 패킷 전송부(120)를 포함한다.The routing system 100 using geographic information according to the present invention includes a node selector 110 and a packet transmitter 120.
참고로, 본 발명의 실시예에 따른 도 2에 도시된 구성 요소들은 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)와 같은 하드웨어 구성 요소를 의미하며, 소정의 역할들을 수행한다.For reference, the components illustrated in FIG. 2 according to an embodiment of the present invention mean software components or hardware components such as a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC), and perform predetermined roles. .
그렇지만 '구성 요소들'은 소프트웨어 또는 하드웨어에 한정되는 의미는 아니며, 각 구성 요소는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다.However, 'components' are not meant to be limited to software or hardware, and each component may be configured to be in an addressable storage medium or may be configured to reproduce one or more processors.
따라서, 일 예로서 구성 요소는 소프트웨어 구성 요소들, 객체지향 소프트웨어 구성 요소들, 클래스 구성 요소들 및 태스크 구성 요소들과 같은 구성 요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다.Thus, as an example, a component may include components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and subs. Routines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
구성 요소들과 해당 구성 요소들 안에서 제공되는 기능은 더 작은 수의 구성 요소들로 결합되거나 추가적인 구성 요소들로 더 분리될 수 있다.Components and the functionality provided within those components may be combined into a smaller number of components or further separated into additional components.
노드 선택부(110)는 소스 노드 또는 각 중간 노드의 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드 중 목적지 노드와 최단 거리에 위치한 중간 노드를 선택한다. 이때, 노드 선택부(110)는 최단 거리에 대응되는 패킷 경로에 장애물이 위치한 경우, 거리 비용 및 간섭 비용이 최소가 되는 중간 노드를 선택한다. The node selector 110 selects an intermediate node located at the shortest distance from the destination node among a plurality of intermediate nodes included in the packet transmission distance of the source node or each intermediate node. In this case, when an obstacle is located in the packet path corresponding to the shortest distance, the node selector 110 selects an intermediate node having a minimum distance cost and an interference cost.
한편, 노드 선택부(110)는 소스 노드 및 복수의 중간 노드 각각에 포함되는 형태로 위치하여 각각의 노드에서 다음 패킷을 전송할 중간 노드를 선택할 수 있다. 다만, 노드 선택부(110)의 위치는 이에 한정되는 것이 아니며, 각 노드에 포함되는 형태가 아니라, 하나의 서버 또는 제어관리부에 포함되어 다음 패킷을 전송할 중간 노드를 선택할 수 있다.Meanwhile, the node selector 110 may be located in a form included in each of the source node and the plurality of intermediate nodes to select an intermediate node to transmit the next packet from each node. However, the position of the node selector 110 is not limited thereto and may be included in one server or the control management unit, instead of being included in each node, to select an intermediate node to transmit the next packet.
노드 선택부(110)는 패킷 경로 사이에 장애물이 위치하는지 여부를 미리 보유한 지형맵에 기초하여 판단하게 된다. 따라서, DB 등에 저장된 지형맵에 기초하여 거리 비용 뿐만 아니라 장애물의 유무를 판단함으로써 간섭 비용까지 산출할 수 있다. 이때, 지형맵은 도로, 건물 등의 유무에 대한 지형정보를 포함하고 있으며, 구체적으로 건물의 높이, 건물의 넓이, 건물의 개수 등의 구조물에 대한 정보를 포함할 수 있다. 다만, 지형맵은 구조물의 정보만을 한정하여 저장하는 것은 아니며, 자연물에 대한 정보도 포함할 수 있다. 따라서, 지형맵에는 나무, 산, 강 등의 자연물에 대한 크기, 넓이 및 위치 등에 대한 정보도 포함될 수 있다. The node selector 110 determines whether an obstacle is located between packet paths based on a terrain map previously held. Therefore, the interference cost can be calculated by determining the presence of obstacles as well as the distance cost based on the terrain map stored in the DB. In this case, the topographic map includes topographic information on the presence or absence of a road, a building, and the like. Specifically, the topographic map may include information about a structure such as a height of a building, a width of a building, and a number of buildings. However, the topographic map is not limited to storing only the information of the structure, but may also include information about natural objects. Therefore, the topographic map may also include information about the size, width, and location of natural objects such as trees, mountains, and rivers.
