WO2014104439A1 - Method for manufacturing reduced iron - Google Patents

Method for manufacturing reduced iron Download PDF

Info

Publication number
WO2014104439A1
WO2014104439A1 PCT/KR2012/011716 KR2012011716W WO2014104439A1 WO 2014104439 A1 WO2014104439 A1 WO 2014104439A1 KR 2012011716 W KR2012011716 W KR 2012011716W WO 2014104439 A1 WO2014104439 A1 WO 2014104439A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
ore
reduced
magnetite
gas
Prior art date
Application number
PCT/KR2012/011716
Other languages
French (fr)
Korean (ko)
Inventor
김현수
조민영
이달회
고창국
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201280077818.2A priority Critical patent/CN104870655A/en
Publication of WO2014104439A1 publication Critical patent/WO2014104439A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • C21B5/023Injection of the additives into the melting part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the present invention relates to a method for producing reduced iron, and more particularly to a method for producing reduced iron that can improve the reduction rate of sulfur-containing magnetite.
  • coal, pulverized coal, etc. are burned to melt the reduced iron to produce molten iron and slag.
  • oxygen is separated from iron ore using a reducing gas generated in a melting furnace and reduced.
  • magnetite In relation to iron ore charged in the reduction furnace, the necessity of using magnetite due to the depletion of high-grade hematite has recently increased. However, magnetite is classified as so-called hard-reducing ore, which is not easy to reduce.
  • Carburization reaction occurs in the metal iron layer, but at the same time, carbon precipitation reaction occurs to form graphite.
  • graphite When graphite is formed, it reduces the penetration of the reducing gas into the iron ore, thereby blocking the reaction of the iron oxide and the reducing gas in the iron ore.
  • An object of the present invention is to reduce the magnetite by reducing the surface iron (Fe) layer to facilitate the penetration of the reducing gas when the reduction rate is reduced by the formation of the surface iron (Fe) layer formed on the reduced iron surface during the reduction of magnetite, which is difficult to reduce It is to provide a method for producing reduced iron that can improve the efficiency.
  • Method for producing reduced iron is a reduced iron manufacturing method for reducing the iron ore by charging the iron ore and reducing gas in the reducing furnace, the iron ore is a magnetite having a sulfur (S) content of 0.1 ⁇ 1%.
  • the reducing gas may have a pressure range of 1 atm or more.
  • the reducing gas may have a carbon activity of 1 or more.
  • the manufacturing method of the reduced iron according to another aspect of the present invention is a reduced iron manufacturing method for reducing the iron ore by charging the iron ore and reducing gas in the reducing furnace, the iron ore is a sulfur (S) content of less than 100ppm magnetite ore
  • S sulfur
  • a solid sulfur compound including an ore having a high sulfur (S) content is mixed so that the mass ratio of sulfur is 0.1 to 1% based on the total ore mass ratio charged into the reduction furnace, and the reducing gas may have a pressure range of 1 atmosphere or more.
  • the reducing gas may have a carbon activity of 1 or more.
  • the reduction furnace may be a fluidized bed reduction furnace or a packed bed reduction furnace.
  • the reducing gas may include carbon monoxide 55-65%, hydrogen 15-25%, carbon dioxide less than 10%, nitrogen 10-15%.
  • sulfur present in the ore or solid sulfur compound including magnetite is decomposed and adsorbed on the surface of the magnetite ore, thereby preventing carbon deposition but allowing the penetration of carbon, thereby improving the reduction efficiency and reduction rate of magnetite ore. Ore can be easily reduced.
  • 1 is a graph showing the mass reduction rate according to the reaction time in the reduction of a typical magnetite.
  • 2 is a graph showing the mass reduction rate according to the reaction time when the magnetite with low sulfur (S) content is reduced with hydrogen gas and replaced with a mixed gas of carbon monoxide and hydrogen.
  • FIG 3 is a graph showing the mass reduction rate according to the reaction time when the magnetite with high sulfur (S) content is reduced with hydrogen gas and replaced with a mixed gas of carbon monoxide and hydrogen.
  • FIG. 5 is a graph showing the mass reduction rate according to the reaction time of iron ore having a high sulfur (S) content when the pressurized reducing gas is used.
  • FIG. 6 is a photograph showing a magnetite cross section in which a metal iron layer is broken and porous by using a sulfur compound in a reduction reaction.
  • Method for producing reduced iron is a reduced iron manufacturing method for reducing the iron ore by charging the iron ore and reducing gas in the reducing furnace, the iron ore is a magnetite (S) content of 0.1 ⁇ 1%
  • the reducing gas is characterized in that the pressure range of 1 atm or more.
  • the activity of carbon can be expressed as
  • K 1 a C ⁇ P CO2 / (PCO) 2 ( Equation 2)
  • K 2 a C ⁇ P H2O / (P CO) ⁇ (P H2) ( Equation 4)
  • Solving Equations 2, 3, and 5 gives the carbon activity a C.
  • the activity of carbon in these reducing gases increases in proportion to the total gas pressure. The greater the pressure of the reducing gas, the greater the activity of carbon.
  • the reducing gas is characterized in that the carbon activity (carbon activity) of 1 or more.
  • the method for producing reduced iron according to another embodiment of the present invention in the reduced iron manufacturing method for reducing the iron ore by charging the iron ore and reducing gas in the reducing furnace the iron ore is less than 100ppm sulfur (S) content
  • the solid sulfur compound including ore in iron ore is mixed so that the mass ratio of sulfur is 0.1 to 1% based on the total ore mass ratio charged in the reduction furnace, and the reducing gas may have a pressure range of 1 atm or more.
  • the reduction furnace is characterized in that the fluidized bed reduction furnace or packed-bed reduction furnace.
  • the reducing gas is characterized in that containing 55 to 65% carbon monoxide, 15 to 25% hydrogen, less than 10% carbon dioxide, nitrogen 10 to 15%.
  • the reduction furnace may be a fluid reduction furnace of the FINEX process, a molten iron manufacturing process in which a molten gasifier and a plurality of fluidized-bed reduction furnaces are connected in multiple stages.
  • the reduction furnace may be a packed-bed reduction furnace. When the packed-bed reduction furnace is used, the charged iron ore may be charged in the form of a block.
  • the reducing furnace is charged with a subsidiary material such as iron ore, limestone, dolomite, and the like to reduce the iron ore by reducing the iron ore by injecting a reducing gas containing carbon monoxide, hydrogen generated and supplied in the molten gasifier.
  • a subsidiary material such as iron ore, limestone, dolomite, and the like to reduce the iron ore by reducing the iron ore by injecting a reducing gas containing carbon monoxide, hydrogen generated and supplied in the molten gasifier.
  • the present invention may be used when the magnetite is reduced in the fluidized-bed reduction furnace used in the FINEX process.
  • the gas or natural gas formed through coal gasification reaction can be used.
  • this gas trace amounts of hydrogen sulfide (H 2 S) are commonly present.
  • H 2 S can increase the content of S in molten iron as an impurity, thereby suppressing the incorporation of S in the process. Therefore, in the coal gasification reaction, the content of S in the coal is reduced as much as possible.
  • the CO + H2 mixed gas generated during coal gasification or natural gas reforming enters a fluidized-bed reduction furnace loaded with ore to reduce magnetite to form Fe on the surface.
  • Carburization reaction occurs in Fe thus formed, but at the same time, carbon precipitation reaction, that is, graphite is formed, inhibits carburization and reduction and prevents gas from penetrating.
  • the infiltrated carbon reacts with the internal iron oxide to form a gas and simultaneously destroys the Fe layer.
  • Fe layer is formed on the surface to inhibit gas penetration, thereby blocking the reaction between iron oxide and gas that has not been reduced inside, thereby rapidly reducing the reduction rate.
  • the reduction pattern of the magnetite ore reduced at 900 ° C. or lower at low temperature is a well known fact that the initial reaction rate is rapidly reduced by hydrogen as shown in FIG. 1, and can be easily confirmed by an experiment.
  • the magnetite surface structure may be changed in various ways because the diffusion rate at which Fe ions of the iron oxide which is not reduced is increased to the surface is increased.
  • magnetite reduction in magnetite reduction can not be significantly improved even when hydrogen is used, because the rate controlling step is diffusion of Fe ions at low temperatures.
  • the rate controlling step is diffusion of Fe ions at low temperatures.
  • it is necessary to effectively destroy the Fe layer which prevents the penetration of gas.
  • physical energy is used for the destruction, it is very difficult in terms of the efficiency of the reaction, and the implementation of the method is also difficult and the application is difficult.
  • S compound which is an impurity contained in ore
  • S compound which is an impurity contained in ore
  • the reducibility can be greatly improved by changing the structure of the reduced magnetite.
  • FIG. 3 shows the change when hydrogen is reduced in magnetite with high S content and gas is replaced with CO + H 2 mixed gas. As shown in FIG. 2, the reduction rate decreases soon, but the mass decreases again after a slight increase in mass during CO + H 2 substitution.
  • An increase in mass means an increase in the C content in the Fe layer formed upon reduction, and a decrease in mass means that the oxygen is removed, that is, the reduction starts again.
  • the infiltration of the reducing gas which has been blocked is restarted.
  • the reason for the infiltration of gas is that the precipitation of carbon is suppressed by S present in the ore, and carburization is continued, so that carbon meets iron oxide directly, and as a result of the reaction, CO is formed, and CO reacts with iron oxide to form CO2.
  • the Fe layer is exploded by increasing the pressure at the Fe-Fe-oxide interface by repeating the reaction where C meets C and generates CO.
  • the mixing ratio of the ore having a high S content is preferably mixed so as to be 0.1 to 1% based on the total ore mass.
  • Induction of magnetite structure upon reduction using S described above can be applied even under pressurized conditions.
  • gas corresponding to a gas component (carbon activity of 1.2 or more) containing 55 to 65% of CO, 15 to 25% of H 2 , less than 10% of CO 2 , and 10 to 15% of N 2 can be pressurized without changing the composition. Through magnetite reduction can be improved.
  • FIG. 5 shows a cross section of the porous reduced magnetite.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

