WO2014104291A1 - Precipitation gauge - Google Patents
Precipitation gauge Download PDFInfo
- Publication number
- WO2014104291A1 WO2014104291A1 PCT/JP2013/085092 JP2013085092W WO2014104291A1 WO 2014104291 A1 WO2014104291 A1 WO 2014104291A1 JP 2013085092 W JP2013085092 W JP 2013085092W WO 2014104291 A1 WO2014104291 A1 WO 2014104291A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- precipitation
- water receiver
- receiver
- amount
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
- G01W1/14—Rainfall or precipitation gauges
Definitions
- the present invention relates to a precipitation meter, and more particularly to a precipitation meter that can detect the direction of precipitation of precipitation particles during rain or snow.
- Conventional rain gauges including falling mass rain gauges and precipitation gauges (hereinafter simply referred to as conventional rainfall gauges) have a single water receiver, and the water receiving surface is leveled assuming a horizontal ground surface. In order to measure the amount of precipitation particles colliding with the horizontal surface (precipitation amount), it is intended to measure approximately.
- the actual surface of the earth is not limited to a horizontal plane, but is composed of inclined surfaces or curved surfaces having various orientations and inclination angles including the horizontal plane.
- precipitation particles collide with these inclined surfaces or curved surfaces. Approximate amount (precipitation) cannot be measured. In order to make approximate measurements, it is necessary to detect the direction of precipitation particles.
- a water receiver having a horizontal water receiving surface in a conventional rain gauge into a spherical water receiver (or a water collector), and the spherical surface was a gap. It is composed of 12 water receivers that are divided into 12 parts and all the water receiving surfaces form part of the sphere, receiving rainwater coming from all directions, and from the lower direction that can detect the amount of rainfall and the direction of arrival.
- a spherical water receiver or a water collector
- the shape of the water receiver is made spherical, and the spherical surface is divided into three parts in the horizontal direction and four parts in the vertical direction. It has a structure for receiving rainwater. Furthermore, the individual rainwater received by the 12 water receiving surfaces is dropped as water droplets of a constant volume, and the number of drops within a predetermined time is counted to measure the amount of water received on the individual water receiving surfaces. From the measured 12 received water amounts, the direction of rainwater flight can be calculated and acquired.
- the omnidirectional rain gauge proposed earlier has a problem that the shape of the water receiver and the structure of the measuring part are complicated, and the cost is likely to increase in terms of manufacturing.
- the inventor of the present application examines the omnidirectional rain gauge of the above-mentioned Patent Document 1, devise the shape of the water receiver, and obtain the rainwater flying direction even if the number of water receiving surfaces is further reduced.
- an object of the present invention is to provide a precipitation meter that can be realized with a simpler structure based on the newly found solution principle. More specifically, in the omnidirectional precipitation meter according to the invention described in Patent Document 1, precipitation from all directions including the downward direction can be detected, but detection of the flying direction in the direction including the horizontal plane is possible. Often it is sufficient. Therefore, the present invention provides a precipitation meter capable of measuring precipitation in the entire sky direction including a horizontal plane.
- Another object of the present invention is to provide a precipitation meter capable of measuring rainfall or precipitation particles caused by snowfall, which can measure not only rainfall but also snowfall based on the precipitation meter according to the present invention.
- a first aspect of the present invention that achieves the above object is a precipitation meter having a water receiving part that receives precipitation particles due to rainfall or snowfall, and a measurement part that measures the amount of precipitation particles received by the water receiving part.
- the water receiving part is A conical funnel is formed, and the circumference of the first water receiver in which the circular opening of the funnel faces the zenith direction and the circular opening of the first water receiver is equally divided into a plurality of n.
- the measuring unit receives the amount of water received by the first water receiver per predetermined time (Pm) and the plurality of n Measure the amount of water received (Ps 1 to Psn) in each of the second water receivers, and the precipitation particles come from the ratio of the amount of water received (Ps 1 to Psn) in the second n water receivers.
- Precipitation particles from the ratio of the direction azimuth ⁇ and the measured amount of water received by the first water receiver (Pm) and the total amount of water received by the plurality of second water receivers (Ps 1 to Psn) The inclination angle ⁇ from the zenith in the flying direction is determined.
- a water receiving unit that receives precipitation particles due to rain or snow and a measurement unit that measures the amount of precipitation particles received by the water receiver are provided.
- a precipitation gauge The water receiving part forms a conical funnel, and the circumference of the first water receiver with the circular opening of the funnel facing the zenith direction and the circumference of the circular opening of the first water receiver is 4 Dividing into four second water receivers on the side surface, the measuring unit receives the amount of water received (Pm) by the first water receiver per predetermined period and the four second water receivers.
- water is received on the bottom side of each of the first water receiver and the second water receiver. It has a discharge hole for discharging precipitation particles to the bottom, and is configured to be individually connected from the discharge hole to the measurement unit through a water conduit.
- the measurement unit corresponds to each of the first water receiver and the second water receiver.
- a falling mass is provided, precipitation particles received through the water conduit are guided to the falling mass, and the number of falls of the falling mass is independently measured.
- the measurement unit corresponds to each of the first water receiver and the second water receiver. The amount of each precipitation particle flowing down through the water conduit is measured.
- Each of the second water receivers has a plurality of fins arranged radially from the center of the first water receiver toward the outer periphery of the second water receiver. .
- any of the above aspects It has a mesh-shaped bellows covering surrounding the outer periphery of the second water receiver.
- Each of the first water receiver and the second water receiver has a mesh-shaped heating net cover, and the heating net portion covering the second water receiver has an upper end at the first water receiver. It is fixed to the outer edge part of the funnel funnel, and the lower end side is open.
- the covering of the bellows and the covering of the heating net are formed of a material having thermal resistance, and when energizing when measuring the amount of snowfall, It is characterized by being heated to the melting temperature for snow particles.
- the precipitation meter according to the present invention captures rainwater or snowfall from any direction within a range of 0 to 90 degrees from the zenith with a simple configuration, so that accurate precipitation can be measured.
- the precipitation gauge of the present invention the past rainfall or precipitation values measured by the rain gauges or precipitation gauges used in various parts of the world so far have been underestimated. It turns out.
- precipitation particles may fly from the horizontal or below, and such rainwater or precipitation cannot be captured at all by existing rain gauges or precipitation gauges.
- the precipitation gauge of the present invention it can be installed on any terrain, and can measure precipitation in all directions including the horizontal plane. It becomes possible.
- the amount of rainfall or precipitation is related to the estimation of the reservoir inflow in the water source area, the estimation of the amount of surface collision and the infiltration of rainwater in the event of a slope sediment disaster, and various water resource plans and water use plans. It is indispensable and the most basic numerical information for planning and formulating countermeasures for rainfall disasters.
- the precipitation gauge of the present invention makes it possible to provide more accurate precipitation information necessary for these.
- the measurement accuracy for example, water drops between the switches of the switch unit
- the weight is significantly improved (100 times or more) compared to the conventional falling mass rain gauge.
- FIG. 5 is a top view of the embodiment of FIG. 4.
- FIG. 6 is a cross-sectional view taken along line AA in the top view of FIG. 5 as viewed from the top surface of the water receiving portion in the embodiment of FIG. 4.
- FIG. 5 is a top view of the embodiment of FIG. 4.
- FIG. 6 is a cross-sectional view taken along line AA in the top view of FIG. 5 as viewed from the top surface of the water receiving portion in the embodiment of FIG. 4.
- FIG. 1 shows the measurement part used for the rain gauge previously proposed by patent document 1.
- FIG. 15 is a view showing a cross section taken along line AA in the top view of FIG. 14.
- FIG. 15 is a view showing a cross section taken along line BB in the top view of FIG. It is a schematic perspective view of a 3rd Example. It is a top view of the third embodiment.
- FIG. 16B is a schematic cross-sectional view taken along line AA in FIGS. 16A and 16B.
- FIG. 1 is a diagram showing a principle configuration example of a water receiving portion of a precipitation meter according to the present invention.
- FIG. 1A is a diagram illustrating an example of a principle configuration observed from an obliquely upward side surface of the water receiving unit
- FIG. 1B is an example of a principle configuration observed from the zenith direction of the water receiving unit.
- the water receiver has a first water receiver and a second water receiver.
- the funnel-shaped first water receiver 10 and the opening circumference of the first water receiver 10 are divided into four by partition plates 1, 2, 3, and 4. It is the structure which has the 4th 2nd water receiver 11, 12, 13, 14 formed.
- the present invention is not limited to such a configuration. That is, in order to measure the azimuth more precisely, the opening circumference of the first water receiver 10 may be equally divided into a plurality of n (> 4) as the second water receiver.
- the first water receiver 10 and the second water receiver 11, 12, 13, 14 each have a water guide section 25 on the lower side.
- the water guide portion 25 includes a vertical peripheral edge 25A and a skirt portion 25B in the peripheral portion, and a concave dish 25C having a connection portion between the peripheral edge 25A and the skirt portion 25B as an upper side.
- the peripheral edge 25A of the water guide portion 25 is slightly larger than the opening diameter 2r of the first water receiver 10 by a
- the peripheral edge 25A of the water guide portion 25 of the partition plates 1, 2, 3, 4 The lower end part in contact with is widened by a.
- the reason why the diameter of the peripheral edge 25A of the water guide portion 25 is slightly larger than the opening diameter 2r of the first water receiver 10 by a is particularly in the embodiment shown in FIGS. It is necessary to make sure that water is received in the water receiver. However, since the measurement error increases as the size of a increases, it is preferable to determine the size of a in relation to the allowable error.
- the first water receiver 10 and the second water receivers 11, 12, 13, and 14 are associated with five channels Ch0, Ch1, Ch2, Ch3, and Ch4, and on the bottom side of each water receiver, Corresponding discharge holes 20, 21, 22, 23, 24 for discharging received rainwater or snowmelt water (hereinafter simply referred to as water) to the lower part are provided in the dent dish 25 ⁇ / b> C.
- the second water receivers 11 to 14 surround the first water receiver 10 (channel Ch0).
- the above configuration can be formed of a material that does not corrode, such as stainless steel, and is easier to manufacture than the configuration proposed in Patent Document 1 above.
- FIG. 2 shows a first specific configuration example thereof.
- 2A and 2B are diagrams showing the configuration as viewed from the obliquely upward side of the water receiver and FIG. 2B as viewed from the zenith direction of the water receiver, as in FIG. 1. Similar parts to those in FIG. 1 are denoted by the same reference numerals.
- the second water receivers 11, 12, 13, 14 are arranged in the second water receivers 11, 12, 13, 14 from the center of the first water receiver 10.
- 14 has a plurality of “fin plates” 100 arranged radially toward the outer periphery. With the fin plate 100, it is possible to reliably catch raindrops that reach the second water receivers 11, 12, 13, and 14 in the lateral direction.
- the material of the “fin plate” 100 itself is also made of a material that does not corrode such as stainless steel.
- FIG. 3 shows still another configuration example that eliminates the above-mentioned inconveniences in the principle configuration example of FIG.
- FIG. 3 (A) is a diagram showing a configuration viewed from the side obliquely upward of the water receiver
- FIG. 3 (B) is a configuration viewed from the zenith direction of the water receiver. .
- FIG. 3 is characterized in that a bellows-like cover 110 that covers the second water receivers 11, 12, 13, and 14 is provided.
- a bellows-like cover 110 that covers the second water receivers 11, 12, 13, and 14 is provided.
- Other parts that are the same as in FIG. 1 are given the same reference numerals.
- the bellows-like cover 110 is preferably not a plate material but a mesh-like stitch structure.
- the size of the stitch is desirably a stitch of 1 mm or less through which raindrops do not pass.
- the configuration shown in FIG. 3 can be grasped with respect to snowfall with a stitch as will be described later, and can also be used as a precipitation meter for measuring the amount of snowfall.
- bellows-shaped cover 110 from a material that does not corrode such as stainless steel.
- the bellows-shaped cover 110 when used as a precipitation meter for measuring the amount of snowfall, is made of a mesh itself with a material having thermal resistance against energization, or coated with a material having thermal resistance on the mesh. Then, by energizing the mesh, the bellows-shaped cover 110 is heated, and the attached snowfall can be melted. Or you may comprise so that the heat
- FIG. 4 is a perspective view of still another embodiment
- FIG. 5 is a top view thereof.
- Such a configuration together with the configuration shown in FIG. 3, is intended to enable measurement of not only precipitation but also snowfall.
- the first water receiver 10 and the second water receiver 11, 12, 13, 14 are each covered with a heating net 50.
- the heating net 50 that catches rainwater or snow that has come in is formed in a mesh shape with a material (metal, synthetic resin, rubber material, or the like) that has thermal resistance to energization, as in the embodiment of FIG.
- the material having heat resistance is coated on the mesh. Then, by energizing the mesh, the heating net 50 is heated, and the attached snowfall can be melted. Or you may comprise so that the heat
- the heating net 50 is connected to the peripheral portion of the funnel portion of the first water receiver 10 and the lower end side is released in the portion corresponding to the second water receivers 11, 12, 13, and 14. ing.
- the heating net 50 is heated to an appropriate temperature by supplying electricity.
- the amount of snowfall can be measured in accordance with the equivalent of rainwater described above.
- the amount of water adhering to the bellows-shaped cover 110 depends on the mesh line interval (mesh roughness), and the mesh roughness is 2 to 3 mm.
- the amount of adhering water was the largest. As the mesh became finer than 2 to 3 mm, the amount of adhering water decreased, and when it was 1.4 mm or less, the measurement error was so small that it would not be a problem at all. Further, the amount of water adhered decreased as the mesh became coarser than 2 to 3 mm, and it was confirmed that the amount of water adhered decreased when the stitch was too rough. *
- the stitches should be about snow particles (1 to 1.5 mm), and the line thickness should be strong and thin.
- FIG. 6 is a cross-sectional view taken along the line AA in FIG. 5 as viewed from the upper surface of the water receiving portion.
- the tip of the discharge holes 20, 21, 22, 23, 24 is a measuring unit (not shown in FIG. 1) that measures the amount of water received by each water receiver of the water receiving unit through the water guiding unit 25. It is connected.
- FIG. 7 is a conceptual diagram showing an example of a measurement unit.
- the received rainwater is guided to the corresponding falling masses 40, 41, 42, 43, 44.
- the overturning mass 40 is overturned and discharged with the weight of rainwater.
- rainwater accumulates up to a predetermined amount on the opposite side of the ridge, falls into a state of being discharged, and transitions to state S1 again. Then, by counting the number of falls, and multiplying the count value by a predetermined amount that accumulates rainwater in the reeds, the amount of rainfall to the corresponding water receiver can be determined.
- FIG. 8 is a conceptual diagram showing an example of a measurement unit used in the rain gauge previously proposed in Patent Document 1.
- FIG. 8 is expanded to the lower left of FIG. 8 at the tips of water conduits 30, 31, 32, 33, 34 connected to the discharge holes 20, 21, 22, 23, 24 corresponding to the five channels Ch0, Ch1, Ch2, Ch3, Ch4.
- a drip pipe 5 is provided for forming water drops as shown.
- the tip diameter S of the dripping pipe 5 has such a size that the weight of one water drop is about 0.1 g.
