WO2014104169A1 - Method for producing modified conjugated diene rubber - Google Patents

Method for producing modified conjugated diene rubber Download PDF

Info

Publication number
WO2014104169A1
WO2014104169A1 PCT/JP2013/084815 JP2013084815W WO2014104169A1 WO 2014104169 A1 WO2014104169 A1 WO 2014104169A1 JP 2013084815 W JP2013084815 W JP 2013084815W WO 2014104169 A1 WO2014104169 A1 WO 2014104169A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
rubber
compound
diene rubber
carbon atoms
Prior art date
Application number
PCT/JP2013/084815
Other languages
French (fr)
Japanese (ja)
Inventor
岳史 杉村
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2014554531A priority Critical patent/JP6187477B2/en
Priority to KR1020157012237A priority patent/KR20150099513A/en
Publication of WO2014104169A1 publication Critical patent/WO2014104169A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives

Definitions

  • the present invention relates to a method for producing a modified conjugated diene rubber, and more specifically, to produce a modified conjugated diene rubber that is excellent in processability and can provide a crosslinked rubber having low heat buildup and wear resistance. On how to do.
  • the present invention also relates to a modified conjugated diene rubber obtained by this production method, a rubber composition containing the modified conjugated diene rubber, and a crosslinked rubber product thereof.
  • a tire obtained from a rubber composition blended with silica is superior in low heat build-up compared to a tire obtained from a rubber composition blended with commonly used carbon black. can do.
  • Patent Document 1 discloses that a conjugated diene monomer is polymerized using an organolithium catalyst in which a polyvinyl aromatic compound and lithium are prepared at a predetermined molar ratio, and the resulting polymerization active terminal has a modifier.
  • a rubber composition obtained by adding a filler such as silica to a modified conjugated diene rubber obtained by reacting.
  • a filler such as silica
  • an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule is used as a polymerization initiator, and at least a conjugated diene compound.
  • a method for producing a radial conjugated diene polymer is disclosed in which a monomer mixture comprising is polymerized.
  • the conjugated diene polymer by making the conjugated diene polymer have a radial structure, when the filler such as silica is added, the affinity with the filler is improved. The wear resistance can be improved.
  • the present invention has been made in view of such a situation, and produces a modified conjugated diene rubber that is excellent in processability and can provide a rubber cross-linked product having low heat buildup and wear resistance. It aims to provide a method for
  • the present inventor has obtained, as a polymerization initiator, an alkali metalated aromatic compound having three or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule. Is used to polymerize a monomer containing at least a conjugated diene compound, and a predetermined modifier is reacted with the active terminal of the resulting conjugated diene rubber, thereby providing excellent processability and low heat build-up.
  • the present inventors have found that a modified conjugated diene rubber can be obtained that can provide a rubber cross-linked product having abrasion resistance, and has completed the present invention.
  • At least a conjugated diene compound is used as a polymerization initiator by using an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule.
  • a compound represented by the following general formula (I) at the active end of the conjugated diene rubber having an active terminus by polymerizing a monomer comprising the first step of obtaining a conjugated diene rubber having an active terminus; And a second step of reacting with a modified conjugated diene rubber.
  • X represents an atom or a reactive group capable of reacting with the active end of the conjugated diene rubber having the active end, or an active end of the conjugated diene rubber having the active end
  • a hydrocarbon group containing any one of atoms and reactive groups capable of reacting, and R 1 to R 4 are each independently a chemical single bond or an alkylene group having 1 to 10 carbon atoms.
  • R 5 to R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and R 5 to R 10 are combinations of R 5 and R 6 , R And may be combined with each other by a combination of 7 and R 8 or a combination of R 9 and R 10 to form a ring structure together with the nitrogen atom.
  • the alkali metalated aromatic compound was obtained by reacting an organic alkali metal compound with an aromatic compound having 3 or more carbon atoms in one molecule directly bonded to an aromatic ring. It is preferable.
  • the aromatic compound having 3 or more carbon atoms directly bonded to the aromatic ring in one molecule is preferably an aromatic compound represented by the following general formula (II).
  • R 11 to R 18 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and 3 or more of R 11 to R 18 have 1 to And p is an integer of 0 to 5, and when p is 2 or more, 3 or more benzene rings are present regardless of the structure represented by the general formula (II). May be condensed with each other at any position.
  • X is a halogen atom
  • R 1 to R 4 are chemical single bonds
  • R 5 to R 10. are preferably each independently an alkyl group having 1 to 5 carbon atoms.
  • the amount of the compound represented by the general formula (I) used in the second step is the alkali metal atom 1 in the alkali metalated aromatic compound used in the first step.
  • the amount of atoms or reactive groups capable of reacting with the active terminal of the conjugated diene rubber is preferably in an amount in the range of 0.05 to 5 moles relative to moles.
  • the present invention also provides a modified conjugated diene rubber obtained by any one of the above production methods. Furthermore, according to the present invention, there is provided a rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber.
  • the rubber composition of the present invention preferably contains a crosslinking agent.
  • a rubber cross-linked product obtained by cross-linking the rubber composition, and a tire comprising the rubber cross-linked product.
  • a modified conjugated diene rubber capable of providing a rubber cross-linked product having excellent processability and low heat buildup and wear resistance, and a rubber composition containing the modified conjugated diene rubber And a rubber cross-linked product obtained by using the rubber composition and having low heat build-up and wear resistance.
  • the method for producing a modified conjugated diene rubber of the present invention uses, as a polymerization initiator, an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule, A first step of polymerizing a monomer comprising at least a conjugated diene compound to obtain a conjugated diene rubber having an active end, and a general formula (5) described later at the active end of the conjugated diene rubber having an active end. And a second step of reacting the compound represented by:
  • the 1st process in the manufacturing method of this invention is demonstrated.
  • the first step uses at least an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule as a polymerization initiator.
  • This is a step of polymerizing a monomer comprising a conjugated diene compound to obtain a conjugated diene rubber having an active end.
  • the polymerization initiator used in the first step of the production method of the present invention is an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to each of an alkali metal atom and an aromatic ring in one molecule.
  • the alkali metal atom of the alkali metalated aromatic compound used as a polymerization initiator in the present invention is not particularly limited, but is preferably lithium, sodium, or potassium, and among these, lithium is Particularly preferred.
  • the aromatic ring of the alkali metalated aromatic compound is not particularly limited as long as it is a conjugated ring having aromaticity, and specific examples include electrically neutral such as a benzene ring, a naphthalene ring, and an anthracene ring.
  • An aromatic hydrocarbon ring an aromatic hydrocarbon ring having a negative charge such as a cyclopentadienyl anion ring, an indenyl anion ring or a fluorenyl anion ring; an aromatic ring containing a heteroatom such as a furan ring or a thiophene ring; And so on.
  • an electrically neutral aromatic hydrocarbon ring is preferable, and a benzene ring is particularly preferable.
  • An alkali metalated aromatic compound having an electrically neutral aromatic hydrocarbon ring is preferably used from the viewpoint of its stability and polymerization activity.
  • the alkali metal atom is usually present in a cation state in the alkali metalated aromatic compound, and the alkali metal atom and the aromatic ring
  • the carbon atom directly bonded to each of the carbon atoms is usually present in an anionic state in order to bind to the alkali metal atom in such a cation state.
  • the alkali metal atom thus present in the cation state and the carbon atom present in the anion state form an ionic bond, thereby directly connecting each other. It is in a combined state.
  • the conjugated diene polymer chain grows with living polymerizability from each of the carbon atoms directly bonded to three or more alkali metal atoms contained in the group compound as the polymerization starting point, the resulting conjugated diene
  • the system rubber may have a radial structure.
  • the alkali metalated aromatic compound used as a polymerization initiator in the present invention has a structure as long as it has three or more carbon atoms directly bonded to each of an alkali metal atom and an aromatic ring in one molecule. Is not particularly limited. For example, even if three or more carbon atoms directly bonded to an alkali metal atom are directly bonded to one aromatic ring, one carbon atom directly bonded to the alkali metal atom is one. Three or more aromatic rings directly bonded as described above may be bonded via a bonding group.
  • R 19 to R 26 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkali metalation having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the ⁇ -position. It represents any atom or group selected from alkyl groups, and three or more of R 19 to R 26 are alkali metalated alkyl groups having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the ⁇ -position.
  • p is an integer of 0 to 5, and when p is 2 or more, regardless of the structure represented by the general formula (1), three or more benzene rings are at arbitrary positions with respect to each other. It may be condensed. For example, when “p” is 2 or more, there are a plurality of R 19 and R 22, but a plurality of R 19 or R 22 may be the same. And it may be different.
  • R 20 , R 21 , R 23 , R 24 , R 25 , and R 26 have 1 to 10 of the alkali metalated alkyl groups, and the remainder of R 20 , R 21 , R 23 , R 24 , R 25 , and R 26 is preferably a hydrogen atom.
  • the alkali metalated aromatic compound in which three or more aromatic rings in which one or more carbon atoms directly bonded to an alkali metal atom are directly bonded via a bonding group is represented by the following general formula (2) Is preferably used.
  • R 27 to R 31 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkali metalation having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the ⁇ -position. It represents any atom or group selected from alkyl groups, and at least one of R 27 to R 31 is an alkali metalated alkyl group having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the ⁇ -position.
  • A represents an arbitrary linking group, and q is an integer of 3 to 100.
  • the above “independently” means that, for example, when q is 2 or more, there are a plurality of R 27 to R 31, but there are a plurality of R 27 , R 28 , R 29 , R 30 , or R 31 also means that they may be the same or different.
  • the method for synthesizing an alkali metalated aromatic compound used as a polymerization initiator in the present invention is not particularly limited, but an organic alkali metal compound is added to an aromatic compound having three or more carbon atoms directly bonded to an aromatic ring in one molecule. Those obtained by reacting are preferably used.
  • the alkali metal compound which has an alkyl group or an aryl group is used suitably, As the specific example, Methyl lithium, methyl sodium, methyl potassium, ethyl lithium, ethyl sodium, ethyl potassium, n-propyl lithium, isopropyl potassium, n-butyl lithium, s-butyl lithium, t-butyl lithium, n-butyl sodium, n-butyl Examples include potassium, n-pentyl lithium, n-amyl lithium, n-octyl lithium, phenyl lithium, naphthyl lithium, phenyl sodium, and naphthyl sodium. Among these, an alkali metal compound having an alkyl group is preferable, a lithium compound having an alkyl group is more preferable, and n-butyl
  • a lithium compound having an alkyl group or an aryl group and potassium having an alkoxyl group may be obtained by mixing with a sodium compound.
  • the potassium or sodium compound having an alkoxyl group used at this time include potassium t-butoxy and sodium t-butoxy.
  • the amount of the potassium or sodium compound having an alkoxyl group is not particularly limited, but is usually 0.1 to 5.0 mol, preferably 0.2 to 3.0 mol based on the lithium compound having an alkyl group or an aryl group. Mol, more preferably 0.3 to 2.0 mol.
  • An aromatic compound having three or more carbon atoms directly bonded to an aromatic ring that can be used for the synthesis of an alkali metalated aromatic compound in one molecule is an alkali metalated aromatic represented by the general formula (1).
  • An aromatic compound for obtaining a compound, an aromatic compound represented by the following general formula (3), and an aromatic compound for obtaining an alkali metalated aromatic compound represented by the above general formula (2) An aromatic compound represented by the following general formula (4) can be exemplified.
  • R 11 to R 18 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and three or more of R 11 to R 18 have 1 to 10 carbon atoms. It is an alkyl group.
  • p is an integer of 0 to 5, and when p is 2 or more, three or more benzene rings are condensed at arbitrary positions with each other regardless of the structure represented by the general formula (3). It may be what you did.
  • the above “independently” means that, for example, when p is 2 or more, there are a plurality of R 11 and R 14, but a plurality of R 11 or R 14 may be the same. , Meaning it may be different.
  • R 12 , R 13 , R 15 , R 16 , R 17 , and R 18 are alkyl groups having 1 to 10 carbon atoms, R 12 , It is preferable that the remainder among R 13 , R 15 , R 16 , R 17 , and R 18 is a hydrogen atom.
  • R 32 to R 36 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and one or more of R 32 to R 36 are alkyl having 1 to 10 carbon atoms. It is a group.
  • A represents an arbitrary linking group, and q is an integer of 3 to 100.
  • the above “independently” means that, for example, when q is 2 or more, there are a plurality of R 32 to R 36, but there are a plurality of R 32 , R 33 , R 34 , R 35 , or R 36 also means that they may be the same or different.
  • aromatic compound represented by the general formula (3) examples include 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, hexamethylbenzene, 1,2,3-triethylbenzene, 1,2,4-triethylbenzene, 1,3,5-triethylbenzene, 1,2,3-tripropylbenzene, 1,2,4-tripropylbenzene, 1,3 Benzenes having three or more alkyl groups such as 1,3,5-tributylbenzene, 1,3,5-tripentylbenzene, 2,3,5-trimethylnaphthalene, And naphthalenes having three or more alkyl groups such as 4,5-trimethylnaphthalene.
  • aromatic compound represented by the general formula (4) examples include o-methylstyrene oligomer, m-methylstyrene oligomer, p-methylstyrene oligomer, p-ethylstyrene oligomer, and p-propylstyrene oligomer.
  • a styrene polymer in which one or more hydrogens on the benzene ring are substituted with an alkyl group such as p-butylstyrene oligomer and p-pentylstyrene oligomer.
  • the alkali metalated aromatic compound used as the polymerization initiator from the viewpoint that the resulting conjugated diene rubber has a radial structure, 3 carbon atoms directly bonded to the aromatic ring are contained in one molecule. It is preferably obtained by reacting an organic alkali metal compound with an aromatic compound having at least one, and from the viewpoint that the resulting conjugated diene rubber tends to have a more radial structure, the above general formula (3) It is especially preferable that it is a thing obtained by making an organic alkali metal compound react with the aromatic compound represented by these.
  • a polymerization initiator in which three or more carbon atoms directly bonded to an alkali metal atom are directly bonded to one aromatic ring, particularly a compound represented by the above general formula (1) is polymerized. It is preferable to use it as an initiator.
  • these alkali metallized aromatic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a method of reacting an organic alkali metal compound with an aromatic compound having 3 or more carbon atoms directly bonded to an aromatic ring in the molecule is not particularly limited, but in an inert solvent under an inert atmosphere.
  • a reaction method is preferably used.
  • the inert solvent used is not particularly limited as long as it can dissolve the compound to be reacted, but a hydrocarbon solvent is preferably used. Specific examples include aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane; alicyclic hydrocarbons such as cyclohexane, cyclopentane, and methylcyclohexane.
  • these solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the amount of the organic alkali metal compound used for the aromatic compound having 3 or more carbon atoms directly bonded to the aromatic ring in the molecule is not particularly limited, but it is directly on the aromatic ring in the aromatic compound.
  • the amount is usually 0.1 to 100 mol, preferably 0.2 to 50 mol, more preferably 0.3 to 10 mol, particularly preferably 0.3 to 1.1 mol, per 1 mol of bonded carbon atoms. .
  • reaction time and reaction temperature of this reaction are not particularly limited, but the reaction time is usually in the range of 1 minute to 10 days, preferably 1 minute to 5 days, and the reaction temperature is usually in the range of ⁇ 50 ° C. to 100 ° C. It is.
  • an organic alkali metal compound when it is reacted with an aromatic compound having 3 or more carbon atoms bonded directly to an aromatic ring in one molecule, it has a coordination ability to an alkali metal atom for the purpose of accelerating the reaction.
  • a compound may coexist.
  • a Lewis base compound containing a hetero atom is preferably used, and among these, a Lewis base compound containing a nitrogen atom or an oxygen atom is particularly preferably used. .
  • Lewis base compounds containing nitrogen or oxygen atoms include chain ether compounds such as diethyl ether, anisole, diphenyl ether, dimethoxybenzene, dimethoxyethane, diglyme and ethylene glycol dibutyl ether; intramolecular such as trimethylamine and triethylamine Tertiary amine compounds having one nitrogen atom in them; Cyclic ether compounds having one oxygen atom in the molecule such as tetrahydrofuran and tetrahydropyran; Nitrogen-containing heterocyclic compounds such as pyridine, lutidine and 1-methylimidazole; Bistetrahydro Cyclic ether compounds having two or more oxygen atoms in the molecule such as furylpropane; N, N, N ′, N′-tetramethylethylenediamine, dipiperidinoethane, 1,4-diazabicyclo [2.2.2 Tertiary amine compounds having two or more nitrogen atoms in the molecule such as
  • the amount of the compound having the coordination ability to the alkali metal atom is not particularly limited, and may be determined according to the strength of the coordination ability.
  • a compound having a coordination ability to an alkali metal atom a chain ether compound that is a relatively weak coordination ability or a tertiary amine compound having one nitrogen atom in the molecule is used.
  • the amount used is usually in the range of 1 to 100 mol, preferably 5 to 50 mol, more preferably 10 to 25 mol, per mol of the alkali metal atom in the organic alkali metal compound to be reacted with the aromatic compound. .
  • a cyclic ether compound or nitrogen-containing heterocyclic compound having one oxygen atom in the molecule as a compound having a coordination ability to an alkali metal atom
  • the amount used is usually in the range of 1 to 100 moles, preferably 1 to 20 moles, more preferably 2 to 10 moles per mole of alkali metal atoms in the organic alkali metal compound to be reacted with the aromatic compound.
  • a compound having a coordination ability to an alkali metal atom a compound having a relatively strong coordination ability, a cyclic ether compound having two or more oxygen atoms in the molecule, or two or more nitrogen atoms in the molecule
  • the amount used is 1 mol of an alkali metal atom in an organic alkali metal compound to be reacted with an aromatic compound. In general, the range is 0.01 to 5 mol, preferably 0.01 to 2 mol, more preferably 0.01 to 1.5 mol.
  • the reaction may not proceed.
  • the compound which has the coordination ability to these alkali metal atoms may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the compound having a coordination ability to an alkali metal atom is a cyclic ether compound having two or more oxygen atoms in the molecule, or a tertiary amine compound having two or more nitrogen atoms in the molecule.
  • the order of addition is not particularly limited.
  • a compound capable of coordinating to the alkali metal atom is added to the system.
  • the order in which the organic alkali metal compound is added to the system after the coexistence of the aromatic compound and the compound having the ability to coordinate to the alkali metal atom is preferred.
  • the alkali metalated aromatic compound obtained in the above manner and having 3 or more carbon atoms directly bonded to the alkali metal atom and the aromatic ring in one molecule Is used as a polymerization initiator to polymerize a monomer comprising at least a conjugated diene compound, thereby obtaining a conjugated diene rubber having an active terminal.
  • the conjugated diene compound is not particularly limited.
  • 1,3-butadiene, isoprene or 1,3-pentadiene is preferable, and 1,3-butadiene and isoprene are particularly preferable.
  • these conjugated diene compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the conjugated diene rubber having an active end is preferably obtained by copolymerizing a monomer containing an aromatic vinyl compound in addition to the conjugated diene compound.
  • the aromatic vinyl compound is not particularly limited, and for example, styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylnaphthalene, dimethylaminomethylstyrene, dimethylaminoethylstyrene, and the like.
  • the conjugated diene rubber having an active terminal used in the present invention preferably contains 50 to 100% by weight of a conjugated diene monomer unit, particularly preferably contains 55 to 95% by weight, and an aromatic vinyl monomer. Those containing 50 to 0% by weight of monomer units are preferred, and those containing 45 to 5% by weight are particularly preferred.
  • the conjugated diene rubber having an active end is optionally added to the conjugated diene compound and the aromatic vinyl compound in addition to the conjugated diene compound and aromatic vinyl compound as long as the object of the present invention is not impaired. It may be formed by copolymerizing a monomer containing a monomer.
  • Examples of other monomers include ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids or acid anhydrides such as acrylic acid, methacrylic acid, and maleic anhydride; methyl methacrylate, acrylic Unsaturated carboxylic acid esters such as ethyl acrylate and butyl acrylate; Non-conjugated dienes such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; etc. Can be mentioned. These monomers are preferably 10% by weight or less, more preferably 5% by weight or less as monomer units in the conjugated diene rubber having an active end.
  • the mode of copolymerization is not particularly limited, and any of random, block, and tapered shapes may be used. Although it is good, a random binding mode is preferable. By making it random, the resulting rubber cross-linked product is excellent in low heat build-up.
  • the use ratio of the alkali metalated aromatic compound and the monomer used as the polymerization initiator to the molecular weight of the target polymer since the polymerization reaction usually proceeds with living properties, the use ratio of the alkali metalated aromatic compound and the monomer used as the polymerization initiator to the molecular weight of the target polymer.
  • the amount of alkali metal in the alkali metalated aromatic compound relative to 1 mol of the monomer is usually 0.000001 to 0.1 mol, preferably 0.00001 to 0.05 mol, Particularly preferably, it is selected in the range of 0.0001 to 0.01 mol. If the amount of the alkali metalated aromatic compound used is too small, the molecular weight of the resulting conjugated diene rubber will be too high, making it difficult to handle, and the polymerization reaction may not proceed sufficiently. On the other hand, if the amount of the alkali metalated aromatic compound used is too large, the molecular weight of the resulting conjugated diene rubber will be too low, and the rubber material
  • a compound having the ability to coordinate to the alkali metal atom as described above is added to the polymerization reaction system for the purpose of controlling the polymerization rate and the microstructure of the resulting conjugated diene rubber. May be.
  • the amount of the compound having a coordination ability to the alkali metal atom is usually 5 mol or less, preferably 4 mol, per 1 mol of the alkali metal atom in the alkali metalated aromatic compound used as the polymerization initiator. Hereinafter, it is particularly preferably 2 mol or less. If the amount of the compound having coordination ability to these alkali metal atoms is too large, the polymerization reaction may be inhibited.
  • the solution containing the compound when preparing the alkali metalated aromatic compound used as a polymerization initiator, when using the compound which has the coordination ability to an alkali metal atom, the solution containing the compound can also be used as it is.
  • the obtained rubber cross-linked product can be excellent in low heat build-up, a cyclic ether compound having two or more oxygen atoms in the molecule, and a tertiary class having two or more nitrogen atoms in the molecule.
  • an alkali metal compound using at least one compound selected from an amine compound and a tertiary amide compound having a nitrogen-heteroatom bond in the molecule as a polymerization initiator (the alkali metal compound here is an alkali metalation compound) Not limited to aromatic compounds, present in the reaction system and includes all alkali metal compounds that act as polymerization initiators)) in the range of 0.02 to 3.0 moles per mole of alkali metal atoms It is preferable to make it. By doing in this way, the conjugated diene rubber
  • a solution polymerization method is preferably used as the polymerization mode of the monomer containing the conjugated diene compound.
  • the solvent used in the solution polymerization method is not particularly limited as long as it is inactive in the polymerization reaction and can dissolve the monomer and the polymerization catalyst.
  • Specific examples of the solvent that can be used include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane; cyclohexane, cyclopentane, and methylcyclohexane.
  • ethers such as tetrahydrofuran, diethyl ether and cyclopentyl methyl ether;
  • an aliphatic hydrocarbon or alicyclic hydrocarbon as a solvent because the polymerization activity becomes high.
  • these solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
  • the concentration of the monomer in the polymerization solution in the solution polymerization method is not particularly limited, but is usually selected in the range of 1 to 50% by weight, preferably 2 to 45% by weight, more preferably 5 to 40% by weight. If the concentration of the monomer in the solution is too low, the productivity of the conjugated diene rubber may be deteriorated. If the concentration is too high, the viscosity of the solution may become too high and handling thereof may be difficult. is there.
  • the polymerization temperature is not particularly limited, but is usually in the range of ⁇ 30 ° C. to + 200 ° C., preferably 0 ° C. to + 180 ° C.
  • the polymerization time is not particularly limited, and is usually in the range of 1 minute to 100 hours.
  • any of batch mode and continuous mode can be adopted.
  • a conjugated diene monomer unit and an aromatic vinyl monomer unit are used.
  • the batch method is preferable in that the randomness of the bond can be easily controlled.
  • a conjugated diene rubber can be obtained by polymerizing a monomer containing a conjugated diene compound.
  • the polymerization reaction usually proceeds with a living property, so that a polymer having an active end exists in the polymerization reaction system. Therefore, in the first step, the conjugated diene rubber obtained by the polymerization reaction has an active end.
  • the compound represented by the general formula (5) described below is reacted with the active end of the conjugated diene rubber obtained by the polymerization reaction.
  • a modified conjugated diene rubber is obtained.
  • the conjugated diene rubber having an active end obtained in the first step in the production method of the present invention has a radial structure, a linear chain in which only one side of the polymer chain is an active end.
  • the number of active ends in one molecule is large and can be efficiently modified, and as a result, the affinity with silica is further improved.
  • it since it has a radial structure due to the polymerization initiator to be used, a multi-branched structure can be obtained without using a coupling agent.
  • the 2nd process in the manufacturing method of the present invention is explained.
  • the modified conjugated diene is produced by reacting the compound represented by the following general formula (5) with the active terminal of the conjugated diene rubber obtained in the first step.
  • This is a process for obtaining a rubber.
  • X reacts with an atom or a reactive group capable of reacting with the active end of the conjugated diene rubber having the active end, or with an active end of the conjugated diene rubber having the active end.
  • Each of R 1 to R 4 is independently a chemical single bond or an alkylene group having 1 to 10 carbon atoms
  • R 5 to R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • R 5 to R 10 are a combination of R 5 and R 6 , R 7 And R 8 or a combination of R 9 and R 10 may be bonded to each other to form a ring structure together with the nitrogen atom.
  • the conjugated diene rubber is modified by reacting the active terminal of the conjugated diene rubber with the compound represented by the general formula (5), so that it has an affinity for a filler such as silica.
  • the modified conjugated diene rubber obtained can be excellent in processability and can give a rubber cross-linked product having low heat buildup and wear resistance.
  • the atom or reactive group capable of reacting with the active terminus of the conjugated diene rubber is not particularly limited as long as it can react with the active terminus.
  • a halogen atom, vinyl group, alkoxyl group, amino group or epoxy group is preferred, an epoxy group or halogen atom is more preferred, a halogen atom is further preferred, and a chlorine atom is particularly preferred.
  • the hydrocarbon group containing any one of the atoms or the reactive groups is not particularly limited, but is preferably a hydrocarbon group having 1 to 10 carbon atoms. This carbon number does not include the number of carbons constituting the reactive group.
  • R 1 to R 4 are each independently a chemical single bond or an alkylene group having 1 to 10 carbon atoms, preferably a chemical single bond or carbon number. It is particularly preferably a 1 to 5 alkylene group and a chemical single bond.
  • R 5 to R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and an alkyl group having 1 to 10 carbon atoms.
  • Group more preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably a methyl group.
  • X is a halogen atom
  • R 1 to R 4 are all chemical single bonds.
  • the usage-amount of the compound represented by the said General formula (5) is not specifically limited,
  • gum per 1 mol of alkali metal atoms in the alkali metalated aromatic compound used as a polymerization initiator is used.
  • the amount of atoms or reactive groups capable of reacting with is preferably 0.05 to 5 mol, more preferably 0.1 to 3 mol, more preferably 0.5 An amount of ⁇ 1.5 mol is particularly preferred.
  • the usage-amount of the compound represented by the said General formula (5) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the method of reacting the compound represented by the general formula (5) with the active terminal of the conjugated diene rubber obtained in the first step is not particularly limited.
  • the solvent used in this case those exemplified as the solvent used for the polymerization of the conjugated diene rubber described above can be used.
  • the conjugated diene rubber having an active end obtained in the first step described above is kept in the polymerization solution used for the polymerization, and is represented by the above general formula (5).
  • the method of adding the compound is simple and preferable.
  • the reaction temperature in the second step is not particularly limited, but is usually 0 to 120 ° C., and the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
  • An anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the modified conjugated diene rubber solution obtained as described above, if desired. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc.
  • an extension oil may be blended to form an oil-extended rubber. Examples of extender oils include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids. When using a petroleum softener, it is preferable that the content of polycyclic aromatics extracted by the method of IP346 (the inspection method of THE INSTITUTE PETROLEUM in the UK) is less than 3%.
  • the amount used is usually 5 to 100 parts by weight with respect to 100 parts by weight of the modified conjugated diene rubber.
  • the modified conjugated diene rubber after the modification reaction can be obtained by removing the rubber from the solution by, for example, reprecipitation, solvent removal under heating, solvent removal under reduced pressure, or solvent removal by steam (steam stripping). It can be separated and obtained from the reaction mixture by a normal operation during separation.
  • the conjugated diene compound when the conjugated diene compound is polymerized in the first step, 3 or more carbon atoms bonded directly to an alkali metal atom and an aromatic ring as a polymerization initiator in one molecule.
  • the conjugated diene polymer chain is living-polymerizable with each of the carbon atoms directly bonded to three or more alkali metal atoms contained in the alkali metalated aromatic compound as the polymerization starting point. Therefore, the resulting conjugated diene rubber can have a radial structure.
  • the compound represented by the general formula (5) is reacted with the active terminal of the conjugated diene rubber having such a radial structure, thereby forming the radial structure.
  • a modified conjugated diene rubber having a terminal modified with the compound represented by the general formula (5) is reacted with the active terminal of the conjugated diene rubber having such a radial structure, thereby forming the radial structure.
  • the modified conjugated diene rubber of the present invention thus obtained has a radial structure, and thus has an improved affinity with a filler and the like, and further modifies its active terminal.
  • the compound represented by the general formula (5) as the modifier, it is possible to effectively prevent the occurrence of gelation (three-dimensional crosslinking) of the conjugated diene rubber during the modification reaction, As a result, workability can be improved.
  • the modified conjugated diene rubber of the present invention is modified with the compound represented by the above general formula (5) because the active end thereof is modified with the compound represented by the above general formula (5). Can drastically improve the affinity with fillers, etc., which can further improve the low heat buildup and wear resistance when blended with silica and other fillers to make rubber cross-linked products. It is what.
  • the ratio of the radial conjugated diene rubber (that is, the conjugated diene rubber having three or more branches) in the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 10 to 100 weights. %, Preferably 20 to 100% by weight.
  • the processability of the modified conjugated diene rubber can be further improved, and the affinity with a filler such as silica can be further increased. .
  • the weight average molecular weight of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 1,000 to 3,000,000 as a value measured by gel permeation chromatography in terms of polystyrene.
  • the range is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited. Is 1.1 to 5.0, particularly preferably 1.2 to 3.0. By setting the molecular weight distribution of the modified conjugated diene rubber within the above range, the resulting rubber cross-linked product is excellent in low heat build-up.
  • the Mooney viscosity (ML 1 + 4, 100 ° C.) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually in the range of 20 to 150, preferably 30 to 120.
  • the processability of the rubber composition becomes excellent.
  • the modified conjugated diene rubber is an oil-extended rubber
  • the Mooney viscosity of the oil-extended rubber is preferably in the above range.
  • the vinyl bond content in the conjugated diene unit portion of the modified conjugated diene rubber obtained by the production method of the present invention is usually 1 to 80 mol%, preferably 5 to 75 mol%.
  • the obtained rubber cross-linked product has excellent low heat build-up.
  • the rubber composition of the present invention is a composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber obtained by the production method of the present invention described above.
  • silica used in the present invention examples include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
  • wet method white carbon mainly containing hydrous silicic acid is preferable.
  • a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used.
  • These silicas can be used alone or in combination of two or more.
  • nitrogen adsorption specific surface area of silica used is preferably 50 ⁇ 300m 2 / g, more preferably 80 ⁇ 220m 2 / g, particularly preferably 100 ⁇ 170m 2 / g.
  • the pH of silica is preferably 5-10.
  • the compounding amount of silica in the rubber composition of the present invention is 10 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 50 to 100 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
  • the rubber composition of the present invention may further contain a silane coupling agent from the viewpoint of further improving the low heat build-up.
  • a silane coupling agent examples include vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, and ⁇ -Trimethoxysilylpropylbenzothiazyl tetrasulfide and the like.
  • These silane coupling agents can be used alone
  • the rubber composition of the present invention may further contain carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite. Among these, furnace black is preferable. These carbon blacks can be used alone or in combination of two or more.
  • the compounding amount of carbon black is usually 120 parts by weight or less with respect to 100 parts by weight of the rubber component in the rubber composition.
  • the method of adding silica to the rubber component containing the modified conjugated diene rubber of the present invention is not particularly limited, and a method of adding and kneading a solid rubber component (dry kneading method) or a modified conjugated diene A method (wet kneading method) that is added to a solution containing a rubber and solidified and dried can be applied.
  • the rubber composition of the present invention preferably further contains a cross-linking agent.
  • the crosslinking agent include sulfur-containing compounds such as sulfur and sulfur halides, organic peroxides, quinone dioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is preferably used.
  • the amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. It is.
  • the rubber composition of the present invention includes a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a filler (excluding silica and carbon black), an activator, and a process oil in accordance with conventional methods.
  • a crosslinking accelerator excluding silica and carbon black
  • a filler excluding silica and carbon black
  • an activator excluding silica and carbon black
  • a process oil in accordance with conventional methods.
  • Plasticizers, lubricants, tackifiers and the like can be blended in the required amounts.
  • crosslinking accelerator When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking activator in combination.
  • the crosslinking accelerator include sulfenamide-based crosslinking accelerators; guanidine-based crosslinking accelerators; thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; A crosslinking accelerator; and the like. Among these, those containing a sulfenamide-based crosslinking accelerator are preferable. These crosslinking accelerators are used alone or in combination of two or more.
  • the amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
  • crosslinking activator examples include higher fatty acids such as stearic acid; zinc oxide. These crosslinking activators are used alone or in combination of two or more.
  • the amount of the crosslinking activator is preferably 0.05 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight based on 100 parts by weight of the rubber component in the rubber composition.
  • the rubber composition of the present invention may be blended with other rubber other than the modified conjugated diene rubber obtained by the production method of the present invention described above.
  • other rubbers include natural rubber, polyisoprene rubber, emulsion-polymerized styrene-butadiene copolymer rubber, solution-polymerized styrene-butadiene copolymer rubber, polybutadiene rubber (polybutadiene containing crystal fibers made of 1,2-polybutadiene polymer).
  • Styrene-isoprene copolymer rubber butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, and the like.
  • natural rubber polyisoprene rubber, polybutadiene rubber, and solution-polymerized styrene-butadiene copolymer rubber are preferable. These rubbers can be used alone or in combination of two or more.
  • the modified conjugated diene rubber obtained by the production method of the present invention preferably occupies 10 to 100% by weight, preferably 40 to 100% by weight of the rubber component in the rubber composition. Is particularly preferred.
  • each component may be kneaded according to a conventional method.
  • a component excluding a thermally unstable component such as a crosslinking agent or a crosslinking accelerator and a modified conjugated diene rubber are used.
  • a heat-unstable component such as a crosslinking agent or a crosslinking accelerator can be mixed with the kneaded product to obtain a desired composition.
  • the kneading temperature of the component excluding the thermally unstable component and the modified conjugated diene rubber is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes. It is.
  • the kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
  • the rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
  • the rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product.
  • crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
  • a heating method a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
  • the rubber cross-linked product of the present invention thus obtained is obtained by using the modified conjugated diene rubber obtained by the above-described production method of the present invention, and therefore is excellent in low heat buildup and wear resistance. is there.
  • the modified conjugated diene rubber obtained by the production method of the present invention is obtained by using the compound represented by the above general formula (5) as a modifier, and therefore, the gelation by the addition of the modifier is not necessary. Therefore, when silica as a filler is added to the modified conjugated diene rubber, the dispersibility of the silica is not lowered due to the influence of the gel content.
  • the rubber cross-linked product of the present invention obtained by using the modified conjugated diene rubber obtained by the production method of the present invention has a good dispersion of silica as a filler, resulting in low heat buildup and wear resistance. It is particularly excellent in properties.
  • the rubber cross-linked product of the present invention makes use of such characteristics, for example, in tires, materials for each part of the tire such as cap tread, base tread, carcass, sidewall, bead part; hose, belt, mat, anti-proof It can be used in various applications such as vibration rubber and other various industrial article materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls; In particular, since the rubber cross-linked product of the present invention is excellent in low heat buildup and wear resistance, it can be suitably used as a tire material, particularly a low fuel consumption tire material.
  • the molecular weight of the rubber was determined as a molecular weight in terms of polystyrene by gel permeation chromatography. Specific measurement conditions were as follows. Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8220” manufactured by Tosoh Corporation) Column: A product manufactured by Tosoh Corporation and having two trade names “GMH-HR-H” connected in series was used. Detector: differential refractometer (trade name “RI-8220” manufactured by Tosoh Corporation) Eluent: Tetrahydrofuran Column temperature: 40 ° C
  • a disk-shaped test piece having an outer diameter of 50 mm, an inner diameter of 15 mm, and a thickness of 10 mm was measured with a load of 1 kgf and a slip ratio of 15% using an FPS abrasion tester manufactured by Ueshima Seisakusho. About this characteristic, it showed with the index
  • the ratio (molar ratio) of unsubstituted product: 1 substituted product: 2 substituted product: 3 substituted product was determined to be 3: 3: 24: 70, and the methyl group lithio of 1,3,5-trimethylbenzene was obtained.
  • the conversion rate is 87%, and the average number of lithium atoms introduced into one molecule of 1,3,5-trimethylbenzene is 2.49.
  • Example 1 [Production of Modified Styrene Butadiene Rubber 1] In a nitrogen atmosphere, an autoclave was charged with 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, and 0.185 parts of tetramethylethylenediamine, and then the polymerization initiator obtained in Production Example 1 0.812 parts of a solution of 1 (lithiated 1,3,5-trimethylbenzene) (the amount of tetramethylethylenediamine present in the reaction system is sufficient for lithiation of 1,3,5-trimethylbenzene). Polymerization was started at 60 ° C., with 2.0 moles per mole of n-butyllithium used.
  • the obtained modified styrene butadiene rubber 1 is an elution component (peak area ratio 15.2%) having an Mn of 164,000, an Mw of 207,000, and a molecular weight distribution (Mw / Mn) of 1.27 in GPC measurement.
  • Elution component (peak area ratio 14.6%) with Mn of 381,000, Mw of 386,000, molecular weight distribution (Mw / Mn), and Mn of 741,000, Mw of 784,000, molecular weight Distribution (Mw / Mn) consists of an elution component (peak area ratio 70.2%) of 1.06.
  • Mn is 443,000
  • Mw is 638,000
  • molecular weight distribution (Mw / Mn) is 1.44.
  • the modified styrene butadiene rubber 1 had a styrene unit content of 21.8% and a vinyl bond content in the butadiene unit of 60.1 mol%. Further, when 1 H-NMR of this modified styrene butadiene rubber 1 was measured, it was confirmed that a tris (dimethylamino) silyl group was introduced. The gel weight fraction of this modified styrene butadiene rubber 1 was measured according to the method described above. The results are shown in Table 1.
  • the kneaded product was cooled to room temperature and then kneaded again in a Brabender type mixer at 110 ° C. for 3 minutes, and then the kneaded product was discharged from the mixer. Next, with an open roll at 50 ° C., the obtained kneaded product, 1.54 parts of sulfur, N-cyclohexyl-2-benzothiazolylsulfenamide (trade name, manufactured by Ouchi Shinsei Chemical Co., Ltd.) as a crosslinking accelerator "Noxeller CZ-G") 1.32 parts and diphenylguanidine (trade name "Noxeller D", manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.), also used as a crosslinking accelerator, are kneaded and then sheet-like rubber The composition was removed.
  • the obtained rubber composition is press-crosslinked at 160 ° C. for 20 minutes to obtain a crosslinked rubber, and the obtained crosslinked rubber (test piece) is evaluated for wear resistance and low heat build-up. I did it.
  • the results are shown in Table 1.
  • Table 1 the evaluation results of wear resistance and low heat build-up were shown as ratios when the results of Comparative Example 1 described later were set to 100, respectively.
  • Example 2 [Production of modified styrene butadiene rubber 2] The blending amount of tris (dimethylamino) chlorosilane as a modifier is changed from 0.157 parts to 0.079 parts (amount to be 0.5 moles relative to 1 mole of Li contained in the polymerization initiator 1). A modified styrene butadiene rubber 2 was produced in the same manner as in Example 1 except that. The obtained modified styrene butadiene rubber 2 is an elution component (peak area ratio 15.1%) having an Mn of 161,000, an Mw of 202,000, and a molecular weight distribution (Mw / Mn) of 1.25 in GPC measurement.
  • elution component peak area ratio 15.1%
  • the modified styrene butadiene rubber 2 had a styrene unit content of 21.7% and a vinyl bond content in the butadiene unit of 59.9 mol%. Further, when 1 H-NMR was measured for the modified styrene butadiene rubber 2, it was confirmed that a tris (dimethylamino) silyl group was introduced. The gel weight fraction of this modified styrene butadiene rubber 2 was measured according to the method described above. The results are shown in Table 1.
  • Example 1 a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 2 obtained above was used in place of the modified styrene butadiene rubber 1.
  • Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
  • modified styrene butadiene rubber 3 As a modifier, instead of 0.157 part of tris (dimethylamino) chlorosilane, 0.487 part of tetramethoxysilane (amount to be 4.0 moles relative to 1 mole of Li contained in the polymerization initiator 1). A modified styrene butadiene rubber 3 was produced in the same manner as in Example 1 except that it was used. The obtained modified styrene butadiene rubber 3 as a whole had a Mn of 545,000, Mw of 1,004,000, and a molecular weight distribution (Mw / Mn) of 1.84 in GPC measurement.
  • the modified styrene butadiene rubber 3 had a styrene unit content of 21.7% and a vinyl bond content in the butadiene unit of 59.8 mol%. And about this modified styrene butadiene rubber 3, according to the above-mentioned method, the gel weight fraction was measured. The results are shown in Table 1.
  • Example 1 a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 3 obtained above was used in place of the modified styrene butadiene rubber 1.
  • Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
  • the modified styrene butadiene rubber 4 had a styrene unit content of 22.3% and a vinyl bond content in the butadiene unit of 60.0 mol%. And about this modified styrene butadiene rubber 4, according to the above-mentioned method, the gel weight fraction was measured. The results are shown in Table 1.
  • Example 1 a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 4 obtained above was used instead of the modified styrene butadiene rubber 1.
  • Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
  • the obtained modified styrene butadiene rubber 5 as a whole had a Mn of 437,000, Mw of 646,000, and molecular weight distribution (Mw / Mn) of 1.48 in GPC measurement.
  • the modified styrene-butadiene rubber 5 had a styrene unit content of 22.3% and a vinyl bond content in the butadiene unit of 60.0 mol%.
  • the gel weight fraction was measured. The results are shown in Table 1.
  • Example 1 a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 5 obtained above was used instead of the modified styrene butadiene rubber 1.
  • Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
  • the obtained modified styrene butadiene rubber 6 had an overall Mn of 438,000, Mw of 626,000, and molecular weight distribution (Mw / Mn) of 1.43 in GPC measurement.
  • the modified styrene butadiene rubber 6 had a styrene unit content of 21.5% and a vinyl bond content in the butadiene unit of 59.6 mol%.
  • the gel weight fraction was measured. The results are shown in Table 1.
  • Example 1 a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 6 obtained above was used in place of the modified styrene butadiene rubber 1.
  • Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
  • the obtained modified styrene butadiene rubber 7 had a Mn of 295,000, a Mw of 312,000, and a molecular weight distribution (Mw / Mn) of 1.06 in GPC measurement.
  • the modified styrene butadiene rubber 7 had a styrene unit content of 21.1% and a vinyl bond content in the butadiene unit of 59.8 mol%.
  • 1 H-NMR was measured for the modified styrene butadiene rubber 7, it was confirmed that a tris (dimethylamino) silyl group was introduced.
  • the gel weight fraction was measured according to the method described above. The results are shown in Table 1.
  • Example 1 a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 7 obtained above was used in place of the modified styrene butadiene rubber 1.
  • Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
  • an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring as a polymerization initiator is used, and the above general formula ( When the compound represented by 5) is used, the gel content of the modified conjugated diene rubber is not substantially contained, and the rubber cross-linked product obtained by using this has low heat build-up and resistance. It was excellent in abrasion (Examples 1 and 2).
  • the resulting modified conjugated diene rubber contains a large amount of gel, is inferior in workability, and further, when a rubber cross-linked product is used.
  • the results were inferior in low heat build-up and wear resistance (Comparative Example 1).
  • the resulting modified conjugated diene rubber had a low gel content, but was a crosslinked rubber product. In this case, the results were inferior in low heat generation and wear resistance (Comparative Examples 2 and 3).
  • the resulting modified conjugated diene rubber contains a large amount of gel, is inferior in processability, and is a crosslinked rubber product. In such a case, the result was inferior to the low exothermic property (Comparative Example 4).
  • the resulting modified conjugated diene rubber does not substantially contain a gel component. The results were inferior in heat generation and wear resistance, and in particular, inferior in low heat generation (Comparative Example 5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials Engineering (AREA)
  • Polymerization Catalysts (AREA)

Abstract

Provided is a method for producing a modified conjugated diene rubber which comprises a step of reacting a compound represented by general formula (I) with an active terminal of a polymer obtained by polymerizing a monomer that contains at least a conjugated diene compound using, as a polymerization initiator, an alkali metal aromatic compound which has three or more carbon atoms directly bound to an alkali metal atom and an aromatic ring in one molecule. (I) (In the general formula (I), X is an atom or a reaction group that is capable of reacting with the active terminal of the polymer or a hydrocarbon group that includes either the atom or the reaction group, R1 to R4 are each independently a chemical single bond or an alkylene group having 1 to 10 carbon atoms, and R5 to R10 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, wherein R5 to R10 may be bound together in a combination of R5 and R6, a combination of R7 and R8, or a combination of R9 and R10 to form a ring structure with a nitrogen atom.)

