WO2014103978A1 - Wireless base station device, wireless communication system, and wireless communication method - Google Patents

Wireless base station device, wireless communication system, and wireless communication method Download PDF

Info

Publication number
WO2014103978A1
WO2014103978A1 PCT/JP2013/084407 JP2013084407W WO2014103978A1 WO 2014103978 A1 WO2014103978 A1 WO 2014103978A1 JP 2013084407 W JP2013084407 W JP 2013084407W WO 2014103978 A1 WO2014103978 A1 WO 2014103978A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
transmission
user terminal
radio base
variation
Prior art date
Application number
PCT/JP2013/084407
Other languages
French (fr)
Japanese (ja)
Inventor
アナス ベンジャブール
祥久 岸山
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2014103978A1 publication Critical patent/WO2014103978A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates to a radio base station apparatus, a radio communication system, and a radio communication method applicable to a cellular system or the like.
  • HSDPA High Speed Packet Access Access
  • HSUPA High SpeckWed SpeckWed
  • CDMA Wideband-Code Division Multiple Access
  • the third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz.
  • a maximum transmission rate of about 300 Mbps on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz.
  • LTE-A LTE Advanced
  • inter-cell orthogonalization is one promising technique for further improving the system performance over the LTE system.
  • orthogonalization within a cell is realized by orthogonal multi-access for both uplink and downlink. That is, in the downlink, orthogonalization is performed between user terminals UE (User Equipment) in the frequency domain.
  • UE User Equipment
  • W-CDMA Wideband Code Division Multiple Access
  • a coordinated multi-point transmission / reception (CoMP: Coordinated Multi-Point transmission / reception) technique is being studied as a technique for realizing orthogonalization between cells.
  • CoMP transmission / reception a plurality of cells perform transmission / reception signal processing in cooperation with one or a plurality of user terminals UE.
  • simultaneous transmission of multiple cells to which precoding is applied, cooperative scheduling / beamforming, and the like are being studied.
  • the application of these CoMP technologies is expected to improve the throughput characteristics of the user terminal UE located particularly at the cell edge.
  • the radio resources are not effectively used, and the throughput characteristic of the entire system and the throughput characteristic of the user terminal UE at the cell edge deteriorate. Can occur. That is, in order to improve the throughput characteristics by applying the CoMP technique, it is required to appropriately allocate radio resources to the user terminal UE at the cell edge.
  • the present invention has been made in view of such points, and provides a radio base station apparatus, a radio communication system, and a radio communication method capable of improving the throughput characteristics of the entire system and the cell terminal user terminal UE when performing CoMP transmission.
  • the purpose is to provide.
  • a radio base station apparatus is a radio base station apparatus in a radio communication system comprising a plurality of radio base station apparatuses and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station apparatuses.
  • the radio base station apparatus calculates a variation degree of feedback information between transmission points of cooperative multipoint transmission fed back from the user terminal, and according to the variation degree calculated by the calculation unit. And determining a radio resource to be allocated to the user terminal.
  • a radio communication system of the present invention is a radio communication system comprising a plurality of radio base station devices and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station devices, wherein the user terminal Has a transmission unit that transmits feedback information for each transmission point of cooperative multipoint transmission, and the radio base station apparatus varies feedback information between transmission points of cooperative multipoint transmission fed back from the user terminal. It has a calculation part which calculates a degree, and a determination part which determines the radio resource allocated to the user terminal according to the variation degree calculated by the calculation part.
  • a radio communication method of the present invention is a radio communication method of a radio communication system comprising a plurality of radio base station devices and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station devices.
  • the method includes a step of calculating a degree of variation and a step of determining a radio resource to be allocated to the user terminal according to the calculated degree of variation.
  • the present invention it is possible to improve the throughput characteristics of the entire system and the cell terminal user terminal UE when performing CoMP transmission.
  • FIG. 10 is a flowchart for explaining an operation of correcting a scheduling metric according to the degree of CQI variation between transmission points in a radio base station apparatus. It is a figure for demonstrating the system configuration
  • Coordinated Scheduling / Coordinated Beamforming is a method of transmitting a shared data channel from one cell only to one user terminal UE, and considers interference from other cells and interference to other cells as shown in FIG. 1A. Then, radio resources are allocated in the frequency / space region.
  • joint processing is a method of transmitting a shared data channel from a plurality of cells simultaneously by applying precoding. As shown in FIG. 1B, a shared data channel is transmitted from a plurality of cells to one user terminal UE. As shown in FIG. 1C, there is a joint transmission to be transmitted and a dynamic point selection (DPS) for instantaneously selecting one cell and transmitting a shared data channel.
  • DPS dynamic point selection
  • a plurality of remote radio devices (RRE: Remote Radio Equipment) connected to a radio base station device (radio base station device eNB) by an optical fiber or the like. ) (Centralized control based on the RRE configuration) and a configuration of the radio base station device (radio base station device eNB) (autonomous distributed control based on the independent base station configuration), as shown in FIG. 2B.
  • RRE Remote Radio Equipment
  • FIG. 2A shows a configuration including a plurality of remote radio apparatuses RRE, it may be configured to include only a single remote radio apparatus RRE as shown in FIG.
  • the remote radio apparatuses RRE1 and RRE2 are centrally controlled by the radio base station apparatus eNB.
  • an optical fiber is used between a radio base station apparatus eNB (concentrated base station) that performs baseband signal processing and control of a plurality of remote radio apparatuses RRE and each cell (that is, each remote radio apparatus RRE). Since connection is performed using a baseband signal, radio resource control between cells can be performed collectively in a centralized base station. That is, the problem of signaling delay and overhead between radio base station apparatuses eNB, which is a problem in the independent base station configuration, is small, and high-speed radio resource control between cells is relatively easy. Therefore, in the RRE configuration, a method using high-speed signal processing between cells such as simultaneous transmission of a plurality of cells can be applied in the downlink.
  • radio resource allocation control such as scheduling is performed in each of the plurality of radio base station apparatuses eNB (or RRE).
  • the radio resource allocation information such as timing information and scheduling is transmitted to any one of the radio base stations as necessary in the X2 interface between the radio base station apparatus eNB of the cell 1 and the radio base station apparatus eNB of the cell 2. It transmits to apparatus eNB and performs cooperation between cells.
  • FIG. 3 is a schematic diagram for explaining a cell configuration of the radio communication system.
  • FIG. 4 is a sequence diagram for explaining an operation of determining a CoMP transmission transmission cell.
  • the radio base station apparatus eNB in the serving cell notifies the user terminal UE of a measurement candidate cell (RRM measurement set) 110 by a control signal of an RRC (Radio Resource Control) protocol. (Step S11).
  • RRM measurement set a measurement candidate cell
  • RRC Radio Resource Control
  • the user terminal UE Based on CRS (Cell Specific Reference Signal) or CSI-RS (Channel State Information Reference Signal) received from each measurement candidate cell 110, the user terminal UE receives an RSRP (Reference Signal Received Receive Rigid RS). Measure. And the user terminal UE determines whether CoMP transmission should be requested
  • RSRP Reference Signal Received Receive Rigid RS
  • the determination as to whether CoMP transmission should be requested is performed based on, for example, whether the RSRP / RSRQ of the neighboring cell exceeds the RSRP / RSRQ of the serving cell, or whether the RSRP / RSRQ of the serving cell falls below a threshold value.
  • a measurement report (measurement report) result is reported to the radio base station apparatus eNB by higher layer signaling (for example, RRC signaling), and CoMP transmission is performed. Is requested (step S12).
  • the measurement report result transmitted from the user terminal UE to the radio base station apparatus eNB includes RSRP / RSRQ of the serving cell and RSRP / RSRQ of neighboring cells.
  • the radio base station apparatus eNB specifies a channel quality measurement cell (CoMP measurement set) 111 from the measurement candidate cells 110 based on the measurement report result. Then, the radio base station apparatus eNB transmits a connection reconfiguration signal (RRC Connection Reconfiguration) including notification of the channel quality measurement cell (CoMP measurement set) 111 to the user terminal UE to which CoMP transmission is to be applied ( Step S13).
  • RRC Connection Reconfiguration a connection reconfiguration signal
  • connection reconfiguration completion signal RRC Connection Reconfiguration Complete
  • the user terminal UE In response to the connection reconfiguration signal from the radio base station apparatus eNB, the user terminal UE sends a connection reconfiguration completion signal (RRC Connection Reconfiguration Complete) for notifying that the notification of the channel quality measurement cell 111 has been received. It transmits with respect to the wireless base station apparatus eNB (step S14).
  • the user terminal UE measures CSI (Channel State Information) of the channel quality measurement cell 111 notified from the radio base station apparatus eNB. Then, the user terminal UE feeds back the CSI measured for each channel quality measurement cell 111 to the radio base station apparatus eNB by PUCCH (Physical Uplink Control Channel) (step S15).
  • CSI Channel State Information
  • PUCCH Physical Uplink Control Channel
  • the CSI fed back from the user terminal UE includes a rank number (RI: Rank Indicator) and a precoder (PMI: Precoding Matrix Indicator) known in the codebook between the radio base station apparatus eNB and the user terminal UE, and
  • CQI Channel Quality Indicator
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • the radio base station apparatus eNB determines a CoMP transmission transmission point (CoMP transmission points) 112 from the channel quality measurement cells 111 based on a plurality of CSIs fed back from the user terminal UE.
  • the radio base station apparatus eNB performs CoMP transmission by appropriately selecting Coordinated Scheduling / Coordinated Beamforming and Joint processing shown in FIG. 1 for the CoMP transmission transmission cell thus determined.
  • the plurality of CQIs or RSRQ / RSRPs fed back to the radio base station apparatus eNB include the user terminal UE located in the vicinity of the cell center and the user terminal UE located in the cell edge (hereinafter referred to as “ The degree of variation between cells (transmission points) differs from the cell edge UE).
  • the degree of variation between cells (transmission points) differs from the cell edge UE.
  • a plurality of CQIs are fed back will be described here, a plurality of other measurement results (RSRQ / RSRQ, etc.) may be used.
  • the user terminal UE located in the vicinity of the cell center has a large difference between the CQI of the cell where the user terminal UE is located and the CQI of neighboring cells.
  • the degree of CQI variation between cells is relatively large.
  • the cell edge UE has a small difference between the CQI of the cell in which the cell edge UE is located and the CQI of neighboring cells, and the degree of CQI variation between cells is relatively small.
  • the received power of the signal from the radio base station apparatus eNB of each cell is small. For this reason, in CQI fed back from the cell edge UE, a channel estimation error becomes relatively large.
  • radio resources are excessively allocated to the cell edge UE having a relatively large channel estimation error in this way, the radio resources are not effectively used, and as a result, the throughput characteristics of the entire system and the cell edge UE are deteriorated. Things can happen.
  • the present inventors pay attention to this point and identify the cell edge UE from the degree of variation in feedback information (CQI) between transmission points fed back from the user terminal UE, and excessive radio resources are allocated to the identified cell edge UE. It was found that avoiding the situation can improve the throughput characteristics of the entire system and the cell edge UE, and the present invention has been completed.
  • CQI feedback information
  • the radio base station apparatus eNB calculates the degree of variation in feedback information between transmission points fed back from the user terminal UE, and assigns radio resources to be allocated to the user terminal UE according to the calculated degree of variation. It is to decide. More specifically, the radio resource amount allocated to the user terminal UE having a small variation degree of feedback information between transmission points fed back from the user terminal UE is relatively reduced while the radio resource allocated to the user terminal UE having a large variation degree is used. Increase the amount of resources relatively.
  • the degree of variation in feedback information between transmission points fed back from the user terminal UE is calculated, and radio resources to be allocated to the user terminal UE are determined according to the calculated degree of variation.
  • radio resources to be allocated to user terminals can be determined according to the degree of variation in feedback information between transmission points where it can be determined whether or not the user terminal UE is a cell edge UE. Therefore, radio resources are excessively allocated to the cell edge UE. Therefore, it is possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge.
  • the amount of radio resources allocated to the user terminal UE with a small degree of variation in feedback information between transmission points fed back from the user terminal UE is relatively reduced, while being allocated to the user terminal UE with a large degree of variation. Increase the amount of radio resources relatively.
  • it is possible to effectively avoid a situation where radio resources are excessively allocated to the cell edge UE it is possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge.
  • the radio base station apparatus eNB determines (adjusts) radio resources to be allocated to the cell edge UE by correcting a scheduling metric that determines radio resource allocation according to the degree of variation in feedback information between transmission points. To do.
  • a scheduling metric that determines radio resource allocation according to the degree of variation in feedback information between transmission points.
  • radio resources to be allocated to the user terminal UE are determined, so that certain accuracy is ensured according to the degree of variation in feedback information between transmission points fed back from the user terminal UE.
  • a proportional fairness (PF) scheduling metric that ensures fairness for the user terminal UE, a scheduling metric that maximizes the instantaneous data rate in the user terminal UE, and the like can be considered.
  • PF proportional fairness
  • the scheduling metric to be corrected is not limited to this and can be changed as appropriate.
  • the PF scheduling metric the evaluation value represented by the ratio of channel information for each radio resource (that is, channel information / average channel information) to the average value of channel information for each radio resource (average channel information) is large. Radio resources are preferentially allocated to the user terminal UE.
  • a Weighted PF (WPF) scheduling metric that adjusts radio resources allocated to the user terminal UE has been proposed in terms of both fairness and data rate. This WPF scheduling metric can also be included in the scheduling metric to be corrected in the present invention. In the following, a case where these PF scheduling metric and WPF scheduling metric are corrected by the wireless communication method according to the present invention will be described.
  • the radio resource of user i at time n is proportional to WP i [n] and is obtained by the following (Equation 2).
  • WP i [n] (R inst [n]) ⁇ / (R avg [n]) ⁇
  • ⁇ and ⁇ are weighting coefficients for adjusting radio resources allocated to the user terminal UE from the viewpoint of improving fairness and data rate.
  • ⁇ / ⁇ is increased, the scheduling operation aims to maximize the sum of the data rates.
  • the radio base station apparatus eNB calculates the degree of variation in feedback information between transmission points fed back from the user terminal UE in the process of determining the CoMP transmission transmission cell described above. Then, the PF scheduling metric and the WPF scheduling metric described above are corrected according to the calculated degree of variation. For example, the PF scheduling metric and the WPF scheduling metric described above are set in accordance with the degree of CQI variation between the radio base station apparatuses eNB of the channel quality measurement cell 111 (the cell specified by the CoMP measurement set) fed back from the user terminal UE. to correct.
  • the radio base station apparatus eNB that is a calculation target of the degree of variation is not limited to the channel quality measurement cell 111.
  • the radio base station apparatus eNB uses the radio base station apparatus eNB of the CoMP transmission transfer cell 112 (cell designated as CoMP transmission points) or the measurement candidate cell 110 (cell specified by the RRM measurement set) as a calculation target of the variation degree. ) Can be selected.
  • the radio base station apparatus eNB corrects the existing PF scheduling metric and WPF scheduling metric described above as follows. That is, the radio resource P i [n] when the PF scheduling metric is applied and the radio resource when the WPF scheduling metric is applied are proportional to WP i [n]. It is calculated
  • “F” indicates a parameter for adjusting a radio resource allocation opportunity according to the degree of variation in feedback information (CQI) between transmission points.
  • “ ⁇ ” represents a weighting coefficient for further adjusting the parameter F.
  • “F ⁇ ” constitutes a parameter for adjusting the radio resource allocation opportunity.
  • the parameter F can be obtained by, for example, (Formula 5).
  • X i indicates a report value measured for the i-th transmission point by a user terminal UE with respect to the radio base station apparatus eNB.
  • X i includes, for example, CQI, RSRP, an average data rate of transmission data transmitted from the i-th transmission point, and the like.
  • N indicates the total number of transmission points.
  • the denominator of the fraction constituting the right side of (Equation 5) indicates the calculated average of X i
  • the numerator indicates the geometric average of X i .
  • the parameter F can be calculated
  • the value of the parameter F is changed to the degree of variation in feedback information between transmission points fed back from the user terminal UE. It can be varied accordingly. That is, when the degree of variation in feedback information between transmission points fed back from the user terminal UE is relatively large, the value of the parameter F is set to be relatively large. On the other hand, when the degree of variation in feedback information between transmission points fed back from the user terminal UE is relatively small, the value of the parameter F is set to be relatively small.
  • FIG. 5 is a flowchart for explaining an operation of correcting the scheduling metric according to the degree of CQI variation between transmission points fed back from the user terminal UE in the radio base station apparatus eNB according to the present invention.
  • FIG. 5 shows from the step of transmitting CSI-RS from the radio base station apparatus eNB to the step of transmitting user data (shared channel data) based on the scheduling result.
  • a part of processing in the user terminal UE is shown for convenience of explanation.
  • the radio base station apparatus eNB measures the channel information of these channel quality measurement cells 111.
  • the radio base station apparatus eNB measures the channel information of these channel quality measurement cells 111.
  • the user terminal UE measures the CQI of each transmission point based on the CSI-RS (step S22).
  • the measured CQI is fed back to the radio base station apparatus eNB (step S23). In this case, the CQIs of all channel quality measurement cells 111 are measured and fed back.
  • the radio base station apparatus eNB calculates the degree of CQI variation between the plurality of channel quality measurement cells 111 (transmission points) fed back from the user terminal UE (step S24). Then, the radio base station apparatus eNB corrects the scheduling metric according to the calculated degree of variation (Step S25). For example, when the predetermined scheduling metric is a PF scheduling metric (Equation 1) or a WPF scheduling metric (Equation 2), the radio base station apparatus eNB incorporates the parameter F described above into the calculation formula, thereby The scheduling metric is corrected (Equation 3 and Equation 4).
  • the scheduling metric reduces the amount of radio resources allocated to the user terminal UE having a small degree of variation in CQI between transmission points from the user terminal UE, while increasing the amount of radio resources allocated to the user terminal UE having a large degree of variation.
  • the scheduling metric to be corrected Note that a scheduling metric equivalent to an existing scheduling metric is applied to the user terminal UE to which CoMP transmission is not applied.
  • the radio base station apparatus eNB determines the user terminal UE to be scheduled based on the corrected scheduling metric (step S26). In this case, the radio resource allocated to the user terminal UE with a small degree of CQI variation between the transmission points is set to be small, and the radio resource allocated to the user terminal UE with a large degree of CQI variation between the transmission points is large. Is set. And the radio base station apparatus eNB transmits user data (shared channel data) with respect to the user terminal UE determined in this way (step S27).
  • the degree of CQI variation between the plurality of channel quality measurement cells 111 (transmission points) fed back from the user terminal UE is calculated, and the radio resource allocated to the cell edge UE according to the calculated degree of variation. To decide. As a result, it is possible to avoid a situation in which radio resources are excessively allocated to the cell edge UE when performing CoMP transmission from the radio base station apparatus eNB, and thus it becomes possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge. .
  • the scheduling metric is corrected using the parameter F according to the degree of variation between transmission points fed back from the user terminal UE.
  • the channel estimation error in the cell edge UE generally increases as the number of transmission points increases. For this reason, it is preferable as an embodiment to reflect the influence of the number of transmission points on the parameter used for correcting the scheduling metric.
  • the degree of variation becomes small and the parameter F is normalized by the number of transmission points.
  • the opportunity to allocate radio resources to the corresponding user terminal UE can be reduced as in the case where the parameter F is small.
  • the radio base station apparatus eNB corrects the above-described existing PF scheduling metric (Equation 1) and WPF scheduling metric (Equation 2) as follows. That is, the radio resource P i [n] when the PF scheduling metric is applied is obtained by the following (Expression 10) and (Expression 11).
  • P i [n] (F / N) ⁇ ⁇ R inst [n] / R avg [n]
  • P i [n] F ⁇ / N ⁇ ⁇ R inst [n] / R avg [n]
  • N indicates the total number of transmission points.
  • Equation 10 represents a calculation formula when weighting is performed with a coefficient common to the parameter F and the number N of transmission points, and (Equation 11) is weighted with a different coefficient to the parameter F and the number N of transmission points. The calculation formula is shown.
  • the radio resource WP i [n] when the WPF scheduling metric is applied is obtained by the following (Expression 12) and (Expression 13).
  • WP i [n] (F / N) ⁇ ⁇ (R inst [n]) ⁇ / (R avg [n]) ⁇
  • WP i [n] F ⁇ / N ⁇ ⁇ (R inst [n]) ⁇ / (R avg [n]) ⁇
  • (Equation 12) shows a calculation formula when weighting is performed with a coefficient common to the parameter F and the transmission point number N
  • (Equation 13) is weighted with a different coefficient to the parameter F and the transmission point number N.
  • the calculation formula when performing is shown. In these calculation formulas, when the parameter F is normalized by the number N of transmission points, “(F / N) ⁇ ” and “F ⁇ / N ⁇ ” constitute parameters for adjusting the
  • FIG. 6 is an explanatory diagram of a system configuration of the wireless communication system according to the present embodiment.
  • the radio communication system shown in FIG. 6 is a system including, for example, an LTE system or SUPER 3G.
  • carrier aggregation in which a plurality of fundamental frequency blocks with the system band of the LTE system as a unit is integrated is used.
  • this wireless communication system may be called IMT-Advanced or 4G.
  • the radio communication system 1 includes radio base station apparatuses 20A and 20B and a plurality of first and second user terminals 10A and 10B communicating with the radio base station apparatuses 20A and 20B. It consists of The radio base station apparatuses 20 ⁇ / b> A and 20 ⁇ / b> B are connected to the higher station apparatus 30, and the higher station apparatus 30 is connected to the core network 40.
  • the radio base station apparatuses 20A and 20B are connected to each other by wired connection or wireless connection.
  • the first and second user terminals 10A and 10B can communicate with the radio base station apparatuses 20A and 20B in the cells 1 and 2.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • the first and second user terminals 10A and 10B include an LTE terminal and an LTE-A terminal.
  • the description will proceed as the first and second user terminals 10A and 10B unless otherwise specified.
  • the radio base station apparatuses 20A and 20B and the first and second user terminals 10A and 10B which are mobile terminal apparatuses, are described as wirelessly communicating, but the first and second user terminals 10A and 10B 10B may be a user device including a fixed terminal device more generally.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. .
  • the downlink communication channels are PDSCH (Physical Downlink Shared Channel) as downlink data channels shared by the first and second user terminals 10A and 10B, and downlink L1 / L2 control channels (PDCCH, PCFICH, PHICH) Have. Transmission data and higher control information are transmitted by the PDSCH.
  • PDSCH and PUSCH Physical Uplink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • the number of OFDM symbols used for the PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel).
  • HACH ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
  • the uplink communication channel includes PUSCH as an uplink data channel shared by the user terminals 10A and 10B and PUCCH as an uplink control channel. Transmission data and higher control information are transmitted by this PUSCH. Also, downlink radio quality information (CQI), ACK / NACK, and the like are transmitted by PUCCH.
  • CQI downlink radio quality information
  • ACK / NACK and the like are transmitted by PUCCH.
  • the overall configuration of the radio base station apparatus will be described with reference to FIG. Note that the radio base station apparatuses 20A and 20B have the same configuration and will be described as the radio base station apparatus 20.
  • the first and second user terminals 10A and 10B have the same configuration and will be described as the user terminal 10.
  • the radio base station apparatus 20 includes transmission / reception antennas 201a and 201b, amplifier sections 202a and 202b, transmission / reception sections 203a and 203b, a baseband signal processing section 204, a call processing section 205, and a transmission path interface 206. ing. Transmission data transmitted from the radio base station apparatus 20 to the user terminal 10 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 204 via the transmission path interface 206.
  • the downlink data channel signal is transmitted from the PDCP layer, RDL layer transmission processing such as transmission data division / combination, RLC (Radio Link Control) retransmission control, MAC (Medium Access), and so on.
  • RDL layer transmission processing such as transmission data division / combination, RLC (Radio Link Control) retransmission control, MAC (Medium Access), and so on.
  • Control) Retransmission control for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, and precoding processing are performed. Also, transmission processing such as channel coding and inverse fast Fourier transform is performed on the signal of the physical downlink control channel that is the downlink control channel.
  • the baseband signal processing unit 204 notifies the control information for each user terminal 10 to wirelessly communicate with the radio base station apparatus 20 to the user terminals 10 connected to the same cell through the broadcast channel.
  • Information for communication in the cell includes, for example, system information bandwidth in the uplink or downlink, or root sequence identification information (Root Sequence) for generating a random access preamble signal in PRACH (Physical Random Access Channel). Index) and the like.
  • the transmission / reception units 203a and 203b convert the baseband signal output from the baseband signal processing unit 204 into a radio frequency band.
  • the amplifier units 202a and 202b amplify the frequency-converted radio frequency signal and output it to the transmission / reception antennas 201a and 201b.
  • the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier units 202a and 202b, and the frequency is converted by the transmission / reception units 203a and 203b. And converted into a baseband signal and input to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, IDFT (Inverse Discrete Fourier Transform) processing, error correction decoding, MAC retransmission control reception processing, RLC layer on transmission data included in the baseband signal received in the uplink , PDCP layer reception processing is performed.
  • the decoded signal is transferred to the higher station apparatus 30 via the transmission path interface 206.
  • the call processing unit 205 performs call processing such as communication channel setting and release, state management of the radio base station apparatus 20, and radio resource management.
  • the user terminal 10 includes a transmission / reception antenna 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, and an application unit 105.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102, frequency-converted by the transmission / reception unit 103, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 104.
  • downlink transmission data is transferred to the application unit 105.
  • the application unit 105 performs processing related to layers higher than the physical layer and the MAC layer. Also, the broadcast information in the downlink data is also transferred to the application unit 105.
  • uplink transmission data is input from the application unit 105 to the baseband signal processing unit 104.
  • the baseband signal processing unit 104 performs mapping processing, retransmission control (HARQ) transmission processing, channel coding, DFT processing, and IFFT processing.
  • the transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 into a radio frequency band. Thereafter, the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits it from the transmission / reception antenna 101.
  • HARQ retransmission control
  • the radio base station apparatus shown in FIG. 9 has a centralized control type radio base station configuration.
  • radio resource allocation control such as scheduling is collectively performed in a certain radio base station apparatus (central radio base station apparatus, cell 1 in FIG. 9), and the subordinate radio base station apparatus (remote radio apparatus, FIG. 9).
  • Cell 2 follows the radio resource allocation result of the radio base station apparatus.
  • feedback information CQI is used as information necessary for radio resource allocation among a plurality of cells in the scheduling unit 921 of the radio base station apparatus.
  • each functional block in FIG. 9 mainly relates to the processing contents of the baseband processing unit 204 shown in FIG. Further, the functional block diagram of FIG. 9 is simplified to explain the present invention, and is assumed to have a configuration normally provided in a general baseband processing unit 204.
  • the transmission unit on the concentrated radio base station apparatus (cell 1) side includes a downlink control information generation unit 901, a downlink control information encoding / modulation unit 902, a downlink reference signal generation unit 903, a downlink transmission data generation unit 904, An upper control information generation unit 905 and a downlink transmission data encoding / modulation unit 906 are provided.
  • the transmission unit on the centralized radio base station apparatus (cell 1) side includes a mapping unit 907, a precoding multiplication unit 908, a precoding weight generation unit 909, a downlink channel multiplexing unit 910, and an IFFT unit 911 (911a, 911a, 911b), CP adding section 912 (912a, 912b), transmission amplifier 913 (913a, 913b), transmission antenna 914 (914a, 914b), control channel signal demodulating section 920, user scheduling control section 921, It has.
  • the transmission amplifier 913 and the transmission antenna 914 correspond to the amplifier unit 202 and the transmission / reception antenna 201 shown in FIG. 7, respectively.
  • the transmission unit on the remote radio apparatus (cell 2) side of the subordinate cell includes a downlink control information generation unit 931, a downlink control information encoding / modulation unit 932, a downlink reference signal generation unit 933, and a downlink transmission data generation unit. 934, and a downlink transmission data encoding / modulating unit 936.
  • the transmission unit on the remote radio apparatus (cell 2) side of the subordinate cell includes a mapping unit 937, a precoding multiplication unit 938, a precoding weight generation unit 939, a downlink channel multiplexing unit 940, and IFFT units 941a and 941b.
  • the centralized radio base station device and the remote radio device of the subordinate cell are connected by, for example, an optical fiber.
  • the downlink control information generation units 901 and 931 generate downlink control information under the control of the scheduling unit 921, and output the downlink control information to the downlink control information encoding / modulation units 902 and 932, respectively.
  • Downlink control information coding / modulation sections 902 and 932 perform channel coding and data modulation on the downlink control information, and output them to mapping sections 907 and 937, respectively.
  • Downlink reference signal generation sections 903 and 933 generate downlink reference signals (CRS, CSI-RS, DM-RS) and output the downlink reference signals to mapping sections 907 and 937, respectively.
  • Downlink transmission data generation sections 904 and 934 generate downlink transmission data, and output the downlink transmission data to downlink transmission data encoding / modulation sections 906 and 936, respectively.
  • the higher control information generation section 905 generates higher control information transmitted / received by higher layer signaling (for example, RRC signaling), and outputs the generated higher control information to the downlink transmission data encoding / modulation section 906.
  • the higher control information generation unit 905 generates higher control information including notification of measurement candidate cells, channel quality measurement cells, CoMP transmission transmission cells, and the like to the user terminal 10.
  • the downlink transmission data encoding / modulation section 906 performs channel encoding and data modulation on the downlink transmission data and higher control information, and outputs the result to the mapping section 907.
  • the downlink transmission data encoding / modulation section 936 performs channel encoding and data modulation on the downlink transmission data, and outputs the result to the mapping section 937.
  • the mapping units 907 and 937 map the downlink control information, the downlink reference signal, the downlink transmission data, and the upper control information, and output them to the precoding multipliers 908 and 938, respectively.
  • the precoding weight generation units 909 and 939 generate precoding weights based on the PMI fed back from the user terminal 10 and output the precoding weights to the precoding multiplication units 908 and 938, respectively.
  • each of the precoding weight generation units 909 and 939 includes a codebook, and selects a precoding weight corresponding to PMI from the codebook.
  • the PMI used in precoding weight generation sections 909 and 939 is provided from control channel signal demodulation section 920.
  • the precoding multipliers 908 and 938 multiply the transmission signal by the precoding weight. That is, the precoding multipliers 908 and 938 perform phase shift and / or amplitude shift for each of the transmission antennas 914a and 914b and the transmission antennas 944a and 944b based on the precoding weights given from the precoding weight generation units 909 and 939. Do. Precoding multiplication sections 908 and 938 output the phase-shifted and / or amplitude-shifted transmission signals to downlink channel multiplexing sections 910 and 940, respectively.
  • the downlink channel multiplexing sections 910 and 940 combine the downlink control information, the downlink reference signal, the upper control information, and the downlink transmission data that are phase-shifted and / or amplitude-shifted, for each of the transmission antennas 914a and 914b and the transmission antennas 944a and 944b.
  • a transmission signal is generated.
  • Downlink channel multiplexing sections 910 and 940 output this transmission signal to IFFT (Inverse Fast Fourier Transform) sections 911a and 911b and IFFT sections 941a and 941b, respectively.
  • IFFT Inverse Fast Fourier Transform
  • IFFT sections 911a and 911b and IFFT sections 941a and 941b perform IFFT on the transmission signals and output the transmission signals after IFFT to CP adding sections 912a and 912b and CP adding sections 942a and 942b.
  • CP addition sections 912a and 912b and CP addition sections 942a and 942b add CP (Cyclic Prefix) to the transmission signal after IFFT, and transmit the transmission signal after CP addition to transmission amplifiers 913a and 913b and transmission amplifiers 943a and 943b. Output each.
  • the transmission amplifiers 913a and 913b and the transmission amplifiers 943a and 943b amplify the transmission signal after CP addition.
  • the amplified transmission signals are transmitted from the transmission antennas 914a and 914b and the transmission antennas 944a and 944b to the user terminal 10 on the downlink.
  • the control channel signal demodulator 920 demodulates the control channel signal notified from the user terminal 10 via the PUCCH, outputs the PMI included in the control channel signal to the precoding weight generators 909 and 939, and outputs the CQI to the downlink control information.
  • the data is output to the generation unit 901, the upper control information generation unit 905, and the scheduling unit 921.
  • uplink transmission data demodulation unit (not shown) demodulates uplink transmission data and outputs CQI included in the uplink transmission data to scheduling unit 921.
  • the scheduling report 921 is notified of the measurement report result (RSRP / RSRQ) from the upper layer.
  • the scheduling unit 921 determines a CoMP transmission transmission cell that transmits a shared data channel to the user terminal 10 when CoMP transmission is applied, based on the CQI output from the control channel signal demodulation unit 920 or the like.
  • the scheduling unit 921 includes a variation calculation unit 921a and a metric correction unit 921b.
  • the variation calculator 921a constitutes a calculator, and calculates the degree of CQI variation between transmission points input from the control channel signal demodulator 920 or the like. Then, the calculated degree of variation is output to the metric correction unit 921b.
  • the variation calculation unit 921a calculates the degree of CQI variation between transmission points using, for example, the calculation formulas shown in (Expression 5) and (Expression 6) described above.
  • the metric correction unit 921b constitutes a determination unit, and corrects the scheduling metric according to the degree of variation input from the variation calculation unit 921a. And the user terminal 10 (namely, user terminal 10 which allocates a radio
  • the user terminal 10 to be scheduled is determined using the corrected scheduling metric, and radio resources are allocated to the user terminal 10.
  • the corrected scheduling metric the amount of radio resources allocated to the user terminal 10 having a small degree of CQI variation between transmission points is reduced, while the amount of radio resources allocated to the user terminal 10 having a large degree of variation is increased.
  • the radio base station apparatus shown in FIG. 10 has an autonomous distributed control type radio base station configuration.
  • radio resource allocation control such as scheduling is performed in each of a plurality of radio base station apparatuses.
  • feedback information CQI is used as information necessary for radio resource allocation and the like in user scheduling control units 921 and 951 in a plurality of radio base station apparatuses.
  • each functional block in FIG. 10 mainly relates to the processing contents of the baseband processing unit 204 shown in FIG. Further, the functional block diagram of FIG. 10 is simplified for explaining the present invention, and is assumed to have a configuration normally provided in a general baseband processing unit 204.
  • the same functional blocks as those in FIG. 9 are denoted by the same reference numerals as those in FIG.
  • the transmission unit on the cell 1 side includes a downlink control information generation unit 901, a downlink control information encoding / modulation unit 902, a downlink reference signal generation unit 903, a downlink transmission data generation unit 904, and an upper control information generation unit 905.
  • the transmission unit on the cell 2 side also includes a downlink control information generation unit 931, a downlink control information encoding / modulation unit 932, a downlink reference signal generation unit 933, a downlink transmission data generation unit 934, and higher control information generation.
  • Unit 935 downlink transmission data encoding / modulation unit 936, mapping unit 937, precoding multiplication unit 938, precoding weight generation unit 939, downlink channel multiplexing unit 940, IFFT units 941a and 941b, and CP Additional units 942a and 942b, transmission amplifiers 943a and 943b, transmission antennas 944a and 944b, a control channel signal demodulation unit 950, a scheduling unit 951, and an inter-cell control information transmission / reception unit 952 are provided.
  • control channel signal demodulation unit 950 and the scheduling unit 951 included in the cell 2 side transmission unit are the same as the functions of the control channel signal demodulation unit 920 and the scheduling unit 921 included in the cell 1 side transmission unit, respectively.
  • control channel signal demodulator 950 demodulates the control channel signal notified from the user terminal 10 through the PUCCH, outputs the PMI included in the control channel signal to the precoding weight generator 939, and controls the CQI by user scheduling control. Output to the unit 951.
  • the uplink data channel demodulation unit (not shown) demodulates the uplink transmission data, and outputs the CQI included in the uplink transmission data to the user scheduling control unit 951.
  • the scheduling unit 951 determines a CoMP transmission transmission cell that transmits a shared data channel to the user terminal 10 when CoMP transmission is applied, based on the CQI output from the control channel signal demodulation unit 950 or the like. Similar to the scheduling unit 921, the scheduling unit 951 includes a variation calculation unit 951a and a metric correction unit 951b.
  • the variation calculating unit 951a calculates the degree of CQI variation between transmission points input from the control channel signal demodulating unit 950 or the like, and outputs it to the metric correcting unit 951b.
  • the metric correction unit 951b corrects the scheduling metric according to the degree of variation input from the variation calculation unit 921a. And the user terminal 10 (namely, user terminal 10 which allocates a radio
  • the inter-cell control information transmission / reception units 922 and 952 are connected via, for example, the X2 interface, and transmit / receive timing information and scheduling information output from the scheduling units 921 and 951 to / from each other. Thereby, the cooperation between cells is attained.
  • Each functional block in FIG. 11 mainly relates to the processing contents of the baseband signal processing unit 104 shown in FIG. Further, the functional blocks shown in FIG. 11 are simplified for the purpose of explaining the present invention, and the configuration normally provided in the baseband processing unit is provided.
  • the reception unit of the user terminal 10 includes a CP removal unit 1101, an FFT unit 1102, a downlink channel separation unit 1103, a downlink control information demodulation unit 1104, a downlink transmission data demodulation unit 1105, a channel estimation unit 1106, a channel quality A measurement unit 1107, a PMI selection unit 1108, and a feedback information generation unit 1109 are provided.
  • the transmission signal transmitted from the radio base station apparatus eNB is received by the transmission / reception antenna 101 illustrated in FIG. 8 and output to the CP removal unit 1101.
  • CP removing section 1101 removes the CP from the received signal and outputs it to FFT section 1102.
  • the FFT unit 1102 performs fast Fourier transform (FFT) on the signal after CP removal, and converts the signal in the time domain into a signal in the frequency domain.
  • FFT section 1102 outputs the signal converted to the frequency domain signal to downlink channel separation section 1103.
  • the downlink channel separator 1103 separates the downlink channel signal into downlink control information, downlink transmission data, higher control information, and downlink reference signals.
  • Downlink channel separation section 1103 outputs downlink control information to downlink control information demodulation section 1104, outputs downlink transmission data and higher control information to downlink transmission data demodulation section 1105, and outputs a downlink reference signal to channel estimation section 1106. .
  • the downlink control information demodulator 1104 demodulates the downlink control information, and outputs the demodulated control information to the downlink transmission data demodulator 1105 and the channel quality measurement unit 1107. Further, the downlink control information demodulation section 1104 demodulates a control channel signal (for example, PDCCH) included in the downlink control information. Downlink transmission data demodulation section 1105 demodulates downlink transmission data using the control information. Also, downlink transmission data demodulation section 1105 demodulates higher-level control information included in downlink transmission data and notifies channel quality measurement section 1107.
  • Channel estimation section 1106 estimates the channel state using the downlink reference signal, and outputs the estimated channel state to channel quality measurement section 1107 and PMI selection section 1108.
  • the channel quality measurement unit 1107 is configured to determine the RSRP / RSR from the channel state notified from the channel estimation unit 1106 based on the upper control information notified from the downlink transmission data demodulation unit 1105 and the control information notified from the downlink control information demodulation unit 1104. Measure RSRQ and CQI. For example, the channel quality measurement unit 1107 measures the RSRP / RSRQ and CQI of all the channel quality measurement cells 111 specified by the radio base station apparatus 20. The RSRP / RSRQ and CQI measured by the channel quality measurement unit 1107 are output to the feedback information generation unit 1109 as feedback information.
  • the PMI selection unit 1108 selects a PMI from the channel state notified from the channel estimation unit 1106 using a code book.
  • the PMI selected by the PMI selection unit 1108 is output to the feedback information generation unit 1109 as feedback information.
  • the feedback information generation unit 1109 feeds back the RSRP / RSRQ and CQI measured by the channel quality measurement unit 1107 to the radio base station apparatus 20 as feedback information. For example, the RSRP / RSRQ and CQI of all channel quality measurement cells 111 specified by the radio base station apparatus 20 are fed back to the radio base station apparatus 20.
  • the radio communication system 1 includes a plurality of radio base station apparatuses 20 and user terminals 10 configured to be able to perform CoMP transmission / reception with the plurality of radio base station apparatuses 20.
  • the user terminal 10 transmits feedback information (for example, CQI) for each transmission point of CoMP transmission.
  • the radio base station apparatus 20 calculates a variation degree of feedback information between transmission points of CoMP transmission fed back from the user terminal 10, and determines a radio resource to be allocated to the user terminal 10 according to the calculated variation degree. .
  • the radio base station apparatus 20 calculates the degree of CQI variation of feedback information between transmission points fed back from the user terminal 10 and assigns it to the user terminal 10 according to the calculated degree of variation. Radio resources are determined. Thereby, since it is possible to avoid a situation in which radio resources are excessively allocated to the cell edge UE when performing CoMP transmission from the radio base station apparatus 20, it is possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge. .
  • this invention is not limited to description of a specification, It can implement by changing variously.
  • a case has been described in which the degree of CQI variation between transmission points fed back from the user terminal UE is calculated in the process in which the radio base station apparatus eNB determines a CoMP transmission transmission cell.
  • the feedback information for calculating the degree of variation is not limited to this, and can be changed as appropriate.
  • measurement candidate cells 110 cells specified by RRM measurement set
  • channel quality measurement cells 111 cells specified by CoMP measurement set
  • CoMP transmission transmission cells fed back from user terminal UE RSRP / RSRQ between 112 (CoMP transmission points) can also be used.
  • the CoMP transmission is performed from the radio base station apparatus eNB as in the case where the scheduling metric is corrected according to the CQI variation degree.
  • the connection relations and functions of the components shown in the present specification can be implemented with appropriate changes.
  • the structures described in this specification can be implemented in appropriate combination.
  • the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention improves the throughput of an entire system and user equipment (UE) at a cell edge during CoMP transmission. This wireless communication system is characterised by: comprising a plurality of wireless base station devices, and user equipment which is configured so as to be capable of coordinated multi-point transmission and reception with the plurality of wireless base station devices; the user equipment transmitting feedback information with respect to each transmission point of the coordinated multi-point transmission (S23); the wireless base station devices calculating the degree of variance in the feedback information among the transmission points of the coordinated multi-point transmission, said feedback information being fed back from the user equipment (S24); and wireless resources being determined for allocation to the user equipment in accordance with the calculated degree of variance (S25).

