WO2014104453A1 - 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 및 접속 노드 선택 방법 - Google Patents

지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 및 접속 노드 선택 방법 Download PDF

Info

Publication number
WO2014104453A1
WO2014104453A1 PCT/KR2012/011839 KR2012011839W WO2014104453A1 WO 2014104453 A1 WO2014104453 A1 WO 2014104453A1 KR 2012011839 W KR2012011839 W KR 2012011839W WO 2014104453 A1 WO2014104453 A1 WO 2014104453A1
Authority
WO
WIPO (PCT)
Prior art keywords
access node
node
distance
packet
geographic information
Prior art date
Application number
PCT/KR2012/011839
Other languages
English (en)
French (fr)
Inventor
강현국
최대인
김민수
이수진
Original Assignee
인텔렉추얼디스커버리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인텔렉추얼디스커버리 주식회사 filed Critical 인텔렉추얼디스커버리 주식회사
Priority to PCT/KR2012/011839 priority Critical patent/WO2014104453A1/ko
Publication of WO2014104453A1 publication Critical patent/WO2014104453A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/20Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location

Definitions

  • the present invention relates to a routing system and an access node selection method for selecting an access node using geographic information.
  • Routing using geographical information can solve the limitation of topology based routing by using additional information.
  • Each node participating in the communication uses its own location information, and each node obtains its own location information through GPS or other types of location services. In other words, the location service information is included in the sender's packet.
  • the location-based routing protocol uses location information and movement information for routing processing.
  • LAR Location Aided Routing
  • GREA Distence Routing Effect Algorithm for Mobility
  • GRS Grid Location Service
  • the LAR is one of the reactive routing protocols, and transmits a route request packet in a limited manner to perform route discovery more efficiently.
  • the transmitting node includes its location information in the transport packet.
  • Every node contains location information of every node participating in the network. At this time, the update period of the location information is determined according to the characteristics of the distance and mobility between nodes.
  • GLS is a location information service, not a routing protocol, and every node in GLS has a number of servers that provide location information in the network.
  • GLS can be used in dense, large-scale mobile ad hoc networks.
  • GLS has a server that provides a variety of location information in the network to obtain location information through this server.
  • LAR and DREAM use flooding to update and query location information, but GLS does not use flooding.
  • the nodes of the Internet are selecting the next transmitting node without considering the location information.
  • more and more network nodes have been able to select the next transmission node in consideration of location information, which can improve network scalability and efficiency.
  • Korean Laid-Open Patent Publication No. 2012-0042089 name of the invention: a cluster head node and a communication method thereof
  • a cluster head node and a communication method thereof is used in communication between communication interfaces in a cluster head node that performs communication using two different types of communication interfaces.
  • Korean Patent Application Publication No. 2010-0034324 (name of the invention: apparatus and method for transmitting a packet in a node of a wireless sensor network) uses a priority queue in a node to minimize delay of a packet requiring real time
  • a packet transmission apparatus and method for a node of a wireless sensor network that implements reliable routing using queue information.
  • the present invention is to solve the above-mentioned problems of the prior art, and in some embodiments of the present invention, when selecting the next transmission node in each node, the geographic information selected in consideration of the interval causing radio interference using geographic information is selected. It is an object of the present invention to provide a routing system for selecting an access node and a method for selecting an access node.
  • the routing system selects an access node using geographic information, and geographical information corresponding to the geographic information ID assigned to each access node is selected.
  • the next transmission node includes a stored geographic information storage unit, a measuring unit measuring a packet transmission possible distance of each access node based on the geographic information, and an access node located at the shortest distance among a plurality of access nodes included in the packet transmission possible distance.
  • a node selector configured to select a node, wherein the node selector is a packet having no obstacle among a plurality of access nodes included in the packet transmission distance when an obstacle is located between a packet path with an access node located at the shortest distance.
  • the access node selection method in a routing system for selecting an access node using geographic information comprises the steps of: storing geographic information corresponding to a geographic information ID assigned to each access node; Measuring a packet transmission possible distance of each access node based on the information, and selecting an access node located at the shortest distance among the plurality of access nodes included in the packet transmission distance as a next transmission node, wherein When an obstacle is located between the packet paths to the access nodes located at a distance, among the plurality of access nodes included in the packet transmission possible distance, the access node located at the shortest distance and located on the unobstructed packet path as the next transmission node is selected. do.
  • FIG. 1 is a block diagram of a routing system according to an embodiment of the present invention.
  • 2 is a diagram illustrating a packet transmission distance.
  • FIG. 3 is a diagram illustrating a method of selecting an access node in consideration of a packet transmission possible distance.
  • 4A and 4B are diagrams illustrating a form of increasing distance cost in the present invention.
  • 5A and 5B are diagrams illustrating an increase in interference cost in the present invention.
  • FIG. 6 is a flowchart illustrating a method of selecting an access node according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a routing system 100 in accordance with an embodiment of the present invention.
  • the routing system 100 for selecting an access node using geographic information includes a geographic information storage unit 110, a measurement unit 120, and a node selector 130.
  • the components shown in FIG. 1 mean software components or hardware components such as a field programmable gate array (FPGA) or an application specific integrated circuit (ASIC), and perform predetermined roles. .
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • 'components' are not meant to be limited to software or hardware, and each component may be configured to be in an addressable storage medium or may be configured to reproduce one or more processors.
  • a component may include components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and subs. Routines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • Components and the functionality provided within those components may be combined into a smaller number of components or further separated into additional components.
  • the geographic information storage unit 110, the measurement unit 120, and the node selector 130 may be located in a form included in each of the plurality of access nodes to select a next access node from each node.
  • the positions of the above components are not limited thereto, and are not included in each node, but may be included in one server or control management unit to select a next access node.
  • the above components are described as being located in a form included in each node, but are not necessarily limited thereto.
  • the geographic information storage unit 110 stores geographic information corresponding to the geographic information ID given to each access node.
  • the geographical information storage unit 110 may generate or update the geographical information ID based on the geographical information of the access node selected as the next transmitting node.
  • the geographic information storage unit 110 will be described in detail as follows.
  • geographical information IDs are assigned to access nodes, and geographical information around each access node is stored in the geographical information storage unit 110 based on the geographical information IDs. This geographic information is used to determine whether obstacles are located between the packet paths.
  • the geographic information includes terrain information on the presence or absence of a road, a building, and the like.
  • the geographic information may include information about a structure such as a height of a building, a width of a building, and a number of buildings.
  • the geographical information is not limited to storing only the information of the structure, it may also include information about natural objects. Therefore, the geographic information may also include information about the size, width and location of natural objects such as trees, mountains, and rivers.
  • the measurement unit 120 measures the packet transmission possible distance of each access node based on the geographical information.
  • the measurement unit 120 will be described with reference to FIG. 2 as follows.