Description

変性共役ジエン系ゴムの製造方法Process for producing modified conjugated diene rubber
 本発明は、変性共役ジエン系ゴムの製造方法に関し、より詳しくは、加工性に優れ、かつ、低発熱性および耐摩耗性を備えたゴム架橋物を与えることのできる変性共役ジエン系ゴムを製造するための方法に関する。また、本発明は、この製造方法により得られる変性共役ジエン系ゴム、該変性共役ジエン系ゴムを含有するゴム組成物およびそのゴム架橋物にも関する。 The present invention relates to a method for producing a modified conjugated diene rubber, and more specifically, to produce a modified conjugated diene rubber that is excellent in processability and can provide a crosslinked rubber having low heat buildup and wear resistance. On how to do. The present invention also relates to a modified conjugated diene rubber obtained by this production method, a rubber composition containing the modified conjugated diene rubber, and a crosslinked rubber product thereof.
 近年、環境問題や資源問題から、自動車用のタイヤにも低発熱性が強く求められており、さらに耐久性の面からは優れた耐摩耗性が求められている。シリカを配合したゴム組成物から得られるタイヤは、通常使用されるカーボンブラックを配合したゴム組成物から得られるタイヤに比べて低発熱性に優れるため、これを用いることにより低燃費なタイヤを製造することができる。 In recent years, due to environmental problems and resource problems, automobile tires are also strongly required to have low heat build-up, and from the viewpoint of durability, excellent wear resistance is also required. A tire obtained from a rubber composition blended with silica is superior in low heat build-up compared to a tire obtained from a rubber composition blended with commonly used carbon black. can do.
 このようなゴム組成物においては、ゴムとシリカとの親和性を高めるために、ゴムの重合活性末端等に変性剤を反応させることにより、シリカに対する親和性の高い官能基を導入する技術が知られている。 In such a rubber composition, in order to increase the affinity between rubber and silica, a technique for introducing a functional group having a high affinity for silica by reacting a modifier with the polymerization active terminal of the rubber is known. It has been.
 たとえば、特許文献1には、ポリビニル芳香族化合物とリチウムとを所定のモル比で調製した有機リチウム系触媒を用いて共役ジエン系単量体を重合し、得られた重合活性末端に、変性剤を反応させてなる変性共役ジエン系ゴムに、シリカ等の充填剤を添加してなるゴム組成物が開示されている。しかしながら、上記特許文献1の技術では、ゴムとシリカとの親和性は向上するものの、低発熱性が十分でなく、また、耐摩耗性に劣るという問題があり、そのため、タイヤ用のゴムとして用いた場合に、必要とされる特性を必ずしも満足することができないものであった。 For example, Patent Document 1 discloses that a conjugated diene monomer is polymerized using an organolithium catalyst in which a polyvinyl aromatic compound and lithium are prepared at a predetermined molar ratio, and the resulting polymerization active terminal has a modifier. There is disclosed a rubber composition obtained by adding a filler such as silica to a modified conjugated diene rubber obtained by reacting. However, in the technique of Patent Document 1, although the affinity between rubber and silica is improved, there is a problem that low heat generation is not sufficient and wear resistance is inferior. The required characteristics cannot always be satisfied.
 これに対し、たとえば、特許文献2では、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を重合開始剤として用い、少なくとも共役ジエン化合物を含んでなる単量体混合物を重合する、放射状共役ジエン重合体の製造方法が開示されている。この特許文献2においては、共役ジエン重合体を放射状の構造を有するものとすることにより、シリカ等の充填剤を添加した際における、充填剤との親和性を改善することで、低発熱性および耐摩耗性の向上を可能としている。 In contrast, for example, in Patent Document 2, an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule is used as a polymerization initiator, and at least a conjugated diene compound. A method for producing a radial conjugated diene polymer is disclosed in which a monomer mixture comprising is polymerized. In this Patent Document 2, by making the conjugated diene polymer have a radial structure, when the filler such as silica is added, the affinity with the filler is improved. The wear resistance can be improved.
特開2006-306962号公報JP 2006-306962 A 国際公開第2010/131646号International Publication No. 2010/131646
 しかしながら、この特許文献2に記載の製造方法により得られた放射状共役ジエン重合体に、充填剤を添加して得られるゴム組成物によれば、低発熱性および耐摩耗性の向上が可能となるものの、さらなる性能向上という観点より、低発熱性および耐摩耗性のさらなる改善が望まれている。また、この特許文献2においては、得られた放射状共役ジエン重合体の活性末端を変性剤により変性させることにより、低発熱性および耐摩耗性の向上を図っている一方で、この特許文献2の技術では、用いる変性剤の種類と変性条件によっては、放射状共役ジエン重合体の一部がゲル化してしまい、そのため、加工性が悪化してしまう場合があるという問題もあった。 However, according to the rubber composition obtained by adding a filler to the radial conjugated diene polymer obtained by the production method described in Patent Document 2, low heat build-up and wear resistance can be improved. However, further improvement in low heat buildup and wear resistance is desired from the viewpoint of further performance improvement. In Patent Document 2, the active end of the obtained radial conjugated diene polymer is modified with a modifier to improve low heat buildup and wear resistance. In the technology, depending on the type of modifying agent used and the modification conditions, a part of the radial conjugated diene polymer is gelled, so that there is a problem that workability may be deteriorated.
 本発明は、このような実状に鑑みてなされたものであり、加工性に優れ、かつ、低発熱性および耐摩耗性を備えたゴム架橋物を与えることのできる変性共役ジエン系ゴムを製造するための方法を提供することを目的とする。 The present invention has been made in view of such a situation, and produces a modified conjugated diene rubber that is excellent in processability and can provide a rubber cross-linked product having low heat buildup and wear resistance. It aims to provide a method for
 本発明者は、上記目的を達成するために鋭意研究した結果、重合開始剤として、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、得られる共役ジエン系ゴムの活性末端に所定の変性剤を反応させることで、加工性に優れ、かつ、低発熱性および耐摩耗性を備えたゴム架橋物を与えることのできる変性共役ジエン系ゴムが得られることを見出し、本発明を完成させるに至った。 As a result of diligent research to achieve the above object, the present inventor has obtained, as a polymerization initiator, an alkali metalated aromatic compound having three or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule. Is used to polymerize a monomer containing at least a conjugated diene compound, and a predetermined modifier is reacted with the active terminal of the resulting conjugated diene rubber, thereby providing excellent processability and low heat build-up. The present inventors have found that a modified conjugated diene rubber can be obtained that can provide a rubber cross-linked product having abrasion resistance, and has completed the present invention.
 すなわち、本発明によれば、重合開始剤として、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系ゴムを得る第1工程と、前記活性末端を有する共役ジエン系ゴムの活性末端に、下記一般式(I)で表される化合物を反応させる第2工程と、を備える変性共役ジエン系ゴムの製造方法が提供される。
Figure JPOXMLDOC01-appb-C000003
 (上記一般式(I)において、Xは、前記活性末端を有する共役ジエン系ゴムの活性末端と反応することができる原子もしくは反応基、または、前記活性末端を有する共役ジエン系ゴムの活性末端と反応することができる原子および反応基のいずれか一つを含む炭化水素基であり、R~Rは、それぞれ独立して、化学的な単結合または炭素数1~10のアルキレン基であり、R~R10は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~12のアリール基であり、R~R10は、RとRとの組み合わせ、RとRとの組み合わせ、またはRとR10との組み合わせにて互いに結合して、窒素原子とともに環構造を形成していてもよい。)
That is, according to the present invention, at least a conjugated diene compound is used as a polymerization initiator by using an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule. A compound represented by the following general formula (I) at the active end of the conjugated diene rubber having an active terminus by polymerizing a monomer comprising the first step of obtaining a conjugated diene rubber having an active terminus; And a second step of reacting with a modified conjugated diene rubber.
Figure JPOXMLDOC01-appb-C000003
(In the above general formula (I), X represents an atom or a reactive group capable of reacting with the active end of the conjugated diene rubber having the active end, or an active end of the conjugated diene rubber having the active end) A hydrocarbon group containing any one of atoms and reactive groups capable of reacting, and R 1 to R 4 are each independently a chemical single bond or an alkylene group having 1 to 10 carbon atoms. , R 5 to R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and R 5 to R 10 are combinations of R 5 and R 6 , R And may be combined with each other by a combination of 7 and R 8 or a combination of R 9 and R 10 to form a ring structure together with the nitrogen atom.)
 本発明の製造方法においては、前記第1工程において、前記共役ジエン化合物に加えて芳香族ビニル化合物を含んでなる単量体を共重合することが好ましい。
 本発明の製造方法においては、前記アルカリ金属化芳香族化合物が、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させて得られたものであることが好ましい。
 本発明の製造方法においては、前記芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物が、下記一般式(II)で表される芳香族化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 (上記一般式(II)において、R11~R18は、それぞれ独立して水素原子、または炭素数1~10のアルキル基であり、R11~R18のうち3個以上が炭素数1~10のアルキル基である。pは、0~5の整数であり、pが2以上である場合には、上記一般式(II)で表される構造にかかわらず、3個以上存在するベンゼン環は互いに任意の位置で縮合したものであってもよい。)
 本発明の製造方法においては、前記一般式(I)で表される化合物中における、Xが、ハロゲン原子であり、R~Rが、化学的な単結合であり、R~R10が、それぞれ独立して、炭素数1~5のアルキル基であることが好ましい。
 本発明の製造方法においては、前記第2工程における、前記一般式(I)で表される化合物の使用量を、前記第1工程で用いた前記アルカリ金属化芳香族化合物中のアルカリ金属原子1モルに対し、前記共役ジエン系ゴムの活性末端と反応することができる原子または反応基の量が、0.05~5モルの範囲となる量とすることが好ましい。
In the production method of the present invention, in the first step, it is preferable to copolymerize a monomer containing an aromatic vinyl compound in addition to the conjugated diene compound.
In the production method of the present invention, the alkali metalated aromatic compound was obtained by reacting an organic alkali metal compound with an aromatic compound having 3 or more carbon atoms in one molecule directly bonded to an aromatic ring. It is preferable.
In the production method of the present invention, the aromatic compound having 3 or more carbon atoms directly bonded to the aromatic ring in one molecule is preferably an aromatic compound represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000004
(In the above general formula (II), R 11 to R 18 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and 3 or more of R 11 to R 18 have 1 to And p is an integer of 0 to 5, and when p is 2 or more, 3 or more benzene rings are present regardless of the structure represented by the general formula (II). May be condensed with each other at any position.)
In the production method of the present invention, in the compound represented by the general formula (I), X is a halogen atom, R 1 to R 4 are chemical single bonds, and R 5 to R 10. Are preferably each independently an alkyl group having 1 to 5 carbon atoms.
In the production method of the present invention, the amount of the compound represented by the general formula (I) used in the second step is the alkali metal atom 1 in the alkali metalated aromatic compound used in the first step. The amount of atoms or reactive groups capable of reacting with the active terminal of the conjugated diene rubber is preferably in an amount in the range of 0.05 to 5 moles relative to moles.
 また、本発明によれば、上記いずれかの製造方法により得られる変性共役ジエン系ゴムが提供される。
 さらに、本発明によれば、上記変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物が提供される。
 本発明のゴム組成物は、架橋剤をさらに含有してなるものであることが好ましい。
The present invention also provides a modified conjugated diene rubber obtained by any one of the above production methods.
Furthermore, according to the present invention, there is provided a rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber.
The rubber composition of the present invention preferably contains a crosslinking agent.
 また、本発明によれば、上記ゴム組成物を架橋してなるゴム架橋物、および該ゴム架橋物を含んでなるタイヤが提供される。 Further, according to the present invention, there are provided a rubber cross-linked product obtained by cross-linking the rubber composition, and a tire comprising the rubber cross-linked product.
 本発明によれば、加工性に優れ、かつ、低発熱性および耐摩耗性を備えたゴム架橋物を与えることのできる変性共役ジエン系ゴム、ならびに、該変性共役ジエン系ゴムを含有するゴム組成物、および該ゴム組成物を用いて得られ、低発熱性および耐摩耗性を備えたゴム架橋物を提供することができる。 According to the present invention, a modified conjugated diene rubber capable of providing a rubber cross-linked product having excellent processability and low heat buildup and wear resistance, and a rubber composition containing the modified conjugated diene rubber And a rubber cross-linked product obtained by using the rubber composition and having low heat build-up and wear resistance.
<変性共役ジエン系ゴムの製造方法>
 本発明の変性共役ジエン系ゴムの製造方法は、重合開始剤として、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系ゴムを得る第1工程と、前記活性末端を有する共役ジエン系ゴムの活性末端に、後述する一般式(5)で表される化合物を反応させる第2工程と、を備える。
<Method for producing modified conjugated diene rubber>
The method for producing a modified conjugated diene rubber of the present invention uses, as a polymerization initiator, an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule, A first step of polymerizing a monomer comprising at least a conjugated diene compound to obtain a conjugated diene rubber having an active end, and a general formula (5) described later at the active end of the conjugated diene rubber having an active end. And a second step of reacting the compound represented by:
<第1工程>
 まず、本発明の製造方法における、第1工程について説明する。本発明の製造方法における、第1工程は、重合開始剤として、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系ゴムを得る工程である。
<First step>
First, the 1st process in the manufacturing method of this invention is demonstrated. In the production method of the present invention, the first step uses at least an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule as a polymerization initiator. This is a step of polymerizing a monomer comprising a conjugated diene compound to obtain a conjugated diene rubber having an active end.
 本発明の製造方法の第1工程において用いられる重合開始剤は、アルカリ金属原子と芳香環とのそれぞれに直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物である。本発明で重合開始剤として用いられるアルカリ金属化芳香族化合物が有するアルカリ金属原子は、特に限定されるものではないが、リチウム、ナトリウム、またはカリウムであることが好ましく、これらのなかでも、リチウムが特に好ましい。また、アルカリ金属化芳香族化合物が有する芳香環も、芳香族性を有する共役環であれば特に限定されず、具体例としては、ベンゼン環、ナフタレン環、アントラセン環などの電気的に中性な芳香族炭化水素環;シクロペンタジエニルアニオン環、インデニルアニオン環、フルオレニルアニオン環などの負電荷を有する芳香族炭化水素環;フラン環、チオフェン環などのヘテロ原子を含有する芳香環;などを挙げることができる。これらのなかでも、電気的に中性な芳香族炭化水素環が好ましく、ベンゼン環が特に好ましい。電気的に中性な芳香族炭化水素環を有するアルカリ金属化芳香族化合物が、その安定性や重合活性の観点から好ましく用いられる。
 なお、本発明で用いるアルカリ金属化芳香族化合物においては、前記アルカリ金属原子は、アルカリ金属化芳香族化合物内において、通常、カチオンの状態で存在しており、また、アルカリ金属原子と芳香環とのそれぞれに直接結合する炭素原子は、このようなカチオンの状態のアルカリ金属原子と結合するために、通常、アニオンの状態で存在している。そして、本発明で用いるアルカリ金属化芳香族化合物中においては、このようにカチオンの状態で存在するアルカリ金属原子と、アニオンの状態で存在する炭素原子とがイオン結合を形成し、これにより互いに直接結合した状態となっている。
The polymerization initiator used in the first step of the production method of the present invention is an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to each of an alkali metal atom and an aromatic ring in one molecule. The alkali metal atom of the alkali metalated aromatic compound used as a polymerization initiator in the present invention is not particularly limited, but is preferably lithium, sodium, or potassium, and among these, lithium is Particularly preferred. The aromatic ring of the alkali metalated aromatic compound is not particularly limited as long as it is a conjugated ring having aromaticity, and specific examples include electrically neutral such as a benzene ring, a naphthalene ring, and an anthracene ring. An aromatic hydrocarbon ring; an aromatic hydrocarbon ring having a negative charge such as a cyclopentadienyl anion ring, an indenyl anion ring or a fluorenyl anion ring; an aromatic ring containing a heteroatom such as a furan ring or a thiophene ring; And so on. Among these, an electrically neutral aromatic hydrocarbon ring is preferable, and a benzene ring is particularly preferable. An alkali metalated aromatic compound having an electrically neutral aromatic hydrocarbon ring is preferably used from the viewpoint of its stability and polymerization activity.
In the alkali metalated aromatic compound used in the present invention, the alkali metal atom is usually present in a cation state in the alkali metalated aromatic compound, and the alkali metal atom and the aromatic ring The carbon atom directly bonded to each of the carbon atoms is usually present in an anionic state in order to bind to the alkali metal atom in such a cation state. In the alkali metalated aromatic compound used in the present invention, the alkali metal atom thus present in the cation state and the carbon atom present in the anion state form an ionic bond, thereby directly connecting each other. It is in a combined state.
 本発明においては、重合開始剤として、アルカリ金属原子と芳香環とのそれぞれに直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を用いることにより、該アルカリ金属化芳香族化合物に含まれる3個以上のアルカリ金属原子が直接結合した炭素原子のそれぞれを重合開始点として、共役ジエン系重合体鎖がリビング重合性を伴って成長することとなるため、得られる共役ジエン系ゴムが放射状の構造を有するものとすることができる。 In the present invention, by using an alkali metalated aromatic compound having 3 or more carbon atoms in one molecule directly bonded to each of an alkali metal atom and an aromatic ring as a polymerization initiator, Since the conjugated diene polymer chain grows with living polymerizability from each of the carbon atoms directly bonded to three or more alkali metal atoms contained in the group compound as the polymerization starting point, the resulting conjugated diene The system rubber may have a radial structure.
 また、本発明において重合開始剤として用いられるアルカリ金属化芳香族化合物は、アルカリ金属原子と芳香環とのそれぞれに直接結合した炭素原子を1分子中に3個以上有するものであれば、その構造は特に限定されず、例えば、1つの芳香環に対して、アルカリ金属原子と直接結合した炭素原子が3個以上直接結合したものであっても、アルカリ金属原子と直接結合した炭素原子が1個以上直接結合した芳香環が、結合基を介して、3個以上結合したものであってもよい。 In addition, the alkali metalated aromatic compound used as a polymerization initiator in the present invention has a structure as long as it has three or more carbon atoms directly bonded to each of an alkali metal atom and an aromatic ring in one molecule. Is not particularly limited. For example, even if three or more carbon atoms directly bonded to an alkali metal atom are directly bonded to one aromatic ring, one carbon atom directly bonded to the alkali metal atom is one. Three or more aromatic rings directly bonded as described above may be bonded via a bonding group.
 1つの芳香環に対して、アルカリ金属原子と直接結合した炭素原子が3個以上直接結合してなるアルカリ金属化芳香族化合物としては、下記一般式(1)で表される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)において、R19~R26は、それぞれ独立して水素原子、炭素数1~10のアルキル基、およびアルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基から選択されるいずれかの原子または基を表し、R19~R26の3個以上が、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基である。また、pは0~5の整数であり、pが2以上である場合には、上記一般式(1)で表される構造にかかわらず、3個以上存在するベンゼン環は互いに任意の位置で縮合したものであってもよい。なお、上記「それぞれ独立して」とは、例えば、pが2以上である場合、R19およびR22はそれぞれ複数存在するが、複数あるR19またはR22も、それぞれ同一であってもよいし、異なっていてもよいとの意味である。
As an alkali metalated aromatic compound in which three or more carbon atoms directly bonded to an alkali metal atom are directly bonded to one aromatic ring, a compound represented by the following general formula (1) is preferably used. .
Figure JPOXMLDOC01-appb-C000005
In the general formula (1), R 19 to R 26 each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkali metalation having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the α-position. It represents any atom or group selected from alkyl groups, and three or more of R 19 to R 26 are alkali metalated alkyl groups having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the α-position. Further, p is an integer of 0 to 5, and when p is 2 or more, regardless of the structure represented by the general formula (1), three or more benzene rings are at arbitrary positions with respect to each other. It may be condensed. For example, when “p” is 2 or more, there are a plurality of R 19 and R 22, but a plurality of R 19 or R 22 may be the same. And it may be different.
 上記一般式(1)において、pは0で、R20、R21、R23、R24、R25、およびR26のうち3個が、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基であり、R20、R21、R23、R24、R25、およびR26のうち残りが、水素原子であることが好ましい。 In the general formula (1), p is 0, and three of R 20 , R 21 , R 23 , R 24 , R 25 , and R 26 have 1 to 10 of the alkali metalated alkyl groups, and the remainder of R 20 , R 21 , R 23 , R 24 , R 25 , and R 26 is preferably a hydrogen atom.
 あるいは、アルカリ金属原子と直接結合した炭素原子が1個以上直接結合した芳香環が、結合基を介して、3個以上結合してなるアルカリ金属化芳香族化合物としては、下記一般式(2)で表される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(2)において、R27~R31は、それぞれ独立して水素原子、炭素数1~10のアルキル基、およびアルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基から選択されるいずれかの原子または基を表し、R27~R31の1個以上が、アルカリ金属原子がα位に結合した炭素数1~10のアルカリ金属化アルキル基である。また、Aは任意の結合基を表し、qは3~100の整数である。なお、上記「それぞれ独立して」とは、例えば、qが2以上である場合、R27~R31はそれぞれ複数存在するが、複数あるR27、R28、R29、R30、またはR31も、それぞれ同一であってもよいし、異なっていてもよいとの意味である。
Alternatively, the alkali metalated aromatic compound in which three or more aromatic rings in which one or more carbon atoms directly bonded to an alkali metal atom are directly bonded via a bonding group is represented by the following general formula (2) Is preferably used.
Figure JPOXMLDOC01-appb-C000006
In the general formula (2), R 27 to R 31 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, and an alkali metalation having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the α-position. It represents any atom or group selected from alkyl groups, and at least one of R 27 to R 31 is an alkali metalated alkyl group having 1 to 10 carbon atoms in which an alkali metal atom is bonded to the α-position. A represents an arbitrary linking group, and q is an integer of 3 to 100. The above “independently” means that, for example, when q is 2 or more, there are a plurality of R 27 to R 31, but there are a plurality of R 27 , R 28 , R 29 , R 30 , or R 31 also means that they may be the same or different.
 本発明において重合開始剤として用いられるアルカリ金属化芳香族化合物の合成方法は特に限定されないが、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させて得られたものが好適に用いられる。 The method for synthesizing an alkali metalated aromatic compound used as a polymerization initiator in the present invention is not particularly limited, but an organic alkali metal compound is added to an aromatic compound having three or more carbon atoms directly bonded to an aromatic ring in one molecule. Those obtained by reacting are preferably used.
 本発明で用いるアルカリ金属化芳香族化合物を合成するために用いられる有機アルカリ金属化合物としては、特に限定されないが、アルキル基またはアリール基を有するアルカリ金属化合物が好適に用いられ、その具体例としては、メチルリチウム、メチルナトリウム、メチルカリウム、エチルリチウム、エチルナトリウム、エチルカリウム、n-プロピルリチウム、イソプロピルカリウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、n-ブチルナトリウム、n-ブチルカリウム、n-ペンチルリチウム、n-アミルリチウム、n-オクチルリチウム、フェニルリチウム、ナフチルリチウム、フェニルナトリウム、ナフチルナトリウムなどが挙げられる。これらのなかでも、アルキル基を有するアルカリ金属化合物が好ましく、アルキル基を有するリチウム化合物がより好ましく、n-ブチルリチウムが特に好ましい。 Although it does not specifically limit as an organic alkali metal compound used in order to synthesize | combine the alkali metalated aromatic compound used by this invention, The alkali metal compound which has an alkyl group or an aryl group is used suitably, As the specific example, , Methyl lithium, methyl sodium, methyl potassium, ethyl lithium, ethyl sodium, ethyl potassium, n-propyl lithium, isopropyl potassium, n-butyl lithium, s-butyl lithium, t-butyl lithium, n-butyl sodium, n-butyl Examples include potassium, n-pentyl lithium, n-amyl lithium, n-octyl lithium, phenyl lithium, naphthyl lithium, phenyl sodium, and naphthyl sodium. Among these, an alkali metal compound having an alkyl group is preferable, a lithium compound having an alkyl group is more preferable, and n-butyllithium is particularly preferable.