Description

無線基地局装置、無線通信システム及び無線通信方法Radio base station apparatus, radio communication system, and radio communication method
 本発明は、セルラーシステム等に適用可能な無線基地局装置、無線通信システム及び無線通信方法に関する。 The present invention relates to a radio base station apparatus, a radio communication system, and a radio communication method applicable to a cellular system or the like.
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいては、周波数利用効率の向上、データレートの向上を目的として、HSDPA(High Speed Downlink Packet Access)やHSUPA(High Speed Uplink Packet Access)を採用することにより、W-CDMA(Wideband‐Code Division Multiple Access)をベースとしたシステムの特徴を最大限に引き出すことが行われている。このUMTSネットワークについては、更なる高速データレート、低遅延などを目的としてLTE(Long Term Evolution)が検討されている(非特許文献1)。 In the UMTS (Universal Mobile Telecommunications System) network, HSDPA (High Speed Packet Access Access) and HSUPA (High SpeckWed SpeckWed) are used to improve frequency utilization efficiency and data rate. A system based on CDMA (Wideband-Code Division Multiple Access) is being maximally extracted. With respect to this UMTS network, LTE (Long Term Evolution) has been studied for the purpose of further high-speed data rate and low delay (Non-patent Document 1).
 第3世代のシステムは、概して5MHzの固定帯域を用いて、下り回線で最大2Mbps程度の伝送レートを実現できる。一方、LTEのシステムでは、1.4MHz~20MHzの可変帯域を用いて、下り回線で最大300Mbps及び上り回線で75Mbps程度の伝送レートを実現できる。また、UMTSネットワークにおいては、更なる広帯域化及び高速化を目的として、LTEの後継のシステムも検討されている(例えば、LTEアドバンスト(LTE-A))。 The third generation system can achieve a maximum transmission rate of about 2 Mbps on the downlink using generally a fixed bandwidth of 5 MHz. On the other hand, in the LTE system, a maximum transmission rate of about 300 Mbps on the downlink and about 75 Mbps on the uplink can be realized using a variable band of 1.4 MHz to 20 MHz. In the UMTS network, a successor system of LTE is also being studied for the purpose of further broadbandization and speeding up (for example, LTE Advanced (LTE-A)).
 ところで、LTEシステムに対してさらにシステム性能を向上させるための有望な技術の1つとして、セル間直交化がある。例えば、LTE-Aシステムでは、上下リンクとも直交マルチアクセスによりセル内の直交化が実現されている。すなわち、下りリンクでは、周波数領域においてユーザ端末UE(User Equipment)間で直交化されている。一方、セル間はW-CDMAと同様、1セル周波数繰り返しによる干渉ランダム化が基本である。 Incidentally, inter-cell orthogonalization is one promising technique for further improving the system performance over the LTE system. For example, in the LTE-A system, orthogonalization within a cell is realized by orthogonal multi-access for both uplink and downlink. That is, in the downlink, orthogonalization is performed between user terminals UE (User Equipment) in the frequency domain. On the other hand, between the cells, as in W-CDMA, interference randomization by repeating one cell frequency is fundamental.
 そこで、3GPP(3rd Generation Partnership Project)では、セル間直交化を実現するための技術として、協調マルチポイント送受信(CoMP:Coordinated Multi-Point transmission/reception)技術が検討されている。このCoMP送受信では、1つ或いは複数のユーザ端末UEに対して複数のセルが協調して送受信の信号処理を行う。例えば、下りリンクでは、プリコーディングを適用する複数セル同時送信、協調スケジューリング/ビームフォーミングなどが検討されている。 Therefore, in 3GPP (3rd Generation Partnership Project), a coordinated multi-point transmission / reception (CoMP: Coordinated Multi-Point transmission / reception) technique is being studied as a technique for realizing orthogonalization between cells. In this CoMP transmission / reception, a plurality of cells perform transmission / reception signal processing in cooperation with one or a plurality of user terminals UE. For example, in the downlink, simultaneous transmission of multiple cells to which precoding is applied, cooperative scheduling / beamforming, and the like are being studied.
 これらのCoMP技術の適用により、特にセル端に位置するユーザ端末UEのスループット特性の改善が期待される。しかしながら、セル端のユーザ端末UEに対して過度に無線リソースを割り当てる場合には、無線リソースが有効に活用されず、システム全体のスループット特性やセル端のユーザ端末UEのスループット特性が劣化する事態が発生し得る。すなわち、CoMP技術の適用によりスループット特性を改善するためには、セル端のユーザ端末UEに対して適度に無線リソースを割り当てることが求められる。 The application of these CoMP technologies is expected to improve the throughput characteristics of the user terminal UE located particularly at the cell edge. However, when radio resources are excessively allocated to the user terminal UE at the cell edge, the radio resources are not effectively used, and the throughput characteristic of the entire system and the throughput characteristic of the user terminal UE at the cell edge deteriorate. Can occur. That is, in order to improve the throughput characteristics by applying the CoMP technique, it is required to appropriately allocate radio resources to the user terminal UE at the cell edge.
 本発明はかかる点に鑑みてなされたものであり、CoMP送信する際のシステム全体及びセル端のユーザ端末UEのスループット特性を改善することができる無線基地局装置、無線通信システム及び無線通信方法を提供することを目的とする。 The present invention has been made in view of such points, and provides a radio base station apparatus, a radio communication system, and a radio communication method capable of improving the throughput characteristics of the entire system and the cell terminal user terminal UE when performing CoMP transmission. The purpose is to provide.
 本発明の無線基地局装置は、複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムにおける無線基地局装置であって、前記無線基地局装置は、前記ユーザ端末からフィードバックされる、協調マルチポイント送信の送信ポイント間のフィードバック情報のばらつき度合いを算出する算出部と、前記算出部により算出されたばらつき度合いに応じて前記ユーザ端末に割り当てる無線リソースを決定する決定部と、を有することを特徴とする。 A radio base station apparatus according to the present invention is a radio base station apparatus in a radio communication system comprising a plurality of radio base station apparatuses and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station apparatuses. The radio base station apparatus calculates a variation degree of feedback information between transmission points of cooperative multipoint transmission fed back from the user terminal, and according to the variation degree calculated by the calculation unit. And determining a radio resource to be allocated to the user terminal.
 本発明の無線通信システムは、複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムであって、前記ユーザ端末は、協調マルチポイント送信の送信ポイント毎にフィードバック情報を送信する送信部を有し、前記無線基地局装置は、前記ユーザ端末からフィードバックされる、協調マルチポイント送信の送信ポイント間のフィードバック情報のばらつき度合いを算出する算出部と、前記算出部により算出されたばらつき度合いに応じて前記ユーザ端末に割り当てる無線リソースを決定する決定部と、を有することを特徴とする。 A radio communication system of the present invention is a radio communication system comprising a plurality of radio base station devices and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station devices, wherein the user terminal Has a transmission unit that transmits feedback information for each transmission point of cooperative multipoint transmission, and the radio base station apparatus varies feedback information between transmission points of cooperative multipoint transmission fed back from the user terminal. It has a calculation part which calculates a degree, and a determination part which determines the radio resource allocated to the user terminal according to the variation degree calculated by the calculation part.
 本発明の無線通信方法は、複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムの無線通信方法であって、前記ユーザ端末において、協調マルチポイント送信の送信ポイント毎にフィードバック情報を送信する工程と、前記無線基地局装置において、前記ユーザ端末からフィードバックされる、協調マルチポイント送信の送信ポイント間のフィードバック情報のばらつき度合いを算出する工程と、算出されたばらつき度合いに応じて前記ユーザ端末に割り当てる無線リソースを決定する工程と、を有することを特徴とする。 A radio communication method of the present invention is a radio communication method of a radio communication system comprising a plurality of radio base station devices and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station devices. A step of transmitting feedback information for each transmission point of cooperative multipoint transmission in the user terminal, and feedback information between transmission points of cooperative multipoint transmission fed back from the user terminal in the radio base station apparatus. The method includes a step of calculating a degree of variation and a step of determining a radio resource to be allocated to the user terminal according to the calculated degree of variation.
 本発明によれば、CoMP送信する際のシステム全体及びセル端のユーザ端末UEのスループット特性を改善することができる。 According to the present invention, it is possible to improve the throughput characteristics of the entire system and the cell terminal user terminal UE when performing CoMP transmission.
協調マルチポイント送信を説明するための図である。It is a figure for demonstrating cooperation multipoint transmission. 協調マルチポイント送受信に適用される無線基地局装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the radio base station apparatus applied to cooperative multipoint transmission / reception. 無線通信システムのセル構成を説明するための模式図である。It is a schematic diagram for demonstrating the cell structure of a radio | wireless communications system. CoMP送信伝達セルを決定する動作を説明するためのシーケンス図である。It is a sequence diagram for demonstrating the operation | movement which determines a CoMP transmission transmission cell. 無線基地局装置において、送信ポイント間のCQIのばらつき度合いに応じてスケジューリングメトリックを補正する動作を説明するためのフロー図である。FIG. 10 is a flowchart for explaining an operation of correcting a scheduling metric according to the degree of CQI variation between transmission points in a radio base station apparatus. 無線通信システムのシステム構成を説明するための図である。It is a figure for demonstrating the system configuration | structure of a radio | wireless communications system. 無線基地局装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of a wireless base station apparatus. ユーザ端末の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of a user terminal. 集中制御型の無線基地局装置のベースバンド処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the baseband process part of the centralized control type radio base station apparatus. 自律分散制御型の無線基地局装置のベースバンド処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the baseband process part of the wireless base station apparatus of an autonomous distributed control type. ユーザ端末におけるベースバンド信号処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the baseband signal processing part in a user terminal.
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 まず、図1を用いて下りリンクのCoMP送信について説明する。下りリンクのCoMP送信としては、Coordinated Scheduling/Coordinated Beamformingと、Joint processingとがある。Coordinated Scheduling/Coordinated Beamformingは、1つのユーザ端末UEに対して1つのセルからのみ共有データチャネルを送信する方法であり、図1Aに示すように、他セルからの干渉や他セルへの干渉を考慮して周波数/空間領域における無線リソースの割り当てを行う。一方、Joint processingは、プリコーディングを適用して複数のセルから同時に共有データチャネルを送信する方法であり、図1Bに示すように、1つのユーザ端末UEに対して複数のセルから共有データチャネルを送信するJoint transmissionと、図1Cに示すように、瞬時に1つのセルを選択し共有データチャネルを送信するDynamic Point Selection(DPS)とがある。 First, downlink CoMP transmission will be described with reference to FIG. As downlink CoMP transmission, there are Coordinated Scheduling / Coordinated Beamforming and Joint processing. Coordinated Scheduling / Coordinated Beamforming is a method of transmitting a shared data channel from one cell only to one user terminal UE, and considers interference from other cells and interference to other cells as shown in FIG. 1A. Then, radio resources are allocated in the frequency / space region. On the other hand, joint processing is a method of transmitting a shared data channel from a plurality of cells simultaneously by applying precoding. As shown in FIG. 1B, a shared data channel is transmitted from a plurality of cells to one user terminal UE. As shown in FIG. 1C, there is a joint transmission to be transmitted and a dynamic point selection (DPS) for instantaneously selecting one cell and transmitting a shared data channel.
 CoMP送受信を実現する構成としては、例えば、図2Aに示すように、無線基地局装置(無線基地局装置eNB)に対して光ファイバ等で接続された複数の遠隔無線装置(RRE:Remote Radio Equipment)を含む構成(RRE構成に基づく集中制御)と、図2Bに示すように、無線基地局装置(無線基地局装置eNB)の構成(独立基地局構成に基づく自律分散制御)と、がある。なお、図2Aにおいては、複数の遠隔無線装置RREを含む構成を示すが、図1に示すように、単一の遠隔無線装置RREのみを含む構成としてもよい。 As a configuration for realizing CoMP transmission / reception, for example, as shown in FIG. 2A, a plurality of remote radio devices (RRE: Remote Radio Equipment) connected to a radio base station device (radio base station device eNB) by an optical fiber or the like. ) (Centralized control based on the RRE configuration) and a configuration of the radio base station device (radio base station device eNB) (autonomous distributed control based on the independent base station configuration), as shown in FIG. 2B. 2A shows a configuration including a plurality of remote radio apparatuses RRE, it may be configured to include only a single remote radio apparatus RRE as shown in FIG.
 図2Aに示す構成(RRE構成)においては、遠隔無線装置RRE1、RRE2を無線基地局装置eNBで集中的に制御する。RRE構成では、複数の遠隔無線装置RREのベースバンド信号処理及び制御を行う無線基地局装置eNB(集中基地局)と各セル(すなわち、各遠隔無線装置RRE)との間が光ファイバを用いたベースバンド信号で接続されるため、セル間の無線リソース制御を集中基地局において一括して行うことができる。すなわち、独立基地局構成で問題となる無線基地局装置eNB間のシグナリングの遅延やオーバヘッドの問題が小さく、セル間の高速な無線リソース制御が比較的容易となる。したがって、RRE構成においては、下りリンクでは、複数セル同時送信のような高速なセル間の信号処理を用いる方法が適用できる。 In the configuration shown in FIG. 2A (RRE configuration), the remote radio apparatuses RRE1 and RRE2 are centrally controlled by the radio base station apparatus eNB. In the RRE configuration, an optical fiber is used between a radio base station apparatus eNB (concentrated base station) that performs baseband signal processing and control of a plurality of remote radio apparatuses RRE and each cell (that is, each remote radio apparatus RRE). Since connection is performed using a baseband signal, radio resource control between cells can be performed collectively in a centralized base station. That is, the problem of signaling delay and overhead between radio base station apparatuses eNB, which is a problem in the independent base station configuration, is small, and high-speed radio resource control between cells is relatively easy. Therefore, in the RRE configuration, a method using high-speed signal processing between cells such as simultaneous transmission of a plurality of cells can be applied in the downlink.
 一方、図2Bに示す構成(独立基地局構成)においては、複数の無線基地局装置eNB(又はRRE)でそれぞれスケジューリングなどの無線リソース割り当て制御を行う。この場合においては、セル1の無線基地局装置eNBとセル2の無線基地局装置eNBとの間のX2インターフェースで必要に応じてタイミング情報やスケジューリングなどの無線リソース割り当て情報をいずれかの無線基地局装置eNBに送信して、セル間の協調を行う。 On the other hand, in the configuration shown in FIG. 2B (independent base station configuration), radio resource allocation control such as scheduling is performed in each of the plurality of radio base station apparatuses eNB (or RRE). In this case, the radio resource allocation information such as timing information and scheduling is transmitted to any one of the radio base stations as necessary in the X2 interface between the radio base station apparatus eNB of the cell 1 and the radio base station apparatus eNB of the cell 2. It transmits to apparatus eNB and performs cooperation between cells.
 ここで、下りリンクのCoMP送信において、ユーザ端末UEに共有データチャネル信号を送信するセル(CoMP送信伝達セル)を決定する方法について、図3及び図4を参照しながら説明する。図3は、無線通信システムのセル構成を説明するための模式図である。図4は、CoMP送信伝達セルを決定する動作を説明するためのシーケンス図である。 Here, a method for determining a cell (CoMP transmission transmission cell) for transmitting a shared data channel signal to the user terminal UE in downlink CoMP transmission will be described with reference to FIG. 3 and FIG. FIG. 3 is a schematic diagram for explaining a cell configuration of the radio communication system. FIG. 4 is a sequence diagram for explaining an operation of determining a CoMP transmission transmission cell.
 下りリンクのCoMP送信が行われる場合、まず、サービングセルにおける無線基地局装置eNBが、ユーザ端末UEに、メジャメント候補セル(RRM measurement set)110を、RRC(Radio Resource Control)プロトコルの制御信号によって通知する(ステップS11)。 When downlink CoMP transmission is performed, first, the radio base station apparatus eNB in the serving cell notifies the user terminal UE of a measurement candidate cell (RRM measurement set) 110 by a control signal of an RRC (Radio Resource Control) protocol. (Step S11).
 ユーザ端末UEは、各メジャメント候補セル110から受信したCRS(Cell specific Reference Signal)又はCSI-RS(Channel State Information Reference Signal)に基づいて、RSRP(Reference Signal Received Power)/RSRQ(Reference Signal Received Quality)を測定する。そして、ユーザ端末UEは、RSRP/RSRQの測定結果より、CoMP送信を要求すべきか否か判定する。 Based on CRS (Cell Specific Reference Signal) or CSI-RS (Channel State Information Reference Signal) received from each measurement candidate cell 110, the user terminal UE receives an RSRP (Reference Signal Received Receive Rigid RS). Measure. And the user terminal UE determines whether CoMP transmission should be requested | required from the measurement result of RSRP / RSRQ.
 CoMP送信を要求すべきか否かの判定は、例えば、周辺セルのRSRP/RSRQが、サービングセルのRSRP/RSRQを上回ったか否か、或いは、サービングセルのRSRP/RSRQが閾値を下回ったか否かなどにより行う。ユーザ端末UEが、CoMP送信を要求すべきと判定した場合には、無線基地局装置eNBに対してメジャメントレポート(測定報告)結果を、ハイヤレイヤシグナリング(例えば、RRCシグナリング)で報告し、CoMP送信を要求する(ステップS12)。なお、ユーザ端末UEから無線基地局装置eNBへ送信されるメジャメントレポート結果には、サービングセルのRSRP/RSRQ及び周辺セルのRSRP/RSRQが含まれる。 The determination as to whether CoMP transmission should be requested is performed based on, for example, whether the RSRP / RSRQ of the neighboring cell exceeds the RSRP / RSRQ of the serving cell, or whether the RSRP / RSRQ of the serving cell falls below a threshold value. . When it is determined that the user terminal UE should request CoMP transmission, a measurement report (measurement report) result is reported to the radio base station apparatus eNB by higher layer signaling (for example, RRC signaling), and CoMP transmission is performed. Is requested (step S12). Note that the measurement report result transmitted from the user terminal UE to the radio base station apparatus eNB includes RSRP / RSRQ of the serving cell and RSRP / RSRQ of neighboring cells.
 無線基地局装置eNBは、メジャメントレポート結果に基づいて、メジャメント候補セル110の中からチャネル品質測定用セル(CoMP measurement set)111を指定する。そして、無線基地局装置eNBは、チャネル品質測定用セル(CoMP measurement set)111の通知を含むコネクション再構成信号(RRC Connection Reconfiguration)を、CoMP送信を適用すべきユーザ端末UEに対して送信する(ステップS13)。 The radio base station apparatus eNB specifies a channel quality measurement cell (CoMP measurement set) 111 from the measurement candidate cells 110 based on the measurement report result. Then, the radio base station apparatus eNB transmits a connection reconfiguration signal (RRC Connection Reconfiguration) including notification of the channel quality measurement cell (CoMP measurement set) 111 to the user terminal UE to which CoMP transmission is to be applied ( Step S13).
 ユーザ端末UEは、無線基地局装置eNBからのコネクション再構成信号に対応して、チャネル品質測定用セル111の通知を受信したことを通知するためのコネクション再構成完了信号(RRC Connection Reconfiguration Complete)を無線基地局装置eNBに対して送信する(ステップS14)。 In response to the connection reconfiguration signal from the radio base station apparatus eNB, the user terminal UE sends a connection reconfiguration completion signal (RRC Connection Reconfiguration Complete) for notifying that the notification of the channel quality measurement cell 111 has been received. It transmits with respect to the wireless base station apparatus eNB (step S14).