- FIG. 9 is an example of the shape of the dripping pipe 5 shown in FIG. It has an upper tube and a lower tube 5B, and the upper tube is packed with a filter 5A.
- the lower tube 5B has a pair of electrode parts 6a and 6b in the middle of dropping.
- the electrode parts 6a and 6 are electrically connected.
- the pair of electrode portions 6a and 6b are switches as detection portions that detect water droplets by energization between them.
- the number of water droplets to be dropped can be counted by counting the number of conductions between the electrode portions 6a and 6b. Thereby, if the number of water droplets counted is multiplied by the weight of one water droplet 0.1 g, the amount of rainwater received by each water receiver can be calculated.
- the method of detecting the water droplets is not limited to the method by energization between the electrode portions 6a and 6b, and various other modes are possible.
- a non-contact method either a method of detecting water droplets by changing the amount of transmitted light, or a method of detecting water droplets by dropping water droplets onto a microphone and detecting the presence or absence of sound changes at that time, etc. This method is not limited as an object of the present invention.
- the direction and inclination of the flying direction can be obtained from the amount of rain or snow received by the five water receivers.
- the principle will be described below.
- the rain or snow flying direction is defined as the direction ⁇ (clockwise angle from the north of the flying direction) and the slope ⁇ (tilting angle from the zenith in the flying direction), the flying direction as shown in FIGS.
- a geometrical relationship diagram between the direction and the water receiving area [FIG. 10 (part 1), FIG. 11 (part 2)] can be drawn.
- the water receiver 11 corresponding to the channel Ch1 in the water receiving region between the north (N) and the east (E) corresponds to the channel Ch2 in the water receiving region between the east (E) and the south (S).
- the water receiver 12 corresponds to the channel Ch3 in the water receiving region between the south (S) and the west (W), and the water receiver 13 corresponding to the channel Ch3 is channeled in the water receiving region between the west (W) and the north (N).
- the radius of the first water receiver 10 is r
- the area received by the first water receiver 10 is M
- the area received by the second water receiver 11, 12, 13, 14 is S.
- areas S 1 , S 2 , S 3 , S 4 in which each of the second water receivers 11, 12, 13, 14 receives rain or snow from FIG. 10 are as follows.
- the first water receiver 10 is formed into a conical funnel, and the circular opening of the funnel faces the zenith direction, and the circumference of the circular opening of the first water receiver 10 is set to a plurality of n. It divides
- the measuring unit measures the amount of water received by the first water receiver 10 per predetermined period (Pm) and the amount of water received by the plurality of n second water receivers (Ps 1 to Psn). To do. Next, the direction ⁇ of the rain arrival direction is determined from the ratio of the received water amounts (Ps 1 to Psn) in the plurality of second receivers.
- the inclination angle ⁇ from the zenith in the rain flying direction can be determined.
- FIG. 12 is a diagram showing the configuration of another embodiment of the precipitation meter according to the present invention.
- the configuration of the previous embodiment is an integrated configuration in which a plurality of second water receivers 11, 12, 13, and 14 are arranged on the lower side of the funnel shape of the first water receiver 10.
- FIG. 12 is a figure which shows the structure arrange
- the configuration is partially shown in a perspective form for easy understanding.
- the first water receiver 10 a commonly used precipitation meter using a falling mass can be used as the first water receiver 10. Furthermore, the 1st water receiver 10 and the 2nd water receiver 11, 12, 13, 14 can be comprised so that isolation
- the second water receivers 11, 12, 13, and 14 are surrounded by the body 60 of the main body. It is covered with a cover 51 having a lower diameter corresponding to the upper edge circle of the body 60 of the main body.
- the upper diameter of the cover 51 corresponds to the diameter of the first water receiver 10.
- the covering portion 51 has the heating net 50 described in the previous embodiment.
- FIG. 13A, 13B, and 13C are diagrams showing the embodiment of FIG. 12 further divided for easy understanding.
- 13A is a top view of the cover 51
- FIG. 13B is the first water receiver 10
- FIG. 14 is a top view of the second water receiver 11, 12, 13, 14.
- the cover part 51 shown to FIG. 13A has the heating net 50 similarly to the previous Example.
- the heating net 50 may itself be a heating wire, or may be a heat conductor that transmits heat of a heating element attached separately. When used in winter, it is possible to melt snow by the cover 51 and to reduce the amount of snowfall.
- a commonly used falling mass type precipitation meter can be used as the first water receiver 10 shown in FIG. 13B.
- the falling mass is not shown.
- FIG. 13C is a diagram showing the second water receivers 11, 12, 13, and 14.
- the second water receivers 11, 12, 13, and 14 are integrally formed by an outer cylinder 60 and an inner cylinder 61.
- the inner cylinder 61 is equal in height to the first water receiver 10 and has a diameter into which the first water receiver 10 is inserted.
- the height of the outer cylinder 60 is smaller than the height of the inner cylinder 61, and a funnel-shaped second water receiver is formed in a region formed by the difference between the diameter of the outer cylinder 60 and the inner cylinder 61 as will be described later. 11, 12, 13, and 14 are formed.
- FIG. 13C only the water receiver 11 is shown, and the water guide hole 20 and the water guide pipe 21 are shown correspondingly. A falling mass corresponding to the lower portion of the water guide pipe 21 or a water droplet number detection switch mechanism shown in FIG. 9 is provided.
- reference numerals 1 and 2 denote channel partition plates
- reference numeral 100 denotes a fin plate that receives lateral precipitation.
- FIG. 14 is a top view of the precipitation meter of the embodiment of FIG.
- a water introduction hole 20 of the first water receiver 10 is seen at the center.
- the first water receiver 10 is inserted into the inner cylinder 61 of the second water receiver 11, 12, 13, 14.
- the second water receivers 11, 12, 13, and 14 are formed between the outer cylinder 60 and the inner cylinder 61.
- Partition plates 1, 2, 3, and 4 are partition plates that divide each of second water receivers 11, 12, 13, and 14.
- the positions of the water guide holes 20, 21, 22, 23 are lower than the height of the outer peripheral edge of the outer cylinder 60, and the corresponding water guide holes 20, 21, 22, from the peripheral edge and the lower ends of the partition plates 1, 2, 3, 4.
- a funnel shape is formed by the inclination toward 23.
- 15A and 15B are diagrams showing a cross section taken along the line AA and a cross section taken along the line BB in the top view of FIG. 14, respectively.
- the shape of the channel partition plates 1, 2, 3, 4 and the fin plate 100 is the same triangle.
- the angle of the upper corner is about 30 °. This corresponds to the fact that the inclination on the upper edge side of a general falling mass type precipitation gauge is standardized at 30 °.
- the second water receivers 11, 12, 13, and 14 correspond to the inclination of the funnel shape (the part surrounded by the figure). It ’s floating.
- Such a second precipitation meter can be constructed by expanding an existing general overturning precipitation meter. Therefore, it is appropriate to use a one-dimensional precipitation meter or a three-dimensional precipitation meter depending on the intended use. It is easy to change the configuration.
- FIGS. 16A, 16B, and 16C are diagrams for explaining a precipitation meter according to a third embodiment.
- FIG. 16A is a schematic perspective view of the third embodiment.
- FIG. 16B is a top view thereof, and
- FIG. 16C is a schematic sectional view taken along line AA of FIGS. 16A and 16B.
- the feature of the third embodiment is a form in which the first water receiver in the first and second embodiments is combined with the function of the second water receiver.
- the four water receivers S1, S2, S3, and S4 are formed by equally dividing the first water receiver in the first and second embodiments.
- the 2nd water receiver 11, 12, 13, 14 formed in the side surface in the 1st and 2nd Example has comprised the form which abbreviate
- the cylindrical container 110 having at least the upper surface opened is divided into four equal parts by four partition plates 201, 202, 203, and 204 that are approximately half the length of the cylindrical container 110 in the circumferential direction.
- Four water receivers S1, S2, S3, S4 are formed.
- the four partition plates 201, 202, 203, 204 have an inclination that decreases from the upper end surface of the cylindrical container 110 toward the center of the cylinder.
- a funnel-shaped water receiving portion is provided on the lower end side of the four partition plates 201, 202, 203, 204.
- FIG. 16B is a top view of the precipitation meter of the third embodiment, and is a funnel shape of four water receivers S1, S2, S3, S4 partitioned by four partition plates 201, 202, 203, 204. Water receiving portions 220, 221, 222, and 223 are shown.
- Each funnel-shaped water receiving part 220, 221, 222, 223 has a corresponding drain hole 211, 212, 213, 214. Receiving water is sent to the overturning mass not shown or the water droplet number detection switch mechanism shown in FIG. 9 through the water distribution pipes connected to the drain holes 211, 212, 213, and 214.
- FIG. 16C is a cross-sectional view taken along line AA in FIG. 16B.
- the water receivers S2 and S4 belong, and the corresponding funnel-shaped water receiving portions 221 and 223 and drain holes 212 and 214 thereof are shown.
- a broken line portion conceptually shows the partition plates 203 and 204.
- the azimuth and inclination angle of the precipitation direction of the precipitation particles can be obtained from the precipitation amounts of the four water receivers S1, S2, S3 and S4.
- the inclination angle can be obtained within a range of 90 ° from the zenith. For example, in FIG. 16A, precipitation from the direction perpendicular to the drawing is received most by the water receiver S3. Therefore, the precipitation direction and the inclination angle of the precipitation particles can be obtained from the ratio of the amount of water received at the water receivers S1, S2, S3 and S4.
- the total configuration amount can be obtained from the sum of precipitation amounts of the four water receivers S1, S2, S3, S4.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Sewage (AREA)
- Level Indicators Using A Float (AREA)
Abstract
An omnidirectional precipitation gauge is provided capable of measuring the direction and angle of inclination from which precipitation particles (rain and snow) fell. An omnidirectional precipitation gauge has a water receiving unit to receive precipitation particles (rain and snow) and a measuring unit to measure the volume of precipitation particles (rain and snow) received by the water receiving unit. The water receiving unit has a first water receiving receptacle that forms a conical funnel and for which the circular opening of the funnel faces toward zenith, and a plurality of n second water receiving receptacles that correspond to the number of divisions on a side face when equally dividing the circumference of the circular opening of the first water receiving receptacle into n divisions. The measuring unit measures the volume of water received (Pm) by the first water receiving receptacle and the volume of water received (Ps1 - Psn) in each of the plurality of n second water receiving receptacles, and determines the direction (α) from which the precipitation particles fell from the ratio of the volume of water received (Ps1 - Psn) in each of the plurality of n second water receiving receptacles and determines the angle of inclination (β) from zenith from which the precipitation particles fell from the ratio of the measured volume of water received (Pm) by the first water receiving receptacle and the total volume of water received (Ps1 - Psn) in the plurality of n second water receiving receptacles.
Description
本発明は、降水量計に関し、特に降雨又は降雪の降水粒子の飛来方向を検知可能とする降水量計に関する。
The present invention relates to a precipitation meter, and more particularly to a precipitation meter that can detect the direction of precipitation of precipitation particles during rain or snow.
転倒マス雨量計を含む従来の雨量計、並びに降水量計(以降、単に従来の降水量計とい
う)は、受水器が一つであり、かつ、水平地表面を想定して受水面を水平で真上に向ける
ことで、近似的に降水粒子の水平地表面への衝突量(降水量)を計測しようとするものである。 Conventional rain gauges including falling mass rain gauges and precipitation gauges (hereinafter simply referred to as conventional rainfall gauges) have a single water receiver, and the water receiving surface is leveled assuming a horizontal ground surface. In order to measure the amount of precipitation particles colliding with the horizontal surface (precipitation amount), it is intended to measure approximately.
う)は、受水器が一つであり、かつ、水平地表面を想定して受水面を水平で真上に向ける
ことで、近似的に降水粒子の水平地表面への衝突量(降水量)を計測しようとするものである。 Conventional rain gauges including falling mass rain gauges and precipitation gauges (hereinafter simply referred to as conventional rainfall gauges) have a single water receiver, and the water receiving surface is leveled assuming a horizontal ground surface. In order to measure the amount of precipitation particles colliding with the horizontal surface (precipitation amount), it is intended to measure approximately.
しかし、現実の地表は水平面ばかりではなく、水平面を含む様々な方位と傾斜角を有する傾斜面乃至曲面で構成されており、従来の降水量計では、それら傾斜面乃至曲面への降水粒子の衝突量(降水量)を近似計測することはできない。近似計測するためには、降水粒子の飛来方向の検知が必要となるのである。
However, the actual surface of the earth is not limited to a horizontal plane, but is composed of inclined surfaces or curved surfaces having various orientations and inclination angles including the horizontal plane. In conventional precipitation gauges, precipitation particles collide with these inclined surfaces or curved surfaces. Approximate amount (precipitation) cannot be measured. In order to make approximate measurements, it is necessary to detect the direction of precipitation particles.
また、降水粒子が斜めあるいは水平方向から飛来する強風時には、降水量計の周囲に風の乱れが生じ、受水面で捕捉できない降水粒子の量が多くなる。かかる場合は、正確な降水量の測定が困難になる。
Also, in the case of strong winds where precipitation particles fly obliquely or horizontally, wind turbulence occurs around the precipitation gauge, and the amount of precipitation particles that cannot be captured on the receiving surface increases. In such a case, it is difficult to accurately measure precipitation.
例えば、急傾斜地では、吹き上げ風により降水粒子は水平方向からも飛来するので、従来の降水量計では、正確な降水量の測定が困難であった。
For example, in steep slopes, precipitation particles also fly from the horizontal direction due to the blowing wind, so it was difficult to accurately measure precipitation with conventional precipitation gauges.
かかる点の問題に対応するべく、本願発明者は、先に、従来の雨量計における水平な受水面を有する受水器を、球状の受水器(あるいは集水器)にし、その球面を隙間なく12個に分割して全ての受水面が球の一部をなす12個の受水器で構成し、あらゆる方向から飛来する雨水を受水し、降雨量と飛来方向を検知できる下方向からの飛来方向も含む全方位雨量計を提案している(特許文献1)。
In order to deal with this problem, the inventor of the present application first changed a water receiver having a horizontal water receiving surface in a conventional rain gauge into a spherical water receiver (or a water collector), and the spherical surface was a gap. It is composed of 12 water receivers that are divided into 12 parts and all the water receiving surfaces form part of the sphere, receiving rainwater coming from all directions, and from the lower direction that can detect the amount of rainfall and the direction of arrival. Has proposed an omnidirectional rain gauge that includes the direction of flight (Patent Document 1).
ここで、上記特許文献1に記載の発明は、受水器の形状を球形にし、その球面を水平方向に3分割及び垂直方向に4分割して、計12個の隙間ない受水面で個別に雨水を受水する構造を有する。さらに、12個の受水面で受水した個別雨水を一定体積の水滴にして滴下し、所定時間内の滴下数をカウントして個別受水面の受水量を測定する。測定された12個の受水量から、雨水の飛来方向を演算し取得することができる。
Here, in the invention described in Patent Document 1, the shape of the water receiver is made spherical, and the spherical surface is divided into three parts in the horizontal direction and four parts in the vertical direction. It has a structure for receiving rainwater. Furthermore, the individual rainwater received by the 12 water receiving surfaces is dropped as water droplets of a constant volume, and the number of drops within a predetermined time is counted to measure the amount of water received on the individual water receiving surfaces. From the measured 12 received water amounts, the direction of rainwater flight can be calculated and acquired.