 本発明で用いるアルカリ金属化芳香族化合物を合成するために、アルキル(またはアリール)カリウムやアルキル(またはアリール)ナトリウムを用いる場合は、アルキル基またはアリール基を有するリチウム化合物と、アルコキシル基を有するカリウムまたはナトリウム化合物とを混合することにより、目的とするカリウムまたはナトリウム化合物を得てもよい。このとき用いられるアルコキシル基を有するカリウムまたはナトリウム化合物としては、t-ブトキシカリウムやt-ブトキシナトリウムが例示される。アルコキシル基を有するカリウムまたはナトリウム化合物の使用量は、特に限定されないが、アルキル基またはアリール基を有するリチウム化合物に対して、通常0.1~5.0モル、好ましくは0.2~3.0モル、より好ましくは0.3~2.0モルである。 When alkyl (or aryl) potassium or alkyl (or aryl) sodium is used to synthesize the alkali metalated aromatic compound used in the present invention, a lithium compound having an alkyl group or an aryl group and potassium having an alkoxyl group Alternatively, the target potassium or sodium compound may be obtained by mixing with a sodium compound. Examples of the potassium or sodium compound having an alkoxyl group used at this time include potassium t-butoxy and sodium t-butoxy. The amount of the potassium or sodium compound having an alkoxyl group is not particularly limited, but is usually 0.1 to 5.0 mol, preferably 0.2 to 3.0 mol based on the lithium compound having an alkyl group or an aryl group. Mol, more preferably 0.3 to 2.0 mol.
 アルカリ金属化芳香族化合物の合成に用いられ得る芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物としては、上記一般式(1)で表されるアルカリ金属化芳香族化合物を得るための芳香族化合物である、下記一般式(3)で表される芳香族化合物や、上記一般式(2)で表されるアルカリ金属化芳香族化合物を得るための芳香族化合物である、下記一般式(4)で表される芳香族化合物を例示することができる。 An aromatic compound having three or more carbon atoms directly bonded to an aromatic ring that can be used for the synthesis of an alkali metalated aromatic compound in one molecule is an alkali metalated aromatic represented by the general formula (1). An aromatic compound for obtaining a compound, an aromatic compound represented by the following general formula (3), and an aromatic compound for obtaining an alkali metalated aromatic compound represented by the above general formula (2) An aromatic compound represented by the following general formula (4) can be exemplified.
Figure JPOXMLDOC01-appb-C000007
 上記一般式(3)中、R11~R18は、それぞれ独立して水素原子、または炭素数1~10のアルキル基であり、R11~R18のうち3個以上が炭素数1~10のアルキル基である。pは、0~5の整数であり、pが2以上である場合には、上記一般式(3)で表される構造にかかわらず、3個以上存在するベンゼン環は互いに任意の位置で縮合したものであってもよい。なお、上記「それぞれ独立して」とは、例えば、pが2以上である場合、R11およびR14はそれぞれ複数存在するが、複数あるR11またはR14も、同一であってもよいし、異なっていてもよいとの意味である。
Figure JPOXMLDOC01-appb-C000007
In the general formula (3), R 11 to R 18 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and three or more of R 11 to R 18 have 1 to 10 carbon atoms. It is an alkyl group. p is an integer of 0 to 5, and when p is 2 or more, three or more benzene rings are condensed at arbitrary positions with each other regardless of the structure represented by the general formula (3). It may be what you did. Note that the above “independently” means that, for example, when p is 2 or more, there are a plurality of R 11 and R 14, but a plurality of R 11 or R 14 may be the same. , Meaning it may be different.
 上記一般式(3)において、pは0で、R12、R13、R15、R16、R17、およびR18のうち3個が炭素数1~10のアルキル基であり、R12、R13、R15、R16、R17、およびR18のうち残りが水素原子であることが好ましい。 In the general formula (3), p is 0, and three of R 12 , R 13 , R 15 , R 16 , R 17 , and R 18 are alkyl groups having 1 to 10 carbon atoms, R 12 , It is preferable that the remainder among R 13 , R 15 , R 16 , R 17 , and R 18 is a hydrogen atom.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(4)中、R32~R36は、それぞれ独立して水素原子、または炭素数1~10のアルキル基であり、R32~R36の1個以上が炭素数1~10のアルキル基である。また、Aは任意の結合基を表し、qは、3~100の整数である。なお、上記「それぞれ独立して」とは、例えば、qが2以上である場合、R32~R36はそれぞれ複数存在するが、複数あるR32、R33、R34、R35、またはR36も、同一であってもよいし、異なっていてもよいとの意味である。 In the general formula (4), R 32 to R 36 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and one or more of R 32 to R 36 are alkyl having 1 to 10 carbon atoms. It is a group. A represents an arbitrary linking group, and q is an integer of 3 to 100. The above “independently” means that, for example, when q is 2 or more, there are a plurality of R 32 to R 36, but there are a plurality of R 32 , R 33 , R 34 , R 35 , or R 36 also means that they may be the same or different.
 上記一般式(3)で表される芳香族化合物の具体例としては、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン、1,3,5-トリメチルベンゼン、ヘキサメチルベンゼン、1,2,3-トリエチルベンゼン、1,2,4-トリエチルベンゼン、1,3,5-トリエチルベンゼン、1,2,3-トリプロピルベンゼン、1,2,4-トリプロピルベンゼン、1,3,5-トリプロピルベンゼン、1,3,5-トリブチルベンゼン、1,3,5-トリペンチルベンゼン、などの3個以上のアルキル基を有するベンゼン類;2,3,5-トリメチルナフタレン、1,4,5-トリメチルナフタレンなどの3個以上のアルキル基を有するナフタレン類;などを挙げることができる。 Specific examples of the aromatic compound represented by the general formula (3) include 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, hexamethylbenzene, 1,2,3-triethylbenzene, 1,2,4-triethylbenzene, 1,3,5-triethylbenzene, 1,2,3-tripropylbenzene, 1,2,4-tripropylbenzene, 1,3 Benzenes having three or more alkyl groups such as 1,3,5-tributylbenzene, 1,3,5-tripentylbenzene, 2,3,5-trimethylnaphthalene, And naphthalenes having three or more alkyl groups such as 4,5-trimethylnaphthalene.
 また、上記一般式(4)で表される芳香族化合物の具体例としては、o-メチルスチレンオリゴマー、m-メチルスチレンオリゴマー、p-メチルスチレンオリゴマー、p-エチルスチレンオリゴマー、p-プロピルスチレンオリゴマー、p-ブチルスチレンオリゴマー、p-ペンチルスチレンオリゴマーなどのベンゼン環上の1つ以上の水素がアルキル基に置換されたスチレンの重合体などを挙げることができる。 Specific examples of the aromatic compound represented by the general formula (4) include o-methylstyrene oligomer, m-methylstyrene oligomer, p-methylstyrene oligomer, p-ethylstyrene oligomer, and p-propylstyrene oligomer. And a styrene polymer in which one or more hydrogens on the benzene ring are substituted with an alkyl group, such as p-butylstyrene oligomer and p-pentylstyrene oligomer.
 本発明においては、重合開始剤として用いられるアルカリ金属化芳香族化合物としては、得られる共役ジエン系ゴムが放射状の構造を有するという観点より、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させて得られたものであることが好ましく、得られる共役ジエン系ゴムがより放射状の構造になりやすいという観点より、上記一般式(3)で表される芳香族化合物に、有機アルカリ金属化合物を反応させて得られたものであることが特に好ましい。したがって、本発明においては、1つの芳香環に対して、アルカリ金属原子と直接結合した炭素原子が3個以上直接結合した重合開始剤、特に、上記一般式(1)で表される化合物を重合開始剤として用いることが好ましい。なお、これらのアルカリ金属化芳香族化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the present invention, as the alkali metalated aromatic compound used as the polymerization initiator, from the viewpoint that the resulting conjugated diene rubber has a radial structure, 3 carbon atoms directly bonded to the aromatic ring are contained in one molecule. It is preferably obtained by reacting an organic alkali metal compound with an aromatic compound having at least one, and from the viewpoint that the resulting conjugated diene rubber tends to have a more radial structure, the above general formula (3) It is especially preferable that it is a thing obtained by making an organic alkali metal compound react with the aromatic compound represented by these. Therefore, in the present invention, a polymerization initiator in which three or more carbon atoms directly bonded to an alkali metal atom are directly bonded to one aromatic ring, particularly a compound represented by the above general formula (1) is polymerized. It is preferable to use it as an initiator. In addition, these alkali metallized aromatic compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させる方法は特に限定されるものではないが、不活性雰囲気下、不活性溶媒中で反応させる方法が好ましく用いられる。用いられる不活性溶媒は、反応させる化合物を溶解させ得る溶媒であれば特に限定されないが、炭化水素系溶媒を用いることが好ましい。具体的には、n-ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素;シクロヘキサン、シクロペンタン、メチルシクロヘキサンなどの脂環族炭化水素;などが挙げられる。なお、これらの溶媒は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。また、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に対する、有機アルカリ金属化合物の使用量も特に限定されるものではないが、芳香族化合物中の芳香環に直接結合した炭素原子1モルに対して、通常0.1~100モル、好ましくは0.2~50モル、より好ましくは0.3~10モル、特に好ましくは0.3~1.1モルである。この反応の反応時間、反応温度も特に限定されないが、反応時間は、通常1分~10日、好ましくは1分~5日の範囲であり、反応温度は、通常-50℃~100℃の範囲である。 A method of reacting an organic alkali metal compound with an aromatic compound having 3 or more carbon atoms directly bonded to an aromatic ring in the molecule is not particularly limited, but in an inert solvent under an inert atmosphere. A reaction method is preferably used. The inert solvent used is not particularly limited as long as it can dissolve the compound to be reacted, but a hydrocarbon solvent is preferably used. Specific examples include aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane; alicyclic hydrocarbons such as cyclohexane, cyclopentane, and methylcyclohexane. In addition, these solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them. Further, the amount of the organic alkali metal compound used for the aromatic compound having 3 or more carbon atoms directly bonded to the aromatic ring in the molecule is not particularly limited, but it is directly on the aromatic ring in the aromatic compound. The amount is usually 0.1 to 100 mol, preferably 0.2 to 50 mol, more preferably 0.3 to 10 mol, particularly preferably 0.3 to 1.1 mol, per 1 mol of bonded carbon atoms. . The reaction time and reaction temperature of this reaction are not particularly limited, but the reaction time is usually in the range of 1 minute to 10 days, preferably 1 minute to 5 days, and the reaction temperature is usually in the range of −50 ° C. to 100 ° C. It is.
 また、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させるにあたり、反応を促進させる目的で、アルカリ金属原子への配位能を有する化合物を共存させてもよい。アルカリ金属原子への配位能を有する化合物としては、ヘテロ原子を含有するルイス塩基化合物が好適に用いられ、これらのなかでも、窒素原子または酸素原子を含有するルイス塩基化合物が特に好適に用いられる。窒素原子または酸素原子を含有するルイス塩基化合物の具体例としては、ジエチルエーテル、アニソール、ジフェニルエーテル、ジメトキシベンゼン、ジメトキシエタン、ジグライム、エチレングリコールジブチルエーテルなどの鎖状エーテル化合物;トリメチルアミン、トリエチルアミンなどの分子内に窒素原子を1つ有する第3級アミン化合物;テトラヒドロフラン、テトラヒドロピランなどの分子内に酸素原子を1つ有する環状エーテル化合物;ピリジン、ルチジン、1-メチルイミダゾールなどの含窒素複素環化合物;ビステトラヒドロフリルプロパンなどの分子内に酸素原子を2つ以上有する環状エーテル化合物;N,N,N’,N’-テトラメチルエチレンジアミン、ジピペリジノエタン、1,4-ジアザビシクロ[2.2.2]オクタン、(-)-スパルテイン、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミンなどの分子内に窒素原子を2つ以上有する第3級アミン化合物;ヘキサメチルホスホアミドなどの分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物;などが挙げられる。 In addition, when an organic alkali metal compound is reacted with an aromatic compound having 3 or more carbon atoms bonded directly to an aromatic ring in one molecule, it has a coordination ability to an alkali metal atom for the purpose of accelerating the reaction. A compound may coexist. As the compound having coordination ability to an alkali metal atom, a Lewis base compound containing a hetero atom is preferably used, and among these, a Lewis base compound containing a nitrogen atom or an oxygen atom is particularly preferably used. . Specific examples of Lewis base compounds containing nitrogen or oxygen atoms include chain ether compounds such as diethyl ether, anisole, diphenyl ether, dimethoxybenzene, dimethoxyethane, diglyme and ethylene glycol dibutyl ether; intramolecular such as trimethylamine and triethylamine Tertiary amine compounds having one nitrogen atom in them; Cyclic ether compounds having one oxygen atom in the molecule such as tetrahydrofuran and tetrahydropyran; Nitrogen-containing heterocyclic compounds such as pyridine, lutidine and 1-methylimidazole; Bistetrahydro Cyclic ether compounds having two or more oxygen atoms in the molecule such as furylpropane; N, N, N ′, N′-tetramethylethylenediamine, dipiperidinoethane, 1,4-diazabicyclo [2.2.2 Tertiary amine compounds having two or more nitrogen atoms in the molecule such as octane, (−)-sparteine, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine; hexamethylphosphoamide, etc. And tertiary amide compounds having a nitrogen-heteroatom bond in the molecule.
 アルカリ金属原子への配位能を有する化合物の使用量は、特に限定されず、その配位能の強さに応じて決定すればよい。例えば、アルカリ金属原子への配位能を有する化合物として、比較的に配位能が弱い化合物である、鎖状エーテル化合物や分子内に窒素原子を1つ有する第3級アミン化合物を用いる場合、その使用量は、芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、通常1~100モル、好ましくは5~50モル、より好ましくは10~25モルの範囲である。また、アルカリ金属原子への配位能を有する化合物として、配位能が中程度である化合物である、分子内に酸素原子を1つ有する環状エーテル化合物や含窒素複素環化合物を用いる場合、その使用量は、芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、通常1~100モル、好ましくは1~20モル、より好ましくは2~10モルの範囲である。また、アルカリ金属原子への配位能を有する化合物として、比較的に配位能が強い化合物である、分子内に酸素原子を2つ以上有する環状エーテル化合物や分子内に窒素原子を2つ以上有する第3級アミン化合物や分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物を用いる場合、その使用量は、芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、通常0.01~5モル、好ましくは0.01~2モル、より好ましくは0.01~1.5モルの範囲である。アルカリ金属原子への配位能を有する化合物の使用量が多すぎると、反応が進行しなくなるおそれがある。なお、これらのアルカリ金属原子への配位能を有する化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The amount of the compound having the coordination ability to the alkali metal atom is not particularly limited, and may be determined according to the strength of the coordination ability. For example, as a compound having a coordination ability to an alkali metal atom, a chain ether compound that is a relatively weak coordination ability or a tertiary amine compound having one nitrogen atom in the molecule is used. The amount used is usually in the range of 1 to 100 mol, preferably 5 to 50 mol, more preferably 10 to 25 mol, per mol of the alkali metal atom in the organic alkali metal compound to be reacted with the aromatic compound. . In addition, when using a cyclic ether compound or nitrogen-containing heterocyclic compound having one oxygen atom in the molecule as a compound having a coordination ability to an alkali metal atom, The amount used is usually in the range of 1 to 100 moles, preferably 1 to 20 moles, more preferably 2 to 10 moles per mole of alkali metal atoms in the organic alkali metal compound to be reacted with the aromatic compound. Further, as a compound having a coordination ability to an alkali metal atom, a compound having a relatively strong coordination ability, a cyclic ether compound having two or more oxygen atoms in the molecule, or two or more nitrogen atoms in the molecule In the case of using a tertiary amine compound having a tertiary amine compound having a nitrogen-heteroatom bond in the molecule, the amount used is 1 mol of an alkali metal atom in an organic alkali metal compound to be reacted with an aromatic compound. In general, the range is 0.01 to 5 mol, preferably 0.01 to 2 mol, more preferably 0.01 to 1.5 mol. If the amount of the compound having the coordination ability to the alkali metal atom is too large, the reaction may not proceed. In addition, the compound which has the coordination ability to these alkali metal atoms may be used individually by 1 type, and may be used in combination of 2 or more type.
 アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物の生成効率を特に良好とし、重合により得られる共役ジエン系ゴム中における放射状の重合体の割合を高める観点からは、アルカリ金属原子への配位能を有する化合物として、分子内に酸素原子を2つ以上有する環状エーテル化合物、分子内に窒素原子を2つ以上有する第3級アミン化合物、および分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物から選択される少なくとも1種の化合物を用い、その使用量を、芳香族化合物と反応させる有機アルカリ金属化合物中のアルカリ金属原子1モルに対して、0.02~0.4モルの範囲とすることが特に好ましい。 Radial polymer in conjugated diene rubber obtained by polymerization with particularly good production efficiency of alkali metalated aromatic compounds having 3 or more carbon atoms directly bonded to alkali metal atoms and aromatic rings in one molecule From the viewpoint of increasing the ratio, the compound having a coordination ability to an alkali metal atom is a cyclic ether compound having two or more oxygen atoms in the molecule, or a tertiary amine compound having two or more nitrogen atoms in the molecule. , And at least one compound selected from tertiary amide compounds having a nitrogen-heteroatom bond in the molecule, and the amount of the alkali metal atom 1 in the organic alkali metal compound to be reacted with the aromatic compound A range of 0.02 to 0.4 mol is particularly preferable with respect to mol.
 芳香族化合物に、有機アルカリ金属化合物を反応させるにあたり、アルカリ金属原子への配位能を有する化合物を共存させる場合において、それぞれの添加順序は特に限定されない。但し、アルカリ金属化芳香族化合物の生成効率を特に良好とする観点からは、芳香族化合物および有機アルカリ金属化合物を共存させた後、その系にアルカリ金属原子への配位能を有する化合物を添加する順序、または芳香族化合物およびアルカリ金属原子への配位能を有する化合物を共存させた後、その系に有機アルカリ金属化合物を添加する順序が好適である。このような順序で添加を行うことにより、有機アルカリ金属化合物とアルカリ金属原子への配位能を有する化合物との錯体形成による不溶化が防止され、アルカリ金属化芳香族化合物の生成効率が特に良好となる。 In the case of reacting an organic alkali metal compound with an aromatic compound, when adding a compound capable of coordinating to an alkali metal atom, the order of addition is not particularly limited. However, from the viewpoint of particularly improving the production efficiency of the alkali metalated aromatic compound, after the coexistence of the aromatic compound and the organic alkali metal compound, a compound capable of coordinating to the alkali metal atom is added to the system. The order in which the organic alkali metal compound is added to the system after the coexistence of the aromatic compound and the compound having the ability to coordinate to the alkali metal atom is preferred. By adding in this order, insolubilization due to complex formation between the organic alkali metal compound and the compound capable of coordinating to the alkali metal atom is prevented, and the production efficiency of the alkali metalated aromatic compound is particularly good. Become.
 本発明の製造方法の第1工程においては、たとえば、以上のようにして得られる、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を重合開始剤として用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合することで、活性末端を有する共役ジエン系ゴムを得るものである。共役ジエン化合物としては、特に限定されず、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-3-エチル-1,3-ブタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-シクロヘキサジエンなどを挙げることができる。これらのなかでも、1,3-ブタジエン、イソプレンまたは1,3-ペンタジエンが好ましく、1,3-ブタジエン、イソプレンが特に好ましい。なお、これらの共役ジエン化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In the first step of the production method of the present invention, for example, the alkali metalated aromatic compound obtained in the above manner and having 3 or more carbon atoms directly bonded to the alkali metal atom and the aromatic ring in one molecule. Is used as a polymerization initiator to polymerize a monomer comprising at least a conjugated diene compound, thereby obtaining a conjugated diene rubber having an active terminal. The conjugated diene compound is not particularly limited. For example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 2-methyl-3-ethyl-1,3 -Butadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene and the like. Among these, 1,3-butadiene, isoprene or 1,3-pentadiene is preferable, and 1,3-butadiene and isoprene are particularly preferable. In addition, these conjugated diene compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、本発明の製造方法においては、活性末端を有する共役ジエン系ゴムは、共役ジエン化合物に加えて芳香族ビニル化合物を含んでなる単量体を共重合してなるものであることが好ましい。芳香族ビニル化合物としては、特に限定されず、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルナフタレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレンなどを挙げることができる。これらのなかでも、スチレン、α-メチルスチレン、または4-メチルスチレンが好ましく、スチレンが特に好ましい。なお。これらの芳香族ビニル化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。本発明で用いられる活性末端を有する共役ジエン系ゴムは、共役ジエン単量体単位50~100重量%を含むものが好ましく、55~95重量%を含むものが特に好ましく、また、芳香族ビニル単量体単位50~0重量%を含むものが好ましく、45~5重量%を含むものが特に好ましい。 In the production method of the present invention, the conjugated diene rubber having an active end is preferably obtained by copolymerizing a monomer containing an aromatic vinyl compound in addition to the conjugated diene compound. The aromatic vinyl compound is not particularly limited, and for example, styrene, α-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylnaphthalene, dimethylaminomethylstyrene, dimethylaminoethylstyrene, and the like. it can. Among these, styrene, α-methylstyrene, or 4-methylstyrene is preferable, and styrene is particularly preferable. Note that. These aromatic vinyl compounds may be used individually by 1 type, and may be used in combination of 2 or more type. The conjugated diene rubber having an active terminal used in the present invention preferably contains 50 to 100% by weight of a conjugated diene monomer unit, particularly preferably contains 55 to 95% by weight, and an aromatic vinyl monomer. Those containing 50 to 0% by weight of monomer units are preferred, and those containing 45 to 5% by weight are particularly preferred.
 また、本発明の製造方法においては、活性末端を有する共役ジエン系ゴムは、本発明の目的を損なわない範囲において、所望により、共役ジエン化合物、および芳香族ビニル化合物に加えてそれら以外の他の単量体を含有する単量体を共重合してなるものであってもよい。他の単量体としては、例えば、アクリロニトリル、メタクリロニトリルなどのα,β-不飽和ニトリル;アクリル酸、メタクリル酸、無水マレイン酸などの不飽和カルボン酸または酸無水物;メタクリル酸メチル、アクリル酸エチル、アクリル酸ブチルなどの不飽和カルボン酸エステル;1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、ジシクロペンタジエン、5-エチリデン-2-ノルボルネンなどの非共役ジエン;などを挙げることができる。これらの単量体は、活性末端を有する共役ジエン系ゴム中に、単量体単位として、10重量%以下とするのが好ましく、5重量%以下とするのがより好ましい。 In addition, in the production method of the present invention, the conjugated diene rubber having an active end is optionally added to the conjugated diene compound and the aromatic vinyl compound in addition to the conjugated diene compound and aromatic vinyl compound as long as the object of the present invention is not impaired. It may be formed by copolymerizing a monomer containing a monomer. Examples of other monomers include α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids or acid anhydrides such as acrylic acid, methacrylic acid, and maleic anhydride; methyl methacrylate, acrylic Unsaturated carboxylic acid esters such as ethyl acrylate and butyl acrylate; Non-conjugated dienes such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; etc. Can be mentioned. These monomers are preferably 10% by weight or less, more preferably 5% by weight or less as monomer units in the conjugated diene rubber having an active end.
 本発明の製造方法において、2種以上の単量体を用いて共重合体を得る場合の、共重合の様式は特に限定されず、ランダム状、ブロック状、テーパー状などのいずれであってもよいが、ランダム状の結合様式であることが好ましい。ランダム状にすることにより、得られるゴム架橋物は低発熱性に優れたものとなる。 In the production method of the present invention, in the case of obtaining a copolymer using two or more kinds of monomers, the mode of copolymerization is not particularly limited, and any of random, block, and tapered shapes may be used. Although it is good, a random binding mode is preferable. By making it random, the resulting rubber cross-linked product is excellent in low heat build-up.
 本発明の製造方法では、通常、重合反応はリビング性を伴って進行するので、重合開始剤として用いるアルカリ金属化芳香族化合物と単量体との使用割合は、目的とする重合体の分子量に応じて決定すればよいが、単量体1モルに対する、アルカリ金属化芳香族化合物中のアルカリ金属の量が、通常0.000001~0.1モル、好ましくは0.00001~0.05モル、特に好ましくは0.0001~0.01モルとなる範囲で選択される。アルカリ金属化芳香族化合物の使用量が少なすぎると、得られる共役ジエン系ゴムの分子量が高くなりすぎて取り扱いが困難となったり、重合反応が十分に進行しなかったりするおそれがある。一方、アルカリ金属化芳香族化合物の使用量が多すぎると、得られる共役ジエン系ゴムの分子量が低くなりすぎて、ゴム材料として特性に劣るものとなるおそれがある。 In the production method of the present invention, since the polymerization reaction usually proceeds with living properties, the use ratio of the alkali metalated aromatic compound and the monomer used as the polymerization initiator to the molecular weight of the target polymer. The amount of alkali metal in the alkali metalated aromatic compound relative to 1 mol of the monomer is usually 0.000001 to 0.1 mol, preferably 0.00001 to 0.05 mol, Particularly preferably, it is selected in the range of 0.0001 to 0.01 mol. If the amount of the alkali metalated aromatic compound used is too small, the molecular weight of the resulting conjugated diene rubber will be too high, making it difficult to handle, and the polymerization reaction may not proceed sufficiently. On the other hand, if the amount of the alkali metalated aromatic compound used is too large, the molecular weight of the resulting conjugated diene rubber will be too low, and the rubber material may be inferior in properties.