노드 선택부(110)에서 중간 노드 선택시 판단 기준으로 사용되는 거리 비용은 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드와 목적지 노드 사이의 거리가 멀어질수록 증가한다. 또한, 간섭 비용은 패킷 경로에 위치한 장애물에 의한 간섭을 일으킬 가능성이 높아질수록 증가하게 된다.The distance cost used as a criterion for selecting an intermediate node in the node selector 110 increases as the distance between a plurality of intermediate nodes and a destination node included in the packet transmission distance increases. In addition, the cost of interference increases as the probability of causing interference by obstacles located in the packet path increases.
거리 비용 및 간섭비용에 대하여 도 3a 내지 도 4b를 참조하여 설명하면 다음과 같다.The distance cost and the interference cost will be described with reference to FIGS. 3A to 4B.
도 3a 및 도 3b는 본 발명에서의 거리 비용 증가 형태를 도시한 도면이다.3A and 3B are diagrams illustrating an increase in distance cost in the present invention.
거리 비용은 현재 노드와 이웃 노드 사이에 전파 간섭을 일으킬 가능성이 있는 경우와 간섭을 일으킬 가능성이 없는 경우 모두 이용된다. 이때, 거리 비용은 도 3a 및 도 3b에 도시된 바와 같이 크게 5가지 형태로 증가할 수 있다.The distance cost is used both when there is a possibility of causing radio interference between the current node and a neighboring node and when there is no possibility of causing interference. In this case, the distance cost may increase in five types as shown in FIGS. 3A and 3B.
먼저, 거리 비용은 도 3a에 도시된 바와 같이 거리가 증가할수록 고려되는 비용이 증가되는 형태로 나타날 수 있다. 즉, 거리에 비례하여 직선 형태로 비용이 증가하거나, 지수 함수 또는 로그 함수 형태로 비용이 증가할 수 있다.First, as shown in FIG. 3A, the distance cost may appear in a form in which the considered cost increases as the distance increases. That is, the cost may increase in the form of a straight line in proportion to the distance, or the cost may increase in the form of an exponential function or a logarithmic function.
또한, 거리 비용은 도 3b에 도시된 바와 같이 거리가 증가할수록 비용이 계단 형으로 증가하는 형태로 나타날 수 있다. 다만, 거리 비용의 증가 형태는 이에 한정되는 것이 아니며, 일정 거리까지는 도 3a와 같이 거리가 증가할수록 비용이 증가하고, 그 이후에는 도 3b와 같이 거리가 증가할수록 비용이 계단형으로 증가할 수도 있다. 또한, 일정 거리까지는 도 3a와 같이 거리가 증가할수록 비용이 증가하는 형태를 띄고, 그 이후에는 거리가 증가하여도 동일한 비용을 유지하는 형태로 나타날 수도 있다. 또한, 일정 거리까지는 도 3b와 같이 거리가 증가할수록 비용이 계단형으로 증가하는 형태를 띄고, 그 이후에는 거리가 증가하여도 동일한 비용을 유지하는 형태로 나타날 수도 있다.In addition, the distance cost may appear in a form in which the cost increases as the distance increases as shown in FIG. 3B. However, the increased form of the distance cost is not limited thereto, and the cost increases as the distance increases to a predetermined distance as shown in FIG. 3A, and the cost may increase stepwise as the distance increases as shown in FIG. 3B. . In addition, the cost increases as the distance increases up to a certain distance as shown in FIG. 3A, and after that, the cost may be maintained even if the distance increases. In addition, up to a certain distance, as the distance increases, as shown in FIG. 3B, the cost increases in a stepped manner, and after that, the same cost may be maintained even if the distance increases.
도 4 a 및 도 4b는 본 발명에서의 간섭 비용 증가 형태를 도시한 도면이다.4A and 4B are diagrams illustrating an increase in interference cost in the present invention.
