WO2014104259A1 - Outer bag for vacuum insulation structure and vacuum insulation structure using same - Google Patents

Outer bag for vacuum insulation structure and vacuum insulation structure using same Download PDF

Info

Publication number
WO2014104259A1
WO2014104259A1 PCT/JP2013/085008 JP2013085008W WO2014104259A1 WO 2014104259 A1 WO2014104259 A1 WO 2014104259A1 JP 2013085008 W JP2013085008 W JP 2013085008W WO 2014104259 A1 WO2014104259 A1 WO 2014104259A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
heat insulating
vacuum heat
insulating structure
laminate
Prior art date
Application number
PCT/JP2013/085008
Other languages
French (fr)
Japanese (ja)
Inventor
徳明 黒川
和司 小田
寛幸 中島
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Publication of WO2014104259A1 publication Critical patent/WO2014104259A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • B65D81/20Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
    • B65D81/2007Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas under vacuum
    • B65D81/2023Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas under vacuum in a flexible container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Definitions

  • the present invention relates to an exterior bag for a vacuum heat insulation structure and a vacuum heat insulation structure using the same. More specifically, the present invention has excellent heat insulation performance. It is related with the exterior bag for vacuum heat insulation structures which can obtain a vacuum heat insulation structure with few.
  • heat insulating materials using polyurethane foam have been used as heat insulating materials for refrigerators and electric pots or heat insulating walls for houses, but in recent years, glass wool, silicon oxide have been used as excellent alternative materials.
  • a vacuum heat insulating structure in which a heat insulating material such as foamed resin is used as a core material, which is sealed with a gas barrier laminate film and the inside is vacuumed, has begun to be used.
  • a vinyl alcohol resin film or a multilayer film containing aluminum foil is used as the gas barrier laminate film, and as the vinyl alcohol resin film, an ethylene-vinyl alcohol resin film, A polyvinyl alcohol resin film is used.
  • a vacuum heat insulating structure including a multilayer film containing an ethylene-vinyl alcohol-based resin film includes a core material and an outer bag envelope material that encloses the core material, and the outer bag has a vapor deposition layer.
  • Laminate films having each other, or a laminate film having a vapor deposition layer, and a laminate film having a metal foil are formed into a bag shape by thermal welding, and the laminate film having the vapor deposition layer comprises a thermal welding layer and a gas barrier layer.
  • the gas barrier layer is formed by vapor-depositing aluminum on one side of a plastic film containing an ethylene-vinyl alcohol-based resin, and the aluminum-deposited surface is provided on the heat-welded layer side.
  • a vacuum heat insulating structure has been proposed (see, for example, Patent Document 1).
  • a heat insulating material is a vacuum heat insulating structure obtained by sealing and packaging with a multilayer film including a polyvinyl alcohol-based resin film.
  • a vacuum heat insulating structure using a multilayer film in which a biaxially stretched polyvinyl alcohol-based resin film that may be deposited and a polyester film, a polyamide film, a polyolefin film or the like that may be deposited is laminated is proposed. (For example, refer to Patent Document 2).
  • JP-A-10-122477 Japanese Patent Application Laid-Open No. 2007-078176
  • Patent Document 1 a vacuum heat insulating structure having excellent gas barrier properties and excellent heat insulating performance is obtained by using a vapor deposition film for a multilayer film, but the vapor deposition layer is uniform. When there was unevenness or vapor deposition was insufficient, the heat insulation performance deteriorated when used for a long period of time, and sufficient heat insulation performance could not be sustained. Further, in the disclosed technique of Patent Document 2, a vapor deposition layer is provided in order to improve gas barrier properties when using a biaxially stretched polyvinyl alcohol-based resin film. This caused a decrease in
  • the present invention has an excellent heat insulation performance, and in particular, a vacuum heat insulation structure outer bag capable of obtaining a vacuum heat insulation structure excellent in sustainability of the heat insulation performance, and uses the same.
  • a vacuum insulation structure was provided.
  • the present inventors as a result, in the exterior bag used for the vacuum heat insulating structure, the number of bright spots observed by light transmission is 200 or less per predetermined size. It has been found that by using a laminate including a film, a vacuum heat insulating structure excellent in gas barrier properties and excellent in heat insulation performance can be obtained.
  • the gist of the present invention is that when the light is irradiated from the opposite side of the vapor deposition surface of the vapor deposition film (A) and the number of transmitted light is measured as the number of bright spots, the number of bright spots is the film size.
  • the present invention relates to an exterior bag for a vacuum heat insulating structure using a laminate [I] containing 200 or less vapor deposited films (A) per 4 mm ⁇ 3 mm.
  • the present invention relates to a vacuum heat insulating structure formed by hermetically packaging a heat insulating material using the outer bag for a vacuum heat insulating structure.
  • the vapor deposition state of the film affects the heat insulation performance, and by selecting a vapor deposition film with a smaller number of bright spots on the vapor deposition film, a vacuum of gas such as water vapor, nitrogen, oxygen, etc. It is presumed that the penetration into the heat insulating structure is extremely low, the vacuum state is maintained with high reliability even when used for a long period of time, and the heat insulating performance is hardly lowered.
  • the number of bright spots is 200 per 4 mm ⁇ 3 mm film size.
  • An image obtained by irradiating the film of Example 1 with light from the opposite side of the vapor deposition surface and observing under a microscope from the vapor deposition surface side is converted into an 8-bit monochrome image by image analysis software (ImageJ).
  • An image obtained by irradiating the film of Comparative Example 1 with light from the opposite side of the vapor deposition surface and observing under a microscope from the vapor deposition surface side is converted into an 8-bit monochrome image by image analysis software (ImageJ).
  • the present invention is described in detail below.
  • the exterior bag for a vacuum heat insulating structure of the present invention is irradiated with light from the opposite side of the vapor deposition surface of the vapor deposition film (A), and the number of bright spots is measured when the number of transmitted light is measured as the number of bright spots.
  • it consists of laminated body [I] containing the vapor deposition film (A) which is 200 or less per film size 4 mm x 3 mm.
  • the bright spot is a bright spot that is observed because light is transmitted through the film when irradiated with light from the opposite side of the vapor deposition surface of the vapor deposition film (A) and observed with a microscope from the vapor deposition surface side.
  • A vapor deposition surface of the vapor deposition film
  • the bright spot is a bright spot that is observed because light is transmitted through the film when irradiated with light from the opposite side of the vapor deposition surface of the vapor deposition film (A) and observed with a microscope from the vapor deposition surface side.
  • the size of the bright spot is about 1 to 10 ⁇ m in diameter, and is fine enough that it cannot be visually confirmed, and is generally distinguished from defects that can be visually observed such as cracks and pinholes. Use.
  • the number of bright spots is measured as follows. That is, the vapor deposition film (A) is placed on a microscope stage with the vapor deposition surface up, covered with a slide glass from above, irradiated with light from the opposite side of the vapor deposition surface, and observed with a microscope from the vapor deposition surface side. The number of bright spots per 4 mm ⁇ 3 mm is measured using image analysis software.
  • the number of bright spots of the vapor-deposited film (A) is 200 or less per film size 4 mm ⁇ 3 mm, preferably 150 or less, particularly preferably 100 or less, and further preferably 70 or less.
  • gas such as water vapor and oxygen enters the inside of the vacuum heat insulating structure, and the heat insulating performance of the vacuum heat insulating structure tends to deteriorate.
  • the lower limit is usually one.
  • it is 0.02% or less. If the area ratio of the base point is too large, even when the number of bright spots is small, the total amount of water vapor and gas entering the inside tends to increase, and the heat insulating performance of the vacuum heat insulating structure tends to deteriorate. The smaller the area ratio of the bright spots, the better. However, the lower limit is usually 0.0000001%.
  • the area ratio (%) is calculated as follows. That is, the vapor deposition film (A) is placed on the microscope stage with the vapor deposition surface facing up, covered with a glass slide from above, irradiated with light from the opposite side of the vapor deposition surface, and observed with a microscope from the vapor deposition surface side.
  • the total area of bright spots per 4 mm ⁇ 3 mm is calculated using image analysis software, and the area ratio of bright spots is obtained from the following equation.
  • Area ratio (%) (total area of bright spots per film size 3 mm ⁇ 4 mm / area of film size 3 mm ⁇ 4 mm) ⁇ 100
  • the light to be irradiated may be light from an illumination device for a microscope, and for example, light in a region of 400 to 750 nm is used.
  • the illuminance of the light source may be the illuminance that a general microscope illumination device has, and it is sufficient that it has an illuminance of about 100 to 50000 lux in the vicinity of the vapor deposition film to be observed.
  • the light source of the lighting device include an LED, a halogen lamp, a fluorescent lamp, an incandescent lamp, and a xenon lamp.
  • the vapor-deposited film (A) of the present invention is obtained by subjecting a film used for a layer constituting an exterior bag for packaging a heat insulating material when a vacuum heat insulating structure is produced, for example, a base film. And those obtained by subjecting a gas barrier film to a vapor deposition treatment.
  • a synthetic resin film that is usually used as a base film for an exterior bag for a vacuum heat insulating structure, for example, a polyester film, a polyolefin film, a polyamide film, a polyether film, a polyurethane film, etc.
  • a resin film is used and the base film is used as the vapor-deposited film (A)
  • a film obtained by forming a vapor-deposited layer by vapor deposition on the synthetic resin film can be exemplified.
  • a vapor deposition layer on a film such as a polyester film or a polyolefin film and use it as a base film from the viewpoint of processability, durability, and economy, and in particular, a polyethylene terephthalate film and a polybutylene terephthalate.
  • a film and a polypropylene film and what formed the vapor deposition layer in films, such as a polyethylene terephthalate film, are especially preferable.
  • the synthetic resin film used for the base film is preferably a stretched film from the viewpoint of the smoothness of the film surface and the applicability to a continuous coating machine and a continuous laminating machine, In particular, it is preferable to use a biaxially stretched film.
  • the substrate film has an oxygen permeability of 10 ml / (m 2 ⁇ day ⁇ when measured according to the method described in JIS K 7126 (isobaric method) under the condition of 23 ° C. ⁇ 50% RH. atm) or less, and particularly preferably 5 ml / (m 2 ⁇ day ⁇ atm) or less.
  • the lower limit is usually 0.000001 ml / (m 2 ⁇ day ⁇ atm).
  • the thickness of the base film is usually 5 to 80 ⁇ m, preferably 8 to 40 ⁇ m, particularly preferably 10 to 30 ⁇ m.
  • the film is laminated when obtaining a laminate. It is preferable in that moderate flexibility can be given to the body. If the thickness is too thick, the laminate becomes hard and the shape followability at the time of vacuum packaging tends to be low, which tends to cause breakage. If the thickness is too thin, a part of the base film layer may be lost and a sufficient gas barrier There is a tendency not to get sex.
  • the gas barrier film examples include a synthetic resin film usually used as a gas barrier film of an exterior bag for a vacuum heat insulating structure, for example, a synthetic resin film such as a polyvinylidene chloride film, a nylon film, and a vinyl alcohol resin film.
  • a synthetic resin film such as a polyvinylidene chloride film, a nylon film, and a vinyl alcohol resin film.
  • the gas barrier film is used as the vapor deposition film (A)
  • a film obtained by forming a vapor deposition layer by vapor deposition on the synthetic resin film can be exemplified.
  • the synthetic resins in the present invention, it is preferable to use a vinyl alcohol resin film in terms of gas barrier properties.
  • the vinyl alcohol resin is not particularly limited as long as it has a vinyl alcohol unit obtained by saponifying a vinyl ester unit, and preferably has an average saponification degree of 90 mol% or more, particularly preferably 95 mol% or more, and more preferably. It is 97 mol% or more.
  • the vinyl alcohol resin may be abbreviated as a polyvinyl alcohol resin (hereinafter sometimes abbreviated as “PVA resin”) or an ethylene-vinyl alcohol resin (hereinafter referred to as “EVOH resin”).
  • PVA resin polyvinyl alcohol resin
  • EVOH resin ethylene-vinyl alcohol resin
  • a PVA resin is preferable from the viewpoint of gas barrier properties.
  • the PVA resin is a thermoplastic resin that can be dissolved in water (including warm water), and examples of the PVA resin used in the present invention include unmodified PVA and modified PVA. Unmodified PVA is produced by homopolymerizing vinyl acetate and further saponifying it.
  • the modified PVA includes copolymer-modified PVA and post-modified PVA. The amount of modification is within the range not impairing the effects of the present invention, and is usually less than 10 mol%.
  • the copolymer-modified PVA is produced by copolymerization of vinyl acetate and an unsaturated monomer copolymerizable with vinyl acetate and then saponification.
  • Examples of the unsaturated monomer copolymerizable with vinyl acetate include olefins such as ethylene, propylene, isobutylene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, 3-buten-1-ol, 4- Hydroxyl group-containing ⁇ -olefins such as penten-1-ol and 5-hexen-1-ol and derivatives thereof such as acylates, acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, undecylene Unsaturated acids such as acids, salts thereof, monoesters or dialkyl esters, amides such as diacetone acrylamide, acrylamide and methacrylamide, olefin sulfonic acids such as ethylene sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid or salts thereof Etc.
  • PVA having a 1,2-diol structure in the side chain can also be used.
  • PVA having a 1,2-diol structure in the side chain includes, for example, (a) a method of saponifying a copolymer of vinyl acetate and 3,4-diacetoxy-1-butene, and (b) vinyl acetate and vinyl.
  • the content of the side chain 1,2-diol structure is 0.01 to 20 mol%. From the viewpoint of obtaining properties, it is particularly preferably 0.2 to 15 mol%, more preferably 0.5 to 12 mol%.
  • the post-modified PVA can be produced by post-modifying unmodified PVA.
  • post-modification methods include acetoacetate esterification, acetalization, urethanization, etherification, grafting, phosphate esterification, and oxyalkyleneation of unmodified or modified PVA.
  • the average degree of polymerization of the PVA resin is preferably 1100 or more, more preferably 1100 to 4000, and particularly preferably 1200 to 2600. If the average degree of polymerization is too low, the mechanical strength of the film tends to decrease. If the average degree of polymerization is too high, the workability during film formation and stretching tends to be reduced.
  • the average degree of saponification of the PVA resin is preferably 90 mol% or more, more preferably 95 to 100 mol%, and particularly preferably 99 to 100 mol%. If the average degree of saponification is too low, the water resistance is lowered, and the change of the gas barrier property due to humidity tends to be remarkable. Therefore, it is preferable to select a relatively high saponification degree.
  • the average polymerization degree and average saponification degree are measured according to JIS K6726.
  • the viscosity of the 4 wt% aqueous solution of the PVA resin is preferably 2.5 to 100 mPa ⁇ s (20 ° C.), more preferably 2.5 to 70 mPa ⁇ s (20 ° C.), particularly 2.5 to 60 mPa ⁇ s (20 ° C.) is preferable. If the viscosity is too low, mechanical properties such as film strength tend to be inferior, and if it is too high, film-forming properties on the film tend to be lowered. The viscosity is measured according to JIS K6726.
  • PVA resins can be used alone or in combination of two or more.
  • the EVOH-based resin is a thermoplastic resin that is obtained by copolymerizing ethylene and a vinyl ester monomer and then saponifying, and does not dissolve in water (including warm water).
  • the polymerization can be carried out by any known polymerization method such as solution polymerization, suspension polymerization, emulsion polymerization and the like.
  • vinyl ester monomer vinyl acetate is generally used, but other vinyl ester monomers such as vinyl formate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, caprin.
  • an aliphatic vinyl ester such as vinyl acid, vinyl laurate, vinyl stearate and vinyl versatate, and an aromatic vinyl ester such as vinyl benzoate, etc., usually 3 to 20 carbon atoms, preferably 4 to 10 carbon atoms, particularly preferably May be an aliphatic vinyl ester having 4 to 7 carbon atoms.
  • These monomers are usually used alone, but a plurality of these monomers may be used simultaneously as necessary.
  • ethylenically unsaturated monomers may be copolymerized in addition to ethylene and vinyl ester monomers as long as the effects of the present invention are not inhibited.
  • examples of other ethylenically unsaturated monomers include olefins such as propylene, 1-butene and isobutene, 3-buten-1-ol, 4-penten-1-ol, 5-hexene-1,2- Hydroxyl group-containing ⁇ -olefins such as diols, derivatives thereof such as esterified products and acylated products, acrylic acid, methacrylic acid, crotonic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, etc.
  • examples thereof include saturated acids or salts thereof, mono- or dialkyl esters having 1 to 18 carbon atoms, and the like.
  • EVOH resin having a 1,2-diol structure in the side chain As the EVOH resin, and the content of the side chain 1,2-diol structure is 0.01 to 20 moles of the EVOH resin.
  • % Is preferable from the viewpoint of obtaining good film formability, and is particularly preferably 0.2 to 15 mol%, more preferably 0.5 to 10 mol%.
  • the ethylene content of the EVOH-based resin is usually 20 to 60 mol%, but from the viewpoint of obtaining good stretchability, the ethylene content is preferably 25 mol% or more, and more preferably 30 mol% or more. It is particularly preferred. From the viewpoint of gas barrier properties, the ethylene content is particularly preferably 55 mol% or less, and more preferably 50 mol% or less. When there is too much ethylene content, there exists a tendency for gas barrier property to fall.
  • the ethylene content of the EVOH resin can be obtained by a nuclear magnetic resonance (NMR) method.
  • the average saponification degree of the vinyl ester component in the EVOH-based resin is a value measured based on JIS K6726 (however, the EVOH resin is a solution uniformly dissolved in water / methanol solvent), and is usually 90 to 100 mol%. The amount is preferably 95 to 100 mol%, particularly preferably 99 to 100 mol%. When the average saponification degree is too low, gas barrier properties, thermal stability, moisture resistance and the like tend to be lowered.
  • the melt flow rate (MFR) (210 ° C., load 2160 g) of the EVOH resin is usually 0.5 to 100 g / 10 minutes, preferably 1 to 50 g / 10 minutes, particularly preferably 2 to 35 g / 10 minutes. It is. If the MFR is too large, the film-forming property tends to be unstable, and if it is too small, the viscosity is too high, resulting in poor flow and tending to cause poor appearance such as streaks and unevenness.
  • Such EVOH-based resin includes an antioxidant, a colorant, an ultraviolet absorber, a slip agent, an antistatic agent, a plasticizer, a crosslinking agent such as boric acid, an inorganic filler, and the like within a range that does not interfere with the object of the present invention. You may mix
  • a boron compound can be blended with an EVOH-based resin in order to improve stability when heated and melted within a range that does not interfere with the object of the present invention.
  • the boron compound include boric acids, boric acid esters, borates, and borohydrides.
  • boric acids include orthoboric acid, metaboric acid, and tetraboric acid.
  • boric acid esters include triethyl borate and trimethyl borate.
  • boric acid salts include those described above. Examples include alkali metal salts, alkaline earth metal salts, and borax of various boric acids.
  • orthoboric acid hereinafter sometimes simply referred to as “boric acid” is preferable.
  • the content of the boron compound is preferably 20 to 2000 ppm, more preferably 50 to 1000 ppm in terms of boron element.
  • the boron compound By blending the boron compound within this range, it is possible to obtain an EVOH-based resin in which torque fluctuation during heating and melting is suppressed. If the content of the boron compound is too small, the effect of addition is small, and if it is too large, gelation tends to occur and the moldability may be poor.
  • the EVOH resin used in the present invention may be “post-modified” such as urethanization, acetalization, cyanoethylation, oxyalkyleneation and the like by a known method.
  • EVOH resins can be used alone or in combination of two or more.
  • the vinyl alcohol resin is used to form a film.
  • a film forming method may be a known one.
  • a vinyl alcohol resin solution is allowed to flow on a metal surface such as a drum or an endless belt.
  • the film is formed by a cast molding method in which a film is formed by stretching, or a melt molding method in which melt extrusion is performed by an extruder.
  • Such a vinyl alcohol-based resin film is usually preferably used as a uniaxially stretched film or a biaxially stretched film, and particularly preferably used as a biaxially stretched film from the viewpoint of gas barrier properties.
  • the draw ratio in the flow direction (MD direction) of such uniaxial and biaxially stretched films is preferably 2.5 to 5 times.
  • Such a stretching treatment method can be performed according to a known method such as a uniaxial stretching method that is usually performed, simultaneous biaxial stretching, or sequential biaxial stretching.
  • biaxially stretched vinyl alcohol resin films biaxially stretched PVA resin films and biaxially stretched EVOH resin films are preferably used, and in particular, biaxially stretched PVA resin films are preferably used.
  • biaxially stretched PVA resin films are preferably used.
  • the specific manufacturing method of these biaxially stretched films is demonstrated.
  • a PVA-based resin film (PVA-based resin film before stretching) is formed into a film using the PVA-based resin.
  • a PVA-based resin concentration is 5 to 70% by weight, Preferably, a composition of 10 to 60% by weight of PVA resin-water is prepared.
  • Such PVA-based resin-water compositions include plasticizers such as polyhydric alcohols such as ethylene glycol, glycerin, polyethylene glycol, diethylene glycol, and triethylene glycol, phenolic, amine-based, and the like as long as the effects of the present invention are not impaired.
  • plasticizers such as polyhydric alcohols such as ethylene glycol, glycerin, polyethylene glycol, diethylene glycol, and triethylene glycol, phenolic, amine-based, and the like as long as the effects of the present invention are not impaired.
  • additives such as antioxidants, stabilizers such as phosphate esters, coloring agents, fragrances, extenders, antifoaming agents, release agents, UV absorbers, inorganic powders, surfactants, etc.
  • the method for forming the PVA-based resin film is not particularly limited, but the PVA-based resin-water composition is supplied to an extruder and melt-kneaded, and then extruded and formed by the T-die method and the inflation method, followed by drying.
  • the method is preferred.
  • the melt kneading temperature in the extruder is preferably 50 to 170 ° C., particularly 55 to 160 ° C. If the temperature is too low, the film skin will be defective, and if it is too high, the foaming phenomenon tends to occur.
  • drying of the film after film formation is preferably performed at 70 to 120 ° C., more preferably 80 to 100 ° C.
  • the biaxially stretched PVA resin film preferably used in the present invention is obtained by further biaxially stretching the PVA resin film obtained above.
  • the stretching ratio in the machine flow direction (MD direction) is preferably 2.5 to 5 times
  • the stretching ratio in the width direction (TD direction) is preferably 2 to 4.5 times, particularly preferably.
  • the water content of the PVA resin film it is preferable to adjust the water content of the PVA resin film to 5 to 30% by weight, particularly 20 to 30% by weight.
  • the moisture content can be adjusted by a method of continuously drying the PVA resin film before drying, a method of immersing a PVA resin film having a moisture content of less than 5% by weight in water, or adjusting the humidity. Even if the moisture content is too low or too high, there is a tendency that the stretching ratio in the MD direction and the TD direction cannot be increased in the stretching process.
  • the heat setting temperature is lower than the melting point by 80 ° C. or more, the dimensional stability tends to be poor and the shrinkage rate tends to be large.
  • the temperature is higher than the melting point, the thickness variation of the film tends to be large.
  • the heat setting time is preferably 1 to 30 seconds, more preferably 5 to 10 seconds.
  • the biaxially stretched PVA resin film to contact with an aqueous solution and to dry processing.
  • an aqueous solution of usually 5 to 60 ° C., preferably 10 to 50 ° C. is used, and the contact time with the aqueous solution is appropriately selected according to the temperature of the aqueous solution, but industrially 10 to Preferably it is 60 seconds.
  • Examples of the contact method with the aqueous solution include immersion in an aqueous solution, spraying of an aqueous solution, application of an aqueous solution, steam treatment, and the like, and these can be used in combination.
  • After contact with the aqueous solution industrially, it is preferable to remove the water adhering to the surface in a non-contact manner with an air shower or the like, and then to remove the moisture in contact with a nip roll or the like.
  • the method of using a non-contact dryer etc. etc. etc. which are directly contacted with a metal roll, a ceramic roll, etc., for example, are mentioned, for example.
  • the water content of the film is usually 3% by weight or less, preferably 0.1 to 2%. It is desirable to make it weight percent. If the amount of moisture is too large, the films tend to adhere to each other in the film roll, and there is a risk of problems such as damage to the film when unwinding for processing again. Thus, a biaxially stretched PVA resin film is obtained.
  • An EVOH resin film (an EVOH resin film before stretching) is formed using the EVOH resin.
  • melt molding is mainly used. The melt molding method will be described below.
  • the conditions at the time of melt molding are not particularly limited, but are usually formed by extrusion using a non-vented, screw-type extruder at a melting temperature of 190 to 250 ° C.
  • a screw having a compression ratio of 2.0 to 4.5 is used to form a film using a T die or a round die.
  • an EVOH-based resin film can be obtained.
  • the film can be further biaxially stretched, preferably sequentially biaxially stretched to obtain a biaxially-stretched EVOH-based resin film.
  • the area ratio of such biaxial stretching is preferably 3 times or more, more preferably 6 times or more, and particularly preferably 9 times or more from the viewpoint of gas barrier properties and mechanical strength.
  • a stretching method a known stretching method such as a uniaxial or biaxial stretching method such as a double bubble method, a tenter method, a roll method, etc. can be adopted.
  • biaxial stretching either simultaneous stretching or sequential stretching can be used. This method can also be adopted.
  • the moisture content of the original film before stretching is preferably 2 to 30% by weight, particularly 5 to 30% by weight. %, More preferably 10 to 30% by weight. If the moisture content is too low, stretch spots are likely to remain, and particularly when stretched with a tenter, the stretch ratio in the portion close to the grip becomes high, so that tearing near the grip may easily occur. On the other hand, if the moisture content is too high, the elastic modulus of the stretched portion is low, the difference from the unstretched portion is not sufficient, and stretched spots may remain easily.
  • the stretching temperature varies somewhat depending on the moisture content of the original film before stretching, but a range of 50 to 130 ° C. is generally applicable.
  • a biaxially stretched EVOH-based resin film with little thickness unevenness is easily obtained in the range of 70 to 100 ° C.
  • sequential biaxial stretching in the longitudinal direction with a roll, 70 to 100 is achieved.
  • the stretching in the width direction with a tenter at 80 ° C. is performed in a temperature range of 80 to 120 ° C., a biaxially stretched EVOH resin film with little thickness unevenness is easily obtained.
  • the heat treatment is preferably performed at a temperature 5 to 40 ° C. lower than the melting point of EVOH for 5 to 20 seconds. If the heat treatment temperature is too low, the heat treatment is insufficient, and thus there is a tendency that heat resistance sufficient to withstand the vapor deposition process and sufficient gas barrier properties cannot be obtained. On the other hand, when the heat treatment temperature is too high, the stretching effect tends to be partially reduced. Thus, a biaxially stretched EVOH resin film is obtained.
  • the gas barrier film has an oxygen permeability of 1 ml / (m 2 ⁇ day ⁇ atm) or less when measured according to the method described in JIS K 7126 (isobaric method) under the condition of 23 ° C. ⁇ 50% RH. In particular, it is preferably 0.1 ml / (m 2 ⁇ day ⁇ atm) or less.
  • the thickness of the gas barrier film is usually 5 to 100 ⁇ m, preferably 5 to 50 ⁇ m, particularly preferably 5 to 30 ⁇ m. If this thickness is too thick, there is a tendency that the stress concentrated on the wrinkled part entering the exterior bag increases when the vacuum insulation structure is finished, and the possibility of generating pinholes tends to increase. When it is finished, the strength as an exterior bag is not sufficiently obtained, and the bag tends to be broken during processing and use.
  • the vapor-deposited film (A) used in the present invention is a vapor-deposited base film (A-1) obtained by subjecting the base film to a vapor deposition treatment, or a vapor-deposited gas barrier property obtained by subjecting the gas barrier film to a vapor deposition treatment.
  • a film (A-2) is preferred.
  • the vapor deposition material may be a known general vapor deposition material used when producing a laminate used for a vacuum heat insulating structure, but a metal or a metal oxide is preferably used.
  • metal or metal oxide for example, a metal such as aluminum, gold, silver, copper, nickel, cobalt, chromium, tin, or an oxide of such metal can be used.
  • a metal such as aluminum, gold, silver, copper, nickel, cobalt, chromium, tin, or an oxide of such metal
  • aluminum, gold, silver, and tin are preferably used, and aluminum is particularly preferably used from the viewpoint of cost.
  • silica vapor deposition can be performed instead of metal or metal oxide vapor deposition.
  • a vapor deposition method for example, a general vacuum vapor deposition method such as a sputtering method, an ion plating method, a resistance heating vapor deposition method, a high frequency induction heating vapor deposition method, or an electron beam heating vapor deposition method can be used.
  • a general vacuum vapor deposition method such as a sputtering method, an ion plating method, a resistance heating vapor deposition method, a high frequency induction heating vapor deposition method, or an electron beam heating vapor deposition method
  • the following vapor deposition is preferable. .
  • the heating temperature in the vapor deposition process is constant.
  • the number of rolls in contact with the deposition surface should be reduced as much as possible, and the material of the roll should be a material that does not place a load on the deposition surface. desirable.
  • pre-treat the surface of the film to be vapor-deposited before the film is vapor-deposited examples include a method for promoting activation of the substrate itself such as corona treatment, and polyethylene. And a method of forming a thin film layer with a coating agent that uses a polyether as a main component and a urethane-based curing agent.
  • the vapor deposition may be obtained by a single vapor deposition treatment or may be obtained by repeating the vapor deposition treatment a plurality of times.
  • the thickness of the vapor deposition is usually 10 to 100 nm, particularly 30 to 80 nm. If it is too thin, there is a tendency that it is difficult to obtain heat radiation characteristics, and if it is too thick, the deposition time for obtaining the thickness becomes long, the thermal influence during deposition tends to increase and the cost tends to increase, There is an industrially unfavorable tendency.
  • the laminate [I] in the present invention includes at least one layer of the above-mentioned vapor-deposited film (A), but includes a base film / gas barrier film layer structure from the viewpoint of strength, gas barrier properties, and the like. It is preferable that at least one of the film and the gas barrier film is a vapor deposition film (A).
  • the base film or the gas barrier film does not have a vapor deposition layer, various films before vapor deposition can be used as they are.
  • a base film and a gas barrier film may each be used only one layer, and may laminate
  • 1 type, or 2 or more types of films can be used for a base film and a gas-barrier film.
  • a biaxially stretched PVA-based resin film and a biaxially stretched EVOH-based resin film in combination as the gas barrier film, and in particular, base film / biaxially stretched EVOH-based resin film / biaxially stretched.
  • Each layer of the PVA-based resin film is preferably laminated in this order. That is, in addition to the base film, the gas barrier property of the biaxially stretched EVOH resin film, particularly the entry of water vapor, is suppressed to a very small amount, so that the biaxially stretched PVA resin film is extremely resistant to various gases such as oxygen and nitrogen.
  • Biaxially stretched EVOH-based resin film and biaxially-stretched PVA-based resin film are complementary to each other in their barrier properties, and are different from each other in gas types that can prevent intrusion, particularly in poor environments such as high-temperature and high-humidity conditions. Therefore, it is necessary for each of them to exhibit barrier properties with an appropriate thickness, and the thickness ratio is preferably within the above range.
  • the laminate [I] in the present invention is preferably formed by laminating a protective film on the outside of the base film and laminating a seal layer on the inside of the gas barrier film.
  • the protective film used in the present invention is a film mainly used for the purpose of protecting the outer layer when an exterior bag for a vacuum heat insulating structure is produced using the laminate [I].
  • a polyester film, a polyamide Examples thereof include a system film, a polyolefin film, and a polyurethane film.
  • a polyolefin-based film preferably a polypropylene film, a polyvinyl chloride film, a polyvinylidene chloride film, or a fluorine-based film because it has a water vapor barrier property.
  • a general-purpose polyolefin film can be used as the polyolefin film.
  • homopolymers such as polypropylene, polybutene-1, high-density polyethylene, medium-density polyethylene, and low-density polyethylene are listed, and ethylene, butene-1, pentene-1, 4-methylpentene-1 containing propylene as a main component , Hexene-1, octene-1, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, copolymers with 1,4-hexadiene, styrene, etc., and also grafted with carboxylic acid such as maleic anhydride Modified ones, copolymers of ethylene, propylene, butene-2, isobutylene, butadiene, pentene-1, 4-methylpentene-1, hexene-1, octene-1 and the like mainly containing butene-1; Furthermore, graft
  • a stretching treatment it is also preferable to perform a stretching treatment and use a uniaxially stretched or biaxially stretched polyolefin film.
  • a biaxially stretched polyolefin film is preferably used from the viewpoint of obtaining a higher gas barrier property with a thinner film.
  • the thickness of the protective film it is usually preferably 5 to 200 ⁇ m, particularly 10 to 100 ⁇ m. If the thickness is too thin, the filling property of the heat insulating material that becomes the core material of the vacuum heat insulating structure obtained tends to be lowered. If the thickness is too thick, not only the workability is lowered, but also economically disadvantageous. .
  • the protective film preferably has an initial elastic modulus of 1 to 100 GPa, more preferably 0.5 to 50 GPa, and a water vapor permeability of 10 g / m 2 / day or less, further 8 g / m 2 / day or less.
  • the initial elastic modulus is a value at 23 ° C. ⁇ 60% RH measured in accordance with JIS K 7127, and the water vapor permeability is 23 ° C. ⁇ 90% measured in accordance with JIS Z 0208. Value at RH.
  • the water vapor permeability is preferably as small as possible, but the lower limit is usually 0.0000001 g / m 2 / day.
  • the seal layer used in the present invention is provided on the inner side when an outer bag for a vacuum heat insulating structure is produced using the laminate [I], and usually comprises a polyolefin resin layer from the viewpoint of seal strength.
  • a layer is preferable, and among them, polypropylene, high density polyethylene, and low density polyethylene are preferably used.
  • polypropylene, high density polyethylene, and low density polyethylene are preferably used.
  • polyolefin resins ethylene-vinyl acetate copolymers and the like are also preferably used.
  • a separate film may be prepared and further laminated on the inner surface of the exterior bag.
  • (2) although it can be laminated by melt extrusion directly on the inner surface of the outer bag, (1) is preferred in terms of sealing properties.
  • the thickness of the sealing layer is usually preferably 10 to 100 ⁇ m, particularly 20 to 80 ⁇ m. If it is too thin, the sealing strength tends to decrease. If it is too thick, gas penetration from the end face of the sealing layer is promoted. There is a tendency for gas barrier property to fall.
  • a non-solvent dry laminating method using an adhesive that uses an isocyanate-based curing agent with polyester or polyether as a main component for example, a non-solvent dry laminating method using an adhesive that uses an isocyanate-based curing agent with polyester or polyether as a main component, a solvent dry laminating method, Although there is a wet laminating method using an emulsion adhesive, there is no particular limitation to this method.
  • the thickness of the adhesive layer is preferably from 0.1 to 10 ⁇ m, particularly from 0.3 to 7 ⁇ m, more preferably from 0.5 to 5 ⁇ m from the viewpoint of adhesive strength. If the thickness of the adhesive layer is too thin, the adhesive force tends to be insufficient, and if it is too thick, delamination occurs due to the destruction of the adhesive layer itself, and the adhesive strength tends to decrease.
  • the total thickness of the laminate [I] in the present invention is usually 5 to 500 ⁇ m, and particularly preferably 10 to 200 ⁇ m.
  • the water vapor permeability of the laminate [I] of the present invention is usually 1 g / m 2 / day or less, and more preferably 0.5 g / m 2 / day or less. If the water vapor permeability is too large, the gas barrier property is lowered, and thus the heat insulation performance of the vacuum heat insulation structure tends to be lowered.
  • the water vapor permeability is preferably as small as possible, but is usually 0.00001 g / m 2 / day as the lower limit.
  • the water vapor permeability is a value at 23 ° C. ⁇ 90% RH measured according to JIS Z 0208.
  • the oxygen permeability of the laminate [I] is usually 0.5 ml / (value when measured according to the method described in JIS K 7126 (isobaric method) under the condition of 23 ° C. ⁇ 50% RH. m 2 ⁇ day ⁇ atm) or less, preferably 0.1 ml / (m 2 ⁇ day ⁇ atm) or less. If the oxygen permeability is too high, as in the case of the water vapor, after the vacuum heat insulating structure is formed, an outside air constituent gas such as oxygen or nitrogen tends to enter the inside and the heat insulating performance tends to be remarkably lowered. The lower the oxygen permeability, the better. However, the lower limit is usually 0.000001 ml / (m 2 ⁇ day ⁇ atm).
  • the laminate [I] of the present invention preferably has a moisture content in the laminate of 0.3% by weight or less, particularly preferably 0.2% by weight or less, and more preferably 0.1% by weight or less. It is particularly preferably 0.07% by weight or less, particularly preferably 0.05% by weight or less. If the moisture content is too high, the moisture contained in the laminate tends to lower the heat insulation performance of the vacuum heat insulation structure because the internal pressure of the vacuum heat insulation structure is lowered. The lower limit of the moisture content is usually 0.001% by weight.
  • the moisture content in laminated body [I] is measured as follows. That is, the moisture content of the laminate [I] can be determined by, for example, using a Karl Fischer measuring device (moisture vaporizer: VA-100 type, trace moisture measuring device: CA-100 type) manufactured by Mitsubishi Chemical Corporation. Measure by coulometric titration method. The laminate [I] is cut into 4 cm ⁇ 1 cm strips, 10 are placed on a board, and the titration duration is 30 minutes at a heating temperature of 120 ° C.
  • the temperature is 40 ° C. or higher.
  • the temperature is 40 ° C. or higher.
  • the heating temperature is preferably 40 ° C. or higher, particularly 50 ° C. or higher, more preferably 70 ° C. or higher, and particularly preferably 80 ° C. or higher. If the heating temperature is too low, a satisfactory moisture content tends not to be obtained. The upper limit is usually 120 ° C. If the heating temperature is too high, the sealing layer tends to be fused.
  • the heating time is preferably 0.5 hours or more, particularly preferably 1 to 96 hours, more preferably 3 to 72 hours.
  • the heating time is too short, there is a tendency that the moisture of the film cannot be sufficiently removed.
  • Examples of the desiccant include compounds or anhydrous compounds in which a part or all of the crystal water of the compound has been released, such as compounds or anhydrous compounds in which a part or all of 1/2 to 18 hydrate has been released.
  • Such hydrates include calcium sulfate hemihydrate, calcium chloride hexahydrate, magnesium chloride (2,4,6) hydrate, copper sulfate pentahydrate, magnesium sulfate heptahydrate. And aluminum sulfate 18 hydrate.
  • desiccant for example, calcium chloride-based desiccant using anhydrous calcium chloride or calcium chloride monohydrate, or magnesium chloride-based desiccant, tin chloride-based desiccant, sodium sulfate-based A desiccant etc. are mentioned.
  • a desiccant that causes a chemical reaction with surrounding moisture that is, a desiccant that becomes a different compound before and after drying
  • this type of desiccant include phosphorus pentoxide and calcium oxide. Each of these compounds is dried by reacting with moisture to change into phosphoric acid, calcium hydroxide, or the like.
  • the desiccant can be present in the form of powder or flakes, and can be packaged inside.
  • the desiccant can be individually packaged with a highly permeable packaging material, and the laminate It can also be packaged together with [I].
  • the highly permeable packaging material includes paper, non-woven fabric, woven fabric, cellophane film, and the like, and these can be used alone or in combination. It is also possible to form a composite by applying a desiccant to the surface of paper, nonwoven fabric or the like, and wrap this in an aluminum packaging material.
  • the amount of the desiccant used is 0.5 to 50 weights per 100 parts by weight of the inner laminate [I] (including the case of the outer bag for a vacuum heat insulating structure using the laminate [I]). Parts, preferably 1 to 20 parts by weight. If the amount of the desiccant is too small, the water removability tends to decrease. If the amount is too large, the entire volume tends to be large and transportation and storage tend to be difficult. In the present invention, conventionally used desiccants such as silica gel other than the desiccant may be used in combination.
  • the arnium packaging material is preferably 10 to 1000 ⁇ m, particularly preferably 30 to 300 ⁇ m.
  • the laminate [I] and the desiccant are preferably sealed and packaged with an aluminum packaging material, heated in an environment of 40 ° C. or higher, and then stored or transported in sealed packaging.
  • the exterior body for vacuum heat insulation structures is produced beforehand using laminated body [I] before adjusting a moisture content, and the obtained exterior bag for vacuum insulation structures and a desiccant are made into aluminum. It is also preferable to store or transport the sealed packaging as it is after heating in an environment of 40 ° C. or higher in a state of being sealed and packaged with a packaging material. As mentioned above, if it is heated in an environment of 40 ° C.
  • an exterior bag for a vacuum heat insulating structure is obtained using the above laminate [I].
  • laminated body [I] does not have a sealing layer
  • the vacuum heat insulating structure of the present invention can be obtained by sealing and packaging the heat insulating material using such an exterior bag.
  • the vacuum heat insulating structure of the present invention will be described.
  • packaging the heat insulating material for example, a method of forming an outer bag obtained by processing the laminate [I] into a bag shape and putting the heat insulating material therein can be used.
  • drying it is preferable to dry at 70 ° C. or higher and 150 ° C. or lower, particularly 80 ° C. or higher and 130 ° C. or lower, and further 80 ° C. or higher and 110 ° C. or lower. If the drying temperature is too low, it tends to take too much time to reach the predetermined amount of residual solvent. If the drying temperature is too high, the sealing layer of the outer bag is fused inside, and the inner space of the bag is reduced. There is a tendency to partially occlude.
  • the additional drying is generally performed under normal pressure conditions, but can be performed under reduced pressure conditions.
  • the drying time at the same temperature can be shortened by reducing the pressure as compared with the normal pressure condition.
  • the heat insulating material sealed and packaged in the outer bag made of the laminate [I] for example, a polymer having open cells inside, or a fine powder of inorganic or metal is preferably used, and the inside of the outer bag is evacuated. However, the shape can be maintained.
  • the heat insulating effect of the vacuum heat insulating structure is obtained when the polymer of the heat insulating material does not have bubbles or has closed cells. Reduced and not preferable.
  • heat-insulating material examples include urethane foam, carbon foam, phenol foam, phenol-urethane foam and other polymers having open cells, fine powders such as alumina, silica, pearlite, glass wool, rock wool, diatomaceous earth.
  • molded body examples include soil and calcium silicate.
  • fibrous heat-insulating materials such as glass wool, granular heat-insulating materials such as granular silicon oxide and foamed resin bodies can retain the shape even when the inside of the outer bag is evacuated, and have bubbles. Therefore, it is preferable in that the heat insulating effect of the vacuum heat insulating structure can be maintained.
  • heat-insulating material may cause a decrease in the degree of vacuum due to moisture
  • a mixture of a desiccant such as calcium oxide or calcium chloride.
  • the heat insulating material is put in an outer bag made of the laminate [I] and vacuum-packed to form a vacuum heat insulating structure.
  • the heat insulating material is predetermined. It is preferable to form in the shape (for example, a cube, a rectangular parallelepiped, etc.) in terms of heat insulation performance and workability.
  • a vacuum heat insulating structure can be obtained by reducing the pressure in a state where the heat insulating material is put in the outer bag made of the laminate [I], and finally sealing and closing the opening of the bag.
  • the degree of vacuum of the vacuum heat insulating structure is not particularly limited, but is preferably 100 Pa or less, more preferably 10 Pa or less, and particularly preferably 5 Pa or less.
  • the shape and size of the vacuum heat insulating structure are not particularly limited, and may be determined according to the purpose.
  • the shape of the vacuum heat insulating structure may be a shape in which one outer bag made of the laminate [I] is included for one vacuum heat insulating structure, or the outer bag for one vacuum heat insulating structure. May be in a shape including a plurality of.
  • the seal part that becomes a joint between the exterior bag parts becomes a thin part in the vacuum heat insulation structure, and deformation when the vacuum heat insulation structure is deformed Therefore, the vacuum heat insulating structure can be easily deformed, which is preferable. Furthermore, even when a hole or the like is generated due to an external factor, and the vacuum property of the vacuum heat insulating structure is lost, the decrease in the heat insulating property is kept to a minimum if the shape includes a plurality of exterior bags. Can be preferable.
  • such a vacuum heat insulating structure it is often processed into a rectangular parallelepiped shape having a thickness of 5 to 100 mm and a length and width of 100 to 1000 mm. If the volume of the vacuum insulation structure is unnecessarily large, the area that loses performance increases when a defect such as a hole occurs in the outer bag, which may reduce the performance of the final product using the vacuum insulation structure. Therefore, it is preferable to set the size appropriately.
  • Such vacuum heat insulating structures include household appliances such as cooler boxes and bottle cases, household appliances such as refrigerators, electric pots, rice cookers, housing equipment such as water heaters, bathtubs, unit baths, toilet seats, floor heating, solar roofs, It can be effectively used as a heat insulating material for a housing system such as a low-temperature radiation plate, a housing building material such as a heat insulating panel for an outer wall, and the like. Among these, it can be particularly preferably used as a heat insulating material for refrigerators.
  • Example 1 The following films were prepared.
  • [Deposited film (A)] (Aluminum-deposited biaxially stretched polyester film (A-1)) Metal aluminum was vacuum evaporated on one smooth surface of a 12 ⁇ m thick biaxially stretched polyester film (trade name “Cosmo Shine” manufactured by Toyobo Co., Ltd.), and an aluminum-deposited biaxially stretched polyester film (A- 1) was obtained.
  • the aluminum-deposited biaxially stretched polyester film (A-1) obtained above is placed on the stage of a microscope (manufactured by Keyence Corporation, Digital Microscope VHX-1000) and covered with a slide glass from above, and from the opposite side of the deposition surface Irradiate light and observe with a microscope from the side of the deposition surface (magnification: 100 times), so that the image size is 4 mm x 3 mm at each of the five locations (upper right, upper left, lower right, lower left, center) of the film. Got an image.
  • Each of the obtained images was converted into an 8-bit monochrome image by image analysis software (ImageJ), and then set so as to count a portion having a contrast of 100 to 255, and the number was measured. And the average value of the number of the measured five places was made into the number of the bright spots of a film.
  • ImageJ image analysis software
  • FIG. 1 shows an image obtained by converting the image at the center of the obtained image into an 8-bit monochrome image using image analysis software (ImageJ).
  • ⁇ Measurement method of area ratio of bright spots Similar to the above method for measuring the number of bright spots, after obtaining an image of the aluminum-deposited biaxially stretched polyester film (A-1), the total area of the bright spots was measured using image analysis software (ImageJ), The area ratio (%) of the bright spots was determined. The total area of bright spots was also measured at five locations (upper right, upper left, lower right, lower left, and center) of the film, and the average value was taken as the number of bright spots on the film.
  • the film was dried for 2 seconds to prepare a PVA film (thickness 150 ⁇ m) having a water content of 25%.
  • the PVA film was stretched 3.8 times in the MD direction, then stretched 3.8 times in the TD direction with a tenter, and then heat-fixed at 180 ° C. for 8 seconds to obtain a biaxially stretched PVA film (thickness 12 ⁇ m). It was.
  • ⁇ Protective film ⁇ (Biaxially oriented polypropylene film) A biaxially stretched polypropylene film (trade name “Pyrene OT”, manufactured by Toyobo Co., Ltd.) having a thickness of 25 ⁇ m was prepared. The water vapor transmission rate of this film at 23 ° C. ⁇ 90% RH was measured and found to be 7.2 g / m 2 / day.
  • a vacuum heat insulating structure was produced as follows. On the surface of the aluminum vapor-deposited biaxially stretched polyester film (A-1) which has not been subjected to the vapor deposition treatment, 17 parts of an adhesive main agent “Takelac A626” (manufactured by Mitsui Chemicals) and an adhesive curing agent “Takenate A50” (Mitsui) (Chemical Co., Ltd.) A dry laminating adhesive in which 17 parts of ethyl acetate was mixed with 17 parts was applied by a gravure coater using a gravure roll with a mesh of 100 ⁇ m so that the coating amount was 10 g / m 2.
  • Biaxially oriented polypropylene film with a residence time of 12 seconds, a coating amount after drying of 3.4 g / m 2 , and a laminating pressure of 3.5 kg / cm 2 (0.35 MPa) through a heated dryer. And a laminated body (1) was obtained.
  • ethyl acetate was added to 17 parts of the adhesive main agent “Takelac A626” (Mitsui Chemicals) and 17 parts of the adhesive curing agent “Takenate A50” (Mitsui Chemicals).
  • 66 parts of the mixed adhesive for dry lamination was applied by a gravure coater using a gravure roll with a mesh of 100 ⁇ m so that the coating amount was 10 g / m 2, and this was passed through a dryer heated to 80 ° C.
  • the coating amount after drying was 3.4 g / m 2, and then the aluminum vapor-deposited polyester film (A-) of the laminate (1) was laminated at a lamination pressure of 3.5 kg / cm 2 (0.35 MPa).
  • the laminated body (2) was obtained by laminating it with the aluminum-deposited surface of 1).
  • the coating was applied with a gravure coater, passed through a drier heated to 80 ° C., and after a drying time of 3.4 g / m 2 with a residence time of 12 seconds, a laminating pressure of 3.5 kg / cm 2.
  • a non-stretched polypropylene film having a thickness of 30 ⁇ m was bonded to the laminate [I-1] at (0.35 MPa).
  • a commercially available fine glass wool (manufactured by Mag Izobale, “WR800”) is laminated to 2 kg / m 2 , heated to 630 ° C., and then compressed with a load until the thickness reaches 10 mm. And after cooling this slowly, it cut
  • the heat insulating material obtained above was dried again by leaving it in a thermostatic bath at 150 ° C. for 1 hour.
  • the three-side sealed packaging bag (exterior bag for vacuum heat insulation structure) is left in a constant temperature bath at 100 ° C. for 1 hour with the mouth open, and the dried heat insulating material is inserted therein.
  • 3 g of quicklime desiccant contained in a polypropylene nonwoven fabric is enclosed in the inner edge of the three-side sealed packaging bag, immediately placed in a vacuum packaging machine, and sealed under reduced pressure at a pressure of 2 Pa in the vacuum packaging machine, A vacuum heat insulating structure [V-1] was obtained.
  • Examples 2 to 4 Comparative Examples 1 and 2> As shown in Table 1 below, a vacuum heat insulating structure was produced in the same manner as in Example 1 except that an aluminum vapor deposited polyester film having a different number of bright spots and different area ratios was used as the vapor deposited film (A). The structure was evaluated in the same manner as in Example 1.
  • Comparative Example 1 among the images obtained when measuring the number of bright spots, the image of the central portion is converted into an 8-bit monochrome image by image analysis software (ImageJ) is shown in FIG. Comparing FIG. 1 which is the image of Example 1 and FIG. 2 which is the image of Comparative Example 1, in FIG. 1, white spots are hardly seen, whereas in FIG. 2, white spots are scattered. It was done. Thus, it can be seen that the number of white spots in the image can be measured as the number of bright spots.
  • image analysis software ImageJ
  • the vacuum heat insulating structures of Examples 1 to 4 used have low initial thermal conductivity (W1), excellent thermal insulation performance, and further less thermal conductivity deterioration (W3) after the durability test. It was also excellent in sustainability.
  • the vacuum heat insulating structures of Comparative Examples 1 and 2 using the laminate including the vapor deposition film having more than 200 bright spots have the same initial thermal conductivity as that of Examples 1 to 4.
  • the thermal conductivity deterioration of the durability test is large and the heat insulation performance is remarkably lowered, and the vacuum heat insulation structures of the examples are superior in durability of the heat insulation performance and excellent in long-term durability. I understand that.
  • the vacuum heat insulating structure of the present invention When the vacuum heat insulating structure of the present invention is irradiated with light from the opposite side of the vapor deposition surface of the vapor deposition film (A) and the number of transmitted light is measured as the number of bright spots, the number of bright spots is It is an exterior bag for a vacuum heat insulation structure, characterized by using a laminate [I] containing a vapor-deposited film (A) of 200 or less per 4 mm ⁇ 3 mm size, and not only has excellent initial heat insulation performance Even when used for a long period of time, the heat insulation performance is hardly lowered, and it has excellent long-term durability.
  • household appliances such as cooler boxes, bottle cases, household appliances such as refrigerators, electric pots, rice cookers, housing equipment such as water heaters, bathtubs, unit baths, toilet seats, floor heating, solar roofs, low-temperature radiation plates, etc.
  • a housing building material such as a heat insulating panel for an outer wall, etc., among these, it can be particularly suitably used as a heat insulating material for a refrigerator or a housing building material.