  • 2 is a diagram illustrating a packet transmission distance.
  • the measurement unit 120 included in the second connection node 203 has a circular edge portion.
  • the range of 210 was measured as the packet transmission range of the second access node 203.
  • the measurement unit 120 included in the second access node 203 is circular in the packet transmission distance due to the influence of the obstacle. It is measured by the dotted line border portion 220, not the border. As such, since the measurement unit 120 measures the packet transmission distance based on the geographical information, the influence of the obstacle when selecting the next transmission node can be minimized.
  • the node selector 130 selects the access node located at the shortest distance among the plurality of access nodes included in the packet transmission distance as the next transmission node. In this case, when an obstacle is located between the packet paths with the access node located at the shortest distance, the node selector 130 is located at the shortest distance while being located in the packet path without the obstacle, among the plurality of access nodes included in the packet transmission distance. Select the access node located as the next transport node.
  • the node selector 130 will be described with reference to FIG. 3 as follows.
  • FIG. 3 is a diagram illustrating a method of selecting an access node in consideration of a packet transmission possible distance.
  • the node selector 130 included in the first access node 301 selects a next access node based on the packet transmission distance measured by the measurement unit 120.
  • the measurement unit 120 measures the packet transmission distance using the circular border portion 310 when the geographical information is not considered, but when the geographical information is considered, the dotted border instead of the circular border. Measure with portion 320. Therefore, when the node selector 130 included in the first access node 301 does not consider geographic information, the circular edge 310 is a packet transmittable distance, and thus the plurality of access nodes included in this range are included.
  • the second access node 303 which is the access node located at the shortest distance, is selected as the next transmission node.
  • the routing system 100 measures the packet transmission distance based on the geographical information
  • the dotted line frame 320 is measured as the packet transmission distance due to the influence of the obstacle, and is included in this range.
  • the third access node 305 which is the access node located at the shortest distance among the plurality of access nodes, is selected as the next transmission node. As such, when selecting the next access node to transmit using geographic information, there is an effective aspect of avoiding a section causing radio interference and increasing the probability that a packet arrives normally.
  • the node selector 130 selects an access node having a minimum distance cost and an interference cost when an obstacle is located in a packet path with the next access node that is located at the shortest distance from the access node. Meanwhile, the node selector 130 determines whether obstacles are located between the packet paths based on the geographical information stored in the geographical information storage unit 110. Therefore, based on the pre-stored geographic information, not only the distance cost but also the interference cost can be calculated by determining the presence or absence of an obstacle.
  • the distance cost increases as the packet path distance from the access node to be included within the packet transmission distance of the access node increases
  • the interference cost increases as the probability of causing interference by obstacles located in the packet path increases. do.
  • the distance cost and the interference cost will be described with reference to FIGS. 4A to 5B.
  • 4A and 4B are diagrams illustrating a form of increasing distance cost in the present invention.
  • the distance cost is used both when there is a possibility of causing radio interference between the current node and a neighboring node and when there is no possibility of causing interference.
  • the distance cost may increase in five types as shown in FIGS. 4A and 4B.
  • the distance cost may appear in a form in which the considered cost increases as the distance increases. That is, the cost may increase in the form of a straight line in proportion to the distance, or the cost may increase in the form of an exponential function or a logarithmic function.
  • the distance cost may appear in a form in which the cost increases as the distance increases as shown in FIG. 4B.
  • the increased form of the distance cost is not limited thereto, and the cost increases as the distance increases to a predetermined distance as shown in FIG. 4A, and thereafter, the cost may increase stepwise as the distance increases as shown in FIG. 4B. .
  • the cost increases as the distance increases up to a certain distance as shown in FIG. 4A, and after that, the same cost may be maintained even if the distance increases.
  • up to a certain distance as the distance increases, as shown in FIG. 4B, the cost increases in a stepped manner, and after that, the same cost may be maintained even if the distance increases.
  • 5A and 5B illustrate an increase in interference cost in the present invention.
  • the interference cost is used only if there is a possibility of causing radio interference between the current node and the neighbor node. In this case, the interference cost may be greatly increased in five forms as shown in FIGS. 5A and 5B.
  • the interference cost may appear in a form in which the considered cost increases as the degree of interference increases. That is, the cost may increase in the form of a straight line in proportion to the degree of radio wave interference, or the cost may increase in the form of an exponential function or a log function.
  • the interference cost may appear in a form in which the cost increases as the degree of interference increases as shown in FIG. 5B.
  • the type of increase in the cost of interference is not limited thereto, and the cost increases as the level of interference increases as shown in FIG. 5A until a certain level of interference, and the cost increases stepwise as the level of interference increases as shown in FIG. 5B. You may.
  • the cost increases as the degree of interference increases, as shown in FIG. 5A. After that, the same cost may be maintained even if the degree of interference increases.
  • up to a certain degree of interference as the degree of interference increases as shown in FIG. 5B, the cost increases in a stepped manner, and thereafter, the same cost may be maintained even if the degree of interference increases.
  • FIG. 6 is a flowchart illustrating a method of selecting an access node according to an embodiment of the present invention.
  • geographic information corresponding to the geographic information ID given to each access node is stored (S410).
  • the storing of the geographical information may further include generating or updating the geographical information ID based on the geographical information of the access node selected as the next transmitting node. This geographic information is used to determine whether obstacles are located between the packet paths.
  • the geographic information includes terrain information on the presence or absence of a road, a building, and the like.
  • the geographic information may include information about a structure such as a height of a building, a width of a building, and a number of buildings.
  • the geographical information is not limited to storing only the information of the structure, it may also include information about natural objects. Therefore, the geographic information may also include information about the size, width and location of natural objects such as trees, mountains, and rivers.
  • the packet transmission possible distance of each access node is measured based on the geographical information (S420). Since the method for measuring the packet transmission distance has been described with reference to FIG. 2, it will be omitted below.
  • next transmission access node is selected in consideration of only the distance cost (S450 and S460).
  • the interference cost is first considered (S440), and then the access node is selected in consideration of the distance cost (S450, S460).
  • the distance cost increases as the packet path distance from the access node to be transmitted within the packet transmission distance of the access node increases
  • the interference cost increases as the possibility of causing interference by obstacles located in the packet path increases.
  • the distance cost and the interference cost are not limited thereto, and may be represented by various types of increase as described above with reference to FIGS. 4A to 5B.
  • an embodiment of the present invention may also be implemented in the form of a recording medium including instructions executable by a computer, such as a program module executed by the computer.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer readable media may include both computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명에 따른 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템은 각 접속 노드마다 부여된 지리적 정보 아이디에 대응되는 지리적 정보가 저장된 지리적 정보 저장부, 상기 지리적 정보에 기초하여 상기 각 접속 노드의 패킷 전송 가능 거리를 측정하는 측정부 및 상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택하는 노드 선택부를 포함하되, 상기 노드 선택부는, 상기 최단 거리에 위치한 접속 노드와의 패킷 경로 사이에 장애물이 위치한 경우, 상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중, 장애물이 없는 패킷 경로에 위치하면서 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택한다.