간섭 비용은 현재 노드와 이웃 노드 사이에 전파 간섭을 일으킬 가능성이 있는 경우에만 이용된다. 이때, 간섭 비용은 도 4a 및 도 4b에 도시된 바와 같이 크게 5가지 형태로 증가할 수 있다.The interference cost is used only if there is a possibility of causing radio interference between the current node and the neighbor node. In this case, the interference cost may be greatly increased in five forms as shown in FIGS. 4A and 4B.
간섭 비용은 도 4a에 도시된 바와 같이 간섭 정도가 증가할수록 고려되는 비용이 증가되는 형태로 나타날 수 있다. 즉, 전파 간섭 정도에 비례하여 직선 형태로 비용이 증가하거나, 2차 함수 형태로 비용이 증가할 수 있다.As shown in FIG. 4A, the interference cost may appear in a form in which the cost considered increases as the degree of interference increases. That is, the cost may increase in a linear form in proportion to the degree of radio wave interference, or the cost may increase in the form of a quadratic function.
또한, 간섭 비용은 도 4b에 도시된 바와 같이 간섭 정도가 증가할수록 비용이 계단 형으로 증가하는 형태로 나타날 수 있다. 다만, 간섭 비용의 증가 형태는 이에 한정되는 것이 아니며, 일정한 간섭 정도까지는 도 4a와 같이 간섭 정도가 증가할수록 비용이 증가하고, 그 이후에는 도 4b와 같이 간섭 정도가 증가할수록 비용이 계단형으로 증가할 수도 있다. 또한, 일정 간섭 정도까지는 도 4a와 같이 간섭 정도가 증가할수록 비용이 증가하는 형태를 띄고, 그 이후에는 간섭 정도가 증가하여도 동일한 비용을 유지하는 형태로 나타날 수도 있다. 또한, 일정 간섭 정도까지는 도 4b와 같이 간섭 정도가 증가할수록 비용이 계단형으로 증가하는 형태를 띄고, 그 이후에는 간섭 정도가 증가하여도 동일한 비용을 유지하는 형태로 나타날 수도 있다.In addition, the interference cost may appear in a form in which the cost increases as the degree of interference increases as shown in FIG. 4B. However, the type of increase in the cost of interference is not limited thereto, and the cost increases as the level of interference increases as shown in FIG. 4A until a certain level of interference, and the cost increases stepwise as the level of interference increases in FIG. 4B. You may. In addition, up to a certain degree of interference, the cost increases as the degree of interference increases, as shown in FIG. 4A. After that, the same cost may be maintained even if the degree of interference increases. In addition, up to a certain degree of interference, as the degree of interference increases as shown in FIG. 4B, the cost increases in a stepped manner, and after that, the same cost may be maintained even if the degree of interference increases.
다시 도 2를 참조하면, 노드 선택부(110)는 최단 거리에 대응되는 패킷 경로에 장애물이 위치한 경우, 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드 중 장애물이 없는 패킷 경로에 위치한 중간 노드를 선택할 수 있다. 이때, 선택된 중간 노드는 목적지 노드와 최단 거리에 위치한 것이 선택된다.Referring back to FIG. 2, when an obstacle is located in a packet path corresponding to the shortest distance, the node selector 110 selects an intermediate node located in a packet path without an obstacle among a plurality of intermediate nodes included in the packet transmission distance. Can be. At this time, the selected intermediate node is selected to be located at the shortest distance from the destination node.
또한, 노드 선택부(110)는 최단 거리에 대응되는 패킷 경로에 장애물이 위치하지 않은 경우에는, 간섭 비용을 고려하지 않고 거리 비용에 기초하여 중간 노드를 선택할 수 있다. 한편, 노드 선택부(110)에 대하여 도 5을 참조하여 설명하면 다음과 같다.In addition, when the obstacle is not located in the packet path corresponding to the shortest distance, the node selector 110 may select the intermediate node based on the distance cost without considering the interference cost. Meanwhile, the node selector 110 will be described with reference to FIG. 5.