Abstract

The purpose of the present invention is to obtain a vacuum insulation structure, which exhibits excellent insulation performance and with which the decrease in insulation performance is very small even when used for long periods. Provided is an outer bag for a vacuum insulation structure obtained by using a laminate [I] comprising a vapor deposition film (A) for which, when light is irradiated on the vapor deposition film (A) from the side opposite to the vapor deposition surface and the number of the permeating light is measured as the number of bright spots, the number of bright spots is 200 per 4 mm × 3 mm film size or less.

Description

真空断熱構造体用外装袋及びそれを用いた真空断熱構造体Exterior bag for vacuum insulation structure and vacuum insulation structure using the same
 本発明は、真空断熱構造体用外装袋及びそれを用いた真空断熱構造体に関するものであり、更に詳しくは、優れた断熱性能を有し、長期間使用した際にも断熱性能の低下が非常に少ない真空断熱構造体を得ることのできる真空断熱構造体用外装袋に関するものである。 The present invention relates to an exterior bag for a vacuum heat insulation structure and a vacuum heat insulation structure using the same. More specifically, the present invention has excellent heat insulation performance. It is related with the exterior bag for vacuum heat insulation structures which can obtain a vacuum heat insulation structure with few.
 従来、冷蔵庫や電気ポットの断熱材、あるいは住宅用断熱壁用の断熱パネルとしては、ポリウレタンフォームを用いた断熱体が利用されてきたが、近年これに代わる、優れた材料として、グラスウール、酸化珪素、発泡樹脂などの断熱性材料を芯材とし、これをガスバリア性ラミネートフィルムで密封し且つ内部を真空とした真空断熱構造体が用いられ始めている。 Conventionally, heat insulating materials using polyurethane foam have been used as heat insulating materials for refrigerators and electric pots or heat insulating walls for houses, but in recent years, glass wool, silicon oxide have been used as excellent alternative materials. A vacuum heat insulating structure in which a heat insulating material such as foamed resin is used as a core material, which is sealed with a gas barrier laminate film and the inside is vacuumed, has begun to be used.
 かかる真空断熱構造体では、ガスバリア性ラミネートフィルムとして、ビニルアルコール系樹脂フィルムやアルミ箔を含有した多層フィルムなどが用いられており、ビニルアルコール系樹脂フィルムとしては、エチレン-ビニルアルコール系樹脂フィルムや、ポリビニルアルコール系樹脂フィルムが用いられている。 In such a vacuum heat insulating structure, a vinyl alcohol resin film or a multilayer film containing aluminum foil is used as the gas barrier laminate film, and as the vinyl alcohol resin film, an ethylene-vinyl alcohol resin film, A polyvinyl alcohol resin film is used.
 例えば、エチレン-ビニルアルコール系樹脂フィルムを含有した多層フィルムを含む真空断熱構造体としては、芯材と、前記芯材を外包する外装袋外被材とを備え、前記外装袋が、蒸着層を有するラミネートフィルム同士、もしくは蒸着層を有するラミネートフィルムと、金属箔を有するラミネートフィルムとを、熱溶着によって袋状にしたものであり、前記蒸着層を有するラミネートフィルムが、熱溶着層と、ガスバリア層と、最外層とを含み、前記ガスバリア層がエチレン-ビニルアルコール系樹脂を含むプラスチックフィルムの片側にアルミ蒸着を施したものであり、かつ、アルミ蒸着を施した面が熱溶着層側に設けられている真空断熱構造体が提案されている(例えば、特許文献1参照)。 For example, a vacuum heat insulating structure including a multilayer film containing an ethylene-vinyl alcohol-based resin film includes a core material and an outer bag envelope material that encloses the core material, and the outer bag has a vapor deposition layer. Laminate films having each other, or a laminate film having a vapor deposition layer, and a laminate film having a metal foil are formed into a bag shape by thermal welding, and the laminate film having the vapor deposition layer comprises a thermal welding layer and a gas barrier layer. And an outermost layer, wherein the gas barrier layer is formed by vapor-depositing aluminum on one side of a plastic film containing an ethylene-vinyl alcohol-based resin, and the aluminum-deposited surface is provided on the heat-welded layer side. A vacuum heat insulating structure has been proposed (see, for example, Patent Document 1).
 また、ポリビニルアルコール系樹脂フィルムを含有した多層フィルムを含む真空断熱構造体としては、断熱性材料を、ポリビニルアルコール系樹脂フィルムを含む多層フィルムによって密閉包装して得られる真空断熱構造体であって、かかる多層フィルムとして、蒸着されていてもよい二軸延伸ポリビニルアルコール系樹脂フィルムと、蒸着されていてもよいポリエステルフィルム、ポリアミドフィルム、ポリオレフィンフィルム等が積層した多層フィルムを用いた真空断熱構造体が提案されている(例えば、特許文献2参照)。 Moreover, as a vacuum heat insulating structure including a multilayer film containing a polyvinyl alcohol-based resin film, a heat insulating material is a vacuum heat insulating structure obtained by sealing and packaging with a multilayer film including a polyvinyl alcohol-based resin film, As such a multilayer film, a vacuum heat insulating structure using a multilayer film in which a biaxially stretched polyvinyl alcohol-based resin film that may be deposited and a polyester film, a polyamide film, a polyolefin film or the like that may be deposited is laminated is proposed. (For example, refer to Patent Document 2).
特開平10-122477号公報JP-A-10-122477 特開2007-078176号公報Japanese Patent Application Laid-Open No. 2007-078176
 しかしながら、上記特許文献1の開示技術では、多層フィルムに蒸着フィルムを用いることにより、優れたガスバリア性を有し、優れた断熱性能を有する真空断熱構造体を得ているが、蒸着層が均一でなくムラがあったり、蒸着が充分でない場合には、長期間使用した際に断熱性能が低下し、充分な断熱性能が持続しない場合があった。また、上記特許文献2の開示技術では、二軸延伸ポリビニルアルコール系樹脂フィルムを用いる際にガスバリア性を向上させるために蒸着層を設けるが、その際も蒸着層にムラが生じる場合があり断熱性能の低下を招くものであった。 However, in the disclosed technique of Patent Document 1, a vacuum heat insulating structure having excellent gas barrier properties and excellent heat insulating performance is obtained by using a vapor deposition film for a multilayer film, but the vapor deposition layer is uniform. When there was unevenness or vapor deposition was insufficient, the heat insulation performance deteriorated when used for a long period of time, and sufficient heat insulation performance could not be sustained. Further, in the disclosed technique of Patent Document 2, a vapor deposition layer is provided in order to improve gas barrier properties when using a biaxially stretched polyvinyl alcohol-based resin film. This caused a decrease in
 従って、近年における高度な断熱性能が求められる状況においては、まだまだ改善の余地が残るものであり、長期間使用した際にも断熱性能の低下が非常に少ないといった耐久性において更なる向上が求められている。 Therefore, there is still room for improvement in the situation where advanced thermal insulation performance is required in recent years, and further improvement in durability is required such that the deterioration of thermal insulation performance is extremely small even after long-term use. ing.
 そこで、このような背景下において、本発明は、優れた断熱性能を有し、特に断熱性能の持続性に優れた真空断熱構造体を得ることができる真空断熱構造体用外装袋及びそれを用いた真空断熱構造体を提供する。 Therefore, in such a background, the present invention has an excellent heat insulation performance, and in particular, a vacuum heat insulation structure outer bag capable of obtaining a vacuum heat insulation structure excellent in sustainability of the heat insulation performance, and uses the same. A vacuum insulation structure was provided.
 しかるに、本発明者等は、かかる事情を鑑み鋭意研究を重ねた結果、真空断熱構造体に用いる外装袋において、光の透過により観測される輝点の数が所定サイズ当たり200個以下である蒸着フィルムを含む積層体を用いることにより、ガスバリア性に優れ、断熱性能の持続性に優れた真空断熱構造体が得られることを見出した。 However, as a result of intensive studies in view of such circumstances, the present inventors, as a result, in the exterior bag used for the vacuum heat insulating structure, the number of bright spots observed by light transmission is 200 or less per predetermined size. It has been found that by using a laminate including a film, a vacuum heat insulating structure excellent in gas barrier properties and excellent in heat insulation performance can be obtained.
 即ち、本発明の要旨は、蒸着フィルム(A)の蒸着面の反対側から光を照射し、透過する光の数を輝点の数として測定したときに、該輝点の数が、フィルムサイズ4mm×3mm当たり200個以下である蒸着フィルム(A)を含む積層体[I]を用いてなる真空断熱構造体用外装袋に関するものである。 That is, the gist of the present invention is that when the light is irradiated from the opposite side of the vapor deposition surface of the vapor deposition film (A) and the number of transmitted light is measured as the number of bright spots, the number of bright spots is the film size. The present invention relates to an exterior bag for a vacuum heat insulating structure using a laminate [I] containing 200 or less vapor deposited films (A) per 4 mm × 3 mm.
 更に本発明においては、前記真空断熱構造体用外装袋を用いて、断熱性材料を密封包装してなる真空断熱構造体に関するものである。 Furthermore, in the present invention, the present invention relates to a vacuum heat insulating structure formed by hermetically packaging a heat insulating material using the outer bag for a vacuum heat insulating structure.
 本発明では、真空断熱構造体の断熱性能との関係において、真空断熱構造体用外装袋を構成する積層体[I]に含まれる蒸着フィルムに着目したところ、従来はあまり注目されてこなかった蒸着フィルムの蒸着状態が断熱性能に影響を与えることを突き止めたものであり、蒸着フィルムの輝点の数をより少なく調整した蒸着フィルムを選択することにより、水蒸気や窒素、酸素等のガスの、真空断熱構造体内部への透過が極めて低く抑えられ、長期間使用した際にも高い信頼度で真空状態が維持され断熱性能の低下が少ないものとなると推察される。 In the present invention, in the relationship with the heat insulating performance of the vacuum heat insulating structure, attention was paid to the vapor deposited film contained in the laminate [I] constituting the outer bag for the vacuum heat insulating structure. We have determined that the vapor deposition state of the film affects the heat insulation performance, and by selecting a vapor deposition film with a smaller number of bright spots on the vapor deposition film, a vacuum of gas such as water vapor, nitrogen, oxygen, etc. It is presumed that the penetration into the heat insulating structure is extremely low, the vacuum state is maintained with high reliability even when used for a long period of time, and the heat insulating performance is hardly lowered.
 本発明においては、蒸着フィルムの蒸着面の反対側から光を照射し、透過する光の数を輝点の数として測定したときに、該輝点の数が、フィルムサイズ4mm×3mm当たり200個以下である蒸着フィルムを含む積層体[I]を用いてなる真空断熱構造体用外装袋を用いて、真空断熱構造体を作製することにより、優れた断熱性能を示し、長期間使用した際にも断熱性能の低下が少ないといった耐久性に優れた効果を有するものである。 In the present invention, when irradiating light from the opposite side of the vapor deposition surface of the vapor deposition film and measuring the number of transmitted light as the number of bright spots, the number of bright spots is 200 per 4 mm × 3 mm film size. By producing a vacuum heat insulation structure using an exterior bag for a vacuum heat insulation structure using a laminate [I] containing a vapor-deposited film, which shows excellent heat insulation performance, when used for a long time Also, it has an effect of excellent durability such that there is little decrease in heat insulation performance.
実施例1のフィルムを、蒸着面の反対側から光を照射し、蒸着面側から顕微鏡観察した画像を、画像解析ソフト(ImageJ)で8bitのモノクロ画像に変換したものである。An image obtained by irradiating the film of Example 1 with light from the opposite side of the vapor deposition surface and observing under a microscope from the vapor deposition surface side is converted into an 8-bit monochrome image by image analysis software (ImageJ). 比較例1のフィルムを、蒸着面の反対側から光を照射し、蒸着面側から顕微鏡観察した画像を、画像解析ソフト(ImageJ)で8bitのモノクロ画像に変換したものである。An image obtained by irradiating the film of Comparative Example 1 with light from the opposite side of the vapor deposition surface and observing under a microscope from the vapor deposition surface side is converted into an 8-bit monochrome image by image analysis software (ImageJ).
 以下に、本発明を詳細に説明する。
 本発明の真空断熱構造体用外装袋は、蒸着フィルム(A)の蒸着面の反対側から光を照射し、透過する光の数を輝点の数として測定したときに、該輝点の数が、フィルムサイズ4mm×3mm当たり200個以下である蒸着フィルム(A)を含む積層体[I]からなる。
The present invention is described in detail below.
The exterior bag for a vacuum heat insulating structure of the present invention is irradiated with light from the opposite side of the vapor deposition surface of the vapor deposition film (A), and the number of bright spots is measured when the number of transmitted light is measured as the number of bright spots. However, it consists of laminated body [I] containing the vapor deposition film (A) which is 200 or less per film size 4 mm x 3 mm.
 本発明において、輝点とは、蒸着フィルム(A)の蒸着面の反対側から光を照射し、蒸着面側から顕微鏡で観察したときに、光がフィルムを透過するために見られる明るい点のことを言う。これは、蒸着フィルムの蒸着層に微細な欠陥がある場合や蒸着にムラがある場合に、欠陥がある部分や蒸着の薄い部分のみ光が透過し、顕微鏡で観察した際に明るく輝く点として見られるものである。 In the present invention, the bright spot is a bright spot that is observed because light is transmitted through the film when irradiated with light from the opposite side of the vapor deposition surface of the vapor deposition film (A) and observed with a microscope from the vapor deposition surface side. Say that. This means that when there is a minute defect in the vapor deposition layer of the vapor deposition film or when the vapor deposition is uneven, light is transmitted only through the defective part or the thin part of the vapor deposition, and it is seen as a bright and bright spot when observed with a microscope. It is what
 本発明において、輝点のサイズは直径1~10μm程度の大きさのものを言い、目視では確認できない程度の微細なものであり、一般にクラックやピンホール等の目視で観測できる欠陥とは区別して用いる。 In the present invention, the size of the bright spot is about 1 to 10 μm in diameter, and is fine enough that it cannot be visually confirmed, and is generally distinguished from defects that can be visually observed such as cracks and pinholes. Use.
 輝点の数は、下記のようにして測定される。
 即ち、蒸着フィルム(A)を、蒸着面を上にして顕微鏡のステージに載せて上からスライドガラスを被せ、蒸着面の反対側から光を照射し、蒸着面側から顕微鏡で観察し、フィルムサイズ4mm×3mm当たりの輝点の数を画像解析ソフトを用いて測定する。
The number of bright spots is measured as follows.
That is, the vapor deposition film (A) is placed on a microscope stage with the vapor deposition surface up, covered with a slide glass from above, irradiated with light from the opposite side of the vapor deposition surface, and observed with a microscope from the vapor deposition surface side. The number of bright spots per 4 mm × 3 mm is measured using image analysis software.
 かかる蒸着フィルム(A)の輝点の数は、フィルムサイズ4mm×3mm当たり、200個以下であり、好ましくは150個以下、特に好ましくは100個以下、更に好ましくは70個以下である。かかる輝点の数が多すぎると、水蒸気及び酸素などのガスが真空断熱構造体の内部に進入し、真空断熱構造体の断熱性能が低下する傾向がある。なお、輝点の数は少なければ少ないほどよいが、通常下限値としては1個である。 The number of bright spots of the vapor-deposited film (A) is 200 or less per film size 4 mm × 3 mm, preferably 150 or less, particularly preferably 100 or less, and further preferably 70 or less. When the number of such bright spots is too large, gas such as water vapor and oxygen enters the inside of the vacuum heat insulating structure, and the heat insulating performance of the vacuum heat insulating structure tends to deteriorate. The smaller the number of bright spots, the better. However, the lower limit is usually one.
 また、本発明においては、輝点の面積率が0.05%以下である蒸着フィルム(A)を用いることが好ましく、更に好ましくは0.04%以下、特に好ましくは0.03%以下、殊に好ましくは、0.02%以下である。かかる基点の面積率が大きすぎると、輝点の数が少ない場合でも、内部に進入する水蒸気及びガスの総量が増え、真空断熱構造体の断熱性能が低下する傾向がある。なお、輝点の面積率は小さければ小さいほどよいが、通常下限値としては0.0000001%である。 In the present invention, it is preferable to use a vapor-deposited film (A) having a bright spot area ratio of 0.05% or less, more preferably 0.04% or less, particularly preferably 0.03% or less, particularly preferably. Preferably, it is 0.02% or less. If the area ratio of the base point is too large, even when the number of bright spots is small, the total amount of water vapor and gas entering the inside tends to increase, and the heat insulating performance of the vacuum heat insulating structure tends to deteriorate. The smaller the area ratio of the bright spots, the better. However, the lower limit is usually 0.0000001%.
 ここで、面積率(%)は以下のようにして計算される。
 即ち、蒸着フィルム(A)を、顕微鏡のステージに蒸着面を上にして載せて上からスライドガラスを被せ、蒸着面の反対側から光を照射し、蒸着面側から顕微鏡で観察し、フィルムサイズ4mm×3mm当たりの輝点の総面積を画像解析ソフトを用いて計算し、下式より輝点の面積率を求める。
Here, the area ratio (%) is calculated as follows.
That is, the vapor deposition film (A) is placed on the microscope stage with the vapor deposition surface facing up, covered with a glass slide from above, irradiated with light from the opposite side of the vapor deposition surface, and observed with a microscope from the vapor deposition surface side. The total area of bright spots per 4 mm × 3 mm is calculated using image analysis software, and the area ratio of bright spots is obtained from the following equation.
 面積率(%)=(フィルムサイズ3mm×4mm当たりの輝点の総面積/フィルムサイズ3mm×4mmの面積)×100 Area ratio (%) = (total area of bright spots per film size 3 mm × 4 mm / area of film size 3 mm × 4 mm) × 100
 本発明において、照射される光としては、顕微鏡用照明装置の光であればよく、例えば、400~750nmの領域の光を用いて行われる。光源の照度は一般的な顕微鏡用照明装置が有する照度であればよく、観察対象の蒸着フィルム近傍では、100~50000ルクス程度の照度を有していればよい。また、観察対象の蒸着フィルムに応じて照度を調整し、蒸着のムラや微細な欠陥と、そうでない部分とで、輝度の差が明確に出るように照度を調整することが好ましい。照明装置の光源としては、例えば、LED、ハロゲンランプ、蛍光灯、白熱電球、キセノンランプ等が挙げられる。 In the present invention, the light to be irradiated may be light from an illumination device for a microscope, and for example, light in a region of 400 to 750 nm is used. The illuminance of the light source may be the illuminance that a general microscope illumination device has, and it is sufficient that it has an illuminance of about 100 to 50000 lux in the vicinity of the vapor deposition film to be observed. In addition, it is preferable to adjust the illuminance according to the vapor deposition film to be observed, and to adjust the illuminance so that a difference in luminance clearly appears between uneven deposition and fine defects and other portions. Examples of the light source of the lighting device include an LED, a halogen lamp, a fluorescent lamp, an incandescent lamp, and a xenon lamp.
 まず、真空断熱構造体用外装袋に用いる積層体[I]に含まれる、蒸着フィルム(A)について説明する。 First, the vapor deposition film (A) contained in the laminate [I] used in the outer bag for a vacuum heat insulating structure will be described.
 本発明の蒸着フィルム(A)は、真空断熱構造体を作製する際に断熱材料を包装する外装袋を構成する層に用いられるフィルムに蒸着処理が施されたものであり、例えば、基材フィルムに蒸着処理が施されたものや、ガスバリア性フィルムに蒸着処理が施されたものを挙げることができる。 The vapor-deposited film (A) of the present invention is obtained by subjecting a film used for a layer constituting an exterior bag for packaging a heat insulating material when a vacuum heat insulating structure is produced, for example, a base film. And those obtained by subjecting a gas barrier film to a vapor deposition treatment.
 基材フィルムとしては、真空断熱構造体用外装袋の基材フィルムとして通常用いられる合成樹脂フィルム、例えば、ポリエステル系フィルム、ポリオレフィン系フィルム、ポリアミド系フィルム、ポリエーテル系フィルム、ポリウレタン系フィルム等の合成樹脂フィルムが挙げられ、基材フィルムが蒸着フィルム(A)として用いられる場合には、かかる合成樹脂フィルム上に蒸着処理による蒸着層を形成させたものを挙げることができる。中でも、ポリエステル系フィルム、ポリオレフィン系フィルム等のフィルムに蒸着層を形成させて基材フィルムとして使用することが、加工性、耐久性及び経済性の点で好ましく、特にはポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリプロピレンフィルム等のフィルムに蒸着層を形成させたものが好ましく、殊にはポリエチレンテレフタレートフィルム等のフィルムに蒸着層を形成させたものが好ましい。 As the base film, a synthetic resin film that is usually used as a base film for an exterior bag for a vacuum heat insulating structure, for example, a polyester film, a polyolefin film, a polyamide film, a polyether film, a polyurethane film, etc. In the case where a resin film is used and the base film is used as the vapor-deposited film (A), a film obtained by forming a vapor-deposited layer by vapor deposition on the synthetic resin film can be exemplified. Among them, it is preferable to form a vapor deposition layer on a film such as a polyester film or a polyolefin film and use it as a base film from the viewpoint of processability, durability, and economy, and in particular, a polyethylene terephthalate film and a polybutylene terephthalate. What formed the vapor deposition layer in films, such as a film and a polypropylene film, and what formed the vapor deposition layer in films, such as a polyethylene terephthalate film, are especially preferable.
 また、上記基材フィルムに用いられる合成樹脂フィルムは、延伸処理を施されたものを用いることが、フィルム表面の平滑性や連続塗工機や連続貼合機への適用性の点から好ましく、特には二軸延伸フィルムを用いることが好ましい。 In addition, the synthetic resin film used for the base film is preferably a stretched film from the viewpoint of the smoothness of the film surface and the applicability to a continuous coating machine and a continuous laminating machine, In particular, it is preferable to use a biaxially stretched film.
 本発明において、基材フィルムとしては、23℃×50%RHの条件でJIS K 7126(等圧法)に記載の方法に準じて測定した際の酸素透過度が、10ml/(m2・day・atm)以下であることが好ましく、特には、5ml/(m2・day・atm)以下であることが好ましい。なお、かかる酸素透過度は小さければ小さいほどよいが、通常下限値としては0.000001ml/(m2・day・atm)である。 In the present invention, the substrate film has an oxygen permeability of 10 ml / (m 2 · day · when measured according to the method described in JIS K 7126 (isobaric method) under the condition of 23 ° C. × 50% RH. atm) or less, and particularly preferably 5 ml / (m 2 · day · atm) or less. The lower the oxygen permeability, the better. However, the lower limit is usually 0.000001 ml / (m 2 · day · atm).
 また、基材フィルムの厚みとしては、通常5~80μm、好ましくは8~40μm、特に好ましくは10~30μmであることが、コスト面及び、他のフィルムを積層して積層体を得る際に積層体に適度な柔軟性を与えることができる点で好ましい。かかる厚みが厚すぎると積層体が硬くなり真空包装時の形状追従性が低くなり、破損を招く傾向があり、薄すぎるとその基材フィルム層の一部が欠損したりして、充分なガスバリア性が得られない傾向がある。 In addition, the thickness of the base film is usually 5 to 80 μm, preferably 8 to 40 μm, particularly preferably 10 to 30 μm. In terms of cost and other films, the film is laminated when obtaining a laminate. It is preferable in that moderate flexibility can be given to the body. If the thickness is too thick, the laminate becomes hard and the shape followability at the time of vacuum packaging tends to be low, which tends to cause breakage. If the thickness is too thin, a part of the base film layer may be lost and a sufficient gas barrier There is a tendency not to get sex.
 ガスバリア性フィルムとしては、真空断熱構造体用外装袋のガスバリア性フィルムとして通常用いられる合成樹脂フィルム、例えば、ポリ塩化ビニリデンフィルムやナイロンフィルム、ビニルアルコール系樹脂フィルム等の合成樹脂フィルムを挙げることができ、ガスバリア性フィルムが蒸着フィルム(A)として用いられる場合には、かかる合成樹脂フィルム上に蒸着処理による蒸着層を形成させたものを挙げることができる。合成樹脂の中でも、本発明においては、ガスバリア性の点でビニルアルコール系樹脂フィルムを用いることが好ましい。 Examples of the gas barrier film include a synthetic resin film usually used as a gas barrier film of an exterior bag for a vacuum heat insulating structure, for example, a synthetic resin film such as a polyvinylidene chloride film, a nylon film, and a vinyl alcohol resin film. When the gas barrier film is used as the vapor deposition film (A), a film obtained by forming a vapor deposition layer by vapor deposition on the synthetic resin film can be exemplified. Among the synthetic resins, in the present invention, it is preferable to use a vinyl alcohol resin film in terms of gas barrier properties.
 ビニルアルコール系樹脂とは、ビニルエステル単位がケン化されてなるビニルアルコール単位を有するものであればよく、好ましくは平均ケン化度が90モル%以上、特に好ましくは95モル%以上、更に好ましくは97モル%以上である。 The vinyl alcohol resin is not particularly limited as long as it has a vinyl alcohol unit obtained by saponifying a vinyl ester unit, and preferably has an average saponification degree of 90 mol% or more, particularly preferably 95 mol% or more, and more preferably. It is 97 mol% or more.