Disclosed is a method for manufacturing reduced iron. The method for manufacturing the reduced iron according to the present invention comprises: charging iron ore into a reduction furnace; injecting reduction gas; and reducing magnetite, wherein the iron ore charged into the reduction furnace is mixed with a solid sulfur compound so that the sulfur (S) content with respect to the total mass ratio of the iron ore is between 0.1-1%, and wherein the pressure range of the reduction gas is no less than 1 atm.

Description

환원철의 제조방법Manufacturing method of reduced iron
본 발명은 환원철의 제조방법에 관한 것으로 보다 상세하게는 황을 함유한 자철광의 환원율을 향상시킬 수 있는 환원철 제조방법에 관한 것이다.The present invention relates to a method for producing reduced iron, and more particularly to a method for producing reduced iron that can improve the reduction rate of sulfur-containing magnetite.
환원로와 용융로를 이용하여 용철을 제조시 용융로에서는 석탄, 미분탄 등을 연소시켜서 환원철을 용융하여 용융철 및 슬래그를 생성한다. 또한, 환원로에서는 용융로에서 생성된 환원가스를 이용하여 철광석에서 산소를 분리하여 환원시킨다. When manufacturing molten iron using a reduction furnace and a melting furnace, in the melting furnace, coal, pulverized coal, etc. are burned to melt the reduced iron to produce molten iron and slag. In addition, in a reduction furnace, oxygen is separated from iron ore using a reducing gas generated in a melting furnace and reduced.
상기 환원로에 장입되는 철광석과 관련하여, 최근에 고품위 적철광의 고갈로 인해 자철광을 사용할 필요성이 높아지고 있다. 그러나 자철광은 환원이 용이하지 않은 이른바 난환원성 광석으로 분류된다. In relation to iron ore charged in the reduction furnace, the necessity of using magnetite due to the depletion of high-grade hematite has recently increased. However, magnetite is classified as so-called hard-reducing ore, which is not easy to reduce.
환원가스에 포함된 일산화탄소와 수소에 의해 자철광이 환원될 때 자철광의 표면부터 환원이 진행되어 자철광의 표면에 금속 철(Fe)층을 형성한다. When magnetite is reduced by carbon monoxide and hydrogen contained in the reducing gas, reduction proceeds from the surface of the magnetite to form a metal iron (Fe) layer on the surface of the magnetite.
이러한 금속 철층에는 침탄반응이 일어나지만 동시에 카본 석출반응이 일어나서 그라파이트가 형성된다. 그라파이트가 형성되면 환원가스가 철광석 내부로 침투하는 것을 방해하며, 이에 따라 철광석 내부의 산화철과 환원가스의 반응이 차단되게 된다.Carburization reaction occurs in the metal iron layer, but at the same time, carbon precipitation reaction occurs to form graphite. When graphite is formed, it reduces the penetration of the reducing gas into the iron ore, thereby blocking the reaction of the iron oxide and the reducing gas in the iron ore.
따라서, 환원 속도를 증가시키기 위해 환원가스 중 수소의 사용량을 늘리더라도 상기와 같이 자철광의 표면에 형성된 표면 금속 철(Fe)층에 의해 되어 환원가스의 침투가 어려워져 환원속도가 감소하게 된다.Therefore, even if the amount of hydrogen in the reducing gas is increased in order to increase the reduction rate, as described above, the surface metal iron (Fe) layer formed on the surface of the magnetite becomes difficult to penetrate the reducing gas, thereby reducing the reduction rate.
본 발명의 목적은 난환원성인 자철광 환원시 환원철 표면에 형성된 표면 철(Fe)층 형성에 의해 환원속도가 저하될 때 표면 철(Fe)층을 파괴하여 환원가스의 침투를 용이하게 함으로써 자철광의 환원효율을 향상시킬 수 있는 환원철의 제조방법을 제공함에 있다.An object of the present invention is to reduce the magnetite by reducing the surface iron (Fe) layer to facilitate the penetration of the reducing gas when the reduction rate is reduced by the formation of the surface iron (Fe) layer formed on the reduced iron surface during the reduction of magnetite, which is difficult to reduce It is to provide a method for producing reduced iron that can improve the efficiency.
본 발명의 일 측면에 따른 환원철의 제조방법은 환원로에 철광석을 장입하고 환원가스를 취입하여 철광석을 환원시키는 환원철 제조방법에 있어서, 상기 철광석은 황(S) 함량이 0.1~1%인 자철광이며, 상기 환원가스는 압력범위가 1기압 이상일 수 있다.Method for producing reduced iron according to an aspect of the present invention is a reduced iron manufacturing method for reducing the iron ore by charging the iron ore and reducing gas in the reducing furnace, the iron ore is a magnetite having a sulfur (S) content of 0.1 ~ 1%. , The reducing gas may have a pressure range of 1 atm or more.
상기 환원가스는 탄소 활동도(carbon activity)가 1 이상 일 수 있다.The reducing gas may have a carbon activity of 1 or more.