 その後、ユーザ端末UEは、無線基地局装置eNBから通知されたチャネル品質測定用セル111のCSI(Channel State Information)を測定する。そして、ユーザ端末UEは、各チャネル品質測定用セル111について測定したCSIをPUCCH(Physical Uplink Control Channel)によって無線基地局装置eNBにフィードバックする(ステップS15)。 Thereafter, the user terminal UE measures CSI (Channel State Information) of the channel quality measurement cell 111 notified from the radio base station apparatus eNB. Then, the user terminal UE feeds back the CSI measured for each channel quality measurement cell 111 to the radio base station apparatus eNB by PUCCH (Physical Uplink Control Channel) (step S15).
 なお、ユーザ端末UEからフィードバックされるCSIには、無線基地局装置eNBとユーザ端末UEとの間で既知のコードブックにおけるランク数(RI:Rank Indicator)及びプリコーダ(PMI:Precording Matrix Indicator)、並びに、変調方式と符号化率の組み合わせから構成されるCQI(Channel Quality Indicator)が含まれる。 The CSI fed back from the user terminal UE includes a rank number (RI: Rank Indicator) and a precoder (PMI: Precoding Matrix Indicator) known in the codebook between the radio base station apparatus eNB and the user terminal UE, and In addition, CQI (Channel Quality Indicator) configured by a combination of a modulation scheme and a coding rate is included.
 無線基地局装置eNBは、ユーザ端末UEからフィードバックされた複数のCSIに基づいて、チャネル品質測定用セル111の中からCoMP送信伝達セル(CoMP transmission points)112を決定する。このように決定したCoMP送信伝達セルに対して、無線基地局装置eNBは、図1に示すCoordinated Scheduling/Coordinated Beamformingと、Joint processingとを適宜選択してCoMP送信を行う。 The radio base station apparatus eNB determines a CoMP transmission transmission point (CoMP transmission points) 112 from the channel quality measurement cells 111 based on a plurality of CSIs fed back from the user terminal UE. The radio base station apparatus eNB performs CoMP transmission by appropriately selecting Coordinated Scheduling / Coordinated Beamforming and Joint processing shown in FIG. 1 for the CoMP transmission transmission cell thus determined.
 ところで、上述したステップS15において、無線基地局装置eNBにフィードバックされる複数のCQI又はRSRQ/RSRPは、セル中央近傍に位置するユーザ端末UEと、セル端に位置するユーザ端末UE(以下、適宜「セルエッジUE」という)との間で、セル(送信ポイント)間のばらつき度合いが異なる。なお、ここでは、複数のCQIをフィードバックする場合について説明するが、他の複数の測定結果(RSRQ/RSRQなど)を用いてもよい。セル間(送信ポイント間)にフィードバックされるCQIのばらつき度合いについては、セル中央近傍に位置するユーザ端末UEは、当該ユーザ端末UEが位置するセルのCQIと周辺セルのCQIとの差が大きく、セル間のCQIのばらつき度合いが相対的に大きい。一方、セルエッジUEは、当該セルエッジUEが位置するセルのCQIと周辺セルのCQIとの差が小さく、セル間のCQIのばらつき度合いが相対的に小さい。 By the way, in step S15 mentioned above, the plurality of CQIs or RSRQ / RSRPs fed back to the radio base station apparatus eNB include the user terminal UE located in the vicinity of the cell center and the user terminal UE located in the cell edge (hereinafter referred to as “ The degree of variation between cells (transmission points) differs from the cell edge UE). Although a case where a plurality of CQIs are fed back will be described here, a plurality of other measurement results (RSRQ / RSRQ, etc.) may be used. Regarding the degree of variation of CQI fed back between cells (between transmission points), the user terminal UE located in the vicinity of the cell center has a large difference between the CQI of the cell where the user terminal UE is located and the CQI of neighboring cells. The degree of CQI variation between cells is relatively large. On the other hand, the cell edge UE has a small difference between the CQI of the cell in which the cell edge UE is located and the CQI of neighboring cells, and the degree of CQI variation between cells is relatively small.
 一般に、セルエッジUEにおいては、各セルの無線基地局装置eNBからの信号の受信電力が小さい。このため、セルエッジUEからフィードバックされるCQIにおいては、チャネル推定誤差が相対的に大きくなる。このようにチャネル推定誤差が相対的に大きいセルエッジUEに対して過度に無線リソースを割り当てる場合、無線リソースが有効に活用されず、結果として、システム全体のスループット特性やセルエッジUEのスループット特性が劣化する事態が発生し得る。 Generally, in the cell edge UE, the received power of the signal from the radio base station apparatus eNB of each cell is small. For this reason, in CQI fed back from the cell edge UE, a channel estimation error becomes relatively large. When radio resources are excessively allocated to the cell edge UE having a relatively large channel estimation error in this way, the radio resources are not effectively used, and as a result, the throughput characteristics of the entire system and the cell edge UE are deteriorated. Things can happen.
 本発明者らはこの点に着目し、ユーザ端末UEからフィードバックされる送信ポイント間のフィードバック情報(CQI)のばらつき度合いからセルエッジUEを識別すると共に、識別したセルエッジUEに過度に無線リソースが割り当てられる事態を回避することで、システム全体及びセルエッジUEのスループット特性を改善できることを見出して本発明を完成させた。 The present inventors pay attention to this point and identify the cell edge UE from the degree of variation in feedback information (CQI) between transmission points fed back from the user terminal UE, and excessive radio resources are allocated to the identified cell edge UE. It was found that avoiding the situation can improve the throughput characteristics of the entire system and the cell edge UE, and the present invention has been completed.
 すなわち、本発明の骨子は、無線基地局装置eNBにおいて、ユーザ端末UEからフィードバックされる送信ポイント間のフィードバック情報のばらつき度合いを算出し、算出したばらつき度合いに応じてユーザ端末UEに割り当てる無線リソースを決定することにある。より具体的には、ユーザ端末UEからフィードバックされる送信ポイント間のフィードバック情報のばらつき度合いが小さいユーザ端末UEに割り当てる無線リソース量を相対的に少なくする一方、ばらつき度合いが大きいユーザ端末UEに割り当てる無線リソース量を相対的に多くする。すなわち、ユーザ端末UEからの送信ポイント間のフィードバック情報のばらつき度合いによりセルエッジUEか、セルエッジUE以外のユーザ端末UEかを判定し、その判定結果に応じてユーザ端末UEに割り当てる無線リソースを調整する。 That is, the essence of the present invention is that the radio base station apparatus eNB calculates the degree of variation in feedback information between transmission points fed back from the user terminal UE, and assigns radio resources to be allocated to the user terminal UE according to the calculated degree of variation. It is to decide. More specifically, the radio resource amount allocated to the user terminal UE having a small variation degree of feedback information between transmission points fed back from the user terminal UE is relatively reduced while the radio resource allocated to the user terminal UE having a large variation degree is used. Increase the amount of resources relatively. That is, it is determined whether it is a cell edge UE or a user terminal UE other than the cell edge UE based on the degree of variation in feedback information between transmission points from the user terminal UE, and radio resources allocated to the user terminal UE are adjusted according to the determination result.
 本発明においては、ユーザ端末UEからフィードバックされる送信ポイント間のフィードバック情報のばらつき度合いが算出され、算出されたばらつき度合いに応じてユーザ端末UEに割り当てる無線リソースが決定される。これにより、ユーザ端末UEがセルエッジUEであるか否かを判定可能な送信ポイント間のフィードバック情報のばらつき度合いに応じてユーザ端末に割り当てる無線リソースを決定できることから、セルエッジUEに過度に無線リソースが割り当てられる事態を回避できるので、システム全体及びセル端のユーザ端末UEのスループット特性を改善することが可能となる。 In the present invention, the degree of variation in feedback information between transmission points fed back from the user terminal UE is calculated, and radio resources to be allocated to the user terminal UE are determined according to the calculated degree of variation. As a result, radio resources to be allocated to user terminals can be determined according to the degree of variation in feedback information between transmission points where it can be determined whether or not the user terminal UE is a cell edge UE. Therefore, radio resources are excessively allocated to the cell edge UE. Therefore, it is possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge.
 特に、本発明においては、ユーザ端末UEからフィードバックされる送信ポイント間のフィードバック情報のばらつき度合いが小さいユーザ端末UEに割り当てる無線リソース量を相対的に少なくする一方、ばらつき度合いが大きいユーザ端末UEに割り当てる無線リソース量を相対的に多くする。これにより、セルエッジUEに過度に無線リソースが割り当てられる事態を効果的に回避できるので、システム全体及びセル端のユーザ端末UEのスループット特性を改善することが可能となる。 In particular, in the present invention, the amount of radio resources allocated to the user terminal UE with a small degree of variation in feedback information between transmission points fed back from the user terminal UE is relatively reduced, while being allocated to the user terminal UE with a large degree of variation. Increase the amount of radio resources relatively. Thereby, since it is possible to effectively avoid a situation where radio resources are excessively allocated to the cell edge UE, it is possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge.
 なお、本発明において、無線基地局装置eNBは、送信ポイント間のフィードバック情報のばらつき度合いに応じて無線リソース割当てを決定するスケジューリングメトリックを補正することで、セルエッジUEに割り当てる無線リソースを決定(調整)する。このようにスケジューリングメトリックを補正することで、ユーザ端末UEに割り当てる無線リソースが決定されることから、ユーザ端末UEからフィードバックされる送信ポイント間のフィードバック情報のばらつき度合いに応じて一定の精度を確保しながら、ユーザ端末UEに対して無線リソースを割り当てることが可能となる。 In the present invention, the radio base station apparatus eNB determines (adjusts) radio resources to be allocated to the cell edge UE by correcting a scheduling metric that determines radio resource allocation according to the degree of variation in feedback information between transmission points. To do. By correcting the scheduling metric in this way, radio resources to be allocated to the user terminal UE are determined, so that certain accuracy is ensured according to the degree of variation in feedback information between transmission points fed back from the user terminal UE. However, it is possible to allocate radio resources to the user terminal UE.
 例えば、補正されるスケジューリングメトリックとしては、ユーザ端末UEに対する公平性を確保するプロポーショナルフェアネス(PF:Proportional Fairness)スケジューリングメトリックや、ユーザ端末UEにおける瞬時データレートを最大化するスケジューリングメトリックなどが考えられる。しかしながら、補正対象となるスケジューリングメトリックについては、これに限定されるものではなく適宜変更が可能である。 For example, as the scheduling metric to be corrected, a proportional fairness (PF) scheduling metric that ensures fairness for the user terminal UE, a scheduling metric that maximizes the instantaneous data rate in the user terminal UE, and the like can be considered. However, the scheduling metric to be corrected is not limited to this and can be changed as appropriate.
 なお、PFスケジューリングメトリックにおいては、無線リソース毎のチャネル情報の平均値(平均チャネル情報)に対する、無線リソース毎のチャネル情報の比(すなわち、チャネル情報/平均チャネル情報)により表される評価値が大きい無線リソースがユーザ端末UEに優先的に割り当てられる。近年、公平性及びデータレートの両面から、ユーザ端末UEに割り当てる無線リソースを調整するWeighted PF(WPF)スケジューリングメトリックが提案されている。このWPFスケジューリングメトリックも本発明の補正対象となるスケジューリングメトリックに含めることができる。以下においては、これらのPFスケジューリングメトリック及びWPFスケジューリングメトリックを、本発明に係る無線通信方法により補正する場合について説明する。 In the PF scheduling metric, the evaluation value represented by the ratio of channel information for each radio resource (that is, channel information / average channel information) to the average value of channel information for each radio resource (average channel information) is large. Radio resources are preferentially allocated to the user terminal UE. In recent years, a Weighted PF (WPF) scheduling metric that adjusts radio resources allocated to the user terminal UE has been proposed in terms of both fairness and data rate. This WPF scheduling metric can also be included in the scheduling metric to be corrected in the present invention. In the following, a case where these PF scheduling metric and WPF scheduling metric are corrected by the wireless communication method according to the present invention will be described.
 ここで、PFスケジューリングメトリック及びWPFスケジューリングメトリックにおける無線リソースの算出方法について説明する。PFスケジューリングメトリックが適用される場合、時刻nにおけるユーザiの無線リソースは、P[n]に比例しており、以下の(式1)により求められる。
(式1)
  P[n]=Rinst[n]/Ravg[n]
 ここで、「Rinst」は、瞬時データレートを示し、「Ravg」は、平均データレートを示している。なお、以下に示す各計算式においても同様である。
Here, a method for calculating radio resources in the PF scheduling metric and the WPF scheduling metric will be described. When the PF scheduling metric is applied, the radio resource of user i at time n is proportional to P i [n], and is obtained by the following (Equation 1).
(Formula 1)
P i [n] = R inst [n] / R avg [n]
Here, “R inst ” indicates the instantaneous data rate, and “R avg ” indicates the average data rate. The same applies to each calculation formula shown below.
 一方、WPFスケジューリングメトリックが適用される場合、時刻nにおけるユーザiの無線リソースは、WP[n]に比例しており、以下の(式2)により求められる。
(式2)
  WP[n]=(Rinst[n])α/(Ravg[n])β
 ここで、「α」、「β」は、公平性及びデータレートの向上の観点からユーザ端末UEに割り当てる無線リソースを調整するための重み付け係数である。この場合、α/βが0に近いほど算出結果の公平性を確保するスケジューリング動作となる。一方、α/βを大きくするほどデータレートの和の最大化を狙ったスケジューリング動作となる。なお、α/β=1である場合、上述したPFスケジューリングメトリック(式1)に等価となり算出結果の公平性が確保される。
On the other hand, when the WPF scheduling metric is applied, the radio resource of user i at time n is proportional to WP i [n] and is obtained by the following (Equation 2).
(Formula 2)
WP i [n] = (R inst [n]) α / (R avg [n]) β
Here, “α” and “β” are weighting coefficients for adjusting radio resources allocated to the user terminal UE from the viewpoint of improving fairness and data rate. In this case, the closer the α / β is to 0, the more the scheduling operation ensures the fairness of the calculation result. On the other hand, as α / β is increased, the scheduling operation aims to maximize the sum of the data rates. When α / β = 1, it is equivalent to the above-described PF scheduling metric (Equation 1), and fairness of the calculation result is ensured.
 本発明に係る無線基地局装置eNBは、上述したCoMP送信伝達セルを決定する過程において、ユーザ端末UEからフィードバックされる送信ポイント間のフィードバック情報のばらつき度合いを算出する。そして、算出したばらつき度合いに応じて上述したPFスケジューリングメトリック及びWPFスケジューリングメトリックを補正する。例えば、ユーザ端末UEからフィードバックされるチャネル品質測定用セル111(CoMP measurement setで指定されるセル)の無線基地局装置eNB間のCQIのばらつき度合いに応じて上述したPFスケジューリングメトリック及びWPFスケジューリングメトリックを補正する。 The radio base station apparatus eNB according to the present invention calculates the degree of variation in feedback information between transmission points fed back from the user terminal UE in the process of determining the CoMP transmission transmission cell described above. Then, the PF scheduling metric and the WPF scheduling metric described above are corrected according to the calculated degree of variation. For example, the PF scheduling metric and the WPF scheduling metric described above are set in accordance with the degree of CQI variation between the radio base station apparatuses eNB of the channel quality measurement cell 111 (the cell specified by the CoMP measurement set) fed back from the user terminal UE. to correct.
 なお、ばらつき度合いの算出対象となる無線基地局装置eNBについては、チャネル品質測定用セル111に限定されるものではない。無線基地局装置eNBは、ばらつき度合いの算出対象として、CoMP送信伝達セル112(CoMP transmission pointsとして指定されるセル)の無線基地局装置eNBや、メジャメント候補セル110(RRM measurement setで指定されるセル)の無線基地局装置eNBを選択することができる。 Note that the radio base station apparatus eNB that is a calculation target of the degree of variation is not limited to the channel quality measurement cell 111. The radio base station apparatus eNB uses the radio base station apparatus eNB of the CoMP transmission transfer cell 112 (cell designated as CoMP transmission points) or the measurement candidate cell 110 (cell specified by the RRM measurement set) as a calculation target of the variation degree. ) Can be selected.
 ここで、本発明に係る無線基地局装置eNBにおけるスケジューリングメトリックの補正方法について説明する。無線基地局装置eNBは、上述した既存のPFスケジューリングメトリック及びWPFスケジューリングメトリックを以下のように補正する。すなわち、PFスケジューリングメトリックが適用される場合の無線リソースP[n]及びWPFスケジューリングメトリックが適用される場合の無線リソースはWP[n]に比例しており、それぞれ以下の(式3)、(式4)により求められる。
(式3)
  P[n]=Fγ×Rinst[n]/Ravg[n]
(式4)
  WP[n]=Fγ×(Rinst[n])α/(Ravg[n])β
Here, a method for correcting the scheduling metric in the radio base station apparatus eNB according to the present invention will be described. The radio base station apparatus eNB corrects the existing PF scheduling metric and WPF scheduling metric described above as follows. That is, the radio resource P i [n] when the PF scheduling metric is applied and the radio resource when the WPF scheduling metric is applied are proportional to WP i [n]. It is calculated | required by (Formula 4).
(Formula 3)
P i [n] = F γ × R inst [n] / R avg [n]
(Formula 4)
WP i [n] = × (R inst [n]) α / (R avg [n]) β
 これらの計算式において、「F」は、送信ポイント間のフィードバック情報(CQI)のばらつき度合いに応じて無線リソースの割り当て機会を調整するパラメータを示す。また、「γ」は、パラメータFを更に調整するための重み付け係数を示す。パラメータFがγによって調整される場合、「Fγ」が無線リソースの割り当て機会を調整するパラメータを構成する。 In these calculation formulas, “F” indicates a parameter for adjusting a radio resource allocation opportunity according to the degree of variation in feedback information (CQI) between transmission points. “Γ” represents a weighting coefficient for further adjusting the parameter F. When the parameter F is adjusted by γ, “F γ ” constitutes a parameter for adjusting the radio resource allocation opportunity.
 以下、パラメータFの具体例について説明する。パラメータFは、例えば、(式5)で求めることができる。
Figure JPOXMLDOC01-appb-I000001
ここで、「X」は、無線基地局装置eNBに対して、あるユーザ端末UEがi番目の送信ポイントについて測定した報告値を示す。Xには、例えば、CQIやRSRP及びi番目の送信ポイントから送信された送信データの平均データレート等が含まれる。また、「N」は、送信ポイントの総数を示す。さらに、(式5)の右辺を構成する分数の分母は、Xの算出平均を示し、分子は、Xの幾何平均を示す。
Hereinafter, a specific example of the parameter F will be described. The parameter F can be obtained by, for example, (Formula 5).
Figure JPOXMLDOC01-appb-I000001
Here, “X i ” indicates a report value measured for the i-th transmission point by a user terminal UE with respect to the radio base station apparatus eNB. X i includes, for example, CQI, RSRP, an average data rate of transmission data transmitted from the i-th transmission point, and the like. “N” indicates the total number of transmission points. Further, the denominator of the fraction constituting the right side of (Equation 5) indicates the calculated average of X i , and the numerator indicates the geometric average of X i .
 また、パラメータFは、例えば、(式6)で求めることができる。
Figure JPOXMLDOC01-appb-I000002
Moreover, the parameter F can be calculated | required by (Formula 6), for example.
Figure JPOXMLDOC01-appb-I000002
 この場合において、(式7)及び(式8)に示すように、それぞれ「μ」及び「σ」を定義すると、(式6)の演算は、(式9)に置換することができる。
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
In this case, as shown in (Expression 7) and (Expression 8), if “μ 2 ” and “σ 2 ” are defined, respectively, the operation of (Expression 6) can be replaced with (Expression 9). .
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
 これらの(式5)及び(式6(式9))に示す計算式でパラメータFを求めることにより、パラメータFの値を、ユーザ端末UEからフィードバックされる送信ポイント間のフィードバック情報のばらつき度合いに応じて変動させることができる。すなわち、ユーザ端末UEからフィードバックされる送信ポイント間のフィードバック情報のばらつき度合いが相対的に大きいと、パラメータFの値が相対的に大きく設定される。一方、ユーザ端末UEからフィードバックされる送信ポイント間のフィードバック情報のばらつき度合いが相対的に小さいと、パラメータFの値が相対的に小さく設定される。 By obtaining the parameter F using the calculation formulas shown in (Equation 5) and (Equation 6 (Equation 9)), the value of the parameter F is changed to the degree of variation in feedback information between transmission points fed back from the user terminal UE. It can be varied accordingly. That is, when the degree of variation in feedback information between transmission points fed back from the user terminal UE is relatively large, the value of the parameter F is set to be relatively large. On the other hand, when the degree of variation in feedback information between transmission points fed back from the user terminal UE is relatively small, the value of the parameter F is set to be relatively small.