 また、重合反応を行うに際しては、重合速度や得られる共役ジエン系ゴムのミクロ構造を制御する目的で、重合反応系に、上述したようなアルカリ金属原子への配位能を有する化合物を添加してもよい。これらのアルカリ金属原子への配位能を有する化合物の使用量は、重合開始剤として用いるアルカリ金属化芳香族化合物中のアルカリ金属原子1モルに対して、通常、5モル以下、好ましくは4モル以下、特に好ましくは2モル以下である。これらのアルカリ金属原子への配位能を有する化合物の使用量が多すぎると、重合反応を阻害するおそれがある。なお、重合開始剤として用いるアルカリ金属化芳香族化合物を調製する際に、アルカリ金属原子への配位能を有する化合物を用いた場合は、その化合物を含有する溶液をそのまま使用することもできる。 In conducting the polymerization reaction, a compound having the ability to coordinate to the alkali metal atom as described above is added to the polymerization reaction system for the purpose of controlling the polymerization rate and the microstructure of the resulting conjugated diene rubber. May be. The amount of the compound having a coordination ability to the alkali metal atom is usually 5 mol or less, preferably 4 mol, per 1 mol of the alkali metal atom in the alkali metalated aromatic compound used as the polymerization initiator. Hereinafter, it is particularly preferably 2 mol or less. If the amount of the compound having coordination ability to these alkali metal atoms is too large, the polymerization reaction may be inhibited. In addition, when preparing the alkali metalated aromatic compound used as a polymerization initiator, when using the compound which has the coordination ability to an alkali metal atom, the solution containing the compound can also be used as it is.
 特に、得られるゴム架橋物を低発熱性に優れるものとすることができる観点からは、分子内に酸素原子を2つ以上有する環状エーテル化合物、分子内に窒素原子を2つ以上有する第3級アミン化合物、および分子内に窒素-ヘテロ原子結合を有する第3級アミド化合物から選択される少なくとも1種の化合物を、重合開始剤として用いるアルカリ金属化合物(ここでいうアルカリ金属化合物は、アルカリ金属化芳香族化合物に限られず、反応系中に存在し、重合開始剤として働くアルカリ金属化合物全てを含むものである)中のアルカリ金属原子1モルに対して、0.02~3.0モルの範囲で存在させることが好ましい。このようにすることで、適度なビニル結合含有量を有する共役ジエン系ゴムが得られ、その結果として、これを用いて得られるゴム架橋物を低発熱性に優れるものとすることができる。 In particular, from the viewpoint that the obtained rubber cross-linked product can be excellent in low heat build-up, a cyclic ether compound having two or more oxygen atoms in the molecule, and a tertiary class having two or more nitrogen atoms in the molecule. An alkali metal compound using at least one compound selected from an amine compound and a tertiary amide compound having a nitrogen-heteroatom bond in the molecule as a polymerization initiator (the alkali metal compound here is an alkali metalation compound) Not limited to aromatic compounds, present in the reaction system and includes all alkali metal compounds that act as polymerization initiators)) in the range of 0.02 to 3.0 moles per mole of alkali metal atoms It is preferable to make it. By doing in this way, the conjugated diene rubber | gum which has moderate vinyl bond content is obtained, As a result, the rubber crosslinked material obtained using this can be made excellent in low heat generation.
 本発明の製造方法における、共役ジエン化合物を含んでなる単量体の重合様式は、溶液重合法を用いることが好ましい。 In the production method of the present invention, a solution polymerization method is preferably used as the polymerization mode of the monomer containing the conjugated diene compound.
 溶液重合法にて用いる溶媒は、重合反応において不活性であり、単量体や重合触媒を溶解させ得る溶媒であれば特に限定されない。用いうる溶媒の具体例としては、たとえば、ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素;n-ヘキサン、n-ヘプタン、n-オクタンなどの脂肪族炭化水素;シクロヘキサン、シクロペンタン、メチルシクロヘキサンなどの脂環族炭化水素;テトラヒドロフラン、ジエチルエーテル、シクロペンチルメチルエーテルなどのエーテル類;などが挙げられる。これらのなかでも、脂肪族炭化水素や脂環族炭化水素を溶媒として用いると重合活性が高くなるので好ましい。なお、これらの溶媒は、1種を単独で用いてもよいし、2種以上を混合して用いてもよい。 The solvent used in the solution polymerization method is not particularly limited as long as it is inactive in the polymerization reaction and can dissolve the monomer and the polymerization catalyst. Specific examples of the solvent that can be used include aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; aliphatic hydrocarbons such as n-hexane, n-heptane, and n-octane; cyclohexane, cyclopentane, and methylcyclohexane. And the like; and ethers such as tetrahydrofuran, diethyl ether and cyclopentyl methyl ether; Among these, it is preferable to use an aliphatic hydrocarbon or alicyclic hydrocarbon as a solvent because the polymerization activity becomes high. In addition, these solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
 溶液重合法における重合溶液中の単量体の濃度は、特に限定されないが、通常1~50重量%、好ましくは2~45重量%、より好ましくは5~40重量%の範囲で選択される。溶液中の単量体の濃度が低すぎると、共役ジエン系ゴムの生産性が悪くなるおそれがあり、濃度が高すぎると、溶液の粘度が高くなりすぎて、その取り扱いが困難となる場合がある。また、重合温度にも特に制限はないが、通常-30℃~+200℃、好ましくは0℃~+180℃の範囲である。重合時間にも特に制限は無く、通常1分~100時間の範囲である。重合様式としては、回分式、連続式などいずれの様式をも採用できるが、共役ジエン化合物と芳香族ビニル化合物とを共重合させる場合は、共役ジエン単量体単位と芳香族ビニル単量体単位との結合のランダム性を制御しやすい点で、回分式が好ましい。 The concentration of the monomer in the polymerization solution in the solution polymerization method is not particularly limited, but is usually selected in the range of 1 to 50% by weight, preferably 2 to 45% by weight, more preferably 5 to 40% by weight. If the concentration of the monomer in the solution is too low, the productivity of the conjugated diene rubber may be deteriorated. If the concentration is too high, the viscosity of the solution may become too high and handling thereof may be difficult. is there. The polymerization temperature is not particularly limited, but is usually in the range of −30 ° C. to + 200 ° C., preferably 0 ° C. to + 180 ° C. The polymerization time is not particularly limited, and is usually in the range of 1 minute to 100 hours. As the polymerization mode, any of batch mode and continuous mode can be adopted. However, when copolymerizing a conjugated diene compound and an aromatic vinyl compound, a conjugated diene monomer unit and an aromatic vinyl monomer unit are used. The batch method is preferable in that the randomness of the bond can be easily controlled.
 以上のようにして、共役ジエン化合物を含んでなる単量体を重合することで、共役ジエン系ゴムを得ることができる。なお、本発明の製造方法においては、通常、重合反応はリビング性を伴って進行するので重合反応系には、活性末端を有する重合体が存在することとなる。そのため、第1工程において、重合反応により得られる共役ジエン系ゴムは、活性末端を有するものとなる。これに対し、本発明の製造方法においては、後述する第2工程において、重合反応により得られた共役ジエン系ゴムの活性末端に、後述する一般式(5)で表される化合物を反応させることで、変性共役ジエン系ゴムを得るものである。特に、本発明の製造方法における、第1工程で得られる活性末端を有する共役ジエン系ゴムは、放射状の構造を有していることから、重合体鎖の片側のみが活性末端である直鎖状の共役ジエン系ゴムに比べ、1分子中の活性末端の数が多く、効率的に変性させることができ、その結果、シリカとの親和性がより向上する。また、用いる重合開始剤に起因して放射状の構造を有するものとなることから、カップリング剤を用いなくても多分岐構造を得ることができる。
 以下、本発明の製造方法における、第2工程について説明する。
As described above, a conjugated diene rubber can be obtained by polymerizing a monomer containing a conjugated diene compound. In the production method of the present invention, the polymerization reaction usually proceeds with a living property, so that a polymer having an active end exists in the polymerization reaction system. Therefore, in the first step, the conjugated diene rubber obtained by the polymerization reaction has an active end. In contrast, in the production method of the present invention, in the second step described later, the compound represented by the general formula (5) described below is reacted with the active end of the conjugated diene rubber obtained by the polymerization reaction. Thus, a modified conjugated diene rubber is obtained. In particular, since the conjugated diene rubber having an active end obtained in the first step in the production method of the present invention has a radial structure, a linear chain in which only one side of the polymer chain is an active end. Compared with the conjugated diene rubber, the number of active ends in one molecule is large and can be efficiently modified, and as a result, the affinity with silica is further improved. Moreover, since it has a radial structure due to the polymerization initiator to be used, a multi-branched structure can be obtained without using a coupling agent.
Hereinafter, the 2nd process in the manufacturing method of the present invention is explained.
<第2工程>
 本発明の製造方法における、第2工程は、上述した第1工程で得られた共役ジエン系ゴムの活性末端に、下記一般式(5)で表される化合物を反応させることにより、変性共役ジエン系ゴムを得る工程である。
Figure JPOXMLDOC01-appb-C000009
 上記一般式(5)において、Xは、前記活性末端を有する共役ジエン系ゴムの活性末端と反応することができる原子もしくは反応基、または、前記活性末端を有する共役ジエン系ゴムの活性末端と反応することができる原子および反応基のいずれか一つを含む炭化水素基であり、R~Rは、それぞれ独立して、化学的な単結合または炭素数1~10のアルキレン基であり、R~R10は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~12のアリール基であり、R~R10は、RとRとの組み合わせ、RとRとの組み合わせ、またはRとR10との組み合わせにて互いに結合して、窒素原子とともに環構造を形成していてもよい。
<Second step>
In the second step of the production method of the present invention, the modified conjugated diene is produced by reacting the compound represented by the following general formula (5) with the active terminal of the conjugated diene rubber obtained in the first step. This is a process for obtaining a rubber.
Figure JPOXMLDOC01-appb-C000009
In the general formula (5), X reacts with an atom or a reactive group capable of reacting with the active end of the conjugated diene rubber having the active end, or with an active end of the conjugated diene rubber having the active end. Each of R 1 to R 4 is independently a chemical single bond or an alkylene group having 1 to 10 carbon atoms, R 5 to R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, R 5 to R 10 are a combination of R 5 and R 6 , R 7 And R 8 or a combination of R 9 and R 10 may be bonded to each other to form a ring structure together with the nitrogen atom.
 本発明の製造方法においては、共役ジエン系ゴムの活性末端に、上記一般式(5)で表される化合物を反応させることにより、共役ジエン系ゴムを改質し、シリカなどの充填剤に対する親和性を改良することができ、得られる変性共役ジエン系ゴムは加工性に優れ、しかも、低発熱性および耐摩耗性を備えたゴム架橋物を与えることのできるものとすることができる。 In the production method of the present invention, the conjugated diene rubber is modified by reacting the active terminal of the conjugated diene rubber with the compound represented by the general formula (5), so that it has an affinity for a filler such as silica. The modified conjugated diene rubber obtained can be excellent in processability and can give a rubber cross-linked product having low heat buildup and wear resistance.
 上記一般式(5)において、共役ジエン系ゴムの活性末端と反応することができる原子もしくは反応基としては、特に限定されず、該活性末端と反応可能なものであればよいが、活性末端に対する反応性の観点より、ハロゲン原子、ビニル基、アルコキシル基、アミノ基またはエポキシ基が好ましく、エポキシ基またはハロゲン原子がより好ましく、ハロゲン原子がさらに好ましく、塩素原子が特に好ましい。 In the above general formula (5), the atom or reactive group capable of reacting with the active terminus of the conjugated diene rubber is not particularly limited as long as it can react with the active terminus. From the viewpoint of reactivity, a halogen atom, vinyl group, alkoxyl group, amino group or epoxy group is preferred, an epoxy group or halogen atom is more preferred, a halogen atom is further preferred, and a chlorine atom is particularly preferred.
 上記一般式(5)において、前記原子もしくは前記反応基のいずれか一つを含む炭化水素基としては、特に限定されないが、炭素数1~10の炭化水素基が好ましい。なお、この炭素数には、前記反応基を構成している炭素の数は含まないものとする。 In the general formula (5), the hydrocarbon group containing any one of the atoms or the reactive groups is not particularly limited, but is preferably a hydrocarbon group having 1 to 10 carbon atoms. This carbon number does not include the number of carbons constituting the reactive group.
 また、上記一般式(5)において、R~Rは、それぞれ独立して、化学的な単結合または炭素数1~10のアルキレン基であり、好ましくは、化学的な単結合または炭素数1~5のアルキレン基であり、化学的な単結合であることが特に好ましい。 In the general formula (5), R 1 to R 4 are each independently a chemical single bond or an alkylene group having 1 to 10 carbon atoms, preferably a chemical single bond or carbon number. It is particularly preferably a 1 to 5 alkylene group and a chemical single bond.
 さらに、上記一般式(5)において、R~R10は、それぞれ独立して、炭素数1~10のアルキル基、または炭素数6~12のアリール基であり、炭素数1~10のアルキル基であることが好ましく、炭素数1~5のアルキル基であることがより好ましく、メチル基であることが特に好ましい。 In the general formula (5), R 5 to R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and an alkyl group having 1 to 10 carbon atoms. Group, more preferably an alkyl group having 1 to 5 carbon atoms, and particularly preferably a methyl group.
 なかでも、本発明の製造方法においては、その添加効果が特に高いという観点より、上記一般式(5)において、Xが、ハロゲン原子であり、R~Rが全て化学的な単結合であり、R~R10が、それぞれ独立して、炭素数1~5のアルキル基である化合物が好ましく、Xが塩素原子であり、R~Rが全て化学的な単結合であり、R~R10が全てメチル基である化合物が、特に好適である。 In particular, in the production method of the present invention, from the viewpoint that the addition effect is particularly high, in the general formula (5), X is a halogen atom, and R 1 to R 4 are all chemical single bonds. A compound in which R 5 to R 10 are each independently an alkyl group having 1 to 5 carbon atoms, X is a chlorine atom, and R 1 to R 4 are all chemical single bonds; Particularly preferred are compounds in which R 5 to R 10 are all methyl groups.
 上記一般式(5)で表される化合物の使用量は、特に限定されないが、重合開始剤として使用したアルカリ金属化芳香族化合物中のアルカリ金属原子1モル当たりの、共役ジエン系ゴムの活性末端と反応することができる原子または反応基の量が、0.05~5モルの範囲となる量とすることが好ましく、0.1~3モルとなる量とすることがより好ましく、0.5~1.5モルとなる量とすることが特に好ましい。上記一般式(5)で表される化合物の使用量を上記範囲とすることにより、その添加効果をより顕著なものとすることができる。なお、これらの上記一般式(5)で表される化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Although the usage-amount of the compound represented by the said General formula (5) is not specifically limited, The active terminal of the conjugated diene rubber | gum per 1 mol of alkali metal atoms in the alkali metalated aromatic compound used as a polymerization initiator is used. The amount of atoms or reactive groups capable of reacting with is preferably 0.05 to 5 mol, more preferably 0.1 to 3 mol, more preferably 0.5 An amount of ˜1.5 mol is particularly preferred. By making the usage-amount of the compound represented by the said General formula (5) into the said range, the addition effect can be made more remarkable. In addition, the compound represented by these said General formula (5) may be used individually by 1 type, and may be used in combination of 2 or more type.
 本発明の製造方法の第2工程において、上述した第1工程で得られた共役ジエン系ゴムの活性末端に、上記一般式(5)で表される化合物を反応させる方法としては、特に限定されないが、上述した第1工程で得られた活性末端を有する共役ジエン系ゴムと、上記一般式(5)で表される化合物とを、これらを溶解可能な溶媒中で、混合する方法などが挙げられる。この際に用いる溶媒としては、上述した共役ジエン系ゴムの重合に用いる溶媒として例示したものなどを用いることができる。また、この際においては、上述した第1工程で得られた活性末端を有する共役ジエン系ゴムを、その重合に用いた重合溶液のままの状態とし、ここに上記一般式(5)で表される化合物を添加する方法が簡便であり、好ましい。第2工程における反応温度は、特に限定されないが、通常、0~120℃であり、反応時間は、特に限定されないが、通常、1分~1時間である。 In the second step of the production method of the present invention, the method of reacting the compound represented by the general formula (5) with the active terminal of the conjugated diene rubber obtained in the first step is not particularly limited. However, there is a method of mixing the conjugated diene rubber having an active terminal obtained in the first step and the compound represented by the general formula (5) in a solvent capable of dissolving them. It is done. As the solvent used in this case, those exemplified as the solvent used for the polymerization of the conjugated diene rubber described above can be used. In this case, the conjugated diene rubber having an active end obtained in the first step described above is kept in the polymerization solution used for the polymerization, and is represented by the above general formula (5). The method of adding the compound is simple and preferable. The reaction temperature in the second step is not particularly limited, but is usually 0 to 120 ° C., and the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
 活性末端を有する共役ジエン系ゴムに、上記一般式(5)で表される化合物を反応させた後に、未反応の活性末端が残存している場合、メタノール、エタノール、イソプロパノール等のアルコール又は水等の、重合停止剤を重合溶液に添加して、未反応の活性末端を失活させることが好ましい。 When the compound represented by the general formula (5) is reacted with the conjugated diene rubber having an active end, and an unreacted active end remains, alcohol such as methanol, ethanol, isopropanol, water, etc. It is preferable to add a polymerization terminator to the polymerization solution to deactivate the unreacted active terminal.
 以上のようにして得られる変性共役ジエン系ゴムの溶液には、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。さらに、所望により、伸展油を配合して、油展ゴムとしてもよい。伸展油としては、例えば、パラフィン系、芳香族系及びナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸等が挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHE INSTITUTE PETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満であることが好ましい。伸展油を使用する場合、その使用量は、変性共役ジエン系ゴム100重量部に対して、通常5~100重量部である。また、変性反応後の変性共役ジエン系ゴムは、例えば、再沈澱、加熱下での溶媒除去、減圧下での溶媒除去、水蒸気による溶媒の除去(スチームストリッピング)等の、ゴムを溶液から単離する際の通常の操作によって、反応混合物から分離、取得することができる。 An anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the modified conjugated diene rubber solution obtained as described above, if desired. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc. Furthermore, if desired, an extension oil may be blended to form an oil-extended rubber. Examples of extender oils include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids. When using a petroleum softener, it is preferable that the content of polycyclic aromatics extracted by the method of IP346 (the inspection method of THE INSTITUTE PETROLEUM in the UK) is less than 3%. When the extender oil is used, the amount used is usually 5 to 100 parts by weight with respect to 100 parts by weight of the modified conjugated diene rubber. In addition, the modified conjugated diene rubber after the modification reaction can be obtained by removing the rubber from the solution by, for example, reprecipitation, solvent removal under heating, solvent removal under reduced pressure, or solvent removal by steam (steam stripping). It can be separated and obtained from the reaction mixture by a normal operation during separation.
 本発明の製造方法によれば、第1工程において、共役ジエン化合物の重合を行なう際には、重合開始剤としてアルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を用いるため、アルカリ金属化芳香族化合物に含まれる3個以上のアルカリ金属原子が直接結合した炭素原子のそれぞれを重合開始点として、共役ジエン重合体鎖がリビング重合性を伴って成長するため、得られる共役ジエン系ゴムが放射状の構造を有するものとすることができる。そして、本発明においては、第2工程において、このような放射状の構造を有する共役ジエン系ゴムの活性末端に、上記一般式(5)で表される化合物を反応させることにより、放射状の構造を有し、かつ、上記一般式(5)で表される化合物で末端変性された変性共役ジエン系ゴムを得るものである。 According to the production method of the present invention, when the conjugated diene compound is polymerized in the first step, 3 or more carbon atoms bonded directly to an alkali metal atom and an aromatic ring as a polymerization initiator in one molecule. The conjugated diene polymer chain is living-polymerizable with each of the carbon atoms directly bonded to three or more alkali metal atoms contained in the alkali metalated aromatic compound as the polymerization starting point. Therefore, the resulting conjugated diene rubber can have a radial structure. In the present invention, in the second step, the compound represented by the general formula (5) is reacted with the active terminal of the conjugated diene rubber having such a radial structure, thereby forming the radial structure. And a modified conjugated diene rubber having a terminal modified with the compound represented by the general formula (5).
 そして、このようにして得られる本発明の変性共役ジエン系ゴムは、放射状の構造を有することにより、充填剤などとの親和性が向上されたものであり、しかも、その活性末端を変性するための変性剤として、上記一般式(5)で表される化合物を用いることよって、変性反応時における、共役ジエン系ゴムのゲル化(三次元架橋化)の発生を有効に防止することができ、その結果として、加工性の向上を可能とするものである。加えて、本発明の変性共役ジエン系ゴムは、その活性末端が、上記一般式(5)で表される化合物で変性されているため、上記一般式(5)で表される化合物による変性作用により、充填剤などとの親和性を飛躍的に向上させることができ、これにより、シリカなどの充填剤を配合し、ゴム架橋物とした場合における低発熱性および耐摩耗性のさらなる向上を可能とするものである。 The modified conjugated diene rubber of the present invention thus obtained has a radial structure, and thus has an improved affinity with a filler and the like, and further modifies its active terminal. By using the compound represented by the general formula (5) as the modifier, it is possible to effectively prevent the occurrence of gelation (three-dimensional crosslinking) of the conjugated diene rubber during the modification reaction, As a result, workability can be improved. In addition, the modified conjugated diene rubber of the present invention is modified with the compound represented by the above general formula (5) because the active end thereof is modified with the compound represented by the above general formula (5). Can drastically improve the affinity with fillers, etc., which can further improve the low heat buildup and wear resistance when blended with silica and other fillers to make rubber cross-linked products. It is what.
 なお、本発明の製造方法により得られる変性共役ジエン系ゴム中における、放射状共役ジエン系ゴム(すなわち、3分岐以上の共役ジエン系ゴム)の割合は、特に限定されないが、通常、10~100重量%であり、好ましくは、20~100重量%である。このような割合で放射状共役ジエン系ゴムを含有することにより、変性共役ジエン系ゴムの加工性をより向上させることができ、しかも、シリカなどの充填剤などとの親和性をより高めることができる。 The ratio of the radial conjugated diene rubber (that is, the conjugated diene rubber having three or more branches) in the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 10 to 100 weights. %, Preferably 20 to 100% by weight. By containing the radial conjugated diene rubber at such a ratio, the processability of the modified conjugated diene rubber can be further improved, and the affinity with a filler such as silica can be further increased. .
 本発明の製造方法により得られる変性共役ジエン系ゴムの重量平均分子量は、特に限定されないが、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値として、通常、1,000~3,000,000、好ましくは10,000~2,000,000、より好ましくは100,000~1,500,000の範囲である。変性共役ジエン系ゴムの重量平均分子量を上記範囲とすることにより、変性共役ジエン系ゴムへのシリカの配合が容易となり、ゴム組成物は加工性に優れたものとなる。 The weight average molecular weight of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually 1,000 to 3,000,000 as a value measured by gel permeation chromatography in terms of polystyrene. The range is preferably 10,000 to 2,000,000, more preferably 100,000 to 1,500,000. By setting the weight average molecular weight of the modified conjugated diene rubber within the above range, it is easy to add silica to the modified conjugated diene rubber, and the rubber composition has excellent processability.
 また、本発明の製造方法により得られる変性共役ジエン系ゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布も、特に限定されないが、好ましくは1.1~5.0、特に好ましくは1.2~3.0である。変性共役ジエン系ゴムの分子量分布を上記範囲とすることにより、得られるゴム架橋物は低発熱性に優れたものとなる。 Further, the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited. Is 1.1 to 5.0, particularly preferably 1.2 to 3.0. By setting the molecular weight distribution of the modified conjugated diene rubber within the above range, the resulting rubber cross-linked product is excellent in low heat build-up.
 また、本発明の製造方法により得られる変性共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)も、特に限定されないが、通常、20~150、好ましくは30~120の範囲である。変性共役ジエン系ゴムのムーニー粘度を上記範囲とすることにより、ゴム組成物の加工性が優れたものとなる。なお、変性共役ジエン系ゴムを油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。 Also, the Mooney viscosity (ML 1 + 4, 100 ° C.) of the modified conjugated diene rubber obtained by the production method of the present invention is not particularly limited, but is usually in the range of 20 to 150, preferably 30 to 120. By setting the Mooney viscosity of the modified conjugated diene rubber to the above range, the processability of the rubber composition becomes excellent. When the modified conjugated diene rubber is an oil-extended rubber, the Mooney viscosity of the oil-extended rubber is preferably in the above range.
