WO2014104235A1 - 1,2,4-tris-substituted benzene compound and method for producing same, and organic electroluminescent element - Google Patents

1,2,4-tris-substituted benzene compound and method for producing same, and organic electroluminescent element Download PDF

Info

Publication number
WO2014104235A1
WO2014104235A1 PCT/JP2013/084972 JP2013084972W WO2014104235A1 WO 2014104235 A1 WO2014104235 A1 WO 2014104235A1 JP 2013084972 W JP2013084972 W JP 2013084972W WO 2014104235 A1 WO2014104235 A1 WO 2014104235A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
ester
groups
alkyl group
Prior art date
Application number
PCT/JP2013/084972
Other languages
French (fr)
Japanese (ja)
Inventor
華奈 藤田
信道 新井
桂甫 野村
尚志 飯田
田中 剛
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2014104235A1 publication Critical patent/WO2014104235A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/12Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
    • C07D217/14Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B15/00Acridine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a 1,2,4-tris-substituted benzene compound, a method for producing the same, and a high-efficiency organic electroluminescent device using the same for at least one organic compound layer and having excellent light emission characteristics.
  • the organic electroluminescent element has a structure in which a light emitting layer containing a light emitting material is sandwiched between a hole transport layer and an electron transport layer, and an anode and a cathode are attached to the outside, and holes injected into the light emitting layer and It is a self-emitting element that utilizes a light emission phenomenon (fluorescence or phosphorescence) when excitons generated by electron recombination are deactivated. Since it is a self-luminous type, it is excellent in visibility, and since it is a completely solid element, it is easy to handle and manufacture. In addition, since it is a thin film type device, it is attracting attention from the viewpoints of space saving and portability, and is applied to displays, lighting, and the like. At present, the organic electroluminescence device has begun to be used for commercial purposes. However, further improvement in light emission efficiency, reduction in driving voltage, and longer life are required for energy saving.
  • Tris (8-quinolinolato) aluminum (III) (Alq) is an example of an electron transport material that has already been put to practical use.
  • the drive voltage is high. It was sought after.
  • Patent Document 1 discloses a host material for an electroluminescence element capable of obtaining an organic EL element having a long emission lifetime and excellent heat resistance, and an element using the same.
  • the host material is used as an electron transporting material, the device has been required to be improved because the driving voltage is increased.
  • An object of the present invention is to provide an electron transporting material which is excellent in the lifetime characteristics of the device and excellent in driving the device at a low voltage as compared with a conventionally known electron transporting material for an organic electroluminescence device.
  • an organic electroluminescent device using the 1,2,4-tris-substituted benzene compound shown in the present invention as an electron transport layer As compared with an organic electroluminescent device using a material for the electron transport layer, the driving voltage is significantly reduced and the lifetime is found, and the present invention has been completed.
  • the present invention relates to a 1,2,4-tris-substituted benzene compound represented by the following general formula (1) or (1) ′ (hereinafter referred to as “compound (1)” or “compound (1) ′”, respectively). And a manufacturing method thereof, and an organic electroluminescent element including the same as a constituent component.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, An ester group or an ester alkyl group, or an optionally substituted fluorine atom).
  • Ar 2 in formula (1) is a monovalent nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or fluorine).
  • a divalent nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, An ester group or an ester alkyl group, or an optionally substituted fluorine atom).
  • Ar 3 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • a substituent represented by —Ar 4 —Ar 5 Or a substituent represented by —Ar 4 —Ar 5 .
  • Ar 4 is a nitrogen-containing heteroarylene group having 3 to 17 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • Ar 5 is an aromatic hydrocarbon group having 6 to 18 carbon atoms, pyridyl group, pyrimidyl group, or pyrazyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or esters). An alkyl group or a fluorine atom which may be substituted).
  • Ar 1 , Ar 2 , and Ar 3 is a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups have a carbon number of 1 To 8 alkyl groups, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups, or a fluorine atom, which may be substituted.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent having 1 to 4 carbon atoms, and R 1 and R 2 , R 3 and R 4 , or R 1 and R 2 and R Both 3 and R 4 may be linked together to form an alicyclic or aromatic ring.
  • m represents 0 or 1.
  • n represents 0, 1, or 2.
  • Y 1 represents a divalent substituent represented by the following general formula (A)
  • Y 2 is a divalent substituent represented by the following general formula (A) in Formula (1), independently of Y 1.
  • a monovalent substituent represented by the following general formula (A) ′ is represented.
  • X 1 , X 2 and X 3 each independently represent CH or a nitrogen atom, and at least one is CH.
  • R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group, a hydrogen atom, a fluorine atom, or a counter electron.
  • the total number of pyridyl groups and pyridylene groups, the total number of pyrimidyl groups and pyrimidylene groups, and the total number of pyrazyl groups and pyrazylene groups in the structure are each independently 0, 1 2, or 3.
  • each hydrogen atom in the formula may independently be a deuterium atom.
  • the compound (1) or (1) ′ of the present invention Since the compound (1) or (1) ′ of the present invention has good charge injection and transport properties, it is useful as an electron transport material of a fluorescent or phosphorescent organic electroluminescence device, and particularly used as an electron transport material. be able to.
  • the organic electroluminescent device having an electron transport layer containing the compound (1) or (1) ′ of the present invention has a significantly lower driving voltage and a higher driving voltage than an organic electroluminescent device using a general-purpose electron transport material. Efficiency and long life.
  • the band gap of the compound (1) or (1) ′ of the present invention is 3.2 eV or more, and the three primary colors constituting the panel (red: 1.9 eV, green: 2.4 eV, blue: 2.8 eV)
  • This material has a wide band gap sufficient to confine the energy of each color. Therefore, it can be applied to various elements such as a single color display element, a three primary color display element, and a white element for illumination use. Since the compound (1) of the present invention has a high triplet energy, it can be sufficiently applied to phosphorescence. Furthermore, since the solubility can be controlled by changing the substituent, it can be applied not only to a vapor deposition element but also to a coating element.
  • FIG. 3 is a cross-sectional view of an organic electroluminescent element produced in Test Example-1.
  • an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group is not particularly limited, and examples thereof include a methyl group (-Me), an ethyl group (- Et), n-propyl group (n-Pr), i-propyl group (i-Pr), n-butyl group (n-Bu), t-butyl group (t-Bu), pentyl group, hexyl group (- Hex), heptyl group, octyl group (above, alkyl group having 1 to 8 carbon atoms), methoxy group, ethoxy group, n-propyloxy group, i-propyloxy group, n-butyloxy group, t-butyloxy group, pentyl Oxy group, hexyloxy group, heptyloxy group, octyloxy group (above, alky
  • the aromatic hydrocarbon group having 6 to 18 carbon atoms is not particularly limited, and examples thereof include a phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3 -Dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2-ethylphenyl group 3-ethylphenyl group, 4-ethylphenyl group, 2-ethyl-3-methylphenyl group, 2-ethyl-4-methylphenyl group, 2-ethyl-5- Tylphenyl group,
  • phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 1-naphthyl group, 2-naphthyl group, 2-phenanthrenyl are preferable in terms of performance as an organic electroluminescent element material.
  • Group, 9-phenanthrenyl group, 1-anthracenyl group, or 9-anthracenyl group is preferable, and phenyl group, 2-methylphenyl group, 3-methylphenyl group, or 4-methylphenyl group is more preferable.
  • the monovalent nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms which may be used is not particularly limited, and examples thereof include 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 3- Methylpyridin-2-yl group, 4-methylpyridin-2-yl group, 5-methylpyridin-2-yl group, 6-methylpyridin-2-yl group, 2-methylpyridin-3-yl group, 4- Methylpyridin-3-yl group, 5-methylpyridin-3-yl group, 6-methylpyridin-3-yl group, 2-methylpyridin-4-yl group, 3-methylpyridin-4-yl group, 3, 4 Dimethylpyridin-2-yl group,
  • the divalent nitrogen-containing heteroaromatic group of 3 to 17 is not particularly limited.
  • pyridinediyl group methylpyridinediyl group, methoxypyridinediyl group, dimethylpyridinediyl group, ethylpyridinediyl group, Ethoxypyridinediyl group, propylpyridinediyl group, propoxypyridinediyl group, butylpyridinediyl group, butoxypyridinediyl group, methoxymethylpyridinediyl group, fluoropyridinediyl group, difluoropyridinediyl group, pyrimidinediyl group, methylpyrimidinediyl group, Methoxypyrimidine Yl, dimethylpyrimidinediyl, ethylpyrimidinediyl, ethoxypyrimidinediyl, propylpyrimidinediyl, propoxypyrimidinediyl, pentylpyrimidinediyl, pentoxypyrimidinediyl, pentoxypyr
  • Ar 1 and Ar 2 are each independently a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton in terms of good performance as an organic electroluminescent element material ( These groups are monovalent or divalent, and may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 9 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups are monovalent or divalent and have 1 to 8 carbon atoms).
  • Each of which is independently a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 9 carbon atoms containing a pyridine skeleton (these groups are monovalent or divalent, More preferably, it may be substituted with an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom.
  • a condensed ring group having 6 to 17 carbon atoms containing the pyridine skeleton or pyrimidine skeleton (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom.
  • these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom.
  • Is not particularly limited, and examples thereof include quinolyl group, isoquinolyl group, naphthyridyl group, ⁇ -carbolyl group, phenanthridyl group, acridyl group, phenanthroyl group, and benzo [b].
  • a naphthylidyl group, a benzo [c] naphthylidyl group or the like may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom.
  • the present invention is not limited to these examples.
  • quinolyl group, isoquinolyl group, ⁇ -carbolyl group, acridyl group, phenanthridyl group, or phenanthroyl group these groups are alkyl groups having 1 to 8 carbon atoms because of their good performance as organic electroluminescent device materials.
  • a bivalent condensed ring group having 6 to 17 carbon atoms containing the pyridine skeleton or pyrimidine skeleton (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group; Or may be substituted with a fluorine atom), but is not particularly limited, for example, quinoline diyl group, isoquinoline diyl group, naphthyridine diyl group, ⁇ -carboline diyl group, phenanthridine diyl group, acridine diyl group Phenanthrolinediyl group, benzo [b] naphthyridinediyl group, benzo [c] naphthyridinediyl group, etc.
  • quinoline diyl group or an isoquinoline diyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups in terms of good performance as organic electroluminescent element materials.
  • an optionally substituted with a fluorine atom and more preferably a quinolinediyl group or an isoquinolinediyl group (these groups may be substituted with a methyl group or a fluorine atom).
  • a condensed ring group having 6 to 9 carbon atoms containing the pyridine skeleton or pyrimidine skeleton (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom; Is not particularly limited, and examples thereof include a quinolyl group, an isoquinolyl group, or a naphthyridyl group (these groups include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxy group).
  • an alkyl group, an ester group or an ester alkyl group, which may be substituted with a fluorine atom but the present invention is not limited thereto.
  • a quinolyl group or an isoquinolyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups; Or may be substituted with a fluorine atom), and more preferably a quinolyl group or an isoquinolyl group (these groups may be substituted with a methyl group or a fluorine atom).
  • a divalent condensed ring group having 6 to 9 carbon atoms containing the pyridine skeleton or pyrimidine skeleton (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group;
  • the group may be substituted with a fluorine atom, but is not particularly limited.
  • a quinoline diyl group, an isoquinoline diyl group, or a naphthyridine diyl group these groups are alkyl groups having 1 to 8 carbon atoms).
  • An alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom may be substituted), but the present invention is not limited thereto.
  • a quinoline diyl group or an isoquinoline diyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyls) because of their good performance as organic electroluminescent device materials.
  • a quinoline diyl group or an isoquinoline diyl group (these groups may be substituted with a methyl group or a fluorine atom), more preferably.
  • Ar 1 and Ar 2 are each independently a pyrimidyl group, a pyridyl group, a quinolyl group, or an isoquinolyl group (these groups are monovalent or divalent, each independently having 1 to 8 carbon atoms).
  • an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom each independently, a pyrimidyl group, a pyridyl group, a quinolyl group, Or an isoquinolyl group (these groups are monovalent or divalent and may be substituted with a methyl group or a fluorine atom), and each independently represents a 2-pyrimidyl group, 4-methyl Pyrimidin-2-yl group, 4,6-dimethylpyrimidin-2-yl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 6- Tylpyridin-2-yl group, 5-methylpyridin-2-yl group, 6-fluoropyridin-2-yl group, 5-fluoropyridin-2-yl group, 1-isoquinolyl group, or 2-quinolyl group (above, Monovalent), 2,5-pyrimid
  • Ar 1 and Ar 2 are preferably the same substituent as each other regardless of the difference between monovalent and divalent in terms of excellent production efficiency.
  • Ar 3 represents a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group). Or a substituent represented by —Ar 4 —Ar 5 (which may be substituted with a group or a fluorine atom).
  • Ar 4 represents a nitrogen-containing heteroarylene group having 3 to 17 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • Ar 5 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms, a pyridyl group, a pyrimidyl group, or a pyrazyl group (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, Or may be substituted with a fluorine atom).
  • a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms in Ar 3 (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom)
  • a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms exemplified for Ar 1 and Ar 2 (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, Examples thereof include the same substituent groups as those of an ester group or an ester alkyl group, which may be substituted with a fluorine atom.
  • Ar 3 are points performance as good as the organic electroluminescence element material, is Ar 3, alkyl group, alkoxy group, nitrogen-containing heteroaromatic group (from 1 to 8 carbon atoms of a carbon number of 4 11, an alkoxyalkyl group , An ester group or an ester alkyl group, or a substituent represented by —Ar 4 —Ar 5 , and Ar 4 is a nitrogen-containing heteroarylene group having 4 to 12 carbon atoms
  • Ar 5 is an aromatic carbon atom having 6 to 18 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • a hydrogen group, a pyridyl group, a pyrimidyl group, or a pyrazyl group are each independently an alkyl group, alkoxy group, A alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom which may be substituted).
  • a nitrogen-containing heteroaromatic group having 4 to 11 carbon atoms represented by Ar 3 (substituted with an alkyl group, alkoxy group, alkoxyalkyl group, ester group or ester alkyl group having 1 to 8 carbon atoms, or a fluorine atom) May be, for example, pyridyl group, pyrimidyl group, pyrazyl group, quinolyl group, isoquinolyl group, naphthyridyl group, carbolyl group, benzothiazolyl group (these groups have 1 to 8 carbon atoms).
  • an alkyl group an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom which may be substituted.
  • a nitrogen-containing heteroarylene group having 3 to 17 carbon atoms represented by Ar 4 which may be substituted with a C 1 to C 8 alkyl group, alkoxy group, alkoxyalkyl group, ester group or ester alkyl group, or a fluorine atom
  • Ar 4 which may be substituted with a C 1 to C 8 alkyl group, alkoxy group, alkoxyalkyl group, ester group or ester alkyl group, or a fluorine atom
  • a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms exemplified for Ar 1 and Ar 2 (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group) Group, ester group or ester alkyl group, which may be substituted with a fluorine atom) eg pyrimidinediyl group, pyridinediyl group, quinolinediyl group, isoquinolinediyl group, nap
  • a nitrogen-containing heteroarylene group having 4 to 12 carbon atoms represented by Ar 4 (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom) Is not particularly limited.
  • Groups, indolediyl groups, benzimidazolediyl groups, pyrrolopyridinediyl groups (these groups are substituted with alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups, or fluorine atoms). May be) And the like.
  • a pyridinediyl group a pyrimidinediyl group, a benzimidazolediyl group, or a carbazolediyl group (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group in view of good performance as an organic electroluminescent element material.
  • An aromatic hydrocarbon group having 6 to 18 carbon atoms represented by Ar 5 (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom)
  • Ar 1 an aromatic hydrocarbon group having 6 to 18 carbon atoms exemplified by Ar 1 (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group)
  • an ester alkyl group, or the same substituent as that optionally substituted with a fluorine atom can be exemplified.
  • Ar 5 is a phenyl group optionally substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom in terms of good performance as an organic electroluminescent element material. It is preferably a group, and more preferably a phenyl group.
  • Ar 3 is 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 6-methylpyridin-2-yl group, 5-methylpyridine- 2-yl group, 6-fluoropyridin-2-yl group, 5-fluoropyridin-2-yl group, 5-phenylpyridin-2-yl group, 6-phenylpyridin-3-yl group, 2-pyrimidyl group, 5-phenylpyrimidin-2-yl group, 3- (2-pyridyl) -9H-carbazol-9-yl group, 2-phenyl-1H-benzimidazol-1-yl group, 1-phenyl-1H-benzimidazole- A 2-yl group, a 2-benzothiazolyl group, a 1-isoquinolyl group, a 2-quinolyl group, or a ⁇ -carbolin-9-yl group is preferable.
  • At least one of Ar 1 , Ar 2 , and Ar 3 has a pyridyl group, a pyrimidyl group, a pyridine skeleton or a pyrimidine skeleton, and has 6 to 17 carbon atoms.
  • a condensed ring group (these groups may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom);
  • a condensed ring group having 6 to 17 carbon atoms containing the pyridine skeleton or pyrimidine skeleton (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom.
  • At least one of Ar 1 , Ar 2 , and Ar 3 is a pyridyl group, a pyrimidyl group, a quinolyl group, an isoquinolyl group, a naphthyridyl group, a quinazolinyl group, and a carbolinyl group in terms of good performance as an organic electroluminescent element material.
  • a phenanthridinyl group, an acridinyl group, or a phenanthrolinyl group (these groups are substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom)
  • the pyridyl group, pyrimidyl group, quinolyl group, isoquinolyl group, naphthyridyl group, quinazolinyl group, or carbolinyl group (these groups are substituted with a methyl group, a methoxy group, or a fluorine atom). More preferably).
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent having 1 to 4 carbon atoms, and R 1 , R 2 and R 3 And R 4 , or R 1 and R 2 and R 3 and R 4 may be linked to each other to form an alicyclic ring or an aromatic ring.
  • examples of the alicyclic ring include a cyclopentane ring and a cyclohexane ring
  • examples of the aromatic ring include, but are not limited to, a benzene ring.
  • Examples of the substituent having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, and an alkenyl group having 2 to 4 carbon atoms (for example, a vinyl group). ) And the like.
  • a vinyl group or a hydrogen atom, which are connected to each other to form an aromatic ring, is preferable in terms of good performance as an organic electroluminescent element material.
  • R 1 , R 2 , R 3 and R 4 are 1) all hydrogen atoms, 2) both R 1 and R 2 are alkenyl groups having 2 to 4 carbon atoms and are bonded to each other to form an aromatic ring Or 3) all of R 1 , R 2 , R 3 and R 4 are alkenyl groups having 2 to 4 carbon atoms, and R 1 and R 2 , and R 3 and R 4 are linked to each other It preferably forms an aromatic ring, 1) all are hydrogen atoms, 2) both R 1 and R 2 are vinyl groups and are bonded to each other to form a benzene ring, or 3) R More preferably, 1 , R 2 , R 3 and R 4 are all vinyl groups, and R 1 and R 2 , and R 3 and R 4 are connected to each other to form a benzene ring.
  • Y 1 represents a divalent substituent represented by the following General Formula (A)
  • Y 2 is the following in Formula (1) independently of Y 1.
  • the divalent substituent represented by the general formula (A) is represented.
  • the monovalent substituent represented by the following general formula (A) ′ is represented.
  • X 1 , X 2 and X 3 each independently represent CH or a nitrogen atom, and at least one is CH.
  • R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group, a hydrogen atom, a fluorine atom, or a counter electron.
  • X 1 to X 3 are all CH, or X 1 is a nitrogen atom in terms of good performance as an organic electroluminescent device material, and X 2 and X 3 Is preferably CH.
  • a 1,4-phenylene group, a 2,5-pyridylene group, or a 2,5-pyrimidylene group are preferably each independently an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, an ester alkyl group, or a fluorine atom.
  • a 1,4-phenylene group, a 2,5-pyridylene group, or a 2,5-pyrimidylene group (these groups may have a methyl group or a fluorine atom) are more preferable.
  • the monovalent Y 2 described in the general formula (1) ′ is a phenyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, or 2- A pyrimidyl group (these groups may each independently have an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, an ester alkyl group, or a fluorine atom); A phenyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, or a 2-pyrimidyl group (these groups may have a methyl group or a fluorine atom) are more preferable.
  • m represents 0 or 1. Note that m is preferably 1 in terms of good performance as an organic electroluminescent element material.
  • n is preferably 0 or 1 in terms of good performance as an organic electroluminescent element material.
  • the total number of pyridyl groups and pyridylene groups, the total number of pyrimidyl groups and pyrimidylene groups, and the total number of pyrazyl groups and pyrazilene groups are based on the presence or absence of the substituent of each group Regardless, each is independently limited to 0, 1, 2, or 3 (see Test Example-17 and Reference Example-3).
  • each hydrogen atom in the general formula (1) or (1) ′ may be independently a deuterium atom.
  • the compound (1) or (1) ′ of the present invention has the following reaction formula
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, An ester group or an ester alkyl group, or an optionally substituted fluorine atom).
  • Ar 2 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • Ar 3 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • a substituent represented by —Ar 4 —Ar 5 Or a substituent represented by —Ar 4 —Ar 5 .
  • Ar 4 is a nitrogen-containing heteroarylene group having 3 to 17 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • Ar 5 is an aromatic hydrocarbon group having 6 to 18 carbon atoms, pyridyl group, pyrimidyl group, or pyrazyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or esters). An alkyl group or a fluorine atom which may be substituted).
  • Ar 1 , Ar 2 , and Ar 3 is a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups have a carbon number of 1 To 8 alkyl groups, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups, or a fluorine atom, which may be substituted.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent having 1 to 4 carbon atoms, and R 1 and R 2 , R 3 and R 4 , or R 1 and R 2 and R Both 3 and R 4 may be linked together to form an alicyclic or aromatic ring.
  • m represents 0 or 1.
  • n represents 0, 1, or 2.
  • Y 1 represents a divalent substituent represented by the following general formula (A)
  • Y 2 is a divalent substituent represented by the following general formula (A) in Formula (1), independently of Y 1.
  • a monovalent substituent represented by the following general formula (A) ′ is represented.
  • X 1 , X 2 and X 3 each independently represent CH or a nitrogen atom, and at least one is CH.
  • R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group, a hydrogen atom, a fluorine atom, or a counter electron.
  • the total number of pyridyl groups and pyridylene groups, the total number of pyrimidyl groups and pyrimidylene groups, and the total number of pyrazyl groups and pyrazylene groups in the structure are each independently 0, 1 2, or 3.
  • each hydrogen atom in the formula may independently be a deuterium atom.
  • Z 1 , Z 2 and Z 3 each independently represent a leaving group.
  • M 1 , M 2 and M 3 each independently represent a metal group, a boronic acid group, or a boronic ester group. ) It can be manufactured by the method shown in
  • the compound represented by the general formula (2) is referred to as compound (2).
  • the compound (3), the compound (4), the compound (4) ′ and the compound (5) are produced using, for example, the methods disclosed in JP-A-2008-280330 (0061) to (0076). be able to.
  • Examples of the compound (3) include the following (A1) to (A178), but the present invention is not limited to these.
  • M 1 represents a metal group, a boronic acid group, or a boronic acid ester group.
  • Examples of the compound (4) include the following (B1) to (B84), but the present invention is not limited to these.
  • M 2 represents a metal group, a boronic acid group, or a boronic acid ester group.
  • Examples of the compound (4) ′ include the following (B85) to (B118), but the present invention is not limited to these.
  • M 2 represents a metal group, a boronic acid group, or a boronic acid ester group.
  • Examples of the compound (5) include compounds in which M 2 described in (B1) to (B84) is M 3 and the following (C1) to (C105), but the present invention is limited to these. It is not a thing.
  • M 3 represents a metal group, a boronic acid group, or a boronic acid ester group.
  • Step 1 is the step of reacting compound (2) with compound (3), compound (4) or compound (4) ′, and compound (5) in the presence of a metal catalyst or in the presence of a metal catalyst and a base.
  • This is a method for obtaining the compound (1) or (1) ′ of the present invention, and applies general reaction conditions for coupling reactions such as Suzuki-Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc. By doing so, the target product can be obtained in good yield.
  • the reaction sequence when reacting the compound (3), the compound (4) or the compound (4) ′, and the compound (5) is random, and the intermediates may be taken out by sequentially reacting or reacting simultaneously. Also good.
  • M 1 , M 2 and M 3 in compound (3), compound (4), compound (4) ′ and compound (5) are ZnA 1 , MgA 2 , Sn (A 3 ) 3 , B (OA 4 ) 2 etc. are mentioned.
  • a 1 and A 2 each independently represent a chlorine atom, a bromine atom or an iodine atom
  • a 3 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group
  • a 4 represents a hydrogen atom or carbon number 1 4 represents an alkyl group or a phenyl group
  • two A 4 of B (OA 4 ) 2 may be the same or different.
  • the two A 4 can also form a ring containing an oxygen atom and a boron atom together.
  • B (OA 4 ) 2 in the case where two A 4 are united to form a ring containing an oxygen atom and a boron atom include groups represented by the following (D1) to (D6): The group represented by (D2) is preferable because it can be exemplified and the yield is good.
  • Examples of the leaving group represented by Z 1 , Z 2 and Z 3 in the compound (2) include a chlorine group, a bromine group, an iodine group, a trifluoromethylsulfonyloxy (OTf) group, a methanesulfonyloxy group, and a chloromethanesulfonyl. Examples thereof include an oxy group and a p-toluenesulfonyloxy group. Examples of the compound (2) include the following (E1) to (E5), but the present invention is not limited to these.
  • Examples of the metal catalyst that can be used in “Step 1” include a palladium catalyst and a nickel catalyst.
  • Examples of the palladium catalyst that can be used in “Step 1” include salts of palladium chloride, palladium acetate, palladium trifluoroacetate, palladium nitrate, and the like.
  • a palladium complex having a tertiary phosphine as a ligand is preferable in terms of a good reaction yield.
  • a palladium complex having tertiary phosphine as a ligand can also be prepared in a reaction system by adding tertiary phosphine to a palladium salt or complex compound.
  • the tertiary phosphine that can be used at this time is triphenylphosphine, trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine, 9,9-dimethyl-4,5.
  • the molar ratio of the tertiary phosphine to the palladium salt or complex compound is preferably 1:10 to 10: 1, and more preferably 1: 2 to 5: 1 in terms of good reaction yield.
  • the nickel catalyst that can be used in “Step 1” includes [1,1′-bis (diphenylphosphino) ferrocene] nickel (II) dichloride, [1,2-bis (diphenylphosphino) ethane] nickel ( II) Dichloride, [1,3-bis (diphenylphosphino) propane] nickel (II) dichloride, [1,1′-bis (diphenylphosphino) propane] nickel (II) dichloride, 1,2-bis (diphenyl) Phosphino) ethane] nickel (II) dichloride, [1,3-bis (diphenylphosphino) propane] nickel (II) dichloride, and the like.
  • Examples of the base that can be used in “Step 1” include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, tripotassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, Cesium fluoride and the like can be exemplified, and tripotassium phosphate is desirable in terms of a good yield.
  • the molar ratio of the base to the compound (3), the compound (4) and the compound (5) is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of a good yield.
  • Examples of the solvent that can be used in “Step 1” include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, dioxane, toluene, benzene, diethyl ether, ethanol, methanol, and xylene, and these may be used in appropriate combination. . It is desirable to use a mixed solvent of dioxane and water in terms of a good yield.
  • Step 1 can be performed at a temperature appropriately selected from 0 ° C. to 150 ° C., and is more preferably performed at 80 ° C. to 100 ° C. in terms of a good yield.
  • Compound (1) can be obtained by performing a normal treatment after completion of “Step 1”. If necessary, it may be purified by recrystallization, column chromatography or sublimation.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, An ester group or an ester alkyl group, or an optionally substituted fluorine atom).
  • Ar 2 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • Ar 3 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • a substituent represented by —Ar 4 —Ar 5 Or a substituent represented by —Ar 4 —Ar 5 .
  • Ar 4 is a nitrogen-containing heteroarylene group having 3 to 17 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
  • Ar 5 is an aromatic hydrocarbon group having 6 to 18 carbon atoms, pyridyl group, pyrimidyl group, or pyrazyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or esters). An alkyl group or a fluorine atom which may be substituted).
  • Ar 1 , Ar 2 , and Ar 3 is a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups have a carbon number of 1 To 8 alkyl groups, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups, or a fluorine atom, which may be substituted.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent having 1 to 4 carbon atoms, and R 1 and R 2 , R 3 and R 4 , or R 1 and R 2 and R Both 3 and R 4 may be linked together to form an alicyclic or aromatic ring.
  • m represents 0 or 1.
  • n represents 0, 1, or 2.
  • Y 1 represents a divalent substituent represented by the following general formula (A)
  • Y 2 is a divalent substituent represented by the following general formula (A) in Formula (1), independently of Y 1.
  • a monovalent substituent represented by the following general formula (A) ′ is represented.
  • X 1 , X 2 and X 3 each independently represent CH or a nitrogen atom, and at least one is CH.
  • R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group, a hydrogen atom, a fluorine atom, or a counter electron.
  • the total number of pyridyl groups and pyridylene groups, the total number of pyrimidyl groups and pyrimidylene groups, and the total number of pyrazyl groups and pyrazylene groups in the structure are each independently 0, 1 2, or 3.
  • each hydrogen atom in the formula may independently be a deuterium atom.
  • Z 1 and Z 2 each independently represent a leaving group.
  • M 1 and M 2 each independently represent a metal group, a boronic acid group, or a boronic ester group.
  • W represents a substituent necessary for carrying out the heterocycle formation reaction. ) It can be manufactured by the method shown in
  • Step 2 can be performed in the same manner as “Step 1”, and the conditions thereof are the same as those of “Step 1”.
  • “Step 3” is a method of converting the site represented by W of compound (7) and compound (7) ′ to Ar 3 by a heterocycle formation reaction, and includes imidazole synthesis, indole synthesis, oxazole synthesis, and Erdman cyclization. Known methods such as reaction can be applied.
  • Examples of the substituent necessary for carrying out the heterocycle-forming reaction represented by W in compound (7) and compound (7) ′ include formyl group, amino group, ester group, carbonyl group, nitrile group and the like. Can be mentioned.
  • film formation by vacuum vapor deposition is possible.
  • Film formation by the vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus.
  • the vacuum degree of the vacuum chamber when forming a film by the vacuum evaporation method is reached by a commonly used diffusion pump, turbo molecular pump, cryopump, etc., considering the manufacturing tact time and manufacturing cost of organic electroluminescence device production. It is preferably about 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 5 Pa.
  • the deposition rate is preferably 0.005 to 1.0 nm / sec depending on the thickness of the film to be formed.
  • the compound (1) or (1) ′ of the present invention can be formed into a film by a spin coat method, an ink jet method, a cast method, a dip method or the like using a general-purpose apparatus.
  • 2′-formyl-4,4 ′′ -di (2-pyridyl) -1,1 ′: 1.98 g (4.80 mmol) of 4 ′, 1 ′′ -terphenyl, and N-phenyl-1,2- 1.33 g (7.20 mmol) of phenylenediamine was dissolved in a mixed solvent of 51 mL of toluene and 13 mL of acetic acid, and heated and stirred at 100 ° C. for 20 hours. After cooling to room temperature, 150 mL of pure water was added, followed by separation / extraction with chloroform, and the organic layer was separated and washed twice with pure water.
  • Test Example-1 Preparation and evaluation of the organic electroluminescent element were performed as follows.
  • a glass substrate with an ITO transparent electrode in which a 2 mm-wide indium-tin oxide (ITO) film was patterned in a stripe shape was used as the substrate.
  • the substrate was cleaned with isopropyl alcohol and then surface treated by ozone ultraviolet cleaning.
  • Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG.
  • the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa. Thereafter, a hole injection layer 2, a hole transport layer 3, a light emitting layer 4 and an electron transport layer 5 are sequentially formed as an organic compound layer on the glass substrate indicated by 1 in FIG. Filmed.
  • a hole injection layer 2 sublimation-purified phthalocyanine copper (II) was vacuum-deposited with a film thickness of 25 nm.
  • N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine (NPD) was vacuum-deposited with a film thickness of 45 nm.
  • Each organic material was formed into a film by a resistance heating method, and the heated compound was vacuum-deposited at a film formation rate of 0.6 to 3.0 nm / second. Finally, a metal mask was disposed so as to be orthogonal to the ITO stripe, and the cathode layer 6 was formed.
  • the cathode layer 6 was made into a two-layer structure by vacuum deposition of lithium fluoride and aluminum with a thickness of 1.0 nm and 100 nm, respectively. Each film thickness was measured with a stylus type film thickness meter (DEKTAK). Furthermore, this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less. For the sealing, a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin (manufactured by Nagase ChemteX Corporation) were used.
  • a direct current was applied to the produced organic electroluminescence device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • V voltage
  • cd / m 2 luminance
  • cd / A current efficiency
  • lm / W power efficiency
  • the measured values of the fabricated element were 4.49 V, 2020 cd / m 2 , 10.1 cd / A, 7.07 lm / W.
  • Test Example-2 (Example) 2 ′-(2-benzothiazolyl) -4,4 ′′ -di (2-pyridyl) -1,1 ′: 4 ′ obtained in Experimental Example-5 instead of the electron transporting layer 5 in Test Example-1.
  • An organic electroluminescent device obtained by vacuum-depositing 1,1 ′′ -terphenyl was prepared and evaluated in the same manner as in Test Example-1.
  • the measured values of the fabricated elements were 4.98 V, 1428 cd / m 2 , 7.14 cd / A, and 4.50 lm / W, respectively.
  • Test Example 3 (Example) 4- (2-benzothiazolyl) -4 ′′-(2-pyridyl) -5 ′-[4- (2-pyridyl) obtained in Experimental Example-6 instead of the electron transport layer 5 of Test Example-1
  • An organic electroluminescent device in which phenyl] -1,1 ′: 2 ′, 1 ′′ -terphenyl was vacuum-deposited was prepared and evaluated in the same manner as in Test Example-1.
  • the measured values of the fabricated elements were 4.83 V, 1472 cd / m 2 , 7.36 cd / A, and 4.79 lm / W, respectively.
  • Test Example 4 (Example) 4- (2-Phenyl-1H-benzoimidazol-1-yl) -4 ′′-(2-pyridyl) -5 ′ obtained in Experimental Example-7 in place of the electron transport layer 5 of Test Example-1 An organic electroluminescent device obtained by vacuum-depositing — [4- (2-pyridyl) phenyl] -1,1 ′: 2 ′, 1 ′′ -terphenyl was prepared and evaluated in the same manner as in Test Example-1. The measured values of the fabricated elements were 4.65 V, 1944 cd / m 2 , 9.72 cd / A, and 6.57 lm / W, respectively.
  • Test Example-5 The 4- (1-phenyl-1H-benzoimidazol-2-yl) -4 ′′-(2-pyridyl) -5 ′ obtained in Experimental Example-8 was used in place of the electron transport layer 5 in Test Example-1.
  • the measured values of the fabricated elements were 5.42 V, 1824 cd / m 2 , 9.12 cd / A, and 5.29 lm / W, respectively. Further, the luminance 20% deterioration time during continuous lighting of this element was 35 hours.
  • Test Example-6 (Example) Instead of the electron transport layer 5 of Test Example-1, 4,4 ′′ -di (2-quinolyl) -4 ′-[4- (2-quinolyl) phenyl] -1, obtained in Experimental Example-16 An organic electroluminescent device obtained by vacuum-depositing 1 ′: 2 ′, 1 ′′ -terphenyl was prepared and evaluated in the same manner as in Test Example-1. The measured values of the fabricated elements were 5.84 V, 2020 cd / m 2 , 10.1 cd / A, and 5.43 lm / W, respectively.
  • Comparative Example-1 In place of the electron transport layer 5 in Test Example 1, an organic electroluminescent device in which Alq was vacuum-deposited was produced and evaluated in the same manner as in Test Example-1.
  • the measured values of the fabricated elements were 7.47 V, 1661 cd / m 2 , 8.31 cd / A, and 3.49 lm / W, respectively. Further, the luminance 20% deterioration time during continuous lighting of this element was 34 hours.
  • the measurement results of Test Examples 1 to 6 and Comparative Example 1 are summarized in the following table.
  • Test Example-7 (Example) 4- (2-Phenyl-1H-benzoimidazol-1-yl) -4 ′′-(1-isoquinolyl) -5 ′ obtained in Experimental Example-13 instead of the electron transport layer 5 in Test Example-1 -[4- (1-Isoquinolyl) phenyl] -1,1 ′: 2 ′, 1 ′′ -terphenyl is changed to the light-emitting layer 4 to produce 2-tert-butyl-9,10-di (3-biphenyl) ) Anthracene (formula below, see EML-1) and N, N′-diphenyl-N, N′-bis (4-biphenyl) pyrene-1,6-diamine (formula below, see EML-2) 95: 5 An organic electroluminescent device vacuum-deposited at a ratio of (% by mass) was produced and evaluated in the same manner as in Test Example-1.
  • the measured values of the fabricated elements were 5.87 V, 1244 cd / m 2 , 6.22 cd / A, and 3.33 lm / W, respectively. Further, the 30% luminance degradation time during continuous lighting of this element was 58 hours.
  • Test Example-8 (Example) The 4- (5-methylpyridin-2-yl) -4 ′′-(2-phenyl-1H-benzoimidazole-1-) obtained in Experimental Example-20 was used instead of the electron transporting layer 5 in Test Example-7.
  • Yl) -4 ′-[4- (5-methylpyridin-2-yl) phenyl] -1,1 ′: 2 ′, 1 ′′ -terphenyl was vacuum-deposited and an organic electroluminescent device was tested in Test Example 7 Were prepared and evaluated. The measured values of the fabricated elements were 4.72 V, 1407 cd / m 2 , 7.04 cd / A, and 4.68 lm / W, respectively.
  • Test Example-9 (Example) 4,4 ′ ′′-di (2-pyridyl) -2 ′-[4- (2-pyridyl) phenyl] -1 obtained in Experiment 21 instead of the electron transport layer 5 in Test Example-7 , 1 ′: 4 ′, 1 ′′: 4 ′′, 1 ′ ′′-Quaterphenyl was vacuum-deposited and an organic electroluminescent device was produced and evaluated in the same manner as in Test Example-7.
  • the measured values of the fabricated elements were 5.32 V, 1465 cd / m 2 , 7.33 cd / A, and 4.33 lm / W, respectively.
  • Test Example-10 (Example) 4 ′-[(2-Pyridyl) naphthalen-4-yl] -4,4 ′′ -di (2-pyridyl)-obtained in Experimental Example-22 instead of Electron Transport Layer 5 in Test Example-7
  • An organic electroluminescent device obtained by vacuum-depositing 1,1 ′: 2 ′, 1 ′′ -terphenyl was prepared and evaluated in the same manner as in Test Example-7.
  • the measured values of the fabricated elements were 6.24 V, 1379 cd / m 2 , 6.90 cd / A, and 3.47 lm / W, respectively.
  • Test Example-11 (Example) 2 ′-[5- (2-Phenyl-1H-benzimidazol-1-yl) pyridin-2-yl] -4,4 obtained in Experimental Example-23 instead of the electron transport layer 5 in Test Example-7
  • An organic electroluminescent device obtained by vacuum-depositing ′′-(2-pyridyl) -1,1 ′: 4 ′, 1 ′′ -terphenyl was prepared and evaluated in the same manner as in Test Example-7.
  • the measured values of the fabricated elements were 4.96 V, 1332 cd / m 2 , 6.66 cd / A, and 4.22 lm / W, respectively. Further, the 30% luminance degradation time when the device was continuously lit was 40 hours.
  • Test Example-7 An organic electroluminescent device obtained by vacuum deposition was prepared and evaluated in the same manner as in Test Example-7.
  • the measured values of the fabricated elements were 6.79 V, 1193 cd / m 2 , 5.97 cd / A, and 2.76 lm / W, respectively. Further, the 30% luminance degradation time during continuous lighting of this element was 50 hours.
  • the measurement results of Test Examples 7 to 11 and Reference Example 1 are summarized in the following table.
  • Test Example-12 (Example) 4- (2-pyridyl) -2 ′-[4- (2-pyridyl) phenyl] -1,1 ′: 4 ′ obtained in Experiment Example 2 instead of the electron transport layer 5 in Test Example 1 , 1 ′′: 4 ′′, 1 ′ ′′-quaterphenyl is changed to the light-emitting layer 4, and 2-tert-butyl-9,10-di (2-naphthyl) anthracene (TBADN) and 4,4
  • An organic electroluminescence device obtained by vacuum-depositing '-bis [4- (di-p-tolylamino) phenylethen-1-yl] biphenyl (DPAVBi) at a ratio of 93: 7 (mass%) was the same as in Test Example 1.
  • the measured values of the fabricated elements were 4.53 V, 2130 cd / m 2 , 10.65 cd / A, and 7.39 lm
  • Comparative Example-2 In place of the electron transport layer 5 in Test Example-12, an organic electroluminescent device in which Alq was vacuum-deposited was produced and evaluated in the same manner as in Test Example-12.
  • the measured values of the fabricated elements were 6.04 V, 1902 cd / m 2 , 9.51 cd / A, and 4.95 lm / W, respectively.
  • the measurement results of Test Example 12 and Comparative Example 2 are summarized in the following table.
  • Test Example-13 (Example) Instead of the electron transport layer 5 of Test Example-1, 4,4 ′′ -di (1-isoquinolyl) -4 ′-[4- (1-isoquinolyl) phenyl] -1, obtained in Experiment Example-11, An organic electroluminescent device obtained by vacuum-depositing 1 ′: 2 ′, 1 ′′ -terphenyl was prepared in the same manner as in Test Example 1, except that the substrate surface treatment method was changed from ozone ultraviolet cleaning to oxygen plasma cleaning. evaluated. The measured values of the fabricated elements were 5.70 V, 1779 cd / m 2 , 8.90 cd / A, and 4.90 lm / W, respectively.
  • Comparative Example-3 In place of the electron transport layer 5 of Test Example-13, an organic electroluminescent device in which Alq was vacuum-deposited was produced and evaluated in the same manner as Test Example-13.
  • the measured values of the fabricated elements were 6.20 V, 1957 cd / m 2 , 9.79 cd / A, and 4.96 lm / W, respectively.
  • the measurement results of Test Example 13 and Comparative Example 3 are summarized in the following table.
  • Test Example-14 (Example) Instead of the hole injection layer 2 of Test Example 1, the sublimated and purified HIL is changed to a thickness of 45 nm and changed to the hole transport layer 3, and HAT and HTL are changed to a thickness of 5 nm and 30 nm, respectively.
  • EML-1 and EML-2 (same as above) at a ratio of 958: 42 (mass%) with a film thickness of 20 nm
  • the electron transport layer 5 was used and synthesized in Experimental Example 27 of the present invention.
  • Test Example-15 (Example) 4- ( ⁇ -carbolin-9-yl) -4 ′′-(2-pyridyl) -5 ′-[4] synthesized in Experimental Example-25 of the present invention instead of the electron transport layer 5 in Test Example-14
  • An organic electroluminescent device in which — (2-pyridyl) phenyl] -1,1 ′: 2 ′, 1 ′′ -terphenyl was vacuum-deposited was prepared and measured in the same manner as in Test Example-14. The evaluation results of the fabricated devices are shown in the table below.
  • Test Example-16 (Example) Instead of the electron transport layer 5 in Test Example-14, 2 ′-[5- ( ⁇ -carbolin-9-yl) pyridin-2-yl] -4,4 ′ obtained in Experiment Example-26 of the present invention was used.
  • An organic electroluminescent device obtained by vacuum-depositing '-(2-pyridyl) -1,1': 4 ', 1''-terphenyl was prepared and measured in the same manner as in Test Example-14. The evaluation results of the fabricated devices are shown in the table below.
  • Test Example-17 The thickness of the hole injection layer 2 in Test Example-14 was changed to 65 nm, the thickness of the hole transport layer 3HTL was changed to 10 nm, and the light emitting layer 4 was changed to 954 for EML-1 and EML-2 (shown in Chemical Formula 53):
  • the thickness of the film was 25 nm at a ratio of 46 (mass%), and instead of the electron transport layer 5, 4,4 ′′ -di (2-pyridyl) -4 ′-[4- (2 -Pyridyl) phenyl] -1,1 ': 2', 1 ''-terphenyl was vacuum-deposited with a cathode layer 6Liq having a thickness of 0.5 nm to produce an organic electroluminescent device in the same manner as in Test Example-14 And measured.
  • the measured value evaluation results of the fabricated devices are shown in the table below. Further, the 20% luminance deterioration time during continuous lighting of this element was 105 hours.
  • the thin film comprising the compound (1) or (1) ′ of the present invention has high thin film stability, heat resistance, electron transport properties, hole blocking ability, redox resistance, water resistance, oxygen resistance, electron injection properties, etc. Therefore, it can be suitably used as an organic electroluminescent element material, particularly as an electron transporting material. Further, the compound (1) or (1) ′ of the present invention has a wide energy gap and triplet energy, and can be used in combination with a fluorescent or phosphorescent organic electroluminescent material. In addition, the compound (1) or (1) ′ of the present invention can be used for a light-emitting host layer and the like in addition to the electron transport layer because of its characteristics. Moreover, it can be used even if it mixes or laminates with another compound as an electron carrying layer.
  • this compound has high solubility, and can be used for coating elements in addition to vapor deposition. From these effects, these elements are expected to have significant effects such as suppression of battery consumption by reducing power consumption, improvement of product life by extending life, and reduction of burden on the drive circuit.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2012-287908 filed on Dec. 28, 2012 are cited here as disclosure of the specification of the present invention. Incorporated.