도 5는 본 발명에서의 노드 선택 방법의 일예시를 도시한 도면이다. 이때, 노드 선택부(110)는 각 노드에 포함되어 있는 형태로 위치하고 있는 것으로 설명하였으나, 반드시 이에 한정되는 것은 아니다.5 is a view showing an example of a node selection method in the present invention. In this case, the node selection unit 110 has been described as being located in a form included in each node, but is not necessarily limited thereto.
소스 노드(50)에 포함된 노드 선택부(110)는 소스 노드의 패킷 전송 가능 거리(60) 내에 포함된 복수의 중간 노드 중 목적지 노드(57)와 최단 거리에 위치한 중간 노드를 선택하여 패킷을 전송한다. 이때, 소스 노드의 패킷 전송 가능 거리(60) 내에 위치한 중간 노드들에 대한 패킷 경로 사이에는 장애물이 위치하고 있지 않으므로, 소스 노드(50)에 포함된 노드 선택부(110)는 각 중간 노드들에 대하여 간섭 비용은 고려하지 않고 거리 비용만을 고려하여 중간 노드를 선택한다. 따라서, 제 1 중간 노드(51)가 거리 비용이 최소가 되므로 소스 노드(50)에 포함된 노드 선택부(110)는 제 1 중간 노드(51)를 다음 전송 노드로 선택한다.The node selector 110 included in the source node 50 selects an intermediate node located at the shortest distance from the destination node 57 among the plurality of intermediate nodes included in the packet transmission distance 60 of the source node to select a packet. send. In this case, since there is no obstacle between packet paths for intermediate nodes located within the packet transmission possible distance 60 of the source node, the node selector 110 included in the source node 50 may be configured for each intermediate node. The intermediate node is selected by considering only the distance cost without considering the interference cost. Therefore, since the first intermediate node 51 has a minimum distance cost, the node selector 110 included in the source node 50 selects the first intermediate node 51 as the next transmission node.
다음으로, 제 1 중간 노드(51)에 포함된 노드 선택부(110)는 제 1 중간 노드의 패킷 전송 가능 거리(70) 내에 포함된 복수의 중간 노드 중 하나의 중간 노드를 선택하여 패킷을 전송하게 된다. 이때, 제 1 중간 노드(51)에 포함된 노드 선택부(110)는 제 1 중간 노드의 패킷 전송 가능 거리(70) 내에 포함된 복수의 중간 노드와의 패킷 경로 사이에 장애물이 위치하는지 여부를 판단한다. Next, the node selector 110 included in the first intermediate node 51 transmits a packet by selecting one intermediate node among a plurality of intermediate nodes included in the packet transmission distance 70 of the first intermediate node 51. Done. In this case, the node selector 110 included in the first intermediate node 51 determines whether an obstacle is located between packet paths with a plurality of intermediate nodes included in the packet transmission distance 70 of the first intermediate node 51. To judge.
한편, 도 5에서 제 1 중간 노드(51)와 제 3 중간 노드(55) 사이의 패킷 경로 사이에는 장애물이 위치하고 있다. 따라서, 제 1 중간 노드(51)에 포함된 노드 선택부(110)는 거리 비용 뿐만 아니라 간섭 비용까지 고려하여 중간 노드를 선택하게 된다. 만약, 제 1 중간 노드(51)에 포함된 노드 선택부(110)가 제 3 중간 노드(55)를 선택하여 패킷을 전송할 경우, 패킷 경로에 장애물이 존재하므로 패킷 경로에 장애물이 없는 제 2 중간 노드(53)보다 간섭 비용이 더 크게 된다. 따라서, 제 1 중간 노드(51)에 포함된 노드 선택부(110)는 거리 비용이 최소인 제 3 중간 노드(55)를 선택하지 않고, 간섭 비용까지 고려하여 제 2 중간 노드(53)를 선택하여 패킷을 전송한다. Meanwhile, in FIG. 5, an obstacle is located between the packet paths between the first intermediate node 51 and the third intermediate node 55. Therefore, the node selector 110 included in the first intermediate node 51 selects the intermediate node in consideration of the distance cost as well as the interference cost. If the node selector 110 included in the first intermediate node 51 selects the third intermediate node 55 and transmits the packet, since there is an obstacle in the packet path, the second intermediate node has no obstacle in the packet path. The cost of interference is greater than that of node 53. Therefore, the node selector 110 included in the first intermediate node 51 does not select the third intermediate node 55 having the minimum distance cost, and selects the second intermediate node 53 in consideration of the interference cost. To send the packet.