또한, 본 발명의 다른 측면에 의한 환원철의 제조방법은 환원로에 철광석을 장입하고 환원가스를 취입하여 철광석을 환원시키는 환원철 제조방법에 있어서, 상기 철광석은 황(S) 함량이 100ppm 미만인 자철광석에 황(S) 함량이 높은 광석을 포함한 고체 황화합물을 상기 환원로에 장입되는 전체 광석 질량비를 기준으로 황의 질량비가 0.1~1% 되도록 혼합한 것이며, 상기 환원가스는 압력범위가 1기압 이상일 수 있다.In addition, the manufacturing method of the reduced iron according to another aspect of the present invention is a reduced iron manufacturing method for reducing the iron ore by charging the iron ore and reducing gas in the reducing furnace, the iron ore is a sulfur (S) content of less than 100ppm magnetite ore A solid sulfur compound including an ore having a high sulfur (S) content is mixed so that the mass ratio of sulfur is 0.1 to 1% based on the total ore mass ratio charged into the reduction furnace, and the reducing gas may have a pressure range of 1 atmosphere or more.
상기 환원가스는 탄소 활동도(carbon activity)가 1 이상 일 수 있다.The reducing gas may have a carbon activity of 1 or more.
상기 환원로는 유동층형 환원로 또는 충전층형 환원로일 수 있다.The reduction furnace may be a fluidized bed reduction furnace or a packed bed reduction furnace.
상기 환원가스는 일산화탄소 55~65%, 수소 15~25%, 이산화탄소 10% 미만, 질소 10~15% 를 포함할 수 있다.The reducing gas may include carbon monoxide 55-65%, hydrogen 15-25%, carbon dioxide less than 10%, nitrogen 10-15%.
본 발명에 따르면 자철광을 포함한 광석 또는 고체 황화합물에 존재하는 황이 분해되어 자철광석의 표면에 흡착함으로써 탄소의 침적은 방해하나 탄소의 침투는 가능하게 하여 자철광석의 환원효율 및 환원속도가 향상되므로 난환원성 광석을 용이하게 환원할 수 있다.According to the present invention, sulfur present in the ore or solid sulfur compound including magnetite is decomposed and adsorbed on the surface of the magnetite ore, thereby preventing carbon deposition but allowing the penetration of carbon, thereby improving the reduction efficiency and reduction rate of magnetite ore. Ore can be easily reduced.
도 1은 일반적인 자철광의 환원 시에 반응시간에 따른 질량 감소율을 나타낸 그래프이다.1 is a graph showing the mass reduction rate according to the reaction time in the reduction of a typical magnetite.
도 2는 황(S) 함량이 낮은 자철광을 수소가스를 이용하여 환원시키다가 일산화탄소와 수소의 혼합가스로 치환하였을 때의 반응시간에 따른 질량 감소율을 나타낸 그래프이다.2 is a graph showing the mass reduction rate according to the reaction time when the magnetite with low sulfur (S) content is reduced with hydrogen gas and replaced with a mixed gas of carbon monoxide and hydrogen.
도 3은 황(S) 함량이 높은 자철광을 수소가스를 이용하여 환원시키다가 일산화탄소와 수소의 혼합가스로 치환시켰을 때의 반응시간에 따른 질량 감소율을 나타낸 그래프이다.3 is a graph showing the mass reduction rate according to the reaction time when the magnetite with high sulfur (S) content is reduced with hydrogen gas and replaced with a mixed gas of carbon monoxide and hydrogen.
도 4는 황(S)에 의한 철광석의 환원 촉진 원리를 나타낸 도면이다.4 is a view showing the principle of promoting the reduction of iron ore by sulfur (S).
도 5는 가압된 환원가스 이용 시 황(S) 함량이 높은 철광석의 반응시간에 따른 질량 감소율을 나타낸 그래프이다.5 is a graph showing the mass reduction rate according to the reaction time of iron ore having a high sulfur (S) content when the pressurized reducing gas is used.
도 6는 황화합물을 환원반응에 이용하여 금속철층이 파괴되고 다공질화된 자철광 단면을 나타낸 사진이다.FIG. 6 is a photograph showing a magnetite cross section in which a metal iron layer is broken and porous by using a sulfur compound in a reduction reaction.
이하, 첨부한 도면을 참고로 하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 이하에서 설명하는 실시예에 한정되지 않는다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
본 발명에 일 실시예에 의한 환원철의 제조방법은 환원로에 철광석을 장입하고 환원가스를 취입하여 철광석을 환원시키는 환원철 제조방법에 있어서, 상기 철광석은 황(S) 함량이 0.1~1%인 자철광이며, 상기 환원가스는 압력범위가 1기압 이상인 것을 특징으로 한다.Method for producing reduced iron according to an embodiment of the present invention is a reduced iron manufacturing method for reducing the iron ore by charging the iron ore and reducing gas in the reducing furnace, the iron ore is a magnetite (S) content of 0.1 ~ 1% The reducing gas is characterized in that the pressure range of 1 atm or more.
탄소의 활동도는 다음과 같이 표현할 수 있다. The activity of carbon can be expressed as
2CO = C + CO2 (식1)2CO = C + CO 2 (Equation 1)
(식1)의 평형상수는 다음과 같이 정의된다The equilibrium constant of equation (1) is defined as
K1=a C·PCO2/(PCO)2 (식2) K 1 = a C · P CO2 / (PCO) 2 ( Equation 2)
CO+H2=C+H2O (식3)CO + H 2 = C + H 2 O (Equation 3)
마찬가지로 (식3)의 평형상수도 아래와 같이 정의된다.Similarly, the equilibrium constant of equation (3) is defined as
K2=a C·PH2O/(PCO)·(PH2) (식4) K 2 = a C · P H2O / (P CO) · (P H2) ( Equation 4)
여기서 aC는 가스 중 탄소의 활동도 이다. 일정온도에서 K1, K2는 일정하며, 전체 가스의 압력은 일정하다. Where a C is the activity of carbon in the gas. At constant temperature, K1 and K2 are constant, and the pressure of the entire gas is constant.
Ptotal=PCO+PCO2+PH2+PH2O+PN2=일정 (식5)P total = P CO + P CO2 + P H2 + P H2O + P N2 = Schedule (Equation 5)