 ビニルアルコール系樹脂としては、例えば、ポリビニルアルコール系樹脂(以下、「PVA系樹脂」と略記することがある)や、エチレン-ビニルアルコール系樹脂(以下、「EVOH系樹脂」と略記することがある)を挙げることができ、中でも本発明においては、ガスバリア性の点からPVA系樹脂であることが好ましい。 Examples of the vinyl alcohol resin may be abbreviated as a polyvinyl alcohol resin (hereinafter sometimes abbreviated as “PVA resin”) or an ethylene-vinyl alcohol resin (hereinafter referred to as “EVOH resin”). Among them, in the present invention, a PVA resin is preferable from the viewpoint of gas barrier properties.
<PVA系樹脂>
 まず、PVA系樹脂について説明する。
 PVA系樹脂は水(温水も含む。)に溶解し得る熱可塑性樹脂であり、本発明で用いられるPVA系樹脂としては、未変性のPVAや変性PVAが挙げられる。未変性のPVAは、酢酸ビニルを単独重合し、更にそれをケン化して製造される。一方、変性PVAには、共重合変性PVAと後変性PVAとがあり、その変性量としては本発明の効果を損なわない範囲内であり、通常10モル%未満である。
<PVA resin>
First, the PVA resin will be described.
The PVA resin is a thermoplastic resin that can be dissolved in water (including warm water), and examples of the PVA resin used in the present invention include unmodified PVA and modified PVA. Unmodified PVA is produced by homopolymerizing vinyl acetate and further saponifying it. On the other hand, the modified PVA includes copolymer-modified PVA and post-modified PVA. The amount of modification is within the range not impairing the effects of the present invention, and is usually less than 10 mol%.
 上記共重合変性PVAは、酢酸ビニルと、酢酸ビニルと共重合可能な不飽和単量体とを共重合させた後、ケン化して製造されるものである。 The copolymer-modified PVA is produced by copolymerization of vinyl acetate and an unsaturated monomer copolymerizable with vinyl acetate and then saponification.
 上記酢酸ビニルと共重合可能な不飽和単量体としては、例えば、エチレンやプロピレン、イソブチレン、α-オクテン、α-ドデセン、α-オクタデセン等のオレフィン類、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール等のヒドロキシ基含有α-オレフィン類及びそのアシル化物などの誘導体、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸、ウンデシレン酸等の不飽和酸類、その塩、モノエステル、あるいはジアルキルエステル、ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類、エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸類あるいはその塩等が挙げられる。 Examples of the unsaturated monomer copolymerizable with vinyl acetate include olefins such as ethylene, propylene, isobutylene, α-octene, α-dodecene, α-octadecene, 3-buten-1-ol, 4- Hydroxyl group-containing α-olefins such as penten-1-ol and 5-hexen-1-ol and derivatives thereof such as acylates, acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, undecylene Unsaturated acids such as acids, salts thereof, monoesters or dialkyl esters, amides such as diacetone acrylamide, acrylamide and methacrylamide, olefin sulfonic acids such as ethylene sulfonic acid, allyl sulfonic acid and methallyl sulfonic acid or salts thereof Etc.
 また、共重合変性PVAとして、側鎖に1,2-ジオール構造を有するPVAを用いることもできる。かかる側鎖に1,2-ジオール構造を有するPVAは、例えば、(a)酢酸ビニルと3,4-ジアセトキシ-1-ブテンとの共重合体をケン化する方法、(b)酢酸ビニルとビニルエチレンカーボネートとの共重合体をケン化及び脱炭酸する方法、(c)酢酸ビニルと2,2-ジアルキル-4-ビニル-1,3-ジオキソランとの共重合体をケン化及び脱ケタール化する方法、(d)酢酸ビニルとグリセリンモノアリルエーテルとの共重合体をケン化する方法、等により得られる。 Further, as the copolymer-modified PVA, PVA having a 1,2-diol structure in the side chain can also be used. Such PVA having a 1,2-diol structure in the side chain includes, for example, (a) a method of saponifying a copolymer of vinyl acetate and 3,4-diacetoxy-1-butene, and (b) vinyl acetate and vinyl. A method of saponifying and decarboxylating a copolymer with ethylene carbonate; and (c) saponifying and deketalizing a copolymer of vinyl acetate and 2,2-dialkyl-4-vinyl-1,3-dioxolane. And (d) a method of saponifying a copolymer of vinyl acetate and glyceryl monoallyl ether.
 本発明において、側鎖に1,2-ジオール構造を有するPVAを用いる場合には、側鎖1,2-ジオール構造の含有量は、0.01~20モル%であることが良好なフィルム成形性を得る点で好ましく、特には0.2~15モル%、更には0.5~12モル%が好ましい。 In the present invention, when PVA having a 1,2-diol structure in the side chain is used, it is preferable that the content of the side chain 1,2-diol structure is 0.01 to 20 mol%. From the viewpoint of obtaining properties, it is particularly preferably 0.2 to 15 mol%, more preferably 0.5 to 12 mol%.
 次に、前記の後変性PVAは、未変性のPVAを後変性することにより製造することができる。かかる後変性の方法としては、未変性のあるいは上記変性PVAをアセト酢酸エステル化、アセタール化、ウレタン化、エーテル化、グラフト化、リン酸エステル化、オキシアルキレン化する方法等が挙げられる。 Next, the post-modified PVA can be produced by post-modifying unmodified PVA. Examples of such post-modification methods include acetoacetate esterification, acetalization, urethanization, etherification, grafting, phosphate esterification, and oxyalkyleneation of unmodified or modified PVA.
 本発明においては、上記PVA系樹脂の平均重合度が1100以上であることが好ましく、更に好ましい範囲は1100~4000、特に好ましい範囲は1200~2600である。かかる平均重合度が低すぎるとフィルムとした時の機械強度が低下する傾向にある。なお、平均重合度が高すぎると製膜及び延伸時の加工性が低下する傾向にある。 In the present invention, the average degree of polymerization of the PVA resin is preferably 1100 or more, more preferably 1100 to 4000, and particularly preferably 1200 to 2600. If the average degree of polymerization is too low, the mechanical strength of the film tends to decrease. If the average degree of polymerization is too high, the workability during film formation and stretching tends to be reduced.
 また、上記PVA系樹脂の平均ケン化度は90モル%以上であることが好ましく、更に好ましい範囲は95~100モル%、特に好ましい範囲は99~100モル%である。かかる平均ケン化度が低すぎると耐水性が低下し、ガスバリア性の湿度による変化が著しくなる傾向にあるので、比較的高いものを選ぶことが好ましい。 The average degree of saponification of the PVA resin is preferably 90 mol% or more, more preferably 95 to 100 mol%, and particularly preferably 99 to 100 mol%. If the average degree of saponification is too low, the water resistance is lowered, and the change of the gas barrier property due to humidity tends to be remarkable. Therefore, it is preferable to select a relatively high saponification degree.
 なお、上記平均重合度及び平均ケン化度は、JIS K6726に準じて測定される。 The average polymerization degree and average saponification degree are measured according to JIS K6726.
 また、上記PVA系樹脂の4重量%水溶液の粘度としては、2.5~100mPa・s(20℃)が好ましく、更には2.5~70mPa・s(20℃)、特には2.5~60mPa・s(20℃)が好ましい。該粘度が低すぎるとフィルム強度等の機械的物性が劣る傾向があり、高すぎるとフィルムへの製膜性が低下する傾向がある。
 なお、上記粘度はJIS K6726に準じて測定されるものである。
The viscosity of the 4 wt% aqueous solution of the PVA resin is preferably 2.5 to 100 mPa · s (20 ° C.), more preferably 2.5 to 70 mPa · s (20 ° C.), particularly 2.5 to 60 mPa · s (20 ° C.) is preferable. If the viscosity is too low, mechanical properties such as film strength tend to be inferior, and if it is too high, film-forming properties on the film tend to be lowered.
The viscosity is measured according to JIS K6726.
 これらのPVA系樹脂は、それぞれ単独で用いることもできるし、2種以上を混合して用いることもできる。 These PVA resins can be used alone or in combination of two or more.
<EVOH系樹脂>
 次に、EVOH系樹脂について説明する。
 EVOH系樹脂は、エチレンとビニルエステル系モノマーを共重合させた後にケン化させることにより得られる、水(温水も含む。)には溶解しない熱可塑性樹脂であり、エチレンとビニルエステル系モノマーとの重合は、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合などにより行うことができる。
<EVOH resin>
Next, the EVOH resin will be described.
The EVOH-based resin is a thermoplastic resin that is obtained by copolymerizing ethylene and a vinyl ester monomer and then saponifying, and does not dissolve in water (including warm water). The polymerization can be carried out by any known polymerization method such as solution polymerization, suspension polymerization, emulsion polymerization and the like.
 上記ビニルエステル系モノマーとしては、一般的に酢酸ビニルが用いられるが、他のビニルエステル系モノマー、例えば、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、バーサチック酸ビニル等の脂肪族ビニルエステル、安息香酸ビニル等の芳香族ビニルエステル等の、通常炭素数3~20、好ましくは炭素数4~10、特に好ましくは炭素数4~7の脂肪族ビニルエステルを用いてもよい。これらのモノマーは通常単独で用いるが、必要に応じて複数種を同時に用いてもよい。 As the vinyl ester monomer, vinyl acetate is generally used, but other vinyl ester monomers such as vinyl formate, vinyl propionate, vinyl valelate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, caprin. Usually, an aliphatic vinyl ester such as vinyl acid, vinyl laurate, vinyl stearate and vinyl versatate, and an aromatic vinyl ester such as vinyl benzoate, etc., usually 3 to 20 carbon atoms, preferably 4 to 10 carbon atoms, particularly preferably May be an aliphatic vinyl ester having 4 to 7 carbon atoms. These monomers are usually used alone, but a plurality of these monomers may be used simultaneously as necessary.
 更に、本発明の効果が阻害されない範囲で、エチレン、ビニルエステル系モノマー以外に、他のエチレン性不飽和単量体を共重合していてもよい。他のエチレン性不飽和単量体としては、例えば、プロピレン、1-ブテン、イソブテン等のオレフィン類、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1,2-ジオール等のヒドロキシ基含有α-オレフィン類やそのエステル化物、アシル化物などの誘導体、アクリル酸、メタクリル酸、クロトン酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸類あるいはその塩あるいは炭素数1~18のモノまたはジアルキルエステル類等が挙げられる。 Furthermore, other ethylenically unsaturated monomers may be copolymerized in addition to ethylene and vinyl ester monomers as long as the effects of the present invention are not inhibited. Examples of other ethylenically unsaturated monomers include olefins such as propylene, 1-butene and isobutene, 3-buten-1-ol, 4-penten-1-ol, 5-hexene-1,2- Hydroxyl group-containing α-olefins such as diols, derivatives thereof such as esterified products and acylated products, acrylic acid, methacrylic acid, crotonic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, etc. Examples thereof include saturated acids or salts thereof, mono- or dialkyl esters having 1 to 18 carbon atoms, and the like.
 また、EVOH系樹脂として、側鎖に1,2-ジオール構造を有するEVOH系樹脂を用いることも好ましく、側鎖1,2-ジオール構造の含有量は、EVOH系樹脂の0.01~20モル%であることが良好なフィルム成形性を得る点で好ましく、特には、0.2~15モル%、更には0.5~10モル%が好ましい。 It is also preferable to use an EVOH resin having a 1,2-diol structure in the side chain as the EVOH resin, and the content of the side chain 1,2-diol structure is 0.01 to 20 moles of the EVOH resin. % Is preferable from the viewpoint of obtaining good film formability, and is particularly preferably 0.2 to 15 mol%, more preferably 0.5 to 10 mol%.
 EVOH系樹脂のエチレン含有量は、通常20~60モル%であるが、良好な延伸性を得る観点からは、エチレン含有量は25モル%以上であることが好ましく、更には30モル%以上であることが特に好ましい。また、ガスバリア性の観点からは、エチレン含有量は55モル%以下、更には50モル%以下であることが特に好ましい。エチレン含有量が多すぎるとガスバリア性が低下する傾向がある。
 なお、かかるEVOH系樹脂のエチレン含有量は、核磁気共鳴(NMR)法により求めることができる。
The ethylene content of the EVOH-based resin is usually 20 to 60 mol%, but from the viewpoint of obtaining good stretchability, the ethylene content is preferably 25 mol% or more, and more preferably 30 mol% or more. It is particularly preferred. From the viewpoint of gas barrier properties, the ethylene content is particularly preferably 55 mol% or less, and more preferably 50 mol% or less. When there is too much ethylene content, there exists a tendency for gas barrier property to fall.
In addition, the ethylene content of the EVOH resin can be obtained by a nuclear magnetic resonance (NMR) method.
 前記EVOH系樹脂におけるビニルエステル成分の平均ケン化度は、JIS K6726(ただしEVOH樹脂は水/メタノール溶媒に均一に溶解した溶液にて)に基づいて計測した値で、通常90~100モル%、好ましくは95~100モル%、特に好ましくは99~100モル%である。かかる平均ケン化度が低すぎた場合にはガスバリア性、熱安定性、耐湿性等が低下する傾向がある。 The average saponification degree of the vinyl ester component in the EVOH-based resin is a value measured based on JIS K6726 (however, the EVOH resin is a solution uniformly dissolved in water / methanol solvent), and is usually 90 to 100 mol%. The amount is preferably 95 to 100 mol%, particularly preferably 99 to 100 mol%. When the average saponification degree is too low, gas barrier properties, thermal stability, moisture resistance and the like tend to be lowered.
 前記EVOH系樹脂のメルトフローレート(MFR)(210℃、荷重2160g)は、通常0.5~100g/10分であり、好ましくは1~50g/10分、特に好ましくは2~35g/10分である。MFRが大きすぎる場合には、製膜性が不安定となる傾向があり、小さすぎる場合には粘度が高すぎて流動不良が生じて、スジ・ムラなどの外観不良を発生する傾向がある。 The melt flow rate (MFR) (210 ° C., load 2160 g) of the EVOH resin is usually 0.5 to 100 g / 10 minutes, preferably 1 to 50 g / 10 minutes, particularly preferably 2 to 35 g / 10 minutes. It is. If the MFR is too large, the film-forming property tends to be unstable, and if it is too small, the viscosity is too high, resulting in poor flow and tending to cause poor appearance such as streaks and unevenness.
 かかるEVOH系樹脂には、本発明の目的を阻外しない範囲内で、酸化防止剤、色剤、紫外線吸収剤、スリップ剤、帯電防止剤、可塑剤、硼酸等の架橋剤、無機充填剤、無機乾燥剤等の各種添加剤、ポリアミド、ポリオレフィン、高吸水性樹脂等の各種樹脂を配合してもよい。 Such EVOH-based resin includes an antioxidant, a colorant, an ultraviolet absorber, a slip agent, an antistatic agent, a plasticizer, a crosslinking agent such as boric acid, an inorganic filler, and the like within a range that does not interfere with the object of the present invention. You may mix | blend various resins, such as various additives, such as an inorganic desiccant, polyamide, polyolefin, and a super absorbent polymer.
 更に、本発明の目的を阻外しない範囲内で加熱溶融する場合に安定性を向上させるため、EVOH系樹脂にホウ素化合物をブレンドすることもできる。ここでホウ素化合物としては、例えば、ホウ酸類、ホウ酸エステル、ホウ酸塩、水素化ホウ素類等が挙げられる。具体的には、ホウ酸類としては、例えば、オルトホウ酸、メタホウ酸、四ホウ酸などが挙げられ、ホウ酸エステルとしてはホウ酸トリエチル、ホウ酸トリメチルなどが挙げられ、ホウ酸塩としては上記の各種ホウ酸類のアルカリ金属塩、アルカリ土類金属塩、ホウ砂などが挙げられる。これらの化合物のうちでもオルトホウ酸(以下、単に「ホウ酸」と表示する場合がある)であることが好ましい。 Furthermore, a boron compound can be blended with an EVOH-based resin in order to improve stability when heated and melted within a range that does not interfere with the object of the present invention. Examples of the boron compound include boric acids, boric acid esters, borates, and borohydrides. Specifically, examples of boric acids include orthoboric acid, metaboric acid, and tetraboric acid. Examples of boric acid esters include triethyl borate and trimethyl borate. Examples of boric acid salts include those described above. Examples include alkali metal salts, alkaline earth metal salts, and borax of various boric acids. Among these compounds, orthoboric acid (hereinafter sometimes simply referred to as “boric acid”) is preferable.
 EVOH系樹脂にホウ素化合物をブレンドする場合、ホウ素化合物の含有量は、好ましくはホウ素元素換算で20~2000ppm、より好ましくは50~1000ppmである。この範囲内でホウ素化合物をブレンドすることで加熱溶融時のトルク変動が抑制されたEVOH系樹脂を得ることができる。ホウ素化合物の含有量が少なすぎると添加効果が小さく、多すぎるとゲル化しやすく、成形性不良となる場合がある。 When a boron compound is blended with the EVOH-based resin, the content of the boron compound is preferably 20 to 2000 ppm, more preferably 50 to 1000 ppm in terms of boron element. By blending the boron compound within this range, it is possible to obtain an EVOH-based resin in which torque fluctuation during heating and melting is suppressed. If the content of the boron compound is too small, the effect of addition is small, and if it is too large, gelation tends to occur and the moldability may be poor.
 更に、本発明に用いられるEVOH系樹脂は、公知の方法にてウレタン化、アセタール化、シアノエチル化、オキシアルキレン化など「後変性」されていてもよい。 Furthermore, the EVOH resin used in the present invention may be “post-modified” such as urethanization, acetalization, cyanoethylation, oxyalkyleneation and the like by a known method.
 これらのEVOH系樹脂は、それぞれ単独で用いることもできるし、2種以上を混合して用いることもできる。 These EVOH resins can be used alone or in combination of two or more.
<フィルムの製法>
 本発明では、上記ビニルアルコール系樹脂を用いてフィルム製膜するのであるが、かかる製膜法も公知のものでよく、例えば、ドラム、エンドレスベルト等の金属面上にビニルアルコール系樹脂溶液を流延してフィルム形成する流延式成形法、あるいは押出機により溶融押出する溶融成形法によって製膜される。
<Production method of film>
In the present invention, the vinyl alcohol resin is used to form a film. However, such a film forming method may be a known one. For example, a vinyl alcohol resin solution is allowed to flow on a metal surface such as a drum or an endless belt. The film is formed by a cast molding method in which a film is formed by stretching, or a melt molding method in which melt extrusion is performed by an extruder.
 かかるビニルアルコール系樹脂フィルムは、通常一軸延伸或いは二軸延伸フィルムとして用いることが好ましく、特にガスバリア性の点から、二軸延伸フィルムとして用いるのが好ましい。かかる一軸及び二軸延伸フィルムの流れ方向(MD方向)の延伸倍率としては2.5~5倍であることが好ましい。 Such a vinyl alcohol-based resin film is usually preferably used as a uniaxially stretched film or a biaxially stretched film, and particularly preferably used as a biaxially stretched film from the viewpoint of gas barrier properties. The draw ratio in the flow direction (MD direction) of such uniaxial and biaxially stretched films is preferably 2.5 to 5 times.
 かかる延伸処理方法は、通常行われる一軸延伸方法や、同時二軸延伸、逐次二軸延伸など、公知方法に従い行うことが可能である。 Such a stretching treatment method can be performed according to a known method such as a uniaxial stretching method that is usually performed, simultaneous biaxial stretching, or sequential biaxial stretching.
 本発明においては、かかる二軸延伸ビニルアルコール系樹脂フィルムの中でも、二軸延伸PVA系樹脂フィルム、二軸延伸EVOH系樹脂フィルムが好ましく用いられ、特には二軸延伸PVA系樹脂フィルムが好ましく用いられる。以下、これら二軸延伸フィルムの具体的な製法について説明する。 In the present invention, among such biaxially stretched vinyl alcohol resin films, biaxially stretched PVA resin films and biaxially stretched EVOH resin films are preferably used, and in particular, biaxially stretched PVA resin films are preferably used. . Hereinafter, the specific manufacturing method of these biaxially stretched films is demonstrated.
〈二軸延伸PVA系樹脂フィルムの製法〉
 まず、二軸延伸PVA系樹脂フィルムの製法について説明する。
 上記PVA系樹脂を用いて、PVA系樹脂フィルム(延伸前PVA系樹脂フィルム)を製膜するわけであるが、通常は、製膜用の原液として、PVA系樹脂濃度が5~70重量%、好ましくは10~60重量%のPVA系樹脂-水の組成物を調製する。
<Production method of biaxially stretched PVA resin film>
First, the manufacturing method of a biaxially stretched PVA-type resin film is demonstrated.
A PVA-based resin film (PVA-based resin film before stretching) is formed into a film using the PVA-based resin. Usually, as a stock solution for film formation, a PVA-based resin concentration is 5 to 70% by weight, Preferably, a composition of 10 to 60% by weight of PVA resin-water is prepared.
 かかるPVA系樹脂-水組成物には、本発明の効果を損なわない範囲でエチレングリコール、グリセリン、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール等の多価アルコール類の可塑剤やフェノール系、アミン系等の抗酸化剤、リン酸エステル類等の安定剤、着色料、香料、増量剤、消泡剤、剥離剤、紫外線吸収剤、無機粉体、界面活性剤等の通常の添加剤を適宜配合しても差し支えない。また、澱粉、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース等のPVA系樹脂以外の他の水溶性樹脂を混合してもよい。 Such PVA-based resin-water compositions include plasticizers such as polyhydric alcohols such as ethylene glycol, glycerin, polyethylene glycol, diethylene glycol, and triethylene glycol, phenolic, amine-based, and the like as long as the effects of the present invention are not impaired. Add appropriate additives such as antioxidants, stabilizers such as phosphate esters, coloring agents, fragrances, extenders, antifoaming agents, release agents, UV absorbers, inorganic powders, surfactants, etc. There is no problem. Moreover, you may mix other water-soluble resins other than PVA-type resin, such as starch, carboxymethylcellulose, methylcellulose, and hydroxymethylcellulose.
 PVA系樹脂フィルムの製膜法については、特に限定されないが、上記PVA系樹脂-水組成物を押出機に供給して溶融混練した後、Tダイ法、インフレーション法により押出し製膜し、乾燥する方法が好ましい。 The method for forming the PVA-based resin film is not particularly limited, but the PVA-based resin-water composition is supplied to an extruder and melt-kneaded, and then extruded and formed by the T-die method and the inflation method, followed by drying. The method is preferred.
 かかる方法における押出機内での溶融混練温度は、50~170℃、特には55~160℃が好ましい。かかる温度が低すぎるとフィルム肌の不良を招き、高すぎると発泡現象を招く傾向にある。また、製膜後のフィルムの乾燥については、70~120℃で行うことが好ましく、更には80~100℃で行うことが好ましい。 In such a method, the melt kneading temperature in the extruder is preferably 50 to 170 ° C., particularly 55 to 160 ° C. If the temperature is too low, the film skin will be defective, and if it is too high, the foaming phenomenon tends to occur. In addition, drying of the film after film formation is preferably performed at 70 to 120 ° C., more preferably 80 to 100 ° C.
 上記で得られたPVA系樹脂フィルムに対して、更に二軸延伸を施すことにより、本発明で好ましく用いられる二軸延伸PVA系樹脂フィルムとなる。 The biaxially stretched PVA resin film preferably used in the present invention is obtained by further biaxially stretching the PVA resin film obtained above.
 かかる二軸延伸については、機械の流れ方向(MD方向)の延伸倍率が2.5~5倍、幅方向(TD方向)の延伸倍率が2~4.5倍であることが好ましく、特に好ましくはMD方向の延伸倍率が3~5倍、TD方向の延伸倍率が2.5~4.5倍である。該MD方向の延伸倍率が低すぎると延伸による物性向上が得難くかつ耐熱性が損なわれる傾向があり、高すぎるとフィルムがMD方向へ裂けやすくなる傾向がある。また、TD方向の延伸倍率が低すぎると延伸による物性向上が得難く、かつ耐熱性が損なわれる傾向があり、高すぎると工業的にフィルムを製造する際に延伸時の破断が多発する傾向がある。 For such biaxial stretching, the stretching ratio in the machine flow direction (MD direction) is preferably 2.5 to 5 times, and the stretching ratio in the width direction (TD direction) is preferably 2 to 4.5 times, particularly preferably. Has a draw ratio in the MD direction of 3 to 5 times and a draw ratio in the TD direction of 2.5 to 4.5 times. If the draw ratio in the MD direction is too low, it is difficult to improve physical properties due to stretching and the heat resistance tends to be impaired. If it is too high, the film tends to tear in the MD direction. Further, if the stretching ratio in the TD direction is too low, it is difficult to obtain physical properties by stretching, and the heat resistance tends to be impaired. If it is too high, breakage during stretching tends to occur frequently when the film is industrially produced. is there.
 かかる二軸延伸を行うにあたっては、PVA系樹脂フィルムの含水率を5~30重量%、特には20~30重量%に調整しておくことが好ましい。含水率の調整は、乾燥前のPVA系樹脂フィルムを引き続き乾燥する方法、含水率5重量%未満のPVA系樹脂フィルムを水に浸漬あるいは調湿等を施す方法等により行うことができる。かかる含水率が低すぎても、高すぎても延伸工程でMD方向、TD方向の延伸倍率を高めることができない傾向がある。 In performing such biaxial stretching, it is preferable to adjust the water content of the PVA resin film to 5 to 30% by weight, particularly 20 to 30% by weight. The moisture content can be adjusted by a method of continuously drying the PVA resin film before drying, a method of immersing a PVA resin film having a moisture content of less than 5% by weight in water, or adjusting the humidity. Even if the moisture content is too low or too high, there is a tendency that the stretching ratio in the MD direction and the TD direction cannot be increased in the stretching process.
 更に、二軸延伸を施した後は、熱固定を行うことが好ましく、かかる熱固定の温度は、PVA系樹脂の融点より低い温度を選択することが好ましく、特には140~250℃であることが好ましい。熱固定温度が、融点より80℃以上低い温度の場合は、寸法安定性が悪く収縮率が大きくなる傾向があり、一方、融点より高い場合は、フィルムの厚み変動が大きくなる傾向がある。また、熱固定時間は1~30秒間であることが好ましく、より好ましくは5~10秒間である。 Further, after the biaxial stretching, it is preferable to perform heat setting, and it is preferable to select a temperature lower than the melting point of the PVA resin, particularly 140 to 250 ° C. Is preferred. When the heat setting temperature is lower than the melting point by 80 ° C. or more, the dimensional stability tends to be poor and the shrinkage rate tends to be large. On the other hand, when the temperature is higher than the melting point, the thickness variation of the film tends to be large. The heat setting time is preferably 1 to 30 seconds, more preferably 5 to 10 seconds.