 また、本発明の製造方法により得られる変性共役ジエン系ゴムの共役ジエン単位部分におけるビニル結合含有量は、通常1~80モル%であり、好ましくは5~75モル%である。ビニル結合量を上記範囲とすることにより、得られるゴム架橋物は低発熱性に優れたものとなる。 The vinyl bond content in the conjugated diene unit portion of the modified conjugated diene rubber obtained by the production method of the present invention is usually 1 to 80 mol%, preferably 5 to 75 mol%. By setting the vinyl bond amount within the above range, the obtained rubber cross-linked product has excellent low heat build-up.
<ゴム組成物>
 本発明のゴム組成物は、上述した本発明の製造方法により得られる変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなる組成物である。
<Rubber composition>
The rubber composition of the present invention is a composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber obtained by the production method of the present invention described above.
 本発明で用いるシリカとしては、例えば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。また、カーボンブラック表面にシリカを担持させたカーボン-シリカデュアル・フェイズ・フィラーを用いてもよい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。用いるシリカの窒素吸着比表面積(ASTM  D3037-81に準じBET法で測定される)は、好ましくは50~300m/g、より好ましくは80~220m/g、特に好ましくは100~170m/gである。また、シリカのpHは、5~10であることが好ましい。 Examples of the silica used in the present invention include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica. Among these, wet method white carbon mainly containing hydrous silicic acid is preferable. Alternatively, a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used. These silicas can be used alone or in combination of two or more. Is (measured by the BET method according to ASTM D3037-81) nitrogen adsorption specific surface area of silica used is preferably 50 ~ 300m 2 / g, more preferably 80 ~ 220m 2 / g, particularly preferably 100 ~ 170m 2 / g. The pH of silica is preferably 5-10.
 本発明のゴム組成物におけるシリカの配合量は、ゴム組成物中のゴム成分100重量部に対して、10~200重量部であり、好ましくは30~150重量部、より好ましくは50~100重量部である。シリカの配合量を上記範囲とすることにより、ゴム組成物の加工性が優れたものとなり、得られるゴム架橋物の耐摩耗性および低発熱性が優れたものとなる。 The compounding amount of silica in the rubber composition of the present invention is 10 to 200 parts by weight, preferably 30 to 150 parts by weight, more preferably 50 to 100 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part. By setting the blending amount of silica in the above range, the processability of the rubber composition becomes excellent, and the obtained rubber cross-linked product has excellent wear resistance and low heat build-up.
 本発明のゴム組成物には、低発熱性をさらに改良する観点より、さらにシランカップリング剤を配合してもよい。シランカップリング剤としては、例えば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、3-オクタチオ-1-プロピル-トリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、およびγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどを挙げることができる。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。シランカップリング剤の配合量は、シリカ100重量部に対して、好ましくは0.1~30重量部、より好ましくは1~15重量部である。 The rubber composition of the present invention may further contain a silane coupling agent from the viewpoint of further improving the low heat build-up. Examples of the silane coupling agent include vinyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, γ-trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, and γ -Trimethoxysilylpropylbenzothiazyl tetrasulfide and the like. These silane coupling agents can be used alone or in combination of two or more. The amount of the silane coupling agent is preferably 0.1 to 30 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of silica.
 また、本発明のゴム組成物には、さらに、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、およびグラファイトなどのカーボンブラックを配合してもよい。これらのなかでも、ファーネスブラックが好ましい。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。カーボンブラックの配合量は、ゴム組成物中のゴム成分100重量部に対して、通常、120重量部以下である。 Further, the rubber composition of the present invention may further contain carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite. Among these, furnace black is preferable. These carbon blacks can be used alone or in combination of two or more. The compounding amount of carbon black is usually 120 parts by weight or less with respect to 100 parts by weight of the rubber component in the rubber composition.
 なお、本発明の変性共役ジエン系ゴムを含むゴム成分に、シリカを添加する方法としては特に限定されず、固形のゴム成分に対して添加して混練する方法(乾式混練法)や変性共役ジエン系ゴムを含む溶液に対して添加して凝固・乾燥させる方法(湿式混練法)などを適用することができる。 The method of adding silica to the rubber component containing the modified conjugated diene rubber of the present invention is not particularly limited, and a method of adding and kneading a solid rubber component (dry kneading method) or a modified conjugated diene A method (wet kneading method) that is added to a solution containing a rubber and solidified and dried can be applied.
 また、本発明のゴム組成物は、架橋剤をさらに含有していることが好ましい。架橋剤としては、例えば、硫黄、ハロゲン化硫黄などの含硫黄化合物、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられる。これらの中でも、硫黄が好ましく使用される。架橋剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1~4重量部である。 The rubber composition of the present invention preferably further contains a cross-linking agent. Examples of the crosslinking agent include sulfur-containing compounds such as sulfur and sulfur halides, organic peroxides, quinone dioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is preferably used. The amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. It is.
 さらに、本発明のゴム組成物には、上記成分以外に、常法に従って、架橋促進剤、架橋活性化剤、老化防止剤、充填剤(上記シリカおよびカーボンブラックを除く)、活性剤、プロセス油、可塑剤、滑剤、粘着付与剤などの配合剤をそれぞれ必要量配合できる。 Further, in addition to the above components, the rubber composition of the present invention includes a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a filler (excluding silica and carbon black), an activator, and a process oil in accordance with conventional methods. , Plasticizers, lubricants, tackifiers and the like can be blended in the required amounts.
 架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進剤および架橋活性化剤を併用することが好ましい。架橋促進剤としては、例えば、スルフェンアミド系架橋促進剤;グアニジン系架橋促進剤;チオウレア系架橋促進剤;チアゾール系架橋促進剤;チウラム系架橋促進剤;ジチオカルバミン酸系架橋促進剤;キサントゲン酸系架橋促進剤;などが挙げられる。これらのなかでも、スルフェンアミド系架橋促進剤を含むものが好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部、より好ましくは0.5~5重量部、特に好ましくは1~4重量部である。 When sulfur or a sulfur-containing compound is used as the crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking activator in combination. Examples of the crosslinking accelerator include sulfenamide-based crosslinking accelerators; guanidine-based crosslinking accelerators; thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; A crosslinking accelerator; and the like. Among these, those containing a sulfenamide-based crosslinking accelerator are preferable. These crosslinking accelerators are used alone or in combination of two or more. The amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 4 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. Part.
 架橋活性化剤としては、例えば、ステアリン酸などの高級脂肪酸;酸化亜鉛;などを挙げることができる。これらの架橋活性化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋活性化剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.05~20重量部、特に好ましくは0.5~15重量部である。 Examples of the crosslinking activator include higher fatty acids such as stearic acid; zinc oxide. These crosslinking activators are used alone or in combination of two or more. The amount of the crosslinking activator is preferably 0.05 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight based on 100 parts by weight of the rubber component in the rubber composition.
 また、本発明のゴム組成物には、上述した本発明の製造方法によって得られる変性共役ジエン系ゴム以外のその他のゴムを配合してもよい。その他のゴムとしては、例えば、天然ゴム、ポリイソプレンゴム、乳化重合スチレン-ブタジエン共重合ゴム、溶液重合スチレン-ブタジエン共重合ゴム、ポリブタジエンゴム(1,2-ポリブタジエン重合体からなる結晶繊維を含むポリブタジエンゴムであってもよい)、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、スチレン-イソプレン-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、アクリロニトリル-スチレン-ブタジエン共重合ゴムなどが挙げられる。これらのなかでも、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、溶液重合スチレン-ブタジエン共重合ゴムが好ましい。これらのゴムは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。 Further, the rubber composition of the present invention may be blended with other rubber other than the modified conjugated diene rubber obtained by the production method of the present invention described above. Examples of other rubbers include natural rubber, polyisoprene rubber, emulsion-polymerized styrene-butadiene copolymer rubber, solution-polymerized styrene-butadiene copolymer rubber, polybutadiene rubber (polybutadiene containing crystal fibers made of 1,2-polybutadiene polymer). Styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, acrylonitrile-butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, and the like. . Of these, natural rubber, polyisoprene rubber, polybutadiene rubber, and solution-polymerized styrene-butadiene copolymer rubber are preferable. These rubbers can be used alone or in combination of two or more.
 本発明のゴム組成物において、本発明の製造方法により得られる変性共役ジエン系ゴムは、ゴム組成物中のゴム成分の10~100重量%を占めることが好ましく、40~100重量%を占めることが特に好ましい。このような割合で、本発明の製造方法により得られる変性共役ジエン系ゴムをゴム成分中に含めることにより、低発熱性および耐摩耗性に優れたゴム架橋物を得ることができる。 In the rubber composition of the present invention, the modified conjugated diene rubber obtained by the production method of the present invention preferably occupies 10 to 100% by weight, preferably 40 to 100% by weight of the rubber component in the rubber composition. Is particularly preferred. By including the modified conjugated diene rubber obtained by the production method of the present invention in the rubber component at such a ratio, a rubber cross-linked product excellent in low heat buildup and abrasion resistance can be obtained.
 本発明のゴム組成物を得るためには、常法に従って各成分を混練すればよく、例えば、架橋剤や架橋促進剤などの熱に不安定な成分を除く成分と変性共役ジエン系ゴムとを混練後、その混練物に架橋剤や架橋促進剤などの熱に不安定な成分を混合して目的の組成物を得ることができる。熱に不安定な成分を除く成分と変性共役ジエン系ゴムとの混練温度は、好ましくは80~200℃、より好ましくは120~180℃であり、その混練時間は、好ましくは30秒~30分である。また、その混練物と熱に不安定な成分との混合は、通常100℃以下、好ましくは80℃以下まで冷却した後に行われる。 In order to obtain the rubber composition of the present invention, each component may be kneaded according to a conventional method. For example, a component excluding a thermally unstable component such as a crosslinking agent or a crosslinking accelerator and a modified conjugated diene rubber are used. After kneading, a heat-unstable component such as a crosslinking agent or a crosslinking accelerator can be mixed with the kneaded product to obtain a desired composition. The kneading temperature of the component excluding the thermally unstable component and the modified conjugated diene rubber is preferably 80 to 200 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes. It is. The kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
<ゴム架橋物>
 本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明のゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。
<Rubber cross-linked product>
The rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
The rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product. In this case, crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding. The molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C. The crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C., and the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
 また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。 In addition, depending on the shape and size of the rubber cross-linked product, even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside. Therefore, secondary cross-linking may be performed by heating.
 加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる一般的な方法を適宜選択すればよい。 As a heating method, a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
 このようにして得られる本発明のゴム架橋物は、上述した本発明の製造方法により得られる変性共役ジエン系ゴムを用いて得られるものであるため、低発熱性および耐摩耗性に優れるものである。特に、本発明の製造方法により得られる変性共役ジエン系ゴムは、変性剤として、上記一般式(5)で表される化合物を用いて得られるものであるため、変性剤の添加によるゲル化の発生が有効に抑えられており、そのため、変性共役ジエン系ゴムに、充填剤としてのシリカを配合した際に、ゲル分の影響により、シリカの分散性が低下することがなく、したがって、このような本発明の製造方法により得られる変性共役ジエン系ゴムを用いて得られる、本発明のゴム架橋物は、充填剤としてのシリカが良好に分散したものとなり、結果として、低発熱性および耐摩耗性に特に優れたものとなる。 The rubber cross-linked product of the present invention thus obtained is obtained by using the modified conjugated diene rubber obtained by the above-described production method of the present invention, and therefore is excellent in low heat buildup and wear resistance. is there. In particular, the modified conjugated diene rubber obtained by the production method of the present invention is obtained by using the compound represented by the above general formula (5) as a modifier, and therefore, the gelation by the addition of the modifier is not necessary. Therefore, when silica as a filler is added to the modified conjugated diene rubber, the dispersibility of the silica is not lowered due to the influence of the gel content. The rubber cross-linked product of the present invention obtained by using the modified conjugated diene rubber obtained by the production method of the present invention has a good dispersion of silica as a filler, resulting in low heat buildup and wear resistance. It is particularly excellent in properties.
 そして、本発明のゴム架橋物は、このような特性を活かし、例えば、タイヤにおいて、キャップトレッド、ベーストレッド、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料;ホース、ベルト、マット、防振ゴム、その他の各種工業用品の材料;樹脂の耐衝撃性改良剤;樹脂フィルム緩衝剤;靴底;ゴム靴;ゴルフボール;玩具;などの各種用途に用いることができる。とりわけ、本発明のゴム架橋物は、低発熱性および耐摩耗性に優れることから、タイヤの材料、特に低燃費タイヤの材料として好適に用いることができる。 The rubber cross-linked product of the present invention makes use of such characteristics, for example, in tires, materials for each part of the tire such as cap tread, base tread, carcass, sidewall, bead part; hose, belt, mat, anti-proof It can be used in various applications such as vibration rubber and other various industrial article materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls; In particular, since the rubber cross-linked product of the present invention is excellent in low heat buildup and wear resistance, it can be suitably used as a tire material, particularly a low fuel consumption tire material.
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「%」は、特に断りのない限り重量基準である。また、試験および評価は下記に従った。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples. In the following, “%” is based on weight unless otherwise specified. Moreover, the test and evaluation followed the following.
〔ゴムの分子量〕
 ゴムの分子量は、ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めた。具体的な測定条件は、以下のとおりとした。
  測定器:高速液体クロマトグラフ(東ソー社製、商品名「HLC-8220」)
  カラム:東ソー社製、商品名「GMH-HR-H」を二本直列に連結したものを用いた。
  検出器:示差屈折計(東ソー社製、商品名「RI-8220」)
  溶離液:テトラヒドロフラン
  カラム温度:40℃
[Molecular weight of rubber]
The molecular weight of the rubber was determined as a molecular weight in terms of polystyrene by gel permeation chromatography. Specific measurement conditions were as follows.
Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8220” manufactured by Tosoh Corporation)
Column: A product manufactured by Tosoh Corporation and having two trade names “GMH-HR-H” connected in series was used.
Detector: differential refractometer (trade name “RI-8220” manufactured by Tosoh Corporation)
Eluent: Tetrahydrofuran Column temperature: 40 ° C
〔ゴムの分岐度〕
 ゴムの分岐度は、多角度光散乱光度計により測定した。具体的な測定条件は、以下のとおりとした。
  ポンプ:Waters社製、商品名「MODEL515」
  カラム:東ソー社製、商品名「GMH-HR-M」を三本直列に連結したものを用いた。
  検出器:示差屈折計(Waters社製、商品名「RI-2414」)
  検出器:多角度光散乱光度計(Wyatt Technology社製、商品名「DAWN EOS」)
  溶離液:テトラヒドロフラン
  カラム温度:23℃
[Branch degree of rubber]
The degree of branching of the rubber was measured with a multi-angle light scattering photometer. Specific measurement conditions were as follows.
Pump: Waters, trade name “MODEL515”
Column: A product manufactured by Tosoh Corporation and having three trade names “GMH-HR-M” connected in series was used.
Detector: Differential refractometer (manufactured by Waters, trade name “RI-2414”)
Detector: Multi-angle light scattering photometer (manufactured by Wyatt Technology, trade name “DAWN EOS”)
Eluent: Tetrahydrofuran Column temperature: 23 ° C
〔ゴムのミクロ構造、ゴムの変性〕
 H-NMRにより測定した。
  測定器:JEOL社製、商品名「JNM-ECA-400WB」
  測定溶媒:重クロロホルム
[Rubber microstructure, rubber modification]
It was measured by 1 H-NMR.
Measuring instrument: Product name “JNM-ECA-400WB” manufactured by JEOL
Measuring solvent: deuterated chloroform
〔重合開始剤のリチオ化率〕
 GC-MSにより測定した。
  GC:アジレント・テクノロジー社製、商品名「Agilent GC 6890NGC」
  MS:アジレント・テクノロジー社製、商品名「Agilent MS 5973MSD」
  カラム:アジレント・テクノロジー社製、商品名「DB1701」
[Lithiation rate of polymerization initiator]
Measured by GC-MS.
GC: Product name “Agilent GC 6890NGC” manufactured by Agilent Technologies
MS: Product name “Agilent MS 5973MSD” manufactured by Agilent Technologies
Column: Product name “DB1701” manufactured by Agilent Technologies
〔ゲル重量分率〕
 #100メッシュカゴにゴム(重量:Wa[g])を1mm角程度に裁断して入れ、トルエン中に室温(25℃)で24時間浸漬し、引き上げた。次いで、#100メッシュカゴに残ったゴムを真空乾燥して乾燥後の重量(Wb[g])を秤量した。そして、これらの秤量値から、ゲル重量分率を、トルエン不溶分=(Wb/Wa)×100(%)により求めた。なお、ゲル重量分率が低いほど、加工性に優れるものと判断することができる。
[Gel weight fraction]
A rubber (weight: Wa [g]) was cut into a # 100 mesh basket by cutting to about 1 mm square, immersed in toluene at room temperature (25 ° C.) for 24 hours, and then pulled up. Next, the rubber remaining in the # 100 mesh basket was vacuum-dried, and the weight after drying (Wb [g]) was weighed. And the gel weight fraction was calculated | required from these weighed values by toluene insoluble content = (Wb / Wa) x100 (%). In addition, it can be judged that it is excellent in workability, so that a gel weight fraction is low.
〔低発熱性〕
 長さ50mm、幅12.7mm、厚さ2mmのシート状の試験片について、粘弾性測定装置(レオメトリックス社製、製品名「ARES」)を用い、動的歪み2.5%、周波数10Hzの条件で60℃におけるtanδを測定した。この特性については、比較例1の測定値を100とする指数で示した。この指数が小さいものほど、低発熱性に優れる。
[Low heat generation]
For a sheet-like test piece having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm, a viscoelasticity measuring device (manufactured by Rheometrics, product name “ARES”) is used, and the dynamic strain is 2.5% and the frequency is 10 Hz. Under the conditions, tan δ at 60 ° C. was measured. About this characteristic, it showed with the index | exponent which sets the measured value of the comparative example 1 to 100. The smaller this index, the better the low heat buildup.
〔耐摩耗性〕
 外径50mm、内径15mm、厚さ10mmの円盤状の試験片について、上島製作所社製FPS摩耗試験機を用い、荷重1kgf、スリップ率15%で測定した。この特性については、比較例1の測定値を100とする指数で示した。この指数が大きいものほど、耐摩耗性に優れる。
(Abrasion resistance)
A disk-shaped test piece having an outer diameter of 50 mm, an inner diameter of 15 mm, and a thickness of 10 mm was measured with a load of 1 kgf and a slip ratio of 15% using an FPS abrasion tester manufactured by Ueshima Seisakusho. About this characteristic, it showed with the index | exponent which sets the measured value of the comparative example 1 to 100. The larger this index, the better the wear resistance.
〔製造例1:重合開始剤1の製造(1,3,5-トリメチルベンゼンのリチオ化)〕
 窒素雰囲気下、ガラス反応容器に、シクロヘキサン16部、1,3,5-トリメチルベンゼン0.841部、およびテトラメチルエチレンジアミン0.813部を加えた。次に攪拌しながら、n-ブチルリチウム1.345部(n-ブチルリチウム1モル当たり前記テトラメチルエチレンジアミン0.3モルとなる)を加え、反応温度60℃にて2日間攪拌しながら反応させ、重合開始剤1の溶液(リチオ化された1,3,5-トリメチルベンゼン)18.999部を得た。次に、反応により得られたリチオ化された1,3,5-トリメチルベンゼンのリチオ化率を測定する目的で、トリメチルシリルクロライドを過剰量加えたガラス容器に、得られた反応液を数滴加え、30分間反応させた。水道水にて触媒残渣を抽出洗浄した後に溶媒を留去することで、黄色いオイル状の液体を得た。
[Production Example 1: Production of polymerization initiator 1 (lithiation of 1,3,5-trimethylbenzene)]
Under a nitrogen atmosphere, 16 parts of cyclohexane, 0.841 parts of 1,3,5-trimethylbenzene, and 0.813 parts of tetramethylethylenediamine were added to a glass reaction vessel. Next, 1.345 parts of n-butyllithium (0.3 mol of tetramethylethylenediamine per 1 mol of n-butyllithium) was added with stirring, and the reaction was conducted with stirring at a reaction temperature of 60 ° C. for 2 days. 18.999 parts of a solution of polymerization initiator 1 (lithiated 1,3,5-trimethylbenzene) were obtained. Next, for the purpose of measuring the lithiation rate of the lithiated 1,3,5-trimethylbenzene obtained by the reaction, add a few drops of the obtained reaction solution to a glass container to which an excess amount of trimethylsilyl chloride was added. , Reacted for 30 minutes. The catalyst residue was extracted and washed with tap water, and then the solvent was distilled off to obtain a yellow oily liquid.
 そして、この黄色いオイル状の液体につき、ガスクロマトグラフ質量分析測定(GC-MS)を行った。結果は以下の通りであった。
 EI-MS,m/z=120(M+)(3%),m/z=192(M+)(3%),m/z=264(M+)(24%),m/z=336(M+)(70%)。Mw=120(3%)、Mw=192(3%)、Mw=264(24%)、Mw=336(70%)。
The yellow oily liquid was subjected to gas chromatograph mass spectrometry (GC-MS). The results were as follows.
EI-MS, m / z = 120 (M +) (3%), m / z = 192 (M +) (3%), m / z = 264 (M +) (24%), m / z = 336 (M + ) (70%). Mw = 120 (3%), Mw = 192 (3%), Mw = 264 (24%), Mw = 336 (70%).
 次に、この黄色いオイル状の液体につきH-NMR測定を行った。結果は以下の通りであった。
 H-NMR(CDCl) 6.83(s,3H,Ph-H),6.73(s,1H,Ph-H),6.64(s,2H,Ph-H),6.55(s,2H,Ph-H),6.47(s,1H,Ph-H),6.39(s,3H,Ph-H),2.30(s,9H,Ph-CH),2.28(s,6H,Ph-CH),2.02(s,2H,Ph-CH-SiMe),2.26(s,3H,Ph-CH),2.00(s,4H,Ph-CH-SiMe),1.98(s,6H,Ph-CH-SiMe)。
Next, 1 H-NMR measurement was performed on this yellow oily liquid. The results were as follows.
1 H-NMR (CDCl 3 ) 6.83 (s, 3H, Ph—H), 6.73 (s, 1H, Ph—H), 6.64 (s, 2H, Ph—H), 6.55 (S, 2H, Ph-H), 6.47 (s, 1H, Ph-H), 6.39 (s, 3H, Ph-H), 2.30 (s, 9H, Ph-CH 3 ), 2.28 (s, 6H, Ph—CH 3 ), 2.02 (s, 2H, Ph—CH 2 —SiMe 3 ), 2.26 (s, 3H, Ph—CH 3 ), 2.00 (s , 4H, Ph—CH 2 —SiMe 3 ), 1.98 (s, 6H, Ph—CH 2 —SiMe 3 ).
 さらに、H-detected multi-bond heteronuclear multiple quantum coherence spectrum-NMR(HMBC-NMR)測定により、H-NMRにおけるそれぞれのシグナルについて帰属を行った。結果は以下の通りであった。
 無置換体(1,3,5-トリメチルベンゼン)H-NMR(CDCl):6.83(s,3H,Ph-H),2.30(s,9H,Ph-CH)、1置換体(1-トリメチルシリルメチル-3,5-ジメチルベンゼン)H-NMR(CDCl):6.73(s,1H,Ph-H),6.64(s,2H,Ph-H),2.28(s,6H,Ph-CH),2.02(s,2H,Ph-CH-SiMe)、2置換体(1,3-ビス(トリメチルシリルメチル)-5-メチルベンゼン)H-NMR(CDCl):6.55(s,2H,Ph-H),6.47(s,1H,Ph-H),2.26(s,3H,Ph-CH),2.00(s,4H,Ph-CH-SiMe)、3置換体(1,3,5-トリス(トリメチルシリルメチル)ベンゼン)H-NMR(CDCl):6.39(s,3H,Ph-H),1.98(s,6H,Ph-CH-SiMe)。
Further, each signal in 1 H-NMR was assigned by 1 H-detected multi-bond heteronuclear multiple quantum coherence spectrum-NMR (HMBC-NMR) measurement. The results were as follows.
Unsubstituted product (1,3,5-trimethylbenzene) 1 H-NMR (CDCl 3 ): 6.83 (s, 3H, Ph—H), 2.30 (s, 9H, Ph—CH 3 ), 1 Substituted substance (1-trimethylsilylmethyl-3,5-dimethylbenzene) 1 H-NMR (CDCl 3 ): 6.73 (s, 1H, Ph—H), 6.64 (s, 2H, Ph—H), 2.28 (s, 6H, Ph—CH 3 ), 2.02 (s, 2H, Ph—CH 2 —SiMe 3 ), disubstituted (1,3-bis (trimethylsilylmethyl) -5-methylbenzene) 1 H-NMR (CDCl 3 ): 6.55 (s, 2H, Ph—H), 6.47 (s, 1H, Ph—H), 2.26 (s, 3H, Ph—CH 3 ), 2 .00 (s, 4H, Ph- CH 2 -SiMe 3), 3 -substituted bodies (1,3,5-tris Trimethylsilylmethyl) benzene) 1 H-NMR (CDCl 3 ): 6.39 (s, 3H, Ph-H), 1.98 (s, 6H, Ph-CH 2 -SiMe 3).