식2, 식3, 식5를 풀면 탄소의 활동도 aC를 구할 수 있다. 이러한 환원가스 중 탄소의 활동도는 전체 가스 압력에 비례하여 증가한다. 환원가스의 압력이 클수록 탄소의 활동도는 커진다. Solving Equations 2, 3, and 5 gives the carbon activity a C. The activity of carbon in these reducing gases increases in proportion to the total gas pressure. The greater the pressure of the reducing gas, the greater the activity of carbon.
상기 환원가스는 탄소 활동도(carbon activity)가 1 이상인 것을 특징으로 한다.The reducing gas is characterized in that the carbon activity (carbon activity) of 1 or more.
탄소의 활동도가 1보다 작으면 환원된 자철광 표면 Fe층에 침탄되는 속도가 느려 효과적이지 못하다. 탄소가 Fe층내로 확신을 증대시키기 위해서는 탄소 활동도가 1보다 커야 한다. If the activity of carbon is less than 1, the rate of carburizing on the reduced magnetite surface Fe layer is not effective. Carbon activity must be greater than 1 to increase confidence in the Fe layer.
또한, 본 발명의 또 다른 실시예에 의한 환원철의 제조방법은 환원로에 철광석을 장입하고 환원가스를 취입하여 철광석을 환원시키는 환원철 제조방법에 있어서, 상기 철광석은 황(S) 함량이 100ppm 미만인 자철광석에 광석을 포함한 고체 황화합물을 상기 환원로에 장입되는 전체 광석 질량비를 기준으로 황의 질량비가 0.1~1%가 되도록 혼합한 것이며, 상기 환원가스는 압력범위가 1기압 이상일 수 있다.In addition, the method for producing reduced iron according to another embodiment of the present invention in the reduced iron manufacturing method for reducing the iron ore by charging the iron ore and reducing gas in the reducing furnace, the iron ore is less than 100ppm sulfur (S) content The solid sulfur compound including ore in iron ore is mixed so that the mass ratio of sulfur is 0.1 to 1% based on the total ore mass ratio charged in the reduction furnace, and the reducing gas may have a pressure range of 1 atm or more.
상기 환원로는 유동층형 환원로 또는 충전층형 환원로인 것을 특징으로 한다.The reduction furnace is characterized in that the fluidized bed reduction furnace or packed-bed reduction furnace.
상기 환원가스는 일산화탄소 55~65%, 수소 15~25%, 이산화탄소 10% 미만, 질소 10~15% 를 포함하는 것을 특징으로 한다.The reducing gas is characterized in that containing 55 to 65% carbon monoxide, 15 to 25% hydrogen, less than 10% carbon dioxide, nitrogen 10 to 15%.
본 발명에서 환원로는 용융가스화로와 복수의 유동층 환원로가 다단으로 연결된 용철제조공정인 파이넥스(FINEX) 공정의 유동환원로가 될 수 있다. 또한, 상기 환원로는 충진층형 환원로가 될 수 있다. 충진층형 환원로를 사용할 경우, 장입되는 철광석은 괴상형태로 장입이 될 수 있다.In the present invention, the reduction furnace may be a fluid reduction furnace of the FINEX process, a molten iron manufacturing process in which a molten gasifier and a plurality of fluidized-bed reduction furnaces are connected in multiple stages. In addition, the reduction furnace may be a packed-bed reduction furnace. When the packed-bed reduction furnace is used, the charged iron ore may be charged in the form of a block.
상기 환원로는 철광석과 석회석, 돌로마이트 등의 부원료를 함께 장입하고, 용융가스화로에서 생성되어 공급되는 일산화탄소, 수소를 함유하는 환원가스를 취입하여 상기 철광석을 환원시켜 환원철 형태로 제조하게 된다.The reducing furnace is charged with a subsidiary material such as iron ore, limestone, dolomite, and the like to reduce the iron ore by reducing the iron ore by injecting a reducing gas containing carbon monoxide, hydrogen generated and supplied in the molten gasifier.
바람직하게는, 본 발명은 자철광을 파이넥스(FINEX) 공정에서 사용되는 유동층형 환원로에서 자철광을 환원시킬 때 사용될 수 있다.Preferably, the present invention may be used when the magnetite is reduced in the fluidized-bed reduction furnace used in the FINEX process.
유동층형 환원로에서 광석을 유동화시키는데 있어서 석탄가스화 반응을 통해 형성된 가스나 천연가스 등을 이용할 수 있는데 이 가스에서 공통적으로 미량의 황화수소(H2S)가 존재한다. In the fluidized-bed reduction reactor, the gas or natural gas formed through coal gasification reaction can be used. In this gas, trace amounts of hydrogen sulfide (H 2 S) are commonly present.
그러나 용철제조공정에 있어서 일반적으로 H2S는 불순물로 용선중 S의 함량을 증대시킬 수 있어 공정 중 S의 혼입을 최대한 억제한다. 그래서 석탄가스화 반응시 석탄 중 S의 함량을 최대한 낮춘다. However, in the molten iron manufacturing process, in general, H 2 S can increase the content of S in molten iron as an impurity, thereby suppressing the incorporation of S in the process. Therefore, in the coal gasification reaction, the content of S in the coal is reduced as much as possible.
마찬가지로 광석 중 S의 함량이 높을 경우 사용이 제한될 수 있다. Likewise, if the content of S in the ore is high, its use may be restricted.
그러나 현재 탈황 기술의 발달로 인해 용선 중 S는 효과적으로 제거될 수 있고 불순물 또는 유해물로 여겨지는 S를 이용할 경우 자철광의 환원속도가 개선될 수 있다. However, due to the development of current desulfurization technology, S in molten iron can be effectively removed, and the reduction rate of magnetite can be improved by using S, which is regarded as impurities or harmful substances.