 なお、上述したCoMP送信伝達セルを決定する過程において、送信ポイント数が単一である場合(すなわち、シングルポイントである場合)には、パラメータFの値に「1」を設定することにより、補正前のPFスケジューリングメトリック(式1)及びWPFスケジューリングメトリック(式2)と等価となる。このため、CoMP送信を行わないユーザ端末UEに対する既存のPFスケジューリングメトリック等との互換性が確保される。したがって、既存のPFスケジューリングメトリック等との互換性を確保しながら、セルエッジUEに対して過度に無線リソースが割り当てられる事態を防止することが可能となる。 In the above-described process of determining the CoMP transmission transmission cell, when the number of transmission points is single (that is, when there is a single point), the parameter F is set to “1” for correction. Equivalent to the previous PF scheduling metric (Equation 1) and WPF scheduling metric (Equation 2). For this reason, the compatibility with the existing PF scheduling metric etc. with respect to the user terminal UE which does not perform CoMP transmission is ensured. Therefore, it is possible to prevent a situation where radio resources are excessively allocated to the cell edge UE while ensuring compatibility with existing PF scheduling metrics and the like.
 図5は、本発明に係る無線基地局装置eNBにおいて、ユーザ端末UEからフィードバックされる送信ポイント間のCQIのばらつき度合いに応じてスケジューリングメトリックを補正する動作を説明するためのフロー図である。なお、図5においては、無線基地局装置eNBからCSI-RSを送信する工程からスケジューリング結果に基づいてユーザデータ(共有チャネルデータ)を送信する工程までを示している。また、図5においては、説明の便宜上、ユーザ端末UEにおける処理を一部示している。 FIG. 5 is a flowchart for explaining an operation of correcting the scheduling metric according to the degree of CQI variation between transmission points fed back from the user terminal UE in the radio base station apparatus eNB according to the present invention. Note that FIG. 5 shows from the step of transmitting CSI-RS from the radio base station apparatus eNB to the step of transmitting user data (shared channel data) based on the scheduling result. Further, in FIG. 5, a part of processing in the user terminal UE is shown for convenience of explanation.
 ユーザ端末UEから到来するメジャメントレポート結果に基づいてチャネル品質測定用セル111(図3、図4参照)を指定すると、無線基地局装置eNBは、これらのチャネル品質測定用セル111のチャネル情報を測定するための複数のCSI-RSを送信する(ステップS21)。これらのCSI-RSを受信すると、ユーザ端末UEは、CSI-RSに基づいて、各送信ポイントのCQIを測定する(ステップS22)。そして、測定したCQIを無線基地局装置eNBにフィードバックする(ステップS23)。この場合、全てのチャネル品質測定用セル111のCQIが測定され、フィードバックされる。 When the channel quality measurement cell 111 (see FIG. 3 and FIG. 4) is designated based on the measurement report result coming from the user terminal UE, the radio base station apparatus eNB measures the channel information of these channel quality measurement cells 111. To transmit a plurality of CSI-RSs (step S21). When receiving these CSI-RSs, the user terminal UE measures the CQI of each transmission point based on the CSI-RS (step S22). Then, the measured CQI is fed back to the radio base station apparatus eNB (step S23). In this case, the CQIs of all channel quality measurement cells 111 are measured and fed back.
 無線基地局装置eNBは、ユーザ端末UEからフィードバックされる複数のチャネル品質測定用セル111(送信ポイント)間のCQIのばらつき度合いを算出する(ステップS24)。そして、無線基地局装置eNBは、算出したばらつき度合いに応じてスケジューリングメトリックを補正する(ステップS25)。例えば、予め定められたスケジューリングメトリックがPFスケジューリングメトリック(式1)やWPFスケジューリングメトリック(式2)であった場合、無線基地局装置eNBは、上述したパラメータFを計算式に組み入れることにより、これらのスケジューリングメトリックを補正する(式3、式4)。 The radio base station apparatus eNB calculates the degree of CQI variation between the plurality of channel quality measurement cells 111 (transmission points) fed back from the user terminal UE (step S24). Then, the radio base station apparatus eNB corrects the scheduling metric according to the calculated degree of variation (Step S25). For example, when the predetermined scheduling metric is a PF scheduling metric (Equation 1) or a WPF scheduling metric (Equation 2), the radio base station apparatus eNB incorporates the parameter F described above into the calculation formula, thereby The scheduling metric is corrected (Equation 3 and Equation 4).
 この補正により、スケジューリングメトリックが、ユーザ端末UEからの送信ポイント間のCQIのばらつき度合いが小さいユーザ端末UEに割り当てる無線リソース量を少なくする一方、ばらつき度合いが大きいユーザ端末UEに割り当てる無線リソース量を多くするスケジューリングメトリックに補正される。なお、CoMP送信が適用されないユーザ端末UEに対しては、既存のスケジューリングメトリックと等価のスケジューリングメトリックが適用される。 With this correction, the scheduling metric reduces the amount of radio resources allocated to the user terminal UE having a small degree of variation in CQI between transmission points from the user terminal UE, while increasing the amount of radio resources allocated to the user terminal UE having a large degree of variation. The scheduling metric to be corrected. Note that a scheduling metric equivalent to an existing scheduling metric is applied to the user terminal UE to which CoMP transmission is not applied.
 無線基地局装置eNBは、補正後のスケジューリングメトリックによってスケジューリングするユーザ端末UEを決定する(ステップS26)。この場合、送信ポイント間のCQIのばらつき度合いが小さいユーザ端末UEに対して割り当てられる無線リソースが少なく設定され、送信ポイント間のCQIのばらつき度合いが大きいユーザ端末UEに対して割り当てられる無線リソースが多く設定される。そして、このように決定したユーザ端末UEに対して、無線基地局装置eNBは、ユーザデータ(共有チャネルデータ)を送信する(ステップS27)。 The radio base station apparatus eNB determines the user terminal UE to be scheduled based on the corrected scheduling metric (step S26). In this case, the radio resource allocated to the user terminal UE with a small degree of CQI variation between the transmission points is set to be small, and the radio resource allocated to the user terminal UE with a large degree of CQI variation between the transmission points is large. Is set. And the radio base station apparatus eNB transmits user data (shared channel data) with respect to the user terminal UE determined in this way (step S27).
 このように本発明においては、ユーザ端末UEからフィードバックされる複数のチャネル品質測定用セル111(送信ポイント)間のCQIのばらつき度合いを算出し、算出したばらつき度合いに応じてセルエッジUEに割り当てる無線リソースを決定する。これにより、無線基地局装置eNBからCoMP送信する際にセルエッジUEに過度に無線リソースが割り当てられる事態を回避できるので、システム全体及びセル端のユーザ端末UEのスループット特性を改善することが可能となる。 As described above, in the present invention, the degree of CQI variation between the plurality of channel quality measurement cells 111 (transmission points) fed back from the user terminal UE is calculated, and the radio resource allocated to the cell edge UE according to the calculated degree of variation. To decide. As a result, it is possible to avoid a situation in which radio resources are excessively allocated to the cell edge UE when performing CoMP transmission from the radio base station apparatus eNB, and thus it becomes possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge. .
 なお、本発明においては、セルエッジUEに過度の無線リソースが割り当てられる事態を回避するために、ユーザ端末UEからフィードバックされる送信ポイント間のばらつき度合いに応じて、パラメータFを用いてスケジューリングメトリックを補正する。ここで、セルエッジUEにおけるチャネル推定誤差は、一般に送信ポイント数が多くなるほど大きくなる。このため、スケジューリングメトリックの補正に用いられるパラメータに対して、送信ポイント数の影響を反映させることは実施の形態として好ましい。 In the present invention, in order to avoid a situation where excessive radio resources are allocated to the cell edge UE, the scheduling metric is corrected using the parameter F according to the degree of variation between transmission points fed back from the user terminal UE. To do. Here, the channel estimation error in the cell edge UE generally increases as the number of transmission points increases. For this reason, it is preferable as an embodiment to reflect the influence of the number of transmission points on the parameter used for correcting the scheduling metric.
 例えば、ユーザ端末UEからフィードバックされる送信ポイント数が多い場合、ばらつき度合いが小さくなるものとみなし、パラメータFを送信ポイント数で正規化することが考えられる。この場合、送信ポイント数が多くなればなるほど、パラメータFが小さい場合と同様に、該当するユーザ端末UEに無線リソースを割り当てる機会を低減することが可能となる。 For example, when the number of transmission points fed back from the user terminal UE is large, it is considered that the degree of variation becomes small and the parameter F is normalized by the number of transmission points. In this case, as the number of transmission points increases, the opportunity to allocate radio resources to the corresponding user terminal UE can be reduced as in the case where the parameter F is small.
 このようにパラメータFを送信ポイント数で正規化する場合、無線基地局装置eNBは、上述した既存のPFスケジューリングメトリック(式1)及びWPFスケジューリングメトリック(式2)を以下のように補正する。すなわち、PFスケジューリングメトリックが適用される場合の無線リソースP[n]は、以下の(式10)、(式11)により求められる。
(式10)
  P[n]=(F/N)γ×Rinst[n]/Ravg[n]
(式11)
  P[n]=Fγ/NΦ×Rinst[n]/Ravg[n]
 ここで、「N」は、送信ポイントの総数を示す。また、「Φ」は、送信ポイント数Nを更に調整するための重み付け係数を示す。なお、(式10)は、パラメータF及び送信ポイント数Nに共通の係数で重み付けを行う場合の計算式を示し、(式11)は、パラメータF及び送信ポイント数Nに異なる係数で重み付けを行う場合の計算式を示している。
When the parameter F is thus normalized by the number of transmission points, the radio base station apparatus eNB corrects the above-described existing PF scheduling metric (Equation 1) and WPF scheduling metric (Equation 2) as follows. That is, the radio resource P i [n] when the PF scheduling metric is applied is obtained by the following (Expression 10) and (Expression 11).
(Formula 10)
P i [n] = (F / N) γ × R inst [n] / R avg [n]
(Formula 11)
P i [n] = F γ / N Φ × R inst [n] / R avg [n]
Here, “N” indicates the total number of transmission points. “Φ” represents a weighting coefficient for further adjusting the number N of transmission points. (Equation 10) represents a calculation formula when weighting is performed with a coefficient common to the parameter F and the number N of transmission points, and (Equation 11) is weighted with a different coefficient to the parameter F and the number N of transmission points. The calculation formula is shown.
 一方、WPFスケジューリングメトリックが適用される場合の無線リソースWP[n]は、以下の(式12)、(式13)により求められる。
(式12)
  WP[n]=(F/N)γ×(Rinst[n])α/(Ravg[n])β
(式13)
  WP[n]=Fγ/NΦ×(Rinst[n])α/(Ravg[n])β
 ここで、(式12)は、パラメータF及び送信ポイント数Nに共通の係数で重み付けを行う場合の計算式を示し、(式13)は、パラメータF及び送信ポイント数Nに異なる係数で重み付けを行う場合の計算式を示している。これらの計算式において、パラメータFが送信ポイント数Nによって正規化される場合、「(F/N)γ」及び「Fγ/NΦ」が無線リソースの割り当て機会を調整するパラメータを構成する。
On the other hand, the radio resource WP i [n] when the WPF scheduling metric is applied is obtained by the following (Expression 12) and (Expression 13).
(Formula 12)
WP i [n] = (F / N) γ × (R inst [n]) α / (R avg [n]) β
(Formula 13)
WP i [n] = / × (R inst [n]) α / (R avg [n]) β
Here, (Equation 12) shows a calculation formula when weighting is performed with a coefficient common to the parameter F and the transmission point number N, and (Equation 13) is weighted with a different coefficient to the parameter F and the transmission point number N. The calculation formula when performing is shown. In these calculation formulas, when the parameter F is normalized by the number N of transmission points, “(F / N) γ ” and “F γ / N Φ ” constitute parameters for adjusting the radio resource allocation opportunity.
 このようにパラメータFを送信ポイント数で正規化する場合、送信ポイント数が多くなればなるほど、該当するユーザ端末UEに無線リソースを割り当てる機会を低減できる。これにより、送信ポイント数が多く設定されるセルエッジUEに過度に無線リソースが割り当てられる事態を効果的に回避できるので、システム全体及びセル端のユーザ端末UEのスループット特性を改善することが可能となる。 In this way, when the parameter F is normalized by the number of transmission points, as the number of transmission points increases, the opportunity to allocate radio resources to the corresponding user terminal UE can be reduced. As a result, it is possible to effectively avoid a situation where radio resources are excessively allocated to a cell edge UE in which a large number of transmission points are set, so that it is possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge. .
 以下、本発明の実施の形態について詳細に説明する。図6は、本実施の形態に係る無線通信システムのシステム構成の説明図である。なお、図6に示す無線通信システムは、例えば、LTEシステム或いはSUPER 3Gが包含されるシステムである。この無線通信システムでは、LTEシステムのシステム帯域を一単位とする複数の基本周波数ブロックを一体としたキャリアアグリゲーションが用いられている。また、この無線通信システムは、IMT-Advancedと呼ばれてもよく、4Gと呼ばれてもよい。 Hereinafter, embodiments of the present invention will be described in detail. FIG. 6 is an explanatory diagram of a system configuration of the wireless communication system according to the present embodiment. Note that the radio communication system shown in FIG. 6 is a system including, for example, an LTE system or SUPER 3G. In this radio communication system, carrier aggregation in which a plurality of fundamental frequency blocks with the system band of the LTE system as a unit is integrated is used. Also, this wireless communication system may be called IMT-Advanced or 4G.
 図6に示すように、無線通信システム1は、無線基地局装置20A、20Bと、この無線基地局装置20A、20Bと通信する複数の第1、第2のユーザ端末10A、10Bと、を含んで構成されている。無線基地局装置20A、20Bは、上位局装置30と接続され、この上位局装置30は、コアネットワーク40と接続される。また、無線基地局装置20A、20Bは、有線接続又は無線接続により相互に接続されている。第1、第2のユーザ端末10A、10Bは、セル1、2において無線基地局装置20A、20Bと通信を行うことができる。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。 As shown in FIG. 6, the radio communication system 1 includes radio base station apparatuses 20A and 20B and a plurality of first and second user terminals 10A and 10B communicating with the radio base station apparatuses 20A and 20B. It consists of The radio base station apparatuses 20 </ b> A and 20 </ b> B are connected to the higher station apparatus 30, and the higher station apparatus 30 is connected to the core network 40. The radio base station apparatuses 20A and 20B are connected to each other by wired connection or wireless connection. The first and second user terminals 10A and 10B can communicate with the radio base station apparatuses 20A and 20B in the cells 1 and 2. The upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
 第1、第2のユーザ端末10A、10Bは、LTE端末及びLTE-A端末を含むが、以下においては、特段の断りがない限り第1、第2のユーザ端末10A、10Bとして説明を進める。また、説明の便宜上、無線基地局装置20A、20Bと移動端末装置である第1、第2のユーザ端末10A、10Bが無線通信するものとして説明するが、第1、第2のユーザ端末10A、10Bは、より一般的には固定端末装置も含むユーザ装置でよい。 The first and second user terminals 10A and 10B include an LTE terminal and an LTE-A terminal. In the following, the description will proceed as the first and second user terminals 10A and 10B unless otherwise specified. For convenience of explanation, the radio base station apparatuses 20A and 20B and the first and second user terminals 10A and 10B, which are mobile terminal apparatuses, are described as wirelessly communicating, but the first and second user terminals 10A and 10B 10B may be a user device including a fixed terminal device more generally.
 無線通信システム1においては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が、上りリンクについてはSC-FDMA(シングルキャリア-周波数分割多元接続)が適用されるが、無線アクセス方式はこれに限定されない。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。 In the radio communication system 1, OFDMA (Orthogonal Frequency Division Multiple Access) is applied to the downlink and SC-FDMA (Single Carrier-Frequency Division Multiple Access) is applied to the uplink as radio access schemes. The method is not limited to this. OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier. SC-FDMA is a single carrier transmission method that reduces interference between terminals by dividing a system band into bands each consisting of one or continuous resource blocks for each terminal, and a plurality of terminals using different bands. .
 ここで、通信チャネルについて説明する。下りリンクの通信チャネルは、第1、第2のユーザ端末10A、10Bで共有される下りデータチャネルとしてのPDSCH(Physical Downlink Shared Channel)と、下りL1/L2制御チャネル(PDCCH、PCFICH、PHICH)と、を有する。PDSCHにより、送信データ及び上位制御情報が伝送される。PDCCH(Physical Downlink Control Channel)により、PDSCHおよびPUSCH(Physical Uplink Shared Channel)のスケジューリング情報等が伝送される。PCFICH(Physical Control Format Indicator Channel)により、PDCCHに用いるOFDMシンボル数が伝送される。PHICH(Physical Hybrid-ARQ Indicator Channel)により、PUSCHに対するHARQのACK/NACKが伝送される。 Here, the communication channel will be described. The downlink communication channels are PDSCH (Physical Downlink Shared Channel) as downlink data channels shared by the first and second user terminals 10A and 10B, and downlink L1 / L2 control channels (PDCCH, PCFICH, PHICH) Have. Transmission data and higher control information are transmitted by the PDSCH. PDSCH and PUSCH (Physical Uplink Shared Channel) scheduling information and the like are transmitted by PDCCH (Physical Downlink Control Channel). The number of OFDM symbols used for the PDCCH is transmitted by PCFICH (Physical Control Format Indicator Channel). HACH ACK / NACK for PUSCH is transmitted by PHICH (Physical Hybrid-ARQ Indicator Channel).
 上りリンクの通信チャネルは、各ユーザ端末10A、10Bで共有される上りデータチャネルとしてのPUSCHと、上りリンクの制御チャネルであるPUCCHと、を有する。このPUSCHにより、送信データや上位制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI)、ACK/NACKなどが伝送される。 The uplink communication channel includes PUSCH as an uplink data channel shared by the user terminals 10A and 10B and PUCCH as an uplink control channel. Transmission data and higher control information are transmitted by this PUSCH. Also, downlink radio quality information (CQI), ACK / NACK, and the like are transmitted by PUCCH.
 図7を参照しながら、本実施の形態に係る無線基地局装置の全体構成について説明する。なお、無線基地局装置20A、20Bは、同様な構成であるため、無線基地局装置20として説明する。また、第1、第2のユーザ端末10A、10Bも、同様な構成であるため、ユーザ端末10として説明する。無線基地局装置20は、送受信アンテナ201a、201bと、アンプ部202a、202bと、送受信部203a、203bと、ベースバンド信号処理部204と、呼処理部205と、伝送路インターフェース206と、を備えている。下りリンクにより無線基地局装置20からユーザ端末10に送信される送信データは、上位局装置30から伝送路インターフェース206を介してベースバンド信号処理部204に入力される。 The overall configuration of the radio base station apparatus according to the present embodiment will be described with reference to FIG. Note that the radio base station apparatuses 20A and 20B have the same configuration and will be described as the radio base station apparatus 20. The first and second user terminals 10A and 10B have the same configuration and will be described as the user terminal 10. The radio base station apparatus 20 includes transmission / reception antennas 201a and 201b, amplifier sections 202a and 202b, transmission / reception sections 203a and 203b, a baseband signal processing section 204, a call processing section 205, and a transmission path interface 206. ing. Transmission data transmitted from the radio base station apparatus 20 to the user terminal 10 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 204 via the transmission path interface 206.
 ベースバンド信号処理部204において、下りデータチャネルの信号は、PDCPレイヤの処理、送信データの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT)処理、プリコーディング処理が行われる。また、下りリンク制御チャネルである物理下りリンク制御チャネルの信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われる。 In the baseband signal processing unit 204, the downlink data channel signal is transmitted from the PDCP layer, RDL layer transmission processing such as transmission data division / combination, RLC (Radio Link Control) retransmission control, MAC (Medium Access), and so on. Control) Retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, and precoding processing are performed. Also, transmission processing such as channel coding and inverse fast Fourier transform is performed on the signal of the physical downlink control channel that is the downlink control channel.
 また、ベースバンド信号処理部204は、報知チャネルにより、同一セルに接続するユーザ端末10に対して、各ユーザ端末10が無線基地局装置20と無線通信するための制御情報を通知する。当該セルにおける通信のための情報には、例えば、上りリンク又は下りリンクにおけるシステム帯域幅や、PRACH(Physical Random Access Channel)におけるランダムアクセスプリアンブルの信号を生成するためのルート系列の識別情報(Root Sequence Index)などが含まれる。 Moreover, the baseband signal processing unit 204 notifies the control information for each user terminal 10 to wirelessly communicate with the radio base station apparatus 20 to the user terminals 10 connected to the same cell through the broadcast channel. Information for communication in the cell includes, for example, system information bandwidth in the uplink or downlink, or root sequence identification information (Root Sequence) for generating a random access preamble signal in PRACH (Physical Random Access Channel). Index) and the like.