 以上のH-NMR,HMBC-NMR測定による帰属に基づいて、GC-MSで得られた分子イオンピークを以下のように帰属した。EI-MS,m/z=120(M+)は無置換体(1,3,5-トリメチルベンゼン),m/z=192(M+)は1置換体(1-トリメチルシリルメチル-3,5-ジメチルベンゼン),m/z=264(M+)は2置換体(1,3-ビス(トリメチルシリルメチル)-5-メチルベンゼン),m/z=336(M+)は3置換体(1,3,5-トリス(トリメチルシリルメチル)ベンゼン)。以上より、無置換体:1置換体:2置換体:3置換体の割合(モル比)は、3:3:24:70と求められ、1,3,5-トリメチルベンゼンのメチル基のリチオ化率は87%であり、1,3,5-トリメチルベンゼン1分子に導入された平均リチウム原子数は2.49である。 Based on the above assignments by 1 H-NMR and HMBC-NMR measurements, molecular ion peaks obtained by GC-MS were assigned as follows. EI-MS, m / z = 120 (M +) is unsubstituted (1,3,5-trimethylbenzene), m / z = 192 (M +) is monosubstituted (1-trimethylsilylmethyl-3,5-dimethyl) Benzene), m / z = 264 (M +) is disubstituted (1,3-bis (trimethylsilylmethyl) -5-methylbenzene), m / z = 336 (M +) is trisubstituted (1,3,5) -Tris (trimethylsilylmethyl) benzene). From the above, the ratio (molar ratio) of unsubstituted product: 1 substituted product: 2 substituted product: 3 substituted product was determined to be 3: 3: 24: 70, and the methyl group lithio of 1,3,5-trimethylbenzene was obtained. The conversion rate is 87%, and the average number of lithium atoms introduced into one molecule of 1,3,5-trimethylbenzene is 2.49.
〔実施例1〕
〔変性スチレンブタジエンゴム1の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部、スチレン25.2部、およびテトラメチルエチレンジアミン0.185部を仕込んだ後、製造例1で得られた重合開始剤1の溶液(リチオ化された1,3,5-トリメチルベンゼン)0.812部を添加し(反応系中に存在するテトラメチルエチレンジアミンの量は、1,3,5-トリメチルベンゼンのリチオ化に用いたn-ブチルリチウム1モル当たり2.0モルである)、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%~100%の範囲になったことを確認してから、変性剤としてのトリス(ジメチルアミノ)クロロシラン(上記一般式(5)において、X=Cl、R~R=化学的な単結合、R~R10=CH)0.157部(重合開始剤1中に含有されるLi1モルに対して、1.0モルとなる量)を添加し、30分間反応させた後、重合停止剤としてメタノール0.064部を添加して重合体を含有する溶液を得た。
[Example 1]
[Production of Modified Styrene Butadiene Rubber 1]
In a nitrogen atmosphere, an autoclave was charged with 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, and 0.185 parts of tetramethylethylenediamine, and then the polymerization initiator obtained in Production Example 1 0.812 parts of a solution of 1 (lithiated 1,3,5-trimethylbenzene) (the amount of tetramethylethylenediamine present in the reaction system is sufficient for lithiation of 1,3,5-trimethylbenzene). Polymerization was started at 60 ° C., with 2.0 moles per mole of n-butyllithium used. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95% to 100%, tris (dimethylamino) chlorosilane (in the general formula (5), X = Cl, R 1 to R 4 = chemical single bond, R 5 to R 10 = CH 3 ) 0.157 parts (amount that is 1.0 mol with respect to 1 mol of Li contained in the polymerization initiator 1) ) And reacted for 30 minutes, and then 0.064 part of methanol was added as a polymerization terminator to obtain a solution containing a polymer.
 そして、得られた重合体100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を、重合体を含有する溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の変性スチレンブタジエンゴム1を得た。 Then, 100 parts of the obtained polymer, 2,4-bis [(octylthio) methyl] -o-cresol (trade name “Irganox 1520”, manufactured by Ciba Specialty Chemicals) 0.15 as an anti-aging agent After adding a part to the solution containing a polymer, the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C. for 24 hours to obtain a solid modified styrene butadiene rubber 1.
 得られた変性スチレンブタジエンゴム1は、GPC測定において、Mnが164,000、Mwが207,000、分子量分布(Mw/Mn)が1.27の溶出成分(ピーク面積比15.2%)、Mnが381,000、Mwが386,000、分子量分布(Mw/Mn)が1.01の溶出成分(ピーク面積比14.6%)、およびMnが741,000、Mwが784,000、分子量分布(Mw/Mn)が1.06の溶出成分(ピーク面積比70.2%)からなるものであり、全体としてMnが443,000、Mwが638,000、分子量分布(Mw/Mn)が1.44のものであった。また、多角度光散乱測定により、高分子側のピークの分岐度が高い事が確認された。さらに、この変性スチレンブタジエンゴム1のスチレン単位の含有量は21.8%、ブタジエン単位中のビニル結合含有量は60.1モル%であった。また、この変性スチレンブタジエンゴム1について、H-NMRを測定したところ、トリス(ジメチルアミノ)シリル基が導入されていることが確認された。この変性スチレンブタジエンゴム1について、上記した方法にしたがい、ゲル重量分率を測定した。結果を表1に示す。 The obtained modified styrene butadiene rubber 1 is an elution component (peak area ratio 15.2%) having an Mn of 164,000, an Mw of 207,000, and a molecular weight distribution (Mw / Mn) of 1.27 in GPC measurement. Elution component (peak area ratio 14.6%) with Mn of 381,000, Mw of 386,000, molecular weight distribution (Mw / Mn), and Mn of 741,000, Mw of 784,000, molecular weight Distribution (Mw / Mn) consists of an elution component (peak area ratio 70.2%) of 1.06. As a whole, Mn is 443,000, Mw is 638,000, and molecular weight distribution (Mw / Mn) is 1.44. Moreover, it was confirmed by the multi-angle light scattering measurement that the degree of branching of the peak on the polymer side is high. The modified styrene butadiene rubber 1 had a styrene unit content of 21.8% and a vinyl bond content in the butadiene unit of 60.1 mol%. Further, when 1 H-NMR of this modified styrene butadiene rubber 1 was measured, it was confirmed that a tris (dimethylamino) silyl group was introduced. The gel weight fraction of this modified styrene butadiene rubber 1 was measured according to the method described above. The results are shown in Table 1.
〔ゴム組成物の調製〕
 次に、容量250mlのブラベンダータイプミキサー中で、上記にて得られた変性スチレンブタジエンゴム1 100部を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1115MP」)50部、プロセスオイル(新日本石油社製、商品名「アロマックス T-DAE」)20部、およびシランカップリング剤:ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド(デグッサ社製、商品名「Si69」)6.0部を添加して、110℃を開始温度として1.5分間混練後、シリカ(ローディア社製、商品名「Zeosil1115MP」)25部、酸化亜鉛3部、ステアリン酸2部および老化防止剤としてのN-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアン(大内新興化学工業社製、商品名「ノクラック6C」)2部を添加し、さらに2.5分間混練し、ミキサーから混練物を排出させた。混練終了時の混練物の温度は150℃であった。そして、混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、110℃を開始温度として3分間混練した後、ミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物と、硫黄1.54部、架橋促進剤としてのN-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(大内新興化学工業社製、商品名「ノクセラーCZ-G」)1.32部、および同じく架橋促進剤としてのジフェニルグアニジン(大内新興化学工業社製、商品名「ノクセラーD」)1.32部を混練した後、シート状のゴム組成物を取り出した。そして、得られたゴム組成物を、160℃で20分間プレス架橋することで、ゴム架橋物を得て、得られたゴム架橋物(試験片)について、耐摩耗性および低発熱性の評価を行なった。結果を表1に示す。なお、表1中においては、耐摩耗性および低発熱性の評価結果は、後述する比較例1の結果を、それぞれ100とした場合における比率で示した。
(Preparation of rubber composition)
Next, 100 parts of the modified styrene butadiene rubber 1 obtained above was masticated for 30 seconds in a Brabender type mixer having a capacity of 250 ml, and then 50 parts of silica (trade name “Zeosil 1115MP”, manufactured by Rhodia), 20 parts of oil (trade name “Aromax T-DAE” manufactured by Nippon Oil Corporation) and silane coupling agent: bis (3- (triethoxysilyl) propyl) tetrasulfide (trade name “Si69” manufactured by Degussa) ) After adding 6.0 parts and kneading at 110 ° C. for 1.5 minutes, 25 parts of silica (trade name “Zeosil 1115MP” manufactured by Rhodia), 3 parts of zinc oxide, 2 parts of stearic acid and anti-aging N-Phenyl-N '-(1,3-dimethylbutyl) -p-phenylenedian (Ouchi Shinsei Chemical Industry Co., Ltd.) , Was added trade name "Nocrac 6C") 2 parts, and further kneaded for 2.5 minutes to discharge the kneaded product from the mixer. The temperature of the kneaded product at the end of kneading was 150 ° C. The kneaded product was cooled to room temperature and then kneaded again in a Brabender type mixer at 110 ° C. for 3 minutes, and then the kneaded product was discharged from the mixer. Next, with an open roll at 50 ° C., the obtained kneaded product, 1.54 parts of sulfur, N-cyclohexyl-2-benzothiazolylsulfenamide (trade name, manufactured by Ouchi Shinsei Chemical Co., Ltd.) as a crosslinking accelerator "Noxeller CZ-G") 1.32 parts and diphenylguanidine (trade name "Noxeller D", manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.), also used as a crosslinking accelerator, are kneaded and then sheet-like rubber The composition was removed. Then, the obtained rubber composition is press-crosslinked at 160 ° C. for 20 minutes to obtain a crosslinked rubber, and the obtained crosslinked rubber (test piece) is evaluated for wear resistance and low heat build-up. I did it. The results are shown in Table 1. In Table 1, the evaluation results of wear resistance and low heat build-up were shown as ratios when the results of Comparative Example 1 described later were set to 100, respectively.
〔実施例2〕
〔変性スチレンブタジエンゴム2の製造〕
 変性剤としてのトリス(ジメチルアミノ)クロロシランの配合量を0.157部から、0.079部(重合開始剤1中に含有されるLi1モルに対して、0.5モルとなる量)に変更した以外は、実施例1と同様にして、変性スチレンブタジエンゴム2の製造を行った。得られた変性スチレンブタジエンゴム2は、GPC測定において、Mnが161,000、Mwが202,000、分子量分布(Mw/Mn)が1.25の溶出成分(ピーク面積比15.1%)、Mnが373,000、Mwが378,000、分子量分布(Mw/Mn)が1.01の溶出成分(ピーク面積比16.4%)、およびMnが723,000、Mwが763,000、分子量分布(Mw/Mn)が1.06の溶出成分(ピーク面積比68.5%)からなるものであり、全体としてMnが430,000、Mwが615,000、分子量分布(Mw/Mn)が1.43のものであった。また、多角度光散乱測定により、高分子側のピークの分岐度が高い事が確認された。さらに、この変性スチレンブタジエンゴム2のスチレン単位の含有量は21.7%、ブタジエン単位中のビニル結合含有量は59.9モル%であった。また、この変性スチレンブタジエンゴム2について、H-NMRを測定したところ、トリス(ジメチルアミノ)シリル基が導入されていることが確認された。この変性スチレンブタジエンゴム2について、上記した方法にしたがい、ゲル重量分率を測定した。結果を表1に示す。
[Example 2]
[Production of modified styrene butadiene rubber 2]
The blending amount of tris (dimethylamino) chlorosilane as a modifier is changed from 0.157 parts to 0.079 parts (amount to be 0.5 moles relative to 1 mole of Li contained in the polymerization initiator 1). A modified styrene butadiene rubber 2 was produced in the same manner as in Example 1 except that. The obtained modified styrene butadiene rubber 2 is an elution component (peak area ratio 15.1%) having an Mn of 161,000, an Mw of 202,000, and a molecular weight distribution (Mw / Mn) of 1.25 in GPC measurement. Elution component (peak area ratio 16.4%) with Mn of 373,000, Mw of 378,000, molecular weight distribution (Mw / Mn), and Mn of 723,000, Mw of 763,000, molecular weight Distribution (Mw / Mn) is composed of 1.06 elution component (peak area ratio 68.5%), Mn is 430,000, Mw is 615,000 as a whole, and molecular weight distribution (Mw / Mn) is It was 1.43. Moreover, it was confirmed by the multi-angle light scattering measurement that the degree of branching of the peak on the polymer side is high. The modified styrene butadiene rubber 2 had a styrene unit content of 21.7% and a vinyl bond content in the butadiene unit of 59.9 mol%. Further, when 1 H-NMR was measured for the modified styrene butadiene rubber 2, it was confirmed that a tris (dimethylamino) silyl group was introduced. The gel weight fraction of this modified styrene butadiene rubber 2 was measured according to the method described above. The results are shown in Table 1.
 次いで、変性スチレンブタジエンゴム1の代わりに、上記にて得られた変性スチレンブタジエンゴム2を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様に評価を行った。結果を表1に示す。 Next, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 2 obtained above was used in place of the modified styrene butadiene rubber 1. Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
〔比較例1〕
〔変性スチレンブタジエンゴム3の製造〕
 変性剤として、トリス(ジメチルアミノ)クロロシラン0.157部の代わりに、テトラメトキシシラン0.487部(重合開始剤1中に含有されるLi1モルに対して、4.0モルとなる量)を用いたこと以外は、実施例1と同様にして、変性スチレンブタジエンゴム3の製造を行った。得られた変性スチレンブタジエンゴム3は、GPC測定において、全体としてMnが545,000、Mwが1,004,000、分子量分布(Mw/Mn)が1.84のものであった。また、この変性スチレンブタジエンゴム3のスチレン単位の含有量は21.7%、ブタジエン単位中のビニル結合含有量は59.8モル%であった。そして、この変性スチレンブタジエンゴム3について、上記した方法にしたがい、ゲル重量分率を測定した。結果を表1に示す。
[Comparative Example 1]
[Production of modified styrene butadiene rubber 3]
As a modifier, instead of 0.157 part of tris (dimethylamino) chlorosilane, 0.487 part of tetramethoxysilane (amount to be 4.0 moles relative to 1 mole of Li contained in the polymerization initiator 1). A modified styrene butadiene rubber 3 was produced in the same manner as in Example 1 except that it was used. The obtained modified styrene butadiene rubber 3 as a whole had a Mn of 545,000, Mw of 1,004,000, and a molecular weight distribution (Mw / Mn) of 1.84 in GPC measurement. The modified styrene butadiene rubber 3 had a styrene unit content of 21.7% and a vinyl bond content in the butadiene unit of 59.8 mol%. And about this modified styrene butadiene rubber 3, according to the above-mentioned method, the gel weight fraction was measured. The results are shown in Table 1.
 次いで、変性スチレンブタジエンゴム1の代わりに、上記にて得られた変性スチレンブタジエンゴム3を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様に評価を行った。結果を表1に示す。 Next, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 3 obtained above was used in place of the modified styrene butadiene rubber 1. Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
〔比較例2〕
〔変性スチレンブタジエンゴム4の製造〕
 変性剤として、トリス(ジメチルアミノ)クロロシラン0.157部の代わりに、トリメチルクロロシラン0.087部(重合開始剤1中に含有されるLi1モルに対して、1.0モルとなる量)を用いたこと以外は、実施例1と同様にして、変性スチレンブタジエンゴム4の製造を行った。得られた変性スチレンブタジエンゴム4は、GPC測定において、全体としてMnが440,000、Mwが629,000、分子量分布(Mw/Mn)が1.43のものであった。また、この変性スチレンブタジエンゴム4のスチレン単位の含有量は22.3%、ブタジエン単位中のビニル結合含有量は60.0モル%であった。そして、この変性スチレンブタジエンゴム4について、上記した方法にしたがい、ゲル重量分率を測定した。結果を表1に示す。
[Comparative Example 2]
[Production of Modified Styrene Butadiene Rubber 4]
As a modifier, instead of 0.157 part of tris (dimethylamino) chlorosilane, 0.087 part of trimethylchlorosilane (amount to be 1.0 mole with respect to 1 mole of Li contained in the polymerization initiator 1) is used. A modified styrene butadiene rubber 4 was produced in the same manner as in Example 1 except that it was. The obtained modified styrene butadiene rubber 4 as a whole had Mn of 440,000, Mw of 629,000, and molecular weight distribution (Mw / Mn) of 1.43 in GPC measurement. The modified styrene butadiene rubber 4 had a styrene unit content of 22.3% and a vinyl bond content in the butadiene unit of 60.0 mol%. And about this modified styrene butadiene rubber 4, according to the above-mentioned method, the gel weight fraction was measured. The results are shown in Table 1.
 次いで、変性スチレンブタジエンゴム1の代わりに、上記にて得られた変性スチレンブタジエンゴム4を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様に評価を行った。結果を表1に示す。 Next, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 4 obtained above was used instead of the modified styrene butadiene rubber 1. Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
〔比較例3〕
〔変性スチレンブタジエンゴム5の製造〕
 変性剤として、トリス(ジメチルアミノ)クロロシラン0.157部の代わりに、両末端アミノ変性ポリオルガノシロキサン(信越シリコーン社製、商品名「KF-8012」)1.756部(重合開始剤1中に含有されるLi1モルに対して、0.5モルとなる量)を用いたこと以外は、実施例1と同様にして、変性スチレンブタジエンゴム5の製造を行った。得られた変性スチレンブタジエンゴム5は、GPC測定において、全体としてMnが437,000、Mwが646,000、分子量分布(Mw/Mn)が1.48のものであった。また、この変性スチレンブタジエンゴム5のスチレン単位の含有量は22.3%、ブタジエン単位中のビニル結合含有量は60.0モル%であった。そして、この変性スチレンブタジエンゴム5について、上記した方法にしたがい、ゲル重量分率を測定した。結果を表1に示す。
[Comparative Example 3]
[Production of Modified Styrene Butadiene Rubber 5]
As a modifier, instead of 0.157 part of tris (dimethylamino) chlorosilane, 1.756 parts of both-terminal amino-modified polyorganosiloxane (manufactured by Shin-Etsu Silicone Co., Ltd., trade name “KF-8012”) (in polymerization initiator 1) A modified styrene butadiene rubber 5 was produced in the same manner as in Example 1 except that 0.5 mol) was used with respect to 1 mol of Li contained. The obtained modified styrene butadiene rubber 5 as a whole had a Mn of 437,000, Mw of 646,000, and molecular weight distribution (Mw / Mn) of 1.48 in GPC measurement. The modified styrene-butadiene rubber 5 had a styrene unit content of 22.3% and a vinyl bond content in the butadiene unit of 60.0 mol%. And about this modified styrene butadiene rubber 5, according to the above-mentioned method, the gel weight fraction was measured. The results are shown in Table 1.
 次いで、変性スチレンブタジエンゴム1の代わりに、上記にて得られた変性スチレンブタジエンゴム5を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様に評価を行った。結果を表1に示す。 Next, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 5 obtained above was used instead of the modified styrene butadiene rubber 1. Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
〔比較例4〕
〔変性スチレンブタジエンゴム6の製造〕
 変性剤として、トリス(ジメチルアミノ)クロロシラン0.157部の代わりに、下記式(6)で表される側鎖グリシドキシ変性ポリオルガノシロキサン0.086部(重合開始剤1中に含有されるLi1モルに対して、0.1モルとなる量)を濃度22%のキシレン溶液の状態で用いたこと以外は、実施例1と同様にして、変性スチレンブタジエンゴム6の製造を行った。得られた変性スチレンブタジエンゴム6は、GPC測定において、全体としてMnが438,000、Mwが626,000、分子量分布(Mw/Mn)が1.43のものであった。また、この変性スチレンブタジエンゴム6のスチレン単位の含有量は21.5%、ブタジエン単位中のビニル結合含有量は59.6モル%であった。そして、この変性スチレンブタジエンゴム6について、上記した方法にしたがい、ゲル重量分率を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000010
[Comparative Example 4]
[Production of modified styrene butadiene rubber 6]
As a modifier, instead of 0.157 part of tris (dimethylamino) chlorosilane, 0.086 part of a side chain glycidoxy-modified polyorganosiloxane represented by the following formula (6) (1 mol of Li contained in the polymerization initiator 1) The modified styrene butadiene rubber 6 was produced in the same manner as in Example 1 except that 0.1 mol) was used in the form of a 22% concentration xylene solution. The obtained modified styrene butadiene rubber 6 had an overall Mn of 438,000, Mw of 626,000, and molecular weight distribution (Mw / Mn) of 1.43 in GPC measurement. The modified styrene butadiene rubber 6 had a styrene unit content of 21.5% and a vinyl bond content in the butadiene unit of 59.6 mol%. And about this modified styrene butadiene rubber 6, according to the above-mentioned method, the gel weight fraction was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-C000010
 次いで、変性スチレンブタジエンゴム1の代わりに、上記にて得られた変性スチレンブタジエンゴム6を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様に評価を行った。結果を表1に示す。 Next, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 6 obtained above was used in place of the modified styrene butadiene rubber 1. Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
〔比較例5〕
〔変性スチレンブタジエンゴム7の製造〕
 窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部、スチレン25.2部、およびテトラメチルエチレンジアミン0.232部とを仕込んだ後、n-ブチルリチウム0.051部を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、変性剤としてのトリス(ジメチルアミノ)クロロシラン0.157部を添加し、30分間反応させた後、重合停止剤としてメタノール0.064部を添加して重合体を含有する溶液を得た。
[Comparative Example 5]
[Production of Modified Styrene Butadiene Rubber 7]
In a nitrogen atmosphere, an autoclave was charged with 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, and 0.232 parts of tetramethylethylenediamine, and 0.051 part of n-butyllithium was added. The polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95% to 100%, 0.157 part of tris (dimethylamino) chlorosilane as a modifier was added and reacted for 30 minutes. Then, 0.064 parts of methanol was added as a polymerization terminator to obtain a solution containing a polymer.
 そして、得られた重合体100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を、重合体を含有する溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の変性スチレンブタジエンゴム7を得た。 Then, 100 parts of the obtained polymer, 2,4-bis [(octylthio) methyl] -o-cresol (trade name “Irganox 1520”, manufactured by Ciba Specialty Chemicals) 0.15 as an anti-aging agent After adding a part to the solution containing a polymer, the solvent was removed by steam stripping, followed by vacuum drying at 60 ° C. for 24 hours to obtain a solid modified styrene butadiene rubber 7.
 得られた変性スチレンブタジエンゴム7は、GPC測定において、Mnが295,000、Mwが312,000、分子量分布(Mw/Mn)が1.06のものであった。また、この変性スチレンブタジエンゴム7のスチレン単位の含有量は21.1%、ブタジエン単位中のビニル結合含有量は59.8モル%であった。さらに、この変性スチレンブタジエンゴム7について、H-NMRを測定したところ、トリス(ジメチルアミノ)シリル基が導入されていることが確認された。この変性スチレンブタジエンゴム7について、上記した方法にしたがい、ゲル重量分率を測定した。結果を表1に示す。 The obtained modified styrene butadiene rubber 7 had a Mn of 295,000, a Mw of 312,000, and a molecular weight distribution (Mw / Mn) of 1.06 in GPC measurement. The modified styrene butadiene rubber 7 had a styrene unit content of 21.1% and a vinyl bond content in the butadiene unit of 59.8 mol%. Furthermore, when 1 H-NMR was measured for the modified styrene butadiene rubber 7, it was confirmed that a tris (dimethylamino) silyl group was introduced. For this modified styrene butadiene rubber 7, the gel weight fraction was measured according to the method described above. The results are shown in Table 1.
 次いで、変性スチレンブタジエンゴム1の代わりに、上記にて得られた変性スチレンブタジエンゴム7を使用した以外は、実施例1と同様にして、ゴム組成物およびゴム架橋物を得て、実施例1と同様に評価を行った。結果を表1に示す。 Next, a rubber composition and a rubber cross-linked product were obtained in the same manner as in Example 1 except that the modified styrene butadiene rubber 7 obtained above was used in place of the modified styrene butadiene rubber 1. Example 1 Evaluation was performed in the same manner as above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1より、重合開始剤として、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を用い、かつ、変性剤として、上記一般式(5)で表される化合物を用いた場合には、変性共役ジエン系ゴムのゲル分が実質的に含有されておらず、しかも、これを用いて得られるゴム架橋物は、低発熱性および耐摩耗性に優れるものであった(実施例1,2)。 From Table 1, an alkali metalated aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring as a polymerization initiator is used, and the above general formula ( When the compound represented by 5) is used, the gel content of the modified conjugated diene rubber is not substantially contained, and the rubber cross-linked product obtained by using this has low heat build-up and resistance. It was excellent in abrasion (Examples 1 and 2).
 これに対し、変性剤として、テトラメトキシシランを用いた場合には、得られる変性共役ジエン系ゴムは、ゲル分を多く含むものとなり、加工性に劣り、さらには、ゴム架橋物とした場合に、低発熱性および耐摩耗性に劣る結果となった(比較例1)。
 また、変性剤として、トリメチルクロロシランや両末端アミノ変性ポリオルガノシロキサンを用いた場合には、得られる変性共役ジエン系ゴムは、ゲル分の含有量が低いものであったが、ゴム架橋物とした場合に、低発熱性および耐摩耗性に劣る結果となった(比較例2,3)。
 さらに、変性剤として、側鎖グリシドキシ変性ポリオルガノシロキサンを用いた場合には、得られる変性共役ジエン系ゴムは、ゲル分を多く含むものとなり、加工性に劣り、さらには、ゴム架橋物とした場合に、低発熱性に劣る結果となった(比較例4)。
 また、重合開始剤として、n-ブチルリチウムを用いた場合には、得られる変性共役ジエン系ゴムは、ゲル分を実質的に含有しないものであったが、ゴム架橋物とした場合に、低発熱性および耐摩耗性に劣り、とりわけ、低発熱性に極めて劣る結果となった(比較例5)。
On the other hand, when tetramethoxysilane is used as a modifier, the resulting modified conjugated diene rubber contains a large amount of gel, is inferior in workability, and further, when a rubber cross-linked product is used. The results were inferior in low heat build-up and wear resistance (Comparative Example 1).
In addition, when trimethylchlorosilane or both-terminal amino-modified polyorganosiloxane was used as a modifier, the resulting modified conjugated diene rubber had a low gel content, but was a crosslinked rubber product. In this case, the results were inferior in low heat generation and wear resistance (Comparative Examples 2 and 3).
Furthermore, when a side-chain glycidoxy-modified polyorganosiloxane is used as a modifier, the resulting modified conjugated diene rubber contains a large amount of gel, is inferior in processability, and is a crosslinked rubber product. In such a case, the result was inferior to the low exothermic property (Comparative Example 4).
In addition, when n-butyllithium is used as a polymerization initiator, the resulting modified conjugated diene rubber does not substantially contain a gel component. The results were inferior in heat generation and wear resistance, and in particular, inferior in low heat generation (Comparative Example 5).