Description

지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 및 접속 노드 선택 방법
본 발명은 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 및 접속 노드 선택 방법 에 관한 것이다.
지리적 정보를 이용한 라우팅은 추가적인 정보를 이용함으로써 토폴로지 기반의 라우팅의 제약을 해결할 수 있다. 통신에 참여하는 각 노드들은 자신의 위치 정보를 이용하며, 각 노드들은 GPS 또는 다른 형태의 위치 서비스를 통해 자신의 위치 정보를 취득한다. 즉, 위치 서비스의 정보를 송신자의 패킷에 포함하여 보내게 되는 것이다.
한편, 위치 기반 라우팅 프로토콜은 라우팅 처리를 위하여 위치 정보와 이동 정보를 사용한다. 이에 대해, LAR(Location Aided Routing), DREAM(The Distence Routing Effect Algorithm for Mobility), GLS(The Grid Location Service)가 있으며, 이들은 위치 기반 라우팅 프로토콜이지만 각각 다른 방법으로 정보를 사용하고 있으며, 서로 다른 서비스를 제공하고 있다.
LAR은 리액티브 라우팅 프로토콜 중 하나로서 루트 요청 패킷을 제한적으로 전송하여 좀 더 효율적으로 루트 발견을 수행하는데 목적이 있으며, 이때 전송 노드는 전송 패킷에 자신의 위치 정보를 포함시키고 있다.
DREAM은 프로액티브 루트 프로토콜 중의 하나로서, 모든 노드는 네트워크에 참여하는 모든 노드의 위치 정보를 포함하고 있다. 이때, 위치 정보의 갱신 주기는 노드들 간의 거리 및 이동성의 특성에 따라 결정된다.
GLS는 라우팅 프로토콜이 아닌 위치 정보 서비스로서, GLS에서의 모든 노드는 네트워크에서 위치 정보를 제공하는 다수의 서버를 가지고 있다.
위치 정보를 이용한 LAR과 DREAM은 모두 플러딩(flooding)을 통하여 라우팅 경로를 탐색하기 때문에 대규모 애드혹 네트워크(large scale ad-hoc network)에는 적합하지 않다. 반면, GLS는 고밀도의 대규모 모바일 애드혹 네트워크에서 사용할 수 있다. GLS는 네트워크에 여러 위치 정보를 제공하는 서버가 있어, 이 서버를 통해 위치 정보를 획득하게 된다. 또한, LAR과 DREAM은 위치 정보의 갱신과 질의를 위하여 플러딩을 사용하나, GLS는 플러딩을 사용하지 않는다.
한편, 인터넷의 노드들은 위치 정보에 대하여 고려되고 있지 않은 채 다음 전송 노드를 선택하고 있다. 다만 GPS 수신기의 소량화와 대량생산에 따라 갈수록 많은 네트워크 노드가 위치 정보를 고려하여 다음 전송 노드를 선택할 수 있게 되었으며, 이를 이용할 경우 네트워크의 확장성 및 효율성을 향상시킬 수 있다는 장점이 있다.
다만, 기존의 위치 정보 등록 및 갱신 방법들은 노드들의 위치 정보만을 이용하고 지형 정보를 고려하지 않았다. 이로 인해, 각 노드에서 패킷 전송시 장애물에 의한 영향으로 패킷이 정상적으로 도달할 확률이 감소하게 된다는 문제점이 있다.
이와 관련하여 한국공개특허공보 제2012-0042089호(발명의 명칭: 클러스터 헤드노드 및 이의 통신 방법)는 서로 다른 2가지 종류의 통신 인터페이스를 사용하여 통신을 수행하는 클러스터 헤드노드에서 있어서 통신 인터페이스 사이에 발생하는 간섭을 최소화하고, 통신 성능을 향상시킬 수 있는 클러스터 헤드노드 및 이의 통신 방법을 개시하고 있다.
또한 한국공개특허공보 제2010-0034324호(발명의 명칭: 무선 센서 네트워크의 노드의 패킷 전송 장치 및 방법)는 노드 내의 우선순위 큐들을 이용하여 실시간을 요하는 패킷의 지연을 최소화하고, 이웃 노드의 큐 정보를 이용하여 신뢰성 있는 라우팅을 구현하는 무선 센서 네트워크의 노드의 패킷 전송 장치 및 방법을 개시하고 있다.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 일부 실시예는 각 노드에서 다음 전송 노드를 선택할 경우, 지리적 정보를 이용하여 전파 간섭을 일으키는 구간을 고려하여 선택하는 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 및 접속 노드 선택 방법을 제공하는 것을 그 목적으로 한다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제 1 측면에 따른 라우팅 시스템은 지리적 정보를 이용하여 접속 노드를 선택하는 것으로, 각 접속 노드마다 부여된 지리적 정보 아이디에 대응되는 지리적 정보가 저장된 지리적 정보 저장부, 상기 지리적 정보에 기초하여 상기 각 접속 노드의 패킷 전송 가능 거리를 측정하는 측정부 및 상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택하는 노드 선택부를 포함하되, 상기 노드 선택부는, 상기 최단 거리에 위치한 접속 노드와의 패킷 경로 사이에 장애물이 위치한 경우, 상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중, 장애물이 없는 패킷 경로에 위치하면서 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택한다.