Abstract

Provided are: an organic electroluminescent element which has high efficiency, can be driven at a low voltage and has a long service life; and a material, particularly an electron-transporting material, which enables the production of the organic electroluminescent element. A 1,2,4-tris-substituted benzene compound represented by formula (1) or (1)'; and an organic electroluminescent element produced using the compound. (In the formulae, Ar1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or the like, Ar2 represents a monovalent or bivalent nitrogenated heteroaromatic group having 3 to 17 carbon atoms, and Ar3 represents a nitrogenated heteroaromatic group having 3 to 17 carbon atoms or the like, wherein at least one of Ar1, Ar2 and Ar3 represents a pyridyl group or the like; R1, R2, R3 and R4 independently represent a hydrogen atom or the like; m represents 0 or 1; n represents 0, 1 or 2; Y1 and Y2 independently represent a monovalent or bivalent group represented by formula (A) or (A)' (wherein X1, X2 and X3 independently represent CH or the like and at least one of X1, X2 and X3 is CH); and R5's independently represent an alkyl group having 1 to 8 carbon atoms or the like) (in the structure, the total number of pyridyl groups, pyridylene groups and the like is 0 to 3 regardless the presence or absence of substituents; and in the formulae, each of hydrogen atoms may be a deuterium atom)).

Description

1,2,4-トリス置換ベンゼン化合物とその製造方法、および有機電界発光素子1,2,4-Tris-substituted benzene compound, method for producing the same, and organic electroluminescent device
 本発明は、1,2,4-トリス置換ベンゼン化合物とその製造方法、およびこれを有機化合物層の少なくとも一層に用いた、発光特性に優れた高効率有機電界発光素子に関する。 The present invention relates to a 1,2,4-tris-substituted benzene compound, a method for producing the same, and a high-efficiency organic electroluminescent device using the same for at least one organic compound layer and having excellent light emission characteristics.
 有機電界発光素子は、発光材料を含有する発光層を正孔輸送層と電子輸送層で挟み、さらにその外側に陽極と陰極を取付けた構造をしており、発光層に注入された正孔および電子の再結合により生ずる励起子が失活する際の発光現象(蛍光または燐光)を利用する自己発光型素子である。自己発光型であるため視認性に優れており、かつ完全固体素子であるため取り扱い、および製造が容易である。また、薄膜型素子であるため、省スペース、携帯性などの観点から注目されており、ディスプレーや照明等へ応用されている。現在、有機電界発光素子は各用途への商業利用が始まっているが、省エネルギー化に向けた更なる発光効率の向上、駆動電圧の低減、および長寿命化が求められている。 The organic electroluminescent element has a structure in which a light emitting layer containing a light emitting material is sandwiched between a hole transport layer and an electron transport layer, and an anode and a cathode are attached to the outside, and holes injected into the light emitting layer and It is a self-emitting element that utilizes a light emission phenomenon (fluorescence or phosphorescence) when excitons generated by electron recombination are deactivated. Since it is a self-luminous type, it is excellent in visibility, and since it is a completely solid element, it is easy to handle and manufacture. In addition, since it is a thin film type device, it is attracting attention from the viewpoints of space saving and portability, and is applied to displays, lighting, and the like. At present, the organic electroluminescence device has begun to be used for commercial purposes. However, further improvement in light emission efficiency, reduction in driving voltage, and longer life are required for energy saving.
 有機電界発光素子を高効率、低電圧駆動、および長寿命とするためには、正孔および電子をそれぞれ効率よく発光層に注入、輸送して再結合させる必要がある。これに関し、有機電界発光素子を構成する各材料、特に電子輸送性材料の改良が求められていた。既に実用化されている電子輸送性材料としてトリス(8-キノリノラト)アルミニウム(III)(Alq)が挙げられるが、駆動電圧が高いという課題があり、低電圧駆動性の電子輸送性材料が切に求められていた。 In order to make the organic electroluminescence device highly efficient, low voltage drive, and long life, it is necessary to efficiently inject and transport holes and electrons to the light emitting layer and recombine them. In this regard, improvement of each material constituting the organic electroluminescent element, particularly an electron transporting material, has been demanded. Tris (8-quinolinolato) aluminum (III) (Alq) is an example of an electron transport material that has already been put to practical use. However, there is a problem that the drive voltage is high. It was sought after.
 特許文献1には、発光寿命が長く、かつ耐熱性に優れた有機EL素子を得ることができるエレクトロルミネッセンス素子用ホスト材料およびそれを用いた素子が開示されている。しかしながら、当該ホスト材料を電子輸送性材料として用いた場合は、素子が高駆動電圧化するため改善が求められていた。 Patent Document 1 discloses a host material for an electroluminescence element capable of obtaining an organic EL element having a long emission lifetime and excellent heat resistance, and an element using the same. However, when the host material is used as an electron transporting material, the device has been required to be improved because the driving voltage is increased.
WO2005-072017号公報WO2005-072017
 本発明の目的は、素子の寿命特性に優れ、なおかつ従来公知の有機電界発光素子用電子輸送性材料に比べて、素子の低電圧駆動に優れる電子輸送性材料を提供することである。 An object of the present invention is to provide an electron transporting material which is excellent in the lifetime characteristics of the device and excellent in driving the device at a low voltage as compared with a conventionally known electron transporting material for an organic electroluminescence device.
 本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、本発明に示す1,2,4-トリス置換ベンゼン化合物を電子輸送層として用いた有機電界発光素子が、従来公知の材料を電子輸送層に用いた有機電界発光素子と比べて、駆動電圧が大幅に低下し、長寿命となることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention have heretofore known an organic electroluminescent device using the 1,2,4-tris-substituted benzene compound shown in the present invention as an electron transport layer. As compared with an organic electroluminescent device using a material for the electron transport layer, the driving voltage is significantly reduced and the lifetime is found, and the present invention has been completed.
 すなわち、本発明は、下記一般式(1)または(1)’で示される1,2,4-トリス置換ベンゼン化合物(以下、それぞれ、「化合物(1)」または「化合物(1)’」とも称す)、その製造方法、およびそれを構成成分とする有機電界発光素子に関する。 That is, the present invention relates to a 1,2,4-tris-substituted benzene compound represented by the following general formula (1) or (1) ′ (hereinafter referred to as “compound (1)” or “compound (1) ′”, respectively). And a manufacturing method thereof, and an organic electroluminescent element including the same as a constituent component.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、
 Arは、炭素数6から18の芳香族炭化水素基または炭素数3から17の含窒素ヘテロ芳香族基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 Arは、式(1)では炭素数3から17の1価の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表し、式(1)’では炭素数3から17の2価の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 Arは、炭素数3から17の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)または-Ar-Arで表される置換基を表す。
 Arは炭素数3から17の含窒素ヘテロアリーレン基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 Arは炭素数6から18の芳香族炭化水素基、ピリジル基、ピリミジル基、またはピラジル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 なお、Ar、Ar、Arのうち、少なくとも1つは、ピリジル基、ピリミジル基、またはピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の縮合環基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)である。
 R、R、RおよびRは、各々独立に水素原子もしくは炭素数1から4の置換基を表し、RとR、RとR、またはRとRおよびRとRの両方が互いに連結して脂環または芳香環を形成してもよい。
 mは、0または1を表す。
 nは、0、1、または2を表す。
 Yは、下記一般式(A)で示される2価の置換基を表し、Yは、Yとは独立に、式(1)では下記一般式(A)で示される2価の置換基を表し、式(1)’では下記一般式(A)’で示される1価の置換基を表す。
(Where
Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, An ester group or an ester alkyl group, or an optionally substituted fluorine atom).
Ar 2 in formula (1) is a monovalent nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or fluorine). In formula (1) ′, a divalent nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, An ester group or an ester alkyl group, or an optionally substituted fluorine atom).
Ar 3 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). ) Or a substituent represented by —Ar 4 —Ar 5 .
Ar 4 is a nitrogen-containing heteroarylene group having 3 to 17 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). To express.
Ar 5 is an aromatic hydrocarbon group having 6 to 18 carbon atoms, pyridyl group, pyrimidyl group, or pyrazyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or esters). An alkyl group or a fluorine atom which may be substituted).
Note that at least one of Ar 1 , Ar 2 , and Ar 3 is a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups have a carbon number of 1 To 8 alkyl groups, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups, or a fluorine atom, which may be substituted.
R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent having 1 to 4 carbon atoms, and R 1 and R 2 , R 3 and R 4 , or R 1 and R 2 and R Both 3 and R 4 may be linked together to form an alicyclic or aromatic ring.
m represents 0 or 1.
n represents 0, 1, or 2.
Y 1 represents a divalent substituent represented by the following general formula (A), and Y 2 is a divalent substituent represented by the following general formula (A) in Formula (1), independently of Y 1. In the formula (1) ′, a monovalent substituent represented by the following general formula (A) ′ is represented.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (式(A)、(A)’中、X、XおよびXは、各々独立にCHまたは窒素原子を表し、少なくとも一つはCHである。
 Rは、各々独立して、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、もしくはエステルアルキル基、水素原子、フッ素原子、または対電子を表す。)
 なお、構造中のピリジル基とピリジレン基の総数、ピリミジル基とピリミジレン基の総数、およびピラジル基とピラジレン基の総数は、それぞれの基の置換基の有無に拘わらず、各々独立に、0、1、2、または3である。
 また、式中の各水素原子は各々独立に重水素原子であってもよい。)
(In the formulas (A) and (A) ′, X 1 , X 2 and X 3 each independently represent CH or a nitrogen atom, and at least one is CH.
R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group, a hydrogen atom, a fluorine atom, or a counter electron. )
Note that the total number of pyridyl groups and pyridylene groups, the total number of pyrimidyl groups and pyrimidylene groups, and the total number of pyrazyl groups and pyrazylene groups in the structure are each independently 0, 1 2, or 3.
In addition, each hydrogen atom in the formula may independently be a deuterium atom. )
 本発明の化合物(1)または(1)’は、良好な電荷注入、および輸送特性を持つことから、蛍光または燐光有機電界発光素子の電子輸送性材料として有用であり、とりわけ電子輸送材として用いることができる。本発明の化合物(1)または(1)’を含む電子輸送層を有する有機電界発光素子は汎用の電子輸送材料を用いた有機電界発光素子と比べて、駆動電圧が大幅に低下し、また高効率、長寿命である。 Since the compound (1) or (1) ′ of the present invention has good charge injection and transport properties, it is useful as an electron transport material of a fluorescent or phosphorescent organic electroluminescence device, and particularly used as an electron transport material. be able to. The organic electroluminescent device having an electron transport layer containing the compound (1) or (1) ′ of the present invention has a significantly lower driving voltage and a higher driving voltage than an organic electroluminescent device using a general-purpose electron transport material. Efficiency and long life.
 また、本発明の化合物(1)または(1)’のバンドギャップは3.2eV以上であり、パネルを構成する3原色(赤:1.9eV、緑:2.4eV、青:2.8eV)の各色のエネルギーを閉じ込めるのに十分なワイドバンドギャップを有する材料である。よって、単色の表示素子、3原色のカラー表示素子、照明用途などの白色素子など様々な素子への応用が可能である。本発明の化合物(1)は三重項エネルギーも高いため、燐光用途への適用も十分可能である。さらに置換基の変更によって溶解性の制御も可能であるため、蒸着素子ばかりでなく塗布素子への応用も可能である。 The band gap of the compound (1) or (1) ′ of the present invention is 3.2 eV or more, and the three primary colors constituting the panel (red: 1.9 eV, green: 2.4 eV, blue: 2.8 eV) This material has a wide band gap sufficient to confine the energy of each color. Therefore, it can be applied to various elements such as a single color display element, a three primary color display element, and a white element for illumination use. Since the compound (1) of the present invention has a high triplet energy, it can be sufficiently applied to phosphorescence. Furthermore, since the solubility can be controlled by changing the substituent, it can be applied not only to a vapor deposition element but also to a coating element.
試験例-1で作製する有機電界発光素子の断面図である。FIG. 3 is a cross-sectional view of an organic electroluminescent element produced in Test Example-1.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本願発明において、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基としては、特に限定するものではないが、例えば、メチル基(-Me)、エチル基(-Et)、n-プロピル基(n-Pr)、i-プロピル基(i-Pr)、n-ブチル基(n-Bu)、t-ブチル基(t-Bu)、ペンチル基、ヘキシル基(-Hex)、ヘプチル基、オクチル基(以上、炭素数1から8のアルキル基)、メトキシ基、エトキシ基、n-プロピルオキシ基、i-プロピルオキシ基、n-ブチルオキシ基、t-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基(以上、炭素数1から8のアルコキシ基)、メトキシメチル基、メトキシエチル基、メトキシプロピル基、メトキシブチル基、メトキシヘキシル基、メトキシヘプチル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基、エトキシブチル基、ペンチルオキシプロピル基(以上、炭素数1~8のアルキルアルコキシ基)、メチルエステル基、エチルエステル基、n-プロピルエステル基、i-プロピルエステル基、n-ブチルエステル基、t-ブチルエステル基、ペンチルエステル基、ヘキシルエステル基、ヘプチルエステル基(以上、炭素数1~8のエステル基)、-CHCOOMe、-CHCOOEt、-CHCOO(n-Pr)、-CHCOO(i-Pr)、-CHCOO(n-Bu)、-CHCOO(t-Bu)、-CHCOOHex、-CHCHCHCOOMe、-CHCHCHCOOEt、-CHCHCHCOO(n-Pr)、-CHCHCHCOO(i-Pr)、-CHCHCHCOO(n-Bu)、-CHCHCHCOO(t-Bu)、-Hex-COOMe(以上、炭素数1~8のエステルアルキル基)が挙げられる。 In the present invention, an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group is not particularly limited, and examples thereof include a methyl group (-Me), an ethyl group (- Et), n-propyl group (n-Pr), i-propyl group (i-Pr), n-butyl group (n-Bu), t-butyl group (t-Bu), pentyl group, hexyl group (- Hex), heptyl group, octyl group (above, alkyl group having 1 to 8 carbon atoms), methoxy group, ethoxy group, n-propyloxy group, i-propyloxy group, n-butyloxy group, t-butyloxy group, pentyl Oxy group, hexyloxy group, heptyloxy group, octyloxy group (above, alkoxy group having 1 to 8 carbon atoms), methoxymethyl group, methoxyethyl group, metho Cypropyl group, methoxybutyl group, methoxyhexyl group, methoxyheptyl group, ethoxymethyl group, ethoxyethyl group, ethoxypropyl group, ethoxybutyl group, pentyloxypropyl group (above, alkyl alkoxy group having 1 to 8 carbon atoms), methyl Ester group, ethyl ester group, n-propyl ester group, i-propyl ester group, n-butyl ester group, t-butyl ester group, pentyl ester group, hexyl ester group, heptyl ester group (above, 1 to 8 carbon atoms) Ester group), —CH 2 COOMe, —CH 2 COOEt, —CH 2 COO (n-Pr), —CH 2 COO (i-Pr), —CH 2 COO (n-Bu), —CH 2 COO ( t-Bu), - CH 2 COOHex, -CH 2 CH 2 CH 2 COOMe, -CH CH 2 CH 2 COOEt, -CH 2 CH 2 CH 2 COO (n-Pr), - CH 2 CH 2 CH 2 COO (i-Pr), - CH 2 CH 2 CH 2 COO (n-Bu), - CH 2 CH 2 CH 2 COO (t-Bu), —Hex-COOMe (an ester alkyl group having 1 to 8 carbon atoms).
 一般式(1)または(1)’に記載のArで表される炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい炭素数6から18の芳香族炭化水素基としては、特に限定するものではないが、例えば、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2-エチル-3-メチルフェニル基、2-エチル-4-メチルフェニル基、2-エチル-5-メチルフェニル基、2-エチル-6-メチルフェニル基、3-エチル-2-メチルフェニル基、3-エチル-4-メチルフェニル基、3-エチル-5-メチルフェニル基、3-エチル-6-メチルフェニル基、4-エチル-2-メチルフェニル基、4-エチル-3-メチルフェニル基、2-ヘキシルフェニル基、3-ヘキシルフェニル基、4-ヘキシルフェニル基、2-ヘキシル-3-メチルフェニル基、2-ヘキシル-4-エチルフェニル基、2-ヘキシルオキシ-5-メチルフェニル基、2-ヘキシルオキシ-6-メチルフェニル基、3-ヘキシルオキシ-2-メチルフェニル基、3-ヘキシルオキシ-4-メチルフェニル基、3-エトキシエチル-5-メチルフェニル基、3-エトキシエチル-6-メチルフェニル基、4-エトキシエチル-2-メチルフェニル基、4-エトキシエチル-3-メチルフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、パーフルオロフェニル基、1-ナフチル基、2-ナフチル基、2-メチルナフタレン-1-イル基、3-メチルナフタレン-1-イル基、4-メチルナフタレン-1-イル基、5-メチルナフタレン-1-イル基、6-メチルナフタレン-1-イル基、1-メチルナフタレン-2-イル基、3-メチルナフタレン-2-イル基、4-メチルナフタレン-2-イル基、5-メチルナフタレン-2-イル基、6-メチルナフタレン-2-イル基、2-ペンチルナフタレン-1-イル基、3-ペントキシナフタレン-1-イル基、4-メトキシエチルナフタレン-1-イル基、5-ペンチルナフタレン-1-イル基、6-ペントキシナフタレン-1-イル基、1-メトキシエチルナフタレン-2-イル基、3-ペンチルナフタレン-2-イル基、4-ペントキシナフタレン-2-イル基、5-メトキシエチルナフタレン-2-イル基、6-ペンチルナフタレン-2-イル基、2-フルオロナフタレン-1-イル基、3-フルオロナフタレン-1-イル基、4-フルオロナフタレン-1-イル基、5-フルオロナフタレン-1-イル基、6-フルオロナフタレン-1-イル基、1-フルオロナフタレン-2-イル基、3-フルオロナフタレン-2-イル基、4-フルオロナフタレン-2-イル基、5-フルオロナフタレン-2-イル基、6-フルオロナフタレン-2-イル基、パーフルオロナフタレン-1-イル基、パーフルオロナフタレン-2-イル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、1-メチルフェナントレン-2-イル基、3-メチルフェナントレン-2-イル基、4-メチルフェナントレン-2-イル基、5-メチルフェナントレン-2-イル基、6-メチルフェナントレン-2-イル基、9-メチルフェナントレン-2-イル基、1-メチルフェナントレン-4-イル基、2-メチルフェナントレン-4-イル基、3-メチルフェナントレン-4-イル基、5-メチルフェナントレン-4-イル基、6-メチルフェナントレン-4-イル基、9-メチルフェナントレン-4-イル基、1-メチルフェナントレン-9-イル基、2-メチルフェナントレン-9-イル基、3-メチルフェナントレン-9-イル基、4-メチルフェナントレン-9-イル基、5-メチルフェナントレン-9-イル基、6-メチルフェナントレン-9-イル基、1-オクチルフェナントレン-2-イル基、3-オクチルフェナントレン-2-イル基、4-オクチルフェナントレン-2-イル基、5-オクチルフェナントレン-2-イル基、6-オクチルフェナントレン-2-イル基、9-オクチルフェナントレン-2-イル基、1-オクチルオキシフェナントレン-4-イル基、2-オクチルオキシフェナントレン-4-イル基、3-オクチルオキシフェナントレン-4-イル基、5-オクチルオキシフェナントレン-4-イル基、6-オクチルオキシフェナントレン-4-イル基、9-オクチルオキシフェナントレン-4-イル基、1-メトキシプロピルフェナントレン-9-イル基、2-メトキシプロピルフェナントレン-9-イル基、3-メトキシプロピルフェナントレン-9-イル基、4-メトキシプロピルフェナントレン-9-イル基、5-メトキシプロピルフェナントレン-9-イル基、6-メトキシプロピルフェナントレン-9-イル基、1-フルオロフェナントレン-2-イル基、3-フルオロフェナントレン-2-イル基、4-フルオロフェナントレン-2-イル基、5-フルオロフェナントレン-2-イル基、6-フルオロフェナントレン-2-イル基、9-フルオロフェナントレン-2-イル基、1-フルオロフェナントレン-4-イル基、2-フルオロフェナントレン-4-イル基、3-フルオロフェナントレン-4-イル基、5-フルオロフェナントレン-4-イル基、6-フルオロフェナントレン-4-イル基、9-フルオロフェナントレン-4-イル基、1-フルオロフェナントレン-9-イル基、2-フルオロフェナントレン-9-イル基、3-フルオロフェナントレン-9-イル基、4-フルオロフェナントレン-9-イル基、5-フルオロフェナントレン-9-イル基、6-フルオロフェナントレン-9-イル基、パーフルオロフェナントレン-1-イル基、パーフルオロフェナントレン-2-イル基、パーフルオロフェナントレン-9-イル基等が挙げられる。これらのうち、有機電界発光素子材料として性能が良い点で、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、1-ナフチル基、2-ナフチル基、2-フェナントレニル基、9-フェナントレニル基、1-アントラセニル基、又は9-アントラセニル基が好ましく、フェニル基、2-メチルフェニル基、3-メチルフェニル基、または4-メチルフェニル基がより好ましい。 Substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom represented by Ar 1 in the general formula (1) or (1) ′ The aromatic hydrocarbon group having 6 to 18 carbon atoms is not particularly limited, and examples thereof include a phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2,3 -Dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2-ethylphenyl group 3-ethylphenyl group, 4-ethylphenyl group, 2-ethyl-3-methylphenyl group, 2-ethyl-4-methylphenyl group, 2-ethyl-5- Tylphenyl group, 2-ethyl-6-methylphenyl group, 3-ethyl-2-methylphenyl group, 3-ethyl-4-methylphenyl group, 3-ethyl-5-methylphenyl group, 3-ethyl-6-methyl Phenyl group, 4-ethyl-2-methylphenyl group, 4-ethyl-3-methylphenyl group, 2-hexylphenyl group, 3-hexylphenyl group, 4-hexylphenyl group, 2-hexyl-3-methylphenyl group 2-hexyl-4-ethylphenyl group, 2-hexyloxy-5-methylphenyl group, 2-hexyloxy-6-methylphenyl group, 3-hexyloxy-2-methylphenyl group, 3-hexyloxy-4 -Methylphenyl group, 3-ethoxyethyl-5-methylphenyl group, 3-ethoxyethyl-6-methylphenyl group, 4-ethoxyethyl 2-methylphenyl group, 4-ethoxyethyl-3-methylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,3-difluorophenyl group, 2,4-difluoro Phenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group, perfluorophenyl group, 1-naphthyl group, 2-naphthyl group, 2-methylnaphthalen-1-yl group, 3-methylnaphthalene-1 -Yl group, 4-methylnaphthalen-1-yl group, 5-methylnaphthalen-1-yl group, 6-methylnaphthalen-1-yl group, 1-methylnaphthalen-2-yl group, 3-methylnaphthalene-2 -Yl group, 4-methylnaphthalen-2-yl group, 5-methylnaphthalen-2-yl group, 6-methylnaphthalen-2-yl group, 2-pentyl Naphthalen-1-yl group, 3-pentoxynaphthalen-1-yl group, 4-methoxyethylnaphthalen-1-yl group, 5-pentylnaphthalen-1-yl group, 6-pentoxynaphthalen-1-yl group, 1-methoxyethylnaphthalen-2-yl group, 3-pentylnaphthalen-2-yl group, 4-pentoxynaphthalen-2-yl group, 5-methoxyethylnaphthalen-2-yl group, 6-pentylnaphthalene-2-yl group Yl group, 2-fluoronaphthalen-1-yl group, 3-fluoronaphthalen-1-yl group, 4-fluoronaphthalen-1-yl group, 5-fluoronaphthalen-1-yl group, 6-fluoronaphthalene-1- Yl group, 1-fluoronaphthalen-2-yl group, 3-fluoronaphthalen-2-yl group, 4-fluoronaphthalen-2-yl group, 5- Fluoronaphthalen-2-yl group, 6-fluoronaphthalen-2-yl group, perfluoronaphthalen-1-yl group, perfluoronaphthalen-2-yl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group Group, 4-phenanthryl group, 9-phenanthryl group, 1-methylphenanthren-2-yl group, 3-methylphenanthren-2-yl group, 4-methylphenanthren-2-yl group, 5-methylphenanthren-2-yl group Group, 6-methylphenanthren-2-yl group, 9-methylphenanthren-2-yl group, 1-methylphenanthren-4-yl group, 2-methylphenanthren-4-yl group, 3-methylphenanthren-4-yl group Group, 5-methylphenanthren-4-yl group, 6-methylphenanthren-4-yl group, 9-methylphenanthren-4-yl group, 1-methylphenanthren-9-yl group, 2-methylphenanthren-9-yl group, 3-methylphenanthren-9-yl group, 4-methylphenanthren-9-yl group, 5-methylphenanthren-9-yl group, 6-methylphenanthren-9-yl group, 1-octylphenanthren-2-yl group, 3-octylphenanthren-2-yl group, 4-octylphenanthren-2-yl group, 5-octylphenanthren-2-yl group, 6-octylphenanthren-2-yl group, 9-octylphenanthren-2-yl group, 1-octyloxyphenanthren-4-yl group, 2-octyloxyphenanthren-4-yl group Group, 3-octyloxyphenanthren-4-yl group, 5-octyloxyphene N-Tren-4-yl group, 6-octyloxyphenanthren-4-yl group, 9-octyloxyphenanthren-4-yl group, 1-methoxypropylphenanthren-9-yl group, 2-methoxypropylphenanthren-9-yl group 3-methoxypropylphenanthren-9-yl group, 4-methoxypropylphenanthren-9-yl group, 5-methoxypropylphenanthren-9-yl group, 6-methoxypropylphenanthren-9-yl group, 1-fluorophenanthrene- 2-yl group, 3-fluorophenanthren-2-yl group, 4-fluorophenanthren-2-yl group, 5-fluorophenanthren-2-yl group, 6-fluorophenanthren-2-yl group, 9-fluorophenanthrene- 2-yl group, 1-fluorophenant N-4-yl group, 2-fluorophenanthren-4-yl group, 3-fluorophenanthren-4-yl group, 5-fluorophenanthren-4-yl group, 6-fluorophenanthren-4-yl group, 9-fluoro Phenanthren-4-yl group, 1-fluorophenanthren-9-yl group, 2-fluorophenanthren-9-yl group, 3-fluorophenanthren-9-yl group, 4-fluorophenanthren-9-yl group, 5-fluoro Examples thereof include a phenanthren-9-yl group, a 6-fluorophenanthren-9-yl group, a perfluorophenanthren-1-yl group, a perfluorophenanthren-2-yl group, and a perfluorophenanthren-9-yl group. Of these, phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 1-naphthyl group, 2-naphthyl group, 2-phenanthrenyl are preferable in terms of performance as an organic electroluminescent element material. Group, 9-phenanthrenyl group, 1-anthracenyl group, or 9-anthracenyl group is preferable, and phenyl group, 2-methylphenyl group, 3-methylphenyl group, or 4-methylphenyl group is more preferable.
 一般式(1)または(1)’に記載のArおよびArで表される炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい1価の炭素数3から17の含窒素ヘテロ芳香族基としては、特に限定するものではないが、例えば、2-ピリジル基、3-ピリジル基、4-ピリジル基、3-メチルピリジン-2-イル基、4-メチルピリジン-2-イル基、5-メチルピリジン-2-イル基、6-メチルピリジン-2-イル基、2-メチルピリジン-3-イル基、4-メチルピリジン-3-イル基、5-メチルピリジン-3-イル基、6-メチルピリジン-3-イル基、2-メチルピリジン-4-イル基、3-メチルピリジン-4-イル基、3,4-ジメチルピリジン-2-イル基、3,5-ジメチルピリジン-2-イル基、3,6-ジメチルピリジン-2-イル基、2,4-ジメチルピリジン-3-イル基、2,5-ジメチルピリジン-3-イル基、2,6-ジメチルピリジン-3-イル基、2,3-ジメチルピリジン-4-イル基、3,5-ジメチルピリジン-4-イル基、2,5-ジメチルピリジン-4-イル基、3-ブチルピリジン-2-イル基、4-ブチルピリジン-2-イル基、5-ブチルピリジン-2-イル基、6-ブチルピリジン-2-イル基、2-ブトキシピリジン-3-イル基、4-ブトキシピリジン-3-イル基、5-ブトキシピリジン-3-イル基、6-ブトキシピリジン-3-イル基、2-メトキシメチルピリジン-4-イル基、3-メトキシメチルピリジン-4-イル基、3-フルオロピリジン-2-イル基、4-フルオロピリジン-2-イル基、5-フルオロピリジン-2-イル基、6-フルオロピリジン-2-イル基、2-フルオロピリジン-3-イル基、4-フルオロピリジン-3-イル基、5-フルオロピリジン-3-イル基、6-フルオロピリジン-3-イル基、2-フルオロピリジン-4-イル基、3-フルオロピリジン-4-イル基、3,4-ジフルオロピリジン-2-イル基、3,5-ジフルオロピリジン-2-イル基、3,6-ジフルオロピリジン-2-イル基、2,4-ジフルオロピリジン-3-イル基、2,5-ジフルオロピリジン-3-イル基、2,6-ジフルオロピリジン-3-イル基、2,3-ジフルオロピリジン-4-イル基、3,5-ジフルオロピリジン-4-イル基、2,5-ジフルオロピリジン-4-イル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、4-メチルピリミジン-2-イル基、5-メチルピリミジン-2-イル基、2-メチルピリミジン-4-イル基、6-メチルピリミジン-4-イル基、4-プロピルピリミジン-2-イル基、5-プロポキシピリミジン-2-イル基、2-ペントキシメチルピリミジン-4-イル基、6-ヘプチルピリミジン-4-イル基、4,6-ジメチルピリミジン-2-イル基、4-フルオロピリミジン-2-イル基、5-フルオロピリミジン-2-イル基、2-フルオロピリミジン-4-イル基、6-フルオロピリミジン-4-イル基、2-ピラジル基、3-メチルピラジン-2-イル基、5-メチルピラジン-2-イル基、6-メチルピラジン-2-イル基、3-フルオロピラジン-2-イル基、5-フルオロピラジン-2-イル基、6-フルオロピラジン-2-イル基、2-キノリル基、3-キノリル基、4-キノリル基、3-メチルキノリン-2-イル基、4-メチルキノリン-2-イル基、5-メチルキノリン-2-イル基、6-メチルキノリン-2-イル基、2-メチルキノリン-3-イル基、4-メチルキノリン-3-イル基、5-メチルキノリン-3-イル基、6-メチルキノリン-3-イル基、2-メチルキノリン-4-イル基、3-メチルキノリン-4-イル基、5-メチルキノリン-4-イル基、6-メチルキノリン-4-イル基、3-ヘプチルキノリン-2-イル基、4-ヘプトキシキノリン-2-イル基、5-メトキシヘキシルキノリン-2-イル基、6-ヘプトキシメチルキノリン-2-イル基、3-フルオロキノリン-2-イル基、4-フルオロキノリン-2-イル基、5-フルオロキノリン-2-イル基、6-フルオロキノリン-2-イル基、2-フルオロキノリン-3-イル基、4-フルオロキノリン-3-イル基、5-フルオロキノリン-3-イル基、6-フルオロキノリン-3-イル基、2-フルオロキノリン-4-イル基、3-フルオロキノリン-4-イル基、5-フルオロキノリン-4-イル基、6-フルオロキノリン-4-イル基、パーフルオロキノリン-2-イル基、パーフルオロキノリン-3-イル基、パーフルオロキノリン-4-イル基、1-イソキノリル基、3-イソキノリル基、4-イソキノリル基、3-メチルイソキノリン-1-イル基、4-メチルイソキノリン-1-イル基、5-メチルイソキノリン-1-イル基、6-メチルイソキノリン-1-イル基、1-メチルイソキノリン-3-イル基、4-メチルイソキノリン-3-イル基、5-メチルイソキノリン-3-イル基、6-メチルイソキノリン-3-イル基、1-メチルイソキノリン-4-イル基、3-メチルイソキノリン-4-イル基、5-メチルイソキノリン-4-イル基、6-メチルイソキノリン-4-イル基、3-ヘキシルイソキノリン-1-イル基、4-ヘキシルオキシイソキノリン-1-イル基、5-エトキシブチルイソキノリン-1-イル基、6-ブトキシプロピルイソキノリン-1-イル基、3-フルオロイソキノリン-1-イル基、4-フルオロイソキノリン-1-イル基、5-フルオロイソキノリン-1-イル基、6-フルオロイソキノリン-1-イル基、1-フルオロイソキノリン-3-イル基、4-フルオロイソキノリン-3-イル基、5-フルオロイソキノリン-3-イル基、6-フルオロイソキノリン-3-イル基、1-フルオロイソキノリン-4-イル基、3-フルオロイソキノリン-4-イル基、5-フルオロイソキノリン-4-イル基、6-フルオロイソキノリン-4-イル基、パーフルオロイソキノリン-1-イル基、パーフルオロイソキノリン-3-イル基、パーフルオロイソキノリン-4-イル基、1,5-ナフチリジン-2-イル基、1,6-ナフチリジン-2-イル基、1,8-ナフチリジン-2-イル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、9-β-カルボリル基、1-メチル-β-カルボリン-9-イル基、3-メチル-β-カルボリン-9-イル基、1-フルオロ-β-カルボリン-9-イル基、3-フルオロ-β-カルボリン-9-イル基、5-アクリジル基、8-アクリジル基、9-アクリジル基、4-フェナントリジル基、6-フェナントリジル基、7-フェナントリジル基、8-フェナントリジル基、10-フェナントリジル基、5-(1,6-フェナントロリル)基、5-(1,10-フェナントロリル)基、ベンゾ[b]-1,5-ナフチリジン-2-イル基、ベンゾ[b]-1,8-ナフチリジン-2-イル基、ベンゾ[c]-1,5-ナフチリジン-2-イル基、ベンゾ[c]-1,6-ナフチリジン-2-イル基、ベンゾ[c]-1,8-ナフチリジン-2-イル基、1-フェナジル基、2-フェナジル基、2-ベンゾチアゾリル基等が挙げられる。
 一般式(1)’に記載のArで表される炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい炭素数3から17の2価の含窒素ヘテロ芳香族基としては、特に限定するものではないが、例えば、ピリジンジイル基、メチルピリジンジイル基、メトキシピリジンジイル基、ジメチルピリジンジイル基、エチルピリジンジイル基、エトキシピリジンジイル基、プロピルピリジンジイル基、プロポキシピリジンジイル基、ブチルピリジンジイル基、ブトキシピリジンジイル基、メトキシメチルピリジンジイル基、フルオロピリジンジイル基、ジフルオロピリジンジイル基、ピリミジンジイル基、メチルピリミジンジイル基、メトキシピリミジンジイル基、ジメチルピリミジンジイル基、エチルピリミジンジイル基、エトキシピリミジンジイル基、プロピルピリミジンジイル基、プロポキシピリミジンジイル基、ペンチルピリミジンジイル基、ペントキシピリミジンジイル基、メチルペントキシピリミジンジイル基、フルオロピリミジンジイル基、ジフルオロピリミジンジイル基、ピラジンジイル基、メチルピラジンジイル基、メトキシピラジンジイル基、ジメチルピラジンジイル基、エチルピラジンジイル基、エトキシピラジンジイル基、プロピルピラジンジイル基、プロポキシピラジンジイル基、ヘキシルピラジンジイル基、ヘキシルオキシピラジンジイル基、フルオロピラジンジイル基、ジフルオロピラジンジイル基、キノリンジイル基、メチルキノリンジイル基、メトキシキノリンジイル基、ジメチルキノリンジイル基、エチルキノリンジイル基、エトキシキノリンジイル基、プロピルキノリンジイル基、プロポキシキノリンジイル基、ヘプチルキノリンジイル基、ヘプトキシキノリンジイル基、ヘキシルメトキシキノリンジイル基、ヘプトキシメチルキノリンジイル基、フルオロキノリンジイル基、パーフルオロキノリンジイル基、イソキノリンジイル基、メチルイソキノリンジイル基、メトキシイソキノリンジイル基、ジメチルイソキノリンジイル基、エチルイソキノリンジイル基、エトキシイソキノリンジイル基、プロピルイソキノリンジイル基、プロポキシイソキノリンジイル基、オクチルイソキノリンジイル基、オクチルオキシイソキノリンジイル基、エトキシブチルイソキノリンジイル基、ブトキシプロピルイソキノリンジイル基、フルオロイソキノリンジイル基、パーフルオロイソキノリンジイル基、等が挙げられる。
Substitution with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom represented by Ar 1 and Ar 2 described in the general formula (1) or (1) ′ The monovalent nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms which may be used is not particularly limited, and examples thereof include 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 3- Methylpyridin-2-yl group, 4-methylpyridin-2-yl group, 5-methylpyridin-2-yl group, 6-methylpyridin-2-yl group, 2-methylpyridin-3-yl group, 4- Methylpyridin-3-yl group, 5-methylpyridin-3-yl group, 6-methylpyridin-3-yl group, 2-methylpyridin-4-yl group, 3-methylpyridin-4-yl group, 3, 4 Dimethylpyridin-2-yl group, 3,5-dimethylpyridin-2-yl group, 3,6-dimethylpyridin-2-yl group, 2,4-dimethylpyridin-3-yl group, 2,5-dimethylpyridine -3-yl group, 2,6-dimethylpyridin-3-yl group, 2,3-dimethylpyridin-4-yl group, 3,5-dimethylpyridin-4-yl group, 2,5-dimethylpyridin-4 -Yl group, 3-butylpyridin-2-yl group, 4-butylpyridin-2-yl group, 5-butylpyridin-2-yl group, 6-butylpyridin-2-yl group, 2-butoxypyridine-3 -Yl group, 4-butoxypyridin-3-yl group, 5-butoxypyridin-3-yl group, 6-butoxypyridin-3-yl group, 2-methoxymethylpyridin-4-yl group, 3-methoxymethylpyridine 4-yl group, 3-fluoropyridin-2-yl group, 4-fluoropyridin-2-yl group, 5-fluoropyridin-2-yl group, 6-fluoropyridin-2-yl group, 2-fluoropyridin- 3-yl group, 4-fluoropyridin-3-yl group, 5-fluoropyridin-3-yl group, 6-fluoropyridin-3-yl group, 2-fluoropyridin-4-yl group, 3-fluoropyridine- 4-yl group, 3,4-difluoropyridin-2-yl group, 3,5-difluoropyridin-2-yl group, 3,6-difluoropyridin-2-yl group, 2,4-difluoropyridin-3- Yl group, 2,5-difluoropyridin-3-yl group, 2,6-difluoropyridin-3-yl group, 2,3-difluoropyridin-4-yl group, 3,5-difluoropyridin-4-yl group Group, 2,5-difluoropyridin-4-yl group, 2-pyrimidyl group, 4-pyrimidyl group, 5-pyrimidyl group, 4-methylpyrimidin-2-yl group, 5-methylpyrimidin-2-yl group, 2-methylpyrimidin-4-yl group, 6-methylpyrimidin-4-yl group, 4-propylpyrimidin-2-yl group, 5-propoxypyrimidin-2-yl group, 2-pentoxymethylpyrimidin-4-yl Group, 6-heptylpyrimidin-4-yl group, 4,6-dimethylpyrimidin-2-yl group, 4-fluoropyrimidin-2-yl group, 5-fluoropyrimidin-2-yl group, 2-fluoropyrimidine-4 -Yl group, 6-fluoropyrimidin-4-yl group, 2-pyrazyl group, 3-methylpyrazin-2-yl group, 5-methylpyrazin-2-yl group, 6-methylpi Gin-2-yl group, 3-fluoropyrazin-2-yl group, 5-fluoropyrazin-2-yl group, 6-fluoropyrazin-2-yl group, 2-quinolyl group, 3-quinolyl group, 4-quinolyl Group, 3-methylquinolin-2-yl group, 4-methylquinolin-2-yl group, 5-methylquinolin-2-yl group, 6-methylquinolin-2-yl group, 2-methylquinolin-3-yl Group, 4-methylquinolin-3-yl group, 5-methylquinolin-3-yl group, 6-methylquinolin-3-yl group, 2-methylquinolin-4-yl group, 3-methylquinolin-4-yl Group, 5-methylquinolin-4-yl group, 6-methylquinolin-4-yl group, 3-heptylquinolin-2-yl group, 4-heptoxyquinolin-2-yl group, 5-methoxyhexylquinoline-2 -Yl groups, -Heptoxymethylquinolin-2-yl group, 3-fluoroquinolin-2-yl group, 4-fluoroquinolin-2-yl group, 5-fluoroquinolin-2-yl group, 6-fluoroquinolin-2-yl group 2-fluoroquinolin-3-yl group, 4-fluoroquinolin-3-yl group, 5-fluoroquinolin-3-yl group, 6-fluoroquinolin-3-yl group, 2-fluoroquinolin-4-yl group 3-fluoroquinolin-4-yl group, 5-fluoroquinolin-4-yl group, 6-fluoroquinolin-4-yl group, perfluoroquinolin-2-yl group, perfluoroquinolin-3-yl group, perfluoroquinolin-4-yl group Fluoroquinolin-4-yl group, 1-isoquinolyl group, 3-isoquinolyl group, 4-isoquinolyl group, 3-methylisoquinolin-1-yl group, 4-methylisoquinolyl group N-1-yl group, 5-methylisoquinolin-1-yl group, 6-methylisoquinolin-1-yl group, 1-methylisoquinolin-3-yl group, 4-methylisoquinolin-3-yl group, 5-methyl Isoquinolin-3-yl group, 6-methylisoquinolin-3-yl group, 1-methylisoquinolin-4-yl group, 3-methylisoquinolin-4-yl group, 5-methylisoquinolin-4-yl group, 6-methyl Isoquinolin-4-yl group, 3-hexylisoquinolin-1-yl group, 4-hexyloxyisoquinolin-1-yl group, 5-ethoxybutylisoquinolin-1-yl group, 6-butoxypropylisoquinolin-1-yl group, 3-fluoroisoquinolin-1-yl group, 4-fluoroisoquinolin-1-yl group, 5-fluoroisoquinolin-1-yl group, 6- Luoisoquinolin-1-yl group, 1-fluoroisoquinolin-3-yl group, 4-fluoroisoquinolin-3-yl group, 5-fluoroisoquinolin-3-yl group, 6-fluoroisoquinolin-3-yl group, 1 -Fluoroisoquinolin-4-yl group, 3-fluoroisoquinolin-4-yl group, 5-fluoroisoquinolin-4-yl group, 6-fluoroisoquinolin-4-yl group, perfluoroisoquinolin-1-yl group, perfluoro Isoquinolin-3-yl group, perfluoroisoquinolin-4-yl group, 1,5-naphthyridin-2-yl group, 1,6-naphthyridin-2-yl group, 1,8-naphthyridin-2-yl group, 1 -Carbazolyl group, 2-carbazolyl group, 3-carbazolyl group, 4-carbazolyl group, 9-carbazolyl group, 9-β-carbo Ryl group, 1-methyl-β-carbolin-9-yl group, 3-methyl-β-carbolin-9-yl group, 1-fluoro-β-carbolin-9-yl group, 3-fluoro-β-carboline- 9-yl group, 5-acridyl group, 8-acridyl group, 9-acridyl group, 4-phenanthridyl group, 6-phenanthridyl group, 7-phenanthridyl group, 8-phenanthridyl group, 10- Phenanthridyl group, 5- (1,6-phenanthroyl) group, 5- (1,10-phenanthroyl) group, benzo [b] -1,5-naphthyridin-2-yl group, benzo [b] -1, 8-naphthyridin-2-yl group, benzo [c] -1,5-naphthyridin-2-yl group, benzo [c] -1,6-naphthyridin-2-yl group, benzo [c] -1,8- Naphthyridin-2-yl group, 1-ph Nazarite group, 2-Fenajiru group, 2-benzothiazolyl group and the like.