이와 같이, 패킷 경로 사이에 장애물이 존재하지 않는 경우에는 목적지 노드와의 거리가 가장 가까운 정도인 거리 비용만을 고려하여 중간 노드를 선택하면 되나, 장애물이 존재하는 경우에는 거리 비용 뿐만 아니라 간섭 비용까지 고려하여 중간 노드를 선택해야 한다.As such, when there are no obstacles between packet paths, the intermediate node may be selected by considering only the distance cost of which the distance from the destination node is the closest. However, when there is an obstacle, not only the distance cost but also the interference cost is considered. To select an intermediate node.
다시 도 2를 참조하면, 패킷 전송부(120)는 선택된 중간 노드를 경유하는 라우팅 경로를 선택하여 패킷을 전송한다. 이와 같이, 지리적 정보를 이용하여 패킷 전송 경로에 장애물 존재하는지 여부에 따라 중간 노드를 선택하여 패킷을 전송할 경우, 전파 간섭을 일으키는 구간을 회피할 수 있어 목적지 노드까지 패킷이 정상적으로 도달할 확률이 높아지게 되는 효과적 측면이 있다.Referring back to FIG. 2, the packet transmitter 120 selects a routing path via the selected intermediate node and transmits a packet. As such, when the intermediate node is selected and the packet is transmitted according to whether there is an obstacle in the packet transmission path using geographic information, a section that causes radio interference can be avoided, which increases the probability of the packet reaching the destination node normally. There is an effective aspect.
도 6은 본 발명의 일 실시예에 따른 라우팅 방법의 순서도이다.6 is a flowchart of a routing method according to an embodiment of the present invention.
먼저, 소스 노드 또는 각 중간 노드는 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드로의 패킷 경로 사이에 장애물이 존재하는지 여부를 판단한다(S610). First, the source node or each intermediate node determines whether an obstacle exists between packet paths to a plurality of intermediate nodes included in the packet transmission distance (S610).
이때, 패킷 경로 사이에 장애물이 존재하지 않은 경우에는 거리 비용만을 고려하여 중간 노드를 선택한다(S630, S640). 반면, 패킷 경로 사이에 장애물이 존재하는 경우에는 간섭 비용을 먼저 고려한 후(S620) 다음으로 거리 비용을 고려하여 중간 노드를 선택한다(S630, S640). In this case, when there is no obstacle between the packet paths, the intermediate node is selected in consideration of only the distance cost (S630 and S640). On the other hand, if an obstacle exists between the packet paths, the interference cost is first considered (S620), and then the intermediate node is selected in consideration of the distance cost (S630 and S640).
한편, 거리 비용은 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드와 목적지 노드 사이의 거리가 멀어질수록 증가하고, 간섭 비용은 패킷 경로에 위치한 장애물에 의한 간섭을 일으킬 가능성이 높아질수록 증가한다. 다만, 거리 비용 및 간섭 비용은 이에 한정되는 것이 아니며 상기 도 3a 내지 도4b에서 설명한 바와 같이 여러가지 증가 유형으로 나타날 수 있다.Meanwhile, the distance cost increases as the distance between the plurality of intermediate nodes and the destination node included in the packet transmission distance increases, and the interference cost increases as the possibility of causing interference by obstacles located in the packet path increases. However, the distance cost and the interference cost are not limited thereto, and may be represented by various types of increase as described above with reference to FIGS. 3A to 4B.