또한, 본 발명의 제 2 측면에 따른 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템에서의 접속 노드 선택 방법은 각 접속 노드마다 부여된 지리적 정보 아이디에 대응되는 지리적 정보를 저장하는 단계, 상기 지리적 정보에 기초하여 각 접속 노드의 패킷 전송 가능 거리를 측정하는 단계 및 상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택하는 단계를 포함하되, 상기 최단 거리에 위치한 접속 노드와의 패킷 경로 사이에 장애물이 위치한 경우, 상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중, 장애물이 없는 패킷 경로에 위치하면서 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택한다.
전술한 본 발명의 과제 해결 수단에 의하면, 각 접속 노드에서의 지리적 정보에 기초하여 장애물의 유무를 판단함으로써 다음 전송 노드 선택시, 노드 사이에서 전파 간섭을 일으키는 구간을 회피하여 선택할 수 있다.
또한, 플루딩 기반으로 위치 정보를 공유하는 것이 아니기 때문에 확장성 및 효율성이 좋다.
도 1은 본 발명의 일 실시예에 따른 라우팅 시스템의 블록도이다.
도 2는 패킷 전송 가능 거리를 도시한 도면이다.
도 3은 패킷 전송 가능 거리를 고려하여 접속 노드를 선택하는 방법을 도시한 도면이다.
도 4a 및 도 4b는 본 발명에서의 거리 비용 증가 형태를 도시한 도면이다.
도 5 a 및 도 5b는 본 발명에서의 간섭 비용 증가 형태를 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 접속 노드 선택 방법의 순서도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.
도 1은 본 발명의 일 실시예에 따른 라우팅 시스템(100)의 블록도이다.
본 발명에 따른 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 (100)은 지리적 정보 저장부(110), 측정부(120) 및 노드 선택부(130)을 포함한다.
참고로, 본 발명의 실시예에 따른 도 1에 도시된 구성 요소들은 소프트웨어 또는 FPGA(Field Programmable Gate Array) 또는 ASIC(Application Specific Integrated Circuit)와 같은 하드웨어 구성 요소를 의미하며, 소정의 역할들을 수행한다.
그렇지만 '구성 요소들'은 소프트웨어 또는 하드웨어에 한정되는 의미는 아니며, 각 구성 요소는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다.
따라서, 일 예로서 구성 요소는 소프트웨어 구성 요소들, 객체지향 소프트웨어 구성 요소들, 클래스 구성 요소들 및 태스크 구성 요소들과 같은 구성 요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다.
구성 요소들과 해당 구성 요소들 안에서 제공되는 기능은 더 작은 수의 구성 요소들로 결합되거나 추가적인 구성 요소들로 더 분리될 수 있다.
지리적 정보 저장부(110), 측정부(120) 및 노드 선택부(130)는 복수의 접속 노드 각각에 포함되는 형태로 위치하여 각각의 노드에서 다음 전송할 접속 노드를 선택할 수 있다. 다만, 위 구성들의 위치는 이에 한정되는 것은 아니며, 각 노드에 포함되는 형태가 아니라, 하나의 서버 또는 제어 관리부에 포함되어 다음 접속 노드를 선택할 수 있다. 이하에서는 위 구성들이 각 노드에 포함되어 있는 형태로 위치하고 있는 것으로 설명하였으나, 반드시 이에 한정되는 것은 아니다.
지리적 정보 저장부(110)는 각 접속 노드마다 부여된 지리적 정보 아이디에 대응되는 지리적 정보를 저장한다. 이때, 지리적 정보 저장부(110)는 다음 전송 노드로 선택된 접속 노드의 지리적 정보에 기초하여 지리적 정보 아이디를 생성 또는 갱신할 수 있다. 지리적 정보 저장부(110)에 대하여 구체적으로 설명하면 다음과 같다.
먼저, 접속 노드에는 각각 지리적 정보 아이디가 할당되어 있으며, 각 접속 노드 주변의 지리적 정보는 지리적 정보 아이디에 기초하여 지리적 정보 저장부(110)에 저장된다. 이와 같은 지리적 정보는 패킷 경로 사이에 장애물이 위치하는지 여부를 판별하기 위해 사용된다.