しかし、かかる先に提案の全方位雨量計は、受水器の形状と計測部の構造が複雑となり、製造面においてコスト高と成りやすい問題を有している。
However, the omnidirectional rain gauge proposed earlier has a problem that the shape of the water receiver and the structure of the measuring part are complicated, and the cost is likely to increase in terms of manufacturing.
そこで、本願発明者は、上記特許文献1の全方位雨量計に対し検討を加え、受水器の形状を工夫し、さらに受水面の数をより少なくしても、雨水の飛来方向を取得することができ、かつ、これまで世界で長く使用されてきた転倒マス雨量計の過去の大量の雨量記録との連続性を確保できる解決原理を見いだした。
Therefore, the inventor of the present application examines the omnidirectional rain gauge of the above-mentioned Patent Document 1, devise the shape of the water receiver, and obtain the rainwater flying direction even if the number of water receiving surfaces is further reduced. We have found a solution principle that can ensure the continuity of the falling mass rain gauge, which has been used in the world for a long time, with the past large amount of rainfall records.
したがって、本発明の目的は、かかる新たに見いだした解決原理に基づき、より簡易な構造で実現する降水量計を提供することにある。より具体的には、上記特許文献1に記載の発明に従う全方位降水量計にあっては、下方向を含む全方向からの降水量を検知出来るが、水平面を含む方向の飛来方向の検知で十分である場合は多い。したがって、本発明は、水平面を含む全天周方向の降水量を計測可能とする降水量計を提供するものである。
Therefore, an object of the present invention is to provide a precipitation meter that can be realized with a simpler structure based on the newly found solution principle. More specifically, in the omnidirectional precipitation meter according to the invention described in Patent Document 1, precipitation from all directions including the downward direction can be detected, but detection of the flying direction in the direction including the horizontal plane is possible. Often it is sufficient. Therefore, the present invention provides a precipitation meter capable of measuring precipitation in the entire sky direction including a horizontal plane.
また、かかる本発明に従う降水量計を基に、降雨量のみで無く、降雪量の測定も可能な、降雨又は降雪による降水粒子を測定出来る降水量計を提供することにある。
Another object of the present invention is to provide a precipitation meter capable of measuring rainfall or precipitation particles caused by snowfall, which can measure not only rainfall but also snowfall based on the precipitation meter according to the present invention.
上記の課題を達成する本発明の第1の側面は、降雨又は降雪による降水粒子を受ける受水部と、前記受水部で受けた降水粒子の量を測定する測定部を有する降水量計であって、
前記受水部は、
円錐状のロートを成し、前記ロートの円形開口部が天頂方向を向いた第1の受水器と、前記第1の受水器の円形開口部の円周を複数nに等分割して、側面に前記等分割数に対応する複数nの第2の受水器を有し、前記測定部は、所定時間当たりの、前記第1の受水器による受水量(Pm)と前記複数nの第2の受水器におけるそれぞれの受水量(Ps1~Psn)を測定し、前記複数nの第2の受水器におけるそれぞれの受水量(Ps1~Psn)の比から
降水粒子の飛来方向の方位αと、前記測定した第1の受水器による受水量(Pm)と前記複数nの第2の受水器における受水量(Ps1~Psn)の合計値との比から降水粒子の飛来方向の天頂からの傾斜角βを決定することを特徴とする。 A first aspect of the present invention that achieves the above object is a precipitation meter having a water receiving part that receives precipitation particles due to rainfall or snowfall, and a measurement part that measures the amount of precipitation particles received by the water receiving part. There,
The water receiving part is
A conical funnel is formed, and the circumference of the first water receiver in which the circular opening of the funnel faces the zenith direction and the circular opening of the first water receiver is equally divided into a plurality of n. And a plurality of n second water receivers corresponding to the number of equal divisions on the side surface, and the measuring unit receives the amount of water received by the first water receiver per predetermined time (Pm) and the plurality of n Measure the amount of water received (Ps 1 to Psn) in each of the second water receivers, and the precipitation particles come from the ratio of the amount of water received (Ps 1 to Psn) in the second n water receivers. Precipitation particles from the ratio of the direction azimuth α and the measured amount of water received by the first water receiver (Pm) and the total amount of water received by the plurality of second water receivers (Ps 1 to Psn) The inclination angle β from the zenith in the flying direction is determined.
前記受水部は、
円錐状のロートを成し、前記ロートの円形開口部が天頂方向を向いた第1の受水器と、前記第1の受水器の円形開口部の円周を複数nに等分割して、側面に前記等分割数に対応する複数nの第2の受水器を有し、前記測定部は、所定時間当たりの、前記第1の受水器による受水量(Pm)と前記複数nの第2の受水器におけるそれぞれの受水量(Ps1~Psn)を測定し、前記複数nの第2の受水器におけるそれぞれの受水量(Ps1~Psn)の比から
降水粒子の飛来方向の方位αと、前記測定した第1の受水器による受水量(Pm)と前記複数nの第2の受水器における受水量(Ps1~Psn)の合計値との比から降水粒子の飛来方向の天頂からの傾斜角βを決定することを特徴とする。 A first aspect of the present invention that achieves the above object is a precipitation meter having a water receiving part that receives precipitation particles due to rainfall or snowfall, and a measurement part that measures the amount of precipitation particles received by the water receiving part. There,
The water receiving part is
A conical funnel is formed, and the circumference of the first water receiver in which the circular opening of the funnel faces the zenith direction and the circular opening of the first water receiver is equally divided into a plurality of n. And a plurality of n second water receivers corresponding to the number of equal divisions on the side surface, and the measuring unit receives the amount of water received by the first water receiver per predetermined time (Pm) and the plurality of n Measure the amount of water received (Ps 1 to Psn) in each of the second water receivers, and the precipitation particles come from the ratio of the amount of water received (Ps 1 to Psn) in the second n water receivers. Precipitation particles from the ratio of the direction azimuth α and the measured amount of water received by the first water receiver (Pm) and the total amount of water received by the plurality of second water receivers (Ps 1 to Psn) The inclination angle β from the zenith in the flying direction is determined.
上記の課題を達成する本発明の態様として、前記第2の側面において、雨又は雪による降水粒子を受ける受水部と、前記受水器で受けた降水粒子の量を測定する測定部を有する降水量計であって、
前記受水部は、円錐状のロートを成し、前記ロートの円形開口部が天頂方向を向いた第1の受水器と、前記第1の受水器の円形開口部の円周を4分割して、側面に4つの第2の受水器を有し、前記測定部は、所定期間当たりの、前記第1の受水器による受水量(Pm)、及び前記4つの第2の受水器におけるそれぞれの受水量(Ps1、Ps2、Ps3、Ps4)を測定し、降水粒子の飛来方向の方位α(雨又は雪の飛来方向の北からの時計回り角度)と傾斜β(雨又は雪の飛来方向の天頂からの傾斜角)は、前記測定値Pm、Ps1、Ps2、Ps3、Ps4から、次の関係式により決定する、
tanβ=(πr/2L)/(Pm/Ps)
Ps1≧Ps2、Ps3、Ps4であれば、
tanα=(Ps1+Ps2+Ps3-Ps4)/(Ps1-Ps2+Ps3+Ps4)、
Ps2≧Ps1、Ps3、Ps4であれば、
tanα=(-Ps1+Ps2+Ps3+Ps4)/(Ps1+Ps2-Ps3+Ps4)
Ps3≧Ps1、Ps3、Ps4であれば、
tanα=(Ps1-Ps2+Ps3+Ps4)/(Ps1+Ps2+Ps3-Ps4)
Ps4≧Ps1、Ps2、Ps3であれば、
tanα=(Ps1+Ps2-Ps3+Ps4)/(-Ps1+Ps2+Ps3+Ps4)
ただし、rは、前記ロートの円形開口部の半径、
Lは、前記第2の受水部の高さ、
Psは、Ps1、Ps2、Ps3、Ps4の合計値である、ことを特徴とする。 As an aspect of the present invention that achieves the above object, in the second aspect, a water receiving unit that receives precipitation particles due to rain or snow and a measurement unit that measures the amount of precipitation particles received by the water receiver are provided. A precipitation gauge,
The water receiving part forms a conical funnel, and the circumference of the first water receiver with the circular opening of the funnel facing the zenith direction and the circumference of the circular opening of the first water receiver is 4 Dividing into four second water receivers on the side surface, the measuring unit receives the amount of water received (Pm) by the first water receiver per predetermined period and the four second water receivers. Measure the amount of water received in each water device (Ps 1 , Ps 2 , Ps 3 , Ps 4 ), and the direction α (clockwise angle from the north in the direction of rain or snow) and the slope β (Inclination angle from the zenith in the rain or snow flying direction) is determined from the measured values Pm, Ps 1 , Ps 2 , Ps 3 , Ps 4 according to the following relational expression:
tanβ = (πr / 2L) / (Pm / Ps)
If Ps 1 ≧ Ps 2 , Ps 3 , Ps 4 ,
tanα = (Ps 1 + Ps 2 + Ps 3 -Ps 4 ) / (Ps 1 -Ps 2 + Ps 3 + Ps 4 ),
If Ps 2 ≧ Ps 1 , Ps 3 , Ps 4 ,
tanα = (-Ps 1 + Ps 2 + Ps 3 + Ps 4 ) / (Ps 1 + Ps 2 -Ps 3 + Ps 4 )
If Ps 3 ≧ Ps 1 , Ps 3 , Ps 4 ,
tanα = (Ps 1 -Ps 2 + Ps 3 + Ps 4 ) / (Ps 1 + Ps 2 + Ps 3 -Ps 4 )
If Ps 4 ≧ Ps 1 , Ps 2 , Ps 3 ,
tanα = (Ps 1 + Ps 2 -Ps 3 + Ps 4 ) / (-Ps 1 + Ps 2 + Ps 3 + Ps 4 )
Where r is the radius of the circular opening of the funnel,
L is the height of the second water receiving part,
Ps is a total value of Ps 1 , Ps 2 , Ps 3 , and Ps 4 .
前記受水部は、円錐状のロートを成し、前記ロートの円形開口部が天頂方向を向いた第1の受水器と、前記第1の受水器の円形開口部の円周を4分割して、側面に4つの第2の受水器を有し、前記測定部は、所定期間当たりの、前記第1の受水器による受水量(Pm)、及び前記4つの第2の受水器におけるそれぞれの受水量(Ps1、Ps2、Ps3、Ps4)を測定し、降水粒子の飛来方向の方位α(雨又は雪の飛来方向の北からの時計回り角度)と傾斜β(雨又は雪の飛来方向の天頂からの傾斜角)は、前記測定値Pm、Ps1、Ps2、Ps3、Ps4から、次の関係式により決定する、
tanβ=(πr/2L)/(Pm/Ps)
Ps1≧Ps2、Ps3、Ps4であれば、
tanα=(Ps1+Ps2+Ps3-Ps4)/(Ps1-Ps2+Ps3+Ps4)、
Ps2≧Ps1、Ps3、Ps4であれば、
tanα=(-Ps1+Ps2+Ps3+Ps4)/(Ps1+Ps2-Ps3+Ps4)
Ps3≧Ps1、Ps3、Ps4であれば、
tanα=(Ps1-Ps2+Ps3+Ps4)/(Ps1+Ps2+Ps3-Ps4)
Ps4≧Ps1、Ps2、Ps3であれば、
tanα=(Ps1+Ps2-Ps3+Ps4)/(-Ps1+Ps2+Ps3+Ps4)
ただし、rは、前記ロートの円形開口部の半径、
Lは、前記第2の受水部の高さ、
Psは、Ps1、Ps2、Ps3、Ps4の合計値である、ことを特徴とする。 As an aspect of the present invention that achieves the above object, in the second aspect, a water receiving unit that receives precipitation particles due to rain or snow and a measurement unit that measures the amount of precipitation particles received by the water receiver are provided. A precipitation gauge,
The water receiving part forms a conical funnel, and the circumference of the first water receiver with the circular opening of the funnel facing the zenith direction and the circumference of the circular opening of the first water receiver is 4 Dividing into four second water receivers on the side surface, the measuring unit receives the amount of water received (Pm) by the first water receiver per predetermined period and the four second water receivers. Measure the amount of water received in each water device (Ps 1 , Ps 2 , Ps 3 , Ps 4 ), and the direction α (clockwise angle from the north in the direction of rain or snow) and the slope β (Inclination angle from the zenith in the rain or snow flying direction) is determined from the measured values Pm, Ps 1 , Ps 2 , Ps 3 , Ps 4 according to the following relational expression:
tanβ = (πr / 2L) / (Pm / Ps)
If Ps 1 ≧ Ps 2 , Ps 3 , Ps 4 ,
tanα = (Ps 1 + Ps 2 + Ps 3 -Ps 4 ) / (Ps 1 -Ps 2 + Ps 3 + Ps 4 ),
If Ps 2 ≧ Ps 1 , Ps 3 , Ps 4 ,
tanα = (-Ps 1 + Ps 2 + Ps 3 + Ps 4 ) / (Ps 1 + Ps 2 -Ps 3 + Ps 4 )
If Ps 3 ≧ Ps 1 , Ps 3 , Ps 4 ,
tanα = (Ps 1 -Ps 2 + Ps 3 + Ps 4 ) / (Ps 1 + Ps 2 + Ps 3 -Ps 4 )
If Ps 4 ≧ Ps 1 , Ps 2 , Ps 3 ,
tanα = (Ps 1 + Ps 2 -Ps 3 + Ps 4 ) / (-Ps 1 + Ps 2 + Ps 3 + Ps 4 )
Where r is the radius of the circular opening of the funnel,
L is the height of the second water receiving part,
Ps is a total value of Ps 1 , Ps 2 , Ps 3 , and Ps 4 .
さらに、上記の課題を達成する本発明の態様として、前記第1又は第2の側面において、前記第1の受水器及び、前記第2の受水器のそれぞれの底部側に、受水した降水粒子を下部に排出する排出穴を有し、前記排出穴からそれぞれ個別に導水管を通して前記測定部に連結するように構成されていることを特徴とする。
Furthermore, as an aspect of the present invention that achieves the above-described problem, in the first or second aspect, water is received on the bottom side of each of the first water receiver and the second water receiver. It has a discharge hole for discharging precipitation particles to the bottom, and is configured to be individually connected from the discharge hole to the measurement unit through a water conduit.
また、上記の課題を達成する本発明の態様として、前記第1又は第2の側面において、前記測定部は、前記第1の受水器及び、前記第2の受水器のそれぞれに対応する転倒マスを有し、前記導水管を通して受水した降水粒子を前記転倒マスに導き、前記転倒マスの転倒回数をそれぞれ独立して計測することを特徴とする。
Moreover, as an aspect of the present invention that achieves the above object, in the first or second aspect, the measurement unit corresponds to each of the first water receiver and the second water receiver. A falling mass is provided, precipitation particles received through the water conduit are guided to the falling mass, and the number of falls of the falling mass is independently measured.