석탄가스화 반응 또는 천연가스 개질 시 발생하는 CO+H2 혼합 가스는 광석이 장입된 유동층 환원로에 들어가 자철광을 환원시켜 표면에 Fe를 형성하게 된다. The CO + H2 mixed gas generated during coal gasification or natural gas reforming enters a fluidized-bed reduction furnace loaded with ore to reduce magnetite to form Fe on the surface.
이렇게 형성된 Fe에 침탄반응이 일어나나 동시에 카본 석출반응, 즉, 그라파이트가 형성되어 침탄과 환원을 억제하고 가스가 침투하는 것을 방해한다. Carburization reaction occurs in Fe thus formed, but at the same time, carbon precipitation reaction, that is, graphite is formed, inhibits carburization and reduction and prevents gas from penetrating.
이 반응이 생기면 가스 중 존재하는 탄소는 모두 그라파이트로 바뀌게 되어 환원에 기여하지 못하여 가스 이용율을 크게 감소시킨다. 광석에 포함된 S화합물을 효과적으로 이용하면 그라파이트 형성을 억제하여 지속적으로 카본이 광석 내부로 침투하게 하여 환원을 촉진시키는 역할을 하게 된다. When this reaction occurs, all the carbon in the gas is converted to graphite, which does not contribute to the reduction, greatly reducing the gas utilization rate. Effective use of the S compound contained in the ore inhibits the formation of graphite to continuously infiltrate the inside of the ore to promote the reduction.
이렇게 침투된 카본은 내부 산화철과 반응하여 가스를 형성하게 되고 동시에 Fe층을 파괴하게 된다.The infiltrated carbon reacts with the internal iron oxide to form a gas and simultaneously destroys the Fe layer.
한편, 자철광의 환원시 수소 함량이 증가할수록 자철광의 환원속도가 증대될 것이라는 예측은 고온영역, 즉 Fe 이온의 확산속도가 높을 경우에만 적용이 된다. On the other hand, the prediction that the reduction rate of magnetite increases as the hydrogen content increases during the reduction of magnetite is applied only when the diffusion rate of Fe ions is high in the high temperature region.
자철광을 수소를 이용해 환원시킬 경우 표면에 Fe층이 형성되어 가스 침투를 억제시켜 내부에 환원되지 못한 산화철과 가스와의 반응이 차단되어 환원속도가 급속하게 감소한다. When the magnetite is reduced by using hydrogen, Fe layer is formed on the surface to inhibit gas penetration, thereby blocking the reaction between iron oxide and gas that has not been reduced inside, thereby rapidly reducing the reduction rate.
900℃ 이하 저온에서 수소 환원시킨 자철광의 환원패턴은 도 1과 같이 수소에 의해 초기 반응속도는 빠르나 곧 저하되는 것은 이미 잘 알려진 사실이며 실험으로도 쉽게 확인할 수 있다. The reduction pattern of the magnetite ore reduced at 900 ° C. or lower at low temperature is a well known fact that the initial reaction rate is rapidly reduced by hydrogen as shown in FIG. 1, and can be easily confirmed by an experiment.
고온의 경우는 환원이 안된 산화철의 Fe 이온이 표면으로 이동하는 확산속도가 증대되기 때문에 자철광 표면 구조가 다양하게 변화할 수 있다. In the case of high temperature, the magnetite surface structure may be changed in various ways because the diffusion rate at which Fe ions of the iron oxide which is not reduced is increased to the surface is increased.
그러나 앞에서 언급한 바와 같이 저온에서는 자철광 환원의 경우 반응율속단계(rate controlling step)가 Fe이온의 확산이기 때문에 수소를 이용할지라도 환원시 자철광 환원성은 크게 개선될 수 없다. 결국 자철광의 환원성을 개선하기 위해서는 가스의 침투를 방해하는 Fe층을 효과적으로 파괴해야 한다. 그러나 파괴를 위해 물리적 에너지를 이용한다면, 반응의 효율 측면에서 매우 곤란하고 방법의 구현 또한 난해하여 적용이 곤란하다. However, as mentioned above, magnetite reduction in magnetite reduction can not be significantly improved even when hydrogen is used, because the rate controlling step is diffusion of Fe ions at low temperatures. In order to improve the reducibility of magnetite, it is necessary to effectively destroy the Fe layer which prevents the penetration of gas. However, if physical energy is used for the destruction, it is very difficult in terms of the efficiency of the reaction, and the implementation of the method is also difficult and the application is difficult.
즉, 화학적 에너지를 사용할 수 밖에 없는데, 가장 값싼 자원으로 광석중 포함된 불순물인 S화합물을 이용하고자 한다. S를 계면활성 물질로 매우 적은 양만 있어도 표면을 덮을 수 있고 그라파이트의 형성을 억제하여 금속 더스팅(metal dusting)과 같은 문제를 해결하고 아이언 카바이드(iron carbide) 형성을 촉진할 수 있다고 알려져 있다. In other words, chemical energy is inevitably used, and as the cheapest resource, S compound, which is an impurity contained in ore, is used. It is known that even a very small amount of S as a surface active material can cover the surface and suppress the formation of graphite to solve problems such as metal dusting and to promote iron carbide formation.
그러나 이러한 S의 장점을 활용하여 자철광의 환원성을 개선시키는 연구나 기술개발은 전무한 상태이다. However, there is no research or technology development to improve the reducibility of magnetite using the advantages of S.
S를 효과적으로 이용할 경우 환원자철광의 구조를 변화시켜 환원성을 크게 개선할 수 있다. When S is effectively used, the reducibility can be greatly improved by changing the structure of the reduced magnetite.