이때, 지리적 정보는 도로, 건물 등의 유무에 대한 지형 정보를 포함하고 있으며, 구체적으로 건물의 높이, 건물의 넓이, 건물의 개수 등 구조물에 대한 정보를 포함할 수 있다. 다만, 지리적 정보는 구조물의 정보만을 한정하여 저장하는 것은 아니며, 자연물에 대한 정보도 포함할 수 있다. 따라서, 지리적 정보는 나무, 산, 강 등의 자연물에 대한 크기, 넓이 및 위치 등에 대한 정보도 포함할 수 있다.
측정부(120)는 지리적 정보에 기초하여 각 접속 노드의 패킷 전송 가능 거리를 측정한다. 측정부(120)에 대하여 도 2를 참조하여 설명하면 다음과 같다.
도 2는 패킷 전송 가능 거리를 도시한 도면이다.
종래에는 접속 노드에서 패킷을 전송할 다음 접속 노드를 선택할 경우, 자신의 주변 위치 정보만을 이용하고, 지리적 정보는 이용하지 않았다. 예를 들어, 제 1 접속 노드(201)에서 다음 접속 노드를 제 2 접속 노드(203)로 선택한 후 이동하였을 때, 제 2 접속 노드(203)에 포함된 측정부(120)는 원형의 테두리 부분(210)의 범위를 제 2 접속 노드(203)의 패킷 전송 가능 범위로 측정하였다. 그러나, 지리적 정보를 이용할 경우, 제 2 접속 노드(203)의 주변에는 구조물이 위치하고 있으므로, 제 2 접속 노드(203)에 포함된 측정부(120)는 장애물의 영향으로 인해 패킷 전송 가능 거리를 원형 테두리가 아닌 점선 테두리 부분(220)으로 측정한다. 이와 같이, 측정부(120)는 지리적 정보에 기초하여 패킷 전송 가능 거리를 측정하게 되는 것이므로, 다음 전송 노드 선택시 장애물에 의한 영향을 최소화할 수 있다.
다시 도 1 을 참조하면, 노드 선택부(130)는 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택한다. 이때, 노드 선택부(130)는 최단 거리에 위치한 접속 노드와의 패킷 경로 사이에 장애물이 위치한 경우, 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중, 장애물이 없는 패킷 경로에 위치하면서 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택한다. 노드 선택부(130)에 대하여 도 3을 참조하여 설명하면 다음과 같다.
도 3은 패킷 전송 가능 거리를 고려하여 접속 노드를 선택하는 방법을 도시한 도면이다.
제 1 접속 노드(301)에 포함된 노드 선택부(130)는 측정부(120)가 측정한 패킷 전송 가능 거리에 기초하여 다음 접속 노드를 선택하게 된다. 이때, 측정부(120)는 도 2에서 설명한 바와 같이, 지리적 정보를 고려하지 않은 경우 패킷 전송 가능 거리를 원형의 테두리 부분(310)으로 측정하나, 지리적 정보를 고려할 경우 원형의 테두리가 아닌 점선 테두리 부분(320)으로 측정한다. 따라서, 제 1 접속 노드(301)에 포함된 노드 선택부(130)는 지리적 정보를 고려하지 않을 경우, 원형의 테두리 부분(310)가 패킷 전송 가능 거리이므로, 이 범위 내에 포함된 복수의 접속 노드 중 최단 거리에 위치한 접속 노드인 제 2 접속 노드(303)를 다음 전송 노드로 선택하게 된다.
다만, 본 발명에 따른 라우팅 시스템(100)에서는 지리적 정보에 기초하여 패킷 전송 가능 거리를 측정하므로, 장애물에 의한 영향으로 인해 점선 테두리 부분(320)을 패킷 전송 가능 거리로 측정하고, 이 범위 내에 포함된 복수의 접속 노드 중 최단 거리에 위치한 접속 노드인 제 3 접속 노드(305)를 다음 전송 노드로 선택하게 된다. 이와 같이, 지리적 정보를 이용하여 다음 전송할 접속 노드를 선택할 경우, 전파 간섭을 일으키는 구간을 회피할 수 있어 패킷이 정상적으로 도달할 확률이 높아지게 되는 효과적 측면이 있다.
다시 도 1을 참조하면, 노드 선택부(130)는 접속 노드와 최단 거리에 위치한 다음 전송할 접속 노드와의 패킷 경로에 장애물이 위치한 경우, 거리 비용 및 간섭 비용이 최소가 되는 접속 노드를 선택한다. 한편, 노드 선택부(130)는 패킷 경로 사이에 장애물이 위치하는지 여부를 지리적 정보 저장부(110)에 저장된 지리적 정보에 기초하여 판단하게 된다. 따라서, 미리 저장된 지리적 정보에 기초하여 거리 비용 뿐만 아니라 장애물의 유무를 판단함으로써 간섭 비용까지 산출할 수 있다.
여기에서, 거리 비용은 접속 노드의 패킷 전송 가능 거리 내에 포함된 다음 전송할 접속 노드와의 패킷 경로 거리가 멀어질수록 증가하고, 간섭 비용은 패킷 경로에 위치한 장애물에 의한 간섭을 일으킬 가능성이 높아질수록 증가한다. 거리 비용 및 간섭비용에 대하여 도 4a 내지 도 5b를 참조하여 설명하면 다음과 같다.
도 4a 및 도 4b는 본 발명에서의 거리 비용 증가 형태를 도시한 도면이다.