また、上記の課題を達成する本発明の態様として、前記第1又は第2の側面において、前記測定部は、前記第1の受水器及び、前記第2の受水器のそれぞれに対応する前記導水管を通して流下するそれぞれの降水粒子の量を計量することを特徴とする。
Moreover, as an aspect of the present invention that achieves the above object, in the first or second aspect, the measurement unit corresponds to each of the first water receiver and the second water receiver. The amount of each precipitation particle flowing down through the water conduit is measured.
さらに、上記の課題を達成する本発明の態様として、前記態様のいずれかにおいて、
前記第2の受水器のそれぞれに、前記第1の受水器の中心から前記第2の受水器の外周に方向に向かう放射状に配置された複数のひれ板を有することを特徴とする。 Furthermore, as an aspect of the present invention that achieves the above-described problems, in any of the above aspects,
Each of the second water receivers has a plurality of fins arranged radially from the center of the first water receiver toward the outer periphery of the second water receiver. .
前記第2の受水器のそれぞれに、前記第1の受水器の中心から前記第2の受水器の外周に方向に向かう放射状に配置された複数のひれ板を有することを特徴とする。 Furthermore, as an aspect of the present invention that achieves the above-described problems, in any of the above aspects,
Each of the second water receivers has a plurality of fins arranged radially from the center of the first water receiver toward the outer periphery of the second water receiver. .
さらに、上記の課題を達成する本発明の態様として、前記態様のいずれかにおいて、
前記第2の受水器の外周を囲う、メッシュ状のジャバラの覆いを有することを特徴とする。 Furthermore, as an aspect of the present invention that achieves the above-described problems, in any of the above aspects,
It has a mesh-shaped bellows covering surrounding the outer periphery of the second water receiver.
前記第2の受水器の外周を囲う、メッシュ状のジャバラの覆いを有することを特徴とする。 Furthermore, as an aspect of the present invention that achieves the above-described problems, in any of the above aspects,
It has a mesh-shaped bellows covering surrounding the outer periphery of the second water receiver.
さらに、上記の課題を達成する本発明の態様として、前記態様のいずれかにおいて、
前記第1の受水器及び前記第2の受水器のそれぞれにメッシュ状の加熱ネットの覆いを有し、前記第2の受水器を覆う加熱ネットの部分は、上端が前記第1の受水器のロートの外縁部に固定され、下端側は解放されていることを特徴とする。 Furthermore, as an aspect of the present invention that achieves the above-described problems, in any of the above aspects,
Each of the first water receiver and the second water receiver has a mesh-shaped heating net cover, and the heating net portion covering the second water receiver has an upper end at the first water receiver. It is fixed to the outer edge part of the funnel funnel, and the lower end side is open.
前記第1の受水器及び前記第2の受水器のそれぞれにメッシュ状の加熱ネットの覆いを有し、前記第2の受水器を覆う加熱ネットの部分は、上端が前記第1の受水器のロートの外縁部に固定され、下端側は解放されていることを特徴とする。 Furthermore, as an aspect of the present invention that achieves the above-described problems, in any of the above aspects,
Each of the first water receiver and the second water receiver has a mesh-shaped heating net cover, and the heating net portion covering the second water receiver has an upper end at the first water receiver. It is fixed to the outer edge part of the funnel funnel, and the lower end side is open.
また、上記の課題を達成する本発明の態様として、前記態様において、前記ジャバラの覆い、及び、前記加熱ネットの覆いは、熱抵抗を有する材料で形成され、降雪量を測定する際に通電により降雪粒子に対する融雪温度まで加熱されることを特徴とする。
Further, as an aspect of the present invention that achieves the above-mentioned problem, in the above aspect, the covering of the bellows and the covering of the heating net are formed of a material having thermal resistance, and when energizing when measuring the amount of snowfall, It is characterized by being heated to the melting temperature for snow particles. *
上記の本発明の構成により、次のような効果が得られる。
The following effects can be obtained by the configuration of the present invention described above.
(1)本発明に従う降水量計は、簡易な構成で、天頂から0~90度の範囲内のあらゆる方向からの雨水あるいは降雪を捕捉するので、正確な降水量が測定できる。
(1) The precipitation meter according to the present invention captures rainwater or snowfall from any direction within a range of 0 to 90 degrees from the zenith with a simple configuration, so that accurate precipitation can be measured.
これにより、本発明の降水量計の使用により、これまで世界各地で使用されてきた雨量計乃至降水量計により測定されてきた過去の雨量乃至降水量の数値は、過小評価であったことが判明される。
Thus, by using the precipitation gauge of the present invention, the past rainfall or precipitation values measured by the rain gauges or precipitation gauges used in various parts of the world so far have been underestimated. It turns out.
例えば、富士山のような強風地域の風上側斜面では、降水粒子は水平若しくは下方からも飛来することがあり、既存の雨量計乃至降水量計ではこのような雨水乃至降水を全く捕捉できない。その結果、雨量計乃至降水量計の設置そのものを諦めざるをえなかったが、本発明の降水量計であれば、如何なる地形においても設置、水平面を含む全天周方向の降水量の計測が可能となる。
For example, on the windward slope of a strong wind area such as Mt. Fuji, precipitation particles may fly from the horizontal or below, and such rainwater or precipitation cannot be captured at all by existing rain gauges or precipitation gauges. As a result, we had to give up the installation of the rain gauge or the precipitation gauge itself. However, with the precipitation gauge of the present invention, it can be installed on any terrain, and can measure precipitation in all directions including the horizontal plane. It becomes possible.
また、降雨量乃至降水量は、水源域における貯水池流入量の見積もり、斜面土砂災害時における雨水の地表衝突量や地中浸透量の見積もりなどに関連し、様々な水資源計画並びに水利用計画の立案、降雨災害の対策策定などに際し、不可欠且つ最も基本的な数値情報である。本発明の降水量計は、これらに必要なより正確な降水情報を提供することを可能にする。
The amount of rainfall or precipitation is related to the estimation of the reservoir inflow in the water source area, the estimation of the amount of surface collision and the infiltration of rainwater in the event of a slope sediment disaster, and various water resource plans and water use plans. It is indispensable and the most basic numerical information for planning and formulating countermeasures for rainfall disasters. The precipitation gauge of the present invention makes it possible to provide more accurate precipitation information necessary for these.
(2)本発明の降水量計において、降水量を、雨又は降雪による降水粒子の水滴数のカウント値に置換える構成とする場合、測定精度(例えば、スイッチ部のスイッチの電極間を水滴が通過する際の通電状態をカウントする場合、水滴1個の重さ(約0.1g)の均一性に依存する)が、従来の転倒マス雨量計に比べて格段(100倍以上)に向上する。これにより、従来の雨量計では計測不能であった霧雨のような微少(0.5mm以下)の降雨も感知し、その雨量を測定することが可能である。
(2) In the precipitation meter according to the present invention, when the precipitation is replaced with the count value of the number of water droplets of precipitation particles due to rain or snowfall, the measurement accuracy (for example, water drops between the switches of the switch unit) When counting the energized state when passing, the weight (depending on the uniformity of the weight of one water drop (about 0.1 g)) is significantly improved (100 times or more) compared to the conventional falling mass rain gauge. As a result, it is possible to detect a slight amount of rainfall (0.5 mm or less) such as drizzle that could not be measured with a conventional rain gauge, and to measure the rainfall.
(3)本発明の適用により降雨又は降雪による降水粒子を捕捉、計測し、任意の方位と傾斜を持った斜面への降水粒子衝突量に変換できる。これにより本発明の降水量計では、従来の雨量計を用いては不可能であった、台風等の強風吹走時における風上側斜面と風下側斜面での雨水の地表衝突量の大きな違いを直接計測できる。また、雨量が関わる洪水など多くの災害発生の研究と予知に対する貢献が期待できる。
(3) By applying the present invention, precipitation particles due to rainfall or snowfall can be captured and measured, and converted into precipitation particle collision amount on a slope having an arbitrary direction and inclination. As a result, with the precipitation gauge of the present invention, it is not possible to use a conventional rain gauge. Can be measured directly. In addition, it can be expected to contribute to the research and prediction of many disasters such as floods involving rainfall.
以下に図面に従い、本発明の実施例を説明する。なお、実施例は、本発明の理解のためのものであり、本発明の適用がこれに限定されるものではない。
Embodiments of the present invention will be described below with reference to the drawings. In addition, an Example is for understanding of this invention, and application of this invention is not limited to this.
図1は、本発明に従う降水量計の受水部の原理構成例を示す図である。図1(A)は、受水部の側面斜め上方向から、図1(B)は、受水部の天頂方向から観察した原理構成例を示す図である。
FIG. 1 is a diagram showing a principle configuration example of a water receiving portion of a precipitation meter according to the present invention. FIG. 1A is a diagram illustrating an example of a principle configuration observed from an obliquely upward side surface of the water receiving unit, and FIG. 1B is an example of a principle configuration observed from the zenith direction of the water receiving unit.
図1において、受水部は、第1の受水器と、第2の受水器を有する。ロート状の第1の受水器10と、第1の受水器10の開口部円周を仕切り板1、2、3、4で4分割して、受水器10のロート状下側に形成される4つの第2の受水器11、12、13、14を有する構成である。しかし、本発明は、かかる構成には制限されない。すなわち、より方位を精密に測定するために、第2の受水器として、第1の受水器10の開口部円周を複数n(>4)に等分割してもよい。
In FIG. 1, the water receiver has a first water receiver and a second water receiver. The funnel-shaped first water receiver 10 and the opening circumference of the first water receiver 10 are divided into four by partition plates 1, 2, 3, and 4. It is the structure which has the 4th 2nd water receiver 11, 12, 13, 14 formed. However, the present invention is not limited to such a configuration. That is, in order to measure the azimuth more precisely, the opening circumference of the first water receiver 10 may be equally divided into a plurality of n (> 4) as the second water receiver.
第1受水器10及び第2の受水器11、12、13、14のそれぞれ下部側に導水部25を有する。導水部25は、周辺部に縦状の周辺縁25Aと、スカート部25Bを有し、周辺縁25Aとスカート部25Bの接続部を上辺にする凹み皿25Cを有して構成される。
The first water receiver 10 and the second water receiver 11, 12, 13, 14 each have a water guide section 25 on the lower side. The water guide portion 25 includes a vertical peripheral edge 25A and a skirt portion 25B in the peripheral portion, and a concave dish 25C having a connection portion between the peripheral edge 25A and the skirt portion 25B as an upper side.
ここで、導水部25の周辺縁25Aの径は、第1の受水器10の開口径2rより若干a分だけ広いので、仕切り板1、2、3、4の導水部25の周辺縁25Aと接する下端部がa分だけ広く形成されている。導水部25の周辺縁25Aの径を、第1の受水器10の開口径2rより若干a分だけ広くしている理由は、特に後に説明する図2-図5における実施例において、第2の受水器における受水をより確実にするために必要である。ただし、a分の大きさが大きくなると測定誤差が大きくなるので、許容できる誤差との関係で、a分の大きさを決めることが好ましい。
Here, since the diameter of the peripheral edge 25A of the water guide portion 25 is slightly larger than the opening diameter 2r of the first water receiver 10 by a, the peripheral edge 25A of the water guide portion 25 of the partition plates 1, 2, 3, 4 The lower end part in contact with is widened by a. The reason why the diameter of the peripheral edge 25A of the water guide portion 25 is slightly larger than the opening diameter 2r of the first water receiver 10 by a is particularly in the embodiment shown in FIGS. It is necessary to make sure that water is received in the water receiver. However, since the measurement error increases as the size of a increases, it is preferable to determine the size of a in relation to the allowable error.
第1の受水器10、及び第2の受水器11、12、13、14を5つのチャネルCh0、Ch1、Ch2、Ch3、Ch4に対応付け、それぞれの受水器の底部側には、受水した雨水又は融雪水(以降単に、水という)を下部に排出する対応する排出穴20、21、22、23、24が凹み皿25Cに設けられている。
The first water receiver 10 and the second water receivers 11, 12, 13, and 14 are associated with five channels Ch0, Ch1, Ch2, Ch3, and Ch4, and on the bottom side of each water receiver, Corresponding discharge holes 20, 21, 22, 23, 24 for discharging received rainwater or snowmelt water (hereinafter simply referred to as water) to the lower part are provided in the dent dish 25 </ b> C.
図1(B)より明らかなように、第1の受水器10(チャネルCh0)を中心に、第2の受水器11~14(チャネルCh1、Ch2、Ch3、Ch4)が取り囲んでいる。
As is clear from FIG. 1B, the second water receivers 11 to 14 (channels Ch1, Ch2, Ch3, and Ch4) surround the first water receiver 10 (channel Ch0).
なお、上記の構成は、ステンレス等の腐食しない材料で形成することが可能で、先の特許文献1で提案した構成に比して、製造が容易である。
The above configuration can be formed of a material that does not corrode, such as stainless steel, and is easier to manufacture than the configuration proposed in Patent Document 1 above.
ここで、図1(A)に示す原理構成例では、第2の受水器11、12、12、14に飛来する雨粒に関しては、雨粒が第2の受水器の横方向に飛来する場合は、補足されること無く通過してしまうおそれがある。
Here, in the example of the principle configuration shown in FIG. 1 (A), when raindrops fly to the second water receivers 11, 12, 12, and 14, the raindrops fly in the lateral direction of the second water receiver. May pass through without being supplemented.
かかる不都合に対しては、以下に示す具体的構成例により解消することが可能である。
Such inconvenience can be solved by a specific configuration example shown below.
図2には、その第1の具体的構成例が示される。図2は、図1と同様に、図2(A)は、受水器の側面斜め上方向から、図2(B)は、受水器の天頂方向から見た構成を示す図である。図1と同様部位には、同じ参照数字を付している。
FIG. 2 shows a first specific configuration example thereof. 2A and 2B are diagrams showing the configuration as viewed from the obliquely upward side of the water receiver and FIG. 2B as viewed from the zenith direction of the water receiver, as in FIG. 1. Similar parts to those in FIG. 1 are denoted by the same reference numerals.
図1の原理構成例に対して、第2の受水器11、12、13、14内に、前記第1の受水器10の中心から前記第2の受水器11、12、13、14の外周に向かう放射状に配置された複数の“ひれ板”100を有している。かかるひれ板100により、横方向に、第2の受水器11、12、13、14に到達する雨粒に対しても確実に捕捉が可能である。
With respect to the principle configuration example of FIG. 1, the second water receivers 11, 12, 13, 14 are arranged in the second water receivers 11, 12, 13, 14 from the center of the first water receiver 10. 14 has a plurality of “fin plates” 100 arranged radially toward the outer periphery. With the fin plate 100, it is possible to reliably catch raindrops that reach the second water receivers 11, 12, 13, and 14 in the lateral direction.
“ひれ板”100自体の材質もステンレス等の腐食しない材料で形成することが望ましい。
It is desirable that the material of the “fin plate” 100 itself is also made of a material that does not corrode such as stainless steel.
図3は、図1の原理構成例における上記した不都合を解消する、更に別の構成例である。図3には、図1と同様に、図3(A)は、受水器の側面斜め上方向から、図3(B)は、受水器の天頂方向から見た構成を示す図である。
FIG. 3 shows still another configuration example that eliminates the above-mentioned inconveniences in the principle configuration example of FIG. In FIG. 3, similarly to FIG. 1, FIG. 3 (A) is a diagram showing a configuration viewed from the side obliquely upward of the water receiver, and FIG. 3 (B) is a configuration viewed from the zenith direction of the water receiver. .