 また、必要に応じて、熱変形性を更に減少させる目的で、かかる二軸延伸PVA系樹脂フィルムに、水溶液への接触及び乾燥の加工を施すことも可能である。水溶液との接触においては、通常5~60℃、好ましくは10~50℃の水溶液が用いられ、水溶液との接触時間は、水溶液の温度に応じて適宜選択されるが、工業的には10~60秒であることが好ましい。 Further, if necessary, for the purpose of further reducing the heat deformability, it is possible to subject the biaxially stretched PVA resin film to contact with an aqueous solution and to dry processing. In the contact with the aqueous solution, an aqueous solution of usually 5 to 60 ° C., preferably 10 to 50 ° C. is used, and the contact time with the aqueous solution is appropriately selected according to the temperature of the aqueous solution, but industrially 10 to Preferably it is 60 seconds.
 かかる水溶液との接触方法については、例えば、水溶液への浸漬や水溶液の噴霧、水溶液の塗布、スチーム処理などが挙げられ、これらを併用することもできる。水溶液との接触の後、工業的には、エアーシャワー等で非接触的に表面の付着水を取り除き、次いでニップロール等で接触的な水分除去を次に行うことが好ましい。また、乾燥機の種類としては、例えば、金属ロールやセラミックロール等に直接接触して乾燥する方法、あるいは非接触型の乾燥機を用いる方法などが挙げられる。 Examples of the contact method with the aqueous solution include immersion in an aqueous solution, spraying of an aqueous solution, application of an aqueous solution, steam treatment, and the like, and these can be used in combination. After contact with the aqueous solution, industrially, it is preferable to remove the water adhering to the surface in a non-contact manner with an air shower or the like, and then to remove the moisture in contact with a nip roll or the like. Moreover, as a kind of dryer, the method of using a non-contact dryer etc. etc. etc. which are directly contacted with a metal roll, a ceramic roll, etc., for example, are mentioned, for example.
 かかる水溶液との接触と乾燥の後に、得られた二軸延伸PVA系樹脂フィルムを再度巻き取ってロール状とする場合は、フィルムの水分量を通常3重量%以下、好ましくは0.1~2重量%にすることが望まれる。かかる水分量が多すぎるとフィルムロールの中でフィルム同士が密着してしまう傾向があり、再度加工のための巻き出しを行う際にフィルムが破損するなどの問題を発生するおそれがある。
 かくして二軸延伸PVA系樹脂フィルムが得られる。
When the obtained biaxially stretched PVA-based resin film is again wound up into a roll after contact with the aqueous solution and drying, the water content of the film is usually 3% by weight or less, preferably 0.1 to 2%. It is desirable to make it weight percent. If the amount of moisture is too large, the films tend to adhere to each other in the film roll, and there is a risk of problems such as damage to the film when unwinding for processing again.
Thus, a biaxially stretched PVA resin film is obtained.
〈二軸延伸EVOH系樹脂フィルムの製法〉
 次に、二軸延伸EVOH系樹脂フィルムの製法について説明する。
 上記EVOH系樹脂を用いて、EVOH系樹脂フィルム(延伸前EVOH系樹脂フィルム)を製膜する。
<Production method of biaxially stretched EVOH resin film>
Next, a method for producing a biaxially stretched EVOH resin film will be described.
An EVOH resin film (an EVOH resin film before stretching) is formed using the EVOH resin.
 上記EVOH系樹脂を用いて、EVOH系樹脂フィルムを製膜する際には、主に溶融成形が用いられる。以下に溶融成形法について説明する。 When forming an EVOH resin film using the EVOH resin, melt molding is mainly used. The melt molding method will be described below.
 かかる溶融成形時の条件としては、特に限定されないが、通常はノンベント、スクリュータイプ押出機を用い、溶融温度190~250℃で押出製膜される。通常、圧縮比2.0~4.5のスクリューを用い、Tダイス、または丸ダイスを用いて製膜される。 The conditions at the time of melt molding are not particularly limited, but are usually formed by extrusion using a non-vented, screw-type extruder at a melting temperature of 190 to 250 ° C. Usually, a screw having a compression ratio of 2.0 to 4.5 is used to form a film using a T die or a round die.
 かくしてEVOH系樹脂フィルムが得られるわけであるが、該フィルムに対しては、更に、二軸延伸、好ましくは逐次二軸延伸を施すことにより、二軸延伸EVOH系樹脂フィルムとすることができる。 Thus, an EVOH-based resin film can be obtained. The film can be further biaxially stretched, preferably sequentially biaxially stretched to obtain a biaxially-stretched EVOH-based resin film.
 かかる二軸延伸の面積倍率については、好ましくは3倍以上、より好ましくは6倍以上、特に好ましくは9倍以上であることが、ガスバリア性及び機械強度の観点から重要である。延伸する方法としては、ダブルバブル法、テンター法、ロール法等の一軸または二軸延伸する方法等公知の延伸方法を採用することができ、二軸延伸の場合は、同時延伸、逐次延伸のいずれの方式も採用できる。 The area ratio of such biaxial stretching is preferably 3 times or more, more preferably 6 times or more, and particularly preferably 9 times or more from the viewpoint of gas barrier properties and mechanical strength. As a stretching method, a known stretching method such as a uniaxial or biaxial stretching method such as a double bubble method, a tenter method, a roll method, etc. can be adopted. In the case of biaxial stretching, either simultaneous stretching or sequential stretching can be used. This method can also be adopted.
 また、延伸前の原反フィルムに予め含水させておくことで容易な連続延伸が可能となり、延伸前の原反フィルムの水分率としては、2~30重量%が好ましく、特には5~30重量%が好ましく、更には10~30重量%が好ましい。水分率が少なすぎると、延伸斑が残りやすく、また特にテンターで延伸する場合、グリップに近い部分の延伸倍率が高くなるために、グリップ近辺での破れが生じやすくなることがある。一方、水分率が高すぎると、延伸された部分の弾性率が低く、未延伸部分との差が充分でなく、延伸斑が残りやすくなることがある。 In addition, it is possible to perform easy continuous stretching by pre-moisturizing the original film before stretching, and the moisture content of the original film before stretching is preferably 2 to 30% by weight, particularly 5 to 30% by weight. %, More preferably 10 to 30% by weight. If the moisture content is too low, stretch spots are likely to remain, and particularly when stretched with a tenter, the stretch ratio in the portion close to the grip becomes high, so that tearing near the grip may easily occur. On the other hand, if the moisture content is too high, the elastic modulus of the stretched portion is low, the difference from the unstretched portion is not sufficient, and stretched spots may remain easily.
 かかる延伸温度に関しては、延伸前の原反フィルムの水分率によって多少異なるが、一般に50~130℃の範囲が適応可能である。特に同時二軸延伸においては、70~100℃の範囲において、厚み斑の少ない二軸延伸EVOH系樹脂フィルムが得られやすく、逐次二軸延伸においては、ロールでの長手方向の延伸において70~100℃、テンターでの幅方向の延伸において80~120℃の温度範囲で行うことにより、厚み斑の少ない二軸延伸EVOH系樹脂フィルムが得られやすい。 The stretching temperature varies somewhat depending on the moisture content of the original film before stretching, but a range of 50 to 130 ° C. is generally applicable. In particular, in simultaneous biaxial stretching, a biaxially stretched EVOH-based resin film with little thickness unevenness is easily obtained in the range of 70 to 100 ° C., and in sequential biaxial stretching, in the longitudinal direction with a roll, 70 to 100 is achieved. When the stretching in the width direction with a tenter at 80 ° C. is performed in a temperature range of 80 to 120 ° C., a biaxially stretched EVOH resin film with little thickness unevenness is easily obtained.
 そして、二軸延伸EVOH系樹脂フィルムの製造に関する更に重要な因子としては、延伸後の熱処理と、その熱処理の結果として得られる二軸延伸EVOH系樹脂フィルムの密度及び水分率がある。熱処理は、EVOHの融点より5~40℃低い温度で、5~20秒間行われることが好ましい。熱処理温度が低すぎると、熱処理が不充分なため、蒸着工程に耐えるだけの耐熱性及び充分なガスバリア性が得られない傾向がある。一方、熱処理温度が高すぎると、部分的に延伸効果が低減される傾向がある。
 かくして二軸延伸EVOH系樹脂フィルムが得られる。
And as a further important factor regarding manufacture of a biaxially stretched EVOH resin film, there are the heat treatment after stretching and the density and moisture content of the biaxially stretched EVOH resin film obtained as a result of the heat treatment. The heat treatment is preferably performed at a temperature 5 to 40 ° C. lower than the melting point of EVOH for 5 to 20 seconds. If the heat treatment temperature is too low, the heat treatment is insufficient, and thus there is a tendency that heat resistance sufficient to withstand the vapor deposition process and sufficient gas barrier properties cannot be obtained. On the other hand, when the heat treatment temperature is too high, the stretching effect tends to be partially reduced.
Thus, a biaxially stretched EVOH resin film is obtained.
 上記ガスバリア性フィルムは、23℃×50%RHの条件でJIS K 7126(等圧法)に記載の方法に準じて測定した際の酸素透過度が、1ml/(m2・day・atm)以下であることが好ましく、特には、0.1ml/(m2・day・atm)以下であることが好ましい。なお、かかる酸素透過度は小さければ小さいほどよいが、通常下限値としては0.000001ml/(m2・day・atm)である。 The gas barrier film has an oxygen permeability of 1 ml / (m 2 · day · atm) or less when measured according to the method described in JIS K 7126 (isobaric method) under the condition of 23 ° C. × 50% RH. In particular, it is preferably 0.1 ml / (m 2 · day · atm) or less. The lower the oxygen permeability, the better. However, the lower limit is usually 0.000001 ml / (m 2 · day · atm).
 また、ガスバリア性フィルムの厚みとしては、通常、5~100μmであり、好ましくは5~50μm、特に好ましくは、5~30μmである。かかる厚みが厚すぎると、真空断熱構造体に仕上げた場合に外装袋に入るシワの部分へ集中する応力が増大しピンホールの発生する可能性が高まる傾向があり、薄すぎると真空断熱構造体に仕上げた場合の外装袋としての強度が充分に得られず、加工中及び使用中に破袋する傾向がある。 The thickness of the gas barrier film is usually 5 to 100 μm, preferably 5 to 50 μm, particularly preferably 5 to 30 μm. If this thickness is too thick, there is a tendency that the stress concentrated on the wrinkled part entering the exterior bag increases when the vacuum insulation structure is finished, and the possibility of generating pinholes tends to increase. When it is finished, the strength as an exterior bag is not sufficiently obtained, and the bag tends to be broken during processing and use.
 本発明で用いられる蒸着フィルム(A)は、上記基材フィルムに蒸着処理が施されてなる蒸着基材フィルム(A-1)や、上記ガスバリア性フィルムに蒸着処理が施されてなる蒸着ガスバリア性フィルム(A-2)であることが好ましい。 The vapor-deposited film (A) used in the present invention is a vapor-deposited base film (A-1) obtained by subjecting the base film to a vapor deposition treatment, or a vapor-deposited gas barrier property obtained by subjecting the gas barrier film to a vapor deposition treatment. A film (A-2) is preferred.
 蒸着材料は、真空断熱構造体に用いる積層体を作製する際に用いられる公知一般の蒸着材料であればよいが、金属または金属酸化物が好ましく用いられる。 The vapor deposition material may be a known general vapor deposition material used when producing a laminate used for a vacuum heat insulating structure, but a metal or a metal oxide is preferably used.
 上記金属または金属酸化物としては、例えば、アルミニウム、金、銀、銅、ニッケル、コバルト、クロム、スズなどの金属、またはかかる金属の酸化物を用いることができる。それらのなかでも、アルミニウム、金、銀、スズが好ましく用いられ、特にアルミニウムが、コストの面からも好ましく用いられる。また、金属または金属酸化物による蒸着の代わりに、シリカ蒸着を行うこともできる。 As the metal or metal oxide, for example, a metal such as aluminum, gold, silver, copper, nickel, cobalt, chromium, tin, or an oxide of such metal can be used. Among these, aluminum, gold, silver, and tin are preferably used, and aluminum is particularly preferably used from the viewpoint of cost. In addition, silica vapor deposition can be performed instead of metal or metal oxide vapor deposition.
 蒸着方法としては、例えば、スパッタリング法、イオンプレーティング法、抵抗加熱蒸着法、高周波誘導加熱蒸着法、電子ビーム加熱蒸着法などの一般的な真空蒸着法を用いることができるが、特に本発明においては蒸着フィルム(A)の輝点の数を200個以下にするために、更には、輝点の面積率を0.05%以下にするために、例えば以下のような蒸着をすることが好ましい。 As a vapor deposition method, for example, a general vacuum vapor deposition method such as a sputtering method, an ion plating method, a resistance heating vapor deposition method, a high frequency induction heating vapor deposition method, or an electron beam heating vapor deposition method can be used. In order to make the number of bright spots of the vapor-deposited film (A) 200 or less, and further to make the area ratio of bright spots 0.05% or less, for example, the following vapor deposition is preferable. .
 即ち、本発明においては、フィルムへの蒸着処理の際、真空度を一定に保ちながら蒸着したり、また、比較的遅い速度で蒸着したりすることが好ましい。また、蒸着処理の際の加熱温度が一定であることが好ましい。更には、蒸着直後の巻取りまたはスリット工程時に蒸着面が削れるのを防ぐために、蒸着面に接触するロール数をできる限り少なくし、ロールの材質も蒸着面に負荷を与えない材質にすることが望ましい。これらの方法により、蒸着材料の揮発量が一定となり、蒸着ムラのない蒸着層が得られる。結果として輝点の数が少ない、更に、輝点の面積率の小さい蒸着フィルムが得られるのである。 That is, in the present invention, it is preferable to perform deposition while keeping the degree of vacuum constant during the deposition process on the film, or to deposit at a relatively slow rate. Moreover, it is preferable that the heating temperature in the vapor deposition process is constant. Furthermore, in order to prevent the deposition surface from being scraped off during the winding or slitting process immediately after deposition, the number of rolls in contact with the deposition surface should be reduced as much as possible, and the material of the roll should be a material that does not place a load on the deposition surface. desirable. By these methods, the volatilization amount of the vapor deposition material becomes constant, and a vapor deposition layer without vapor deposition unevenness can be obtained. As a result, a deposited film having a small number of bright spots and a small area ratio of bright spots can be obtained.
 また、フィルムに蒸着処理を施す前に、蒸着されるフィルムの表面に前処理をすることも好ましく、かかる前処理としては、例えば、コロナ処理等の基材そのものの活性化を促す方法と、ポリエチレンやポリエーテルを主剤としウレタン系硬化剤を用いるようなコーティング剤で薄膜層を形成する方法を挙げることができる。
 なお、蒸着は、一度の蒸着処理で得られたものであってもよいし、複数回にわたり蒸着処理を繰り返して得られたものであってもよい。
Moreover, it is also preferable to pre-treat the surface of the film to be vapor-deposited before the film is vapor-deposited. Examples of such pre-treatment include a method for promoting activation of the substrate itself such as corona treatment, and polyethylene. And a method of forming a thin film layer with a coating agent that uses a polyether as a main component and a urethane-based curing agent.
Note that the vapor deposition may be obtained by a single vapor deposition treatment or may be obtained by repeating the vapor deposition treatment a plurality of times.
 蒸着の厚みは、通常10~100nm、特には30~80nmが好ましい。薄すぎると、熱放射特性が得られにくくなる傾向があり、厚すぎると、その厚みを得るための蒸着時間が長くなり、蒸着時の熱的な影響が大きくなるとともにコストがかさむ傾向があり、工業的に好ましくない傾向がある。 The thickness of the vapor deposition is usually 10 to 100 nm, particularly 30 to 80 nm. If it is too thin, there is a tendency that it is difficult to obtain heat radiation characteristics, and if it is too thick, the deposition time for obtaining the thickness becomes long, the thermal influence during deposition tends to increase and the cost tends to increase, There is an industrially unfavorable tendency.
 本発明における積層体[I]は、上記蒸着フィルム(A)を少なくとも一層含むものであるが、強度の点や、ガスバリア性の点などから、基材フィルム/ガスバリア性フィルムの層構成を含み、基材フィルム及びガスバリア性フィルムの少なくとも一つが蒸着フィルム(A)であることが好ましい。基材フィルムまたはガスバリア性フィルムが蒸着層を有しない場合には、蒸着前の各種フィルムをそのまま用いることができる。 The laminate [I] in the present invention includes at least one layer of the above-mentioned vapor-deposited film (A), but includes a base film / gas barrier film layer structure from the viewpoint of strength, gas barrier properties, and the like. It is preferable that at least one of the film and the gas barrier film is a vapor deposition film (A). When the base film or the gas barrier film does not have a vapor deposition layer, various films before vapor deposition can be used as they are.
 なお、基材フィルムやガスバリア性フィルムは、それぞれ一層のみ用いてもよいし、二層以上積層してもよい。また、基材フィルムやガスバリア性フィルムは、一種または二種以上のフィルムを用いることができる。 In addition, a base film and a gas barrier film may each be used only one layer, and may laminate | stack two or more layers. Moreover, 1 type, or 2 or more types of films can be used for a base film and a gas-barrier film.
 本発明においては、ガスバリア性フィルムとして、二軸延伸PVA系樹脂フィルムと二軸延伸EVOH系樹脂フィルムを併用することが好ましく、特には、基材フィルム/二軸延伸EVOH系樹脂フィルム/二軸延伸PVA系樹脂フィルムの各層が、この順番で積層されることが好ましい。即ち、基材フィルムに加え、二軸延伸EVOH系樹脂フィルムのガスバリア性、特に水蒸気の進入が極めて少量に抑えられることにより、二軸延伸PVA系樹脂フィルムの酸素、窒素等の各種ガスに対する非常に優れたガスバリア性能が充分に発揮されることとなり、積層体[I]が、二軸延伸PVA系樹脂フィルムを内側にして断熱性材料を密封し、真空断熱構造体としたときに、ガスバリア性に非常に優れ、長期間使用した際にも高い信頼度で真空状態が維持されるため断熱性能の低下が非常に少なくなり、長期耐久性に優れた真空断熱構造体が得られるものとなる。 In the present invention, it is preferable to use a biaxially stretched PVA-based resin film and a biaxially stretched EVOH-based resin film in combination as the gas barrier film, and in particular, base film / biaxially stretched EVOH-based resin film / biaxially stretched. Each layer of the PVA-based resin film is preferably laminated in this order. That is, in addition to the base film, the gas barrier property of the biaxially stretched EVOH resin film, particularly the entry of water vapor, is suppressed to a very small amount, so that the biaxially stretched PVA resin film is extremely resistant to various gases such as oxygen and nitrogen. Excellent gas barrier performance will be exhibited sufficiently, and when the laminate [I] has a biaxially stretched PVA resin film inside and seals the heat insulating material to form a vacuum heat insulating structure, the gas barrier property is improved. Since the vacuum state is maintained with high reliability even when used for a long period of time, the heat insulation performance is hardly deteriorated, and a vacuum heat insulating structure excellent in long-term durability can be obtained.
 二軸延伸EVOH系樹脂フィルムと二軸延伸PVA系樹脂フィルムの厚み比については、好ましくは二軸延伸EVOH系樹脂フィルム/二軸延伸PVA系樹脂フィルム=1/3~3/1、更に好ましくは1/2~2/1、特に好ましくは1/1.5~1.5/1である。二軸延伸EVOH系樹脂フィルムと二軸延伸PVA系樹脂フィルムは相互にそのバリア性を補完する関係にあり、特に高温多湿条件等の劣悪な環境下で、それぞれが侵入を防げるガス種には違いがあるため、互いが相応の厚みをもってバリア性を発現する必要があり、その厚みの比率は上記の範囲が好ましい。 The thickness ratio between the biaxially stretched EVOH resin film and the biaxially stretched PVA resin film is preferably biaxially stretched EVOH resin film / biaxially stretched PVA resin film = 1/3 to 3/1, more preferably It is 1/2 to 2/1, particularly preferably 1 / 1.5 to 1.5 / 1. Biaxially stretched EVOH-based resin film and biaxially-stretched PVA-based resin film are complementary to each other in their barrier properties, and are different from each other in gas types that can prevent intrusion, particularly in poor environments such as high-temperature and high-humidity conditions. Therefore, it is necessary for each of them to exhibit barrier properties with an appropriate thickness, and the thickness ratio is preferably within the above range.
 更に、本発明における積層体[I]が、基材フィルムの外側に保護フィルムを積層してなり、ガスバリア性フィルムの内側にシール層を積層してなるものであることが好ましい。 Furthermore, the laminate [I] in the present invention is preferably formed by laminating a protective film on the outside of the base film and laminating a seal layer on the inside of the gas barrier film.
 本発明で用いられる保護フィルムは、主として、積層体[I]を用いて真空断熱構造体用外装袋を作製した時の外層を保護する目的で用いられるフィルムであり、例えば、ポリエステル系フィルム、ポリアミド系フィルム、ポリオレフィン系フィルム、ポリウレタン系フィルム等が挙げられる。中でもポリオレフィン系フィルム、好ましくはポリプロピレンフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、あるいはフッ素系フィルムを用いることが、水蒸気バリア性を有することから好ましい。 The protective film used in the present invention is a film mainly used for the purpose of protecting the outer layer when an exterior bag for a vacuum heat insulating structure is produced using the laminate [I]. For example, a polyester film, a polyamide Examples thereof include a system film, a polyolefin film, and a polyurethane film. Among them, it is preferable to use a polyolefin-based film, preferably a polypropylene film, a polyvinyl chloride film, a polyvinylidene chloride film, or a fluorine-based film because it has a water vapor barrier property.
 かかるポリオレフィン系フィルムとしては、汎用のポリオレフィン系フィルムを用いることできる。
 例えば、ポリプロピレン、ポリブテン-1、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレンなどのホモポリマーが挙げられる他、プロピレンを主成分とするエチレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、オクテン-1、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、1,4-ヘキサジエン、スチレンなどとの共重合体、更には無水マレイン酸などのカルボン酸でグラフト変性されたもの、ブテン-1を主成分とするエチレン、プロピレン、ブテン-2、イソブチレン、ブタジエン、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、オクテン-1などとの共重合体、更には無水マレイン酸などのカルボン酸でグラフト変性されたもの、エチレンを主成分とするプロピレン、ブテン-1、4-メチルペンテン-1、1-ヘキセン、1-オクテン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、スチレン、酢酸ビニル、アクリル酸メチル、アクリル酸エチル、アクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸、メタクリル酸グリシディルなどとの共重合体、更には無水マレイン酸などのカルボン酸でグラフト変性されたもの等を挙げられる。これらの中でも、特にはポリプロピレンを用いることが防湿性及び工業的な生産性の点で好ましい。
 ここで主成分とは、全体の過半を占める成分のことをいい、全体が主成分のみからなる場合も含む意味である。
A general-purpose polyolefin film can be used as the polyolefin film.
For example, homopolymers such as polypropylene, polybutene-1, high-density polyethylene, medium-density polyethylene, and low-density polyethylene are listed, and ethylene, butene-1, pentene-1, 4-methylpentene-1 containing propylene as a main component , Hexene-1, octene-1, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, copolymers with 1,4-hexadiene, styrene, etc., and also grafted with carboxylic acid such as maleic anhydride Modified ones, copolymers of ethylene, propylene, butene-2, isobutylene, butadiene, pentene-1, 4-methylpentene-1, hexene-1, octene-1 and the like mainly containing butene-1; Furthermore, graft-modified with carboxylic acid such as maleic anhydride, ethylene as the main component Propylene, butene-1,4-methylpentene-1,1-hexene, 1-octene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, styrene, vinyl acetate, methyl acrylate, ethyl acrylate , Copolymers with acrylic acid, methyl methacrylate, ethyl methacrylate, methacrylic acid, glycidyl methacrylate, and the like, and those graft-modified with carboxylic acids such as maleic anhydride. Among these, it is particularly preferable to use polypropylene in terms of moisture resistance and industrial productivity.
Here, the main component means a component that occupies the majority of the whole, and includes the case where the whole consists of only the main component.
 また、延伸処理を施し、一軸延伸或いは二軸延伸ポリオレフィン系フィルムを用いることも好ましく、特には、より薄膜でより高いガスバリア性を得るという点から、二軸延伸ポリオレフィン系フィルムが好ましく用いられる。 Further, it is also preferable to perform a stretching treatment and use a uniaxially stretched or biaxially stretched polyolefin film. In particular, a biaxially stretched polyolefin film is preferably used from the viewpoint of obtaining a higher gas barrier property with a thinner film.
 保護フィルムの厚みに関しては、通常5~200μm、特には10~100μmであることが好ましい。厚みが薄すぎると得られる真空断熱構造体の芯材となる断熱性材料の充填性が低下する傾向があり、厚すぎると加工性が低下するばかりでなく経済的にも不利となる傾向がある。 Regarding the thickness of the protective film, it is usually preferably 5 to 200 μm, particularly 10 to 100 μm. If the thickness is too thin, the filling property of the heat insulating material that becomes the core material of the vacuum heat insulating structure obtained tends to be lowered. If the thickness is too thick, not only the workability is lowered, but also economically disadvantageous. .