거리 비용은 현재 노드와 이웃 노드 사이에 전파 간섭을 일으킬 가능성이 있는 경우와 간섭을 일으킬 가능성이 없는 경우 모두 이용된다. 이때, 거리 비용은 도 4a 및 도 4b에 도시된 바와 같이 크게 5가지 형태로 증가할 수 있다.
먼저, 거리 비용은 도 4a에 도시된 바와 같이 거리가 증가할수록 고려되는 비용이 증가되는 형태로 나타날 수 있다. 즉, 거리에 비례하여 직선 형태로 비용이 증가하거나,지수 함수 또는 로그 함수 형태로 비용이 증가할 수 있다.
또한, 거리 비용은 도 4b에 도시된 바와 같이 거리가 증가할수록 비용이 계단 형으로 증가하는 형태로 나타날 수 있다. 다만, 거리 비용의 증가 형태는 이에 한정되는 것이 아니며, 일정 거리까지는 도 4a와 같이 거리가 증가할수록 비용이 증가하고, 그 이후에는 도 4b와 같이 거리가 증가할수록 비용이 계단형으로 증가할 수도 있다. 또한, 일정 거리까지는 도 4a와 같이 거리가 증가할수록 비용이 증가하는 형태를 띄고, 그 이후에는 거리가 증가하여도 동일한 비용을 유지하는 형태로 나타날 수도 있다. 또한, 일정 거리까지는 도 4b와 같이 거리가 증가할수록 비용이 계단형으로 증가하는 형태를 띄고, 그 이후에는 거리가 증가하여도 동일한 비용을 유지하는 형태로 나타날 수도 있다.
도 5a 및 도 5b는 본 발명에서의 간섭 비용 증가 형태를 도시한 도면이다.
간섭 비용은 현재 노드와 이웃 노드 사이에 전파 간섭을 일으킬 가능성이 있는 경우에만 이용된다. 이때, 간섭 비용은 도 5a 및 도 5b에 도시된 바와 같이 크게 5가지 형태로 증가할 수 있다.
간섭 비용은 도 5a에 도시된 바와 같이 간섭 정도가 증가할수록 고려되는 비용이 증가되는 형태로 나타날 수 있다. 즉, 전파 간섭 정도에 비례하여 직선 형태로 비용이 증가하거나,지수 함수 또는 로그 함수 형태로 비용이 증가할 수 있다.
또한, 간섭 비용은 도 5b에 도시된 바와 같이 간섭 정도가 증가할수록 비용이 계단 형으로 증가하는 형태로 나타날 수 있다. 다만, 간섭 비용의 증가 형태는 이에 한정되는 것이 아니며, 일정한 간섭 정도까지는 도 5a와 같이 간섭 정도가 증가할수록 비용이 증가하고, 그 이후에는 도 5b와 같이 간섭 정도가 증가할수록 비용이 계단형으로 증가할 수도 있다. 또한, 일정 간섭 정도까지는 도 5a와 같이 간섭 정도가 증가할수록 비용이 증가하는 형태를 띄고, 그 이후에는 간섭 정도가 증가하여도 동일한 비용을 유지하는 형태로 나타날 수도 있다. 또한, 일정 간섭 정도까지는 도 5b와 같이 간섭 정도가 증가할수록 비용이 계단형으로 증가하는 형태를 띄고, 그 이후에는 간섭 정도가 증가하여도 동일한 비용을 유지하는 형태로 나타날 수도 있다.
도 6은 본 발명의 일 실시예에 따른 접속 노드 선택 방법의 순서도이다.
먼저, 각 접속 노드마다 부여된 지리적 정보 아이디에 대응되는 지리적 정보를 저장한다(S410). 이때, 지리적 정보를 저장하는 단계는 다음 전송 노드로 선택된 접속 노드의 지리적 정보에 기초하여 지리적 정보 아이디를 생성 또는 갱신하는 단계를 더 포함할 수 있다. 이와 같은 지리적 정보는 패킷 경로 사이에 장애물이 위치하는지 여부를 판별하기 위해 사용된다.
이때, 지리적 정보는 도로, 건물 등의 유무에 대한 지형 정보를 포함하고 있으며, 구체적으로 건물의 높이, 건물의 넓이, 건물의 개수 등 구조물에 대한 정보를 포함할 수 있다. 다만, 지리적 정보는 구조물의 정보만을 한정하여 저장하는 것은 아니며, 자연물에 대한 정보도 포함할 수 있다. 따라서, 지리적 정보는 나무, 산, 강 등의 자연물에 대한 크기, 넓이 및 위치 등에 대한 정보도 포함할 수 있다.
다음으로, 지리적 정보에 기초하여 각 접속 노드의 패킷 전송 가능 거리를 측정한다(S420). 패킷 전송 가능 거리를 측정하는 방법에 대해서는 도 2에서 설명하였으므로 이하에서는 생략하도록 한다.
다음으로, 각 접속 노드와의 패킷 경로 사이에 장애물이 존재하는지 여부를 판단한다(S430). 이때, 패킷 경로 사이에 장애물이 존재하지 않는 경우에는 거리 비용만을 고려하여 다음 전송할 접속 노드를 선택한다(S450, S460). 반면, 패킷 경로 사이에 장애물이 존재하는 경우에는 간섭 비용을 먼저 고려한 후(S440), 다음으로 거리 비용을 고려하여 접속 노드를 선택한다(S450, S460).
한편, 거리 비용은 접속 노드의 패킷 전송 가능 거리 내에 포함된 다음 전송할 접속 노드와의 패킷 경로 거리가 멀어질수록 증가하고, 간섭 비용은 패킷 경로에 위치한 장애물에 의한 간섭을 일으킬 가능성이 높아질수록 증가한다. 다만, 거리 비용 및 간섭 비용은 이에 한정되는 것이 아니며, 상기 도 4a 내지 도 5b에서 설명한 바와 같이 여러가지 증가 유형으로 나타날 수 있다.
한편, 본 발명의 일 실시예는 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (6)