The number of carbon atoms that may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom represented by Ar 2 in the general formula (1) ′ The divalent nitrogen-containing heteroaromatic group of 3 to 17 is not particularly limited. For example, pyridinediyl group, methylpyridinediyl group, methoxypyridinediyl group, dimethylpyridinediyl group, ethylpyridinediyl group, Ethoxypyridinediyl group, propylpyridinediyl group, propoxypyridinediyl group, butylpyridinediyl group, butoxypyridinediyl group, methoxymethylpyridinediyl group, fluoropyridinediyl group, difluoropyridinediyl group, pyrimidinediyl group, methylpyrimidinediyl group, Methoxypyrimidine Yl, dimethylpyrimidinediyl, ethylpyrimidinediyl, ethoxypyrimidinediyl, propylpyrimidinediyl, propoxypyrimidinediyl, pentylpyrimidinediyl, pentoxypyrimidinediyl, methylpentoxypyrimidinediyl, fluoropyrimidinediyl , Difluoropyrimidinediyl group, pyrazinediyl group, methylpyrazinediyl group, methoxypyrazinediyl group, dimethylpyrazinediyl group, ethylpyrazinediyl group, ethoxypyrazinediyl group, propylpyrazinediyl group, propoxypyrazinediyl group, hexylpyrazinediyl group, hexyl Oxypyrazinediyl group, fluoropyrazinediyl group, difluoropyrazinediyl group, quinolinediyl group, methylquinolinediyl group, methoxyquinolyl Diyl group, dimethylquinolinediyl group, ethylquinolinediyl group, ethoxyquinolinediyl group, propylquinolinediyl group, propoxyquinolinediyl group, heptylquinolinediyl group, heptoxyquinolinediyl group, hexylmethoxyquinolinediyl group, heptoxymethylquinolinediyl Group, fluoroquinolinediyl group, perfluoroquinolinediyl group, isoquinolinediyl group, methylisoquinolinediyl group, methoxyisoquinolinediyl group, dimethylisoquinolinediyl group, ethylisoquinolinediyl group, ethoxyisoquinolinediyl group, propylisoquinolinediyl group, propoxyisoquinolinediyl Group, octylisoquinolinediyl group, octyloxyisoquinolinediyl group, ethoxybutylisoquinolinediyl group, butoxypropiyl Isoquinolinediyl group, fluoro isoquinoline-diyl group, perfluoro isoquinolinediyl group, and the like.
 なお、ArおよびArは、各々独立して、有機電界発光素子材料として性能が良い点で、ピリジル基、ピリミジル基、またはピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の縮合環基(これらの基は、1価または2価であり、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)であることが好ましく、各々独立して、ピリジル基、ピリミジル基、またはピリジン骨格もしくはピリミジン骨格を含む炭素数6から9の縮合環基(これらの基は、1価または2価であり、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)であることがより好ましく、各々独立して、ピリジル基、ピリミジル基、またはピリジン骨格を含む炭素数6から9の縮合環基(これらの基は、1価または2価であり、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)であることがさらに好ましい。 Ar 1 and Ar 2 are each independently a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton in terms of good performance as an organic electroluminescent element material ( These groups are monovalent or divalent, and may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). Each independently, a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 9 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups are monovalent or divalent and have 1 to 8 carbon atoms). Substituted with an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom. Each of which is independently a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 9 carbon atoms containing a pyridine skeleton (these groups are monovalent or divalent, More preferably, it may be substituted with an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom.
 前記のピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の縮合環基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)としては、特に限定するものではないが、例えば、キノリル基、イソキノリル基、ナフチリジル基、β-カルボリル基、フェナントリジル基、アクリジル基、フェナントロリル基、ベンゾ[b]ナフチリジル基、またはベンゾ[c]ナフチリジル基等(なお、これらの基は炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が挙げられるが、本発明はこれらに限定されるものではない。これらのうち、有機電界発光素子材料として性能が良い点で、キノリル基、イソキノリル基、β-カルボリル基、アクリジル基、フェナントリジル基、またはフェナントロリル基(これらの基は炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が好ましく、キノリル基、イソキノリル基、β-カルボリル基、アクリジル基、フェナントリジル基、またはフェナントロリル基(これらの基はメチル基またはフッ素原子で置換されていてもよい)がより好ましい。
 前記のピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の2価の縮合環基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)としては、特に限定するものではないが、例えば、キノリンジイル基、イソキノリンジイル基、ナフチリジンジイル基、β-カルボリンジイル基、フェナントリジンジイル基、アクリジンジイル基、フェナントロリンジイル基、ベンゾ[b]ナフチリジンジイル基、またはベンゾ[c]ナフチリジンジイル基等(なお、これらの基は炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が挙げられるが、本発明はこれらに限定されるものではない。これらのうち、有機電界発光素子材料として性能が良い点で、キノリンジイル基、またはイソキノリンジイル基(これらの基は炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が好ましく、キノリンジイル基、またはイソキノリンジイル基(これらの基はメチル基またはフッ素原子で置換されていてもよい)がより好ましい。
A condensed ring group having 6 to 17 carbon atoms containing the pyridine skeleton or pyrimidine skeleton (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom. Is not particularly limited, and examples thereof include quinolyl group, isoquinolyl group, naphthyridyl group, β-carbolyl group, phenanthridyl group, acridyl group, phenanthroyl group, and benzo [b]. A naphthylidyl group, a benzo [c] naphthylidyl group or the like (note that these groups may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom. The present invention is not limited to these examples. There. Of these, quinolyl group, isoquinolyl group, β-carbolyl group, acridyl group, phenanthridyl group, or phenanthroyl group (these groups are alkyl groups having 1 to 8 carbon atoms) because of their good performance as organic electroluminescent device materials. Group, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, which may be substituted with a fluorine atom), a quinolyl group, an isoquinolyl group, a β-carbolyl group, an acridyl group, a phenanthridyl group, or A phenanthroyl group (these groups may be substituted with a methyl group or a fluorine atom) is more preferable.
A bivalent condensed ring group having 6 to 17 carbon atoms containing the pyridine skeleton or pyrimidine skeleton (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group; Or may be substituted with a fluorine atom), but is not particularly limited, for example, quinoline diyl group, isoquinoline diyl group, naphthyridine diyl group, β-carboline diyl group, phenanthridine diyl group, acridine diyl group Phenanthrolinediyl group, benzo [b] naphthyridinediyl group, benzo [c] naphthyridinediyl group, etc. (Note that these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyls) Substituted by a group or fluorine atom Although even it is) and the like, and the present invention is not limited thereto. Of these, a quinoline diyl group or an isoquinoline diyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups in terms of good performance as organic electroluminescent element materials. Or an optionally substituted with a fluorine atom), and more preferably a quinolinediyl group or an isoquinolinediyl group (these groups may be substituted with a methyl group or a fluorine atom).
 前記のピリジン骨格もしくはピリミジン骨格を含む炭素数6から9の縮合環基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)としては、特に限定するものではないが、例えば、キノリル基、イソキノリル基、またはナフチリジル基等(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が挙げられるが、本発明はこれらに限定されるものではない。これらのうち、有機電界発光素子材料として性能が良い点で、キノリル基、またはイソキノリル基(これらの基は炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が好ましく、キノリル基、またはイソキノリル基(これらの基はメチル基またはフッ素原子で置換されていてもよい)がより好ましい。
 前記のピリジン骨格もしくはピリミジン骨格を含む炭素数6から9の2価の縮合環基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)としては、特に限定するものではないが、例えば、キノリンジイル基、イソキノリンジイル基、またはナフチリジンジイル基等(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が挙げられるが、本発明はこれらに限定されるものではない。これらのうち、有機電界発光素子材料として性能が良い点で、キノリンジイル基、またはイソキノリンジイル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が好ましく、キノリンジイル基、またはイソキノリンジイル基(これらの基は、メチル基またはフッ素原子で置換されていてもよい)がより好ましい。
A condensed ring group having 6 to 9 carbon atoms containing the pyridine skeleton or pyrimidine skeleton (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom; Is not particularly limited, and examples thereof include a quinolyl group, an isoquinolyl group, or a naphthyridyl group (these groups include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxy group). An alkyl group, an ester group or an ester alkyl group, which may be substituted with a fluorine atom), but the present invention is not limited thereto. Of these, a quinolyl group or an isoquinolyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups; Or may be substituted with a fluorine atom), and more preferably a quinolyl group or an isoquinolyl group (these groups may be substituted with a methyl group or a fluorine atom).
A divalent condensed ring group having 6 to 9 carbon atoms containing the pyridine skeleton or pyrimidine skeleton (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group; The group may be substituted with a fluorine atom, but is not particularly limited. For example, a quinoline diyl group, an isoquinoline diyl group, or a naphthyridine diyl group (these groups are alkyl groups having 1 to 8 carbon atoms). , An alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom may be substituted), but the present invention is not limited thereto. Of these, a quinoline diyl group or an isoquinoline diyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyls) because of their good performance as organic electroluminescent device materials. A quinoline diyl group or an isoquinoline diyl group (these groups may be substituted with a methyl group or a fluorine atom), more preferably.
 なお、ArおよびArは、各々独立して、ピリミジル基、ピリジル基、キノリル基、またはイソキノリル基(これらの基は、1価または2価であり、各々独立して、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)であることがより好ましく、各々独立して、ピリミジル基、ピリジル基、キノリル基、またはイソキノリル基(これらの基は、1価または2価であり、メチル基またはフッ素原子で置換されていてもよい)であることがさらに好ましく、各々独立して、2-ピリミジル基、4-メチルピリミジン-2-イル基、4,6-ジメチルピリミジン-2-イル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、6-メチルピリジン-2-イル基、5-メチルピリジン-2-イル基、6-フルオロピリジン-2-イル基、5-フルオロピリジン-2-イル基、1-イソキノリル基、もしくは2-キノリル基(以上、1価のもの)、または2,5-ピリミジレン基、4,6-ジメチルピリミジン-2,5-ジイル基、2,5-ピリジレン基、6-メチルピリジン-2,5-ジイル基、6-フルオロピリジン-2,5-ジイル基、イソキノリン-1,4-ジイル基、イソキノリン-5,8-ジイル基、イソキノリン-3,7-ジイル基、もしくはキノリン-5,8-ジイル基、キノリン-2,6-ジイル基(以上、2価のもの)であることがさらに好ましい。 Ar 1 and Ar 2 are each independently a pyrimidyl group, a pyridyl group, a quinolyl group, or an isoquinolyl group (these groups are monovalent or divalent, each independently having 1 to 8 carbon atoms). More preferably an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom, each independently, a pyrimidyl group, a pyridyl group, a quinolyl group, Or an isoquinolyl group (these groups are monovalent or divalent and may be substituted with a methyl group or a fluorine atom), and each independently represents a 2-pyrimidyl group, 4-methyl Pyrimidin-2-yl group, 4,6-dimethylpyrimidin-2-yl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 6- Tylpyridin-2-yl group, 5-methylpyridin-2-yl group, 6-fluoropyridin-2-yl group, 5-fluoropyridin-2-yl group, 1-isoquinolyl group, or 2-quinolyl group (above, Monovalent), 2,5-pyrimidylene group, 4,6-dimethylpyrimidine-2,5-diyl group, 2,5-pyridylene group, 6-methylpyridine-2,5-diyl group, 6-fluoro Pyridine-2,5-diyl group, isoquinoline-1,4-diyl group, isoquinoline-5,8-diyl group, isoquinoline-3,7-diyl group, or quinoline-5,8-diyl group, quinoline-2, More preferably, it is a 6-diyl group (above, a divalent group).
 なお、ArとArは、製造効率に優れる点で、1価と2価の差に拘わらず、お互いに同じ置換基であることが好ましい。 Ar 1 and Ar 2 are preferably the same substituent as each other regardless of the difference between monovalent and divalent in terms of excellent production efficiency.
 一般式(1)または(1)’において、Arは、炭素数3から17の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)または-Ar-Arで表される置換基を表す。Arは炭素数3から17の含窒素ヘテロアリーレン基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表し、Arは炭素数6から18の芳香族炭化水素基、ピリジル基、ピリミジル基、またはピラジル基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。 In the general formula (1) or (1) ′, Ar 3 represents a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group). Or a substituent represented by —Ar 4 —Ar 5 ( which may be substituted with a group or a fluorine atom). Ar 4 represents a nitrogen-containing heteroarylene group having 3 to 17 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). Ar 5 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms, a pyridyl group, a pyrimidyl group, or a pyrazyl group (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, Or may be substituted with a fluorine atom).
 Arにおける炭素数3から17の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)としては、特に限定するものではないが、例えば、ArおよびArで例示した炭素数3から17の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)と同じ置換基を例示できる。 A nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms in Ar 3 (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom) Although it does not specifically limit, for example, a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms exemplified for Ar 1 and Ar 2 (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, Examples thereof include the same substituent groups as those of an ester group or an ester alkyl group, which may be substituted with a fluorine atom.
 なお、Arは、有機電界発光素子材料として性能が良い点で、Arが、炭素数4から11の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)または-Ar-Arで表される置換基であり、且つArが炭素数4から12の含窒素ヘテロアリーレン基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)であり、Arは炭素数6から18の芳香族炭化水素基、ピリジル基、ピリミジル基、またはピラジル基(これらの基は、各々独立して、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)であることが好ましい。 Incidentally, Ar 3 are points performance as good as the organic electroluminescence element material, is Ar 3, alkyl group, alkoxy group, nitrogen-containing heteroaromatic group (from 1 to 8 carbon atoms of a carbon number of 4 11, an alkoxyalkyl group , An ester group or an ester alkyl group, or a substituent represented by —Ar 4 —Ar 5 , and Ar 4 is a nitrogen-containing heteroarylene group having 4 to 12 carbon atoms Ar 5 is an aromatic carbon atom having 6 to 18 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). A hydrogen group, a pyridyl group, a pyrimidyl group, or a pyrazyl group (these groups are each independently an alkyl group, alkoxy group, A alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom which may be substituted).
 Arで表される炭素数4から11の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)としては、特に限定するものではないが、例えば、ピリジル基、ピリミジル基、ピラジル基、キノリル基、イソキノリル基、ナフチリジル基、カルボリル基、ベンゾチアゾリル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)等が挙げられる。これらのうち、有機電界発光素子材料として性能が良い点で、ピリジル基、ピリミジル基、イソキノリル基、またはカルボリル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が好ましい。 A nitrogen-containing heteroaromatic group having 4 to 11 carbon atoms represented by Ar 3 (substituted with an alkyl group, alkoxy group, alkoxyalkyl group, ester group or ester alkyl group having 1 to 8 carbon atoms, or a fluorine atom) May be, for example, pyridyl group, pyrimidyl group, pyrazyl group, quinolyl group, isoquinolyl group, naphthyridyl group, carbolyl group, benzothiazolyl group (these groups have 1 to 8 carbon atoms). And an alkyl group, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom which may be substituted). Of these, a pyridyl group, pyrimidyl group, isoquinolyl group, or carbolyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, An ester group or an ester alkyl group, which may be substituted with a fluorine atom) is preferred.
 Arで表される炭素数3から17の含窒素ヘテロアリーレン基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)としては、特に限定するものではないが、例えば、ArおよびArで例示した炭素数3から17の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が2価になったもの(例えば、ピリミジンジイル基、ピリジンジイル基、キノリンジイル基、イソキノリンジイル基、ナフチリジンジイル基、カルバゾールジイル基、β-カルボリンジイル基、ベンゾチアゾールジイル基、フェナントリジンジイル基、アクリジンジイル基、フェナントロリンジイル基、ベンゾ[b]ナフチリジンジイル基、ベンゾ[c]ナフチリジンジイル基、インドールジイル基、ベンゾイミダゾールジイル基、ピロロピリジンジイル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)等)等が挙げられる。 A nitrogen-containing heteroarylene group having 3 to 17 carbon atoms represented by Ar 4 ( which may be substituted with a C 1 to C 8 alkyl group, alkoxy group, alkoxyalkyl group, ester group or ester alkyl group, or a fluorine atom) Although it is not particularly limited, for example, a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms exemplified for Ar 1 and Ar 2 (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group) Group, ester group or ester alkyl group, which may be substituted with a fluorine atom) (eg pyrimidinediyl group, pyridinediyl group, quinolinediyl group, isoquinolinediyl group, naphthyridinediyl group, carbazole) Diyl group, β-carboline diyl group, benzothiazole diyl group, phena Tolidinediyl group, acridinediyl group, phenanthrolinediyl group, benzo [b] naphthyridinediyl group, benzo [c] naphthyridinediyl group, indolediyl group, benzimidazolediyl group, pyrrolopyridinediyl group (these groups have 1 to 8 alkyl group, alkoxy group, alkoxyalkyl group, ester group or ester alkyl group, or optionally substituted with a fluorine atom)).
 Arで表される炭素数4から12の含窒素ヘテロアリーレン基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)としては、特に限定するものではないが、例えば、ピリジンジイル基、ピリミジンジイル基、ピラジンジイル基、キノリンジイル基、イソキノリンジイル基、ナフチリジンジイル基、カルバゾールジイル基、β-カルボリンジイル基、ベンゾチアゾールジイル基、インドールジイル基、ベンゾイミダゾールジイル基、ピロロピリジンジイル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)等が挙げられる。これらのうち、有機電界発光素子材料として性能が良い点で、ピリジンジイル基、ピリミジンジイル基、ベンゾイミダゾールジイル基、またはカルバゾールジイル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)が好ましく、ピリミジン-2,5-ジイル基、4-メチルピリミジン-2,5-ジイル基、4,6-ジメチルピリミジン-2,5-ジイル基、ピリジン-2,5-ジイル基、ピリジン-3,6-ジイル基、6-メチルピリジン-2,5-ジイル基、4-メチルピリジン-2,5-ジイル基、6-フルオロピリジン-2,5-ジイル基、4-フルオロピリジン-2,5-ジイル基、イソキノリン-1,4-ジイル基、イソキノリン-1,5-ジイル基、イソキノリン-1,6-ジイル基、キノリン-2,4-ジイル基、キノリン-2,5-ジイル基、またはキノリン-2,6-ジイル基がより好ましい。 A nitrogen-containing heteroarylene group having 4 to 12 carbon atoms represented by Ar 4 ( which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom) Is not particularly limited. Groups, indolediyl groups, benzimidazolediyl groups, pyrrolopyridinediyl groups (these groups are substituted with alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups, or fluorine atoms). May be) And the like. Among these, a pyridinediyl group, a pyrimidinediyl group, a benzimidazolediyl group, or a carbazolediyl group (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group in view of good performance as an organic electroluminescent element material. , An alkoxyalkyl group, an ester group or an esteralkyl group, which may be substituted with a fluorine atom), a pyrimidine-2,5-diyl group, a 4-methylpyrimidine-2,5-diyl group, 4,6 -Dimethylpyrimidine-2,5-diyl group, pyridine-2,5-diyl group, pyridine-3,6-diyl group, 6-methylpyridine-2,5-diyl group, 4-methylpyridine-2,5- Diyl group, 6-fluoropyridine-2,5-diyl group, 4-fluoropyridine-2,5-diyl group, isoquinoline-1,4 Diyl group, isoquinoline-1,5-diyl group, isoquinoline-1,6-diyl group, quinoline-2,4-diyl group, quinoline-2,5-diyl group, or quinoline-2,6-diyl group preferable.
 Arで表される炭素数6から18の芳香族炭化水素基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)としては、特に限定するものではないが、例えば、Arで例示した炭素数6から18の芳香族炭化水素基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)と同じ置換基を例示できる。 An aromatic hydrocarbon group having 6 to 18 carbon atoms represented by Ar 5 ( which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom) Although not particularly limited, for example, an aromatic hydrocarbon group having 6 to 18 carbon atoms exemplified by Ar 1 (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group) Alternatively, an ester alkyl group, or the same substituent as that optionally substituted with a fluorine atom can be exemplified.
 Arは、有機電界発光素子材料として性能が良い点で、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよいフェニル基であることが好ましく、フェニル基であることがさらに好ましい。 Ar 5 is a phenyl group optionally substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom in terms of good performance as an organic electroluminescent element material. It is preferably a group, and more preferably a phenyl group.
 以上まとめて、Arは、有機電界発光素子材料として性能が良い点で、2-ピリジル基、3-ピリジル基、4-ピリジル基、6-メチルピリジン-2-イル基、5-メチルピリジン-2-イル基、6-フルオロピリジン-2-イル基、5-フルオロピリジン-2-イル基、5-フェニルピリジン-2-イル基、6-フェニルピリジン-3-イル基、2-ピリミジル基、5-フェニルピリミジン-2-イル基、3-(2-ピリジル)-9H-カルバゾール-9-イル基、2-フェニル-1H-ベンゾイミダゾール-1-イル基、1-フェニル-1H-ベンゾイミダゾール-2-イル基、2-ベンゾチアゾリル基、1-イソキノリル基、2-キノリル基、またはβ-カルボリン-9-イル基であることが好ましい。 In summary, Ar 3 is 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 6-methylpyridin-2-yl group, 5-methylpyridine- 2-yl group, 6-fluoropyridin-2-yl group, 5-fluoropyridin-2-yl group, 5-phenylpyridin-2-yl group, 6-phenylpyridin-3-yl group, 2-pyrimidyl group, 5-phenylpyrimidin-2-yl group, 3- (2-pyridyl) -9H-carbazol-9-yl group, 2-phenyl-1H-benzimidazol-1-yl group, 1-phenyl-1H-benzimidazole- A 2-yl group, a 2-benzothiazolyl group, a 1-isoquinolyl group, a 2-quinolyl group, or a β-carbolin-9-yl group is preferable.
 なお、一般式(1)または(1)’において、Ar、Ar、Arのうち、少なくとも1つは、ピリジル基、ピリミジル基、またはピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の縮合環基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)である。 In General Formula (1) or (1) ′, at least one of Ar 1 , Ar 2 , and Ar 3 has a pyridyl group, a pyrimidyl group, a pyridine skeleton or a pyrimidine skeleton, and has 6 to 17 carbon atoms. A condensed ring group (these groups may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom);
 前記のピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の縮合環基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)としては、特に限定するものではないが、例えば、キノリル基、イソキノリル基、キノリジル基、ナフチリジル基、キナゾリニル基、カルボリニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)等が挙げられる。 A condensed ring group having 6 to 17 carbon atoms containing the pyridine skeleton or pyrimidine skeleton (these groups are an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom. Is not particularly limited, for example, quinolyl group, isoquinolyl group, quinolidyl group, naphthyridyl group, quinazolinyl group, carbolinyl group, phenanthridinyl group, acridinyl group, phenant And a rolinyl group (these groups may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom).
 なお、Ar、Ar、Arのうち、少なくとも1つは、有機電界発光素子材料として性能が良い点で、ピリジル基、ピリミジル基、キノリル基、イソキノリル基、ナフチリジル基、キナゾリニル基、カルボリニル基、フェナントリジニル基、アクリジニル基、またはフェナントロリニル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)であることが好ましく、ピリジル基、ピリミジル基、キノリル基、イソキノリル基、ナフチリジル基、キナゾリニル基、またはカルボリニル基(これらの基は、メチル基、メトキシ基、又はフッ素原子で置換されていてもよい)であることがより好ましい。 In addition, at least one of Ar 1 , Ar 2 , and Ar 3 is a pyridyl group, a pyrimidyl group, a quinolyl group, an isoquinolyl group, a naphthyridyl group, a quinazolinyl group, and a carbolinyl group in terms of good performance as an organic electroluminescent element material. , A phenanthridinyl group, an acridinyl group, or a phenanthrolinyl group (these groups are substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom) The pyridyl group, pyrimidyl group, quinolyl group, isoquinolyl group, naphthyridyl group, quinazolinyl group, or carbolinyl group (these groups are substituted with a methyl group, a methoxy group, or a fluorine atom). More preferably).
 一般式(1)または(1)’においてR、R、RおよびRは、各々独立に、水素原子もしくは炭素数1から4の置換基を表し、RとR、RとR、またはRとRおよびRとRの両方が互いに連結して脂環または芳香環を形成していてもよい。ここで、前記脂環としては、例えば、シクロペンタン環、シクロヘキサン環等が挙げられ、前記芳香環としては、例えば、ベンゼン環が挙げられるが、これらに限定されるものではない。 In the general formula (1) or (1) ′, R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent having 1 to 4 carbon atoms, and R 1 , R 2 and R 3 And R 4 , or R 1 and R 2 and R 3 and R 4 may be linked to each other to form an alicyclic ring or an aromatic ring. Here, examples of the alicyclic ring include a cyclopentane ring and a cyclohexane ring, and examples of the aromatic ring include, but are not limited to, a benzene ring.
 前記の炭素数1から4の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、炭素数2から4のアルケニル基(例えば、ビニル基)等が挙げられる。このうち、有機電界発光素子材料として性能が良い点で、互いに連結して芳香環を形成したビニル基、または水素原子が好ましい。 Examples of the substituent having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, and an alkenyl group having 2 to 4 carbon atoms (for example, a vinyl group). ) And the like. Among these, a vinyl group or a hydrogen atom, which are connected to each other to form an aromatic ring, is preferable in terms of good performance as an organic electroluminescent element material.
 R、R、RおよびRは、1)すべて水素原子である、2)RとRの両方が炭素数2から4のアルケニル基であって互いに結合して芳香環を形成している、または3)R、R、R、Rのすべてが炭素数2から4のアルケニル基であって、RとR、およびRとRが互いに連結して芳香環を形成していることが好ましく、1)すべて水素原子である、2)RとRの両方がビニル基であって互いに結合してベンゼン環を形成している、または3)R、R、R、Rのすべてがビニル基であって、RとR、およびRとRが互いに連結してそれぞれベンゼン環を形成していることがより好ましい。 R 1 , R 2 , R 3 and R 4 are 1) all hydrogen atoms, 2) both R 1 and R 2 are alkenyl groups having 2 to 4 carbon atoms and are bonded to each other to form an aromatic ring Or 3) all of R 1 , R 2 , R 3 and R 4 are alkenyl groups having 2 to 4 carbon atoms, and R 1 and R 2 , and R 3 and R 4 are linked to each other It preferably forms an aromatic ring, 1) all are hydrogen atoms, 2) both R 1 and R 2 are vinyl groups and are bonded to each other to form a benzene ring, or 3) R More preferably, 1 , R 2 , R 3 and R 4 are all vinyl groups, and R 1 and R 2 , and R 3 and R 4 are connected to each other to form a benzene ring.
 一般式(1)または(1)’において、Yは、下記一般式(A)で示される2価の置換基を表し、Yは、Yとは独立に、式(1)では下記一般式(A)で示される2価の置換基を表し、式(1)’では下記一般式(A)’で示されるI価の置換基を表す。 In General Formula (1) or (1) ′, Y 1 represents a divalent substituent represented by the following General Formula (A), and Y 2 is the following in Formula (1) independently of Y 1. The divalent substituent represented by the general formula (A) is represented. In the formula (1) ′, the monovalent substituent represented by the following general formula (A) ′ is represented.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(A)または(A)’中、X、XおよびXは、各々独立に、CHまたは窒素原子を表し、少なくとも一つはCHである。
 Rは、各々独立して炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、もしくはエステルアルキル基、水素原子、フッ素原子、または対電子を表す。)
 一般式(A)および(A)’については、有機電界発光素子材料として性能が良い点で、X~XがすべてCHである、またはXが窒素原子であり、XおよびXがCHであることが好ましい。
 一般式(1)に記載の2価のYについては、有機電界発光素子材料として性能が良い点で、1,4-フェニレン基、2,5-ピリジレン基、または2,5-ピリミジレン基(これらの基は、各々独立して炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、もしくはエステルアルキル基、またはフッ素原子を有していてもよい)であることが好ましく、1,4-フェニレン基、2,5-ピリジレン基、または2,5-ピリミジレン基(これらの基は、メチル基またはフッ素原子を有していてもよい)がより好ましい。
 一般式(1)’に記載の1価のYについては、有機電界発光素子材料として性能が良い点で、フェニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、または2-ピリミジル基(これらの基は、各々独立して炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、もしくはエステルアルキル基、またはフッ素原子を有していてもよい)であることが好ましく、フェニル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、または2-ピリミジル基(これらの基は、メチル基またはフッ素原子を有していてもよい)がより好ましい。
(In formula (A) or (A) ′, X 1 , X 2 and X 3 each independently represent CH or a nitrogen atom, and at least one is CH.
R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group, a hydrogen atom, a fluorine atom, or a counter electron. )
With regard to the general formulas (A) and (A) ′, X 1 to X 3 are all CH, or X 1 is a nitrogen atom in terms of good performance as an organic electroluminescent device material, and X 2 and X 3 Is preferably CH.
Regarding the divalent Y 2 described in the general formula (1), a 1,4-phenylene group, a 2,5-pyridylene group, or a 2,5-pyrimidylene group ( These groups are preferably each independently an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, an ester alkyl group, or a fluorine atom. A 1,4-phenylene group, a 2,5-pyridylene group, or a 2,5-pyrimidylene group (these groups may have a methyl group or a fluorine atom) are more preferable.
The monovalent Y 2 described in the general formula (1) ′ is a phenyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, or 2- A pyrimidyl group (these groups may each independently have an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, an ester alkyl group, or a fluorine atom); A phenyl group, a 2-pyridyl group, a 3-pyridyl group, a 4-pyridyl group, or a 2-pyrimidyl group (these groups may have a methyl group or a fluorine atom) are more preferable.
 一般式(1)または(1)’に記載のmは、0または1を表す。なお、mは、有機電界発光素子材料として性能が良い点で、1であることが好ましい。 In the general formula (1) or (1) ′, m represents 0 or 1. Note that m is preferably 1 in terms of good performance as an organic electroluminescent element material.
 一般式(1)または(1)’に記載のnは、0、1、または2を表す。なお、nは、有機電界発光素子材料として性能が良い点で、0または1であることが好ましい。 N in the general formula (1) or (1) 'represents 0, 1, or 2. Note that n is preferably 0 or 1 in terms of good performance as an organic electroluminescent element material.
 なお、分子内にピリジル基もしくはピリジレン基、ピリミジル基もしくはピリミジレン基、ピラジル基もしくはピラジレン基がそれぞれ多すぎる場合、有機電界発光素子の駆動電圧の上昇、短寿命化が起こる。そのため、一般式(1)または(1)’の構造中、ピリジル基とピリジレン基の総数、ピリミジル基とピリミジレン基の総数、ピラジル基とピラジレン基の総数は、それぞれの基の置換基の有無に拘わらず、各々独立に、0、1、2、または3に制限される(試験例-17および参考例-3を参考)。 In addition, when there are too many pyridyl groups or pyridylene groups, pyrimidyl groups or pyrimidylene groups, pyrazyl groups or pyrazylene groups in the molecule, the driving voltage of the organic electroluminescence device is increased and the lifetime is shortened. Therefore, in the structure of the general formula (1) or (1) ′, the total number of pyridyl groups and pyridylene groups, the total number of pyrimidyl groups and pyrimidylene groups, and the total number of pyrazyl groups and pyrazilene groups are based on the presence or absence of the substituent of each group Regardless, each is independently limited to 0, 1, 2, or 3 (see Test Example-17 and Reference Example-3).
 また、一般式(1)または(1)’中の各水素原子は各々独立に重水素原子であってもよい。 In addition, each hydrogen atom in the general formula (1) or (1) ′ may be independently a deuterium atom.
 次に、本発明の製造方法について説明する。 Next, the manufacturing method of the present invention will be described.
 本発明の化合物(1)または(1)’は、次の反応式 The compound (1) or (1) ′ of the present invention has the following reaction formula
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (一般式(1)、(1)’、(2)、(3)、(4)、(4)’および(5)中、
 Arは、炭素数6から18の芳香族炭化水素基または炭素数3から17の含窒素ヘテロ芳香族基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 Arは、炭素数3から17の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 Arは、炭素数3から17の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)または-Ar-Arで表される置換基を表す。
 Arは炭素数3から17の含窒素ヘテロアリーレン基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 Arは炭素数6から18の芳香族炭化水素基、ピリジル基、ピリミジル基、またはピラジル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 なお、Ar、Ar、Arのうち、少なくとも1つは、ピリジル基、ピリミジル基、またはピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の縮合環基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)である。R、R、RおよびRは、各々独立に水素原子もしくは炭素数1から4の置換基を表し、RとR、RとR、またはRとRおよびRとRの両方が互いに連結して脂環または芳香環を形成してもよい。
 mは、0または1を表す。
 nは、0、1、または2を表す。
 Yは、下記一般式(A)で示される2価の置換基を表し、Yは、Yとは独立に、式(1)では下記一般式(A)で示される2価の置換基を表し、式(1)’では下記一般式(A)’で示される1価の置換基を表す。
(In the general formulas (1), (1) ′, (2), (3), (4), (4) ′ and (5),
Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, An ester group or an ester alkyl group, or an optionally substituted fluorine atom).