図3における構成の特徴は、第2の受水器11、12、13、14を覆うジャバラ状の覆い110を設けた構成である。図1と同じ他の部分は、同じ参照番号を付している。
3 is characterized in that a bellows-like cover 110 that covers the second water receivers 11, 12, 13, and 14 is provided. Other parts that are the same as in FIG. 1 are given the same reference numerals.
ジャバラ状の覆い110は、板材では無く、メッシュ状の編み目構造であることが好ましい。編み目の大きさは、雨粒の通過しない1mm以下の編み目であることが望ましい。特に、図3に示す構成は、後に再度説明するように、降雪に対しても編み目で捉えることが可能であり、降雪量を計る降水量計としても使用が可能である。
The bellows-like cover 110 is preferably not a plate material but a mesh-like stitch structure. The size of the stitch is desirably a stitch of 1 mm or less through which raindrops do not pass. In particular, the configuration shown in FIG. 3 can be grasped with respect to snowfall with a stitch as will be described later, and can also be used as a precipitation meter for measuring the amount of snowfall.
ジャバラ状の覆い110についても、ステンレス等の腐食しない材料で形成することが望ましい。
It is desirable to form the bellows-shaped cover 110 from a material that does not corrode such as stainless steel.
特に、降雪量を計る降水量計として用いる場合は、ジャバラ状の覆い110は、通電に対し熱抵抗を有する材料でメッシュ自体を作成し、あるいは、メッシュに熱抵抗を有する材料をコートする。そして、メッシュに通電することにより、ジャバラ状の覆い110が加熱され、付着した降雪を融かすことが可能である。あるいは、ジャバラ状の覆い110を熱良導体として、電熱線を這わせることにより、電熱線より発する熱をジャバラ状の覆い110全体に伝達する様に構成しても良い。
In particular, when used as a precipitation meter for measuring the amount of snowfall, the bellows-shaped cover 110 is made of a mesh itself with a material having thermal resistance against energization, or coated with a material having thermal resistance on the mesh. Then, by energizing the mesh, the bellows-shaped cover 110 is heated, and the attached snowfall can be melted. Or you may comprise so that the heat | fever emitted from a heating wire may be transmitted to the whole bellows-shaped covering 110 by making the heating wire into a heat-resistant conductor using the bellows-shaped covering 110 as a good heat conductor.
そして、融雪水は、先に図1に説明したように、降水時と同様に、各チャネルに対応する排出穴20、21、22、23、24に導かれる。
And the snowmelt water is guided to the discharge holes 20, 21, 22, 23, 24 corresponding to the respective channels as in the case of precipitation, as described above with reference to FIG.
図4は、更に別の実施例構成の斜視図であり、図5は、その上面図である。かかる構成は、図3で示した構成とともに、降水量のみでなく、降雪量の測定を可能とすることを意図している。特徴として、第1の受水器10及び第2の受水器11、12、13、14のそれぞれを加熱ネット50で覆った構成を特徴とする。
FIG. 4 is a perspective view of still another embodiment, and FIG. 5 is a top view thereof. Such a configuration, together with the configuration shown in FIG. 3, is intended to enable measurement of not only precipitation but also snowfall. As a feature, the first water receiver 10 and the second water receiver 11, 12, 13, 14 are each covered with a heating net 50.
飛来してきた雨水又は雪を捕捉する加熱ネット50は、図3の実施例と同様に、通電に対し熱抵抗を有する材料(金属、合成樹脂、又はゴム材等)でメッシュ状に形成され、あるいは、メッシュに熱抵抗を有する材料をコートする。そして、メッシュに通電することにより、加熱ネット50が加熱され、付着した降雪を融かすことが可能である。あるいは、先の実施例と同様に,加熱ネット50を熱良導体として、電熱線を這わせることにより、電熱線より発する熱を加熱ネット50全体に伝達する様に構成しても良い。
The heating net 50 that catches rainwater or snow that has come in is formed in a mesh shape with a material (metal, synthetic resin, rubber material, or the like) that has thermal resistance to energization, as in the embodiment of FIG. The material having heat resistance is coated on the mesh. Then, by energizing the mesh, the heating net 50 is heated, and the attached snowfall can be melted. Or you may comprise so that the heat | fever emitted from a heating wire may be transmitted to the whole heating net 50 by making the heating net 50 into a heat | fever good conductor like the previous Example, and heating wires.
加熱ネット50は、第2の受水器11、12、13、14に相当する部分において、上端側は、第1の受水器10のロート部の周辺部と接続され、下端側は解放されている。加熱ネット50は、電気を流し、適宜の温度に加熱されている。
The heating net 50 is connected to the peripheral portion of the funnel portion of the first water receiver 10 and the lower end side is released in the portion corresponding to the second water receivers 11, 12, 13, and 14. ing. The heating net 50 is heated to an appropriate temperature by supplying electricity.
かかる構成により、降雪は、ネット50に付着し、融けて水の状態でネット50を伝って、導水穴22(20、21、23、24)に導かれる。
With such a configuration, snowfall adheres to the net 50, melts and travels through the net 50 in the water state, and is guided to the water guide holes 22 (20, 21, 23, 24).
これにより、降雪量は、先に説明した、雨水と等化な対応で降雪量を測定することが出来る。
As a result, the amount of snowfall can be measured in accordance with the equivalent of rainwater described above.
ここで、編み目に付着し、測定部に導かれない水量が多くなると、降水量の測定誤差になる。かかる観点から付着水量は、重要であり、上記図3の実施例におけるジャバラ状の覆い110、及び図4の実施例における加熱ネット50を構成するメッシュの編み目の大きさについて検討を加えた。
Here, if the amount of water that adheres to the stitches and is not guided to the measurement section increases, a measurement error of precipitation occurs. From this point of view, the amount of attached water is important, and the sizes of the meshes constituting the bellows-shaped cover 110 in the embodiment of FIG. 3 and the heating net 50 in the embodiment of FIG. 4 were examined.
実験により以下の測定結果を得た([表1])。
The following measurement results were obtained through experiments ([Table 1]).
かかる表1の測定結果によるとジャバラ状の覆い110(あるいは、加熱ネット50)に付着する水量は、メッシュ線の間隔(網目の粗さ)に依存し、網目の粗さが2~3mmのメッシュに最も付着水の量が多かった。網目が2~3mmよりも細かくなるにつれ付着水の量は減少し、1.4mm以下であれば測定誤差は全く問題にならないほど少量となった。また網目の粗さが2~3mmよりも粗くなるほど付着水の量は少なくなり、編目が粗すぎると付着水量が減少に転じる状態を確認した。
According to the measurement results in Table 1, the amount of water adhering to the bellows-shaped cover 110 (or the heating net 50) depends on the mesh line interval (mesh roughness), and the mesh roughness is 2 to 3 mm. The amount of adhering water was the largest. As the mesh became finer than 2 to 3 mm, the amount of adhering water decreased, and when it was 1.4 mm or less, the measurement error was so small that it would not be a problem at all. Further, the amount of water adhered decreased as the mesh became coarser than 2 to 3 mm, and it was confirmed that the amount of water adhered decreased when the stitch was too rough. *
この理由は、編目が粗くなると水はその表面張力では膜状に付着出来ず、金属線の脇腹に付着するのみとなるからである。網目が細かくなるほど、より多くの編目が水膜で覆われることも確認したが水膜は非常に薄く、間隔が1.2mmのNo.7メッシュの場合、水膜の平均厚さは、メッシュ水平時0.4mm(鉛直時0.2mm)と計算された。
This is because when the stitches become rough, water cannot adhere to the film by its surface tension, but only adheres to the flank of the metal wire. It was confirmed that as the mesh became finer, more stitches were covered with a water film, but the water film was very thin, and in the case of No. 7 mesh with a spacing of 1.2 mm, the average thickness of the water film was horizontal to the mesh. It was calculated as 0.4 mm (0.2 mm when vertical).
網目が細かいメッシュほど付着水量は少なくなるが、編目を降雪粒子よりも大きくすると雪粒子は編目に引掛かからずにスリ抜けてしまう。
The finer the mesh, the smaller the amount of water attached, but if the stitches are larger than the snowfall particles, the snow particles will slip through without catching the stitches.
反対に、編目を細かくし過ぎると、埃などで目詰まりが起きやすくなる。したがって、編目は、結論として、降雪粒子(1~1.5mm)程度とし、線の太さは丈夫で細いものが好ましい。
On the other hand, if the stitches are made too fine, clogging is likely to occur due to dust. Accordingly, it is preferable that the stitches should be about snow particles (1 to 1.5 mm), and the line thickness should be strong and thin.
図に戻り、図6は、受水部の上面から見た図5におけるA-A線に沿う断面図である。
Referring back to FIG. 6, FIG. 6 is a cross-sectional view taken along the line AA in FIG. 5 as viewed from the upper surface of the water receiving portion.
排出穴20、21、22、23、24の先は、導水部25を通して受水部のそれぞれの受水器が受水した水の量を計測する、図1において図示省略されている測定部に繋がっている。
The tip of the discharge holes 20, 21, 22, 23, 24 is a measuring unit (not shown in FIG. 1) that measures the amount of water received by each water receiver of the water receiving unit through the water guiding unit 25. It is connected.
図7は、測定部の一例を示す概念図である。
FIG. 7 is a conceptual diagram showing an example of a measurement unit.
すなわち、それぞれのチャンネルCh0、Ch1、Ch2、Ch3、Ch4に対応する排出穴20、21、22、23、24に繋がる、導水部25に納められている導水パイプ30、31、32、33、34により、対応する転倒マス40、41、42、43、44に、受水した雨水が導かれるように構成されている。
That is, the water guide pipes 30, 31, 32, 33, 34 accommodated in the water guide section 25 connected to the discharge holes 20, 21, 22, 23, 24 corresponding to the respective channels Ch0, Ch1, Ch2, Ch3, Ch4. Thus, the received rainwater is guided to the corresponding falling masses 40, 41, 42, 43, 44.
例えば、転倒マス40は、状態S1のように、一方の升に所定量の雨水が入ると、雨水の重みで転倒排出される。次いで、状態S2のように反対側の升に所定量まで雨水が溜まり、転倒排出される状態となり、再び状態S1に遷移する。そして、転倒の回数を計数して、計数値と升の雨水を溜める所定量を乗算することにより、対応する受水器への降雨量が判る。
For example, when the predetermined amount of rainwater enters one of the troughs as in state S1, the overturning mass 40 is overturned and discharged with the weight of rainwater. Next, as shown in state S2, rainwater accumulates up to a predetermined amount on the opposite side of the ridge, falls into a state of being discharged, and transitions to state S1 again. Then, by counting the number of falls, and multiplying the count value by a predetermined amount that accumulates rainwater in the reeds, the amount of rainfall to the corresponding water receiver can be determined.
図8は、特許文献1で先に提案した雨量計に使用した測定部の一例を示す概念図である。
FIG. 8 is a conceptual diagram showing an example of a measurement unit used in the rain gauge previously proposed in Patent Document 1.
5つのチャネルCh0、Ch1、Ch2、Ch3、Ch4に対応する排出穴20、21、22、23、24に繋がる導水パイプ30、31、32、33、34の先端に図8の左下に拡大して示す様な水滴を形成する滴下管5を設ける。
8 is expanded to the lower left of FIG. 8 at the tips of water conduits 30, 31, 32, 33, 34 connected to the discharge holes 20, 21, 22, 23, 24 corresponding to the five channels Ch0, Ch1, Ch2, Ch3, Ch4. A drip pipe 5 is provided for forming water drops as shown.
滴下管5の先端径Sは、一つの水滴の重さが約0.1gになる様な大きさを有している。
The tip diameter S of the dripping pipe 5 has such a size that the weight of one water drop is about 0.1 g.
したがって、5つの滴下管Ch0、Ch1、Ch2、Ch3、Ch4に対応する導水パイプ30、31、32、33、34を流下した水は、重さが0.1gの水滴となって滴下管5から滴下する。
Therefore, the water flowing down the water guide pipes 30, 31, 32, 33, 34 corresponding to the five dropping pipes Ch 0, Ch 1, Ch 2, Ch 3, Ch 4 becomes water droplets having a weight of 0.1 g from the dropping pipe 5. Dripping.
図9は、図8に示す滴下管5の形状の一例である。上部管と、下部管5Bを有し、上部管にはフィルタ5Aが詰め込まれている。
FIG. 9 is an example of the shape of the dripping pipe 5 shown in FIG. It has an upper tube and a lower tube 5B, and the upper tube is packed with a filter 5A.
これにより、下部管5Bにより約0.1gの水滴が作られ、滴下する。更に、落下の途中に、一対の電極部6a、6bを有する。電極部6a、6b間を水滴が通過する際に電極部6a、6間が導通される。
Thereby, about 0.1 g of water droplets are made by the lower tube 5B and dropped. Furthermore, it has a pair of electrode parts 6a and 6b in the middle of dropping. When the water droplet passes between the electrode parts 6a and 6b, the electrode parts 6a and 6 are electrically connected.
一対の電極部6a、6bは、それらの間の通電により水滴を検知する検知部としてのスイッチである。
The pair of electrode portions 6a and 6b are switches as detection portions that detect water droplets by energization between them.
したがって、この電極部6a、6b間の導通回数をカウントすることにより、滴下する水滴の数を計数することができる。これにより、計数した水滴の数と、一つの水滴の重量0.1gを乗算すれば、各受水器で受水した雨水の量を算出することができる。
Therefore, the number of water droplets to be dropped can be counted by counting the number of conductions between the electrode portions 6a and 6b. Thereby, if the number of water droplets counted is multiplied by the weight of one water droplet 0.1 g, the amount of rainwater received by each water receiver can be calculated.
ここで、本発明において、上記の水滴を検知する方法として、電極部6a、6b間の通電による方法に限られず、他に種々の態様が可能である。例えば、非接触な方法として、光の透過量変化で水滴を検知する方法、あるいは、水滴をマイクに落下して、その際の音の変化の有無を検知して水滴を検知する方法等、いずれの方法も本発明の対象として制限されるものではない。
Here, in the present invention, the method of detecting the water droplets is not limited to the method by energization between the electrode portions 6a and 6b, and various other modes are possible. For example, as a non-contact method, either a method of detecting water droplets by changing the amount of transmitted light, or a method of detecting water droplets by dropping water droplets onto a microphone and detecting the presence or absence of sound changes at that time, etc. This method is not limited as an object of the present invention.
この様に、5つの受水器で受水した雨又は雪の量から飛来方向の方位及び傾斜を求めることができる。以下にその原理を説明する。
In this way, the direction and inclination of the flying direction can be obtained from the amount of rain or snow received by the five water receivers. The principle will be described below.