  1. 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템에 있어서,
    각 접속 노드마다 부여된 지리적 정보 아이디에 대응되는 지리적 정보가 저장된 지리적 정보 저장부,
    상기 지리적 정보에 기초하여 상기 각 접속 노드의 패킷 전송 가능 거리를 측정하는 측정부 및
    상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택하는 노드 선택부를 포함하되,
    상기 노드 선택부는,
    상기 최단 거리에 위치한 접속 노드와의 패킷 경로 사이에 장애물이 위치한 경우,
    상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중, 장애물이 없는 패킷 경로에 위치하면서 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택하는 것인 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템.
  2. 제 1 항에 있어서,
    상기 지리적 정보 저장부는,
    상기 다음 전송 노드로 선택된 접속 노드의 지리적 정보에 기초하여 지리적 정보 아이디를 생성 또는 갱신하는 것인 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템.
  3. 제 1 항에 있어서,
    상기 노드 선택부는
    상기 최단 거리에 위치한 접속 노드와의 패킷 경로에 장애물이 위치한 경우, 거리 비용 및 간섭 비용이 최소가 되는 접속 노드를 선택하되,
    상기 거리 비용은 상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드의 패킷 경로가 길어질수록 증가하고,
    상기 간섭 비용은 상기 패킷 경로에 위치한 장애물에 의한 간섭을 일으킬 가능성이 높아질수록 증가하는 것인 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템.
  4. 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템에서의 접속 노드 선택 방법에 있어서,
    각 접속 노드마다 부여된 지리적 정보 아이디에 대응되는 지리적 정보를 저장하는 단계,
    상기 지리적 정보에 기초하여 각 접속 노드의 패킷 전송 가능 거리를 측정하는 단계 및
    상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택하는 단계를 포함하되,
    상기 최단 거리에 위치한 접속 노드와의 패킷 경로 사이에 장애물이 위치한 경우,
    상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중, 장애물이 없는 패킷 경로에 위치하면서 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택하는 것인 접속 노드 선택 방법.
  5. 제 4 항에 있어서,
    각 접속 노드마다 부여된 지리적 정보 아이디에 대응되는 지리적 정보를 저장하는 단계는,
    상기 다음 전송 노드로 선택된 접속 노드의 지리적 정보에 기초하여 지리적 정보 아이디를 생성 또는 갱신하는 단계를 더 포함하는 것인 접속 노드 선택 방법.
  6. 제 4 항에 있어서,
    상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드 중 최단 거리에 위치한 접속 노드를 다음 전송 노드로 선택하는 단계는,
    상기 최단 거리에 위치한 접속 노드와의 패킷 경로에 장애물이 위치한 경우, 거리 비용 및 간섭 비용이 최소가 되는 접속 노드를 선택하되,
    상기 거리 비용은 상기 패킷 전송 가능 거리 내에 포함된 복수의 접속 노드의 패킷 경로가 길어질수록 증가하고,
    상기 간섭 비용은 상기 패킷 경로에 위치한 장애물에 의한 간섭을 일으킬 가능성이 높아질수록 증가하는 것인 접속 노드 선택 방법.
PCT/KR2012/011839 2012-12-31 2012-12-31 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 및 접속 노드 선택 방법 WO2014104453A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/011839 WO2014104453A1 (ko) 2012-12-31 2012-12-31 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 및 접속 노드 선택 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/011839 WO2014104453A1 (ko) 2012-12-31 2012-12-31 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 및 접속 노드 선택 방법