다음으로, 선택된 중간 노드를 경유하는 라우팅 경로를 선택하여 패킷을 전송한다(S630). 이와 같이, 지리적 정보를 이용하여 패킷을 전송할 경우, 전파 간섭을 일으키는 구간을 회피할 수 있어 패킷이 정상적으로 도달할 확률이 높아지게 된다.Next, the routing path via the selected intermediate node is selected to transmit the packet (S630). As described above, when the packet is transmitted using geographic information, a section causing radio wave interference can be avoided, thereby increasing the probability that the packet arrives normally.
본 발명의 일 실시예는 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다. One embodiment of the present invention can also be implemented in the form of a recording medium containing instructions executable by a computer, such as a program module executed by the computer. Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. In addition, computer readable media may include both computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.

Claims (6)

  1. 패킷을 전송하는 소스 노드, 패킷을 수신하는 목적지 노드 및 상기 소스 노드와 상기 목적지 노드 사이에 위치한 복수의 중간 노드에서의 라우팅 시스템에 있어서,A routing system in a source node for transmitting a packet, a destination node for receiving a packet, and a plurality of intermediate nodes located between the source node and the destination node,
    상기 소스 노드 또는 각 중간 노드의 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드 중 상기 목적지 노드와 최단 거리에 위치한 중간 노드를 선택하는 노드 선택부 및A node selector for selecting an intermediate node located at a shortest distance from the destination node among a plurality of intermediate nodes included in the packet transmission distance of the source node or each intermediate node;
    상기 선택된 중간 노드를 경유하는 라우팅 경로를 선택하여 패킷을 전송하는 패킷 전송부를 포함하되,Including a packet transmission unit for transmitting a packet by selecting the routing path via the selected intermediate node,
    상기 노드 선택부는,The node selector,
    상기 최단 거리에 대응되는 패킷 경로에 장애물이 위치한 경우, 거리 비용 및 간섭 비용이 최소가 되는 중간 노드를 선택하고,When an obstacle is located in the packet path corresponding to the shortest distance, the intermediate node having the minimum distance cost and interference cost is selected,
    상기 거리 비용은 상기 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드와 상기 목적지 노드 사이의 거리가 멀어질수록 증가하며,The distance cost increases as the distance between the plurality of intermediate nodes and the destination node included in the packet transmission distance increases;
    상기 간섭 비용은 상기 패킷 경로에 위치한 장애물에 의한 간섭을 일으킬 가능성이 높아질수록 증가하는 것인 라우팅 시스템.The interference cost increases as the probability of causing interference by obstacles located in the packet path increases.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 노드 선택부는,The node selector,
    상기 최단 거리에 대응되는 패킷 경로에 장애물이 위치한 경우, 상기 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드 중 장애물이 없는 패킷 경로에 위치하고, 상기 목적지 노드와 최단 거리에 위치한 중간 노드를 선택하는 것인 라우팅 시스템.When an obstacle is located in the packet path corresponding to the shortest distance, it selects an intermediate node located in the packet path without an obstacle among the plurality of intermediate nodes included in the packet transmission distance and located at the shortest distance from the destination node. Routing system.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 노드 선택부는 상기 최단 거리에 대응되는 패킷 경로에 장애물이 위치하지 않은 경우, 거리 비용에 기초하여 중간 노드를 선택하되,When the obstacle is not located in the packet path corresponding to the shortest distance, the node selector selects an intermediate node based on a distance cost,
    상기 거리 비용은 상기 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드와 상기 목적지 노드 사이의 거리가 멀어질수록 증가하는 것인 라우팅 시스템.The distance cost increases as the distance between the plurality of intermediate nodes and the destination node included in the packet transmittable distance increases.