 送受信部203a、203bは、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。アンプ部202a、202bは、周波数変換された無線周波数信号を増幅して送受信アンテナ201a、201bへ出力する。 The transmission / reception units 203a and 203b convert the baseband signal output from the baseband signal processing unit 204 into a radio frequency band. The amplifier units 202a and 202b amplify the frequency-converted radio frequency signal and output it to the transmission / reception antennas 201a and 201b.
 一方、上りリンクによりユーザ端末10から無線基地局装置20に送信される信号については、送受信アンテナ201で受信された無線周波数信号がアンプ部202a、202bで増幅され、送受信部203a、203bで周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部204に入力される。 On the other hand, for the signal transmitted from the user terminal 10 to the radio base station apparatus 20 via the uplink, the radio frequency signal received by the transmission / reception antenna 201 is amplified by the amplifier units 202a and 202b, and the frequency is converted by the transmission / reception units 203a and 203b. And converted into a baseband signal and input to the baseband signal processing unit 204.
 ベースバンド信号処理部204は、上りリンクで受信したベースバンド信号に含まれる送信データに対して、FFT処理、IDFT(逆離散フーリエ変換)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理を行う。復号された信号は伝送路インターフェース206を介して上位局装置30に転送される。 The baseband signal processing unit 204 performs FFT processing, IDFT (Inverse Discrete Fourier Transform) processing, error correction decoding, MAC retransmission control reception processing, RLC layer on transmission data included in the baseband signal received in the uplink , PDCP layer reception processing is performed. The decoded signal is transferred to the higher station apparatus 30 via the transmission path interface 206.
 呼処理部205は、通信チャネルの設定や解放等の呼処理や、無線基地局装置20の状態管理や、無線リソースの管理を行う。 The call processing unit 205 performs call processing such as communication channel setting and release, state management of the radio base station apparatus 20, and radio resource management.
 次に、図8を参照しながら、本実施の形態に係るユーザ端末の全体構成について説明する。LTE端末もLTE-A端末もハードウエアの主要部構成は同じであるので、区別せずに説明する。ユーザ端末10は、送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、アプリケーション部105と、を備えている。 Next, the overall configuration of the user terminal according to the present embodiment will be described with reference to FIG. Since the main parts of the hardware of the LTE terminal and the LTE-A terminal are the same, they will be described without distinction. The user terminal 10 includes a transmission / reception antenna 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, and an application unit 105.
 下りリンクのデータについては、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅され、送受信部103で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部104でFFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下りリンクのデータの内、下りリンクの送信データは、アプリケーション部105に転送される。アプリケーション部105は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報も、アプリケーション部105に転送される。 For downlink data, a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102, frequency-converted by the transmission / reception unit 103, and converted into a baseband signal. The baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 104. Among the downlink data, downlink transmission data is transferred to the application unit 105. The application unit 105 performs processing related to layers higher than the physical layer and the MAC layer. Also, the broadcast information in the downlink data is also transferred to the application unit 105.
 一方、上りリンクの送信データは、アプリケーション部105からベースバンド信号処理部104に入力される。ベースバンド信号処理部104においては、マッピング処理、再送制御(HARQ)の送信処理や、チャネル符号化、DFT処理、IFFT処理を行う。送受信部103は、ベースバンド信号処理部104から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101より送信する。 On the other hand, uplink transmission data is input from the application unit 105 to the baseband signal processing unit 104. The baseband signal processing unit 104 performs mapping processing, retransmission control (HARQ) transmission processing, channel coding, DFT processing, and IFFT processing. The transmission / reception unit 103 converts the baseband signal output from the baseband signal processing unit 104 into a radio frequency band. Thereafter, the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits it from the transmission / reception antenna 101.
 図9を参照して、無線基地局装置の機能ブロックについて説明する。図9に示す無線基地局装置は、集中制御型の無線基地局構成を有する。集中制御の場合、ある無線基地局装置(集中無線基地局装置、図9においてセル1)で一括してスケジューリングなどの無線リソース割り当て制御を行い、配下の無線基地局装置(遠隔無線装置、図9においてセル2)は無線基地局装置の無線リソース割り当て結果に従う。この場合、フィードバック情報(CQI)は、無線基地局装置のスケジューリング部921において、複数セル間の無線リソース割り当て等に必要な情報として使われる。 Referring to FIG. 9, functional blocks of the radio base station apparatus will be described. The radio base station apparatus shown in FIG. 9 has a centralized control type radio base station configuration. In the case of centralized control, radio resource allocation control such as scheduling is collectively performed in a certain radio base station apparatus (central radio base station apparatus, cell 1 in FIG. 9), and the subordinate radio base station apparatus (remote radio apparatus, FIG. 9). Cell 2) follows the radio resource allocation result of the radio base station apparatus. In this case, feedback information (CQI) is used as information necessary for radio resource allocation among a plurality of cells in the scheduling unit 921 of the radio base station apparatus.
 なお、図9の各機能ブロックは、主に図7に示すベースバンド処理部204の処理内容に関するものである。また、図9の機能ブロック図は、本発明を説明するために簡略化したものであり、一般的なベースバンド処理部204において通常に備える構成を備えるものとする。 Note that each functional block in FIG. 9 mainly relates to the processing contents of the baseband processing unit 204 shown in FIG. Further, the functional block diagram of FIG. 9 is simplified to explain the present invention, and is assumed to have a configuration normally provided in a general baseband processing unit 204.
 集中無線基地局装置(セル1)側の送信部は、下り制御情報生成部901と、下り制御情報符号化・変調部902と、下り参照信号生成部903と、下り送信データ生成部904と、上位制御情報生成部905と、下り送信データ符号化・変調部906と、を備えている。また、集中無線基地局装置(セル1)側の送信部は、マッピング部907と、プリコーディング乗算部908と、プリコーディングウェイト生成部909と、下りチャネル多重部910と、IFFT部911(911a、911b)と、CP付加部912(912a、912b)と、送信アンプ913(913a、913b)と、送信アンテナ914(914a、914b)と、制御チャネル信号復調部920と、ユーザスケジューリング制御部921と、を備えている。なお、送信アンプ913及び送信アンテナ914は、それぞれ図7に示すアンプ部202及び送受信アンテナ201に対応する。 The transmission unit on the concentrated radio base station apparatus (cell 1) side includes a downlink control information generation unit 901, a downlink control information encoding / modulation unit 902, a downlink reference signal generation unit 903, a downlink transmission data generation unit 904, An upper control information generation unit 905 and a downlink transmission data encoding / modulation unit 906 are provided. Further, the transmission unit on the centralized radio base station apparatus (cell 1) side includes a mapping unit 907, a precoding multiplication unit 908, a precoding weight generation unit 909, a downlink channel multiplexing unit 910, and an IFFT unit 911 (911a, 911a, 911b), CP adding section 912 (912a, 912b), transmission amplifier 913 (913a, 913b), transmission antenna 914 (914a, 914b), control channel signal demodulating section 920, user scheduling control section 921, It has. The transmission amplifier 913 and the transmission antenna 914 correspond to the amplifier unit 202 and the transmission / reception antenna 201 shown in FIG. 7, respectively.
 一方、配下セルの遠隔無線装置(セル2)側の送信部は、下り制御情報生成部931と、下り制御情報符号化・変調部932と、下り参照信号生成部933と、下り送信データ生成部934と、下り送信データ符号化・変調部936と、を備えている。また、配下セルの遠隔無線装置(セル2)側の送信部は、マッピング部937と、プリコーディング乗算部938と、プリコーディングウェイト生成部939と、下りチャネル多重部940と、IFFT部941a、941bと、CP付加部942a、942bと、送信アンプ943a、943bと、送信アンテナ944a、944bと、を備えている。なお、集中無線基地局装置と配下セルの遠隔無線装置とは、例えば、光ファイバで接続されている。 On the other hand, the transmission unit on the remote radio apparatus (cell 2) side of the subordinate cell includes a downlink control information generation unit 931, a downlink control information encoding / modulation unit 932, a downlink reference signal generation unit 933, and a downlink transmission data generation unit. 934, and a downlink transmission data encoding / modulating unit 936. Further, the transmission unit on the remote radio apparatus (cell 2) side of the subordinate cell includes a mapping unit 937, a precoding multiplication unit 938, a precoding weight generation unit 939, a downlink channel multiplexing unit 940, and IFFT units 941a and 941b. CP adding units 942a and 942b, transmission amplifiers 943a and 943b, and transmission antennas 944a and 944b. The centralized radio base station device and the remote radio device of the subordinate cell are connected by, for example, an optical fiber.
 下り制御情報生成部901、931は、それぞれスケジューリング部921の制御により下りリンクの制御情報を生成し、その下り制御情報を下り制御情報符号化・変調部902、932にそれぞれ出力する。下り制御情報符号化・変調部902、932は、下り制御情報に対してチャネル符号化及びデータ変調を行い、マッピング部907、937にそれぞれ出力する。 The downlink control information generation units 901 and 931 generate downlink control information under the control of the scheduling unit 921, and output the downlink control information to the downlink control information encoding / modulation units 902 and 932, respectively. Downlink control information coding / modulation sections 902 and 932 perform channel coding and data modulation on the downlink control information, and output them to mapping sections 907 and 937, respectively.
 下り参照信号生成部903、933は、下り参照信号(CRS、CSI-RS、DM-RS)を生成し、その下り参照信号をマッピング部907、937にそれぞれ出力する。下り送信データ生成部904、934は、下りリンクの送信データを生成し、その下り送信データを下り送信データ符号化・変調部906、936にそれぞれ出力する。 Downlink reference signal generation sections 903 and 933 generate downlink reference signals (CRS, CSI-RS, DM-RS) and output the downlink reference signals to mapping sections 907 and 937, respectively. Downlink transmission data generation sections 904 and 934 generate downlink transmission data, and output the downlink transmission data to downlink transmission data encoding / modulation sections 906 and 936, respectively.
 上位制御情報生成部905は、ハイヤレイヤシグナリング(例えば、RRCシグナリング)により送受信される上位制御情報を生成し、生成した上位制御情報を下り送信データ符号化・変調部906に出力する。例えば、上位制御情報生成部905は、ユーザ端末10に対するメジャメント候補セル、チャネル品質測定用セル及びCoMP送信伝達セルなどの通知を含む上位制御情報を生成する。 The higher control information generation section 905 generates higher control information transmitted / received by higher layer signaling (for example, RRC signaling), and outputs the generated higher control information to the downlink transmission data encoding / modulation section 906. For example, the higher control information generation unit 905 generates higher control information including notification of measurement candidate cells, channel quality measurement cells, CoMP transmission transmission cells, and the like to the user terminal 10.
 下り送信データ符号化・変調部906は、下り送信データ及び上位制御情報に対してチャネル符号化及びデータ変調を行い、マッピング部907に出力する。下り送信データ符号化・変調部936は、下り送信データに対してチャネル符号化及びデータ変調を行い、マッピング部937に出力する。 The downlink transmission data encoding / modulation section 906 performs channel encoding and data modulation on the downlink transmission data and higher control information, and outputs the result to the mapping section 907. The downlink transmission data encoding / modulation section 936 performs channel encoding and data modulation on the downlink transmission data, and outputs the result to the mapping section 937.
 マッピング部907、937は、下り制御情報、下り参照信号、下り送信データ及び上位制御情報をマッピングして、プリコーディング乗算部908、938にそれぞれ出力する。 The mapping units 907 and 937 map the downlink control information, the downlink reference signal, the downlink transmission data, and the upper control information, and output them to the precoding multipliers 908 and 938, respectively.
 プリコーディングウェイト生成部909、939は、ユーザ端末10からフィードバックされるPMIに基づいてプリコーディングウェイトを生成し、プリコーディング乗算部908、938にそれぞれ出力する。具体的には、プリコーディングウェイト生成部909、939は、それぞれコードブックを備えており、コードブックからPMIに対応するプリコーディングウェイトを選択する。なお、プリコーディングウェイト生成部909、939で利用されるPMIは、制御チャネル信号復調部920から与えられる。 The precoding weight generation units 909 and 939 generate precoding weights based on the PMI fed back from the user terminal 10 and output the precoding weights to the precoding multiplication units 908 and 938, respectively. Specifically, each of the precoding weight generation units 909 and 939 includes a codebook, and selects a precoding weight corresponding to PMI from the codebook. The PMI used in precoding weight generation sections 909 and 939 is provided from control channel signal demodulation section 920.
 プリコーディング乗算部908、938は、プリコーディングウェイトを送信信号に乗算する。すなわち、プリコーディング乗算部908、938は、プリコーディングウェイト生成部909、939から与えられるプリコーディングウェイトに基づいて、送信アンテナ914a、914b、送信アンテナ944a、944bごとに位相シフト及び/又は振幅シフトを行う。プリコーディング乗算部908、938は、位相シフト及び/又は振幅シフトされた送信信号を下りチャネル多重部910、940にそれぞれ出力する。 The precoding multipliers 908 and 938 multiply the transmission signal by the precoding weight. That is, the precoding multipliers 908 and 938 perform phase shift and / or amplitude shift for each of the transmission antennas 914a and 914b and the transmission antennas 944a and 944b based on the precoding weights given from the precoding weight generation units 909 and 939. Do. Precoding multiplication sections 908 and 938 output the phase-shifted and / or amplitude-shifted transmission signals to downlink channel multiplexing sections 910 and 940, respectively.
 下りチャネル多重部910、940は、位相シフト及び/又は振幅シフトされた下り制御情報、下り参照信号、上位制御情報及び下り送信データを合成し、送信アンテナ914a、914b、送信アンテナ944a、944bごとの送信信号を生成する。下りチャネル多重部910、940は、この送信信号をIFFT(Inverse Fast Fourier Transform)部911a、911b、IFFT部941a、941bにそれぞれ出力する。 The downlink channel multiplexing sections 910 and 940 combine the downlink control information, the downlink reference signal, the upper control information, and the downlink transmission data that are phase-shifted and / or amplitude-shifted, for each of the transmission antennas 914a and 914b and the transmission antennas 944a and 944b. A transmission signal is generated. Downlink channel multiplexing sections 910 and 940 output this transmission signal to IFFT (Inverse Fast Fourier Transform) sections 911a and 911b and IFFT sections 941a and 941b, respectively.
 IFFT部911a、911b、IFFT部941a、941bは、送信信号にIFFTして、IFFT後の送信信号をCP付加部912a、912b、CP付加部942a、942bに出力する。CP付加部912a、912b、CP付加部942a、942bは、IFFT後の送信信号にCP(Cyclic Prefix)を付加して、CP付加後の送信信号を送信アンプ913a、913b、送信アンプ943a、943bにそれぞれ出力する。 IFFT sections 911a and 911b and IFFT sections 941a and 941b perform IFFT on the transmission signals and output the transmission signals after IFFT to CP adding sections 912a and 912b and CP adding sections 942a and 942b. CP addition sections 912a and 912b and CP addition sections 942a and 942b add CP (Cyclic Prefix) to the transmission signal after IFFT, and transmit the transmission signal after CP addition to transmission amplifiers 913a and 913b and transmission amplifiers 943a and 943b. Output each.
 送信アンプ913a、913b、送信アンプ943a、943bは、CP付加後の送信信号を増幅する。増幅後の送信信号は、送信アンテナ914a、914b、送信アンテナ944a、944bからそれぞれ下りリンクでユーザ端末10に送出される。 The transmission amplifiers 913a and 913b and the transmission amplifiers 943a and 943b amplify the transmission signal after CP addition. The amplified transmission signals are transmitted from the transmission antennas 914a and 914b and the transmission antennas 944a and 944b to the user terminal 10 on the downlink.
 制御チャネル信号復調部920は、ユーザ端末10からPUCCHにより通知される制御チャネル信号を復調して、制御チャネル信号に含まれるPMIをプリコーディングウェイト生成部909、939に出力し、CQIを下り制御情報生成部901、上位制御情報生成部905及びスケジューリング部921に出力する。なお、CQIがPUSCHにより通知される場合には、不図示の上りデータチャネル復調部において上り送信データを復調し、上り送信データに含まれるCQIをスケジューリング部921に出力する。 The control channel signal demodulator 920 demodulates the control channel signal notified from the user terminal 10 via the PUCCH, outputs the PMI included in the control channel signal to the precoding weight generators 909 and 939, and outputs the CQI to the downlink control information. The data is output to the generation unit 901, the upper control information generation unit 905, and the scheduling unit 921. When CQI is notified by PUSCH, uplink transmission data demodulation unit (not shown) demodulates uplink transmission data and outputs CQI included in the uplink transmission data to scheduling unit 921.
 スケジューリング部921には、上位レイヤからメジャメントレポート結果(RSRP/RSRQ)が通知される。スケジューリング部921は、制御チャネル信号復調部920等から出力されるCQIに基づいて、CoMP送信適用時に、ユーザ端末10に共有データチャネルを送信するCoMP送信伝達セルを決定する。 The scheduling report 921 is notified of the measurement report result (RSRP / RSRQ) from the upper layer. The scheduling unit 921 determines a CoMP transmission transmission cell that transmits a shared data channel to the user terminal 10 when CoMP transmission is applied, based on the CQI output from the control channel signal demodulation unit 920 or the like.
 特に、スケジューリング部921は、ばらつき算出部921a及びメトリック補正部921bを備える。ばらつき算出部921aは、算出部を構成するものであり、制御チャネル信号復調部920等から入力される送信ポイント間のCQIのばらつき度合いを算出する。そして、算出したばらつき度合いをメトリック補正部921bに出力する。この場合において、ばらつき算出部921aは、例えば、上述した(式5)や(式6)に示す計算式を用いて送信ポイント間のCQIのばらつき度合いを算出する。 Particularly, the scheduling unit 921 includes a variation calculation unit 921a and a metric correction unit 921b. The variation calculator 921a constitutes a calculator, and calculates the degree of CQI variation between transmission points input from the control channel signal demodulator 920 or the like. Then, the calculated degree of variation is output to the metric correction unit 921b. In this case, the variation calculation unit 921a calculates the degree of CQI variation between transmission points using, for example, the calculation formulas shown in (Expression 5) and (Expression 6) described above.
 メトリック補正部921bは、決定部を構成するものであり、ばらつき算出部921aから入力されるばらつき度合いに応じてスケジューリングメトリックを補正する。そして、補正したスケジューリングメトリックを用いてスケジューリングするユーザ端末10(すなわち、無線リソースを割り当てるユーザ端末10)を決定する。この場合において、メトリック補正部921bは、例えば、上述した(式1)~(式4)や(式10)~(式13)に示す計算式を用いてスケジューリングメトリックを補正する。 The metric correction unit 921b constitutes a determination unit, and corrects the scheduling metric according to the degree of variation input from the variation calculation unit 921a. And the user terminal 10 (namely, user terminal 10 which allocates a radio | wireless resource) to schedule using the corrected scheduling metric is determined. In this case, the metric correction unit 921b corrects the scheduling metric using, for example, the calculation expressions shown in (Expression 1) to (Expression 4) and (Expression 10) to (Expression 13) described above.