도 2는 S함량이 낮은 자철광은 수소를 이용해 환원하다가 가스를 CO+H2혼합가스로 전환시 환원패턴 변화를 보여준다. 수소를 이용할 경우 초기 질량감소속도는 빠르나 곧 저하되고 CO+H2로 치환하였을 때는 오히려 질량이 크게 증가한다. 이러한 질량의 증가는 환원이 차단되고 표면에 그라파이트가 형성되는 탄소의 석출속도가 증가되기 때문이다. 2 shows a change in the reduction pattern when the magnetite with low S content is reduced with hydrogen and the gas is converted into a CO + H 2 mixed gas. When hydrogen is used, the initial mass loss rate is fast, but decreases quickly, and when it is substituted with CO + H 2 , the mass increases significantly. This increase in mass is due to an increase in the precipitation rate of carbon, which reduces the reduction and forms graphite on the surface.
도 3은 반대로 S함량이 높은 자철광을 수소환원시키다가 가스를 CO+H2혼합가스로 치환하였을 때 변화를 보여준다. 도 2와 마찬가지로 환원속도가 곧 저하되나 CO+H2 치환시 약간의 질량 증가를 거친 후 질량이 다시 감소하는 것을 보여준다. 질량의 증가는 환원 시 형성된 Fe 층 내부의 C 함량이 증가하는 것을 의미하며 질량의 감소는 산소가 제거되는 것 즉, 다시 환원이 시작된다는 것을 의미한다. 3 shows the change when hydrogen is reduced in magnetite with high S content and gas is replaced with CO + H 2 mixed gas. As shown in FIG. 2, the reduction rate decreases soon, but the mass decreases again after a slight increase in mass during CO + H 2 substitution. An increase in mass means an increase in the C content in the Fe layer formed upon reduction, and a decrease in mass means that the oxygen is removed, that is, the reduction starts again.
즉, 차단되었던 환원가스의 침투가 다시 시작되는 것으로 이해할 수 있다. 가스의 침투가 가능한 이유는 광석 중 존재하는 S에 의해 탄소 석출이 억제되어 침탄이 지속됨으로써 탄소가 직접 산화철을 만나가게 되고 반응 결과물로 CO가 생기고 다시 CO가 산화철과 반응하여 CO2가 형성되며 다시 CO2가 C와 만나 CO가 생성되는 반응을 반복해 Fe와 Fe-oxide 계면의 압력이 증대되어 Fe 층이 터져나가기 때문으로 이해될 수 있다. That is, it can be understood that the infiltration of the reducing gas which has been blocked is restarted. The reason for the infiltration of gas is that the precipitation of carbon is suppressed by S present in the ore, and carburization is continued, so that carbon meets iron oxide directly, and as a result of the reaction, CO is formed, and CO reacts with iron oxide to form CO2. It can be understood that the Fe layer is exploded by increasing the pressure at the Fe-Fe-oxide interface by repeating the reaction where C meets C and generates CO.
이에 대한 반응기구(mechanism)은 도 4에 도시되어 있다. The mechanism for this is shown in FIG. 4.
한편, S함량이 낮은 광석에 S함량이 높은 광석을 혼합할 경우도 유사한 결과를 얻을 수 있다.On the other hand, a similar result can be obtained when mixing an ore having a high S content with an ore having a low S content.
S 함량이 높은 광석 중 S가 S함량이 낮은 광석으로 전달되어 S함량을 높일 수 있기 때문이다. S 함량이 높은 광석의 혼합비는 전체 광석 질량 기준으로 0.1~1%가 되도록 혼합하는 것이 바람직하다.This is because S of the ore having a high S content is transferred to the ore having a low S content, thereby increasing the S content. The mixing ratio of the ore having a high S content is preferably mixed so as to be 0.1 to 1% based on the total ore mass.
지금까지 설명한 S를 이용한 환원시 자철광 구조 유도는 가압조건에서도 적용될 수 있다. 대기압에서 CO 55~65%, H2 15~25%, CO2 10% 미만, N2 10~15% 가 혼합되어 있는 가스 성분 (Carbon activity가 1.2 이상)에 해당하는 가스는 성분 변화 없이 가압을 통해서 자철광 환원을 개선할 수 있다. Induction of magnetite structure upon reduction using S described above can be applied even under pressurized conditions. At atmospheric pressure, gas corresponding to a gas component (carbon activity of 1.2 or more) containing 55 to 65% of CO, 15 to 25% of H 2 , less than 10% of CO 2 , and 10 to 15% of N 2 can be pressurized without changing the composition. Through magnetite reduction can be improved.
이는 경제적 측면에서 연료의 추가적인 소비 없이 환원율을 높일 수 있다. 4기압 까지 가압할 경우 탄소 활동도(carbon activity)는 4까지 증가한다. This can increase the reduction rate without additional fuel consumption in economic terms. When pressurized to 4 atm, the carbon activity increases to 4.
S 함량이 높은 자철광의 환원성 개선 효과를 도 5에 설명하였다. 광석 중 S 함량이 0.1%이상 1% 미만인 광석은 H2S 부하없이 환원성 증대가 가능하다. 도 6은 다공질화된 환원된 자철광의 단면을 보여준다. The reducing effect of magnetite having a high S content has been described in FIG. 5. Ore with an S content of 0.1% or more and less than 1% in the ore is capable of increasing reducibility without H2S load. 6 shows a cross section of the porous reduced magnetite.
이상 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명이 이에 한정되는 것은 아니며 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시할 수 있다.While the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings.