 更に、保護フィルムは、初期弾性率が1~100GPa、更には0.5~50GPaであることが好ましく、また、水蒸気透過度が10g/m2/day以下、更には8g/m2/day以下であることが好ましい。なお、上記初期弾性率は、JIS K 7127に則して測定された23℃×60%RHでの値であり、水蒸気透過度は、JIS Z 0208に則して測定された23℃×90%RHでの値である。なお、かかる水蒸気透過度は小さければ小さいほどよいが、通常下限値としては0.0000001g/m2/dayである。 Further, the protective film preferably has an initial elastic modulus of 1 to 100 GPa, more preferably 0.5 to 50 GPa, and a water vapor permeability of 10 g / m 2 / day or less, further 8 g / m 2 / day or less. It is preferable that The initial elastic modulus is a value at 23 ° C. × 60% RH measured in accordance with JIS K 7127, and the water vapor permeability is 23 ° C. × 90% measured in accordance with JIS Z 0208. Value at RH. The water vapor permeability is preferably as small as possible, but the lower limit is usually 0.0000001 g / m 2 / day.
 本発明で用いられるシール層は、積層体[I]を用いて真空断熱構造体用外装袋を作製した時の内側に設けられるものであり、通常、シール強度の観点からポリオレフィン系樹脂層からなる層であることが好ましく、中でもポリプロピレンや高密度ポリエチレンや、低密度ポリエチレンが好ましく用いられる。また、ポリオレフィン系樹脂以外として、エチレン-酢酸ビニル共重合体なども好適に用いられる。 The seal layer used in the present invention is provided on the inner side when an outer bag for a vacuum heat insulating structure is produced using the laminate [I], and usually comprises a polyolefin resin layer from the viewpoint of seal strength. A layer is preferable, and among them, polypropylene, high density polyethylene, and low density polyethylene are preferably used. In addition to polyolefin resins, ethylene-vinyl acetate copolymers and the like are also preferably used.
 本発明においては、シール層を形成するに当たり、(1)上記シール層を形成する樹脂を用いて、別途フィルムを作製しておき、外装袋の内側となる面に更に積層することもでき、また、(2)外装袋の内側となる面に直接溶融押出形成にて積層することもできるが、(1)のほうがシール性の点で好ましい。 In the present invention, in forming the seal layer, (1) using the resin for forming the seal layer, a separate film may be prepared and further laminated on the inner surface of the exterior bag. (2) Although it can be laminated by melt extrusion directly on the inner surface of the outer bag, (1) is preferred in terms of sealing properties.
 シール層の厚みは、通常は10~100μm、特には20~80μmが好ましく、薄すぎるとシール強度が低下する傾向があり、厚すぎるとシール層の端面からのガス侵入が助長されることになりガスバリア性が低下する傾向がある。 The thickness of the sealing layer is usually preferably 10 to 100 μm, particularly 20 to 80 μm. If it is too thin, the sealing strength tends to decrease. If it is too thick, gas penetration from the end face of the sealing layer is promoted. There is a tendency for gas barrier property to fall.
 本発明において、積層体[I]を構成する各層を積層する方法としては、例えば、ポリエステルやポリエーテルを主剤としてイソシアネート系の硬化剤を用いる接着剤によるノンソルベントドライラミネート法、溶剤ドライラミネート法や、エマルジョン系接着剤によるウェットラミネート法などがあるが、特にこの方法に限られるものではない。 In the present invention, as a method of laminating each layer constituting the laminate [I], for example, a non-solvent dry laminating method using an adhesive that uses an isocyanate-based curing agent with polyester or polyether as a main component, a solvent dry laminating method, Although there is a wet laminating method using an emulsion adhesive, there is no particular limitation to this method.
 また、接着剤層の厚みとしては、接着強度の点から0.1~10μmであることが好ましく、特には0.3~7μm、更には0.5~5μmであることが好ましい。かかる接着剤層の厚みが薄すぎると接着力が不充分となる傾向があり、厚すぎると接着剤層そのものの破壊によりデラミが発生し、接着強度が低下する傾向がある。 The thickness of the adhesive layer is preferably from 0.1 to 10 μm, particularly from 0.3 to 7 μm, more preferably from 0.5 to 5 μm from the viewpoint of adhesive strength. If the thickness of the adhesive layer is too thin, the adhesive force tends to be insufficient, and if it is too thick, delamination occurs due to the destruction of the adhesive layer itself, and the adhesive strength tends to decrease.
 本発明における積層体[I]の全体の厚みは、通常5~500μmであり、特には、10~200μmが好ましい。 The total thickness of the laminate [I] in the present invention is usually 5 to 500 μm, and particularly preferably 10 to 200 μm.
 また、本発明の積層体[I]の水蒸気透過度は、通常1g/m2/day以下であり、更には0.5g/m2/day以下であることが好ましい。かかる水蒸気透過度が大きすぎるとガスバリア性が低下するため、真空断熱構造体の断熱性能が低下する傾向がある。なお、かかる水蒸気透過度は小さければ小さいほどよいが、通常下限値としては0.00001g/m2/dayである。
 なお、水蒸気透過度は、JIS Z 0208に則して測定された23℃×90%RHでの値である。
Further, the water vapor permeability of the laminate [I] of the present invention is usually 1 g / m 2 / day or less, and more preferably 0.5 g / m 2 / day or less. If the water vapor permeability is too large, the gas barrier property is lowered, and thus the heat insulation performance of the vacuum heat insulation structure tends to be lowered. The water vapor permeability is preferably as small as possible, but is usually 0.00001 g / m 2 / day as the lower limit.
The water vapor permeability is a value at 23 ° C. × 90% RH measured according to JIS Z 0208.
 また、積層体[I]の酸素透過度は、23℃×50%RHの条件で、JIS K 7126(等圧法)に記載の方法に準じて測定した際の値が、通常0.5ml/(m2・day・atm)以下、好ましくは、0.1ml/(m2・day・atm)以下である。酸素透過度が高すぎると、上記水蒸気と同様に、真空断熱構造体を構成した後に酸素や窒素などの外気構成ガスが内部に侵入し断熱性能を著しく低下させる傾向がある。なお、かかる酸素透過度は小さければ小さいほどよいが、通常下限値としては0.000001ml/(m2・day・atm)である。 The oxygen permeability of the laminate [I] is usually 0.5 ml / (value when measured according to the method described in JIS K 7126 (isobaric method) under the condition of 23 ° C. × 50% RH. m 2 · day · atm) or less, preferably 0.1 ml / (m 2 · day · atm) or less. If the oxygen permeability is too high, as in the case of the water vapor, after the vacuum heat insulating structure is formed, an outside air constituent gas such as oxygen or nitrogen tends to enter the inside and the heat insulating performance tends to be remarkably lowered. The lower the oxygen permeability, the better. However, the lower limit is usually 0.000001 ml / (m 2 · day · atm).
 更に、本発明の積層体[I]は、積層体中の水分率が0.3重量%以下であることが好ましく、特に好ましくは0.2重量%以下、更に好ましくは0.1重量%以下、殊に好ましくは0.07重量%以下、殊に好ましくは0.05重量%以下である。かかる水分率が高すぎると積層体が含む水分により、真空断熱構造体の内部圧力が低下するため真空断熱構造体の断熱性能が低下する傾向がある。なお、水分率の下限値は通常0.001重量%である。 Furthermore, the laminate [I] of the present invention preferably has a moisture content in the laminate of 0.3% by weight or less, particularly preferably 0.2% by weight or less, and more preferably 0.1% by weight or less. It is particularly preferably 0.07% by weight or less, particularly preferably 0.05% by weight or less. If the moisture content is too high, the moisture contained in the laminate tends to lower the heat insulation performance of the vacuum heat insulation structure because the internal pressure of the vacuum heat insulation structure is lowered. The lower limit of the moisture content is usually 0.001% by weight.
 なお、積層体[I]中の水分率は、下記のようにして測定される。
 即ち、積層体[I]の水分率は、例えば、三菱化学社製カールフィッシャー測定装置(水分気化装置:VA-100型、微量水分測定装置:CA-100型)を用いて、水分気化法-電量滴定法で測定を行う。なお、積層体[I]を4cm×1cmの短冊状に切り、10枚をボードに乗せ、加熱温度120℃で滴定継続時間を30分間として行う。
In addition, the moisture content in laminated body [I] is measured as follows.
That is, the moisture content of the laminate [I] can be determined by, for example, using a Karl Fischer measuring device (moisture vaporizer: VA-100 type, trace moisture measuring device: CA-100 type) manufactured by Mitsubishi Chemical Corporation. Measure by coulometric titration method. The laminate [I] is cut into 4 cm × 1 cm strips, 10 are placed on a board, and the titration duration is 30 minutes at a heating temperature of 120 ° C.
 積層体[I]中の水分率を上記範囲に調整するに際しては、例えば、上記の層構成を有する積層体[I]と乾燥剤とをアルミニウム包装材により密封包装した状態で、40℃以上の環境下にて加熱することにより、水分率を0.3重量%以下に調整された積層体[I]を得ることができる。 When adjusting the moisture content in the laminate [I] to the above range, for example, in a state where the laminate [I] having the above layer configuration and the desiccant are hermetically packaged with an aluminum packaging material, the temperature is 40 ° C. or higher. By heating in an environment, it is possible to obtain a laminate [I] having a moisture content adjusted to 0.3% by weight or less.
 加熱温度は、40℃以上であることが好ましく、特には50℃以上、更には70℃以上、殊には80℃以上であることが好ましい。加熱温度が低すぎると満足のいく水分率が得られなくなる傾向がある。なお、上限値は通常120℃である。加熱温度が高すぎるとシール層が融着してしまう傾向がある。 The heating temperature is preferably 40 ° C. or higher, particularly 50 ° C. or higher, more preferably 70 ° C. or higher, and particularly preferably 80 ° C. or higher. If the heating temperature is too low, a satisfactory moisture content tends not to be obtained. The upper limit is usually 120 ° C. If the heating temperature is too high, the sealing layer tends to be fused.
 また、加熱時間は、0.5時間以上であることが好ましく、特には1~96時間、更には3~72時間であることが好ましい。加熱時間が短すぎるとフィルムの水分が充分除去できない傾向がある。 Further, the heating time is preferably 0.5 hours or more, particularly preferably 1 to 96 hours, more preferably 3 to 72 hours. When the heating time is too short, there is a tendency that the moisture of the film cannot be sufficiently removed.
 上記乾燥剤としては、化合物の結晶水の一部あるいは全部を放出した状態の化合物あるいは無水化合物、例えば、1/2~18水和物の一部あるいは全部を放出した状態の化合物あるいは無水化合物を用いることができる。かかる水和物としては、硫酸カルシウムの1/2水和物や塩化カルシウム6水和物、塩化マグネシウム(2,4,6)水和物、硫酸銅5水和物、硫酸マグネシウム7水和物、硫酸アルミニウム18水和物などが挙げられる。中でも、このようなタイプの乾燥剤としては、例えば、無水塩化カルシウムや塩化カルシウム1水和物などを利用する塩化カルシウム系乾燥剤、あるいは塩化マグネシウム系乾燥剤、塩化スズ系乾燥剤、硫酸ナトリウム系乾燥剤などが挙げられる。 Examples of the desiccant include compounds or anhydrous compounds in which a part or all of the crystal water of the compound has been released, such as compounds or anhydrous compounds in which a part or all of 1/2 to 18 hydrate has been released. Can be used. Such hydrates include calcium sulfate hemihydrate, calcium chloride hexahydrate, magnesium chloride (2,4,6) hydrate, copper sulfate pentahydrate, magnesium sulfate heptahydrate. And aluminum sulfate 18 hydrate. Among them, as this type of desiccant, for example, calcium chloride-based desiccant using anhydrous calcium chloride or calcium chloride monohydrate, or magnesium chloride-based desiccant, tin chloride-based desiccant, sodium sulfate-based A desiccant etc. are mentioned.
 また乾燥剤として、特に周囲の水分と化学反応を起こすような乾燥剤、即ち、乾燥前と乾燥後で別の化合物となるような乾燥剤を用いることもできる。このようなタイプの乾燥剤としては、例えば、五酸化リン、酸化カルシウムなどが挙げられる。これらの化合物はそれぞれ水分と反応してリン酸、水酸化カルシウムなどに変化することで乾燥するものである。 As the desiccant, a desiccant that causes a chemical reaction with surrounding moisture, that is, a desiccant that becomes a different compound before and after drying can be used. Examples of this type of desiccant include phosphorus pentoxide and calcium oxide. Each of these compounds is dried by reacting with moisture to change into phosphoric acid, calcium hydroxide, or the like.
 これらの乾燥剤の包装方法としては、乾燥剤を粉末状あるいはフレーク状として、内部に存在させ包装することもできるし、乾燥剤だけを透過性の高い包装材で個別包装し、これを積層体[I]とともに包装することもできる。この場合の透過性の高い包装材としては紙、不織布、織布あるいはセロファンフィルムなどがあり、これらを単独あるいは複数を重ね合わせて利用することもできる。また、乾燥剤を紙や不織布等の表面に塗布するなどして、複合体として形成し、これをアルミニウム包装材にて包装することも可能である。 As a method for packaging these desiccants, the desiccant can be present in the form of powder or flakes, and can be packaged inside. Alternatively, only the desiccant can be individually packaged with a highly permeable packaging material, and the laminate It can also be packaged together with [I]. In this case, the highly permeable packaging material includes paper, non-woven fabric, woven fabric, cellophane film, and the like, and these can be used alone or in combination. It is also possible to form a composite by applying a desiccant to the surface of paper, nonwoven fabric or the like, and wrap this in an aluminum packaging material.
 かかる乾燥剤の使用量としては、内部の積層体[I](積層体[I]を用いてなる真空断熱構造体用外装袋の場合も含む)100重量部に対して0.5~50重量部であることが好ましく、1~20重量部であることがより好ましい。乾燥剤が少なすぎると水分除去性が低下する傾向があり、多すぎると全体の体積が大きくなり輸送や収納が困難になる傾向がある。なお、本発明においては、上記乾燥剤以外のシリカゲルなどの従来より用いられる乾燥剤を併用してもよい。 The amount of the desiccant used is 0.5 to 50 weights per 100 parts by weight of the inner laminate [I] (including the case of the outer bag for a vacuum heat insulating structure using the laminate [I]). Parts, preferably 1 to 20 parts by weight. If the amount of the desiccant is too small, the water removability tends to decrease. If the amount is too large, the entire volume tends to be large and transportation and storage tend to be difficult. In the present invention, conventionally used desiccants such as silica gel other than the desiccant may be used in combination.
 なお、アルミニウム包装に用いる包装材としては、アルミ箔層を含む積層体であることが好ましい。アルニウム包装材の厚みは10~1000μmであることが好ましく、特には30~300μmであることが好ましい。 In addition, it is preferable that it is a laminated body containing an aluminum foil layer as a packaging material used for aluminum packaging. The thickness of the arnium packaging material is preferably 10 to 1000 μm, particularly preferably 30 to 300 μm.
 また、積層体[I]の水分率を調整するに際しては、例えば、真空包装直前に乾燥する方法等も挙げられる。 In addition, when adjusting the moisture content of the laminate [I], for example, a method of drying immediately before vacuum packaging and the like can be mentioned.
 なお、本発明においては、積層体[I]と乾燥剤とをアルミニウム包装材により密封包装した状態で、40℃以上の環境下にて加熱した後、密封包装のまま保管または輸送することが好ましい。更に、本発明においては、水分率を調整する前の積層体[I]を用いて予め真空断熱構造体用外装体を作製し、得られた真空断熱構造体用外装袋と乾燥剤とをアルミニウム包装材により密封包装した状態で、40℃以上の環境下にて加熱した後、密封包装のまま保管または輸送することも好ましい。上述の通り、アルニウム包装材により密封包装した状態で、40℃以上の環境下にて加熱したものであれば、その後、その密封包装のまま保管または輸送することができ、開封後においても直ちに真空断熱構造体用外装袋の製造や真空断熱構造体の製造に供すれば、特別な乾燥工程を必要とすることなく、非常に有利である。 In the present invention, the laminate [I] and the desiccant are preferably sealed and packaged with an aluminum packaging material, heated in an environment of 40 ° C. or higher, and then stored or transported in sealed packaging. . Furthermore, in this invention, the exterior body for vacuum heat insulation structures is produced beforehand using laminated body [I] before adjusting a moisture content, and the obtained exterior bag for vacuum insulation structures and a desiccant are made into aluminum. It is also preferable to store or transport the sealed packaging as it is after heating in an environment of 40 ° C. or higher in a state of being sealed and packaged with a packaging material. As mentioned above, if it is heated in an environment of 40 ° C. or higher in a state of hermetically sealed with an aluminum packaging material, it can then be stored or transported as it is in hermetically sealed packaging and immediately vacuumed even after opening. If it uses for manufacture of the exterior bag for heat insulation structures, or manufacture of a vacuum heat insulation structure, it is very advantageous, without requiring a special drying process.
 かくして、上記の積層体[I]を用いて、真空断熱構造体用外装袋が得られる。本発明においては、外装袋を形成する際に、積層体[I]のシール層を内側にして、形成することが好ましい。なお、積層体[I]がシール層を有しない場合は、ガスバリア性フィルムが内側になるようにして真空断熱構造体用外装袋を形成することが好ましい。かかる外装袋を用いて断熱性材料を密封包装することにより、本発明の真空断熱構造体を得ることができる。 Thus, an exterior bag for a vacuum heat insulating structure is obtained using the above laminate [I]. In this invention, when forming an exterior bag, it is preferable to form with the sealing layer of laminated body [I] inside. In addition, when laminated body [I] does not have a sealing layer, it is preferable to form the exterior bag for vacuum heat insulation structures so that a gas barrier film may become inside. The vacuum heat insulating structure of the present invention can be obtained by sealing and packaging the heat insulating material using such an exterior bag.
<真空断熱構造体>
 次に、本発明の真空断熱構造体について説明する。
 断熱性材料を包装するに当たって、その包装方法は、例えば、積層体[I]を袋状に加工した外装袋を形成し、その中に断熱性材料を入れる方法を用いることができる。
<Vacuum insulation structure>
Next, the vacuum heat insulating structure of the present invention will be described.
In packaging the heat insulating material, for example, a method of forming an outer bag obtained by processing the laminate [I] into a bag shape and putting the heat insulating material therein can be used.
 本発明の積層体[I]を用いてなる真空断熱構造体用外装袋で断熱性材料を密封包装する際の好ましい層構成としては、ガスバリア性及び防湿性、更には長期耐久性の点から、外層側(断熱性材料とは逆側)から、例えば、
(1)保護フィルム/接着剤層/蒸着ポリエステル系フィルム(蒸着面)/接着剤層/二軸延伸ポリビニルアルコール系樹脂フィルム/接着剤層/シール層、
(2)保護フィルム/接着剤層/蒸着ポリエステル系フィルム(蒸着面)/接着剤層/(蒸着面)蒸着二軸延伸ポリビニルアルコール系樹脂フィルム/接着剤層/シール層、
(3)蒸着ポリエステル系フィルム(蒸着面)/接着剤層/蒸着ポリエステル系フィルム(蒸着面)/接着剤層/二軸延伸ポリビニルアルコール系樹脂フィルム/接着剤層/シール層、
(4)蒸着ポリエステル系フィルム(蒸着面)/接着剤層/二軸延伸エチレン-ビニルアルコール共重合樹脂フィルム/接着剤層/二軸延伸ポリビニルアルコール系樹脂フィルム/接着剤層/シール層、
(5)蒸着ポリエステル系フィルム(蒸着面)/接着剤層/(蒸着面)蒸着二軸延伸エチレン-ビニルアルコール共重合樹脂フィルム/接着剤層/二軸延伸ポリビニルアルコール系樹脂フィルム/接着剤層/シール層、
等を挙げることができるが、かかる層構成に限定されるものではない。
 本発明においては、特に、水蒸気バリア性の点から、上記(1)、(3)または(4)の層構成が好ましい。
 また、各層の間に、更に、ガスバリア性フィルムや接着剤(または粘着剤)層等の他の層を有していてもよい。
As a preferable layer structure when sealing and packaging the heat insulating material with the exterior bag for a vacuum heat insulating structure using the laminate [I] of the present invention, from the viewpoint of gas barrier properties and moisture resistance, and further long-term durability, From the outer layer side (the side opposite to the heat insulating material), for example,
(1) Protective film / adhesive layer / deposited polyester film (deposition surface) / adhesive layer / biaxially stretched polyvinyl alcohol resin film / adhesive layer / seal layer,
(2) Protective film / adhesive layer / deposited polyester film (deposited surface) / adhesive layer / (deposited surface) deposited biaxially stretched polyvinyl alcohol resin film / adhesive layer / seal layer,
(3) Deposition polyester film (deposition surface) / adhesive layer / deposition polyester film (deposition surface) / adhesive layer / biaxially stretched polyvinyl alcohol resin film / adhesive layer / seal layer,
(4) Deposition polyester film (deposition surface) / adhesive layer / biaxially stretched ethylene-vinyl alcohol copolymer resin film / adhesive layer / biaxial stretch polyvinyl alcohol resin film / adhesive layer / seal layer,
(5) Deposition polyester film (deposition surface) / adhesive layer / (deposition surface) Deposition biaxially stretched ethylene-vinyl alcohol copolymer resin film / adhesive layer / biaxially stretched polyvinyl alcohol resin film / adhesive layer / Sealing layer,
However, it is not limited to such a layer structure.
In the present invention, the layer configuration of (1), (3) or (4) is particularly preferred from the viewpoint of water vapor barrier properties.
Moreover, you may have other layers, such as a gas-barrier film and an adhesive (or adhesive) layer, between each layer.
 真空断熱構造体を製造する際には、有機性揮発性分量を調整するため、積層体[I]を得た後、もしくは一度積層体[I]を外袋状に加工した後、70℃以上の恒温槽に入れて追加乾燥を行うことが好ましい。 When manufacturing a vacuum heat insulating structure, in order to adjust the organic volatile content, after obtaining the laminate [I] or once processing the laminate [I] into an outer bag shape, 70 ° C. or more It is preferable to perform additional drying in a constant temperature bath.
 追加乾燥としては、70℃以上150℃以下、特には80℃以上130℃以下、更には80℃以上110℃以下で乾燥することが好適である。乾燥温度が低すぎると所定の残溶剤量にまで到達させるのに時間がかかりすぎる傾向があり、乾燥温度が高すぎると外装袋のシール層が、その内部で融着し、袋の内部空間が一部閉塞してしまう傾向がある。 As additional drying, it is preferable to dry at 70 ° C. or higher and 150 ° C. or lower, particularly 80 ° C. or higher and 130 ° C. or lower, and further 80 ° C. or higher and 110 ° C. or lower. If the drying temperature is too low, it tends to take too much time to reach the predetermined amount of residual solvent. If the drying temperature is too high, the sealing layer of the outer bag is fused inside, and the inner space of the bag is reduced. There is a tendency to partially occlude.
 更に追加乾燥は、常圧条件下で行うことが一般的であるが、減圧条件下で行うことも可能である。この場合、減圧することによって常圧条件下に比べて同じ温度での乾燥時間を短縮することが可能となる。 Further, the additional drying is generally performed under normal pressure conditions, but can be performed under reduced pressure conditions. In this case, the drying time at the same temperature can be shortened by reducing the pressure as compared with the normal pressure condition.
 積層体[I]からなる外装袋に密封包装される断熱性材料としては、例えば、内部に連続気泡を有する高分子、あるいは無機物や金属の微粉末が好ましく用いられ、外装袋内部を真空引きしても形状を保持できるものである。外装袋内部を真空引きし、開口部を封止して用いるにあたり、断熱性材料の高分子が気泡を有していない、あるいは独立気泡を有するものであると、真空断熱構造体の断熱効果が低減し好ましくない。 As the heat insulating material sealed and packaged in the outer bag made of the laminate [I], for example, a polymer having open cells inside, or a fine powder of inorganic or metal is preferably used, and the inside of the outer bag is evacuated. However, the shape can be maintained. When the inside of the outer bag is evacuated and the opening is sealed, the heat insulating effect of the vacuum heat insulating structure is obtained when the polymer of the heat insulating material does not have bubbles or has closed cells. Reduced and not preferable.
 かかる断熱性材料としては、具体的には、ウレタンフォーム、カーボンフォーム、フェノールフォーム、フェノール-ウレタンフォームなどの連続気泡を有する高分子、アルミナ、シリカ、パーライトなどの微粉末、グラスウール、ロックウール、ケイソウ土、ケイ酸カルシウムなどの成形体等を挙げることができる。 Specific examples of such a heat-insulating material include urethane foam, carbon foam, phenol foam, phenol-urethane foam and other polymers having open cells, fine powders such as alumina, silica, pearlite, glass wool, rock wool, diatomaceous earth. Examples of the molded body include soil and calcium silicate.
 これらの中でも、グラスウールなどの繊維状断熱性材料、粒状酸化ケイ素、発泡樹脂体などの粒状断熱性材料が、外装袋内部を真空引きしても形状を保持できる点や、気泡を有しているため真空断熱構造体の断熱効果を保持することができる点で好ましい。 Among these, fibrous heat-insulating materials such as glass wool, granular heat-insulating materials such as granular silicon oxide and foamed resin bodies can retain the shape even when the inside of the outer bag is evacuated, and have bubbles. Therefore, it is preferable in that the heat insulating effect of the vacuum heat insulating structure can be maintained.
 また、かかる断熱性材料には、水分により真空度の低下をまねく場合があるため、酸化カルシウムや塩化カルシウム等の乾燥剤を混合して使用することも好ましい。 Also, since such a heat-insulating material may cause a decrease in the degree of vacuum due to moisture, it is also preferable to use a mixture of a desiccant such as calcium oxide or calcium chloride.
 かかる断熱性材料を積層体[I]からなる外装袋に入れ、真空包装し、真空断熱構造体を形成するわけであるが、断熱性材料を外装袋に入れる際に、断熱性材料は予め所定の形状(例えば、立方体、直方体など)に形成しておくことが、断熱性能や作業性の点で好ましい。 The heat insulating material is put in an outer bag made of the laminate [I] and vacuum-packed to form a vacuum heat insulating structure. When the heat insulating material is put in the outer bag, the heat insulating material is predetermined. It is preferable to form in the shape (for example, a cube, a rectangular parallelepiped, etc.) in terms of heat insulation performance and workability.