Publications (1)

Publication Number Publication Date
WO2014104453A1 true WO2014104453A1 (ko) 2014-07-03

Family

ID=51021496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011839 WO2014104453A1 (ko) 2012-12-31 2012-12-31 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 및 접속 노드 선택 방법

Country Status (1)

Country Link
WO (1) WO2014104453A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559344A (zh) * 2015-09-30 2017-04-05 国网智能电网研究院 一种基于地理位置信息的容错路由方法
WO2017116862A1 (en) * 2015-12-30 2017-07-06 Facebook, Inc. Micro-route characterization and selection
US10148557B2 (en) 2015-12-30 2018-12-04 Facebook, Inc. Link maintenance in point-to-point wireless communication networks
US10587499B2 (en) 2015-12-30 2020-03-10 Facebook, Inc. Wireless node memory utilization for storing beamforming settings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936246B1 (ko) * 2008-10-15 2010-01-12 전자부품연구원 멀티캐스트 라우팅과 멀티캐스팅 방법 및 네트워크 시스템
KR20100073744A (ko) * 2008-12-23 2010-07-01 한국전자통신연구원 Rf 기반의 실내 위치 추정 방법 및 장치
KR20100103246A (ko) * 2009-03-13 2010-09-27 고려대학교 산학협력단 Rfid/usn 인프라 구조에서의 센서노드 관리 시스템및 방법과 이에 사용되는 게이트웨이 시스템
KR20120034433A (ko) * 2010-10-01 2012-04-12 동명대학교산학협력단 노드의 위치 정보를 이용한 다중 경로 유지 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936246B1 (ko) * 2008-10-15 2010-01-12 전자부품연구원 멀티캐스트 라우팅과 멀티캐스팅 방법 및 네트워크 시스템
KR20100073744A (ko) * 2008-12-23 2010-07-01 한국전자통신연구원 Rf 기반의 실내 위치 추정 방법 및 장치
KR20100103246A (ko) * 2009-03-13 2010-09-27 고려대학교 산학협력단 Rfid/usn 인프라 구조에서의 센서노드 관리 시스템및 방법과 이에 사용되는 게이트웨이 시스템
KR20120034433A (ko) * 2010-10-01 2012-04-12 동명대학교산학협력단 노드의 위치 정보를 이용한 다중 경로 유지 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, YEO N ET AL.: "Optimization for Geocast based Multicast Routing in MANET", JOURNAL OF KOREAN INSTITUTE OF INFORMATION SCIENTISTS AND ENGINEERS, vol. 38, no. 1(D, 30 June 2011 (2011-06-30), pages 238 - 240 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559344A (zh) * 2015-09-30 2017-04-05 国网智能电网研究院 一种基于地理位置信息的容错路由方法
WO2017116862A1 (en) * 2015-12-30 2017-07-06 Facebook, Inc. Micro-route characterization and selection
US10148557B2 (en) 2015-12-30 2018-12-04 Facebook, Inc. Link maintenance in point-to-point wireless communication networks
US10313953B2 (en) 2015-12-30 2019-06-04 Facebook, Inc. Micro-route characterization and selection
US10587499B2 (en) 2015-12-30 2020-03-10 Facebook, Inc. Wireless node memory utilization for storing beamforming settings
US10805857B2 (en) 2015-12-30 2020-10-13 Facebook, Inc. Micro-route characterization and selection

Similar Documents

Publication Publication Date Title
CN108600942B (zh) 一种无人机自组网的路由方法
Das et al. Performance comparison of scalable location services for geographic ad hoc routing
US6744740B2 (en) Network protocol for wireless devices utilizing location information
CN106797409B (zh) 用于在物联网(iot)中的设备位置注册的服务器
Jain et al. Geographical routing using partial information for wireless ad hoc networks
CN101611642B (zh) 网络中的通信组配置
CN100548003C (zh) 在无线网络中转发分组的方法和装置
US9648662B2 (en) Bluetooth networking
WO2011065784A2 (ko) 무선랜 신호 세기 기반의 실내 측위 방법 및 시스템
WO2014104453A1 (ko) 지리적 정보를 이용하여 접속 노드를 선택하는 라우팅 시스템 및 접속 노드 선택 방법
CN106797345A (zh) 通过通信网络向移动设备地理路由数据分组的网络实体
Won et al. Towards robustness and energy efficiency of cut detection in wireless sensor networks
WO2017188748A1 (ko) 무선 메시 네트워크의 동적 브리지 노드 형성 방법
Hoßfeld et al. Supporting vertical handover by using a pastry peer-to-peer overlay network
KR100942156B1 (ko) 무선 단말기 메쉬 네트워크에서의 통신 노드별 자동 망구성방법 및 통신 고장 감내 방법
Brust et al. Multi‐hop localization system for environmental monitoring in wireless sensor and actor networks
Ciavarrini et al. Smartphone-based geolocation of Internet hosts
Braun et al. Performance of the beacon-less routing protocol in realistic scenarios
CN101087247A (zh) 在无线通信系统中路由数据的方法
US7295533B2 (en) Method for location tracking using vicinities
Kirci et al. Recursive and ad hoc routing based localization in wireless sensor networks
Das et al. On the scalability of rendezvous-based location services for geographic wireless ad hoc routing
WO2014104454A1 (ko) 지리적 정보를 이용한 라우팅 시스템 및 방법
Guidara et al. Lookup service for fog-based indoor localization platforms using chord protocol
US9712423B1 (en) Routing protocol for an interconnection network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12891098

Country of ref document: EP

Kind code of ref document: A1