今、雨又は雪の飛来方向を方位α(飛来方向の北からの時計回りの角度)、傾斜β(飛来方向の天頂からの傾斜角)として定義すると、図10、図11のような、飛来方向と、受水面積の幾何学的関係図[図10(その1)、図11(その2)]が描ける。
If the rain or snow flying direction is defined as the direction α (clockwise angle from the north of the flying direction) and the slope β (tilting angle from the zenith in the flying direction), the flying direction as shown in FIGS. A geometrical relationship diagram between the direction and the water receiving area [FIG. 10 (part 1), FIG. 11 (part 2)] can be drawn.
なお、北(N)と東(E)の間の受水領域にチャネルCh1に対応する受水器11が、東(E)と南(S)の間の受水領域にチャネルCh2に対応する受水器12が、南(S)と西(W)の間の受水領域にチャネルCh3に対応する受水器13が、西(W)と北(N)の間の受水領域にチャネルCh4に対応する受水器14が置かれていると考える。
The water receiver 11 corresponding to the channel Ch1 in the water receiving region between the north (N) and the east (E) corresponds to the channel Ch2 in the water receiving region between the east (E) and the south (S). The water receiver 12 corresponds to the channel Ch3 in the water receiving region between the south (S) and the west (W), and the water receiver 13 corresponding to the channel Ch3 is channeled in the water receiving region between the west (W) and the north (N). Consider a water receiver 14 corresponding to Ch4.
さらに、第1の受水器10の半径をr、第2の受水器11、12、13、14の高さをLとする。したがって、第1の受水器10の面積M0は、M0=πr2であり、第2の受水器11、12、13、14の側方面積S0は、S0=2rLである。
Further, the radius of the first water receiver 10 is r, and the height of the second water receivers 11, 12, 13, and 14 is L. Accordingly, the area M 0 of the first water receiver 10 is M 0 = πr 2 , and the side area S 0 of the second water receivers 11, 12, 13, 14 is S 0 = 2rL. .
そして、図10、図11において、第1の受水器10で受水する面積をM、第2の受水器11、12、13、14で受水する面積をSとする。
10 and 11, the area received by the first water receiver 10 is M, and the area received by the second water receiver 11, 12, 13, 14 is S.
図11において、雨又は雪の飛来方向の傾斜をβとすれば、第1の受水器10が雨又は雪を受ける面積Mは、M=M0sin(90-β)=M0cosβ=πr2cosβ、第2の受水器11、12、13、14の雨水又は雪を受ける面積Sは、S=S1+S2+S3+S4=S0sinβ=2rLsinβである。
In FIG. 11, if the slope of the rain or snow flying direction is β, the area M where the first water receiver 10 receives rain or snow is M = M 0 sin (90−β) = M 0 cos β = pi] r 2 cos .beta, the area S to receive the rain water or snow second water receiving unit 11, 12, 13, 14 is S = S 1 + S 2 + S 3 + S 4 = S 0 sinβ = 2rLsinβ.
さらに、図10から第2の受水器11、12、13、14の各々が雨又は雪を受ける面積S1、S2、S3、S4は、つぎのとおりである。
Furthermore, areas S 1 , S 2 , S 3 , S 4 in which each of the second water receivers 11, 12, 13, 14 receives rain or snow from FIG. 10 are as follows.
S1=r(sinα+cosβ)・Lsinβ
S2=r(1-cosα)・Lsinβ
S3=0
S4=r(1-sinα)・Lsinβ
第1の受水器10で受水する面積をM、受水量をPm(計測単位:kg)とし、第2の受水器11、12、13、14の各々で受水する面積をS1、S2、S3、S4、受水量(計測単位:kg)をPs1、Ps2、Ps3、Ps4とすると、
Pm/M=Ps/S、ただし、Ps=Ps1+Ps2+Ps3+Ps4
よって、Pm/Ps=M/S
=(M0 cosβ)/(S0 sinβ)
=πr2 cosβ/2rLsinβ
=πr /2Ltanβ
したがって、tanβ=(πr/2L)/(Pm/Ps)
また、Ps2/Ps=S2/S
=r(1-cosα)L/2rL
=(1-cosα)/2
よって、cosα=1-2Ps2/Ps
同様に、
Ps4/Ps=S4/S
=r(1-cosα)Lsinβ/2rLsinβ
=(1-sinα)/2
よって、sinα=1-2Ps4/Ps
したがって、Ps1≧Ps2、Ps3、Ps4であれば、
tanα=sinα/cosα
=(1-2Ps4/Ps)/(1-2Ps2/Ps)
=(Ps-2Ps4)/(Ps-2Ps2)
=(Ps1+Ps2+Ps3-Ps4)/(Ps1-Ps2+Ps3+Ps4)
となる。ただし、
Ps2≧Ps1、Ps3、Ps4であれば、
tanα=(-Ps1+Ps2+Ps3+Ps4)/(Ps1+Ps2-Ps3+Ps4)
Ps3≧Ps1、Ps3、Ps4であれば、
tanα=(Ps1-Ps2+Ps3+Ps4)/(Ps1+Ps2+Ps3-Ps4)
Ps4≧Ps1、Ps2、Ps3であれば、
tanα=(Ps1+Ps2-Ps3+Ps4)/(-Ps1+Ps2+Ps3+Ps4)
以上により、方位αと傾斜βは、受水量の計測値(Pm、Ps、Ps1、Ps2、Ps4)から算出できる。なお、βの計測可能範囲は0~90度である。 S 1 = r (sin α + cos β) · L sin β
S 2 = r (1-cosα) · Lsinβ
S 3 = 0
S 4 = r (1-sinα) · Lsinβ
The area received by thefirst water receiver 10 is M, the amount of water received is Pm (measurement unit: kg), and the area received by each of the second water receivers 11, 12, 13, 14 is S 1. , S 2 , S 3 , S 4 , and the amount of water received (measurement unit: kg) is Ps 1 , Ps 2 , Ps 3 , Ps 4 ,
Pm / M = Ps / S, where Ps = Ps 1 + Ps 2 + Ps 3 + Ps 4
Therefore, Pm / Ps = M / S
= (M 0 cosβ) / (S 0 sinβ)
= Πr 2 cosβ / 2rLsinβ
= Πr / 2Ltanβ
Therefore, tanβ = (πr / 2L) / (Pm / Ps)
Also, Ps 2 / Ps = S 2 / S
= R (1-cosα) L / 2rL
= (1-cosα) / 2
Therefore, cosα = 1−2Ps 2 / Ps
Similarly,
Ps 4 / Ps = S 4 / S
= R (1-cosα) Lsinβ / 2rLsinβ
= (1-sinα) / 2
Therefore, sinα = 1−2Ps 4 / Ps
Therefore, if Ps 1 ≧ Ps 2 , Ps 3 , Ps 4 ,
tanα = sinα / cosα
= (1-2Ps 4 / Ps) / (1-2Ps 2 / Ps)
= (Ps-2Ps 4) / (Ps-2Ps 2)
= (Ps 1 + Ps 2 + Ps 3 -Ps 4 ) / (Ps 1 -Ps 2 + Ps 3 + Ps 4 )
It becomes. However,
If Ps 2 ≧ Ps 1 , Ps 3 , Ps 4 ,
tanα = (-Ps 1 + Ps 2 + Ps 3 + Ps 4 ) / (Ps 1 + Ps 2 -Ps 3 + Ps 4 )
If Ps 3 ≧ Ps 1 , Ps 3 , Ps 4 ,
tanα = (Ps 1 -Ps 2 + Ps 3 + Ps 4 ) / (Ps 1 + Ps 2 + Ps 3 -Ps 4 )
If Ps 4 ≧ Ps 1 , Ps 2 , Ps 3 ,
tanα = (Ps 1 + Ps 2 -Ps 3 + Ps 4 ) / (-Ps 1 + Ps 2 + Ps 3 + Ps 4 )
As described above, the azimuth α and the inclination β can be calculated from the measured values of the received water amount (Pm, Ps, Ps 1 , Ps 2 , Ps 4 ). Note that the measurable range of β is 0 to 90 degrees.
S2=r(1-cosα)・Lsinβ
S3=0
S4=r(1-sinα)・Lsinβ
第1の受水器10で受水する面積をM、受水量をPm(計測単位:kg)とし、第2の受水器11、12、13、14の各々で受水する面積をS1、S2、S3、S4、受水量(計測単位:kg)をPs1、Ps2、Ps3、Ps4とすると、
Pm/M=Ps/S、ただし、Ps=Ps1+Ps2+Ps3+Ps4
よって、Pm/Ps=M/S
=(M0 cosβ)/(S0 sinβ)
=πr2 cosβ/2rLsinβ
=πr /2Ltanβ
したがって、tanβ=(πr/2L)/(Pm/Ps)
また、Ps2/Ps=S2/S
=r(1-cosα)L/2rL
=(1-cosα)/2
よって、cosα=1-2Ps2/Ps
同様に、
Ps4/Ps=S4/S
=r(1-cosα)Lsinβ/2rLsinβ
=(1-sinα)/2
よって、sinα=1-2Ps4/Ps
したがって、Ps1≧Ps2、Ps3、Ps4であれば、
tanα=sinα/cosα
=(1-2Ps4/Ps)/(1-2Ps2/Ps)
=(Ps-2Ps4)/(Ps-2Ps2)
=(Ps1+Ps2+Ps3-Ps4)/(Ps1-Ps2+Ps3+Ps4)
となる。ただし、
Ps2≧Ps1、Ps3、Ps4であれば、
tanα=(-Ps1+Ps2+Ps3+Ps4)/(Ps1+Ps2-Ps3+Ps4)
Ps3≧Ps1、Ps3、Ps4であれば、
tanα=(Ps1-Ps2+Ps3+Ps4)/(Ps1+Ps2+Ps3-Ps4)
Ps4≧Ps1、Ps2、Ps3であれば、
tanα=(Ps1+Ps2-Ps3+Ps4)/(-Ps1+Ps2+Ps3+Ps4)
以上により、方位αと傾斜βは、受水量の計測値(Pm、Ps、Ps1、Ps2、Ps4)から算出できる。なお、βの計測可能範囲は0~90度である。 S 1 = r (sin α + cos β) · L sin β
S 2 = r (1-cosα) · Lsinβ
S 3 = 0
S 4 = r (1-sinα) · Lsinβ
The area received by the
Pm / M = Ps / S, where Ps = Ps 1 + Ps 2 + Ps 3 + Ps 4
Therefore, Pm / Ps = M / S
= (M 0 cosβ) / (S 0 sinβ)
= Πr 2 cosβ / 2rLsinβ
= Πr / 2Ltanβ
Therefore, tanβ = (πr / 2L) / (Pm / Ps)
Also, Ps 2 / Ps = S 2 / S
= R (1-cosα) L / 2rL
= (1-cosα) / 2
Therefore, cosα = 1−2Ps 2 / Ps
Similarly,
Ps 4 / Ps = S 4 / S
= R (1-cosα) Lsinβ / 2rLsinβ
= (1-sinα) / 2
Therefore, sinα = 1−2Ps 4 / Ps
Therefore, if Ps 1 ≧ Ps 2 , Ps 3 , Ps 4 ,
tanα = sinα / cosα
= (1-2Ps 4 / Ps) / (1-2Ps 2 / Ps)
= (Ps-2Ps 4) / (Ps-2Ps 2)
= (Ps 1 + Ps 2 + Ps 3 -Ps 4 ) / (Ps 1 -Ps 2 + Ps 3 + Ps 4 )
It becomes. However,
If Ps 2 ≧ Ps 1 , Ps 3 , Ps 4 ,
tanα = (-Ps 1 + Ps 2 + Ps 3 + Ps 4 ) / (Ps 1 + Ps 2 -Ps 3 + Ps 4 )
If Ps 3 ≧ Ps 1 , Ps 3 , Ps 4 ,
tanα = (Ps 1 -Ps 2 + Ps 3 + Ps 4 ) / (Ps 1 + Ps 2 + Ps 3 -Ps 4 )
If Ps 4 ≧ Ps 1 , Ps 2 , Ps 3 ,
tanα = (Ps 1 + Ps 2 -Ps 3 + Ps 4 ) / (-Ps 1 + Ps 2 + Ps 3 + Ps 4 )
As described above, the azimuth α and the inclination β can be calculated from the measured values of the received water amount (Pm, Ps, Ps 1 , Ps 2 , Ps 4 ). Note that the measurable range of β is 0 to 90 degrees.
なお、上記説明は、第1の受水器10と第2の受水器11、12、13、14による5チャンネルの例であるが、より一般化して、第2の受水器を複数nに分割した場合を想定すると、次の関係によって、より細かい精度で、降雨量又は降雪量を測定することができる。
In addition, although the said description is an example of 5 channels by the 1st water receiver 10 and the 2nd water receivers 11, 12, 13, and 14, it is generalized and it is more than n 2nd water receivers. Assuming the case where it is divided into two, the amount of rainfall or the amount of snowfall can be measured with a finer accuracy by the following relationship. *
すなわち、円錐状のロートを成し、前記ロートの円形開口部が天頂方向を向いた第1の受水器10と、前記第1の受水器10の円形開口部の円周を複数nに等分割して、側面に前記等分割数に対応する複数nの第2の受水器を有するように構成する。
That is, the first water receiver 10 is formed into a conical funnel, and the circular opening of the funnel faces the zenith direction, and the circumference of the circular opening of the first water receiver 10 is set to a plurality of n. It divides | segments equally and is comprised so that it may have the 2nd water receiver of the n corresponding to the said equal division | segmentation number on a side surface.
そして、測定部は、所定期間当たりの、前記第1の受水器10による受水量(Pm)と前記複数n個の第2の受水器におけるそれぞれの受水量(Ps1~Psn)を測定する。ついで、前記複数nの第2の受水器におけるそれぞれの受水量(Ps1~Psn)の比から雨の飛来方向の方位αを決定する。
The measuring unit measures the amount of water received by the first water receiver 10 per predetermined period (Pm) and the amount of water received by the plurality of n second water receivers (Ps 1 to Psn). To do. Next, the direction α of the rain arrival direction is determined from the ratio of the received water amounts (Ps 1 to Psn) in the plurality of second receivers.
さらに、前記測定した第1の受水器10による受水量(Pm)と前記複数n個の第2の受水器11、12、13、14におけるそれぞれの受水量(Ps1~Psn)の比から雨の飛来方向の天頂からの傾斜角βを決定することができる。
Further, the ratio between the measured amount of water received by the first water receiver 10 (Pm) and the amount of water received by the plurality of n second water receivers 11, 12, 13, 14 (Ps 1 to Psn). The inclination angle β from the zenith in the rain flying direction can be determined.
図12は、本発明に従う降水量計の別の実施例構成を示す図である。
FIG. 12 is a diagram showing the configuration of another embodiment of the precipitation meter according to the present invention.
先の実施例構成では、第1の受水器10のロート状の下側に複数の第2の受水器11、12、13、14を配する一体構成である。
The configuration of the previous embodiment is an integrated configuration in which a plurality of second water receivers 11, 12, 13, and 14 are arranged on the lower side of the funnel shape of the first water receiver 10.
これに対して、図12は、別の実施例構成として、第2の受水器第1の受水器10の胴体部10Aの外側に配置する構成を示す図である。図12において、構成を理解容易の様に部分的に透視状に示している。
On the other hand, FIG. 12 is a figure which shows the structure arrange | positioned outside 10 A of trunk | drum parts of the 2nd water receiver 1st water receiver 10 as another Example structure. In FIG. 12, the configuration is partially shown in a perspective form for easy understanding.