Ar 2 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). ).
Ar 3 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). ) Or a substituent represented by —Ar 4 —Ar 5 .
Ar 4 is a nitrogen-containing heteroarylene group having 3 to 17 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). To express.
Ar 5 is an aromatic hydrocarbon group having 6 to 18 carbon atoms, pyridyl group, pyrimidyl group, or pyrazyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or esters). An alkyl group or a fluorine atom which may be substituted).
Note that at least one of Ar 1 , Ar 2 , and Ar 3 is a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups have a carbon number of 1 To 8 alkyl groups, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups, or a fluorine atom, which may be substituted. R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent having 1 to 4 carbon atoms, and R 1 and R 2 , R 3 and R 4 , or R 1 and R 2 and R Both 3 and R 4 may be linked together to form an alicyclic or aromatic ring.
m represents 0 or 1.
n represents 0, 1, or 2.
Y 1 represents a divalent substituent represented by the following general formula (A), and Y 2 is a divalent substituent represented by the following general formula (A) in Formula (1), independently of Y 1. In the formula (1) ′, a monovalent substituent represented by the following general formula (A) ′ is represented.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 (式(A)および(A)’中、X、XおよびXは、各々独立にCHまたは窒素原子を表し、少なくとも一つはCHである。
 Rは、各々独立して、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、もしくはエステルアルキル基、水素原子、フッ素原子、または対電子を表す。)
 なお、構造中のピリジル基とピリジレン基の総数、ピリミジル基とピリミジレン基の総数、およびピラジル基とピラジレン基の総数は、それぞれの基の置換基の有無に拘わらず、各々独立に、0、1、2、または3である。
 また、式中の各水素原子は各々独立に重水素原子であってもよい。
 Z、ZおよびZは、各々独立に脱離基を表す。
 M、MおよびMは、各々独立に金属基、ボロン酸基、またはボロン酸エステル基を表す。)
で示される方法で製造することができる。
(In the formulas (A) and (A) ′, X 1 , X 2 and X 3 each independently represent CH or a nitrogen atom, and at least one is CH.
R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group, a hydrogen atom, a fluorine atom, or a counter electron. )
Note that the total number of pyridyl groups and pyridylene groups, the total number of pyrimidyl groups and pyrimidylene groups, and the total number of pyrazyl groups and pyrazylene groups in the structure are each independently 0, 1 2, or 3.
In addition, each hydrogen atom in the formula may independently be a deuterium atom.
Z 1 , Z 2 and Z 3 each independently represent a leaving group.
M 1 , M 2 and M 3 each independently represent a metal group, a boronic acid group, or a boronic ester group. )
It can be manufactured by the method shown in
 一般式(2)で表される化合物を化合物(2)と称する。化合物(3)、(4)、(4)’、(5)も同様である。なお、化合物(3)、化合物(4)、化合物(4)’および化合物(5)は、例えば特開2008-280330号公報(0061)~(0076)に開示されている方法を用いて製造することができる。 The compound represented by the general formula (2) is referred to as compound (2). The same applies to the compounds (3), (4), (4) 'and (5). The compound (3), the compound (4), the compound (4) ′ and the compound (5) are produced using, for example, the methods disclosed in JP-A-2008-280330 (0061) to (0076). be able to.
 化合物(3)としては次の(A1)~(A178)を例示できるが、本発明はこれらに限定されるものではない。尚、ここでのMは金属基、ボロン酸基、またはボロン酸エステル基を表す。 Examples of the compound (3) include the following (A1) to (A178), but the present invention is not limited to these. Here, M 1 represents a metal group, a boronic acid group, or a boronic acid ester group.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 化合物(4)としては次の(B1)~(B84)を例示できるが、本発明はこれらに限定されるものではない。尚、ここでのMは金属基、ボロン酸基、またはボロン酸エステル基を表す。 Examples of the compound (4) include the following (B1) to (B84), but the present invention is not limited to these. Here, M 2 represents a metal group, a boronic acid group, or a boronic acid ester group.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 化合物(4)’としては次の(B85)~(B118)を例示できるが、本発明はこれらに限定されるものではない。尚、ここでのMは金属基、ボロン酸基、またはボロン酸エステル基を表す。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000021
Examples of the compound (4) ′ include the following (B85) to (B118), but the present invention is not limited to these. Here, M 2 represents a metal group, a boronic acid group, or a boronic acid ester group.
Figure JPOXMLDOC01-appb-C000022
 化合物(5)としては前記の(B1)~(B84)に記載のMをMとする化合物、および次の(C1)~(C105)を例示できるが、本発明はこれらに限定されるものではない。なお、ここでのMは金属基、ボロン酸基、またはボロン酸エステル基を表す。 Examples of the compound (5) include compounds in which M 2 described in (B1) to (B84) is M 3 and the following (C1) to (C105), but the present invention is limited to these. It is not a thing. Here, M 3 represents a metal group, a boronic acid group, or a boronic acid ester group.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 以下、「工程1」について具体例を出して説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although a specific example is given and demonstrated about "process 1", this invention is not limited to these.
 「工程1」は化合物(2)を、金属触媒の存在下または金属触媒および塩基の存在下、化合物(3)、化合物(4)または化合物(4)’、および化合物(5)と順次反応させ、本発明の化合物(1)または(1)’をを得る方法であり、鈴木-宮浦反応、根岸反応、玉尾-熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。化合物(3)、化合物(4)または化合物(4)’、および化合物(5)を反応させるときの反応順序は順不同であり、順次反応させて中間体を取り出してもよいし、同時に反応させてもよい。 “Step 1” is the step of reacting compound (2) with compound (3), compound (4) or compound (4) ′, and compound (5) in the presence of a metal catalyst or in the presence of a metal catalyst and a base. This is a method for obtaining the compound (1) or (1) ′ of the present invention, and applies general reaction conditions for coupling reactions such as Suzuki-Miyaura reaction, Negishi reaction, Tamao-Kumada reaction, Stille reaction, etc. By doing so, the target product can be obtained in good yield. The reaction sequence when reacting the compound (3), the compound (4) or the compound (4) ′, and the compound (5) is random, and the intermediates may be taken out by sequentially reacting or reacting simultaneously. Also good.
 化合物(3)、化合物(4)、化合物(4)’および化合物(5)におけるM、MおよびMの例としては、ZnA、MgA、Sn(A、B(OA等が挙げられる。但し、AおよびAは、各々独立に塩素原子、臭素原子またはヨウ素原子を表し、Aは、炭素数1から4のアルキル基またはフェニル基を表し、Aは水素原子、炭素数1から4のアルキル基またはフェニル基を表し、B(OAの2つのAは同一または異なっていてもよい。又、2つのAは一体となって酸素原子およびホウ素原子を含んで環を形成することもできる。 Examples of M 1 , M 2 and M 3 in compound (3), compound (4), compound (4) ′ and compound (5) are ZnA 1 , MgA 2 , Sn (A 3 ) 3 , B (OA 4 ) 2 etc. are mentioned. However, A 1 and A 2 each independently represent a chlorine atom, a bromine atom or an iodine atom, A 3 represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and A 4 represents a hydrogen atom or carbon number 1 4 represents an alkyl group or a phenyl group, and two A 4 of B (OA 4 ) 2 may be the same or different. Further, the two A 4 can also form a ring containing an oxygen atom and a boron atom together.
 化合物(3)、化合物(4)、化合物(4)’および化合物(5)におけるB(OAとしては、B(OH)、B(OMe)、B(OPr)、B(OBu)、B(OPh)等が例示できる。又、2つのAが一体となって酸素原子およびホウ素原子を含んで環を形成した場合のB(OAの例としては、次の(D1)から(D6)で示される基が例示でき、収率がよい点で(D2)で示される基が好ましい。 As B (OA 4 ) 2 in the compound (3), the compound (4), the compound (4) ′ and the compound (5), B (OH) 2 , B (OMe) 2 , B (O i Pr) 2 , Examples thereof include B (OBu) 2 and B (OPh) 2 . Examples of B (OA 4 ) 2 in the case where two A 4 are united to form a ring containing an oxygen atom and a boron atom include groups represented by the following (D1) to (D6): The group represented by (D2) is preferable because it can be exemplified and the yield is good.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 化合物(2)におけるZ、ZおよびZで表される脱離基としては、塩素基、臭素基、ヨウ素基、トリフルオロメチルスルホニルオキシ(OTf)基、メタンスルホニルオキシ基、クロロメタンスルホニルオキシ基およびp-トルエンスルホニルオキシ基等を挙げることができる。化合物(2)としては次の(E1)~(E5)を例示できるが、本発明はこれらに限定されるものではない。 Examples of the leaving group represented by Z 1 , Z 2 and Z 3 in the compound (2) include a chlorine group, a bromine group, an iodine group, a trifluoromethylsulfonyloxy (OTf) group, a methanesulfonyloxy group, and a chloromethanesulfonyl. Examples thereof include an oxy group and a p-toluenesulfonyloxy group. Examples of the compound (2) include the following (E1) to (E5), but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 「工程1」で用いることのできる金属触媒としては、パラジウム触媒およびニッケル触媒等が挙げられる。 Examples of the metal catalyst that can be used in “Step 1” include a palladium catalyst and a nickel catalyst.
 「工程1」で用いることのできるパラジウム触媒としては、塩化パラジウム、酢酸パラジウム、トリフルオロ酢酸パラジウム、硝酸パラジウム等の塩を例示することができる。さらに、π-アリルパラジウムクロリドダイマー、パラジウムアセチルアセトナト、トリス(ジベンジリデンアセトン)ジパラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウムおよびジクロロ[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム等の錯化合物を例示することができる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は反応収率がよい点で好ましい。 Examples of the palladium catalyst that can be used in “Step 1” include salts of palladium chloride, palladium acetate, palladium trifluoroacetate, palladium nitrate, and the like. In addition, π-allyl palladium chloride dimer, palladium acetylacetonate, tris (dibenzylideneacetone) dipalladium, dichlorobis (triphenylphosphine) palladium, tetrakis (triphenylphosphine) palladium and dichloro [1,1′-bis (diphenylphosphine). Fino) ferrocene] complex compounds such as palladium. Among these, a palladium complex having a tertiary phosphine as a ligand is preferable in terms of a good reaction yield.
 なお、第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩または錯化合物に第三級ホスフィンを添加し、反応系中で調製することもできる。この際用いることのできる第三級ホスフィンとしては、トリフェニルホスフィン、トリメチルホスフィン、トリブチルホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、tert-ブチルジフェニルホスフィン、9,9-ジメチル-4,5-ビス(ジフェニルホスフィノ)キサンテン、2-(ジフェニルホスフィノ)-2’-(N,N-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニル、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリ(2-フリル)ホスフィン、トリ(o-トリル)ホスフィン、トリス(2,5-キシリル)ホスフィン、(±)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル等が例示できる。入手容易であり、反応収率がよい点で、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニルが好ましい。 A palladium complex having tertiary phosphine as a ligand can also be prepared in a reaction system by adding tertiary phosphine to a palladium salt or complex compound. The tertiary phosphine that can be used at this time is triphenylphosphine, trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine, 9,9-dimethyl-4,5. -Bis (diphenylphosphino) xanthene, 2- (diphenylphosphino) -2 '-(N, N-dimethylamino) biphenyl, 2- (di-tert-butylphosphino) biphenyl, 2- (dicyclohexylphosphino) Biphenyl, bis (diphenylphosphino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,1 ′ -Bis (diphenylphosphino) Erocene, tri (2-furyl) phosphine, tri (o-tolyl) phosphine, tris (2,5-xylyl) phosphine, (±) -2,2′-bis (diphenylphosphino) -1,1′-binaphthyl 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl, 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl and the like. 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl is preferred because it is readily available and the reaction yield is good.
 第三級ホスフィンとパラジウム塩または錯化合物とのモル比は、1:10から10:1が好ましく、反応収率がよい点で1:2から5:1がさらに好ましい。 The molar ratio of the tertiary phosphine to the palladium salt or complex compound is preferably 1:10 to 10: 1, and more preferably 1: 2 to 5: 1 in terms of good reaction yield.
 また、「工程1」で用いることができるニッケル触媒としては[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ニッケル(II)ジクロリド、[1,2-ビス(ジフェニルホスフィノ)エタン]ニッケル(II)ジクロリド、[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド、[1,1’-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド、1,2-ビス(ジフェニルホスフィノ)エタン]ニッケル(II)ジクロリド、[1,3-ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド等が挙げられる。 The nickel catalyst that can be used in “Step 1” includes [1,1′-bis (diphenylphosphino) ferrocene] nickel (II) dichloride, [1,2-bis (diphenylphosphino) ethane] nickel ( II) Dichloride, [1,3-bis (diphenylphosphino) propane] nickel (II) dichloride, [1,1′-bis (diphenylphosphino) propane] nickel (II) dichloride, 1,2-bis (diphenyl) Phosphino) ethane] nickel (II) dichloride, [1,3-bis (diphenylphosphino) propane] nickel (II) dichloride, and the like.
 「工程1」で用いることのできる塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、リン酸三カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができ、収率がよい点でリン酸三カリウムが望ましい。塩基と化合物(3)、化合物(4)および化合物(5)とのモル比は、各々1:2から10:1が望ましく、収率がよい点で1:1から3:1がさらに望ましい。 Examples of the base that can be used in “Step 1” include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, tripotassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, Cesium fluoride and the like can be exemplified, and tripotassium phosphate is desirable in terms of a good yield. The molar ratio of the base to the compound (3), the compound (4) and the compound (5) is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of a good yield.
 「工程1」で用いることのできる溶媒として、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノールまたはキシレン等が例示でき、これらを適宜組み合わせて用いてもよい。収率がよい点でジオキサンおよび水の混合溶媒を用いることが望ましい。 Examples of the solvent that can be used in “Step 1” include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, dioxane, toluene, benzene, diethyl ether, ethanol, methanol, and xylene, and these may be used in appropriate combination. . It is desirable to use a mixed solvent of dioxane and water in terms of a good yield.
 「工程1」は、0℃から150℃から適宜選ばれた温度で実施することができ、収率がよい点で80℃から100℃で行うことがさらに望ましい。 “Step 1” can be performed at a temperature appropriately selected from 0 ° C. to 150 ° C., and is more preferably performed at 80 ° C. to 100 ° C. in terms of a good yield.
 化合物(1)は、「工程1」の終了後に通常の処理をすることで得られる。必要に応じて、再結晶、カラムクロマトグラフィーまたは昇華等で精製してもよい。 Compound (1) can be obtained by performing a normal treatment after completion of “Step 1”. If necessary, it may be purified by recrystallization, column chromatography or sublimation.
 また、本発明の化合物(1)または(1)’は、次の反応式 Further, the compound (1) or (1) ′ of the present invention has the following reaction formula:
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(一般式(1)、(1)’、(3)、(4)、(4)’、(6)、(7)および(7)’中、
 Arは、炭素数6から18の芳香族炭化水素基または炭素数3から17の含窒素ヘテロ芳香族基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 Arは、炭素数3から17の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 Arは、炭素数3から17の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)または-Ar-Arで表される置換基を表す。
 Arは炭素数3から17の含窒素ヘテロアリーレン基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 Arは炭素数6から18の芳香族炭化水素基、ピリジル基、ピリミジル基、またはピラジル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
 なお、Ar、Ar、Arのうち、少なくとも1つは、ピリジル基、ピリミジル基、またはピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の縮合環基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)である。
 R、R、RおよびRは、各々独立に水素原子もしくは炭素数1から4の置換基を表し、RとR、RとR、またはRとRおよびRとRの両方が互いに連結して脂環または芳香環を形成してもよい。
 mは、0または1を表す。
 nは、0、1、または2を表す。
 Yは、下記一般式(A)で示される2価の置換基を表し、Yは、Yとは独立に、式(1)では下記一般式(A)で示される2価の置換基を表し、式(1)’では下記一般式(A)’で示される1価の置換基を表す。
(In general formulas (1), (1) ′, (3), (4), (4) ′, (6), (7) and (7) ′,
Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, An ester group or an ester alkyl group, or an optionally substituted fluorine atom).
Ar 2 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). ).
Ar 3 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). ) Or a substituent represented by —Ar 4 —Ar 5 .
Ar 4 is a nitrogen-containing heteroarylene group having 3 to 17 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). To express.
Ar 5 is an aromatic hydrocarbon group having 6 to 18 carbon atoms, pyridyl group, pyrimidyl group, or pyrazyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or esters). An alkyl group or a fluorine atom which may be substituted).
Note that at least one of Ar 1 , Ar 2 , and Ar 3 is a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups have a carbon number of 1 To 8 alkyl groups, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups, or a fluorine atom, which may be substituted.
R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent having 1 to 4 carbon atoms, and R 1 and R 2 , R 3 and R 4 , or R 1 and R 2 and R Both 3 and R 4 may be linked together to form an alicyclic or aromatic ring.
m represents 0 or 1.
n represents 0, 1, or 2.
Y 1 represents a divalent substituent represented by the following general formula (A), and Y 2 is a divalent substituent represented by the following general formula (A) in Formula (1), independently of Y 1. In the formula (1) ′, a monovalent substituent represented by the following general formula (A) ′ is represented.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 (式(A)および(A)’中、X、XおよびXは、各々独立にCHまたは窒素原子を表し、少なくとも一つはCHである。
 Rは、各々独立して、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、もしくはエステルアルキル基、水素原子、フッ素原子、または対電子を表す。)
 なお、構造中のピリジル基とピリジレン基の総数、ピリミジル基とピリミジレン基の総数、およびピラジル基とピラジレン基の総数は、それぞれの基の置換基の有無に拘わらず、各々独立に、0、1、2、または3である。
 また、式中の各水素原子は各々独立に重水素原子であってもよい。
 ZおよびZは、各々独立に脱離基を表す。
 MおよびMは、各々独立に金属基、ボロン酸基、またはボロン酸エステル基を表す。
 Wはヘテロ環形成反応を実施する際に必要な置換基を表す。)
で示される方法で製造することができる。
(In the formulas (A) and (A) ′, X 1 , X 2 and X 3 each independently represent CH or a nitrogen atom, and at least one is CH.
R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group, a hydrogen atom, a fluorine atom, or a counter electron. )
Note that the total number of pyridyl groups and pyridylene groups, the total number of pyrimidyl groups and pyrimidylene groups, and the total number of pyrazyl groups and pyrazylene groups in the structure are each independently 0, 1 2, or 3.
In addition, each hydrogen atom in the formula may independently be a deuterium atom.
Z 1 and Z 2 each independently represent a leaving group.
M 1 and M 2 each independently represent a metal group, a boronic acid group, or a boronic ester group.
W represents a substituent necessary for carrying out the heterocycle formation reaction. )
It can be manufactured by the method shown in
 一般式(6)、一般式(7)、一般式(7)’で表される化合物を、それぞれ、化合物(6)、化合物(7)、化合物(7)’と称する。 The compounds represented by general formula (6), general formula (7), and general formula (7) 'are referred to as compound (6), compound (7), and compound (7)', respectively.
 「工程2」は「工程1」と同様の方法で行うことができ、その諸条件等は「工程1」と同様である。「工程3」は化合物(7)および化合物(7)’のWで表される部位を、ヘテロ環形成反応によってArに変換させる方法であり、イミダゾール合成、インドール合成、オキサゾール合成、エルドマン環化反応等などの公知の方法が適用できる。 Step 2” can be performed in the same manner as “Step 1”, and the conditions thereof are the same as those of “Step 1”. “Step 3” is a method of converting the site represented by W of compound (7) and compound (7) ′ to Ar 3 by a heterocycle formation reaction, and includes imidazole synthesis, indole synthesis, oxazole synthesis, and Erdman cyclization. Known methods such as reaction can be applied.
 化合物(7)および化合物(7)’におけるWで表されるヘテロ環形成反応を実施する際に必要な置換基の例としては、ホルミル基、アミノ基、エステル基、カルボニル基、ニトリル基等が挙げられる。 Examples of the substituent necessary for carrying out the heterocycle-forming reaction represented by W in compound (7) and compound (7) ′ include formyl group, amino group, ester group, carbonyl group, nitrile group and the like. Can be mentioned.
 なお、上記反応式において、化合物(7)および化合物(7)’について、Wで表される部位をヘテロ環形成反応によってArに変換させてから、化合物(3)および、化合物(4)または化合物(4)’とカップリング反応を行ってもよい。 In the above reaction formula, for compound (7) and compound (7) ′, the site represented by W is converted to Ar 3 by a heterocyclic reaction, and then compound (3) and compound (4) or A coupling reaction may be performed with compound (4) ′.
 本発明の化合物(1)または(1)’を構成成分とする有機電界発光素子の製造方法に特に限定はないが、真空蒸着法による成膜が可能である。真空蒸着法による成膜は、汎用の真空蒸着装置を用いることにより行うことができる。真空蒸着法で膜を形成する際の真空槽の真空度は、有機電界発光素子作製の製造タクトタイムや製造コストを考慮すると、一般的に用いられる拡散ポンプ、ターボ分子ポンプ、クライオポンプ等により到達し得る1×10-2~1×10-5Pa程度が好ましい。蒸着速度は、形成する膜の厚さによるが0.005~1.0nm/秒が好ましい。 Although there is no particular limitation on the method for producing an organic electroluminescent element comprising the compound (1) or (1) ′ of the present invention as a constituent component, film formation by vacuum vapor deposition is possible. Film formation by the vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus. The vacuum degree of the vacuum chamber when forming a film by the vacuum evaporation method is reached by a commonly used diffusion pump, turbo molecular pump, cryopump, etc., considering the manufacturing tact time and manufacturing cost of organic electroluminescence device production. It is preferably about 1 × 10 −2 to 1 × 10 −5 Pa. The deposition rate is preferably 0.005 to 1.0 nm / sec depending on the thickness of the film to be formed.
 また、本発明の化合物(1)または(1)’は、汎用の装置を用いたスピンコート法、インクジェット法、キャスト法またはディップ法等による成膜も可能である。 In addition, the compound (1) or (1) ′ of the present invention can be formed into a film by a spin coat method, an ink jet method, a cast method, a dip method or the like using a general-purpose apparatus.
 以下、実験例および試験例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to experimental examples and test examples, but the present invention is not limited thereto.
 実験例-1(実施例) Experimental example-1 (Example)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 アルゴン気流下、3,4-ジクロロ-1-ブロモベンゼン1.5g(6.64mmol)、4-(2-ピリジル)フェニルボロン酸6.61g(33.2mmol)、酢酸パラジウム74.5mg(0.332mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル317mg(0.664mmol)、およびリン酸三カリウム14.1g(66.4mmol)を、ジオキサン75mLおよび水20mLの混合溶媒に溶解し、80℃で13時間加熱撹拌した。室温まで冷却後、析出した固体を濾取し、水、メタノール、およびヘキサンで洗浄した。得られた個体をトルエンによる再結晶で精製し、目的の4,4’’-ジ(2-ピリジル)-4’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルの白色固体(収量3.35g、収率93.8%)を得た。 Under an argon stream, 1.5 g (6.64 mmol) of 3,4-dichloro-1-bromobenzene, 6.61 g (33.2 mmol) of 4- (2-pyridyl) phenylboronic acid, 74.5 mg (0. 332 mmol), 317 mg (0.664 mmol) of 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl, and 14.1 g (66.4 mmol) of tripotassium phosphate are mixed with 75 mL of dioxane and 20 mL of water. It melt | dissolved in the solvent and heat-stirred at 80 degreeC for 13 hours. After cooling to room temperature, the precipitated solid was collected by filtration and washed with water, methanol, and hexane. The obtained solid was purified by recrystallization with toluene, and the desired 4,4 ″ -di (2-pyridyl) -4 ′-[4- (2-pyridyl) phenyl] -1,1 ′: 2 ′, A white solid of 1 ″ -terphenyl (yield 3.35 g, yield 93.8%) was obtained.
 H-NMR(CDCl):7.17-7.20(m,2H),7.22-7.25(m,1H),7.33(d,J=8.3Hz,2H),7.36(d,J=8.4Hz,2H),7.59(d,J=8.0Hz,1H),7.68-7.78(m,8H),7.81(d,J=8.5Hz,2H),7.87(d,J=8.3Hz,2H),7.89(d,J=8.5Hz,2H),8.10(d,J=8.3Hz,2H),8.65(d,J=4.7Hz,2H),8.71(d,J=4.6Hz,1H).
 実験例-2(実施例)
1 H-NMR (CDCl 3 ): 7.17-7.20 (m, 2H), 7.22-7.25 (m, 1H), 7.33 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.0 Hz, 1H), 7.68-7.78 (m, 8H), 7.81 (d, J = 8.5 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.89 (d, J = 8.5 Hz, 2H), 8.10 (d, J = 8.3 Hz, 2H), 8.65 (d, J = 4.7 Hz, 2H), 8.71 (d, J = 4.6 Hz, 1H).
Experimental example-2 (Example)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 アルゴン気流下、3,4-ジクロロ-1,1’:4’,1’’-テルフェニル2.21g(7.39mmol)、4-(2-ピリジル)フェニルボロン酸4.41g(22.2mmol)、酢酸パラジウム83.0mg(0.370mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル352mg(0.738mmol)、およびリン酸三カリウム9.41g(44.3mmol)を、ジオキサン108mLおよび水69mLの混合溶媒に溶解し、90℃で22時間加熱撹拌した。室温まで冷却後、析出した固体を濾取し、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエンによる再結晶で精製し、目的の4-(2-ピリジル)-2’-[4-(2-ピリジル)フェニル]-1,1’:4’,1’’:4’’,1’’’-クアテルフェニルの白色固体(収量1.40g、収率35.3%)を得た。 Under an argon stream, 3,4-dichloro-1,1 ′: 4 ′, 1 ″ -terphenyl 2.21 g (7.39 mmol), 4- (2-pyridyl) phenylboronic acid 4.41 g (22.2 mmol) ), Palladium acetate 83.0 mg (0.370 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl 352 mg (0.738 mmol), and tripotassium phosphate 9.41 g (44.3 mmol) ) Was dissolved in a mixed solvent of 108 mL of dioxane and 69 mL of water and heated and stirred at 90 ° C. for 22 hours. After cooling to room temperature, the precipitated solid was collected by filtration and washed with water, methanol, and hexane. The obtained solid was purified by recrystallization from toluene, and the desired 4- (2-pyridyl) -2 ′-[4- (2-pyridyl) phenyl] -1,1 ′: 4 ′, 1 ″: 4 A white solid (yield 1.40 g, yield 35.3%) of '', 1 '' '-quaterphenyl was obtained.
 1H-NMR(CDCl3):7.19(t,J=5.8Hz,2H),7.33(d,J=8.7Hz,2H),7.33-7.36(m,1H),7.36(d,J=8.5Hz,2H),7.46(t,J=7.8Hz,2H),7.59(d,J=8.0Hz,1H),7.65(d,J=7.1Hz,2H),7.69-7.74(m,7H),7.76(d,J=1.6Hz,1H),7.77(d,J=5.1Hz,2H),7.88(d,J=8.2Hz,2H),7.89(d,J=8.3Hz,2H),8.66(d,J=4.6Hz,2H).
 実験例-3
1H-NMR (CDCl3): 7.19 (t, J = 5.8 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 7.33-7.36 (m, 1H), 7.36 (d, J = 8.5 Hz, 2H), 7.46 (t, J = 7.8 Hz, 2H), 7.59 (d, J = 8.0 Hz, 1H), 7.65 (d , J = 7.1 Hz, 2H), 7.69-7.74 (m, 7H), 7.76 (d, J = 1.6 Hz, 1H), 7.77 (d, J = 5.1 Hz, 2H), 7.88 (d, J = 8.2 Hz, 2H), 7.89 (d, J = 8.3 Hz, 2H), 8.66 (d, J = 4.6 Hz, 2H).
Experimental Example-3
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 アルゴン気流下、1,4-ジブロモ-2-クロロベンゼン17.0g(62.9mmol)、4-(2-ピリジル)フェニルボロン酸25.0g(126mmol)、テトラキス(トリフェニルホスフィン)パラジウム1.45g(1.26mmol)、および1Mの炭酸カリウム水溶液62.8mL(188mmol)を153mLのジオキサンに溶解し、95℃で21時間加熱攪拌した。室温まで冷却後、純水200mLを加えてろ過し、得られた固体を水、メタノール、およびヘキサンで洗浄し、目的の2’-クロロ-4,4’’-ジ(2-ピリジル)-1,1’:4’,1’’-テルフェニルの白色固体(収量24.6g、収率93.3%)を得た。 Under an argon stream, 17.0 g (62.9 mmol) of 1,4-dibromo-2-chlorobenzene, 25.0 g (126 mmol) of 4- (2-pyridyl) phenylboronic acid, 1.45 g of tetrakis (triphenylphosphine) palladium ( 1.26 mmol), and 62.8 mL (188 mmol) of 1 M aqueous potassium carbonate solution were dissolved in 153 mL of dioxane, and the mixture was heated and stirred at 95 ° C. for 21 hours. After cooling to room temperature, 200 mL of pure water was added and filtered, and the resulting solid was washed with water, methanol, and hexane to obtain the target 2′-chloro-4,4 ″ -di (2-pyridyl) -1 , 1 ′: 4 ′, 1 ″ -terphenyl was obtained as a white solid (yield 24.6 g, yield 93.3%).
 H-NMR(CDCl):δ8.73(d,J=4.71Hz,2H),8.11(t,J=8.47Hz,4H),7.81-7.75(m,7H),7.63(d,J=8.53Hz,3H),7.49(d,J=8.03Hz,1H),7.30-7.27(m,2H).
 実験例-4
1 H-NMR (CDCl 3 ): δ 8.73 (d, J = 4.71 Hz, 2H), 8.11 (t, J = 8.47 Hz, 4H), 7.81-7.75 (m, 7H) ), 7.63 (d, J = 8.53 Hz, 3H), 7.49 (d, J = 8.03 Hz, 1H), 7.30-7.27 (m, 2H).
Experimental Example-4
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 アルゴン気流下、2’―クロロ-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニル24.6g(58.7mmol)、ビス(ビナコラト)ジボロン22.3g(87.8mmol)、ビス(ジベンジリデンアセトン)パラジウム537mg(0.586mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル559mg(1.17mmol)、および酢酸カリウム11.5g(117mmol)を231mLのジオキサンに溶解し、100℃で14時間加熱攪拌した。室温まで冷却後、純水400mLを加えてろ過した。得られた固体をヘキサン2Lに分散させ、1時間還流した後に室温でろ過し、目的の2’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニルの白色固体(収量24.5g、収率81.8%)を得た。 2′-chloro-4,4 ″ -di (2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl 24.6 g (58.7 mmol), bis (binacolato) diboron under argon flow 22.3 g (87.8 mmol), bis (dibenzylideneacetone) palladium 537 mg (0.586 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl 559 mg (1.17 mmol), and acetic acid 11.5 g (117 mmol) of potassium was dissolved in 231 mL of dioxane, and heated and stirred at 100 ° C. for 14 hours. After cooling to room temperature, 400 mL of pure water was added and filtered. The obtained solid was dispersed in 2 L of hexane, refluxed for 1 hour and filtered at room temperature to obtain the target 2 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl). A white solid (yield 24.5 g, yield 81.8%) of -4,4 ″ -di (2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl was obtained.
 H-NMR(CDCl):δ8.73(d,J=3.33Hz,2H),8.13-8.09(m,2H),8.06-8.02(m,3H),7.81-7.75(m,8H),7.58-7.50(m,3H),7.27-7.25(m,1H),1.25(s,12H).
 実験例-5(実施例)
1 H-NMR (CDCl 3 ): δ 8.73 (d, J = 3.33 Hz, 2H), 8.13-8.09 (m, 2H), 8.06-8.02 (m, 3H), 7.81-7.75 (m, 8H), 7.58-7.50 (m, 3H), 7.27-7.25 (m, 1H), 1.25 (s, 12H).
Experimental Example-5 (Example)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 アルゴン気流下、2’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニル1.00g(1.96mmol)、2-クロロベンゾチアゾール496mg(2.94mmol)、酢酸パラジウム22.0mg(0.0980mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル93.4mg(0.196mmol)、および1Mのリン酸三カリウム水溶液9.41mL(9.41mmol)を30mLのジオキサンに溶解し、80℃で19時間加熱攪拌した。室温まで冷却後、純水300mLを加えてクロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的の2’-(2-ベンゾチアゾリル)-4,4’’-ジ(2-ピリジル)-1,1’:4’,1’’-テルフェニルの薄黄色固体(収量321mg、収率31.7%)を得た。 Under a stream of argon, 2 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 1.00 g (1.96 mmol) of 4 ′, 1 ″ -terphenyl, 496 mg (2.94 mmol) of 2-chlorobenzothiazole, 22.0 mg (0.0980 mmol) of palladium acetate, 2-dicyclohexylphosphino-2 ′, 93.4 mg (0.196 mmol) of 4 ′, 6′-triisopropylbiphenyl and 9.41 mL (9.41 mmol) of 1M tripotassium phosphate aqueous solution were dissolved in 30 mL of dioxane, and the mixture was heated and stirred at 80 ° C. for 19 hours. . After cooling to room temperature, 300 mL of pure water was added, followed by separation / extraction with chloroform. After distilling off the solvent under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: chloroform) to obtain the target 2 ′-(2-benzothiazolyl) -4,4 ″ -di (2-pyridyl). A light yellow solid of -1,1 ′: 4 ′, 1 ″ -terphenyl (yield 321 mg, yield 31.7%) was obtained.
 H-NMR(CDCl):δ8.73(d,J=4.64Hz,1H),8.70(d,J=4.64Hz,1H),8.37(d,J=1.88Hz,1H),8.13(d,J=8.60Hz,2H),8.08(d,J=8.16Hz,1H),8.01(d,J=8.41Hz,2H),7.86(d,J=8.28Hz,3H),7.80-7.76(m,4H),7.72(d,J=8.16Hz,1H),7.58(d,J=7.97Hz,1H),7.49(d,J=8.41Hz,2H),7.46(t,J=7.03Hz,1H),7.32(t,J=7.15Hz,1H).
 実験例-6(実施例)
1 H-NMR (CDCl 3 ): δ 8.73 (d, J = 4.64 Hz, 1H), 8.70 (d, J = 4.64 Hz, 1H), 8.37 (d, J = 1.88 Hz) , 1H), 8.13 (d, J = 8.60 Hz, 2H), 8.08 (d, J = 8.16 Hz, 1H), 8.01 (d, J = 8.41 Hz, 2H), 7 .86 (d, J = 8.28 Hz, 3H), 7.80-7.76 (m, 4H), 7.72 (d, J = 8.16 Hz, 1H), 7.58 (d, J = 7.97 Hz, 1H), 7.49 (d, J = 8.41 Hz, 2H), 7.46 (t, J = 7.03 Hz, 1H), 7.32 (t, J = 7.15 Hz, 1H) ).
Experimental Example-6 (Example)
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 アルゴン気流下、2’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニル1.00g(1.96mmol)、2-(4-クロロフェニル)ベンゾチアゾール578mg(2.35mmol)、酢酸パラジウム22.0mg(0.0980mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル93.4mg(0.196mmol)、および1Mのリン酸三カリウム水溶液9.41mL(9.41mmol)を30mLのジオキサンに溶解し、80℃で19時間加熱攪拌した。室温まで冷却後、純水300mLで希釈し、固体をろ別した。得られた粗生成物を80mLのトルエンで再結晶し、ろ液を再度30mLのトルエンで再結晶することで目的の4-(2-ベンゾチアゾリル)-4’’-(2-ピリジル)-5’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルの白色固体(収量220mg、収率18.9%)を得た。また、1回目の再結晶でろ別した固体を再度100mLのトルエンで再結晶し、ろ液を減圧留去することで目的物(収量618mg、収率53.1%)を得た。 Under a stream of argon, 2 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl 1.00 g (1.96 mmol), 2- (4-chlorophenyl) benzothiazole 578 mg (2.35 mmol), palladium acetate 22.0 mg (0.0980 mmol), 2-dicyclohexylphosphino 2 ′, 4 ′, 6′-triisopropylbiphenyl 93.4 mg (0.196 mmol) and 1M tripotassium phosphate aqueous solution 9.41 mL (9.41 mmol) were dissolved in 30 mL dioxane, Stir with heating for hours. After cooling to room temperature, it was diluted with 300 mL of pure water and the solid was filtered off. The obtained crude product was recrystallized with 80 mL of toluene, and the filtrate was recrystallized again with 30 mL of toluene to obtain the desired 4- (2-benzothiazolyl) -4 ″-(2-pyridyl) -5 ′. A white solid (yield 220 mg, yield 18.9%) of-[4- (2-pyridyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was obtained. Further, the solid filtered off by the first recrystallization was recrystallized again with 100 mL of toluene, and the filtrate was distilled off under reduced pressure to obtain the desired product (yield 618 mg, yield 53.1%).