  4. 패킷을 전송하는 소스 노드, 패킷을 수신하는 목적지 노드 및 상기 소스 노드와 상기 목적지 노드 사이에 위치한 복수의 중간 노드에서의 라우팅 방법에 있어서,A routing method in a source node for transmitting a packet, a destination node for receiving a packet, and a plurality of intermediate nodes located between the source node and the destination node,
    상기 소스 노드 또는 각 중간 노드의 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드 중 상기 목적지 노드와 최단 거리에 위치한 중간 노드를 선택하는 단계 및Selecting an intermediate node located at the shortest distance from the destination node among a plurality of intermediate nodes included in the packet transmission distance of the source node or each intermediate node;
    상기 선택된 중간 노드를 경유하는 라우팅 경로를 선택하여 패킷을 전송하는 단계를 포함하되,Selecting a routing path via the selected intermediate node to transmit a packet;
    상기 최단 거리에 대응되는 패킷 경로에 장애물이 위치한 경우, 거리 비용 및 간섭 비용이 최소가 되는 중간 노드를 선택하고,When an obstacle is located in the packet path corresponding to the shortest distance, the intermediate node having the minimum distance cost and interference cost is selected,
    상기 거리 비용은 상기 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드와 상기 목적지 노드 사이의 거리가 멀어질수록 증가하며,The distance cost increases as the distance between the plurality of intermediate nodes and the destination node included in the packet transmission distance increases;
    상기 간섭 비용은 상기 패킷 경로에 위치한 장애물에 의한 간섭을 일으킬 가능성이 높아질수록 증가하는 것인 라우팅 방법.The interference cost increases as the probability of causing interference by obstacles located in the packet path increases.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 최단 거리에 대응되는 패킷 경로에 장애물이 위치한 경우, 상기 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드 중 장애물이 없는 패킷 경로에 위치하고, 상기 목적지 노드와 최단 거리에 위치한 중간 노드를 선택하는 것인 라우팅 방법.When an obstacle is located in the packet path corresponding to the shortest distance, it selects an intermediate node located in the unobstructed packet path among the plurality of intermediate nodes included in the packet transmission distance and located at the shortest distance from the destination node. Routing method.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    최단 거리에 위치한 중간 노드를 선택하는 단계는,Selecting the middle node located at the shortest distance,
    상기 최단 거리에 대응되는 패킷 경로에 장애물이 위치하지 않은 경우, 거리 비용에 기초하여 중간 노드를 선택하되,If the obstacle is not located in the packet path corresponding to the shortest distance, the intermediate node is selected based on the distance cost,
    상기 거리 비용은 상기 패킷 전송 가능 거리 내에 포함된 복수의 중간 노드와 상기 목적지 노드 사이의 거리가 멀어질수록 증가하는 것인 라우팅 방법.The distance cost increases as the distance between the plurality of intermediate nodes and the destination node included in the packet transmittable distance increases.
PCT/KR2012/011841 2012-12-31 2012-12-31 Routing system and method using geographic information WO2014104454A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/011841 WO2014104454A1 (en) 2012-12-31 2012-12-31 Routing system and method using geographic information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/011841 WO2014104454A1 (en) 2012-12-31 2012-12-31 Routing system and method using geographic information

Publications (1)

Publication Number Publication Date
WO2014104454A1 true WO2014104454A1 (en) 2014-07-03

Family

ID=51021497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011841 WO2014104454A1 (en) 2012-12-31 2012-12-31 Routing system and method using geographic information

Country Status (1)

Country Link
WO (1) WO2014104454A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190049599A (en) 2017-11-01 2019-05-09 (주)솔빛시스템 Method and apparatus for enhancing reliability transmission through adjacent node transmission on decentralized network using tree topology
CN110024431A (en) * 2016-12-22 2019-07-16 株式会社日立制作所 Communication system, communication management method and network administration apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236632A (en) * 2004-02-19 2005-09-02 Oki Electric Ind Co Ltd Radio network apparatus, radio network system and routing method
JP2008187359A (en) * 2007-01-29 2008-08-14 Kyocera Corp Data transmission method, data transmission management system, and data transmission path management device
KR20100122792A (en) * 2009-05-13 2010-11-23 한양대학교 산학협력단 Routing method for wireless sensor networks in home automation and communication module of sensor node using it
JP2011009974A (en) * 2009-06-25 2011-01-13 Hitachi Ltd Radio communication system and radio communication method