かかる構成では、一般的に使用されている転倒マスを用いる降水量計を第1の受水器10として使用することが出来る。更に、第1の受水器10と第2の受水器11、12、13、14は分離可能として構成することができる。
In such a configuration, a commonly used precipitation meter using a falling mass can be used as the first water receiver 10. Furthermore, the 1st water receiver 10 and the 2nd water receiver 11, 12, 13, 14 can be comprised so that isolation | separation is possible.
図12において、第2の受水器11、12、13、14は、本体部の胴体60で囲われている。本体部の胴体60の上部縁円と対応する下側径を有する覆い部51で覆われている。覆い部51の上側径は、第1の受水器10の径に対応する。
In FIG. 12, the second water receivers 11, 12, 13, and 14 are surrounded by the body 60 of the main body. It is covered with a cover 51 having a lower diameter corresponding to the upper edge circle of the body 60 of the main body. The upper diameter of the cover 51 corresponds to the diameter of the first water receiver 10.
覆い部51には、先の実施例で説明した加熱ネット50を有している。
The covering portion 51 has the heating net 50 described in the previous embodiment.
図13A,13B,13Cは、理解容易の様に図12の実施例を更に分割して示す図である。図13Aは覆い部51を、図13Bは第1の受水部10を、図14は第2の受水部11、12、13、14の上面図である。
13A, 13B, and 13C are diagrams showing the embodiment of FIG. 12 further divided for easy understanding. 13A is a top view of the cover 51, FIG. 13B is the first water receiver 10, and FIG. 14 is a top view of the second water receiver 11, 12, 13, 14.
図13Aに示す覆い部51は、先の実施例と同様に,加熱ネット50を有している。加熱ネット50は、それ自体を加熱線としても良いし、別途貼り付けられた発熱体の熱を伝達する熱伝導体としてもよい。冬期に使用される時、覆い部51により融雪して、降雪量を図ることも可能である。
The cover part 51 shown to FIG. 13A has the heating net 50 similarly to the previous Example. The heating net 50 may itself be a heating wire, or may be a heat conductor that transmits heat of a heating element attached separately. When used in winter, it is possible to melt snow by the cover 51 and to reduce the amount of snowfall.
図13Bに示す第1の受水器10は、一般に使用される転倒マス式の降水量計が使用できる。図13Bでは、転倒マスは、図示省略している。
As the first water receiver 10 shown in FIG. 13B, a commonly used falling mass type precipitation meter can be used. In FIG. 13B, the falling mass is not shown.
図13Cは、第2の受水器11,12,13,14を示す図である。この実施例では、第2の受水器11,12,13,14は、外側円筒60と、内側円筒61とにより、一体に形成されている。内側円筒61は、その高さが第1の受水器10に等しく、第1の受水器10が挿入される径を有している。
FIG. 13C is a diagram showing the second water receivers 11, 12, 13, and 14. In this embodiment, the second water receivers 11, 12, 13, and 14 are integrally formed by an outer cylinder 60 and an inner cylinder 61. The inner cylinder 61 is equal in height to the first water receiver 10 and has a diameter into which the first water receiver 10 is inserted.
外側円筒60の高さは、内側円筒61の高さより小さく、外側円筒60の径と内側円筒61の径の差により形成される領域に,後に説明するようにロート状の第2の受水器11,12,13,14が形成される。図13Cでは、受水器11のみが示され、これに対応して導水穴20,導水パイプ21が示される。この導水パイプ21の下部に対応する転倒マス或いは、図9に示した水滴数検出スイッチ機構が設けられる。
The height of the outer cylinder 60 is smaller than the height of the inner cylinder 61, and a funnel-shaped second water receiver is formed in a region formed by the difference between the diameter of the outer cylinder 60 and the inner cylinder 61 as will be described later. 11, 12, 13, and 14 are formed. In FIG. 13C, only the water receiver 11 is shown, and the water guide hole 20 and the water guide pipe 21 are shown correspondingly. A falling mass corresponding to the lower portion of the water guide pipe 21 or a water droplet number detection switch mechanism shown in FIG. 9 is provided.
図13Cにおいて、更に1,2は、チャネル仕切り板であり、100は,横方向の降水を受け止めるひれ板である。
In FIG. 13C, reference numerals 1 and 2 denote channel partition plates, and reference numeral 100 denotes a fin plate that receives lateral precipitation.
図14は、図12の実施例の降水量計の上面図である。中心に第1の受水器10の導水穴20が見られる。第1の受水器10が、第2の受水器11,12,13,14の内側円筒61に挿入されている。
FIG. 14 is a top view of the precipitation meter of the embodiment of FIG. A water introduction hole 20 of the first water receiver 10 is seen at the center. The first water receiver 10 is inserted into the inner cylinder 61 of the second water receiver 11, 12, 13, 14.
第2の受水器11,12,13,14は、外側円筒60と内側円筒61の間に形成される。仕切り板1,2,3,4は、第2の受水器11,12,13,14のそれぞれを区切る仕切り板である。仕切り板1,2,3,4で区切られて形成される第2の受水器11,12,13,14のそれぞれに対応して導水穴20,21,22,23を有する。
The second water receivers 11, 12, 13, and 14 are formed between the outer cylinder 60 and the inner cylinder 61. Partition plates 1, 2, 3, and 4 are partition plates that divide each of second water receivers 11, 12, 13, and 14. Corresponding to each of the second water receivers 11, 12, 13, 14 formed by partition plates 1, 2, 3, 4, there are water guide holes 20, 21, 22, 23.
導水穴20,21,22,23の位置は、外側円筒60の円周縁の高さより低く、円周縁及び仕切り板1,2,3,4の下端から、対応する導水穴20,21,22,23に向かう傾斜によりロート状が形成される。
The positions of the water guide holes 20, 21, 22, 23 are lower than the height of the outer peripheral edge of the outer cylinder 60, and the corresponding water guide holes 20, 21, 22, from the peripheral edge and the lower ends of the partition plates 1, 2, 3, 4. A funnel shape is formed by the inclination toward 23.
図15A,図15Bは、それぞれ図14の上面図の矢印A-A線の断面、矢印B-B線の断面を示す図である。
15A and 15B are diagrams showing a cross section taken along the line AA and a cross section taken along the line BB in the top view of FIG. 14, respectively.
チャネルの仕切り板1,2,3,4と、ひれ板100の形状は同じ三角形である。上側の角部の角度は、約30°である。これは、一般的な転倒マス式降水量計の上縁部側の傾斜が30°に規格されていることに対応させている。
The shape of the channel partition plates 1, 2, 3, 4 and the fin plate 100 is the same triangle. The angle of the upper corner is about 30 °. This corresponds to the fact that the inclination on the upper edge side of a general falling mass type precipitation gauge is standardized at 30 °.
ひれ板100の下側は、図15A,図15Bにより見られるように、第2の受水器11,12,13,14は、ロート状(図のまるで囲んだ部分)の傾斜に対応して、浮いた状態である。
On the lower side of the fin plate 100, as can be seen from FIGS. 15A and 15B, the second water receivers 11, 12, 13, and 14 correspond to the inclination of the funnel shape (the part surrounded by the figure). It ’s floating.
かかる第2の降水量計は、既存の一般的な転倒式降水量計を拡張して構成することができるので、適宜用途に応じて一次元降水量計とするか、3次元降水量計としての構成変更が容易である。
Such a second precipitation meter can be constructed by expanding an existing general overturning precipitation meter. Therefore, it is appropriate to use a one-dimensional precipitation meter or a three-dimensional precipitation meter depending on the intended use. It is easy to change the configuration.
図16A、16B,16Cは、更に第3の実施例の降水量計を説明する図である。
FIGS. 16A, 16B, and 16C are diagrams for explaining a precipitation meter according to a third embodiment.
図16Aは、第3の実施例の概略斜視図である。図16Bは、その上面図、図16Cは、図16A、16BのA-A線に沿う断面概略図である。
FIG. 16A is a schematic perspective view of the third embodiment. FIG. 16B is a top view thereof, and FIG. 16C is a schematic sectional view taken along line AA of FIGS. 16A and 16B.
この第3の実施例の特徴は、前記第1及び第2の実施例における第1の受水器に、第2の受水器の機能を兼ねさせた形態である。
The feature of the third embodiment is a form in which the first water receiver in the first and second embodiments is combined with the function of the second water receiver.
概念的には、第1及び第2の実施例における第1の受水器を等分割して4つの受水器S1,S2,S3,S4を形成している。これにより、第1及び第2の実施例における側面側に形成された第2の受水器11,12,13,14を省略した形態を成している。
Conceptually, the four water receivers S1, S2, S3, and S4 are formed by equally dividing the first water receiver in the first and second embodiments. Thereby, the 2nd water receiver 11, 12, 13, 14 formed in the side surface in the 1st and 2nd Example has comprised the form which abbreviate | omitted.
すなわち、少なくとも上面が開放された円筒容器110に、円周方向に円筒容器110の長さに対して、略半分の長さの4つの仕切り板201,202,203,204により4等分割して4つの受水器S1,S2,S3,S4を形成している。
That is, the cylindrical container 110 having at least the upper surface opened is divided into four equal parts by four partition plates 201, 202, 203, and 204 that are approximately half the length of the cylindrical container 110 in the circumferential direction. Four water receivers S1, S2, S3, S4 are formed.
4つの仕切り板201,202,203,204は、円筒容器110の上部端面から円筒中心に向かって、低くなるような傾斜を有している。4つの仕切り板201,202,203,204の下端側に、ロート状受水部を有する。
The four partition plates 201, 202, 203, 204 have an inclination that decreases from the upper end surface of the cylindrical container 110 toward the center of the cylinder. A funnel-shaped water receiving portion is provided on the lower end side of the four partition plates 201, 202, 203, 204.
ロート状受水部の形態は、図16B,図16Cにより、良く理解できる。図16Bは、第3の実施例の降水量計の上面図であって、4つの仕切り板201,202,203,204により仕切られた4つの受水器S1,S2,S3,S4のロート状受水部220,221,222,223が示される。
The form of the funnel-shaped water receiving part can be well understood from FIGS. 16B and 16C. FIG. 16B is a top view of the precipitation meter of the third embodiment, and is a funnel shape of four water receivers S1, S2, S3, S4 partitioned by four partition plates 201, 202, 203, 204. Water receiving portions 220, 221, 222, and 223 are shown.
それぞれのロート状受水部220,221,222,223には、対応する排水穴211,212,213,214を有する。排水穴211,212,213,214のそれぞれに繋がる配水管を通して、図示省略された転倒マス或いは、図9に示した水滴数検出スイッチ機構に受水が送られる。
Each funnel-shaped water receiving part 220, 221, 222, 223 has a corresponding drain hole 211, 212, 213, 214. Receiving water is sent to the overturning mass not shown or the water droplet number detection switch mechanism shown in FIG. 9 through the water distribution pipes connected to the drain holes 211, 212, 213, and 214.
図16Cは、図16BのA-A線における断面図である。断面部分には、受水器S2,S4が属し、対応するロート状受水部221,223と、その排水穴212と214が示される。また、破線部は、仕切り板203,204を概念的に示している。
FIG. 16C is a cross-sectional view taken along line AA in FIG. 16B. In the cross section, the water receivers S2 and S4 belong, and the corresponding funnel-shaped water receiving portions 221 and 223 and drain holes 212 and 214 thereof are shown. A broken line portion conceptually shows the partition plates 203 and 204.
かかる第3の実施例では、降水粒子の飛来方向の方位と傾斜角は4つの受水器S1,S2,S3,S4のそれぞれの降水量から求めることができる。傾斜角は、天頂から90°の角度の範囲で求めることが可能である。例えば、図16Aにおいて、図面に垂直方向からの降水は、受水器S3で最も多く受水される。したがって、受水器S1,S2,S3,S4での受水量の比から降水粒子の降水方向及び傾斜角を求めることができる。
In the third embodiment, the azimuth and inclination angle of the precipitation direction of the precipitation particles can be obtained from the precipitation amounts of the four water receivers S1, S2, S3 and S4. The inclination angle can be obtained within a range of 90 ° from the zenith. For example, in FIG. 16A, precipitation from the direction perpendicular to the drawing is received most by the water receiver S3. Therefore, the precipitation direction and the inclination angle of the precipitation particles can be obtained from the ratio of the amount of water received at the water receivers S1, S2, S3 and S4.
さらに、全体の構成量は、4つの受水器S1,S2,S3,S4の降水量の総和から求めることができる。
Furthermore, the total configuration amount can be obtained from the sum of precipitation amounts of the four water receivers S1, S2, S3, S4.
10 第1の受水器
11、12、13、14 第2の受水器
20、21、22、23、24 導水穴
30、31、32、33、34 導水パイプ
40、41、42、43、44 転倒マス
1、2、3、4 仕切り板
5 滴下管
25 導水部
50 加熱ネット
100 ひれ板
110 ジャバラ状の覆い 10 1st water receiver 11, 12, 13, 14 2nd water receiver 20, 21, 22, 23, 24 Water conveyance hole 30, 31, 32, 33, 34 Water conveyance pipe 40, 41, 42, 43, 44 Falling mass 1, 2, 3, 4 Partition plate 5 Drip pipe 25 Water guide part 50 Heating net 100 Fin plate 110 Bellows-like covering
11、12、13、14 第2の受水器
20、21、22、23、24 導水穴
30、31、32、33、34 導水パイプ
40、41、42、43、44 転倒マス
1、2、3、4 仕切り板
5 滴下管
25 導水部
50 加熱ネット
100 ひれ板
110 ジャバラ状の覆い 10
Claims (12)
- 降雨又は降雪による降水粒子を受ける受水部と、前記受水部で受けた降水粒子の量を測定する測定部を有する降水量計であって、
前記受水部は、
円錐状のロートを成し、前記ロートの円形開口部が天頂方向を向いた第1の受水器と、
前記第1の受水器の円形開口部の円周を複数nに等分割して、側面に前記等分割数に対応する複数n個の第2の受水器を有し、
前記測定部は、所定時間当たりの、前記第1の受水器による受水量(Pm)と前記複数n個の第2の受水器におけるそれぞれの受水量(Ps1~Psn)を測定し、
前記複数nの第2の受水器におけるそれぞれの受水量(Ps1~Psn)の比から降水粒子の飛来方向の方位αと、前記測定した第1の受水器による受水量(Pm)と、前記複数nの第2の受水器における受水量(Ps1~Psn)の合計値との比から降水粒子の飛来方向の天頂からの傾斜角βを決定する、
ことを特徴とする降水量計。 A precipitation meter having a water receiving part that receives precipitation particles due to rainfall or snowfall, and a measurement part that measures the amount of precipitation particles received by the water receiving part,
The water receiving part is
A first water receiver comprising a conical funnel, the circular opening of the funnel facing the zenith direction;
The circumference of the circular opening of the first water receiver is equally divided into a plurality of n, and there are a plurality of n second water receivers corresponding to the number of equal divisions on the side surface.