Claims (6)

  1. 환원로에 철광석을 장입하고 환원가스를 취입하여 철광석을 환원시키는 환원철 제조방법에 있어서,In the reduced iron manufacturing method for charging the iron ore into the reduction furnace and blowing the reducing gas to reduce the iron ore,
    상기 철광석은 황(S) 함량이 0.1~1%인 자철광이며,The iron ore is a magnetite having a sulfur (S) content of 0.1 to 1%,
    상기 환원가스는 압력범위가 1기압 이상인 것을 특징으로 하는 환원철 제조방법.The reduced gas is reduced iron production method characterized in that the pressure range of 1 atm or more.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 환원가스는 탄소 활동도(carbon activity)가 1이상인 것을 특징으로 하는 환원철 제조방법.The reducing gas is a reduced iron production method, characterized in that the carbon activity (carbon activity) is one or more.
  3. 환원로에 철광석을 장입하고 환원가스를 취입하여 철광석을 환원시키는 환원철 제조방법에 있어서,In the reduced iron manufacturing method for charging the iron ore into the reduction furnace and blowing the reducing gas to reduce the iron ore,
    상기 철광석은 황(S) 함량이 100ppm 미만인 자철광이며,The iron ore is a magnetite having a sulfur (S) content of less than 100 ppm,
    상기 환원가스는 압력범위가 1기압 이상인 것을 특징으로 하는 환원철 제조방법.The reduced gas is reduced iron production method characterized in that the pressure range of 1 atm or more.
  4. 환원로에 철광석을 장입하고 환원가스를 취입하여 철광석을 환원시키는 환원철 제조방법에 있어서,In the reduced iron manufacturing method for charging the iron ore into the reduction furnace and blowing the reducing gas to reduce the iron ore,
    상기 철광석은 황(S) 함량이 100ppm 미만인 자철광석에 황(S) 함량높은 광석을 포함한 고체 황화합물을 상기 환원로에 장입되는 전체 광석 질량비를 기준으로 황의 질량비가 0.1~1% 되도록 혼합한 것이며, The iron ore is a mixture of a solid sulfur compound including a high sulfur (S) content to a magnetite ore having a sulfur (S) content of less than 100 ppm so that the mass ratio of sulfur is 0.1 to 1% based on the total ore mass ratio charged into the reduction furnace.
    상기 환원가스는 압력범위가 1기압 이상인 것을 특징으로 하는 환원철 제조방법.The reduced gas is reduced iron production method characterized in that the pressure range of 1 atm or more.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 환원로는 유동층형 환원로 또는 충전층형 환원로인 것을 특징으로 하는 환원철 제조방법.The reducing furnace is a reduced iron production method characterized in that the fluidized bed reduction furnace or packed-bed reduction furnace.
  6. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 4,
    상기 환원가스는 일산화탄소 55~65%, 수소 15~25%, 이산화탄소 10% 이하, 질소 10~15% 를 포함하는 것을 특징으로 하는 환원철 제조방법.The reducing gas is carbon monoxide 55 ~ 65%, hydrogen 15-25%, carbon dioxide 10% or less, reduced iron production method characterized in that it comprises 10-15% nitrogen.
PCT/KR2012/011716 2012-12-27 2012-12-28 Method for manufacturing reduced iron WO2014104439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280077818.2A CN104870655A (en) 2012-12-27 2012-12-28 Method for manufacturing reduced iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120155091A KR101384801B1 (en) 2012-12-27 2012-12-27 Method for manufacturing reduced iron
KR10-2012-0155091 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014104439A1 true WO2014104439A1 (en) 2014-07-03