 このように補正後のスケジューリングメトリックを用いてスケジューリングするユーザ端末10が決定され、そのユーザ端末10に対して無線リソースが割り当てられる。補正後のスケジューリングメトリックにおいては、送信ポイント間のCQIのばらつき度合いが小さいユーザ端末10に割り当てる無線リソース量が少なくされる一方、ばらつき度合いが大きいユーザ端末10に割り当てる無線リソース量が多くされる。これにより、無線基地局装置20からCoMP送信する際にセルエッジUEに過度に無線リソースが割り当てられる事態を回避できるので、システム全体及びセル端のユーザ端末UEのスループット特性を改善することが可能となる。 Thus, the user terminal 10 to be scheduled is determined using the corrected scheduling metric, and radio resources are allocated to the user terminal 10. In the corrected scheduling metric, the amount of radio resources allocated to the user terminal 10 having a small degree of CQI variation between transmission points is reduced, while the amount of radio resources allocated to the user terminal 10 having a large degree of variation is increased. Thereby, since it is possible to avoid a situation in which radio resources are excessively allocated to the cell edge UE when performing CoMP transmission from the radio base station apparatus 20, it is possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge. .
 次に、図10を参照して、図9に示す無線基地局装置とは異なる構成の無線基地局装置の機能ブロックについて説明する。図10に示す無線基地局装置は、自律分散制御型の無線基地局構成を有する。自律分散制御の場合、複数の無線基地局装置で、それぞれスケジューリングなどの無線リソース割り当て制御が行われる。この場合、フィードバック情報(CQI)は、複数の無線基地局装置におけるユーザスケジューリング制御部921、951において、それぞれの無線リソース割り当て等に必要な情報として使われる。 Next, functional blocks of a radio base station apparatus having a configuration different from that of the radio base station apparatus shown in FIG. 9 will be described with reference to FIG. The radio base station apparatus shown in FIG. 10 has an autonomous distributed control type radio base station configuration. In the case of autonomous distributed control, radio resource allocation control such as scheduling is performed in each of a plurality of radio base station apparatuses. In this case, feedback information (CQI) is used as information necessary for radio resource allocation and the like in user scheduling control units 921 and 951 in a plurality of radio base station apparatuses.
 なお、図10の各機能ブロックは、主に図7に示すベースバンド処理部204の処理内容に関するものである。また、図10の機能ブロック図は、本発明を説明するために簡略化したものであり、一般的なベースバンド処理部204において通常に備える構成を備えるものとする。また、図10において、図9と同じ機能ブロックについては図9と同じ符号を付してその詳細な説明は省略する。 Note that each functional block in FIG. 10 mainly relates to the processing contents of the baseband processing unit 204 shown in FIG. Further, the functional block diagram of FIG. 10 is simplified for explaining the present invention, and is assumed to have a configuration normally provided in a general baseband processing unit 204. In FIG. 10, the same functional blocks as those in FIG. 9 are denoted by the same reference numerals as those in FIG.
 セル1側の送信部は、下り制御情報生成部901と、下り制御情報符号化・変調部902と、下り参照信号生成部903と、下り送信データ生成部904と、上位制御情報生成部905と下り送信データ符号化・変調部906と、マッピング部907と、プリコーディング乗算部908と、プリコーディングウェイト生成部909と、下りチャネル多重部910と、IFFT部911a、911bと、CP付加部912a、912bと、送信アンプ913a、913bと、送信アンテナ914a、914bと、制御チャネル信号復調部920と、スケジューリング部921と、セル間制御情報送受信部922と、を備えている。 The transmission unit on the cell 1 side includes a downlink control information generation unit 901, a downlink control information encoding / modulation unit 902, a downlink reference signal generation unit 903, a downlink transmission data generation unit 904, and an upper control information generation unit 905. Downlink transmission data encoding / modulation section 906, mapping section 907, precoding multiplication section 908, precoding weight generation section 909, downlink channel multiplexing section 910, IFFT sections 911a and 911b, CP addition section 912a, 912b, transmission amplifiers 913a and 913b, transmission antennas 914a and 914b, a control channel signal demodulation unit 920, a scheduling unit 921, and an inter-cell control information transmission / reception unit 922.
 セル2側の送信部も、同様に、下り制御情報生成部931と、下り制御情報符号化・変調部932と、下り参照信号生成部933と、下り送信データ生成部934と、上位制御情報生成部935と、下り送信データ符号化・変調部936と、マッピング部937と、プリコーディング乗算部938と、プリコーディングウェイト生成部939と、下りチャネル多重部940と、IFFT部941a、941bと、CP付加部942a、942bと、送信アンプ943a、943bと、送信アンテナ944a、944bと、制御チャネル信号復調部950と、スケジューリング部951と、セル間制御情報送受信部952と、を備えている。 Similarly, the transmission unit on the cell 2 side also includes a downlink control information generation unit 931, a downlink control information encoding / modulation unit 932, a downlink reference signal generation unit 933, a downlink transmission data generation unit 934, and higher control information generation. Unit 935, downlink transmission data encoding / modulation unit 936, mapping unit 937, precoding multiplication unit 938, precoding weight generation unit 939, downlink channel multiplexing unit 940, IFFT units 941a and 941b, and CP Additional units 942a and 942b, transmission amplifiers 943a and 943b, transmission antennas 944a and 944b, a control channel signal demodulation unit 950, a scheduling unit 951, and an inter-cell control information transmission / reception unit 952 are provided.
 セル2側の送信部が有する制御チャネル信号復調部950、スケジューリング部951の機能は、それぞれ、セル1側の送信部が有する制御チャネル信号復調部920、スケジューリング部921の機能と同様である。 The functions of the control channel signal demodulation unit 950 and the scheduling unit 951 included in the cell 2 side transmission unit are the same as the functions of the control channel signal demodulation unit 920 and the scheduling unit 921 included in the cell 1 side transmission unit, respectively.
 すなわち、制御チャネル信号復調部950は、ユーザ端末10からPUCCHにより通知される制御チャネル信号を復調して、制御チャネル信号に含まれるPMIをプリコーディングウェイト生成部939に出力し、CQIをユーザスケジューリング制御部951に出力する。なお、CQIがPUSCHにより通知される場合には、不図示の上りデータチャネル復調部において上り送信データを復調し、上り送信データに含まれるCQIをユーザスケジューリング制御部951に出力する。 That is, the control channel signal demodulator 950 demodulates the control channel signal notified from the user terminal 10 through the PUCCH, outputs the PMI included in the control channel signal to the precoding weight generator 939, and controls the CQI by user scheduling control. Output to the unit 951. When CQI is notified by PUSCH, the uplink data channel demodulation unit (not shown) demodulates the uplink transmission data, and outputs the CQI included in the uplink transmission data to the user scheduling control unit 951.
 また、スケジューリング部951は、制御チャネル信号復調部950等から出力されるCQIに基づいて、CoMP送信適用時に、ユーザ端末10に共有データチャネルを送信するCoMP送信伝達セルを決定する。スケジューリング部951は、スケジューリング部921と同様に、ばらつき算出部951a及びメトリック補正部951bを備える。ばらつき算出部951aは、制御チャネル信号復調部950等から入力される送信ポイント間のCQIのばらつき度合いを算出し、メトリック補正部951bに出力する。メトリック補正部951bは、ばらつき算出部921aから入力されるばらつき度合いに応じてスケジューリングメトリックを補正する。そして、補正したスケジューリングメトリックを用いてスケジューリングするユーザ端末10(すなわち、無線リソースを割り当てるユーザ端末10)を決定する。 Also, the scheduling unit 951 determines a CoMP transmission transmission cell that transmits a shared data channel to the user terminal 10 when CoMP transmission is applied, based on the CQI output from the control channel signal demodulation unit 950 or the like. Similar to the scheduling unit 921, the scheduling unit 951 includes a variation calculation unit 951a and a metric correction unit 951b. The variation calculating unit 951a calculates the degree of CQI variation between transmission points input from the control channel signal demodulating unit 950 or the like, and outputs it to the metric correcting unit 951b. The metric correction unit 951b corrects the scheduling metric according to the degree of variation input from the variation calculation unit 921a. And the user terminal 10 (namely, user terminal 10 which allocates a radio | wireless resource) to schedule using the corrected scheduling metric is determined.
 なお、セル間制御情報送受信部922、952は、例えば、X2インターフェースを介して接続されており、スケジューリング部921、951から出力されるタイミング情報やスケジューリング情報などを互いに送受信する。これにより、セル間の協調が可能になっている。 The inter-cell control information transmission / reception units 922 and 952 are connected via, for example, the X2 interface, and transmit / receive timing information and scheduling information output from the scheduling units 921 and 951 to / from each other. Thereby, the cooperation between cells is attained.
 図11を参照して、ユーザ端末の機能ブロックについて説明する。なお、図11の各機能ブロックは、主に図8に示すベースバンド信号処理部104の処理内容に関するものである。また、図11に示す機能ブロックは、本発明を説明するために簡略化したものであり、ベースバンド処理部において通常に備える構成は備えるものとする。 Referring to FIG. 11, functional blocks of the user terminal will be described. Each functional block in FIG. 11 mainly relates to the processing contents of the baseband signal processing unit 104 shown in FIG. Further, the functional blocks shown in FIG. 11 are simplified for the purpose of explaining the present invention, and the configuration normally provided in the baseband processing unit is provided.
 ユーザ端末10の受信部は、CP除去部1101と、FFT部1102と、下りチャネル分離部1103と、下り制御情報復調部1104と、下り送信データ復調部1105と、チャネル推定部1106と、チャネル品質測定部1107と、PMI選択部1108と、フィードバック情報生成部1109と、を備えている。 The reception unit of the user terminal 10 includes a CP removal unit 1101, an FFT unit 1102, a downlink channel separation unit 1103, a downlink control information demodulation unit 1104, a downlink transmission data demodulation unit 1105, a channel estimation unit 1106, a channel quality A measurement unit 1107, a PMI selection unit 1108, and a feedback information generation unit 1109 are provided.
 無線基地局装置eNBから送出された送信信号は、図8に示す送受信アンテナ101により受信され、CP除去部1101に出力される。CP除去部1101は、受信信号からCPを除去し、FFT部1102に出力する。FFT部1102は、CP除去後の信号を高速フーリエ変換(FFT:Fast Fourier Transform)し、時間領域の信号から周波数領域の信号に変換する。FFT部1102は、周波数領域の信号に変換された信号を下りチャネル分離部1103に出力する。下りチャネル分離部1103は、下りチャネル信号を、下り制御情報、下り送信データ、上位制御情報、下り参照信号に分離する。下りチャネル分離部1103は、下り制御情報を下り制御情報復調部1104に出力し、下り送信データ及び上位制御情報を下り送信データ復調部1105に出力し、下り参照信号をチャネル推定部1106に出力する。 The transmission signal transmitted from the radio base station apparatus eNB is received by the transmission / reception antenna 101 illustrated in FIG. 8 and output to the CP removal unit 1101. CP removing section 1101 removes the CP from the received signal and outputs it to FFT section 1102. The FFT unit 1102 performs fast Fourier transform (FFT) on the signal after CP removal, and converts the signal in the time domain into a signal in the frequency domain. FFT section 1102 outputs the signal converted to the frequency domain signal to downlink channel separation section 1103. The downlink channel separator 1103 separates the downlink channel signal into downlink control information, downlink transmission data, higher control information, and downlink reference signals. Downlink channel separation section 1103 outputs downlink control information to downlink control information demodulation section 1104, outputs downlink transmission data and higher control information to downlink transmission data demodulation section 1105, and outputs a downlink reference signal to channel estimation section 1106. .
 下り制御情報復調部1104は、下り制御情報を復調し、復調した制御情報を下り送信データ復調部1105及びチャネル品質測定部1107に出力する。また、下り制御情報復調部1104は、下り制御情報に含まれる制御チャネル信号(例えば、PDCCH)を復調する。下り送信データ復調部1105は、制御情報を用いて下り送信データを復調する。また、下り送信データ復調部1105は、下り送信データに含まれる上位制御情報を復調してチャネル品質測定部1107に通知する。チャネル推定部1106は、下り参照信号を用いてチャネル状態を推定し、推定したチャネル状態をチャネル品質測定部1107及びPMI選択部1108に出力する。 The downlink control information demodulator 1104 demodulates the downlink control information, and outputs the demodulated control information to the downlink transmission data demodulator 1105 and the channel quality measurement unit 1107. Further, the downlink control information demodulation section 1104 demodulates a control channel signal (for example, PDCCH) included in the downlink control information. Downlink transmission data demodulation section 1105 demodulates downlink transmission data using the control information. Also, downlink transmission data demodulation section 1105 demodulates higher-level control information included in downlink transmission data and notifies channel quality measurement section 1107. Channel estimation section 1106 estimates the channel state using the downlink reference signal, and outputs the estimated channel state to channel quality measurement section 1107 and PMI selection section 1108.
 チャネル品質測定部1107は、下り送信データ復調部1105から通知される上位制御情報及び下り制御情報復調部1104から通知される制御情報に基づいて、チャネル推定部1106から通知されるチャネル状態からRSRP/RSRQ及びCQIを測定する。例えば、チャネル品質測定部1107は、無線基地局装置20から指定される全てのチャネル品質測定用セル111のRSRP/RSRQ及びCQIを測定する。チャネル品質測定部1107で測定されたRSRP/RSRQ及びCQIは、フィードバック情報としてフィードバック情報生成部1109に出力される。 The channel quality measurement unit 1107 is configured to determine the RSRP / RSR from the channel state notified from the channel estimation unit 1106 based on the upper control information notified from the downlink transmission data demodulation unit 1105 and the control information notified from the downlink control information demodulation unit 1104. Measure RSRQ and CQI. For example, the channel quality measurement unit 1107 measures the RSRP / RSRQ and CQI of all the channel quality measurement cells 111 specified by the radio base station apparatus 20. The RSRP / RSRQ and CQI measured by the channel quality measurement unit 1107 are output to the feedback information generation unit 1109 as feedback information.
 PMI選択部1108は、チャネル推定部1106から通知されたチャネル状態からコードブックを用いてPMIを選択する。PMI選択部1108で選択されたPMIは、フィードバック情報としてフィードバック情報生成部1109に出力される。 The PMI selection unit 1108 selects a PMI from the channel state notified from the channel estimation unit 1106 using a code book. The PMI selected by the PMI selection unit 1108 is output to the feedback information generation unit 1109 as feedback information.
 フィードバック情報生成部1109は、チャネル品質測定部1107で測定されたRSRP/RSRQ及びCQIをフィードバック情報として、無線基地局装置20へフィードバックする。例えば、無線基地局装置20から指定される全てのチャネル品質測定用セル111のRSRP/RSRQ及びCQIが無線基地局装置20にフィードバックされる。 The feedback information generation unit 1109 feeds back the RSRP / RSRQ and CQI measured by the channel quality measurement unit 1107 to the radio base station apparatus 20 as feedback information. For example, the RSRP / RSRQ and CQI of all channel quality measurement cells 111 specified by the radio base station apparatus 20 are fed back to the radio base station apparatus 20.
 上記構成のシステムを適用した無線通信システムについて説明する。本実施の形態に係る無線通信システム1は、複数の無線基地局装置20と、これらの複数の無線基地局装置20とCoMP送受信可能に構成されたユーザ端末10と、を備えて構成される。この場合において、ユーザ端末10は、CoMP送信の送信ポイント毎にフィードバック情報(例えば、CQI)を送信する。一方、無線基地局装置20は、ユーザ端末10からフィードバックされる、CoMP送信の送信ポイント間のフィードバック情報のばらつき度合いを算出し、算出したばらつき度合いに応じてユーザ端末10に割り当てる無線リソースを決定する。 A wireless communication system to which the system configured as described above is applied will be described. The radio communication system 1 according to the present embodiment includes a plurality of radio base station apparatuses 20 and user terminals 10 configured to be able to perform CoMP transmission / reception with the plurality of radio base station apparatuses 20. In this case, the user terminal 10 transmits feedback information (for example, CQI) for each transmission point of CoMP transmission. On the other hand, the radio base station apparatus 20 calculates a variation degree of feedback information between transmission points of CoMP transmission fed back from the user terminal 10, and determines a radio resource to be allocated to the user terminal 10 according to the calculated variation degree. .
 この無線通信システムによれば、無線基地局装置20において、ユーザ端末10からフィードバックされる送信ポイント間のフィードバック情報のCQIのばらつき度合いが算出され、算出されたばらつき度合いに応じてユーザ端末10に割り当てる無線リソースが決定される。これにより、無線基地局装置20からCoMP送信する際にセルエッジUEに過度に無線リソースが割り当てられる事態を回避できるので、システム全体及びセル端のユーザ端末UEのスループット特性を改善することが可能となる。 According to this radio communication system, the radio base station apparatus 20 calculates the degree of CQI variation of feedback information between transmission points fed back from the user terminal 10 and assigns it to the user terminal 10 according to the calculated degree of variation. Radio resources are determined. Thereby, since it is possible to avoid a situation in which radio resources are excessively allocated to the cell edge UE when performing CoMP transmission from the radio base station apparatus 20, it is possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge. .
 なお、本発明は明細書の記載に限定されず、種々変更して実施することができる。例えば、上記実施の形態では、無線基地局装置eNBがCoMP送信伝達セルを決定する過程において、ユーザ端末UEからフィードバックされる送信ポイント間のCQIのばらつき度合いを算出する場合について説明している。しかしながら、ばらつき度合いを算出するためのフィードバック情報については、これに限定されるものではなく適宜変更が可能である。例えば、ユーザ端末UEからフィードバックされる、メジャメント候補セル110(RRM measurement setで指定されるセル)間、チャネル品質測定用セル111(CoMP measurement setで指定されるセル)間、或いは、CoMP送信伝達セル112(CoMP transmission points)間のRSRP/RSRQを用いることもできる。 In addition, this invention is not limited to description of a specification, It can implement by changing variously. For example, in the above embodiment, a case has been described in which the degree of CQI variation between transmission points fed back from the user terminal UE is calculated in the process in which the radio base station apparatus eNB determines a CoMP transmission transmission cell. However, the feedback information for calculating the degree of variation is not limited to this, and can be changed as appropriate. For example, between measurement candidate cells 110 (cells specified by RRM measurement set), between channel quality measurement cells 111 (cells specified by CoMP measurement set), or CoMP transmission transmission cells fed back from user terminal UE RSRP / RSRQ between 112 (CoMP transmission points) can also be used.
 このように送信ポイント間のRSRP/RSRQのばらつき度合いに応じてスケジューリングメトリックを補正する場合には、CQIのばらつき度合いに応じてスケジューリングメトリックを補正する場合と同様に、無線基地局装置eNBからCoMP送信する際にセルエッジUEに過度に無線リソースが割り当てられる事態を回避できるので、システム全体及びセル端のユーザ端末UEのスループット特性を改善することが可能となる。また、例えば、本明細書に示す構成要素の接続関係、機能などは適宜変更して実施することが可能である。また、本明細書に示す構成は、適宜組み合わせて実施することが可能である。その他、本発明は、本発明の範囲を逸脱しないで適宜変更して実施することができる。 When the scheduling metric is corrected according to the RSRP / RSRQ variation degree between the transmission points as described above, the CoMP transmission is performed from the radio base station apparatus eNB as in the case where the scheduling metric is corrected according to the CQI variation degree. In this case, it is possible to avoid a situation where radio resources are excessively allocated to the cell edge UE, so that it is possible to improve the throughput characteristics of the entire system and the user terminal UE at the cell edge. Further, for example, the connection relations and functions of the components shown in the present specification can be implemented with appropriate changes. In addition, the structures described in this specification can be implemented in appropriate combination. In addition, the present invention can be implemented with appropriate modifications without departing from the scope of the present invention.
 本出願は、2012年12月27日出願の特願2012-285185に基づく。この内容は、全てここに含めておく。 This application is based on Japanese Patent Application No. 2012-285185 filed on December 27, 2012. All this content is included here.