 H-NMR(CDCl):δ8.73(d,J=4.96Hz,1H),8.67(d,J=4.89Hz,1H),8.13(dt,J=8.22Hz,7.09Hz,2H),8.04(d,J=8.22Hz,1H),7.99(d,J=8.22Hz,2H),7.90(dd,J=7.97Hz,6.02Hz,3H),7.83-7.78(m,7H),7.72-7.70(m,2H),7.62(d,J=8.22Hz,1H),7.47(t,J=7.78Hz,1H),7.39(dt,J=8.22Hz,6.65Hz,3H),7.34(d,J=8.22Hz,2H),7.20(t,J=6.90Hz,1H).
 実験例-7(実施例)
1 H-NMR (CDCl 3 ): δ 8.73 (d, J = 4.96 Hz, 1H), 8.67 (d, J = 4.89 Hz, 1H), 8.13 (dt, J = 8.22 Hz) , 7.09 Hz, 2H), 8.04 (d, J = 8.22 Hz, 1H), 7.99 (d, J = 8.22 Hz, 2H), 7.90 (dd, J = 7.97 Hz, 6.02 Hz, 3H), 7.83-7.78 (m, 7H), 7.72-7.70 (m, 2H), 7.62 (d, J = 8.22 Hz, 1H), 7. 47 (t, J = 7.78 Hz, 1H), 7.39 (dt, J = 8.22 Hz, 6.65 Hz, 3H), 7.34 (d, J = 8.22 Hz, 2H), 7.20 (T, J = 6.90 Hz, 1H).
Experiment-7 (Example)
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 アルゴン気流下、2’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニル909mg(1.78mmol)、1-(4-ブロモフェニル)-2-フェニル-1H-ベンゾイミダゾール747mg(2.14mmol)、酢酸パラジウム20.0mg(0.0890mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル84.8mg(0.178mmol)、および1Mのリン酸三カリウム水溶液8.54mL(8.54mmol)を28mLのジオキサンに溶解し、80℃で5時間加熱攪拌した。室温まで冷却後、純水300mLを加えて、クロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:酢酸エチル=12:1)で精製し、目的の4-(2-フェニル-1H-ベンゾイミダゾール-1-イル)-4’’-(2-ピリジル)-5’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルの薄黄色固体(収量803mg、収率69.1%)を得た。 Under a stream of argon, 2 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 909 mg (1.78 mmol) of 4 ′, 1 ″ -terphenyl, 747 mg (2.14 mmol) of 1- (4-bromophenyl) -2-phenyl-1H-benzimidazole, 20.0 mg (0.0890 mmol) of palladium acetate , 84.8 mg (0.178 mmol) of 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl and 8.54 mL (8.54 mmol) of 1M aqueous tripotassium phosphate solution in 28 mL of dioxane And stirred at 80 ° C. for 5 hours. After cooling to room temperature, 300 mL of pure water was added, followed by liquid separation extraction with chloroform. After the solvent was distilled off under reduced pressure, the resulting crude product was purified by silica gel column chromatography (developing solvent: chloroform: ethyl acetate = 12: 1) to obtain the desired 4- (2-phenyl-1H-benzimidazol-1- Yl) -4 ″-(2-pyridyl) -5 ′-[4- (2-pyridyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl pale yellow solid (yield 803 mg, yield) Rate 69.1%).
 H-NMR(CDCl):δ8.73(dd,J=5.40Hz,4.89Hz,2H),8.14(d,J=8.47Hz,2H),7.95(d,J=8.47Hz,2H),7.88-7.73(m,9H),7.63(d,J=7.78Hz,1H),7.56(d,J=7.34Hz,2H),7.39-7.29(m,8H), 7.21(d,J=8.60Hz,3H).
 実験例-8(実施例)
1 H-NMR (CDCl 3 ): δ 8.73 (dd, J = 5.40 Hz, 4.89 Hz, 2H), 8.14 (d, J = 8.47 Hz, 2H), 7.95 (d, J = 8.47 Hz, 2H), 7.88-7.73 (m, 9H), 7.63 (d, J = 7.78 Hz, 1H), 7.56 (d, J = 7.34 Hz, 2H) , 7.39-7.29 (m, 8H), 7.21 (d, J = 8.60 Hz, 3H).
Experimental Example-8 (Example)
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 アルゴン気流下、2’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニル1.00g(1.96mmol)、2-(4-ブロモフェニル)-1-フェニル-1H-ベンゾイミダゾール889mg(2.55mmol)、酢酸パラジウム22.0mg(0.0980mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル93.4mg(0.196mmol)、および1Mのリン酸三カリウム水溶液9.41mL(9.41mmol)を30mLのジオキサンに溶解し、80℃で6時間加熱攪拌した。室温まで冷却後、純水300mLを加えて、クロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的の4-(1-フェニル-1H-ベンゾイミダゾール-2-イル)-4’’-(2-ピリジル)-5’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルの薄黄色固体(収量1.18g、収率92.2%)を得た。 Under a stream of argon, 2 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl 1.00 g (1.96 mmol), 2- (4-bromophenyl) -1-phenyl-1H-benzimidazole 889 mg (2.55 mmol), palladium acetate 22.0 mg (0. 0980 mmol), 9-3.4 mg (0.196 mmol) of 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl, and 9.41 mL (9.41 mmol) of 1M aqueous tripotassium phosphate solution in 30 mL of dioxane. And heated and stirred at 80 ° C. for 6 hours. After cooling to room temperature, 300 mL of pure water was added, followed by liquid separation extraction with chloroform. After distilling off the solvent under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: chloroform) to obtain the desired 4- (1-phenyl-1H-benzimidazol-2-yl) -4 ″- Pale yellow solid of (2-pyridyl) -5 ′-[4- (2-pyridyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl (yield 1.18 g, yield 92.2%) )
 H-NMR(CDCl):δ8.73(d,J=4.71Hz,1H),8.70(d,J=4.27Hz,1H),8.11(d,J=8.47Hz,2H),7.86(d,J=8.47Hz,3H),7.81-7.72(m,8H),7.57(d,J=8.60Hz,1H),7.47-7.41(m,4H),7.34-7.18(m,12H).
 実験例-9
1 H-NMR (CDCl 3 ): δ 8.73 (d, J = 4.71 Hz, 1H), 8.70 (d, J = 4.27 Hz, 1H), 8.11 (d, J = 8.47 Hz) , 2H), 7.86 (d, J = 8.47 Hz, 3H), 7.81-7.72 (m, 8H), 7.57 (d, J = 8.60 Hz, 1H), 7.47. -7.41 (m, 4H), 7.34-7.18 (m, 12H).
Experimental example-9
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 アルゴン気流下、2-ブロモ-5-クロロ-安息香酸1.50g(6.83mmol)、4-(2-ピリジル)フェニルボロン酸3.40g(17.1mmol)、酢酸パラジウム76.7mg(0.342mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル326mg(0.683mmol)、および1Mのリン酸三カリウム水溶液32.8mL(32.8mmol)を90mLのジオキサンに溶解し、80℃で4時間加熱攪拌した。室温まで冷却後、純水900mLを加えてクロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:酢酸エチル=9:1)で精製し、目的の2’-ホルミル-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニルの白色固体(収量1.98g、収率70.3%)を得た。 Under a stream of argon, 1.50 g (6.83 mmol) of 2-bromo-5-chloro-benzoic acid, 3.40 g (17.1 mmol) of 4- (2-pyridyl) phenylboronic acid, 76.7 mg (0. 342 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (326 mg, 0.683 mmol), and 1M aqueous tripotassium phosphate solution (32.8 mL, 32.8 mmol) are dissolved in 90 mL of dioxane. And stirred at 80 ° C. for 4 hours. After cooling to room temperature, 900 mL of pure water was added, followed by liquid separation extraction with chloroform. After the solvent was distilled off under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: chloroform: ethyl acetate = 9: 1) to obtain the desired 2′-formyl-4,4 ″ -di (2 -Pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl white solid (yield 1.98 g, yield 70.3%) was obtained.
 H-NMR(CDCl):δ10.13(s,1H),8.73(dd,J=4.58Hz,4.39Hz,2H),8.35(d,J=1.82Hz,1H),8.14(dd,J=6.65Hz,1.82Hz,4H),7.97(dd,J=5.96Hz,2.20Hz,1H),7.83-7.76(m、7H),7.61(d,J=8.03Hz,1H),7.55(d,J=8.47Hz,2H),7.30-7.28(m,1H).
 実験例-10(実施例)
1 H-NMR (CDCl 3 ): δ 10.13 (s, 1H), 8.73 (dd, J = 4.58 Hz, 4.39 Hz, 2H), 8.35 (d, J = 1.82 Hz, 1H) ), 8.14 (dd, J = 6.65 Hz, 1.82 Hz, 4H), 7.97 (dd, J = 5.96 Hz, 2.20 Hz, 1H), 7.83-7.76 (m, 7H), 7.61 (d, J = 8.03 Hz, 1H), 7.55 (d, J = 8.47 Hz, 2H), 7.30-7.28 (m, 1H).
Experimental Example-10 (Example)
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 2’-ホルミル-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニル1.98g(4.80mmol)、およびN-フェニル-1,2-フェニレンジアミン1.33g(7.20mmol)を51mLのトルエンと13mLの酢酸の混合溶媒に溶解し、100℃で20時間加熱攪拌した。室温まで冷却後、純水150mLを加えてクロロホルムで分液抽出し、有機層を2回純水で分液洗浄した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:酢酸エチル=9:1)で精製し、目的の2’-[2-(1-フェニル-1H-ベンゾイミダゾリル)]-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニルの白色固体(収量1.84g、収率66.4%)を得た。 2′-formyl-4,4 ″ -di (2-pyridyl) -1,1 ′: 1.98 g (4.80 mmol) of 4 ′, 1 ″ -terphenyl, and N-phenyl-1,2- 1.33 g (7.20 mmol) of phenylenediamine was dissolved in a mixed solvent of 51 mL of toluene and 13 mL of acetic acid, and heated and stirred at 100 ° C. for 20 hours. After cooling to room temperature, 150 mL of pure water was added, followed by separation / extraction with chloroform, and the organic layer was separated and washed twice with pure water. After distilling off the solvent under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: chloroform: ethyl acetate = 9: 1) to obtain the desired 2 ′-[2- (1-phenyl-1H-benzimidazolyl). )]-4,4 ″ -di (2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl was obtained as a white solid (yield 1.84 g, 66.4%).
 H-NMR(CDCl):δ8.73(d,J=4.58Hz,1H),8.68(d,J=3.76Hz,1H),8.26(d,J=1.88Hz,1H),8.14(d,J=8.47Hz,2H),7.96(d,J=7.84Hz,1H),7.89(d,J=8.47Hz,2H),7.85-7.66(m,7H),7.40-7.34(m,2H),7.27-7.17(m、5H),7.10(t,J=8.16Hz,2H),6.85(d,J=8.28Hz,2H),6.55(d,J=7.28Hz,2H).
 実験例-11(実施例)
1 H-NMR (CDCl 3 ): δ 8.73 (d, J = 4.58 Hz, 1H), 8.68 (d, J = 3.76 Hz, 1H), 8.26 (d, J = 1.88 Hz) , 1H), 8.14 (d, J = 8.47 Hz, 2H), 7.96 (d, J = 7.84 Hz, 1H), 7.89 (d, J = 8.47 Hz, 2H), 7 .85-7.66 (m, 7H), 7.40-7.34 (m, 2H), 7.27-7.17 (m, 5H), 7.10 (t, J = 8.16 Hz, 2H), 6.85 (d, J = 8.28 Hz, 2H), 6.55 (d, J = 7.28 Hz, 2H).
Experimental Example-11 (Example)
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 アルゴン気流下、1,2,4-トリブロモベンゼン340mg(1.08mmol)、テトラキス(トリフェニルホスフィン)パラジウム100mg(0.0865mmol)、および1Mの炭酸カリウム水溶液4.86mL(4.86mmol)をジオキサン12.5mLに溶解させ、100℃に加熱した。そこに、25mLのジオキサンに溶解させた1-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]イソキノリン1.25g(3.78mmol)を3時間かけて滴下し、さらに1時間攪拌した。室温まで冷却後、純水400mLを加えてクロロホルムで分液抽出を行った。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:酢酸エチル=7:3)で精製し、目的の4,4’’-ジ(1-イソキノリル)-4’-[4-(1-イソキノリル)フェニル]-1,1’:2’,1’’-テルフェニルの薄黄色固体(収量536mg、収率72.2%)を得た。 Under an argon stream, 340 mg (1.08 mmol) of 1,2,4-tribromobenzene, 100 mg (0.0865 mmol) of tetrakis (triphenylphosphine) palladium, and 4.86 mL (4.86 mmol) of 1M aqueous potassium carbonate solution were added to dioxane. Dissolved in 12.5 mL and heated to 100 ° C. There, 1.25 g (3.78 mmol) of 1- [4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] isoquinoline dissolved in 25 mL of dioxane Was added dropwise over 3 hours, and the mixture was further stirred for 1 hour. After cooling to room temperature, 400 mL of pure water was added and liquid separation extraction was performed with chloroform. After the solvent was distilled off under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: chloroform: ethyl acetate = 7: 3) to obtain the desired 4,4 ″ -di (1-isoquinolyl) -4. A pale yellow solid (yield 536 mg, yield 72.2%) of “-[4- (1-isoquinolyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was obtained.
 H-NMR(CDCl):δ8.64(d,J=5.77Hz,1H),8.59(d,J=5.71Hz,2H),8.21(d,J=9.29Hz,1H),8.10(d,J=8.60Hz,2H),7.91-7.82(m,8H),7.73-7.42(m,19H).
 実験例-12
1 H-NMR (CDCl 3 ): δ 8.64 (d, J = 5.77 Hz, 1H), 8.59 (d, J = 5.71 Hz, 2H), 8.21 (d, J = 9.29 Hz) , 1H), 8.10 (d, J = 8.60 Hz, 2H), 7.91-7.82 (m, 8H), 7.73-7.42 (m, 19H).
Experimental example-12
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 アルゴン気流下、1-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]イソキノリン1.00g(3.02mmol)、1,4-ジブロモ-2-クロロベンゼン370mg(1.37mmol)、テトラキス(トリフェニルホスフィン)パラジウム83.9mg(0.0726mmol)、および1Mの炭酸カリウム水溶液5.45mL(5.45mmol)をジオキサン40mLに溶解させ、100℃で加熱攪拌した。室温まで冷却後、純水400mLを加えてクロロホルムで分液抽出を行った。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的の2’-クロロ-4,4’’-ジ(1-イソキノリル)―1,1’:4’,1’’-テルフェニルの薄黄色固体(収量490mg、収率68.9%)を得た。 Under an argon stream, 1- [4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] isoquinoline (1.00 g, 3.02 mmol), 1,4-dibromo 370 mg (1.37 mmol) of -2-chlorobenzene, 83.9 mg (0.0726 mmol) of tetrakis (triphenylphosphine) palladium, and 5.45 mL (5.45 mmol) of 1M aqueous potassium carbonate solution were dissolved in 40 mL of dioxane, and 100 ° C. And stirred with heating. After cooling to room temperature, 400 mL of pure water was added and liquid separation extraction was performed with chloroform. After distilling off the solvent under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: chloroform) to obtain the target 2′-chloro-4,4 ″ -di (1-isoquinolyl) -1,1. A pale yellow solid (yield 490 mg, yield 68.9%) of “: 4 ′, 1 ″ -terphenyl was obtained.
 H-NMR(CDCl):δ8.65(d,J=5.83Hz,2H),8.25(d,J=8.66Hz,1H),8.20(d,J=8.85Hz,1H),7.92(d,J=8.41Hz,2H),7.85(dd,J=11.6Hz,J=9.35Hz,7H),7.75-7.68(m,7H),7.62-7.55(m,3H).
 実験例-13(実施例)
1 H-NMR (CDCl 3 ): δ 8.65 (d, J = 5.83 Hz, 2H), 8.25 (d, J = 8.66 Hz, 1H), 8.20 (d, J = 8.85 Hz) , 1H), 7.92 (d, J = 8.41 Hz, 2H), 7.85 (dd, J = 11.6 Hz, J = 9.35 Hz, 7H), 7.75-7.68 (m, 7H), 7.62-7.55 (m, 3H).
Experimental Example-13 (Example)
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 アルゴン気流下、2’-クロロ-4,4’’-ジ(1-イソキノリル)―1,1’:4’,1’’-テルフェニル490mg(0.944mmol)、4-(2-フェニル-1H-ベンゾイミダゾール-1-イル)フェニルボロン酸356mg(1.13mmol)、酢酸パラジウム10.6mg(0.0472mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル45.0mg(0.0944mmol)、および1Mの炭酸カリウム水溶液4.53mL(4.53mmol)を15mLのジオキサンに溶解し、100℃で4時間加熱攪拌した。室温まで冷却後、純水150mLを加えて、クロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的の4-(2-フェニル-1H-ベンゾイミダゾール-1-イル)-4’’-(1-イソキノリル)-5’-[4-(1-イソキノリル)フェニル]-1,1’:2’,1’’-テルフェニルの薄黄色固体(収量531mg、収率74.7%)を得た。 Under a stream of argon, 2′-chloro-4,4 ″ -di (1-isoquinolyl) -1,1 ′: 4 ′, 1 ″ -terphenyl 490 mg (0.944 mmol), 4- (2-phenyl- 1H-benzoimidazol-1-yl) phenylboronic acid 356 mg (1.13 mmol), palladium acetate 10.6 mg (0.0472 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl 0 mg (0.0944 mmol) and 4.53 mL (4.53 mmol) of 1M aqueous potassium carbonate solution were dissolved in 15 mL of dioxane, and the mixture was heated and stirred at 100 ° C. for 4 hours. After cooling to room temperature, 150 mL of pure water was added, followed by liquid separation extraction with chloroform. After distilling off the solvent under reduced pressure, the resulting crude product was purified by silica gel column chromatography (developing solvent: chloroform) to obtain the desired 4- (2-phenyl-1H-benzimidazol-1-yl) -4 ″- A pale yellow solid of (1-isoquinolyl) -5 ′-[4- (1-isoquinolyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl (yield 531 mg, yield 74.7%) Obtained.
 H-NMR(CDCl):δ8.32(d,J=8.47Hz,2H),8.28(d,J=4.14Hz,1H),8.26(d,J=4.14Hz,1H),8.22-8.14(m,4H),7.96(d,J=8.14Hz,1H),7.92-7.83(m,9H),7.78-7.72(m,2H),7.67(d,J=8.34Hz,1H),7.59-7.54(m,4H),7.42(t,J=8.09Hz,4H),7.36-7.23(m,6H),7.15(t,J=7.59Hz,1H).
 実験例-14
1 H-NMR (CDCl 3 ): δ 8.32 (d, J = 8.47 Hz, 2H), 8.28 (d, J = 4.14 Hz, 1H), 8.26 (d, J = 4.14 Hz) , 1H), 8.22-8.14 (m, 4H), 7.96 (d, J = 8.14 Hz, 1H), 7.92-7.83 (m, 9H), 7.78-7 .72 (m, 2H), 7.67 (d, J = 8.34 Hz, 1H), 7.59-7.54 (m, 4H), 7.42 (t, J = 8.09 Hz, 4H) , 7.36-7.23 (m, 6H), 7.15 (t, J = 7.59 Hz, 1H).
Experimental Example-14
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 アルゴン気流下、1-クロロイソキノリン857mg(5.24mmol)、3,4-ジクロロフェニルボロン酸500mg(2.62mmol)、テトラキス(トリフェニルホスフィン)パラジウム242mg(0.210mmol)、および1Mの炭酸カリウム水溶液11.8mL(11.8mmol)をジオキサン30mLに溶解し、80℃で5時間加熱攪拌した。室温まで冷却後、純水300mLを加えてクロロホルムで分液抽出を行った。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン=1:20→2:3)で精製し、目的の1-(3,4-ジクロロフェニル)イソキノリンの白色固体(収量512mg、収率71.4%)を得た。 Under an argon stream, 857 mg (5.24 mmol) of 1-chloroisoquinoline, 500 mg (2.62 mmol) of 3,4-dichlorophenylboronic acid, 242 mg (0.210 mmol) of tetrakis (triphenylphosphine) palladium, and 1M aqueous potassium carbonate solution 11 .8 mL (11.8 mmol) was dissolved in 30 mL of dioxane, and heated and stirred at 80 ° C. for 5 hours. After cooling to room temperature, 300 mL of pure water was added and liquid separation extraction was performed with chloroform. After the solvent was distilled off under reduced pressure, the resulting crude product was purified by silica gel column chromatography (developing solvent: chloroform: hexane = 1: 20 → 2: 3) to obtain the desired 1- (3,4-dichlorophenyl) isoquinoline. A white solid (yield 512 mg, yield 71.4%) was obtained.
 H-NMR(CDCl):δ8.60(d,J=5.71Hz,1H),8.03(d,J=7.53Hz,1H),7.91(d,J=8.09Hz,1H),7.83(d,J=1.82Hz,1H),7.73(t,J=6.96Hz,1H),7.69(d,J=5.71Hz,1H),7.62-7.54(m,3H).
 実験例-15(実施例)
1 H-NMR (CDCl 3 ): δ 8.60 (d, J = 5.71 Hz, 1H), 8.03 (d, J = 7.53 Hz, 1H), 7.91 (d, J = 8.09 Hz) , 1H), 7.83 (d, J = 1.82 Hz, 1H), 7.73 (t, J = 6.96 Hz, 1H), 7.69 (d, J = 5.71 Hz, 1H), 7 62-7.54 (m, 3H).
Experimental Example-15 (Example)
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 アルゴン気流下、1-(3,4-ジクロロフェニル)イソキノリン269mg(0.982mmol)、酢酸パラジウム8.8mg(0.0393mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル37.4mg(0.0786mmol)、および1Mのリン酸三カリウム水溶液3.44mL(3.44mmol)をジオキサン10mLに溶解し、80℃に加熱した。そこに、5mLのジオキサンに溶解させた1-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]イソキノリン813mg(2.46mmol)を3時間かけて滴下し、滴下終了後さらに1時間攪拌した。室温まで冷却後、純水200mLを加えてクロロホルムで分液抽出を行った。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:酢酸エチル=3:2)で精製し、目的の4,4’,4’’-トリス(1-イソキノリル)-1,1’:2’,1’’-テルフェニルの白色固体(収量343mg、収率57.1%)を得た。 Under an argon stream, 269 mg (0.982 mmol) of 1- (3,4-dichlorophenyl) isoquinoline, 8.8 mg (0.0393 mmol) of palladium acetate, 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl 37.4 mg (0.0786 mmol), and 3.44 mL (3.44 mmol) of 1M aqueous tripotassium phosphate solution were dissolved in 10 mL of dioxane and heated to 80 ° C. Thereto was added 813 mg (2.46 mmol) of 1- [4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] isoquinoline dissolved in 5 mL of dioxane. The solution was added dropwise over a period of time and stirred for another hour after the completion of the addition. After cooling to room temperature, 200 mL of pure water was added and liquid separation extraction was performed with chloroform. After the solvent was distilled off under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: chloroform: ethyl acetate = 3: 2) to obtain the desired 4,4 ′, 4 ″ -tris (1-isoquinolyl). ) -1,1 ′: 2 ′, 1 ″ -terphenyl white solid (yield 343 mg, yield 57.1%) was obtained.
 H-NMR(CDCl):δ8.68(d,J=5.52Hz,1H),8.60(d,J=5.71Hz,1H),8.59(d,J=5.65Hz,1H),8.33(d,J=8.53Hz,1H),8.12(d,J=8.66Hz,1H),8.07(d,J=8.41Hz,1H),7.94-7.84(m,6H),7.77-7.62(m,13H)7.51(d,J=8.03Hz,4H).
 実験例-16(実施例)
1 H-NMR (CDCl 3 ): δ 8.68 (d, J = 5.52 Hz, 1H), 8.60 (d, J = 5.71 Hz, 1H), 8.59 (d, J = 5.65 Hz) , 1H), 8.33 (d, J = 8.53 Hz, 1H), 8.12 (d, J = 8.66 Hz, 1H), 8.07 (d, J = 8.41 Hz, 1H), 7 .94-7.84 (m, 6H), 7.77-7.62 (m, 13H) 7.51 (d, J = 8.03 Hz, 4H).
Experimental Example-16 (Example)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 アルゴン気流下、4-(2-キノリル)フェニルボロン酸1.50g(6.02mmol)、1,2,4-トリブロモベンゼン542mg(1.72mmol)、テトラキス(トリフェニルホスフィン)パラジウム159mg(0.138mmol)、および1Mの炭酸カリウム水溶液7.74mL(7.74mmol)をジオキサン60mLに溶解させ、100℃で加熱攪拌した。室温まで冷却後、純水500mLを加えてクロロホルムで分液抽出を行った。溶媒を減圧留去後、得られた粗生成物をトルエンを溶媒として2回再結晶し、目的の4,4’’-ジ(2-キノリル)-4’-[4-(2-キノリル)フェニル]-1,1’:2’,1’’-テルフェニルの白色固体(収量680mg、収率57.5%)を得た。 Under an argon stream, 1.50 g (6.02 mmol) of 4- (2-quinolyl) phenylboronic acid, 542 mg (1.72 mmol) of 1,2,4-tribromobenzene, 159 mg of tetrakis (triphenylphosphine) palladium. 138 mmol) and 7.74 mL (7.74 mmol) of 1 M aqueous potassium carbonate solution were dissolved in 60 mL of dioxane, and the mixture was heated and stirred at 100 ° C. After cooling to room temperature, 500 mL of pure water was added and liquid separation extraction was performed with chloroform. After distilling off the solvent under reduced pressure, the obtained crude product was recrystallized twice using toluene as a solvent to obtain the desired 4,4 ″ -di (2-quinolyl) -4 ′-[4- (2-quinolyl). Phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was obtained as a white solid (yield 680 mg, yield 57.5%).
 H-NMR(CDCl):δ8.31(d,J=8.16Hz,2H),8.26-8.08(m,11H),7.95(d,J=8.66Hz,1H),7.90-7.69(m,11H),7.64(d,J=7.72Hz,1H),7.56-7.22(m,7H).
 実験例-17
1 H-NMR (CDCl 3 ): δ 8.31 (d, J = 8.16 Hz, 2H), 8.26-8.08 (m, 11H), 7.95 (d, J = 8.66 Hz, 1H) ), 7.90-7.69 (m, 11H), 7.64 (d, J = 7.72 Hz, 1H), 7.56-7.22 (m, 7H).
Experimental Example-17
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 アルゴン気流下、4-(2-キノリル)フェニルボロン酸1.00g(4.01mmol)、1,4-ジブロモ-2-クロロベンゼン493mg(1.82mmol)、テトラキス(トリフェニルホスフィン)パラジウム126mg(0.109mmol)、および1Mの炭酸カリウム水溶液8.19mL(8.19mmol)をジオキサン50mLに溶解させ、100℃で加熱攪拌した。室温まで冷却後、純水500mLを加えてクロロホルムで分液抽出を行った。溶媒を減圧留去後、得られた粗生成物をトルエンを溶媒として再結晶し、目的の2’-クロロ-4,4’’-ジ(2-キノリル)―1,1’:4’,1’’-テルフェニルの薄黄色固体(収量833mg、収率88.1%)を得た。 Under an argon stream, 1.00 g (4.01 mmol) of 4- (2-quinolyl) phenylboronic acid, 493 mg (1.82 mmol) of 1,4-dibromo-2-chlorobenzene, 126 mg (0.002 mmol) of tetrakis (triphenylphosphine) palladium. 109 mmol) and 8.19 mL (8.19 mmol) of 1M aqueous potassium carbonate solution were dissolved in 50 mL of dioxane, and the mixture was heated and stirred at 100 ° C. After cooling to room temperature, 500 mL of pure water was added and liquid separation extraction was performed with chloroform. After distilling off the solvent under reduced pressure, the obtained crude product was recrystallized using toluene as a solvent to obtain the desired 2′-chloro-4,4 ″ -di (2-quinolyl) -1,1 ′: 4 ′, A light yellow solid of 1 ″ -terphenyl (yield 833 mg, yield 88.1%) was obtained.
 H-NMR(CDCl):δ8.31-8.25(m,6H),8.20(d,J=8.72Hz,2H),7.96(dd,J=8.41Hz,1.94Hz,2H),7.87-7.80(m,5H),7.75(t,J=8.41Hz,2H),7.71-7.66(m,3H),7.57-7.52(m,3H).
 実験例-18(実施例)
1 H-NMR (CDCl 3 ): δ 8.31-8.25 (m, 6H), 8.20 (d, J = 8.72 Hz, 2H), 7.96 (dd, J = 8.41 Hz, 1 .94 Hz, 2H), 7.87-7.80 (m, 5H), 7.75 (t, J = 8.41 Hz, 2H), 7.71-7.66 (m, 3H), 7.57 -7.52 (m, 3H).
Experimental Example-18 (Example)
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 アルゴン気流下、2’-クロロ-4,4’’-ジ(2-キノリル)―1,1’:4’,1’’-テルフェニル832mg(1.60mmol)、4-(2-フェニル-1H-ベンゾイミダゾール-1-イル)フェニルボロン酸604mg(1.92mmol)、酢酸パラジウム18.0mg(0.0802mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル76.4mg(0.160mmol)、および1Mの炭酸カリウム水溶液7.69mL(7.69mmol)を25mLのジオキサンに溶解し、100℃で4時間加熱攪拌した。室温まで冷却後、純水200mLを加えてろ過し、得られた固体を純水、メタノール、およびヘキサンで洗浄した。得られた粗生成物を乾燥後、クロロベンゼンを溶媒として2回再結晶し、目的の4-(2-フェニル-1H-ベンゾイミダゾール-1-イル)-4’’-(2-キノリル)-5’-[4-(2-キノリル)フェニル]-1,1’:2’,1’’-テルフェニルの薄黄色固体(収量763mg、収率63.2%)を得た。 Under a stream of argon, 2′-chloro-4,4 ″ -di (2-quinolyl) -1,1 ′: 4 ′, 1 ″ -terphenyl 832 mg (1.60 mmol), 4- (2-phenyl- 1H-benzoimidazol-1-yl) phenylboronic acid 604 mg (1.92 mmol), palladium acetate 18.0 mg (0.0802 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl 76. 4 mg (0.160 mmol) and 7.69 mL (7.69 mmol) of 1M potassium carbonate aqueous solution were dissolved in 25 mL of dioxane, and the mixture was heated and stirred at 100 ° C. for 4 hours. After cooling to room temperature, 200 mL of pure water was added and filtered, and the resulting solid was washed with pure water, methanol, and hexane. The obtained crude product was dried and recrystallized twice using chlorobenzene as a solvent to obtain the desired 4- (2-phenyl-1H-benzimidazol-1-yl) -4 ″-(2-quinolyl) -5. A pale yellow solid (yield 763 mg, yield 63.2%) of “-[4- (2-quinolyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was obtained.
 H-NMR(CDCl):δ8.66(t,J=5.77Hz,2H),8.21(d,J=7.65Hz,1H),8.07(d,J=8.53Hz,1H),7.93-7.85(m,10H),7.75-7.66(m,8H),7.61-7.55(m,3H),7.52-7.40(m,6H),7.34-7.20(m,4H),7.07(t,J=7.60Hz,1H).
 実験例-19
1 H-NMR (CDCl 3 ): δ 8.66 (t, J = 5.77 Hz, 2H), 8.21 (d, J = 7.65 Hz, 1H), 8.07 (d, J = 8.53 Hz) , 1H), 7.93-7.85 (m, 10H), 7.75-7.66 (m, 8H), 7.61-7.55 (m, 3H), 7.52-7.40. (M, 6H), 7.34-7.20 (m, 4H), 7.07 (t, J = 7.60 Hz, 1H).
Experimental Example-19
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 アルゴン気流下、1,4-ジブロモ-2-クロロベンゼン1.00g(3.70mmol)、5-メチル-2-(4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル)ピリジン2.18g(7.40mmol)、テトラキス(トリフェニルホスフィン)パラジウム85.5mg(0.0740mmol)、および1Mの炭酸カリウム水溶液11.1mL(11.1mmol)を9mLのジオキサンに溶解し、100℃で18時間加熱攪拌した。室温まで冷却後、純水20mLを加えてクロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をクロロホルムで洗浄し、目的の2’-クロロ-4,4’’-ジ(5-メチルピリジン-2-イル)-1,1’:4’,1’’-テルフェニルの白色固体(収量1.22g、収率73.8%)を得た。 Under an argon stream, 1.00 g (3.70 mmol) of 1,4-dibromo-2-chlorobenzene, 5-methyl-2- (4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolane) -2-yl) phenyl) pyridine 2.18 g (7.40 mmol), tetrakis (triphenylphosphine) palladium 85.5 mg (0.0740 mmol), and 1 M aqueous potassium carbonate solution 11.1 mL (11.1 mmol) in 9 mL It melt | dissolved in dioxane and heated and stirred at 100 degreeC for 18 hours. After cooling to room temperature, 20 mL of pure water was added, followed by liquid separation extraction with chloroform. After distilling off the solvent under reduced pressure, the obtained crude product was washed with chloroform, and the desired 2′-chloro-4,4 ″ -di (5-methylpyridin-2-yl) -1,1 ′: 4 A white solid of ', 1 ″ -terphenyl (yield 1.22 g, yield 73.8%) was obtained.
 H-NMR(CDCl):δ8.55(d,J=2.26Hz,2H),8.07(t,J=8.41Hz,4H),7.79(d,J=1.76Hz,1H),7.74-7.68(m,4H),7.63-7.58(m,5H),7.48(d,J=7.97Hz,1H),2.40(s,6H).
 実験例-20(実施例)
1 H-NMR (CDCl 3 ): δ 8.55 (d, J = 2.26 Hz, 2H), 8.07 (t, J = 8.41 Hz, 4H), 7.79 (d, J = 1.76 Hz) , 1H), 7.74-7.68 (m, 4H), 7.63-7.58 (m, 5H), 7.48 (d, J = 7.97 Hz, 1H), 2.40 (s) , 6H).
Experimental Example-20 (Example)
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 アルゴン気流下、2’-クロロ-4,4’’-ジ(5-メチルピリジン-2-イル)-1,1’:4’,1’’-テルフェニル600mg(1.34mmol)、4-(2-フェニル-1H-ベンゾイミダゾール-1-イル)フェニルボロン酸506mg(1.61mmol)、酢酸パラジウム15.0mg(0.0670mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル63.9mg(0.134mmol)、および1Mの炭酸カリウム水溶液6.43mL(6.43mmol)を21mLのジオキサンに溶解し、100℃で4時間加熱攪拌した。室温まで冷却後、純水200mLを加えて分液抽出した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:酢酸エチル=10:1)で精製し、目的の4-(5-メチルピリジン-2-イル)-4’’-(2-フェニル-1H-ベンゾイミダゾール-1-イル)-4’-[4-(5-メチルピリジン-2-イル)フェニル]-1,1’:2’,1’’-テルフェニルの白色固体(収量561mg、収率61.6%)を得た。 Under an argon stream, 2′-chloro-4,4 ″ -di (5-methylpyridin-2-yl) -1,1 ′: 4 ′, 1 ″ -terphenyl 600 mg (1.34 mmol), 4- (2-Phenyl-1H-benzimidazol-1-yl) phenylboronic acid 506 mg (1.61 mmol), palladium acetate 15.0 mg (0.0670 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′- 63.9 mg (0.134 mmol) of triisopropylbiphenyl and 6.43 mL (6.43 mmol) of 1M aqueous potassium carbonate solution were dissolved in 21 mL of dioxane, and the mixture was heated and stirred at 100 ° C. for 4 hours. After cooling to room temperature, 200 mL of pure water was added for liquid separation extraction. After the solvent was distilled off under reduced pressure, the resulting crude product was purified by silica gel column chromatography (developing solvent: chloroform: ethyl acetate = 10: 1) to obtain the desired 4- (5-methylpyridin-2-yl) -4. ''-(2-Phenyl-1H-benzimidazol-1-yl) -4 '-[4- (5-methylpyridin-2-yl) phenyl] -1,1': 2 ', 1' '-tel A white solid of phenyl (yield 561 mg, yield 61.6%) was obtained.
 H-NMR(CDCl):δ8.55(t,J=5.33Hz,2H),8.10(d,J=8.03Hz,2H),7.92(d,J=8.03Hz,2H),7.87(d,J=8.03Hz,1H),7.83-7.78(m,4H),7.71(d,J=9.35Hz,1H),7.65-7.55(m,7H),7.39-7.27(m,8H),7.22-7.19(m,3H) ,2.40(s,6H).
 実験例21(実施例)
1 H-NMR (CDCl 3 ): δ 8.55 (t, J = 5.33 Hz, 2H), 8.10 (d, J = 8.03 Hz, 2H), 7.92 (d, J = 8.03 Hz) , 2H), 7.87 (d, J = 8.03 Hz, 1H), 7.83-7.78 (m, 4H), 7.71 (d, J = 9.35 Hz, 1H), 7.65 -7.55 (m, 7H), 7.39-7.27 (m, 8H), 7.22-7.19 (m, 3H), 2.40 (s, 6H).
Experimental Example 21 (Example)
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 アルゴン気流下、1-ブロモ-3,4-ジクロロベンゼン821mg(3.63mmol)、4’-(2-ピリジル)ビフェニル-4-ボロン酸1.00g(3.63mmol)、酢酸パラジウム30.2mg(0.135mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル138mg(0.289mmol)、および1Mのリン酸三カリウム水溶液15mL(15mmol)をジオキサン36mLに溶解し、80℃で2時間加熱攪拌した。そこに、4-(2-ピリジル)フェニルボロン酸1.59g(7.99mmol)を加え、100℃で5日間加熱攪拌した。室温まで冷却後、純水200mLを加えてろ過し、得られた固体を純水、メタノール、およびヘキサンで洗浄した。得られた粗生成物を乾燥後、トルエンを溶媒として2回再結晶し、目的の4、4’’’-ジ(2-ピリジル)-2’-[4-(2-ピリジル)フェニル]-1,1’:4’,1’’:4’’,1’’’-クアテルフェニルの白色固体(収量777mg、収率34.9%)を得た。 Under an argon stream, 821 mg (3.63 mmol) of 1-bromo-3,4-dichlorobenzene, 1.00 g (3.63 mmol) of 4 ′-(2-pyridyl) biphenyl-4-boronic acid, 30.2 mg of palladium acetate ( 0.135 mmol), 138 mg (0.289 mmol) of 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl, and 15 mL (15 mmol) of 1M aqueous tripotassium phosphate solution were dissolved in 36 mL of dioxane, The mixture was stirred with heating at ° C for 2 hours. Thereto was added 1.59 g (7.99 mmol) of 4- (2-pyridyl) phenylboronic acid, and the mixture was heated and stirred at 100 ° C. for 5 days. After cooling to room temperature, 200 mL of pure water was added and filtered, and the resulting solid was washed with pure water, methanol, and hexane. The obtained crude product was dried and recrystallized twice using toluene as a solvent to obtain the desired 4,4 ′ ″-di (2-pyridyl) -2 ′-[4- (2-pyridyl) phenyl]- A white solid of 1,1 ′: 4 ′, 1 ″: 4 ″, 1 ′ ″-quaterphenyl (yield 777 mg, yield 34.9%) was obtained.
 H-NMR(CDCl):δ8.73(d,J=4.14Hz,1H),8.67(d,J=3.58Hz,2H),8.11(d,J=8.28Hz,2H),7.92(dd,J=8.47Hz,8.78Hz,4H),8.12(m,15H),7.61(d,J=7.91Hz,1H),7.38(d,J=8.47Hz,2H),7.35(d,J=8.53Hz,2H),7.21(m,2H).
 実験例-22(実施例)
1 H-NMR (CDCl 3 ): δ 8.73 (d, J = 4.14 Hz, 1H), 8.67 (d, J = 3.58 Hz, 2H), 8.11 (d, J = 8.28 Hz) , 2H), 7.92 (dd, J = 8.47 Hz, 8.78 Hz, 4H), 8.12 (m, 15H), 7.61 (d, J = 7.91 Hz, 1H), 7.38. (D, J = 8.47 Hz, 2H), 7.35 (d, J = 8.53 Hz, 2H), 7.21 (m, 2H).
Experimental Example-22 (Example)
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 アルゴン気流下、2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)ナフチル]ピリジン1.00g(3.02mmol)、1-ブロモ-3,4-ジクロロベンゼン682mg(3.02mmol)、酢酸パラジウム15.0mg(0.0668mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル64.0mg(0.134mmol)、および1Mのリン酸三カリウム水溶液13.6mL(13.6mmol)をジオキサン30mLに溶解し、80℃で2時間加熱した。そこに、10mLのジオキサンに溶解させた4-(2-ピリジル)フェニルボロン酸1.32g(6.64mmol)を2時間かけて滴下し、滴下終了後さらに2時間攪拌した。室温まで冷却後、純水200mLを加えてクロロホルムで分液抽出を行った。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:1)で精製し、目的の4’-[(2-ピリジル)ナフタレン-4-イル]-4,4’’-ジ(2-ピリジル)-1,1’:2’,1’’-テルフェニルの白色固体(収量508mg、収率28.6%)を得た。 Under an argon stream, 1.00 g (3.02 mmol) of 2- [4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) naphthyl] pyridine, 1-bromo-3 , 4-dichlorobenzene 682 mg (3.02 mmol), palladium acetate 15.0 mg (0.0668 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl 64.0 mg (0.134 mmol), And 13.6 mL (13.6 mmol) of 1 M aqueous tripotassium phosphate solution was dissolved in 30 mL of dioxane and heated at 80 ° C. for 2 hours. Thereto was added dropwise 1.32 g (6.64 mmol) of 4- (2-pyridyl) phenylboronic acid dissolved in 10 mL of dioxane over 2 hours, and the mixture was further stirred for 2 hours after completion of the addition. After cooling to room temperature, 200 mL of pure water was added and liquid separation extraction was performed with chloroform. After the solvent was distilled off under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 1) to obtain the desired 4 ′-[(2-pyridyl) naphthalen-4-yl. ] -4,4 ″ -di (2-pyridyl) -1,1 ′: 2 ′, 1 ″ -terphenyl white solid (yield 508 mg, yield 28.6%) was obtained.
 H-NMR(CDCl):δ8.83(d,J=3.07Hz,1H),8.67(dd,J=9,79Hz,9.73Hz,2H),8.16(dd,J=6.46Hz,6.71Hz,2H),7.93-7.85(m,5H),7.74-7.61(m,11H),7.51(dd,J=6.78Hz,6.58Hz,2H),7.42-7.35(m,4H),7.23-7.18(m,2H),
 実験例-23(実施例)
1 H-NMR (CDCl 3 ): δ 8.83 (d, J = 3.07 Hz, 1H), 8.67 (dd, J = 9, 79 Hz, 9.73 Hz, 2H), 8.16 (dd, J = 6.46 Hz, 6.71 Hz, 2H), 7.93-7.85 (m, 5H), 7.74-7.61 (m, 11H), 7.51 (dd, J = 6.78 Hz, 6.58 Hz, 2H), 7.42-7.35 (m, 4H), 7.23-7.18 (m, 2H),