KR20120068427A (en) * 2010-12-17 2012-06-27 고려대학교 산학협력단 Routing apparatus and method for minimizing the energy consumption in ad-hoc network
JP2012227707A (en) * 2011-04-19 2012-11-15 Nec Corp Packet relay system, packet relay method, and program for packet relay

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005236632A (en) * 2004-02-19 2005-09-02 Oki Electric Ind Co Ltd Radio network apparatus, radio network system and routing method
JP2008187359A (en) * 2007-01-29 2008-08-14 Kyocera Corp Data transmission method, data transmission management system, and data transmission path management device
KR20100122792A (en) * 2009-05-13 2010-11-23 한양대학교 산학협력단 Routing method for wireless sensor networks in home automation and communication module of sensor node using it
JP2011009974A (en) * 2009-06-25 2011-01-13 Hitachi Ltd Radio communication system and radio communication method
KR20120068427A (en) * 2010-12-17 2012-06-27 고려대학교 산학협력단 Routing apparatus and method for minimizing the energy consumption in ad-hoc network
JP2012227707A (en) * 2011-04-19 2012-11-15 Nec Corp Packet relay system, packet relay method, and program for packet relay

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110024431A (en) * 2016-12-22 2019-07-16 株式会社日立制作所 Communication system, communication management method and network administration apparatus
EP3544329A4 (en) * 2016-12-22 2020-06-10 Hitachi, Ltd. Communication system, communication management method, and network management device
US11190950B2 (en) 2016-12-22 2021-11-30 Hitachi, Ltd. Communication system, communication management method, and network management apparatus
CN110024431B (en) * 2016-12-22 2022-04-15 株式会社日立制作所 Communication system, communication management method, and network management device
KR20190049599A (en) 2017-11-01 2019-05-09 (주)솔빛시스템 Method and apparatus for enhancing reliability transmission through adjacent node transmission on decentralized network using tree topology

Similar Documents

Publication Publication Date Title
CA2321918C (en) Routing method for wireless and distributed systems
Jain et al. Geographical routing using partial information for wireless ad hoc networks
CN100548003C (en) In wireless network, transmit the method and apparatus of grouping
US6675009B1 (en) Automated configuration of a wireless communication device
De Couto et al. Location proxies and intermediate node forwarding for practical geographic forwarding
CN101611642B (en) Communication set configuration in network
Chen et al. DTN-FLOW: Inter-landmark data flow for high-throughput routing in DTNs
US7787429B2 (en) Method and apparatus for establishing path in wireless network
CN108040353A (en) A kind of unmanned plane swarm intelligence Geographic routing method of Q study
CN106453626A (en) Methods and systems for peer-to-peer network discovery using multi-user diversity
JPWO2011121671A1 (en) Firmware update method, communication unit, and program
Huang et al. Coordinate-assisted routing approach to bypass routing holes in wireless sensor networks
WO2017188748A1 (en) Method for forming dynamic bridge node of wireless mesh network
US8391183B2 (en) System and method for operating a large-scale wireless network
Stathopoulos et al. Mote herding for tiered wireless sensor networks
WO2014104453A1 (en) Routing system for selecting access node by using geographic information and method for selecting access node
Najafzadeh et al. Broadcasting in connected and fragmented vehicular ad hoc networks
Venkatramana et al. CISRP: connectivity-aware intersection-based shortest path routing protocol for VANETs in urban environments.
Braun et al. Performance of the beacon-less routing protocol in realistic scenarios
WO2013115602A1 (en) Dynamic routing method in ad-hoc network and network device therefor
KR20110094544A (en) Wireless sensor and wireless ad-hoc network using ligr algorithm
WO2014104454A1 (en) Routing system and method using geographic information
US7295533B2 (en) Method for location tracking using vicinities
US8493943B1 (en) Geographical communications networking system and method
KR101243244B1 (en) Routing apparatus and method for minimizing the energy consumption in ad-hoc network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890794

Country of ref document: EP

Kind code of ref document: A1