Claims (11)

  1.  重合開始剤として、アルカリ金属原子および芳香環に、直接結合した炭素原子を1分子中に3個以上有するアルカリ金属化芳香族化合物を用いて、少なくとも共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系ゴムを得る第1工程と、
     前記活性末端を有する共役ジエン系ゴムの活性末端に、下記一般式(I)で表される化合物を反応させる第2工程と、を備える変性共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (上記一般式(I)において、Xは、前記活性末端を有する共役ジエン系ゴムの活性末端と反応することができる原子もしくは反応基、または、前記活性末端を有する共役ジエン系ゴムの活性末端と反応することができる原子および反応基のいずれか一つを含む炭化水素基であり、R~Rは、それぞれ独立して、化学的な単結合または炭素数1~10のアルキレン基であり、R~R10は、それぞれ独立して、炭素数1~10のアルキル基または炭素数6~12のアリール基であり、R~R10は、RとRとの組み合わせ、RとRとの組み合わせ、またはRとR10との組み合わせにて互いに結合して、窒素原子とともに環構造を形成していてもよい。)
    As a polymerization initiator, an alkali metallized aromatic compound having 3 or more carbon atoms directly bonded to an alkali metal atom and an aromatic ring in one molecule is used to polymerize a monomer comprising at least a conjugated diene compound. And a first step of obtaining a conjugated diene rubber having an active end,
    And a second step of reacting a compound represented by the following general formula (I) with an active terminal of the conjugated diene rubber having the active terminal.
    Figure JPOXMLDOC01-appb-C000001
    (In the above general formula (I), X represents an atom or a reactive group capable of reacting with the active end of the conjugated diene rubber having the active end, or an active end of the conjugated diene rubber having the active end) A hydrocarbon group containing any one of atoms and reactive groups capable of reacting, and R 1 to R 4 are each independently a chemical single bond or an alkylene group having 1 to 10 carbon atoms. , R 5 to R 10 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and R 5 to R 10 are combinations of R 5 and R 6 , R And may be combined with each other by a combination of 7 and R 8 or a combination of R 9 and R 10 to form a ring structure together with the nitrogen atom.)
  2.  前記第1工程において、前記共役ジエン化合物に加えて芳香族ビニル化合物を含んでなる単量体を共重合する請求項1に記載の変性共役ジエン系ゴムの製造方法。 The method for producing a modified conjugated diene rubber according to claim 1, wherein, in the first step, a monomer comprising an aromatic vinyl compound in addition to the conjugated diene compound is copolymerized.
  3.  前記アルカリ金属化芳香族化合物が、芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物に、有機アルカリ金属化合物を反応させて得られたものである請求項1または2に記載の変性共役ジエン系ゴムの製造方法。 The alkali metalated aromatic compound is obtained by reacting an organic alkali metal compound with an aromatic compound having 3 or more carbon atoms directly bonded to an aromatic ring in one molecule. A process for producing the modified conjugated diene rubber described in 1.
  4.  前記芳香環に直接結合した炭素原子を1分子中に3個以上有する芳香族化合物が、下記一般式(II)で表される芳香族化合物である請求項3に記載の変性共役ジエン系ゴムの製造方法。
    Figure JPOXMLDOC01-appb-C000002
     (上記一般式(II)において、R11~R18は、それぞれ独立して水素原子、または炭素数1~10のアルキル基であり、R11~R18のうち3個以上が炭素数1~10のアルキル基である。pは、0~5の整数であり、pが2以上である場合には、上記一般式(II)で表される構造にかかわらず、3個以上存在するベンゼン環は互いに任意の位置で縮合したものであってもよい。)
    The modified conjugated diene rubber according to claim 3, wherein the aromatic compound having 3 or more carbon atoms directly bonded to the aromatic ring in the molecule is an aromatic compound represented by the following general formula (II). Production method.
    Figure JPOXMLDOC01-appb-C000002
    (In the above general formula (II), R 11 to R 18 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and 3 or more of R 11 to R 18 have 1 to And p is an integer of 0 to 5, and when p is 2 or more, 3 or more benzene rings are present regardless of the structure represented by the general formula (II). May be condensed with each other at an arbitrary position.)
  5.  前記一般式(I)で表される化合物中における、Xが、ハロゲン原子であり、R~Rが、化学的な単結合であり、R~R10が、それぞれ独立して、炭素数1~5のアルキル基である請求項1~4のいずれかに記載の変性共役ジエン系ゴムの製造方法。 In the compound represented by the general formula (I), X is a halogen atom, R 1 to R 4 are chemical single bonds, and R 5 to R 10 are each independently a carbon atom. The method for producing a modified conjugated diene rubber according to any one of claims 1 to 4, which is an alkyl group of 1 to 5.
  6.  前記第2工程における、前記一般式(I)で表される化合物の使用量を、前記第1工程で用いた前記アルカリ金属化芳香族化合物中のアルカリ金属原子1モルに対し、前記共役ジエン系ゴムの活性末端と反応することができる原子または反応基の量が、0.05~5モルの範囲となる量とする請求項1~5のいずれかに記載の変性共役ジエン系ゴムの製造方法。 In the second step, the amount of the compound represented by the general formula (I) is used with respect to 1 mol of the alkali metal atom in the alkali metalated aromatic compound used in the first step. The method for producing a modified conjugated diene rubber according to any one of claims 1 to 5, wherein the amount of atoms or reactive groups capable of reacting with the active terminal of the rubber is in an amount ranging from 0.05 to 5 mol. .
  7.  請求項1~6のいずれかに記載の製造方法により得られる変性共役ジエン系ゴム。 A modified conjugated diene rubber obtained by the production method according to any one of claims 1 to 6.
  8.  請求項7に記載の変性共役ジエン系ゴムを含むゴム成分100重量部に対して、シリカ10~200重量部を含有してなるゴム組成物。 A rubber composition comprising 10 to 200 parts by weight of silica with respect to 100 parts by weight of a rubber component containing the modified conjugated diene rubber according to claim 7.
  9.  架橋剤をさらに含有してなる請求項8に記載のゴム組成物。 The rubber composition according to claim 8, further comprising a crosslinking agent.
  10.  請求項9に記載のゴム組成物を架橋してなるゴム架橋物。 A crosslinked rubber product obtained by crosslinking the rubber composition according to claim 9.
  11.  請求項10に記載のゴム架橋物を含んでなるタイヤ。 A tire comprising the rubber cross-linked product according to claim 10.
PCT/JP2013/084815 2012-12-26 2013-12-26 Method for producing modified conjugated diene rubber WO2014104169A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014554531A JP6187477B2 (en) 2012-12-26 2013-12-26 Process for producing modified conjugated diene rubber
KR1020157012237A KR20150099513A (en) 2012-12-26 2013-12-26 Method for producing modified conjugated diene rubber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-282486 2012-12-26
JP2012282486 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014104169A1 true WO2014104169A1 (en) 2014-07-03