 本発明においては、断熱性材料を積層体[I]からなる外装袋に入れた状態で、減圧し、最後に袋の開口部をシールして閉じることで真空断熱構造体を得ることができる。該真空断熱構造体の真空度としては、特に制限されるわけではないが、100Pa以下が好ましく、更には10Pa以下が好ましく、特には5Pa以下が好ましい。 In the present invention, a vacuum heat insulating structure can be obtained by reducing the pressure in a state where the heat insulating material is put in the outer bag made of the laminate [I], and finally sealing and closing the opening of the bag. The degree of vacuum of the vacuum heat insulating structure is not particularly limited, but is preferably 100 Pa or less, more preferably 10 Pa or less, and particularly preferably 5 Pa or less.
 本発明においては、真空断熱構造体の形状、大きさは特に限定されるものではなく、目的に応じて決めればよい。例えば、かかる真空断熱構造体形状については、一つの真空断熱構造体に対し、積層体[I]からなる外装袋が一つ含まれる形状でもよいし、一つの真空断熱構造体に対し、外装袋が複数個含まれる形状のものでもよい。 In the present invention, the shape and size of the vacuum heat insulating structure are not particularly limited, and may be determined according to the purpose. For example, the shape of the vacuum heat insulating structure may be a shape in which one outer bag made of the laminate [I] is included for one vacuum heat insulating structure, or the outer bag for one vacuum heat insulating structure. May be in a shape including a plurality of.
 かかる外装袋が複数個含まれる形状である場合においては、外装袋部同士のつなぎ目になるシール部分が真空断熱構造体の中で厚みの薄い部分となり、真空断熱構造体を変形させた場合の変形の中心部となるため、真空断熱構造体が容易に変形することが可能となり好ましい。更には、外的要因によって穴等が発生し、真空断熱構造体の真空性が失われてしまう場合にも、外装袋が複数個含まれる形状であると、断熱性の減少を最小限に留めることができ好ましい。 In the case of a shape including a plurality of such exterior bags, the seal part that becomes a joint between the exterior bag parts becomes a thin part in the vacuum heat insulation structure, and deformation when the vacuum heat insulation structure is deformed Therefore, the vacuum heat insulating structure can be easily deformed, which is preferable. Furthermore, even when a hole or the like is generated due to an external factor, and the vacuum property of the vacuum heat insulating structure is lost, the decrease in the heat insulating property is kept to a minimum if the shape includes a plurality of exterior bags. Can be preferable.
 かかる真空断熱構造体の大きさに関しては、一般的に厚み5~100mmで、縦と横が100~1000mmの範囲の直方体状に加工される場合が多い。真空断熱構造体の体積が不必要に大きいと、外装袋に穴等の欠陥が発生した場合に性能を失う面積が大きくなり、真空断熱構造体を利用した最終商品の性能を低下させるおそれがあるため、適当な大きさとすることが好ましい。 Regarding the size of such a vacuum heat insulating structure, it is often processed into a rectangular parallelepiped shape having a thickness of 5 to 100 mm and a length and width of 100 to 1000 mm. If the volume of the vacuum insulation structure is unnecessarily large, the area that loses performance increases when a defect such as a hole occurs in the outer bag, which may reduce the performance of the final product using the vacuum insulation structure. Therefore, it is preferable to set the size appropriately.
 かくして本発明では、蒸着フィルム(A)において観測される輝点の数が、フィルムサイズ4mm×3mm当たり200個以下である蒸着フィルム(A)を含む積層体[I]を用いてなる真空断熱構造体用外装袋を用いることにより、優れた断熱性能を有し、更に、長期間使用した際にも断熱性能の低下が非常に少ない真空断熱構造体が得られる。かかる真空断熱構造体は、クーラーボックス、ボトルケース等の生活用品、冷蔵庫、電気ポット、炊飯器等の生活家電、温水器、浴槽、ユニットバス、便座等の住宅設備、床暖房、太陽光屋根、低温輻射板等の住宅システム、外壁用断熱パネル等の住宅建材、等の断熱材として有効に用いることができる。とりわけ、これらの中でも、特に冷蔵庫用の断熱材として特に好適に用いることができる。 Thus, in the present invention, the vacuum heat insulating structure using the laminate [I] including the deposited film (A) in which the number of bright spots observed in the deposited film (A) is 200 or less per 4 mm × 3 mm film size. By using the body outer bag, it is possible to obtain a vacuum heat insulating structure having excellent heat insulating performance and having a very low decrease in heat insulating performance even when used for a long time. Such vacuum heat insulating structures include household appliances such as cooler boxes and bottle cases, household appliances such as refrigerators, electric pots, rice cookers, housing equipment such as water heaters, bathtubs, unit baths, toilet seats, floor heating, solar roofs, It can be effectively used as a heat insulating material for a housing system such as a low-temperature radiation plate, a housing building material such as a heat insulating panel for an outer wall, and the like. Among these, it can be particularly preferably used as a heat insulating material for refrigerators.
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
 なお、例中「部」、「%」とあるのは、重量基準を意味する。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to a following example, unless the summary is exceeded.
In the examples, “parts” and “%” mean weight basis.
<実施例1>
 以下のフィルムを用意した。
〔蒸着フィルム(A)〕
(アルミ蒸着二軸延伸ポリエステルフィルム(A-1))
 厚さ12μmの二軸延伸ポリエステルフィルム(東洋紡社製、商品名「コスモシャイン」)の平滑な片方の面に、金属アルミニウムを真空蒸発させ、厚さ80nmのアルミ蒸着二軸延伸ポリエステルフィルム(A-1)を得た。
<Example 1>
The following films were prepared.
[Deposited film (A)]
(Aluminum-deposited biaxially stretched polyester film (A-1))
Metal aluminum was vacuum evaporated on one smooth surface of a 12 μm thick biaxially stretched polyester film (trade name “Cosmo Shine” manufactured by Toyobo Co., Ltd.), and an aluminum-deposited biaxially stretched polyester film (A- 1) was obtained.
 得られたアルミ蒸着二軸延伸ポリエステルフィルム(A-1)を下記の通り測定したところ、輝点の数は28個であり、輝点の面積率は0.04(%)であった。 When the obtained aluminum vapor-deposited biaxially stretched polyester film (A-1) was measured as follows, the number of bright spots was 28, and the area ratio of bright spots was 0.04 (%).
<輝点の数の測定方法>
 上記で得られたアルミ蒸着二軸延伸ポリエステルフィルム(A-1)を、顕微鏡(キーエンス社製、デジタルマイクロスコープVHX-1000)のステージに載せて上からスライドガラスを被せ、蒸着面の反対側から光を照射し、蒸着面側から顕微鏡で観察し(倍率:100倍)、フィルムの5カ所(右上、左上、右下、左下、中央)において、それぞれ1カ所につき画像サイズ4mm×3mmとなるように画像を得た。得られた画像を、それぞれ画像解析ソフト(ImageJ)で8bitのモノクロ画像に変換後、コントラストが100~255の部分をカウントするように設定し、その数を測定した。そして、測定した5カ所の数の平均値を、フィルムの輝点の数とした。
<Measurement method of number of bright spots>
The aluminum-deposited biaxially stretched polyester film (A-1) obtained above is placed on the stage of a microscope (manufactured by Keyence Corporation, Digital Microscope VHX-1000) and covered with a slide glass from above, and from the opposite side of the deposition surface Irradiate light and observe with a microscope from the side of the deposition surface (magnification: 100 times), so that the image size is 4 mm x 3 mm at each of the five locations (upper right, upper left, lower right, lower left, center) of the film. Got an image. Each of the obtained images was converted into an 8-bit monochrome image by image analysis software (ImageJ), and then set so as to count a portion having a contrast of 100 to 255, and the number was measured. And the average value of the number of the measured five places was made into the number of the bright spots of a film.
 なお、上記得られた画像のうち、中央箇所の画像を、画像解析ソフト(ImageJ)で8bitのモノクロ画像に変換したものを図1に示した。 In addition, FIG. 1 shows an image obtained by converting the image at the center of the obtained image into an 8-bit monochrome image using image analysis software (ImageJ).
<輝点の面積率の測定方法>
 上記、輝点の数の測定方法と同様に、アルミ蒸着二軸延伸ポリエステルフィルム(A-1)の画像を得た後、画像解析ソフト(ImageJ)を用いて輝点の総面積を測定し、輝点の面積率(%)を求めた。輝点の総面積についても、フィルムの5カ所(右上、左上、右下、左下、中央)において測定し、その平均値をフィルムの輝点の数とした。
<Measurement method of area ratio of bright spots>
Similar to the above method for measuring the number of bright spots, after obtaining an image of the aluminum-deposited biaxially stretched polyester film (A-1), the total area of the bright spots was measured using image analysis software (ImageJ), The area ratio (%) of the bright spots was determined. The total area of bright spots was also measured at five locations (upper right, upper left, lower right, lower left, and center) of the film, and the average value was taken as the number of bright spots on the film.
〔二軸延伸PVAフィルム〕
 ジャケット温度を60~150℃に設定した二軸押出機型混練機(スクリューL/D=40)のホッパーからPVA(重合度1700、4重量%水溶液の粘度40mPa・s、ケン化度99.7モル%、酢酸ナトリウム含有量0.3%)と水をPVA/水の重量比40/60にて、定量ポンプにより供給し、混練し、吐出量500kg/hrの条件で吐出した。
[Biaxially stretched PVA film]
From a hopper of a twin-screw extruder type kneader (screw L / D = 40) with the jacket temperature set to 60 to 150 ° C., a PVA (polymerization degree 1700, 4 wt% aqueous solution viscosity 40 mPa · s, saponification degree 99.7) Mol%, sodium acetate content 0.3%) and water at a PVA / water weight ratio of 40/60 were supplied by a metering pump, kneaded, and discharged under conditions of a discharge amount of 500 kg / hr.
 この吐出物を直ちに一軸押出機(スクリューL/D=30)に圧送し、温度85~140℃にて混練した後、Tダイより5℃のキャストロールに押出し、90℃の熱風乾燥機で30秒間乾燥し、含水率25%のPVAフィルム(厚み150μm)を作製した。引き続き、かかるPVAフィルムをMD方向に3.8倍延伸した後、テンターでTD方向に3.8倍延伸し、次いで180℃で8秒間熱固定し、二軸延伸PVAフィルム(厚み12μm)を得た。 This discharged material was immediately pumped to a single screw extruder (screw L / D = 30), kneaded at a temperature of 85 to 140 ° C., extruded from a T die onto a 5 ° C. cast roll, and then heated at 90 ° C. with a hot air dryer. The film was dried for 2 seconds to prepare a PVA film (thickness 150 μm) having a water content of 25%. Subsequently, the PVA film was stretched 3.8 times in the MD direction, then stretched 3.8 times in the TD direction with a tenter, and then heat-fixed at 180 ° C. for 8 seconds to obtain a biaxially stretched PVA film (thickness 12 μm). It was.
〔保護フィルム〕
(二軸延伸ポリプロピレンフィルム)
 厚さ25μmの二軸延伸ポリプロピレンフィルム(東洋紡社製、商品名「パイレンOT」)を用意した。このフィルムの23℃×90%RHでの水蒸気透過度を測定したところ7.2g/m2/dayであった。
〔Protective film〕
(Biaxially oriented polypropylene film)
A biaxially stretched polypropylene film (trade name “Pyrene OT”, manufactured by Toyobo Co., Ltd.) having a thickness of 25 μm was prepared. The water vapor transmission rate of this film at 23 ° C. × 90% RH was measured and found to be 7.2 g / m 2 / day.
〔シール層〕
(無延伸ポリプロピレンフィルム)
 厚さ30μmの無延伸ポリプロピレンフィルム(東洋紡社製、商品名「パイレンCT」)を用意した。
(Seal layer)
(Unstretched polypropylene film)
A non-stretched polypropylene film having a thickness of 30 μm (trade name “Pyrene CT” manufactured by Toyobo Co., Ltd.) was prepared.
 上記各フィルムを用いて、下記の通り真空断熱構造体を作製した。
 アルミ蒸着二軸延伸ポリエステルフィルム(A-1)の蒸着処理を施していない面に、接着剤用主剤「タケラックA626」(三井化学社製)17部と接着剤用硬化剤「タケネートA50」(三井化学社製)17部に酢酸エチルを66部混合したドライラミネート用接着剤を塗工量10g/m2となるようにメッシュ100μmのグラビアロールを使ったグラビアコーターによって塗布し、これを80℃に暖めた乾燥機中を通し、滞留時間12秒で、乾燥後塗工量を3.4g/m2とした後、ラミネート圧力3.5kg/cm2(0.35MPa)で、二軸延伸ポリプロピレンフィルムと貼り合わせ、積層体(1)を得た。
Using each of the above films, a vacuum heat insulating structure was produced as follows.
On the surface of the aluminum vapor-deposited biaxially stretched polyester film (A-1) which has not been subjected to the vapor deposition treatment, 17 parts of an adhesive main agent “Takelac A626” (manufactured by Mitsui Chemicals) and an adhesive curing agent “Takenate A50” (Mitsui) (Chemical Co., Ltd.) A dry laminating adhesive in which 17 parts of ethyl acetate was mixed with 17 parts was applied by a gravure coater using a gravure roll with a mesh of 100 μm so that the coating amount was 10 g / m 2. Biaxially oriented polypropylene film with a residence time of 12 seconds, a coating amount after drying of 3.4 g / m 2 , and a laminating pressure of 3.5 kg / cm 2 (0.35 MPa) through a heated dryer. And a laminated body (1) was obtained.
 次に、二軸延伸PVAフィルムの表面に、接着剤用主剤「タケラックA626」(三井化学社製)17部と接着剤用硬化剤「タケネートA50」(三井化学社製)17部に酢酸エチルを66部混合したドライラミネート用接着剤を塗工量10g/m2となるようにメッシュ100μmのグラビアロールを使ったグラビアコーターによって塗布し、これを80℃に暖めた乾燥機中を通し、滞留時間20秒で、乾燥後塗工量を3.4g/m2とした後、ラミネート圧力3.5kg/cm2(0.35MPa)で、上記の積層体(1)のアルミ蒸着ポリエステルフィルム(A-1)のアルミ蒸着を施した面と貼り合わせ、積層体(2)を得た。 Next, on the surface of the biaxially stretched PVA film, ethyl acetate was added to 17 parts of the adhesive main agent “Takelac A626” (Mitsui Chemicals) and 17 parts of the adhesive curing agent “Takenate A50” (Mitsui Chemicals). 66 parts of the mixed adhesive for dry lamination was applied by a gravure coater using a gravure roll with a mesh of 100 μm so that the coating amount was 10 g / m 2, and this was passed through a dryer heated to 80 ° C. After drying, the coating amount after drying was 3.4 g / m 2, and then the aluminum vapor-deposited polyester film (A-) of the laminate (1) was laminated at a lamination pressure of 3.5 kg / cm 2 (0.35 MPa). The laminated body (2) was obtained by laminating it with the aluminum-deposited surface of 1).
 次に、上記で得られた積層体(2)の二軸延伸PVAフィルムの表面(蒸着ポリエステルフィルムが積層されていない面)に、接着剤用主剤「タケラックA626」(三井化学社製)17部と接着剤用硬化剤「タケネートA50」(三井化学社製)17部に酢酸エチルを66部混合したドライラミネート用接着剤を塗工量10g/m2となるようにメッシュ100μmのグラビアロールを使ったグラビアコーターによって塗布し、これを80℃に暖めた乾燥機中を通し、滞留時間12秒で、乾燥後塗工量を3.4g/m2とした後、ラミネート圧力3.5kg/cm2(0.35MPa)で、厚さ30μmの無延伸ポリプロピレンフィルムを貼り合わせ、積層体[I-1]を得た。 Next, on the surface of the biaxially stretched PVA film of the laminate (2) obtained above (surface on which the vapor-deposited polyester film is not laminated), 17 parts of the main agent for adhesive “Takelac A626” (manufactured by Mitsui Chemicals) And a hardener for adhesive “Takenate A50” (Mitsui Chemicals Co., Ltd.) using a gravure roll with a mesh of 100 μm so that a coating amount of 10 g / m 2 is applied to an adhesive for dry lamination in which 66 parts of ethyl acetate is mixed with 17 parts of Mitsui Chemicals. The coating was applied with a gravure coater, passed through a drier heated to 80 ° C., and after a drying time of 3.4 g / m 2 with a residence time of 12 seconds, a laminating pressure of 3.5 kg / cm 2. A non-stretched polypropylene film having a thickness of 30 μm was bonded to the laminate [I-1] at (0.35 MPa).
 上記で得られた積層体[I-1]を用いて、下記の通り、真空断熱構造体用外装袋を作製した。
 即ち、積層体[I-1]を、30cm角のシートに裁断し、これを2枚用いて、その無延伸プロピレンフィルムの面同士を重ね合わせて、端部から10mmの幅で四辺の内三辺をシール温度130℃にてヒートシールすることで、三方シール包装袋(真空断熱構造体用外装袋)を得た。
(層構成=外側:二軸延伸ポリプロピレンフィルム/接着剤層/アルミ蒸着ポリエステルフィルム(蒸着面)/接着剤層/二軸延伸PVAフィルム/接着剤層/無延伸ポリプロピレンフィルム:内側)
Using the laminate [I-1] obtained above, an exterior bag for a vacuum heat insulating structure was produced as follows.
That is, the laminate [I-1] was cut into a 30 cm square sheet, and two sheets of the laminate [I-1] were used so that the surfaces of the unstretched propylene film were overlapped with each other. The sides were heat-sealed at a seal temperature of 130 ° C. to obtain a three-side sealed packaging bag (exterior bag for vacuum heat insulating structure).
(Layer structure = outside: biaxially stretched polypropylene film / adhesive layer / aluminum-deposited polyester film (deposited surface) / adhesive layer / biaxially stretched PVA film / adhesive layer / unstretched polypropylene film: inside)
 次に、市販の微細グラスウール(マグ・イゾベール社製、「WR800」)を2kg/m2となるように積層し、これを630℃に加熱してから厚さ10mmになるまで荷重をかけて圧縮し、これを徐冷した後に20cm角に裁断して断熱性材料を得た。 Next, a commercially available fine glass wool (manufactured by Mag Izobale, “WR800”) is laminated to 2 kg / m 2 , heated to 630 ° C., and then compressed with a load until the thickness reaches 10 mm. And after cooling this slowly, it cut | judged to 20 square cm and obtained the heat insulating material.
 上記で得られた断熱性材料をあらためて150℃の恒温槽に1時間放置して乾燥した。一方、三方シール包装袋(真空断熱構造体用外装袋)を口を開いたままの状態で100℃の恒温槽に1時間放置して乾燥し、その中に上記の乾燥した断熱性材料を挿入し、更に、その三方シール包装袋の内縁部にポリプロピレンの不織布に入った生石灰乾燥剤3gを同封し、直ちに真空包装機に配置し、その真空包装機にて2Paの圧力で減圧封止し、真空断熱構造体[V-1]を得た。 The heat insulating material obtained above was dried again by leaving it in a thermostatic bath at 150 ° C. for 1 hour. On the other hand, the three-side sealed packaging bag (exterior bag for vacuum heat insulation structure) is left in a constant temperature bath at 100 ° C. for 1 hour with the mouth open, and the dried heat insulating material is inserted therein. Further, 3 g of quicklime desiccant contained in a polypropylene nonwoven fabric is enclosed in the inner edge of the three-side sealed packaging bag, immediately placed in a vacuum packaging machine, and sealed under reduced pressure at a pressure of 2 Pa in the vacuum packaging machine, A vacuum heat insulating structure [V-1] was obtained.
 得られた真空断熱構造体[V-1]について、以下の評価を行った。結果を下記表1に示す。
<断熱性評価>
 真空断熱構造体[V-1]を20℃×40%RHの恒温室内で24時間放置した後、熱伝導率(W1)(mW/m・K)を測定した。その後、70℃×90%RHの環境下で13日間放置した後に、同様に熱伝導率(W2)(mW/m・K)を測定し、耐久試験による熱伝導率劣化(W3=W2-W1)(mW/m・K)を求め、断熱性能として評価した。
 なお、熱伝導率は、熱伝導率測定装置(英弘精機社製、HC-074)により測定した。
The obtained vacuum heat insulating structure [V-1] was evaluated as follows. The results are shown in Table 1 below.
<Insulation evaluation>
The vacuum heat insulating structure [V-1] was left in a constant temperature room at 20 ° C. × 40% RH for 24 hours, and then the thermal conductivity (W1) (mW / m · K) was measured. Then, after leaving in an environment of 70 ° C. × 90% RH for 13 days, the thermal conductivity (W2) (mW / m · K) was measured in the same manner, and the thermal conductivity deterioration due to the durability test (W3 = W2−W1) ) (MW / m · K) was obtained and evaluated as heat insulation performance.
The thermal conductivity was measured by a thermal conductivity measuring device (Hideki Seiki Co., Ltd., HC-074).
<実施例2~4、比較例1~2>
 下記表1の通り、蒸着フィルム(A)として輝点の数及び面積率の異なるアルミ蒸着ポリエステルフィルムを用いた以外は実施例1と同様にして真空断熱構造体を製造し、得られた真空断熱構造体について、実施例1と同様の評価を行った。
<Examples 2 to 4, Comparative Examples 1 and 2>
As shown in Table 1 below, a vacuum heat insulating structure was produced in the same manner as in Example 1 except that an aluminum vapor deposited polyester film having a different number of bright spots and different area ratios was used as the vapor deposited film (A). The structure was evaluated in the same manner as in Example 1.
 なお、比較例1において、輝点の数の測定時に得られた画像のうち、中央箇所の画像を、画像解析ソフト(ImageJ)で8bitのモノクロ画像に変換したものを図2に示した。実施例1の画像である図1と、比較例1の画像である図2とを比べると、図1においては、白点がほとんど見られないのに対し、図2においては、白点が散見された。このように、画像における白点の数を輝点の数として測定できることが分かる。 In Comparative Example 1, among the images obtained when measuring the number of bright spots, the image of the central portion is converted into an 8-bit monochrome image by image analysis software (ImageJ) is shown in FIG. Comparing FIG. 1 which is the image of Example 1 and FIG. 2 which is the image of Comparative Example 1, in FIG. 1, white spots are hardly seen, whereas in FIG. 2, white spots are scattered. It was done. Thus, it can be seen that the number of white spots in the image can be measured as the number of bright spots.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1で示されるように、輝点の数が200個以下である蒸着フィルム(A)、好ましくは更に面積率が0.05(%)以下である蒸着フィルム(A)を含む積層体を用いてなる実施例1~4の真空断熱構造体は、初期の熱伝導率(W1)が低く、断熱性能に優れ、更には耐久試験後の熱伝導率劣化(W3)が少なく、断熱性能の持続性にも優れるものであった。これに対して、輝点の数が200個を超える蒸着フィルムを含む積層体を用いてなる比較例1及び2の真空断熱構造体は、初期の熱伝導率は実施例1~4と同程度であるものの、耐久試験の熱伝導率劣化が大きく、断熱性能が著しく低下しており、実施例の真空断熱構造体のほうが断熱性能の持続性に優れ、長期耐久性に優れているものであることがわかる。 As shown in Table 1 above, a laminate including a vapor deposition film (A) having a number of bright spots of 200 or less, preferably a vapor deposition film (A) having an area ratio of 0.05 (%) or less. The vacuum heat insulating structures of Examples 1 to 4 used have low initial thermal conductivity (W1), excellent thermal insulation performance, and further less thermal conductivity deterioration (W3) after the durability test. It was also excellent in sustainability. On the other hand, the vacuum heat insulating structures of Comparative Examples 1 and 2 using the laminate including the vapor deposition film having more than 200 bright spots have the same initial thermal conductivity as that of Examples 1 to 4. However, the thermal conductivity deterioration of the durability test is large and the heat insulation performance is remarkably lowered, and the vacuum heat insulation structures of the examples are superior in durability of the heat insulation performance and excellent in long-term durability. I understand that.
 上記得られた実施例の真空断熱構造体を冷蔵庫の断熱材として用いたものは、比較例の真空断熱構造体を用いたものに比べて、断熱性能および長期耐久性に優れることから、電気量の消費を大きく抑えることができるものである。 What used the vacuum heat insulation structure of the Example obtained as a heat insulating material of a refrigerator is superior in heat insulation performance and long-term durability compared with the one using the vacuum heat insulation structure of the comparative example. This can greatly reduce the consumption.
 なお、上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In addition, although the specific form in this invention was shown in the said Example, the said Example is only a mere illustration and is not interpreted limitedly. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の真空断熱構造体は、蒸着フィルム(A)の蒸着面の反対側から光を照射し、透過する光の数を輝点の数として測定したときに、該輝点の数が、フィルムサイズ4mm×3mm当たり200個以下である蒸着フィルム(A)を含む積層体[I]を用いてなることを特徴とする真空断熱構造体用外装袋であり、初期の断熱性能に優れるだけでなく、長期間使用した際にも断熱性能の低下が非常に少ない、長期耐久性に優れたものである。そのため、クーラーボックス、ボトルケース等の生活用品、冷蔵庫、電気ポット、炊飯器等の生活家電、温水器、浴槽、ユニットバス、便座等の住宅設備、床暖房、太陽光屋根、低温輻射板等の住宅システム、外壁用断熱パネル等の住宅建材、等の断熱材として有効に用いることができるが、これらの中でも、冷蔵庫用や住宅建材用の断熱材として特に好適に用いることができる。 When the vacuum heat insulating structure of the present invention is irradiated with light from the opposite side of the vapor deposition surface of the vapor deposition film (A) and the number of transmitted light is measured as the number of bright spots, the number of bright spots is It is an exterior bag for a vacuum heat insulation structure, characterized by using a laminate [I] containing a vapor-deposited film (A) of 200 or less per 4 mm × 3 mm size, and not only has excellent initial heat insulation performance Even when used for a long period of time, the heat insulation performance is hardly lowered, and it has excellent long-term durability. Therefore, household appliances such as cooler boxes, bottle cases, household appliances such as refrigerators, electric pots, rice cookers, housing equipment such as water heaters, bathtubs, unit baths, toilet seats, floor heating, solar roofs, low-temperature radiation plates, etc. Although it can be effectively used as a heat insulating material for a housing system, a housing building material such as a heat insulating panel for an outer wall, etc., among these, it can be particularly suitably used as a heat insulating material for a refrigerator or a housing building material.