Experimental Example-23 (Example)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 アルゴン気流下、2’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニル1.50g(2.94mmol)、1-(6-クロロピリジル-3-イル)-2-フェニル-1H-ベンゾイミダゾール680mg(2.22mmol)、酢酸パラジウム33.0mg(0.147mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル140mg(0.294mmol)、および1Mのリン酸三カリウム水溶液14.1mL(14.1mmol)を46mLのジオキサンに溶解し、80℃で7時間加熱攪拌した。室温まで冷却後、純水50mLを加えてろ過し、得られた固体を純水で洗浄した。得られた粗生成物を乾燥後、トルエンを溶媒とした熱時ろ過を実施し、黒色固体をろ別した。ろ液を回収して溶媒を減圧留去した後、得られた粗生成物をトルエンを溶媒として再結晶し、目的の2’-[5-(2-フェニル-1H-ベンゾイミダゾール-1-イル)ピリジン-2-イル]-4,4’’-(2-ピリジル)-1,1’:4’,1’’-テルフェニルの白色固体(収量730mg、収率38.0%)を得た。 Under a stream of argon, 2 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl 1.50 g (2.94 mmol), 1- (6-chloropyridyl-3-yl) -2-phenyl-1H-benzimidazole 680 mg (2.22 mmol), palladium acetate 33. 46 mL of 0 mg (0.147 mmol), 140 mg (0.294 mmol) of 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl, and 14.1 mL (14.1 mmol) of 1M tripotassium phosphate aqueous solution Was dissolved in dioxane and heated and stirred at 80 ° C. for 7 hours. After cooling to room temperature, 50 mL of pure water was added and filtered, and the resulting solid was washed with pure water. The obtained crude product was dried, and filtered while hot using toluene as a solvent, and a black solid was separated by filtration. After collecting the filtrate and distilling off the solvent under reduced pressure, the obtained crude product was recrystallized using toluene as a solvent to obtain the desired 2 ′-[5- (2-phenyl-1H-benzimidazol-1-yl]. ) Pyridin-2-yl] -4,4 ″-(2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl white solid (yield 730 mg, yield 38.0%) It was.
 H-NMR(CDCl):δ8.71(t,J=5.65Hz,2H),8.66(d,J=2.32Hz,1H),8.24(d,J=7.53Hz,1H),8.08-7.91(m,10H),7.81-7.77(m,2H),7.68(d,J=8.34Hz,1H),7.51(d,J=7.34Hz,2H),7.43-7.25(m,12H).
 実験例-24(実施例)
1 H-NMR (CDCl 3 ): δ 8.71 (t, J = 5.65 Hz, 2H), 8.66 (d, J = 2.32 Hz, 1H), 8.24 (d, J = 7.53 Hz) , 1H), 8.08-7.91 (m, 10H), 7.81-7.77 (m, 2H), 7.68 (d, J = 8.34 Hz, 1H), 7.51 (d , J = 7.34 Hz, 2H), 7.43-7.25 (m, 12H).
Experimental Example-24 (Example)
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 アルゴン気流下、2’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニル863mg(1.69mmol)、1-(4-ブロモ-3,5-ジフルオロフェニル)-2-フェニル-1H-ベンゾイミダゾール650mg(1.69mmol)、酢酸パラジウム19.0mg(0.0845mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル80.6mg(0.169mmol)、および1Mのリン酸三カリウム水溶液8.11mL(8.11mmol)を26mLのジオキサンに溶解し、80℃で18時間加熱攪拌した。室温まで冷却後、純水50mLを加えてクロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をトルエンを溶媒として再結晶し、目的の2’-[2,6-ジフルオロ-4-(2-フェニル-1H-ベンゾイミダゾール-1-イル)フェニル]-4,4’’-(2-ピリジル)-1,1’:4’,1’’-テルフェニルの白色固体(収量438mg、収率38.8%)を得た。 Under a stream of argon, 2 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 863 mg (1.69 mmol) of 4 ′, 1 ″ -terphenyl, 650 mg (1.69 mmol) of 1- (4-bromo-3,5-difluorophenyl) -2-phenyl-1H-benzimidazole, palladium acetate 19. 0 mg (0.0845 mmol), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl 80.6 mg (0.169 mmol), and 1M tripotassium phosphate aqueous solution 8.11 mL (8.11 mmol) Was dissolved in 26 mL of dioxane and stirred with heating at 80 ° C. for 18 hours. After cooling to room temperature, 50 mL of pure water was added, followed by liquid separation extraction with chloroform. After distilling off the solvent under reduced pressure, the obtained crude product was recrystallized using toluene as a solvent to obtain the target 2 ′-[2,6-difluoro-4- (2-phenyl-1H-benzimidazol-1-yl). Phenyl] -4,4 ″-(2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl white solid (yield 438 mg, yield 38.8%) was obtained.
 H-NMR(CDCl):δ8.67(m,2H),8.06(td,J=8.47Hz,8.91Hz,2H),7.93(d,J=8.47Hz,2H),7.81-7.70(m,10H),7.59(d,J=8.22Hz,1H),7.46-7.44(m,2H),7.30-7.21(m,8H),7.13(t,J=8.22Hz,2H),6.77(d,J=6.53Hz,1H).
 実験例-25(実施例)
1 H-NMR (CDCl 3 ): δ 8.67 (m, 2H), 8.06 (td, J = 8.47 Hz, 8.91 Hz, 2H), 7.93 (d, J = 8.47 Hz, 2H) ), 7.81-7.70 (m, 10H), 7.59 (d, J = 8.22 Hz, 1H), 7.46-7.44 (m, 2H), 7.30-7.21 (M, 8H), 7.13 (t, J = 8.22 Hz, 2H), 6.77 (d, J = 6.53 Hz, 1H).
Experimental example-25 (Example)
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 アルゴン気流下、2’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニル1.23g(2.40mmol)、9-(4-クロロフェニル)-β-カルボリン800mg(2.88mmol)、酢酸パラジウム27.0mg(0.120mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル114mg(0.240mmol)、および1Mの炭酸カリウム水溶液11.5mL(11.5mmol)を37mLのジオキサンに溶解し、100℃で5時間加熱攪拌した。室温まで冷却後、純水100mLを加えてクロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をメタノールを溶媒として再結晶し、目的の4-(β-カルボリン-9-イル)-4’’-(2-ピリジル)-5’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルの白色固体(収量1.36g、収率90.8%)を得た。 Under a stream of argon, 2 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 1.2 'g (2.40 mmol) of 4 ′, 1 ″ -terphenyl, 800 mg (2.88 mmol) of 9- (4-chlorophenyl) -β-carboline, 27.0 mg (0.120 mmol) of palladium acetate, 2-dicyclohexyl Phosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (114 mg, 0.240 mmol) and 1M aqueous potassium carbonate solution (11.5 mL, 11.5 mmol) were dissolved in 37 mL dioxane and heated at 100 ° C. for 5 hours. Stir. After cooling to room temperature, 100 mL of pure water was added, followed by liquid separation extraction with chloroform. After distilling off the solvent under reduced pressure, the obtained crude product was recrystallized using methanol as a solvent to obtain the desired 4- (β-carbolin-9-yl) -4 ″-(2-pyridyl) -5 ′-[ A white solid (yield 1.36 g, yield 90.8%) of 4- (2-pyridyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was obtained.
 H-NMR(CDCl):δ8.85(d,J=0.82Hz,1H),8.74(d,J=4.33Hz,1H),8.69(d,J=4.71Hz,1H),8.51(d,J=5.46Hz,1H),8.18(d,J=7.84Hz,1H),8.14(d,J=8.34Hz,2H),8.00(dd,J=5.46Hz,1.13Hz,1H),7.97(d,J=8.41Hz,2H),7.88-7.86(m,3H),7.83-7.79(m,3H),7.76-7.75(m,2H),7.65(d,J=8.09Hz,1H),7.56-7.47(m,6H),7.40(d,J=8.53Hz,2H),7.34(t,J=8.03Hz,1H),7.28(dd,J=4.52Hz,1.88Hz,1H),7.23(dt,J=4.33Hz,4.39Hz,1H).
 実験例-26(実施例)
1 H-NMR (CDCl 3 ): δ 8.85 (d, J = 0.82 Hz, 1H), 8.74 (d, J = 4.33 Hz, 1H), 8.69 (d, J = 4.71 Hz) , 1H), 8.51 (d, J = 5.46 Hz, 1H), 8.18 (d, J = 7.84 Hz, 1H), 8.14 (d, J = 8.34 Hz, 2H), 8 .00 (dd, J = 5.46 Hz, 1.13 Hz, 1H), 7.97 (d, J = 8.41 Hz, 2H), 7.88-7.86 (m, 3H), 7.83- 7.79 (m, 3H), 7.76-7.75 (m, 2H), 7.65 (d, J = 8.09 Hz, 1H), 7.56-7.47 (m, 6H), 7.40 (d, J = 8.53 Hz, 2H), 7.34 (t, J = 8.03 Hz, 1H), 7.28 (dd, J = 4.52 Hz, 1.88 Hz, 1 ), 7.23 (dt, J = 4.33Hz, 4.39Hz, 1H).
Experimental Example-26 (Example)
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 アルゴン気流下、2’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)―1,1’:4’,1’’-テルフェニル713mg(1.40mmol)、9-(6-クロロピリジン-3-イル)-β-カルボリン430mg(1.54mmol)、酢酸パラジウム16.0mg(0.070mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル66mg(0.140mmol)、および1Mの炭酸カリウム水溶液6.72mL(6.72mmol)を22mLのジオキサンに溶解し、100℃で8時間加熱攪拌した。室温まで冷却後、純水50mLを加えてクロロホルムで分液抽出した。有機層をろ過して黒色固体を除いた後、溶媒を減圧留去した。得られた粗生成物をメタノールを溶媒として再結晶し、目的の2’-[5-(β-カルボリン-9-イル)ピリジン-2-イル]-4,4’’-(2-ピリジル)-1,1’:4’,1’’-テルフェニルの白色固体(収量583mg、収率66.5%)を得た。 Under a stream of argon, 2 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl 713 mg (1.40 mmol), 9- (6-chloropyridin-3-yl) -β-carboline 430 mg (1.54 mmol), palladium acetate 16.0 mg (0.070 mmol), 2-Dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl (66 mg, 0.140 mmol) and 1M aqueous potassium carbonate solution (6.72 mL, 6.72 mmol) were dissolved in 22 mL of dioxane at 100 ° C. The mixture was heated and stirred for 8 hours. After cooling to room temperature, 50 mL of pure water was added, followed by liquid separation extraction with chloroform. The organic layer was filtered to remove the black solid, and then the solvent was distilled off under reduced pressure. The obtained crude product was recrystallized using methanol as a solvent to obtain the target 2 ′-[5- (β-carbolin-9-yl) pyridin-2-yl] -4,4 ″-(2-pyridyl). A white solid of -1,1 ′: 4 ′, 1 ″ -terphenyl (yield 583 mg, yield 66.5%) was obtained.
 H-NMR(CDCl):δ8.99(d,J=2.13Hz,1H),8.83(d,J=0.94Hz,1H),8.73(d,J=5.08Hz,1H),8.70(d,J=4.89Hz,1H),8.54(d,J=5.33Hz,1H),8.21-8.19(m,2H),8.14(d,J=8.47Hz,2H),8.02-8.00(m,3H),7.89(d,J=8.47Hz,2H),7.87(d,J=5.96Hz,1H),7.83-7.76(m,4H),7.69-7.66(m,2H),7.55(t,J=7.09Hz,1H),7.46(d,J=8.47Hz,1H),7.44(d,J=8.47Hz,2H),7.36(t,J=7.84Hz,1H),7.19(d,J=8.03Hz,1H),8.27(d,J=5.14Hz,1H),7.23(dt,J=4.52Hz,4.33Hz,1H).
 実験例-27(実施例)
1 H-NMR (CDCl 3 ): δ 8.99 (d, J = 2.13 Hz, 1 H), 8.83 (d, J = 0.94 Hz, 1 H), 8.73 (d, J = 0.08 Hz) , 1H), 8.70 (d, J = 4.89 Hz, 1H), 8.54 (d, J = 5.33 Hz, 1H), 8.21-8.19 (m, 2H), 8.14 (D, J = 8.47 Hz, 2H), 8.02-8.00 (m, 3H), 7.89 (d, J = 8.47 Hz, 2H), 7.87 (d, J = 5. 96 Hz, 1H), 7.83-7.76 (m, 4H), 7.69-7.66 (m, 2H), 7.55 (t, J = 7.09 Hz, 1H), 7.46 ( d, J = 8.47 Hz, 1H), 7.44 (d, J = 8.47 Hz, 2H), 7.36 (t, J = 7.84 Hz, 1H), 7.19 (d, J = 8 .03 z, 1H), 8.27 (d, J = 5.14Hz, 1H), 7.23 (dt, J = 4.52Hz, 4.33Hz, 1H).
Experimental Example-27 (Example)
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 アルゴン気流下、2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]ピリジン1.00g(3.22mmol)、1,2,4-ブロモベンゼン305mg(0.977mmol)、テトラキス(トリフェニルホスフィン)パラジウム90.0mg(0.078mmol)、および1Mの炭酸カリウム水溶液4.40mL(4.40mmol)を30mLのジオキサンに溶解し、100℃で8時間加熱攪拌した。室温まで冷却後、純水50mLを加えてろ過し、得られた固体を純水、メタノール、およびヘキサンで洗浄した。得られた粗生成物を乾燥後、トルエンを溶媒として2回再結晶し、目的の4,4’’-ジ(4,6-ジメチルピリミジン-2-イル)-4’-[4-(4,6-ジメチルピリミジン-2-イル)フェニル]-1,1’:2’,1’’-テルフェニルの白色固体(収量503mg、収率82.4%)を得た。 Under an argon stream, 1.00 g (3.22 mmol) of 2- [4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl] pyridine, 1,2,4 -305 mg (0.977 mmol) of bromobenzene, 90.0 mg (0.078 mmol) of tetrakis (triphenylphosphine) palladium, and 4.40 mL (4.40 mmol) of 1M aqueous potassium carbonate solution were dissolved in 30 mL of dioxane, And stirred for 8 hours. After cooling to room temperature, 50 mL of pure water was added and filtered, and the resulting solid was washed with pure water, methanol, and hexane. The obtained crude product was dried and recrystallized twice using toluene as a solvent to obtain the desired 4,4 ″ -di (4,6-dimethylpyrimidin-2-yl) -4 ′-[4- (4 , 6-Dimethylpyrimidin-2-yl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was obtained as a white solid (yield 503 mg, yield 82.4%).
 H-NMR(CDCl):δ8.54(d,J=8.47Hz,2H),8.31(t,J=8.85Hz,4H),7.82-7.75(m,4H),7.60(d,J=8.03Hz,1H),7.36(d,J=8.47Hz,2H),7.33(d,J=8.28Hz,2H),6.94(s,1H),6.89(s,2H),2.56(s,6H),2.51(s,12H).
実験例-28
1 H-NMR (CDCl 3 ): δ 8.54 (d, J = 8.47 Hz, 2H), 8.31 (t, J = 8.85 Hz, 4H), 7.82-7.75 (m, 4H) ), 7.60 (d, J = 8.03 Hz, 1H), 7.36 (d, J = 8.47 Hz, 2H), 7.33 (d, J = 8.28 Hz, 2H), 6.94. (S, 1H), 6.89 (s, 2H), 2.56 (s, 6H), 2.51 (s, 12H).
Example 28
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 アルゴン気流下、3-(2-ピリジル)-9H-カルバゾール1.00g(4.09mmol)、1,4-ジクロロ-2-ヨードベンゼン1.34g(4.91mmol)、ヨウ化銅(I)78.0mg(0.409mmol)1,10-フェナントロリン73.0mg(0.409mmol)、および炭酸カリウム565mg(4.09mmol)を24mLのキシレンに溶解し、130℃で48時間加熱攪拌した。室温まで冷却後、純水50mLを加えてクロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的の9-(1,4-ジクロロフェニル-2-イル)-3-(2-ピリジル)-9H-カルバゾールの黄色固体(収量150mg、収率9.4%)を得た。 Under an argon stream, 1.00 g (4.09 mmol) of 3- (2-pyridyl) -9H-carbazole, 1.34 g (4.91 mmol) of 1,4-dichloro-2-iodobenzene, copper (I) iodide 78 0.0 mg (0.409 mmol) 1,10-phenanthroline 73.0 mg (0.409 mmol) and potassium carbonate 565 mg (4.09 mmol) were dissolved in 24 mL of xylene, and the mixture was heated and stirred at 130 ° C. for 48 hours. After cooling to room temperature, 50 mL of pure water was added, followed by liquid separation extraction with chloroform. After distilling off the solvent under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: chloroform) to obtain the target 9- (1,4-dichlorophenyl-2-yl) -3- (2-pyridyl). A yellow solid of -9H-carbazole (yield 150 mg, yield 9.4%) was obtained.
 H-NMR(CDCl):δ9.00(d,J=1.32Hz,1H),8.67(d,J=3.89Hz,1H),8.37(d,J=7.60Hz,1H),8.21(dd,J=8.85Hz,1.88Hz,1H),8.09(d,J=8.26Hz,1H),7.96(d,J=2.57Hz,1H),7.92-7.89(m,2H),7.78(dd,J=8.72Hz,2.51Hz,1H),7.46(t,J=7.34Hz,1H),7.36-7.31(m,2H),7.19(d,J=8.85Hz,1H),7.12(d,J=8.22Hz,1H).
実験例-29(実施例)
1 H-NMR (CDCl 3 ): δ 9.00 (d, J = 1.32 Hz, 1H), 8.67 (d, J = 3.89 Hz, 1H), 8.37 (d, J = 7.60 Hz) , 1H), 8.21 (dd, J = 8.85 Hz, 1.88 Hz, 1H), 8.09 (d, J = 8.26 Hz, 1H), 7.96 (d, J = 2.57 Hz, 1H), 7.92-7.89 (m, 2H), 7.78 (dd, J = 8.72 Hz, 2.51 Hz, 1H), 7.46 (t, J = 7.34 Hz, 1H), 7.36-7.31 (m, 2H), 7.19 (d, J = 8.85 Hz, 1H), 7.12 (d, J = 8.22 Hz, 1H).
Experimental Example-29 (Example)
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 アルゴン気流下、9-(1,4-ジクロロフェニル-2-イル)-3-(2-ピリジル)-9H-カルバゾール150mg(0.385mmol)、4-(2-ピリジル)フェニルボロン酸169mg(0.849mmol)、酢酸パラジウム1.70mg(0.0077mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル7.30mg(0.0154mmol)、および1Mの炭酸カリウム水溶液0.770mL(0.770mmol)を2.6mLのジオキサンに溶解し、80℃で21時間加熱攪拌した。室温まで冷却後、純水10mLを加えてクロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的の2’-[3-(2-ピリジル)-9H-カルバゾール-9-イル]-4,4’’-(2-ピリジル)-1,1’:4’,1’’-テルフェニルの白色固体(収量80mg、収率33.1%)を得た。 Under an argon stream, 9- (1,4-dichlorophenyl-2-yl) -3- (2-pyridyl) -9H-carbazole 150 mg (0.385 mmol), 4- (2-pyridyl) phenylboronic acid 169 mg (0. 849 mmol), 1.70 mg (0.0077 mmol) of palladium acetate, 7.30 mg (0.0154 mmol) of 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl, and 0.770 mL of 1M aqueous potassium carbonate solution (0.770 mmol) was dissolved in 2.6 mL of dioxane and heated and stirred at 80 ° C. for 21 hours. After cooling to room temperature, 10 mL of pure water was added, followed by liquid separation extraction with chloroform. After distilling off the solvent under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: chloroform) to obtain the desired 2 ′-[3- (2-pyridyl) -9H-carbazol-9-yl]- A white solid of 4,4 ″-(2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl was obtained (yield 80 mg, yield 33.1%).
 H-NMR(DMCO-d):δ9.03(d,J=1.69Hz,1H),8.70-0.67(m,3H),8.40(d,J=7.65Hz,1H),8,22(td,J=8.72Hz,1.82Hz,3H),8.16(d,J=2.51Hz,1H),8.12-8.08(m,4H),8.04(d,J=7.91Hz,1H),7.98-7.87(m,7H),7.52-7.43(m,3H),7.39-7.32(m,4H),7.25(d,J=8.60Hz,1H),7.18(d,J=8.09Hz,1H).
実験例-30(実施例)
Figure JPOXMLDOC01-appb-C000060
 アルゴン気流下、6’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)-1,1’:3’,1’’-テルフェニル210mg(0.490mmol)、2-クロロ-5-フェニルピリジン111mg(0.588mmol)、酢酸パラジウム2.2mg(0.00980mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル9.3mg(0.0196mmol)、および炭酸カリウム135mg(0.980mmol)を、ジオキサン3.2mLおよび水330μLの混合溶媒に溶解し、80℃で18時間加熱撹拌した。室温まで冷却後、純水10mLを加えてクロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール=99:1)で精製し、目的の6’-(5-フェニルピリジン-2-イル)-4,4’’-ジ(2-ピリジル)-1,1’:3’,1’’-テルフェニルの白色固体(収量20mg、収率7.6%)を得た。
 H-NMR(CDCl):8.85(d,J=1.65Hz,1H),8.64(d,J=4.83Hz,1H),8.60(d,J=4.77Hz,1H),8.04(d,J=8.44Hz,2H),7.87(d,J=8.31Hz,2H),7.83(d,J=8.01Hz,1H),7.76-7.64(m,8H),7.52(dd,J=8.50Hz,7.89Hz,3H),7.39-7.27(m,5H),7.18-7.12(m,2H),6.96(d,J=8.13Hz,1H).
実験例-31(実施例)
Figure JPOXMLDOC01-appb-C000061
 アルゴン気流下、6’-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-4,4’’-ジ(2-ピリジル)-1,1’:3’,1’’-テルフェニル210mg(0.490mmol)、3-クロロ-6-フェニルピリジン111mg(0.588mmol)、酢酸パラジウム2.2mg(0.00980mmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル9.3mg(0.0196mmol)、および炭酸カリウム135mg(0.980mmol)を、ジオキサン3.2mLおよび水330μLの混合溶媒に溶解し、80℃で18時間加熱撹拌した。室温まで冷却後、純水10mLを加えてクロロホルムで分液抽出した。溶媒を減圧留去後、得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:メタノール=99:1)で精製し、目的の6’-(6-フェニルピリジン-3-イル)-4,4’’-ジ(2-ピリジル)-1,1’:3’,1’’-テルフェニルの白色固体(収量100mg、収率38.0%)を得た。
 H-NMR(CDCl):8.73(d,J=4.65Hz,1H),8.67(d,J=4.65Hz,1H),8.66(d,J=1.65Hz,1H),8.13(d,J=8.50Hz,2H),7.98(d,J=7.03Hz,2H),7.94(d,J=8.44Hz,2H),7.83-7.78(m,6H),7.76-7.70(m,2H),7.60(dd,J=7.83Hz,7.64Hz,2H),7.51(dd,J=8.25Hz,2.26Hz,1H),7.47-7.43(m,2H),7.41-7.37(m,3H),7.28-7.25(m,1H),7.22(dt,J=6.11Hz,2.08Hz,1H).
 試験例-1(実施例)
 有機電界発光素子の作製および評価を以下の様にして行った。基板には、2mm幅の酸化インジウム-スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図を図1に示すような、発光面積4mmの有機電界発光素子を作製した。
1 H-NMR (DMCO-d 6 ): δ 9.03 (d, J = 1.69 Hz, 1H), 8.70-0.67 (m, 3H), 8.40 (d, J = 7.65 Hz) , 1H), 8, 22 (td, J = 8.72 Hz, 1.82 Hz, 3H), 8.16 (d, J = 2.51 Hz, 1H), 8.12-8.08 (m, 4H) , 8.04 (d, J = 7.91 Hz, 1H), 7.98-7.87 (m, 7H), 7.52-7.43 (m, 3H), 7.39-7.32 ( m, 4H), 7.25 (d, J = 8.60 Hz, 1H), 7.18 (d, J = 8.09 Hz, 1H).
Experimental example-30 (Example)
Figure JPOXMLDOC01-appb-C000060
Under a stream of argon, 6 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 3 ′, 1 ″ -terphenyl 210 mg (0.490 mmol), 2-chloro-5-phenylpyridine 111 mg (0.588 mmol), palladium acetate 2.2 mg (0.00980 mmol), 2-dicyclohexylphosphino-2 ′ , 4 ′, 6′-triisopropylbiphenyl 9.3 mg (0.0196 mmol) and potassium carbonate 135 mg (0.980 mmol) are dissolved in a mixed solvent of 3.2 mL of dioxane and 330 μL of water, and heated at 80 ° C. for 18 hours. Stir. After cooling to room temperature, 10 mL of pure water was added, followed by liquid separation extraction with chloroform. After the solvent was distilled off under reduced pressure, the obtained crude product was purified by silica gel column chromatography (developing solvent: chloroform: methanol = 99: 1) to obtain the desired 6 ′-(5-phenylpyridin-2-yl) -4. , 4 ″ -di (2-pyridyl) -1,1 ′: 3 ′, 1 ″ -terphenyl was obtained as a white solid (yield 20 mg, yield 7.6%).
1 H-NMR (CDCl 3 ): 8.85 (d, J = 1.65 Hz, 1H), 8.64 (d, J = 4.83 Hz, 1H), 8.60 (d, J = 4.77 Hz) , 1H), 8.04 (d, J = 8.44 Hz, 2H), 7.87 (d, J = 8.31 Hz, 2H), 7.83 (d, J = 8.01 Hz, 1H), 7 .76-7.64 (m, 8H), 7.52 (dd, J = 8.50 Hz, 7.89 Hz, 3H), 7.39-7.27 (m, 5H), 7.18-7. 12 (m, 2H), 6.96 (d, J = 8.13 Hz, 1H).
Experimental Example-31 (Example)
Figure JPOXMLDOC01-appb-C000061
Under a stream of argon, 6 ′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 3 ′, 1 ″ -terphenyl 210 mg (0.490 mmol), 3-chloro-6-phenylpyridine 111 mg (0.588 mmol), palladium acetate 2.2 mg (0.00980 mmol), 2-dicyclohexylphosphino-2 ′ , 4 ′, 6′-triisopropylbiphenyl 9.3 mg (0.0196 mmol) and potassium carbonate 135 mg (0.980 mmol) are dissolved in a mixed solvent of 3.2 mL of dioxane and 330 μL of water, and heated at 80 ° C. for 18 hours. Stir. After cooling to room temperature, 10 mL of pure water was added, followed by liquid separation extraction with chloroform. After the solvent was distilled off under reduced pressure, the resulting crude product was purified by silica gel column chromatography (developing solvent: chloroform: methanol = 99: 1) to obtain the desired 6 ′-(6-phenylpyridin-3-yl) -4. , 4 ″ -di (2-pyridyl) -1,1 ′: 3 ′, 1 ″ -terphenyl was obtained as a white solid (yield 100 mg, yield 38.0%).
1 H-NMR (CDCl 3 ): 8.73 (d, J = 4.65 Hz, 1H), 8.67 (d, J = 4.65 Hz, 1H), 8.66 (d, J = 1.65 Hz) , 1H), 8.13 (d, J = 8.50 Hz, 2H), 7.98 (d, J = 7.03 Hz, 2H), 7.94 (d, J = 8.44 Hz, 2H), 7 .83-7.78 (m, 6H), 7.76-7.70 (m, 2H), 7.60 (dd, J = 7.83 Hz, 7.64 Hz, 2H), 7.51 (dd, J = 8.25 Hz, 2.26 Hz, 1H), 7.47-7.43 (m, 2H), 7.41-7.37 (m, 3H), 7.28-7.25 (m, 1H) ), 7.22 (dt, J = 6.11 Hz, 2.08 Hz, 1H).
Test Example-1 (Example)
Preparation and evaluation of the organic electroluminescent element were performed as follows. As the substrate, a glass substrate with an ITO transparent electrode in which a 2 mm-wide indium-tin oxide (ITO) film was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface treated by ozone ultraviolet cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 as shown in FIG.
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。その後、図1の1で示す前記ガラス基板上に有機化合物層として、正孔注入層2、正孔輸送層3、発光層4および電子輸送層5を順次成膜し、その後陰極層6を成膜した。正孔注入層2としては、昇華精製したフタロシアニン銅(II)を25nmの膜厚で真空蒸着した。正孔輸送層3としては、N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(NPD)を45nmの膜厚で真空蒸着した。発光層4としては、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(TBADN)と4,4’-ビス[4-(ジ-p-トリルアミノ)フェニルエテン-1-イル]ビフェニル(DPAVBi)を95:5(質量%)の割合で40nmの膜厚で真空蒸着した。電子輸送層5としては、本発明の実験例-1で合成した4,4’’-ジ(2-ピリジル)-4’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルを20nmの膜厚で真空蒸着した。 First, the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 × 10 −4 Pa. Thereafter, a hole injection layer 2, a hole transport layer 3, a light emitting layer 4 and an electron transport layer 5 are sequentially formed as an organic compound layer on the glass substrate indicated by 1 in FIG. Filmed. As the hole injection layer 2, sublimation-purified phthalocyanine copper (II) was vacuum-deposited with a film thickness of 25 nm. As the hole transport layer 3, N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine (NPD) was vacuum-deposited with a film thickness of 45 nm. As the light emitting layer 4, 2-tert-butyl-9,10-di (2-naphthyl) anthracene (TBADN) and 4,4′-bis [4- (di-p-tolylamino) phenylethen-1-yl] Biphenyl (DPAVBi) was vacuum-deposited at a thickness of 40 nm at a ratio of 95: 5 (mass%). The electron transport layer 5 is 4,4 ″ -di (2-pyridyl) -4 ′-[4- (2-pyridyl) phenyl] -1,1 ′: 2 synthesized in Experimental Example-1 of the present invention. ', 1''-Terphenyl was vacuum deposited with a film thickness of 20 nm.
 なお、各有機材料は抵抗加熱方式により成膜し、加熱した化合物を0.6~3.0nm/秒の成膜速度で真空蒸着した。最後に、ITOストライプと直交するようにメタルマスクを配し、陰極層6を成膜した。陰極層6は、フッ化リチウムとアルミニウムをそれぞれ1.0nmと100nmの膜厚で真空蒸着し、2層構造とした。それぞれの膜厚は、触針式膜厚測定計(DEKTAK)で測定した。さらに、この素子を酸素および水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。 Each organic material was formed into a film by a resistance heating method, and the heated compound was vacuum-deposited at a film formation rate of 0.6 to 3.0 nm / second. Finally, a metal mask was disposed so as to be orthogonal to the ITO stripe, and the cathode layer 6 was formed. The cathode layer 6 was made into a two-layer structure by vacuum deposition of lithium fluoride and aluminum with a thickness of 1.0 nm and 100 nm, respectively. Each film thickness was measured with a stylus type film thickness meter (DEKTAK). Furthermore, this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less. For the sealing, a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin (manufactured by Nagase ChemteX Corporation) were used.
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度20mA/cmを流した時の電圧(V)、輝度(cd/m)、電流効率(cd/A)、電力効率(lm/W)を測定した。 A direct current was applied to the produced organic electroluminescence device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON. As light emission characteristics, voltage (V), luminance (cd / m 2 ), current efficiency (cd / A), and power efficiency (lm / W) when a current density of 20 mA / cm 2 was passed were measured.
 作製した素子の測定値は、4.49V、2020cd/m、10.1cd/A、7.07lm/Wであった。 The measured values of the fabricated element were 4.49 V, 2020 cd / m 2 , 10.1 cd / A, 7.07 lm / W.
 試験例-2(実施例)
 試験例-1の電子輸送層5に変えて、実験例-5で得られた2’-(2-ベンゾチアゾリル)-4,4’’-ジ(2-ピリジル)-1,1’:4’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-1と同様に作製及び評価した。作製した素子の測定値は、それぞれ4.98V、1428cd/m、7.14cd/A、4.50lm/Wであった。
Test Example-2 (Example)
2 ′-(2-benzothiazolyl) -4,4 ″ -di (2-pyridyl) -1,1 ′: 4 ′ obtained in Experimental Example-5 instead of the electron transporting layer 5 in Test Example-1. An organic electroluminescent device obtained by vacuum-depositing 1,1 ″ -terphenyl was prepared and evaluated in the same manner as in Test Example-1. The measured values of the fabricated elements were 4.98 V, 1428 cd / m 2 , 7.14 cd / A, and 4.50 lm / W, respectively.
 試験例-3(実施例)
 試験例-1の電子輸送層5に変えて、実験例-6で得られた4-(2-ベンゾチアゾリル)-4’’-(2-ピリジル)-5’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-1と同様に作製及び評価した。作製した素子の測定値は、それぞれ4.83V、1472cd/m、7.36cd/A、4.79lm/Wであった。
Test Example 3 (Example)
4- (2-benzothiazolyl) -4 ″-(2-pyridyl) -5 ′-[4- (2-pyridyl) obtained in Experimental Example-6 instead of the electron transport layer 5 of Test Example-1 An organic electroluminescent device in which phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was vacuum-deposited was prepared and evaluated in the same manner as in Test Example-1. The measured values of the fabricated elements were 4.83 V, 1472 cd / m 2 , 7.36 cd / A, and 4.79 lm / W, respectively.
 試験例-4(実施例)
 試験例-1の電子輸送層5に変えて、実験例-7で得られた4-(2-フェニル-1H-ベンゾイミダゾール-1-イル)-4’’-(2-ピリジル)-5’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-1と同様に作製及び評価した。作製した素子の測定値は、それぞれ4.65V、1944cd/m、9.72cd/A、6.57lm/Wであった。
Test Example 4 (Example)
4- (2-Phenyl-1H-benzoimidazol-1-yl) -4 ″-(2-pyridyl) -5 ′ obtained in Experimental Example-7 in place of the electron transport layer 5 of Test Example-1 An organic electroluminescent device obtained by vacuum-depositing — [4- (2-pyridyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was prepared and evaluated in the same manner as in Test Example-1. The measured values of the fabricated elements were 4.65 V, 1944 cd / m 2 , 9.72 cd / A, and 6.57 lm / W, respectively.
 試験例-5(実施例)
 試験例-1の電子輸送層5に変えて、実験例-8で得られた4-(1-フェニル-1H-ベンゾイミダゾール-2-イル)-4’’-(2-ピリジル)-5’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-1と同様に作製及び評価した。作製した素子の測定値は、それぞれ5.42V、1824cd/m、9.12cd/A、5.29lm/Wであった。また、この素子の連続点灯時の輝度20%劣化時間は、35時間であった。
Test Example-5 (Example)
The 4- (1-phenyl-1H-benzoimidazol-2-yl) -4 ″-(2-pyridyl) -5 ′ obtained in Experimental Example-8 was used in place of the electron transport layer 5 in Test Example-1. An organic electroluminescent device obtained by vacuum-depositing — [4- (2-pyridyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was prepared and evaluated in the same manner as in Test Example-1. The measured values of the fabricated elements were 5.42 V, 1824 cd / m 2 , 9.12 cd / A, and 5.29 lm / W, respectively. Further, the luminance 20% deterioration time during continuous lighting of this element was 35 hours.
 試験例-6(実施例)
 試験例-1の電子輸送層5に変えて、実験例-16で得られた4,4’’-ジ(2-キノリル)-4’-[4-(2-キノリル)フェニル]-1,1’:2’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-1と同様に作製及び評価した。作製した素子の測定値は、それぞれ5.84V、2020cd/m、10.1cd/A、5.43lm/Wであった。
Test Example-6 (Example)
Instead of the electron transport layer 5 of Test Example-1, 4,4 ″ -di (2-quinolyl) -4 ′-[4- (2-quinolyl) phenyl] -1, obtained in Experimental Example-16 An organic electroluminescent device obtained by vacuum-depositing 1 ′: 2 ′, 1 ″ -terphenyl was prepared and evaluated in the same manner as in Test Example-1. The measured values of the fabricated elements were 5.84 V, 2020 cd / m 2 , 10.1 cd / A, and 5.43 lm / W, respectively.
 比較例-1
 試験例-1の電子輸送層5に変えて、Alqを真空蒸着した有機電界発光素子を、試験例-1と同様に作製及び評価した。作製した素子の測定値は、それぞれ7.47V、1661cd/m、8.31cd/A、3.49lm/Wであった。また、この素子の連続点灯時の輝度20%劣化時間は、34時間であった。
 試験例1から6、および比較例1の測定結果を下表にまとめた。
Figure JPOXMLDOC01-appb-T000062
Comparative Example-1
In place of the electron transport layer 5 in Test Example 1, an organic electroluminescent device in which Alq was vacuum-deposited was produced and evaluated in the same manner as in Test Example-1. The measured values of the fabricated elements were 7.47 V, 1661 cd / m 2 , 8.31 cd / A, and 3.49 lm / W, respectively. Further, the luminance 20% deterioration time during continuous lighting of this element was 34 hours.
The measurement results of Test Examples 1 to 6 and Comparative Example 1 are summarized in the following table.
Figure JPOXMLDOC01-appb-T000062
 試験例-7(実施例)
 試験例-1の電子輸送層5に変えて、実験例-13で得られた4-(2-フェニル-1H-ベンゾイミダゾール-1-イル)-4’’-(1-イソキノリル)-5’-[4-(1-イソキノリル)フェニル]-1,1’:2’,1’’-テルフェニルを、発光層4に変えて、2-tert-ブチル-9,10-ジ(3-ビフェニル)アントラセン(下記式、EML-1参照)とN,N’-ジフェニル-N,N’-ビス(4-ビフェニル)ピレン-1,6-ジアミン(下記式、EML-2参照)を95:5(質量%)の割合で真空蒸着した有機電界発光素子を、試験例-1と同様に作製及び評価した。作製した素子の測定値は、それぞれ5.87V、1244cd/m、6.22cd/A、3.33lm/Wであった。また、この素子の連続点灯時の輝度30%劣化時間は、58時間であった。
Figure JPOXMLDOC01-appb-C000063
Test Example-7 (Example)
4- (2-Phenyl-1H-benzoimidazol-1-yl) -4 ″-(1-isoquinolyl) -5 ′ obtained in Experimental Example-13 instead of the electron transport layer 5 in Test Example-1 -[4- (1-Isoquinolyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl is changed to the light-emitting layer 4 to produce 2-tert-butyl-9,10-di (3-biphenyl) ) Anthracene (formula below, see EML-1) and N, N′-diphenyl-N, N′-bis (4-biphenyl) pyrene-1,6-diamine (formula below, see EML-2) 95: 5 An organic electroluminescent device vacuum-deposited at a ratio of (% by mass) was produced and evaluated in the same manner as in Test Example-1. The measured values of the fabricated elements were 5.87 V, 1244 cd / m 2 , 6.22 cd / A, and 3.33 lm / W, respectively. Further, the 30% luminance degradation time during continuous lighting of this element was 58 hours.
Figure JPOXMLDOC01-appb-C000063
 試験例-8(実施例)
 試験例-7の電子輸送層5に変えて、実験例-20で得られた4-(5-メチルピリジン-2-イル)-4’’-(2-フェニル-1H-ベンゾイミダゾール-1-イル)-4’-[4-(5-メチルピリジン-2-イル)フェニル]-1,1’:2’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-7と同様に作製及び評価した。作製した素子の測定値は、それぞれ4.72V、1407cd/m、7.04cd/A、4.68lm/Wであった。
Test Example-8 (Example)
The 4- (5-methylpyridin-2-yl) -4 ″-(2-phenyl-1H-benzoimidazole-1-) obtained in Experimental Example-20 was used instead of the electron transporting layer 5 in Test Example-7. Yl) -4 ′-[4- (5-methylpyridin-2-yl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was vacuum-deposited and an organic electroluminescent device was tested in Test Example 7 Were prepared and evaluated. The measured values of the fabricated elements were 4.72 V, 1407 cd / m 2 , 7.04 cd / A, and 4.68 lm / W, respectively.
 試験例-9(実施例)
 試験例-7の電子輸送層5に変えて、実験例-21で得られた4、4’’’-ジ(2-ピリジル)-2’-[4-(2-ピリジル)フェニル]-1,1’:4’,1’’:4’’,1’’’-クアテルフェニルを真空蒸着した有機電界発光素子を、試験例-7と同様に作製及び評価した。作製した素子の測定値は、それぞれ5.32V、1465cd/m、7.33cd/A、4.33lm/Wであった。
Test Example-9 (Example)
4,4 ′ ″-di (2-pyridyl) -2 ′-[4- (2-pyridyl) phenyl] -1 obtained in Experiment 21 instead of the electron transport layer 5 in Test Example-7 , 1 ′: 4 ′, 1 ″: 4 ″, 1 ′ ″-Quaterphenyl was vacuum-deposited and an organic electroluminescent device was produced and evaluated in the same manner as in Test Example-7. The measured values of the fabricated elements were 5.32 V, 1465 cd / m 2 , 7.33 cd / A, and 4.33 lm / W, respectively.
 試験例-10(実施例)
 試験例-7の電子輸送層5に変えて、実験例-22で得られた4’-[(2-ピリジル)ナフタレン-4-イル]-4,4’’-ジ(2-ピリジル)-1,1’:2’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-7と同様に作製及び評価した。作製した素子の測定値は、それぞれ6.24V、1379cd/m、6.90cd/A、3.47lm/Wであった。
Test Example-10 (Example)
4 ′-[(2-Pyridyl) naphthalen-4-yl] -4,4 ″ -di (2-pyridyl)-obtained in Experimental Example-22 instead of Electron Transport Layer 5 in Test Example-7 An organic electroluminescent device obtained by vacuum-depositing 1,1 ′: 2 ′, 1 ″ -terphenyl was prepared and evaluated in the same manner as in Test Example-7. The measured values of the fabricated elements were 6.24 V, 1379 cd / m 2 , 6.90 cd / A, and 3.47 lm / W, respectively.
 試験例-11(実施例)
 試験例-7の電子輸送層5に変えて、実験例-23で得られた2’-[5-(2-フェニル-1H-ベンゾイミダゾール-1-イル)ピリジン-2イル]-4,4’’-(2-ピリジル)-1,1’:4’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-7と同様に作製及び評価した。作製した素子の測定値は、それぞれ4.96V、1332cd/m、6.66cd/A、4.22lm/Wであった。また、この素子の連続点灯時の輝度30%劣化時間は、40時間であった。
Test Example-11 (Example)
2 ′-[5- (2-Phenyl-1H-benzimidazol-1-yl) pyridin-2-yl] -4,4 obtained in Experimental Example-23 instead of the electron transport layer 5 in Test Example-7 An organic electroluminescent device obtained by vacuum-depositing ″-(2-pyridyl) -1,1 ′: 4 ′, 1 ″ -terphenyl was prepared and evaluated in the same manner as in Test Example-7. The measured values of the fabricated elements were 4.96 V, 1332 cd / m 2 , 6.66 cd / A, and 4.22 lm / W, respectively. Further, the 30% luminance degradation time when the device was continuously lit was 40 hours.
 参考例-1
 試験例-7の電子輸送層5に変えて、特許番号WO2008129912に記載の2,4-ジフェニル-6-[4,4’’-ジ(2-ピリジル)-1,1’:3’,1’’-テルフェニル-5’-イル]-1,3,5-トリアジン(下記式ETL-1参照)
Reference Example-1
In place of the electron transport layer 5 of Test Example-7, 2,4-diphenyl-6- [4,4 ″ -di (2-pyridyl) -1,1 ′: 3 ′, 1 described in Patent No. WO20081299912 ''-Terphenyl-5'-yl] -1,3,5-triazine (see formula ETL-1 below)
Figure JPOXMLDOC01-appb-C000064