Family

ID=50657560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011716 WO2014104439A1 (en) 2012-12-27 2012-12-28 Method for manufacturing reduced iron

Country Status (3)

Country Link
KR (1) KR101384801B1 (en)
CN (1) CN104870655A (en)
WO (1) WO2014104439A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102167239B1 (en) 2018-10-23 2020-10-20 한국기초과학지원연구원 non-oxidative iron and a method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198613A (en) * 1995-01-20 1996-08-06 Yoshiaki Iguchi Production of iron carbide
KR19990087811A (en) * 1996-03-15 1999-12-27 토요다 히로시 Metal iron manufacturing method and apparatus
KR20000042005A (en) * 1998-12-24 2000-07-15 이구택 Method for producing molten wire by using scrap containing copper
KR20010080043A (en) * 1998-11-05 2001-08-22 풀 부르스 에스.에이. Process for production of directly reduced desulphrised iron
KR20040056270A (en) * 2002-12-23 2004-06-30 주식회사 포스코 A hybrid steelmaking apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08198613A (en) * 1995-01-20 1996-08-06 Yoshiaki Iguchi Production of iron carbide
KR19990087811A (en) * 1996-03-15 1999-12-27 토요다 히로시 Metal iron manufacturing method and apparatus
KR20010080043A (en) * 1998-11-05 2001-08-22 풀 부르스 에스.에이. Process for production of directly reduced desulphrised iron
KR20000042005A (en) * 1998-12-24 2000-07-15 이구택 Method for producing molten wire by using scrap containing copper
KR20040056270A (en) * 2002-12-23 2004-06-30 주식회사 포스코 A hybrid steelmaking apparatus and method

Also Published As

Publication number Publication date
KR101384801B1 (en) 2014-04-21
CN104870655A (en) 2015-08-26

Similar Documents

Publication Publication Date Title
US4921532A (en) Ironmaking by means of a smelting shaft furnace
MX2009008472A (en) Method for the reduction of a slag having a high degree of chromium in an electric arc furnace.
US20100313711A1 (en) Method for the melting of pig iron with the recirculation of blast furnace gas and with the addition of hydrocarbons
KR20230006894A (en) Method for producing carburized spongy iron
AU1735583A (en) Iron oxide catalyst for production of hydrogen and carbon dioxide
JP6356347B2 (en) Method for blowing a displacement reducing agent into a blast furnace
US5683489A (en) Method of producing iron carbide
AU2016360842B2 (en) Method for preheating and smelting manganese ore sinter
WO2014104439A1 (en) Method for manufacturing reduced iron
JPS5811710A (en) Improvement of copper refinement
WO2017111490A1 (en) Molten iron manufacturing device and molten iron manufacturing method using same
WO2018004070A1 (en) Apparatus for manufacturing molten iron and method for manufacturing molten iron by using same
WO2012047041A2 (en) Fine direct reduced irons containing iron carbide and preparation apparatus thereof
US20190055616A1 (en) Method for producing metal from metal oxide by carbothermic reduction and holed cake used therefor
KR20110084395A (en) Method for operation of copper flash smelting furnace
JP3964959B2 (en) Method for producing iron carbide
US4588438A (en) Moulded object of alumina matter-containing raw material for aluminum smelting by blast furnace method
WO2021101193A1 (en) Method for producing carbon monoxide and use thereof
KR101197697B1 (en) Apparauts for manufacturing iron carbide bearing drect reduced iron
RU2150514C1 (en) Charge briquette for production of high-grade steel and method of charge briquette preparation
CN207738786U (en) A kind of system of no coal method production ferrochrome
KR101197696B1 (en) Iron carbide bearing drect reduced iron
JP2001520310A (en) Method and apparatus for controlling carburization of DRI
KR100840264B1 (en) Magnesia-carbon coating material for the iron making vessel
KR20170076249A (en) Apparatus for manufacturing molten iron

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12891053

Country of ref document: EP

Kind code of ref document: A1