Claims (10)

  1.  蒸着フィルム(A)の蒸着面の反対側から光を照射し、透過する光の数を輝点の数として測定したときに、該輝点の数が、フィルムサイズ4mm×3mm当たり200個以下である蒸着フィルム(A)を含む積層体[I]を用いてなることを特徴とする真空断熱構造体用外装袋。 When irradiating light from the opposite side of the vapor deposition surface of the vapor deposition film (A) and measuring the number of transmitted light as the number of bright spots, the number of bright spots is 200 or less per 4 mm × 3 mm film size. An outer bag for a vacuum heat insulating structure, comprising a laminate [I] containing a certain vapor-deposited film (A).
  2.  蒸着フィルム(A)の観測される輝点の面積率が0.05%以下であることを特徴とする請求項1記載の真空断熱構造体用外装袋。 The outer bag for a vacuum heat insulation structure according to claim 1, wherein the area ratio of the bright spots observed in the deposited film (A) is 0.05% or less.
  3.  蒸着フィルム(A)が、蒸着ポリエステル系フィルムであることを特徴とする請求項1または2記載の真空断熱構造体用外装袋。 The exterior bag for a vacuum heat insulating structure according to claim 1 or 2, wherein the deposited film (A) is a deposited polyester film.
  4.  蒸着フィルム(A)が、蒸着二軸延伸ビニルアルコール系樹脂フィルムであることを特徴とする請求項1または2記載の真空断熱構造体用外装袋。 The exterior bag for a vacuum heat insulating structure according to claim 1 or 2, wherein the deposited film (A) is a deposited biaxially stretched vinyl alcohol resin film.
  5.  積層体[I]が、基材フィルム/ガスバリア性フィルムの層構成を含み、基材フィルム及びガスバリア性フィルムの少なくとも一つが蒸着フィルム(A)であることを特徴とする請求項1~4いずれか一項に記載の真空断熱構造体用外装袋。 The laminate [I] includes a layer structure of a base film / gas barrier film, and at least one of the base film and the gas barrier film is a deposited film (A). The exterior bag for a vacuum heat insulating structure according to one item.
  6.  積層体[I]が、保護フィルム/基材フィルム/ガスバリア性フィルム/シール層の層構成を有し、シール層が内側になるようにして外装袋を形成していることを特徴とする請求項5記載の真空断熱構造体用外装袋。 The laminate [I] has a layer configuration of protective film / base film / gas barrier film / seal layer, and the exterior bag is formed so that the seal layer is on the inside. 5. The outer bag for a vacuum heat insulating structure according to 5.
  7.  積層体[I]が、外側から、保護フィルム/蒸着ポリエステル系フィルム/二軸延伸ビニルアルコール系樹脂フィルム/シール層の層構成を有することを特徴とする請求項6記載の真空断熱構造体用外装袋。 The laminate [I] has a layer structure of a protective film / deposited polyester film / biaxially stretched vinyl alcohol resin film / seal layer from the outside, and the exterior for a vacuum heat insulating structure according to claim 6 bag.
  8.  積層体[I]の水分率が0.3重量%以下であることを特徴とする請求項1~7いずれか一項に記載の真空断熱構造体用外装袋。 The outer bag for a vacuum heat insulating structure according to any one of claims 1 to 7, wherein the moisture content of the laminate [I] is 0.3% by weight or less.
  9.  請求項1~8いずれか一項に記載の真空断熱構造体用外装袋を用いて、断熱性材料を密封包装してなることを特徴とする真空断熱構造体。 A vacuum heat insulating structure, wherein the heat insulating material is hermetically packaged using the outer bag for a vacuum heat insulating structure according to any one of claims 1 to 8.
  10.  冷蔵庫の断熱材として用いられることを特徴とする請求項1~9いずれか一項に記載の真空断熱構造体。 The vacuum heat insulating structure according to any one of claims 1 to 9, wherein the vacuum heat insulating structure is used as a heat insulating material for a refrigerator.
PCT/JP2013/085008 2012-12-26 2013-12-26 Outer bag for vacuum insulation structure and vacuum insulation structure using same WO2014104259A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-282154 2012-12-26
JP2012282154 2012-12-26
JP2012-285175 2012-12-27
JP2012285175 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014104259A1 true WO2014104259A1 (en) 2014-07-03