Family

ID=51021245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084815 WO2014104169A1 (en) 2012-12-26 2013-12-26 Method for producing modified conjugated diene rubber

Country Status (3)

Country Link
JP (1) JP6187477B2 (en)
KR (1) KR20150099513A (en)
WO (1) WO2014104169A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104628A1 (en) * 2014-12-25 2016-06-30 住友化学株式会社 Modified conjugated diene polymer, and polymer composition containing said polymer
WO2018181161A1 (en) * 2017-03-31 2018-10-04 日本ゼオン株式会社 Method for producing modified conjugated diene-based rubber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102037842B1 (en) * 2016-03-14 2019-10-30 주식회사 엘지화학 Alkoxysillane modifying agent comprising tertiary amino group and preparation method of modified conjugated diene polymer using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1555729A (en) * 1976-06-17 1979-11-14 Charbonnages Ste Chimique Bifunctional and trifunctional organo-lithium initiators and their use
WO2010131646A1 (en) * 2009-05-11 2010-11-18 日本ゼオン株式会社 Method for producing radial conjugated diene polymer
JP2012256789A (en) * 2011-06-10 2012-12-27 Taiyo Yuden Co Ltd Active material for electrochemical device, and electrochemical device using the same
WO2013100022A1 (en) * 2011-12-28 2013-07-04 日本ゼオン株式会社 Method for producing modified conjugated diene rubber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1555729A (en) * 1976-06-17 1979-11-14 Charbonnages Ste Chimique Bifunctional and trifunctional organo-lithium initiators and their use
WO2010131646A1 (en) * 2009-05-11 2010-11-18 日本ゼオン株式会社 Method for producing radial conjugated diene polymer
JP2012256789A (en) * 2011-06-10 2012-12-27 Taiyo Yuden Co Ltd Active material for electrochemical device, and electrochemical device using the same
WO2013100022A1 (en) * 2011-12-28 2013-07-04 日本ゼオン株式会社 Method for producing modified conjugated diene rubber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104628A1 (en) * 2014-12-25 2016-06-30 住友化学株式会社 Modified conjugated diene polymer, and polymer composition containing said polymer
CN107001491A (en) * 2014-12-25 2017-08-01 住友化学株式会社 Modified conjugated diene polymer and the polymer composition containing the polymer
JPWO2016104628A1 (en) * 2014-12-25 2017-10-05 住友化学株式会社 Modified conjugated diene polymer and polymer composition containing the polymer
US10118973B2 (en) 2014-12-25 2018-11-06 Sumitomo Chemical Company, Limited Modified conjugated diene polymer, and polymer composition containing said polymer
WO2018181161A1 (en) * 2017-03-31 2018-10-04 日本ゼオン株式会社 Method for producing modified conjugated diene-based rubber
JPWO2018181161A1 (en) * 2017-03-31 2020-02-06 日本ゼオン株式会社 Method for producing modified conjugated diene rubber
JP7010285B2 (en) 2017-03-31 2022-01-26 日本ゼオン株式会社 Method for manufacturing modified conjugated diene rubber

Also Published As

Publication number Publication date
JPWO2014104169A1 (en) 2017-01-12
KR20150099513A (en) 2015-08-31
JP6187477B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6015674B2 (en) Process for producing modified conjugated diene rubber
JP5842983B2 (en) Method for producing radial conjugated diene polymer
JP6468283B2 (en) Process for producing modified conjugated diene rubber
JP6607248B2 (en) Process for producing modified conjugated diene rubber
JP6187477B2 (en) Process for producing modified conjugated diene rubber
JP6205788B2 (en) Process for producing modified conjugated diene rubber
JP6384472B2 (en) Method for producing radial conjugated diene rubber
JP2014208805A (en) Method for producing modified conjugated diene-based rubber
JP7010285B2 (en) Method for manufacturing modified conjugated diene rubber
JP6964027B2 (en) Method for manufacturing modified conjugated diene rubber
WO2018088483A1 (en) Method for producing modified conjugated diene rubber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554531

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157012237

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867048

Country of ref document: EP

Kind code of ref document: A1