を真空蒸着した有機電界発光素子を、試験例-7と同様に作製及び評価した。作製した素子の測定値は、それぞれ6.79V、1193cd/m、5.97cd/A、2.76lm/Wであった。また、この素子の連続点灯時の輝度30%劣化時間は、50時間であった。
 試験例7から11、および参考例1の測定結果を下表にまとめた。
Figure JPOXMLDOC01-appb-C000064

An organic electroluminescent device obtained by vacuum deposition was prepared and evaluated in the same manner as in Test Example-7. The measured values of the fabricated elements were 6.79 V, 1193 cd / m 2 , 5.97 cd / A, and 2.76 lm / W, respectively. Further, the 30% luminance degradation time during continuous lighting of this element was 50 hours.
The measurement results of Test Examples 7 to 11 and Reference Example 1 are summarized in the following table.
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000065
 試験例-12(実施例)
 試験例-1の電子輸送層5に変えて、実験例-2で得られた4-(2-ピリジル)-2’-[4-(2-ピリジル)フェニル]-1,1’:4’,1’’:4’’,1’’’-クアテルフェニルを、発光層4に変えて、2―tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(TBADN)と4,4’-ビス[4-(ジ-p-トリルアミノ)フェニルエテン-1-イル]ビフェニル(DPAVBi)を93:7(質量%)の割合で真空蒸着した有機電界発光素子を、試験例-1と同様に作製及び評価した。作製した素子の測定値は、それぞれ4.53V、2130cd/m、10.65cd/A、7.39lm/Wであった。
Test Example-12 (Example)
4- (2-pyridyl) -2 ′-[4- (2-pyridyl) phenyl] -1,1 ′: 4 ′ obtained in Experiment Example 2 instead of the electron transport layer 5 in Test Example 1 , 1 ″: 4 ″, 1 ′ ″-quaterphenyl is changed to the light-emitting layer 4, and 2-tert-butyl-9,10-di (2-naphthyl) anthracene (TBADN) and 4,4 An organic electroluminescence device obtained by vacuum-depositing '-bis [4- (di-p-tolylamino) phenylethen-1-yl] biphenyl (DPAVBi) at a ratio of 93: 7 (mass%) was the same as in Test Example 1. Were prepared and evaluated. The measured values of the fabricated elements were 4.53 V, 2130 cd / m 2 , 10.65 cd / A, and 7.39 lm / W, respectively.
 比較例-2
 試験例-12の電子輸送層5に変えて、Alqを真空蒸着した有機電界発光素子を、試験例-12と同様に作製及び評価した。作製した素子の測定値は、それぞれ6.04V、1902cd/m、9.51cd/A、4.95lm/Wであった。
 試験例12および比較例2の測定結果を下表にまとめた。
Figure JPOXMLDOC01-appb-T000066
Comparative Example-2
In place of the electron transport layer 5 in Test Example-12, an organic electroluminescent device in which Alq was vacuum-deposited was produced and evaluated in the same manner as in Test Example-12. The measured values of the fabricated elements were 6.04 V, 1902 cd / m 2 , 9.51 cd / A, and 4.95 lm / W, respectively.
The measurement results of Test Example 12 and Comparative Example 2 are summarized in the following table.
Figure JPOXMLDOC01-appb-T000066
 試験例-13(実施例)
 試験例-1の電子輸送層5に変えて、実験例-11で得られた4,4’’-ジ(1-イソキノリル)-4’-[4-(1-イソキノリル)フェニル]-1,1’:2’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-1と同様に、ただし基板の表面処理方法のみオゾン紫外線洗浄から酸素プラズマ洗浄に変更して作製及び評価した。作製した素子の測定値は、それぞれ5.70V、1779cd/m、8.90cd/A、4.90lm/Wであった。
Test Example-13 (Example)
Instead of the electron transport layer 5 of Test Example-1, 4,4 ″ -di (1-isoquinolyl) -4 ′-[4- (1-isoquinolyl) phenyl] -1, obtained in Experiment Example-11, An organic electroluminescent device obtained by vacuum-depositing 1 ′: 2 ′, 1 ″ -terphenyl was prepared in the same manner as in Test Example 1, except that the substrate surface treatment method was changed from ozone ultraviolet cleaning to oxygen plasma cleaning. evaluated. The measured values of the fabricated elements were 5.70 V, 1779 cd / m 2 , 8.90 cd / A, and 4.90 lm / W, respectively.
 比較例-3
 試験例-13の電子輸送層5に変えて、Alqを真空蒸着した有機電界発光素子を、試験例-13と同様に作製及び評価した。作製した素子の測定値は、それぞれ6.20V、1957cd/m、9.79cd/A、4.96lm/Wであった。
 試験例13および比較例3の測定結果を下表にまとめた。
Figure JPOXMLDOC01-appb-T000067
Comparative Example-3
In place of the electron transport layer 5 of Test Example-13, an organic electroluminescent device in which Alq was vacuum-deposited was produced and evaluated in the same manner as Test Example-13. The measured values of the fabricated elements were 6.20 V, 1957 cd / m 2 , 9.79 cd / A, and 4.96 lm / W, respectively.
The measurement results of Test Example 13 and Comparative Example 3 are summarized in the following table.
Figure JPOXMLDOC01-appb-T000067
試験例-14(実施例)
 試験例-1の正孔注入層2に変えて、昇華精製したHILを45nmの膜厚で、正孔輸送層3に変えて、HATとHTLをそれぞれ5nm、30nmの膜厚で、発光層4に変えて、EML-1とEML-2(前記と同じ)を958:42(質量%)の割合で膜厚20nmで、電子輸送層5に変えて、本発明の実験例-27で合成した4,4’’-ジ(4,6-ジメチルピリミジン-2-イル)-4’-[4-(4,6-ジメチルピリミジン-2-イル)フェニル]-1,1’:2’,1’’-テルフェニルを30nmの膜厚で、陰極層6に変えて、Liqと銀マグネシウム、銀をそれぞれ0.45nm、80nmと20nmの膜厚で真空蒸着した有機電界発光素子を、試験例-1と同様に作製した。使用する化合物の構造式と略称を以下に示す。
Figure JPOXMLDOC01-appb-C000068
 作製した素子の電流密度10mA/cmを流した時の評価結果を下表に示した。
Test Example-14 (Example)
Instead of the hole injection layer 2 of Test Example 1, the sublimated and purified HIL is changed to a thickness of 45 nm and changed to the hole transport layer 3, and HAT and HTL are changed to a thickness of 5 nm and 30 nm, respectively. In place of EML-1 and EML-2 (same as above) at a ratio of 958: 42 (mass%) with a film thickness of 20 nm, the electron transport layer 5 was used and synthesized in Experimental Example 27 of the present invention. 4,4 ″ -di (4,6-dimethylpyrimidin-2-yl) -4 ′-[4- (4,6-dimethylpyrimidin-2-yl) phenyl] -1,1 ′: 2 ′, 1 ″ -Organic electroluminescent device in which Liq, silver magnesium, and silver were vacuum-deposited in thicknesses of 0.45 nm, 80 nm, and 20 nm, respectively, by changing the cathode layer 6 to a thickness of 30 nm and the cathode layer 6 were tested. 1 was produced. The structural formulas and abbreviations of the compounds used are shown below.
Figure JPOXMLDOC01-appb-C000068
The evaluation results when a current density of 10 mA / cm 2 is applied to the fabricated device are shown in the table below.
試験例-15(実施例)
 試験例-14の電子輸送層5に変えて、本発明の実験例-25で合成した4-(β-カルボリン-9-イル)-4’’-(2-ピリジル)-5’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-14と同様に作製、及び測定した。作製した素子の評価結果を下表に示した。
Test Example-15 (Example)
4- (β-carbolin-9-yl) -4 ″-(2-pyridyl) -5 ′-[4] synthesized in Experimental Example-25 of the present invention instead of the electron transport layer 5 in Test Example-14 An organic electroluminescent device in which — (2-pyridyl) phenyl] -1,1 ′: 2 ′, 1 ″ -terphenyl was vacuum-deposited was prepared and measured in the same manner as in Test Example-14. The evaluation results of the fabricated devices are shown in the table below.
試験例-16(実施例)
 試験例-14の電子輸送層5に変えて、本発明の実験例-26で得られた2’-[5-(β-カルボリン-9-イル)ピリジン-2-イル]-4,4’’-(2-ピリジル)-1,1’:4’,1’’-テルフェニルを真空蒸着した有機電界発光素子を、試験例-14と同様に作製、測定した。作製した素子の評価結果を下表に示した。
Test Example-16 (Example)
Instead of the electron transport layer 5 in Test Example-14, 2 ′-[5- (β-carbolin-9-yl) pyridin-2-yl] -4,4 ′ obtained in Experiment Example-26 of the present invention was used. An organic electroluminescent device obtained by vacuum-depositing '-(2-pyridyl) -1,1': 4 ', 1''-terphenyl was prepared and measured in the same manner as in Test Example-14. The evaluation results of the fabricated devices are shown in the table below.
参考例-2
 試験例-14の電子輸送層5に変えて、特許番号WO2008129912に記載の2,4-ジフェニル-6-[4,4’’-ジ(2-ピリジル)-1,1’:3’,1’’-テルフェニル-5’-イル]-1,3,5-トリアジン(下記式ETL-1参照)を真空蒸着した有機電界発光素子を、試験例-14と同様に作製、及び測定した。作製した素子の評価結果を下表に示した。
Figure JPOXMLDOC01-appb-C000069