Family

ID=51021333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085008 WO2014104259A1 (en) 2012-12-26 2013-12-26 Outer bag for vacuum insulation structure and vacuum insulation structure using same

Country Status (1)

Country Link
WO (1) WO2014104259A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104501A1 (en) * 2015-12-18 2017-06-22 日本合成化学工業株式会社 Packaging bag and method for storing polyvinyl alcohol resin for melt molding in which said method is used

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152051A (en) * 1987-12-10 1989-06-14 Ishikawajima Harima Heavy Ind Co Ltd Heat-insulating film and production thereof
JP2007038646A (en) * 2005-06-28 2007-02-15 Jsr Corp Method for producing optical film, optical film and polarizing plate
JP2009241328A (en) * 2008-03-31 2009-10-22 Nippon Synthetic Chem Ind Co Ltd:The Multi-layer film and vacuum heat insulating structure using this

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152051A (en) * 1987-12-10 1989-06-14 Ishikawajima Harima Heavy Ind Co Ltd Heat-insulating film and production thereof
JP2007038646A (en) * 2005-06-28 2007-02-15 Jsr Corp Method for producing optical film, optical film and polarizing plate
JP2009241328A (en) * 2008-03-31 2009-10-22 Nippon Synthetic Chem Ind Co Ltd:The Multi-layer film and vacuum heat insulating structure using this

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104501A1 (en) * 2015-12-18 2017-06-22 日本合成化学工業株式会社 Packaging bag and method for storing polyvinyl alcohol resin for melt molding in which said method is used
CN108349642A (en) * 2015-12-18 2018-07-31 日本合成化学工业株式会社 Packaging bag and the store method for using its melt molding polyvinyl alcohol resin
CN108349642B (en) * 2015-12-18 2020-09-01 三菱化学株式会社 Packaging bag and method for storing polyvinyl alcohol resin for melt molding using same
US10815039B2 (en) 2015-12-18 2020-10-27 Mitsubishi Chemical Corporation Packaging bag, and method for storing melt-processable polyvinyl alcohol resin with the use of the packaging bag

Similar Documents

Publication Publication Date Title
JP5089317B2 (en) Vacuum insulation structure
JP5178280B2 (en) Vacuum insulation structure
KR101399564B1 (en) Multilayer film and vacuum insulator plate
JP6450183B2 (en) Vacuum heat insulating material and manufacturing method thereof
KR102157033B1 (en) Ethylene-vinyl alcohol copolymer-containing resin composition, film, laminate, packaging material, vacuum thermal insulator, film production method, and laminate production method
JP2009079762A (en) Vacuum heat insulating structure and its manufacturing method
KR20140133841A (en) Polyvinyl alcohol vapor-deposited film
JP2007078176A (en) Vacuum heat insulation structure
JP2014126098A (en) Vacuum insulation structure and outer package bag for vacuum insulation structure
JP6258029B2 (en) Exterior bag for vacuum insulation structure, vacuum insulation structure using the same, method for storing or transporting exterior bag for vacuum insulation structure, and method for producing exterior bag for vacuum insulation structure
KR20080035016A (en) Vaccum heat insulation structure
JP6093975B2 (en) Method for producing foam laminate and foam laminate
KR20130040849A (en) Multilayer structure and method for producing same
WO2014104259A1 (en) Outer bag for vacuum insulation structure and vacuum insulation structure using same
JP2013130289A (en) Vacuum heat-insulating structure and laminate
JP2014142060A (en) Sheath bag for vacuum heat insulation structure and vacuum heat insulation structure using the same
JP6076010B2 (en) Vacuum insulation structure
JP4758265B2 (en) Multilayer shrink film
JPH1135772A (en) Ethylene-vinyl acetate-based copolymer saponified product composition and molded product therefrom
JP2016017557A (en) Core material for vacuum heat insulation structure and vacuum heat insulation structure using the same
JP6326778B2 (en) Method for producing foam laminate and foam laminate
JP2015017680A (en) Vacuum heat insulation structure
JP2014081070A (en) Outer bag for vacuum insulation structure and vacuum insulation structure
JP2015058614A (en) External package bag for vacuum heat insulation structure, and vacuum heat insulation structure using the same
JP6800406B2 (en) Foam laminate and foam laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868584

Country of ref document: EP

Kind code of ref document: A1