The measuring unit measures the amount of water received by the first water receiver per predetermined time (Pm) and the amount of water received by the plurality of n second water receivers (Ps 1 to Psn),
From the ratio of the received water amount (Ps 1 to Psn) in each of the plurality of n second water receivers, the direction α of the flying direction of the precipitation particles, and the measured water amount received (Pm) by the first water receiver , The inclination angle β from the zenith in the flying direction of the precipitation particles is determined from the ratio with the total amount of water received (Ps 1 to Psn) in the plurality of second receivers.
Precipitation meter characterized by that. - 請求項1において、
前記第1の受水器は、前記円錐状のロートの周縁に沿う端円を有する円筒状の胴体部を有し、
前記n個の第2の受水器は、前記胴体部の外側に沿って形成された前記n個に対応するロートを有する、
ことを特徴とする降水量計。 In claim 1,
The first water receiver has a cylindrical body portion having an end circle along the periphery of the conical funnel,
The n second water receivers have funnels corresponding to the n pieces formed along the outside of the body part.
Precipitation meter characterized by that. - 降雨又は降雪による降水粒子を受ける受水部と、前記受水部で受けた降水粒子の量を測定する測定部を有する降水量計であって、
前記受水部は、
円錐状のロートを成し、前記ロートの円形開口部が上方向を向いた第1の受水器と、
前記第1の受水器の円形開口部の円周を4つに等分割して、側面に4つの第2の受水器を有し、
前記測定部は、所定時間当たりの、前記第1の受水器による受水量(Pm)、及び前記4つの第2の受水器におけるそれぞれの受水量(Ps1、Ps2、Ps3、Ps4)を測定し、
降水粒子の飛来方向の方位α(雨又は雪の飛来方向の北からの時計回り角度)と傾斜β(雨又は雪の降水粒子飛来方向の天頂からの傾斜角)は、前記測定値Pm、Ps1、Ps2、Ps3、Ps4から、次の関係式により決定する、
tanβ=(πr/2L)/(Pm/Ps)
Ps1≧Ps2、Ps3、Ps4であれば、
tanα=(Ps1+Ps2+Ps3-Ps4)/(Ps1-Ps2+Ps3+Ps4)、
Ps2≧Ps1、Ps3、Ps4であれば、
tanα=(-Ps1+Ps2+Ps3+Ps4)/(Ps1+Ps2-Ps3+Ps4)
Ps3≧Ps1、Ps3、Ps4であれば、
tanα=(Ps1-Ps2+Ps3+Ps4)/(Ps1+Ps2+Ps3-Ps4)
Ps4≧Ps1、Ps2、Ps3であれば、
tanα=(Ps1+Ps2-Ps3+Ps4)/(-Ps1+Ps2+Ps3+Ps4)
ただし、rは、前記ロートの円形開口部の半径、
Lは、前記第2の受水器の高さ、
Psは、Ps1、Ps2、Ps3、Ps4の合計値である、
ことを特徴とする降水量計。 A precipitation meter having a water receiving part that receives precipitation particles due to rainfall or snowfall, and a measurement part that measures the amount of precipitation particles received by the water receiving part,
The water receiving part is
A first water receiver comprising a conical funnel, the circular opening of the funnel facing upward;
The circumference of the circular opening of the first water receiver is equally divided into four, and four second water receivers are provided on the side surface.
The measurement unit receives the amount of water received by the first water receiver per predetermined time (Pm) and the amount of water received by the four second water receivers (Ps 1 , Ps 2 , Ps 3 , Ps). 4 ) measure and
The direction α (the clockwise angle from the north of the rain or snow flying direction) and the slope β (the tilt angle from the zenith in the rain or snow flying direction) of the precipitation particles come from the measured values Pm, Ps. 1 , Ps 2 , Ps 3 , Ps 4 is determined by the following relational expression,
tanβ = (πr / 2L) / (Pm / Ps)
If Ps 1 ≧ Ps 2 , Ps 3 , Ps 4 ,
tanα = (Ps 1 + Ps 2 + Ps 3 -Ps 4 ) / (Ps 1 -Ps 2 + Ps 3 + Ps 4 ),
If Ps 2 ≧ Ps 1 , Ps 3 , Ps 4 ,
tanα = (-Ps 1 + Ps 2 + Ps 3 + Ps 4 ) / (Ps 1 + Ps 2 -Ps 3 + Ps 4 )
If Ps 3 ≧ Ps 1 , Ps 3 , Ps 4 ,
tanα = (Ps 1 -Ps 2 + Ps 3 + Ps 4 ) / (Ps 1 + Ps 2 + Ps 3 -Ps 4 )
If Ps 4 ≧ Ps 1 , Ps 2 , Ps 3 ,
tanα = (Ps 1 + Ps 2 -Ps 3 + Ps 4 ) / (-Ps 1 + Ps 2 + Ps 3 + Ps 4 )
Where r is the radius of the circular opening of the funnel,
L is the height of the second water receiver,
Ps is the total value of Ps 1 , Ps 2 , Ps 3 , Ps 4 ,
Precipitation meter characterized by that. - 請求項1乃至3のいずれか1項において、
前記第1の受水器及び、前記第2の受水器のそれぞれの底部側に、それぞれ個別に導水管を有し、前記導水管を通して前記測定部に連結するように構成されている、
ことを特徴とする降水量計。 In any one of Claims 1 thru | or 3,
Each of the first water receiver and the second water receiver has a water conduit individually on the bottom side, and is configured to be connected to the measurement unit through the water conduit.
Precipitation meter characterized by that. - 請求項4において、
前記測定部は、前記第1の受水器及び、前記第2の受水器のそれぞれに対応する転倒マスを有し、前記導水管を通して受水した降水を前記転倒マスに導き、前記転倒マスの転倒回数をそれぞれ独立して計測する、
ことを特徴とする降水量計。 In claim 4,
The measuring unit has a tipping mass corresponding to each of the first water receiver and the second water receiver, guides precipitation received through the conduit to the tipping mass, and the tipping mass. Measure the number of falls of each independently,
Precipitation meter characterized by that. - 請求項4において、
前記測定部は、前記第1の受水器及び、前記第2の受水器のそれぞれに対応する前記導水管を通して流下するそれぞれの降水粒子の量を計量する、
ことを特徴とする降水量計。 In claim 4,
The measurement unit measures the amount of each precipitation particle flowing down through the water conduit corresponding to each of the first water receiver and the second water receiver.
Precipitation meter characterized by that. - 請求項1乃至3のいずれか1項において、
前記第2の受水器のそれぞれに、前記第1の受水器の中心から前記第2の受水器の外周方向に向かう放射状に配置された複数のひれ板を有する、
ことを特徴とする降水量計。 In any one of Claims 1 thru | or 3,
Each of the second water receivers has a plurality of fin plates arranged radially from the center of the first water receiver toward the outer peripheral direction of the second water receiver.
Precipitation meter characterized by that. - 請求項1乃至3のいずれか1項において、
前記第2の受水器の外周を囲う、メッシュ状のジャバラの覆いを有する、
ことを特徴とする降水量計。 In any one of Claims 1 thru | or 3,
Having a mesh-shaped bellows covering surrounding the outer periphery of the second water receiver,
Precipitation meter characterized by that. - 請求項8において、
前記ジャバラの覆いは、熱抵抗を有する材料で形成され、降雪量を測定する際に通電により降雪粒子に対する融雪温度まで加熱される、
ことを特徴とする降水量計。 In claim 8,
The covering of the bellows is formed of a material having thermal resistance, and is heated to the snow melting temperature for the snow particles by energization when measuring the amount of snowfall.
Precipitation meter characterized by that. - 請求項1乃至3のいずれか1項において、
前記第1の受水器及び前記第2の受水器のそれぞれにメッシュ状の加熱ネットの覆いを有し、
前記第2の受水器を覆う加熱ネットの部分は、上端が前記第1の受水器のロートの外縁部に固定され、下端側は解放されている、
ことを特徴とする降水量計。 In any one of Claims 1 thru | or 3,
Each of the first water receiver and the second water receiver has a mesh heating net covering,
The part of the heating net covering the second water receiver has its upper end fixed to the outer edge of the funnel of the first water receiver, and the lower end side is open,
Precipitation meter characterized by that. - 請求項10において、
前記加熱ネットの覆いは、熱抵抗を有する材料で形成され、降雪量を測定する際に通電により降雪粒子に対する融雪温度まで加熱される、
ことを特徴とする降水量計。 In claim 10,
The covering of the heating net is formed of a material having a thermal resistance, and is heated to the snow melting temperature for the snow particles by energization when measuring the amount of snowfall.
Precipitation meter characterized by that. - 上面が開放された円筒容器と、
それぞれ前記円筒容器の上端縁から前記円筒容器の中心に向かって低くなる上端側に傾斜を有する4つの仕切り板と、
前記4つの仕切り板により円周方向に4つに等分割されたそれぞれの領域に形成される4つの受水器と、
前記4つの受水器のそれぞれに対応し、それぞれで受水する降水量を検知する4つの降水量検知部を有し、
前記4つの受水器は、対応する前記4つの仕切り板の下端部に繋がるロート状の受水部を有し、更に
前記4つの受水器のそれぞれのロート状の受水部は、排水穴と、前記排水穴に繋がる導水管を有し、
前記4つの導水管に対応する前記4つの降水量検知部で検知される降水量から,降水粒子の飛来方向の方位と傾斜角を判定する、
ことを特徴とする降水量計。 A cylindrical container with an open upper surface;
Four partition plates each having an inclination on the upper end side which becomes lower from the upper edge of the cylindrical container toward the center of the cylindrical container;
Four water receivers formed in respective regions equally divided into four circumferentially by the four partition plates;
Corresponding to each of the four water receivers, and having four precipitation detectors for detecting the amount of precipitation received by each,
The four water receivers have funnel-shaped water receivers connected to lower ends of the corresponding four partition plates, and each funnel receiver of the four water receivers has a drain hole. And having a water conduit connected to the drain hole,
From the precipitation detected by the four precipitation detectors corresponding to the four conduits, the direction and inclination angle of the flying direction of precipitation particles are determined.
Precipitation meter characterized by that.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014554590A JP5963064B2 (en) | 2012-12-27 | 2013-12-27 | Precipitation meter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-284961 | 2012-12-27 | ||
JP2012284961 | 2012-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014104291A1 true WO2014104291A1 (en) | 2014-07-03 |
Family
ID=51021360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/085092 WO2014104291A1 (en) | 2012-12-27 | 2013-12-27 | Precipitation gauge |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5963064B2 (en) |
WO (1) | WO2014104291A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101842848B1 (en) * | 2017-12-19 | 2018-05-14 | 경상북도(농업기술원) | Near Infrared rain gauge of distributed type |
CN111025429A (en) * | 2019-12-31 | 2020-04-17 | 重庆交通大学 | Device and method for measuring spatial distribution of flood discharge atomization rainfall intensity of hydraulic model |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112014908B (en) * | 2020-08-03 | 2022-03-08 | 西北师范大学 | Wind-resistant capacitance type snowfall measuring method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE606170C (en) * | 1934-11-26 | E H Dr Robert Haas Dr Ing | Rain gauge | |
US5918278A (en) * | 1998-02-26 | 1999-06-29 | Chang; Mingteh | Raingage for providing improved measurement of local rainfall |
DE10303576A1 (en) * | 2003-01-30 | 2005-01-05 | Enßlin, Walther, Dr. | Localization and quantification method for measuring airborne emissions and pollutants in which rainwater is collected in a device that has containers that collect water according to the direction from which it falls |
JP2006017462A (en) * | 2004-06-30 | 2006-01-19 | Sogo Bosai System Kenkyusho:Kk | All-azimuth type rain gauge |
WO2009072300A1 (en) * | 2007-12-05 | 2009-06-11 | Mts Institute Inc. | Omnidirectional rain gauge |
-
2013
- 2013-12-27 JP JP2014554590A patent/JP5963064B2/en active Active
- 2013-12-27 WO PCT/JP2013/085092 patent/WO2014104291A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE606170C (en) * | 1934-11-26 | E H Dr Robert Haas Dr Ing | Rain gauge | |
US5918278A (en) * | 1998-02-26 | 1999-06-29 | Chang; Mingteh | Raingage for providing improved measurement of local rainfall |
DE10303576A1 (en) * | 2003-01-30 | 2005-01-05 | Enßlin, Walther, Dr. | Localization and quantification method for measuring airborne emissions and pollutants in which rainwater is collected in a device that has containers that collect water according to the direction from which it falls |
JP2006017462A (en) * | 2004-06-30 | 2006-01-19 | Sogo Bosai System Kenkyusho:Kk | All-azimuth type rain gauge |
WO2009072300A1 (en) * | 2007-12-05 | 2009-06-11 | Mts Institute Inc. | Omnidirectional rain gauge |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101842848B1 (en) * | 2017-12-19 | 2018-05-14 | 경상북도(농업기술원) | Near Infrared rain gauge of distributed type |
CN111025429A (en) * | 2019-12-31 | 2020-04-17 | 重庆交通大学 | Device and method for measuring spatial distribution of flood discharge atomization rainfall intensity of hydraulic model |
CN111025429B (en) * | 2019-12-31 | 2022-06-10 | 重庆交通大学 | Device and method for measuring spatial distribution of flood discharge and atomization rainfall intensity of hydraulic model |
Also Published As
Publication number | Publication date |
---|---|
JP5963064B2 (en) | 2016-08-03 |
JPWO2014104291A1 (en) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4272698B1 (en) | Omnidirectional rain gauge | |
ES2701698T3 (en) | Device and method to continuously measure the horizontal flow of particulate matter that falls into the atmosphere | |
JP5963064B2 (en) | Precipitation meter | |
EP2562566A2 (en) | Apparatus for measuring the amount of snow cover and snowfall using electrical conduction | |
CN104677588B (en) | A kind of wind erosion of soil measuring method and device | |
KR101146330B1 (en) | Multi-tipping bucket rain recorder | |
US8359918B1 (en) | Rain gauge with particulate separator | |
JPS5887426A (en) | Cylindrical device for measuring level at every time of liquid in vessel, culvert, etc. | |
JPWO2019216184A1 (en) | Falling rain gauge | |
JP5055476B2 (en) | Weather measurement equipment | |
CN106124562A (en) | A kind of Liquid water content measuring method | |
CN105046952B (en) | The sparse air-ground associated detecting method of road traffic accident | |
CN103134490B (en) | Airborne interference synthetic aperture radar (SAR) shadow estimate and plane route design method | |
CN210666078U (en) | Liquid drop generator and rain amount measuring device | |
CN209707716U (en) | A kind of tipping bucket type optics rainfall gauge | |
Puhakka et al. | Meteorological factors influencing the radioactive deposition in Finland after the Chernobyl accident | |
CN108120426A (en) | A kind of multifunction level meter of applicable more scenes | |
JP6566534B1 (en) | Rain gauge | |
US5918278A (en) | Raingage for providing improved measurement of local rainfall | |
CN207300861U (en) | A kind of precision metering device detection device and detection device | |
JP3827706B2 (en) | Precipitation intensity meter | |
JP2003172786A (en) | Rainfall meter | |
CN203869842U (en) | Sand material creeping collector | |
JP4165757B2 (en) | Rain gauge | |
JP2003021689A (en) | Rain gauge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13866794 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014554590 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13866794 Country of ref document: EP Kind code of ref document: A1 |