Figure JPOXMLDOC01-appb-T000070
Reference example-2
Instead of the electron transport layer 5 of Test Example-14, 2,4-diphenyl-6- [4,4 ″ -di (2-pyridyl) -1,1 ′: 3 ′, 1 described in Patent No. WO20081299912 An organic electroluminescent device obtained by vacuum-depositing ″ -terphenyl-5′-yl] -1,3,5-triazine (see the following formula ETL-1) was prepared and measured in the same manner as in Test Example-14. The evaluation results of the fabricated devices are shown in the table below.
Figure JPOXMLDOC01-appb-C000069

Figure JPOXMLDOC01-appb-T000070
試験例-17(実施例)
 試験例-14の正孔注入層2の膜厚を65nm、正孔輸送層3HTLの膜厚を10nm、発光層4に変えて、EML-1とEML-2(化53に示す)を954:46(質量%)の割合で膜厚25nmで、電子輸送層5に変えて、実験例-1で得られた4,4’’-ジ(2-ピリジル)-4’-[4-(2-ピリジル)フェニル]-1,1’:2’,1’’-テルフェニルを、陰極層6Liqの膜厚を0.5nmで真空蒸着した有機電界発光素子を、試験例-14と同様に作製、及び測定した。作製した素子の測定値評価結果を下表に示した。また、この素子の連続点灯時の輝度20%劣化時間は105時間であった。
Test Example-17 (Example)
The thickness of the hole injection layer 2 in Test Example-14 was changed to 65 nm, the thickness of the hole transport layer 3HTL was changed to 10 nm, and the light emitting layer 4 was changed to 954 for EML-1 and EML-2 (shown in Chemical Formula 53): The thickness of the film was 25 nm at a ratio of 46 (mass%), and instead of the electron transport layer 5, 4,4 ″ -di (2-pyridyl) -4 ′-[4- (2 -Pyridyl) phenyl] -1,1 ': 2', 1 ''-terphenyl was vacuum-deposited with a cathode layer 6Liq having a thickness of 0.5 nm to produce an organic electroluminescent device in the same manner as in Test Example-14 And measured. The measured value evaluation results of the fabricated devices are shown in the table below. Further, the 20% luminance deterioration time during continuous lighting of this element was 105 hours.
参考例-3
 試験例-17の電子輸送層5に変えて、特許番号WO2009107651に記載の1,3,5-トリ(2,2’-ビピリジン-5-イル)ベンゼン(下記式ETL-2参照)を真空蒸着した有機電界発光素子を、試験例-17と同様に作製、及び測定した。作製した素子の評価結果を下表に示した。また、この素子の連続点灯時の輝度20%劣化時間は、48時間であった。
Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-T000072
Reference Example-3
Instead of the electron transport layer 5 in Test Example-17, 1,3,5-tri (2,2′-bipyridin-5-yl) benzene (see the following formula ETL-2) described in Patent No. WO2009107651 is vacuum deposited. The produced organic electroluminescent device was produced and measured in the same manner as in Test Example-17. The evaluation results of the fabricated devices are shown in the table below. Further, the luminance 20% deterioration time during continuous lighting of this element was 48 hours.
Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-T000072
 本発明の化合物(1)または(1)’を含んでなる薄膜は、高い薄膜安定性、耐熱性、電子輸送性、正孔ブロック能力、酸化還元耐性、耐水性、耐酸素性、電子注入性などを示すため、有機電界発光素子の材料として、とりわけ電子輸送性材料として好適に用いることが出来る。また、本発明の化合物(1)または(1)’は広いエネルギーギャップおよび三重項エネルギーを有しており、蛍光または燐光有機電界発光材料と組合せて用いることが出来る。また、本発明の化合物(1)または(1)’は、その特性から、電子輸送層以外に、発光ホスト層などにも使用可能である。また、電子輸送層として他の化合物と混合もしくは積層しても使用できる。さらに、本化合物は溶解性が高く、蒸着以外にも塗布素子への使用も可能である。これらの素子は上記の効果から消費電力の低減によるバッテリーの消耗抑制、長寿命化による製品寿命の向上、駆動回路への負担低減など大きな効果が見込まれる。
 なお、2012年12月28日に出願された日本特許出願2012-287908号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The thin film comprising the compound (1) or (1) ′ of the present invention has high thin film stability, heat resistance, electron transport properties, hole blocking ability, redox resistance, water resistance, oxygen resistance, electron injection properties, etc. Therefore, it can be suitably used as an organic electroluminescent element material, particularly as an electron transporting material. Further, the compound (1) or (1) ′ of the present invention has a wide energy gap and triplet energy, and can be used in combination with a fluorescent or phosphorescent organic electroluminescent material. In addition, the compound (1) or (1) ′ of the present invention can be used for a light-emitting host layer and the like in addition to the electron transport layer because of its characteristics. Moreover, it can be used even if it mixes or laminates with another compound as an electron carrying layer. Furthermore, this compound has high solubility, and can be used for coating elements in addition to vapor deposition. From these effects, these elements are expected to have significant effects such as suppression of battery consumption by reducing power consumption, improvement of product life by extending life, and reduction of burden on the drive circuit.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2012-287908 filed on Dec. 28, 2012 are cited here as disclosure of the specification of the present invention. Incorporated.
 1.ITO透明電極付きガラス基板
 2.正孔注入層
 3.正孔輸送層
 4.発光層
 5.電子輸送層
 6.陰極層
1. 1. Glass substrate with ITO transparent electrode 2. hole injection layer Hole transport layer 4. 4. Light emitting layer Electron transport layer 6. Cathode layer

Claims (18)

  1.  一般式(1)または(1)’ で示される1,2,4-トリス置換ベンゼン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     Arは、炭素数6から18の芳香族炭化水素基または炭素数3から17の含窒素ヘテロ芳香族基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
     Arは、式(1)では炭素数3から17の1価の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表し、式(1)’では炭素数3から17の2価の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
     Arは、炭素数3から17の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)または-Ar-Arで表される置換基を表す。
     Arは炭素数3から17の含窒素ヘテロアリーレン基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
     Arは炭素数6から18の芳香族炭化水素基、ピリジル基、ピリミジル基、またはピラジル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)を表す。
     なお、Ar、Ar、Arのうち、少なくとも1つは、ピリジル基、ピリミジル基、またはピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の縮合環基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)である。
     R、R、RおよびRは、各々独立に水素原子もしくは炭素数1から4の置換基を表し、RとR、RとR、またはRとRおよびRとRの両方が互いに連結して脂環または芳香環を形成してもよい。
     mは、0または1を表す。
     nは、0、1、または2を表す。
     Yは、下記一般式(A)で示される2価の置換基を表し、Yは、Yとは独立に、 式(1)では下記一般式(A)で示される1価の置換基を表し、式(1)’では下記一般式(A)’で示される置換基を表す。
    Figure JPOXMLDOC01-appb-C000002

    (式(A)、(A)’中、X、XおよびXは、各々独立にCHまたは窒素原子を表し、少なくとも一つはCHを表す。)
     Rは、各々独立して、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、もしくはエステルアルキル基、水素原子、フッ素原子、または対電子を表す。
     なお、構造中のピリジル基とピリジレン基の総数、ピリミジル基とピリミジレン基の総数、およびピラジル基とピラジレン基の総数は、それぞれの基の置換基の有無に拘わらず、各々独立に、0、1、2、または3である。
     また、式中の各水素原子は各々独立に重水素原子であってもよい。
    A 1,2,4-tris-substituted benzene compound represented by the general formula (1) or (1) ′.
    Figure JPOXMLDOC01-appb-C000001
    (Where
    Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms or a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, An ester group or an ester alkyl group, or an optionally substituted fluorine atom).
    Ar 2 in formula (1) is a monovalent nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or fluorine). In formula (1) ′, a divalent nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, An ester group or an ester alkyl group, or an optionally substituted fluorine atom).
    Ar 3 may be substituted with a nitrogen-containing heteroaromatic group having 3 to 17 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). ) Or a substituent represented by —Ar 4 —Ar 5 .
    Ar 4 is a nitrogen-containing heteroarylene group having 3 to 17 carbon atoms (which may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). To express.
    Ar 5 is an aromatic hydrocarbon group having 6 to 18 carbon atoms, pyridyl group, pyrimidyl group, or pyrazyl group (these groups are alkyl groups having 1 to 8 carbon atoms, alkoxy groups, alkoxyalkyl groups, ester groups or esters). An alkyl group or a fluorine atom which may be substituted).
    Note that at least one of Ar 1 , Ar 2 , and Ar 3 is a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups have a carbon number of 1 To 8 alkyl groups, alkoxy groups, alkoxyalkyl groups, ester groups or ester alkyl groups, or a fluorine atom, which may be substituted.
    R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a substituent having 1 to 4 carbon atoms, and R 1 and R 2 , R 3 and R 4 , or R 1 and R 2 and R Both 3 and R 4 may be linked together to form an alicyclic or aromatic ring.
    m represents 0 or 1.
    n represents 0, 1, or 2.
    Y 1 represents a divalent substituent represented by the following general formula (A), and Y 2 is a monovalent substituent represented by the following general formula (A) in formula (1) independently of Y 1. In the formula (1) ′, a substituent represented by the following general formula (A) ′ is represented.
    Figure JPOXMLDOC01-appb-C000002

    (In formulas (A) and (A) ′, X 1 , X 2 and X 3 each independently represent CH or a nitrogen atom, and at least one represents CH.)
    R 5 each independently represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group, or an ester alkyl group, a hydrogen atom, a fluorine atom, or a counter electron.
    Note that the total number of pyridyl groups and pyridylene groups, the total number of pyrimidyl groups and pyrimidylene groups, and the total number of pyrazyl groups and pyrazylene groups in the structure are each independently 0, 1 2, or 3.
    In addition, each hydrogen atom in the formula may independently be a deuterium atom.
  2.  一般式(1)で示される請求項1に記載の1,2,4-トリス置換ベンゼン化合物。
    Figure JPOXMLDOC01-appb-C000003
    The 1,2,4-tris-substituted benzene compound according to claim 1 represented by the general formula (1).
    Figure JPOXMLDOC01-appb-C000003
  3.  Arがピリミジル基、またはピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の縮合環基(これらの基は、1価または2価であり、各々独立して、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)である請求項1または2に記載の1,2,4-トリス置換ベンゼン化合物。 Ar 2 is a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups are monovalent or divalent, each independently an alkyl group having 1 to 8 carbon atoms) The 1,2,4-tris-substituted benzene compound according to claim 1 or 2, which may be substituted with an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom.
  4.  ArおよびArは、各々独立にピリジル基、ピリミジル基、またはピリジン骨格もしくはピリミジン骨格を含む炭素数6から17の縮合環基(これらの基は、1価または2価であり、各々独立して、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)である請求項1~3のいずれか一項に記載の1,2,4-トリス置換ベンゼン化合物。 Ar 1 and Ar 2 are each independently a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 17 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups are monovalent or divalent, and each independently Or an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom, which may be substituted). 1,2,4-tris-substituted benzene compound.
  5.  ArおよびArは、各々独立にピリジル基、ピリミジル基、またはピリジン骨格もしくはピリミジン骨格を含む炭素数6から9の縮合環基(これらの基は、1価または2価であり、各々独立して、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)である請求項1~4のいずれか一項に記載の1,2,4-トリス置換ベンゼン化合物。 Ar 1 and Ar 2 are each independently a pyridyl group, a pyrimidyl group, or a condensed ring group having 6 to 9 carbon atoms including a pyridine skeleton or a pyrimidine skeleton (these groups are monovalent or divalent, each independently And optionally substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). 1,2,4-tris-substituted benzene compound.
  6.  ArとArが、1価と2価の差に拘わらず、同じ置換基である請求項1~5のいずれか一項に記載の1,2,4-トリス置換ベンゼン化合物。 The 1,2,4-tris-substituted benzene compound according to any one of claims 1 to 5, wherein Ar 1 and Ar 2 are the same substituent regardless of the difference between monovalent and divalent.
  7.  Arが、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい1価または2価のピリジル基である請求項1~6のいずれか一項に記載の1,2,4-トリス置換ベンゼン化合物。 2. Ar 2 is an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a monovalent or divalent pyridyl group optionally substituted with a fluorine atom. The 1,2,4-tris-substituted benzene compound according to any one of 1 to 6.
  8.  Arが、炭素数4から11の含窒素ヘテロ芳香族基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)または-Ar-Arで表される置換基であり、且つArが炭素数4から12の含窒素ヘテロアリーレン基(炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)であり、さらにArは炭素数6から18の芳香族炭化水素基、ピリジル基、ピリミジル基、またはピラジル基(これらの基は、各々独立して、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)である請求項1~7のいずれか一項に記載の1,2,4-トリス置換ベンゼン化合物。 Ar 3 may be substituted with a nitrogen-containing heteroaromatic group having 4 to 11 carbon atoms (an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). ) Or —Ar 4 —Ar 5 , and Ar 4 is a nitrogen-containing heteroarylene group having 4 to 12 carbon atoms (an alkyl group, alkoxy group, alkoxyalkyl group, ester having 1 to 8 carbon atoms) Ar 5 is an aromatic hydrocarbon group having 6 to 18 carbon atoms, a pyridyl group, a pyrimidyl group, or a pyrazyl group (which may be substituted with a fluorine atom or an ester alkyl group). Each independently an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl. Group or 1,2,4-tris-substituted benzene compound according to any one of claims 1 to 7, also may) be substituted by a fluorine atom.
  9.  Arがフェニル基またはピリジル基(これらの基は、炭素数1から8のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基、またはフッ素原子で置換されていてもよい)である請求項1~8のいずれか一項に記載の1,2,4-トリス置換ベンゼン化合物。 Ar 5 is a phenyl group or a pyridyl group (these groups may be substituted with an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an alkoxyalkyl group, an ester group or an ester alkyl group, or a fluorine atom). The 1,2,4-tris-substituted benzene compound according to any one of claims 1 to 8.
  10.  1)R、R、RおよびRが水素原子である、2)RとRの両方が炭素数2から4のアルケニル基であって互いに結合して芳香環を形成している、または3)R、R、R、Rのすべてが炭素数2から4のアルケニル基であって、RとR、およびRとRが互いに連結して芳香環を形成している請求項1~9のいずれか一項に記載の1,2,4-トリス置換ベンゼン化合物。 1) R 1 , R 2 , R 3 and R 4 are hydrogen atoms, 2) both R 1 and R 2 are alkenyl groups having 2 to 4 carbon atoms and bonded to each other to form an aromatic ring Or 3) R 1 , R 2 , R 3 , and R 4 are all alkenyl groups having 2 to 4 carbon atoms, and R 1 and R 2 , and R 3 and R 4 are connected to each other to form an aromatic ring The 1,2,4-tris-substituted benzene compound according to any one of claims 1 to 9, wherein
  11.  nが0または1である請求項1~10のいずれか一項に記載の1,2,4-トリス置換ベンゼン化合物。 The 1,2,4-tris-substituted benzene compound according to any one of claims 1 to 10, wherein n is 0 or 1.
  12.  mが1である請求項1~10のいずれか一項に記載の1,2,4-トリス置換ベンゼン化合物。 The 1,2,4-tris-substituted benzene compound according to any one of claims 1 to 10, wherein m is 1.
  13.  請求項1に記載の一般式(1)または(1)’で表される1,2,4-トリス置換ベンゼン化合物の製造方法であり、金属触媒の存在下、または金属触媒および塩基の存在下、一般式(2)で示される化合物に対して、一般式(3)、(4)もしくは(4)’、および(5)で表される化合物を、1段階、2段階、または3段階でカップリング反応(2段階または3段階で反応を行う場合、カップリング反応の順序はいずれの組合せであってもよい)させることを特徴とする、製造方法。
    Figure JPOXMLDOC01-appb-C000004

    (式(1)、(1)’、(2)、(3)、(4)、(4)’、および(5)中の各記号について、請求項1に定義されたものはそれと同じであり、Z、ZおよびZは、各々独立に脱離基を表し、M、MおよびMは、各々独立に金属基、ボロン酸基、またはボロン酸エステル基を表す。)
    A method for producing a 1,2,4-tris-substituted benzene compound represented by the general formula (1) or (1) 'according to claim 1, wherein the compound is present in the presence of a metal catalyst or in the presence of a metal catalyst and a base. The compound represented by the general formula (3), (4) or (4) ′, and (5) is converted to the compound represented by the general formula (2) in one step, two steps, or three steps. A production method characterized by carrying out a coupling reaction (when the reaction is carried out in two steps or three steps, the order of the coupling reaction may be any combination).
    Figure JPOXMLDOC01-appb-C000004

    (For each symbol in formulas (1), (1) ′, (2), (3), (4), (4) ′, and (5), the same as defined in claim 1 is the same as that) And Z 1 , Z 2 and Z 3 each independently represent a leaving group, and M 1 , M 2 and M 3 each independently represent a metal group, a boronic acid group or a boronic acid ester group.)
  14.  請求項1に記載の一般式(1)または(1)’で表される1,2,4-トリス置換ベンゼン化合物の製造方法であり、一般式(7)または(7)’で表される化合物の置換基Wをヘテロ環形成反応によってArに変換することを特徴とする製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(1)、(7)中の各記号について、請求項1に定義されたものはそれと同じであり、Wはヘテロ環形成反応を実施する際に必要な置換基を表す。)
    A method for producing a 1,2,4-tris-substituted benzene compound represented by the general formula (1) or (1) 'according to claim 1, represented by the general formula (7) or (7)' A production method comprising converting a substituent W of a compound into Ar 3 by a heterocycle formation reaction.
    Figure JPOXMLDOC01-appb-C000005
    (For each symbol in the formulas (1) and (7), what is defined in claim 1 is the same as above, and W represents a substituent necessary for carrying out the heterocycle formation reaction.)
  15.  請求項1に記載の一般式(1)または(1)’で表される1,2,4-トリス置換ベンゼン化合物の製造方法であり、金属触媒の存在下、または金属触媒および塩基の存在下、一般式(6)で示される化合物に対して、一般式(3)、および(4)または(4)’で表される化合物を、1段階または2段階でカップリング反応(2段階で反応を行う場合、カップリング反応の順序はいずれの組合せであってもよい)させて一般式(7)または(7)’で表される化合物を製造し、さらに前記一般式(7)で表される化合物のWで表される置換基をヘテロ環形成反応によってArに変換することを特徴とする製造方法。
    (式(1)、(1)’、(3)、(4)、(4)’、(6)、(7)、(7)’中中の各記号について、請求項1に定義されたものはそれと同じであり、ZおよびZは、各々独立に脱離基を表し、MおよびMは、各々独立に金属基、ボロン酸基、またはボロン酸エステル基を表し、Wはヘテロ環形成反応を実施する際に必要な置換基を表す。)
    A method for producing a 1,2,4-tris-substituted benzene compound represented by the general formula (1) or (1) 'according to claim 1, wherein the compound is present in the presence of a metal catalyst or in the presence of a metal catalyst and a base. The compound represented by the general formula (3) and the compound represented by the formula (4) or (4) ′ is coupled to the compound represented by the general formula (6) in one step or two steps (reacted in two steps). The order of the coupling reaction may be any combination) to produce a compound represented by general formula (7) or (7) ′, and further represented by general formula (7) The manufacturing method characterized by converting the substituent represented by W of the compound to Ar 3 by a hetero ring formation reaction.
    (Each symbol in the formulas (1), (1) ′, (3), (4), (4) ′, (6), (7), (7) ′) is defined in claim 1 Are the same, Z 1 and Z 2 each independently represent a leaving group, M 1 and M 2 each independently represent a metal group, a boronic acid group, or a boronic ester group, and W is It represents a substituent necessary for carrying out the heterocycle formation reaction.)
  16.  請求項1に記載の一般式(1)または(1)’で表される1,2,4-トリス置換ベンゼン化合物を含むことを特徴とする有機電界発光素子。 An organic electroluminescent device comprising a 1,2,4-tris-substituted benzene compound represented by the general formula (1) or (1) 'according to claim 1.
  17.  請求項2に記載の一般式(1)で表される1,2,4-トリス置換ベンゼン化合物を含むことを特徴とする有機電界発光素子。 An organic electroluminescent device comprising a 1,2,4-tris-substituted benzene compound represented by the general formula (1) according to claim 2.
  18.  1,2,4-トリス置換ベンゼン化合物を電子輸送層に含む請求項16または請求項17に記載の有機電界発光素子。 The organic electroluminescent element according to claim 16 or 17, comprising a 1,2,4-tris-substituted benzene compound in the electron transport layer.
PCT/JP2013/084972 2012-12-28 2013-12-26 1,2,4-tris-substituted benzene compound and method for producing same, and organic electroluminescent element WO2014104235A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-287908 2012-12-28
JP2012287908 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104235A1 true WO2014104235A1 (en) 2014-07-03

Family

ID=51021309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084972 WO2014104235A1 (en) 2012-12-28 2013-12-26 1,2,4-tris-substituted benzene compound and method for producing same, and organic electroluminescent element

Country Status (3)

Country Link
JP (1) JP6264877B2 (en)
TW (1) TW201443036A (en)
WO (1) WO2014104235A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015051966A (en) * 2013-08-07 2015-03-19 Jnc株式会社 Electron transport material and organic electroluminescent element using the same
CN107759508A (en) * 2017-11-02 2018-03-06 上海道亦化工科技有限公司 A kind of pyridine derivate and application thereof and organic electroluminescence device
US11584739B2 (en) * 2017-06-23 2023-02-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017043886A1 (en) * 2015-09-11 2017-03-16 주식회사 엘지화학 Heterocyclic compound and organic light emitting element using same
KR101841351B1 (en) * 2015-09-11 2018-03-22 주식회사 엘지화학 Heterocyclic compound and organic light emitting device using the same
WO2023085637A1 (en) * 2021-11-11 2023-05-19 주식회사 엘지화학 Compound and organic light-emitting device comprising same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329580A (en) * 2001-02-22 2002-11-15 Canon Inc Organic luminescent element
WO2005072017A1 (en) * 2004-01-21 2005-08-04 Idemitsu Kosan Co., Ltd. Host material for organic electroluminescent element and organic electroluminescent element
WO2005089027A1 (en) * 2004-03-17 2005-09-22 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
JP2008094776A (en) * 2006-10-13 2008-04-24 Mitsui Chemicals Inc Anthracene compound and organic light emitting device containing the compound
WO2011024976A1 (en) * 2009-08-31 2011-03-03 富士フイルム株式会社 Organic electroluminescent element
JP2012190863A (en) * 2011-03-09 2012-10-04 Toyo Ink Sc Holdings Co Ltd Material for organic electroluminescent element and use thereof
WO2013073859A1 (en) * 2011-11-18 2013-05-23 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482772B1 (en) * 2007-04-12 2015-01-15 토소가부시키가이샤 Phenyl-substituted 1,3,5-triazine compound, process for producing the same, and organic electroluminescent device containing the same as component
WO2009107651A1 (en) * 2008-02-26 2009-09-03 保土谷化学工業株式会社 Substituted bipyridyl compound and organic electroluminescent element
US20120319098A1 (en) * 2010-02-25 2012-12-20 Shinshu University Substituted pyridyl compound and organic electroluminescent element
TW201240984A (en) * 2010-12-17 2012-10-16 Tosoh Corp 1,2,4,5-substituted phenyl derivative and method for producing the same derivative, and organic electroluminescent element using the same derivative as constituent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329580A (en) * 2001-02-22 2002-11-15 Canon Inc Organic luminescent element
WO2005072017A1 (en) * 2004-01-21 2005-08-04 Idemitsu Kosan Co., Ltd. Host material for organic electroluminescent element and organic electroluminescent element
WO2005089027A1 (en) * 2004-03-17 2005-09-22 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent element and organic electroluminescent element employing the same
JP2008094776A (en) * 2006-10-13 2008-04-24 Mitsui Chemicals Inc Anthracene compound and organic light emitting device containing the compound
WO2011024976A1 (en) * 2009-08-31 2011-03-03 富士フイルム株式会社 Organic electroluminescent element
JP2012190863A (en) * 2011-03-09 2012-10-04 Toyo Ink Sc Holdings Co Ltd Material for organic electroluminescent element and use thereof
WO2013073859A1 (en) * 2011-11-18 2013-05-23 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015051966A (en) * 2013-08-07 2015-03-19 Jnc株式会社 Electron transport material and organic electroluminescent element using the same
US11584739B2 (en) * 2017-06-23 2023-02-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN107759508A (en) * 2017-11-02 2018-03-06 上海道亦化工科技有限公司 A kind of pyridine derivate and application thereof and organic electroluminescence device

Also Published As

Publication number Publication date
TW201443036A (en) 2014-11-16
JP6264877B2 (en) 2018-01-24
JP2014141467A (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP6822508B2 (en) A benzothienopyrimidine compound, a method for producing the same, and an organic electroluminescent device containing the same.
JP6443107B2 (en) Triazine compound and method for producing the same
US9624193B2 (en) Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
JP5898950B2 (en) 1,3,5-triazine compound, method for producing the same, and organic electroluminescent device comprising them as constituent components
CN105340100B (en) Organic electroluminescent device heterocyclic compound and application thereof
KR102148539B1 (en) Cyclic azine compound, method for producing same, and organic electroluminescent element containing same
JP5761907B2 (en) 1,3,5-triazine derivative, method for producing the same, and organic electroluminescent device comprising them as constituent components
KR102225715B1 (en) Cyclic azine compound having adamantyl group, production method, and organic electroluminescent element containing said compound as constituent
JP6264877B2 (en) 1,2,4-Tris-substituted benzene compound, method for producing the same, and organic electroluminescent device
US11827623B2 (en) Heterocyclic compound, organic light emitting diode comprising same, composition for organic layer of organic light emitting diode, and method for manufacturing organic light emitting diode
JP5660777B2 (en) Cyclic azine derivative, method for producing the same, and organic electroluminescent device comprising the same
JP6136616B2 (en) Cyclic azine compound, method for producing the same, and organic electroluminescent device containing the same
TWI546295B (en) Compound having substituted orthoterphenyl structure, and organic electroluminescent device
WO2015182769A1 (en) Quinazoline and benzoquinazoline compounds and production and use of same
JP6507855B2 (en) Quinazoline compound, method for producing the same, and use thereof
JP6515684B2 (en) Benzoquinazoline compound, method for producing the same, and use thereof
JP6451140B2 (en) Triazine compound, production method thereof, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866955

Country of ref document: EP

Kind code of ref document: A1