Claims (10)

  1.  複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムにおける無線基地局装置であって、
     前記無線基地局装置は、前記ユーザ端末からフィードバックされる、協調マルチポイント送信の送信ポイント間のフィードバック情報のばらつき度合いを算出する算出部と、前記算出部により算出されたばらつき度合いに応じて前記ユーザ端末に割り当てる無線リソースを決定する決定部と、を有することを特徴とする無線基地局装置。
    A radio base station apparatus in a radio communication system comprising a plurality of radio base station apparatuses and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station apparatuses,
    The radio base station apparatus calculates a variation degree of feedback information between transmission points of cooperative multipoint transmission fed back from the user terminal, and the user according to the variation degree calculated by the calculation unit A radio base station apparatus comprising: a determination unit that determines radio resources to be allocated to the terminal.
  2.  前記決定部は、前記算出部により算出されたばらつき度合いが大きい前記ユーザ端末に割り当てる無線リソースを相対的に多くする一方、前記算出部により算出されたばらつき度合いが小さい前記ユーザ端末に割り当てる無線リソースを相対的に少なくすることを特徴とする請求項1記載の無線基地局装置。 The determination unit relatively increases the radio resources allocated to the user terminals having a large degree of variation calculated by the calculation unit, while assigning radio resources allocated to the user terminals having a small degree of variation calculated by the calculation unit. 2. The radio base station apparatus according to claim 1, wherein the number is relatively small.
  3.  前記決定部は、前記算出部により算出されたばらつき度合いに応じたパラメータにより予め定められたスケジューリングメトリックを補正することで前記ユーザ端末に割り当てる無線リソースを決定することを特徴とする請求項1記載の無線基地局装置。 The said determination part determines the radio | wireless resource allocated to the said user terminal by correct | amending the scheduling metric predetermined by the parameter according to the dispersion | variation degree calculated by the said calculation part. Wireless base station device.
  4.  前記決定部は、協調マルチポイント送信の送信ポイント数に応じて前記パラメータを正規化することを特徴とする請求項3記載の無線基地局装置。 The radio base station apparatus according to claim 3, wherein the determination unit normalizes the parameter according to the number of transmission points of cooperative multipoint transmission.
  5.  前記決定部は、前記パラメータにより、プロポーショナルフェアネススケジューリングメトリックを補正することを特徴とする請求項3記載の無線基地局装置。 The radio base station apparatus according to claim 3, wherein the determination unit corrects a proportional fairness scheduling metric according to the parameter.
  6.  前記算出部は、前記ユーザ端末からフィードバックされる協調マルチポイント送信の送信ポイント間のCQIのばらつき度合いを算出し、前記決定部は、算出されたCQIのばらつき度合いに応じて前記ユーザ端末に割り当てる無線リソースを決定することを特徴とする請求項1記載の無線基地局装置。 The calculation unit calculates a degree of CQI variation between transmission points of cooperative multipoint transmission fed back from the user terminal, and the determination unit is a radio assigned to the user terminal according to the calculated degree of CQI variation. The radio base station apparatus according to claim 1, wherein a resource is determined.
  7.  前記算出部は、CoMP measurement setで指定されるチャネル品質測定用セル間のCQIのばらつき度合いを算出することを特徴とする請求項6記載の無線基地局装置。 The radio base station apparatus according to claim 6, wherein the calculation unit calculates a degree of CQI variation between channel quality measurement cells specified by a CoMP measurement set.
  8.  前記算出部は、前記ユーザ端末からフィードバックされる協調マルチポイント送信の送信ポイント間のRSRP/RSRQのばらつき度合いを算出し、前記決定部は、算出されたRSRP/RSRQのばらつき度合いに応じて前記ユーザ端末に割り当てる無線リソースを決定することを特徴とする請求項1記載の無線基地局装置。 The calculating unit calculates a degree of RSRP / RSRQ variation between transmission points of cooperative multipoint transmission fed back from the user terminal, and the determining unit determines the user according to the calculated degree of RSRP / RSRQ variation. The radio base station apparatus according to claim 1, wherein radio resources to be allocated to the terminal are determined.
  9.  複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムであって、前記ユーザ端末は、協調マルチポイント送信の送信ポイント毎にフィードバック情報を送信する送信部を有し、前記無線基地局装置は、前記ユーザ端末からフィードバックされる、協調マルチポイント送信の送信ポイント間のフィードバック情報のばらつき度合いを算出する算出部と、前記算出部により算出されたばらつき度合いに応じて前記ユーザ端末に割り当てる無線リソースを決定する決定部と、を有することを特徴とする無線通信システム。 A radio communication system comprising: a plurality of radio base station apparatuses; and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of radio base station apparatuses, wherein the user terminal transmits a coordinated multipoint transmission. A transmitter that transmits feedback information for each point, and the radio base station apparatus calculates a variation degree of feedback information between transmission points of cooperative multipoint transmission fed back from the user terminal; A wireless communication system, comprising: a determining unit that determines a wireless resource to be allocated to the user terminal according to a degree of variation calculated by the calculating unit.
  10.  複数の無線基地局装置と、前記複数の無線基地局装置と協調マルチポイント送受信可能に構成されたユーザ端末と、を備えた無線通信システムの無線通信方法であって、
     前記ユーザ端末において、協調マルチポイント送信の送信ポイント毎にフィードバック情報を送信する工程と、前記無線基地局装置において、前記ユーザ端末からフィードバックされる、協調マルチポイント送信の送信ポイント間のフィードバック情報のばらつき度合いを算出する工程と、算出されたばらつき度合いに応じて前記ユーザ端末に割り当てる無線リソースを決定する工程と、を有することを特徴とする無線通信方法。
    A wireless communication method of a wireless communication system comprising: a plurality of wireless base station devices; and a user terminal configured to be capable of cooperative multipoint transmission / reception with the plurality of wireless base station devices,
    Step of transmitting feedback information for each transmission point of cooperative multipoint transmission in the user terminal, and variation in feedback information between transmission points of cooperative multipoint transmission fed back from the user terminal in the radio base station apparatus A wireless communication method comprising: calculating a degree; and determining a wireless resource to be allocated to the user terminal according to the calculated degree of variation.
PCT/JP2013/084407 2012-12-27 2013-12-24 Wireless base station device, wireless communication system, and wireless communication method WO2014103978A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012285185A JP6084031B2 (en) 2012-12-27 2012-12-27 Radio base station apparatus, radio communication system, and radio communication method
JP2012-285185 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103978A1 true WO2014103978A1 (en) 2014-07-03

Family

ID=51021060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084407 WO2014103978A1 (en) 2012-12-27 2013-12-24 Wireless base station device, wireless communication system, and wireless communication method

Country Status (2)

Country Link
JP (1) JP6084031B2 (en)
WO (1) WO2014103978A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6398612B2 (en) 2014-10-29 2018-10-03 富士通株式会社 Base station and cell selection method
JP6586736B2 (en) * 2015-02-20 2019-10-09 富士通株式会社 Control device, cooperative pattern selection method, and wireless communication system
JP6457409B2 (en) * 2015-03-31 2019-01-23 日本電信電話株式会社 Scheduling apparatus and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081150A1 (en) * 2010-12-17 2012-06-21 日本電気株式会社 Wireless parameter control device, base station device, method of controlling wireless parameter, and non-transitory computer readable medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081150A1 (en) * 2010-12-17 2012-06-21 日本電気株式会社 Wireless parameter control device, base station device, method of controlling wireless parameter, and non-transitory computer readable medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "System Performance of CS /CB-CoMP in Scenario 3", 3GPP TSG RAN WG1 MEETING #66 RL-112431, 26 August 2011 (2011-08-26) *

Also Published As

Publication number Publication date
JP2014127961A (en) 2014-07-07
JP6084031B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5959831B2 (en) Wireless communication system, wireless base station apparatus, and wireless communication method
JP5743965B2 (en) User terminal, radio communication system, radio communication method, and radio base station
JP6096119B2 (en) Radio communication system, radio base station apparatus, user terminal, and radio communication method
JP5421299B2 (en) Mobile terminal apparatus, radio base station apparatus, and radio communication method
EP3310090A1 (en) User terminal, wireless base station, and wireless communication method
JP5361933B2 (en) Mobile terminal apparatus, radio base station apparatus, radio communication method, and radio communication system
JP5918680B2 (en) Wireless communication system, base station apparatus, user terminal, and wireless communication method
WO2013051510A1 (en) Wireless communications system, feedback method, user terminal, and wireless base station device
WO2013141338A1 (en) Wireless communication system, user terminal, wireless base station device and wireless communication method
JP5911265B2 (en) Radio communication system, radio base station apparatus, user terminal, and radio communication method
JP5878406B2 (en) Radio communication system, user terminal, radio base station apparatus, and radio communication method
JP5911320B2 (en) Radio communication system, user terminal, radio base station apparatus, and radio communication method
WO2012153804A1 (en) Wireless base station device, mobile terminal device, wireless communication method, and wireless communication system
JP5918505B2 (en) Radio communication system, radio base station apparatus, user terminal, and radio communication method
JP5948099B2 (en) Wireless base station, user terminal, wireless communication method, and wireless communication system
JP6084031B2 (en) Radio base station apparatus, radio communication system, and radio communication method
JP6027325B2 (en) Radio communication system, user terminal, radio base station apparatus, and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868575

Country of ref document: EP

Kind code of ref document: A1