WO2014103888A1 - Aluminum-based electrically conductive material, and cable manufactured using same - Google Patents

Aluminum-based electrically conductive material, and cable manufactured using same Download PDF

Info

Publication number
WO2014103888A1
WO2014103888A1 PCT/JP2013/084136 JP2013084136W WO2014103888A1 WO 2014103888 A1 WO2014103888 A1 WO 2014103888A1 JP 2013084136 W JP2013084136 W JP 2013084136W WO 2014103888 A1 WO2014103888 A1 WO 2014103888A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
crystal grains
cable
conductive material
scandium
Prior art date
Application number
PCT/JP2013/084136
Other languages
French (fr)
Japanese (ja)
Inventor
浩之 因
芙美代 案納
松永 大輔
弘基 北原
新二 安藤
雅之 津志田
俊文 小川
Original Assignee
大電株式会社
福岡県
国立大学法人 熊本大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大電株式会社, 福岡県, 国立大学法人 熊本大学 filed Critical 大電株式会社
Publication of WO2014103888A1 publication Critical patent/WO2014103888A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/023Alloys based on aluminium

Definitions

  • the present invention provides, for example, an aluminum-based conductive material having bending resistance used for wiring that repeatedly undergoes bending deformation of a drive portion or the like in wiring for industrial robots, consumer robots, or various devices, and the like. Related to the cable.
  • a driving part of an industrial robot or a consumer robot for example, a cable used for wiring an arm part, is repeatedly subjected to bending when the arm is driven. Further, the cable used for wiring the door portion of the automobile is repeatedly bent when the door is opened and closed. For this reason, not a normal conducting wire but a conducting wire excellent in bending resistance is used for a cable subjected to repeated bending. Further, when the conducting wire is thinned, the bending resistance is improved even with the same material. Therefore, the conducting wire used for the cable is not a single wire but a twisted wire composed of a plurality of fine wires.
  • iron is used as a conductive wire having a number of breaks (fatigue life) of 50,000 times or more when repeated bending with a strain amplitude of ⁇ 0.15% at room temperature is applied.
  • An aluminum alloy wire containing 0.01% by mass and having a crystal grain size of 5 to 25 ⁇ m in a vertical cross section in the wire drawing direction is disclosed.
  • Patent Document 2 discloses an aluminum alloy containing scandium in an amount of 0.1 to 0.3% by mass (weight%) as an aluminum-based conductive material that is lightweight and has excellent heat resistance, tensile strength, and conductivity. It is disclosed. Furthermore, as an example of further improving the heat resistance of an aluminum alloy containing scandium, Patent Document 3 discloses that zirconium is 0.1 to 0.5 mass% and scandium is 0.05 to 0.5 mass%.
  • An aluminum alloy that is manufactured by performing cold working after heat treatment includes Patent Document 4 containing 0.1 to 0.4% by mass of zirconium and 0.05 to 0.3% by mass of scandium.
  • Patent Document 5 An aluminum alloy manufactured by heat treatment is disclosed in Patent Document 5, which contains 0.1 to 0.5 mass% of zirconium and 0.05 to 0.5 mass% of scandium, and is subjected to cold working after the heat treatment.
  • Patent Document 6 discloses that an aluminum alloy containing 0.1 to 0.5% by mass of zirconium and 0.05 to 0.5% by mass of scandium is subjected to a heat treatment after cold working, and then cold-worked again. Aluminum alloy production performed is disclosed, respectively.
  • JP 2010-163675 A JP 7-316705 A JP 2001-131719 A JP 2001-348637 A JP 2002-266043 A JP 2002-302727 A
  • the aluminum alloy wire described in Patent Document 1 has a fatigue life of 50,000 times or more, and assuming that an actual robot requires 2 seconds for one bending operation, the total number of bendings for two days is 86400 times. Thus, the number of flexing times exceeds the minimum life. For this reason, when the cable produced using the strand formed from the aluminum alloy wire described in Patent Document 1 is applied as a robot cable, there is a problem that the robot cannot be stably operated for a long period of time. is there.
  • a strand having a wire diameter of 80 ⁇ m is formed from an aluminum alloy containing scandium described in Patent Documents 2 to 5, and a cable having a cross-sectional area of 0.2 mm 2 is produced using the strand.
  • a dynamic drive test for example, a left / right bending (left / right repeated bending) test in which a bending radius is 15 mm and a bending angle range is ⁇ 90 degrees in a state where a load of 100 g is applied to the test body
  • the number of times the cable is broken Is 3 to 4 million times (depending on the composition of the aluminum alloy and the manufacturing process of the wire). For this reason, even if a cable produced using an aluminum alloy described in Patent Documents 2 to 5 is used as a robot cable, it is not sufficient to stably operate the robot for a long period of time.
  • Patent Documents 2 to 5 when an aluminum alloy is cold-worked (plastic working) and heat-treated to form a wire, the fine structure formed by cold-working constitutes a fine structure during heat-treatment. Since grain growth occurs in the crystal grains, there is a problem that the tensile strength of the wire decreases with the progress of grain growth. Further, when non-uniformity occurs in the structure constituting the wire due to the grain growth, the cable manufactured using this wire has a problem that the number of breaks in the bending test is reduced and the variation in the number of breaks is increased. . Further, in Patent Documents 3, 5, and 6, when a wire is formed by cold working an aluminum alloy, strains during cold working are accumulated in the wire, so the hardness and tensile strength of the wire are increased.
  • the present invention has been made in view of such circumstances, and is intended to improve the tensile strength, the bending resistance, and the extensibility while miniaturizing the structure and reducing the residual strain, and to improve the driving part of the robot or various devices. It is an object to provide an aluminum-based conductive material that can be used for wiring and a cable using the same.
  • the aluminum-based conductive material according to the first invention that meets the above-mentioned object is to remove the remaining strain after subjecting an aged aluminum-scandium alloy to a process in which the equivalent strain is rounded off to 4 or more.
  • the aluminum-scandium-based nanoprecipitate is precipitated (dispersed) at the grain boundaries of the crystal grains constituting the metal structure of the aluminum-scandium-based alloy, and then deformed (processed). Dislocations accumulated in the crystal grains of an aluminum-scandium alloy due to the introduction of strain during the formation of grain boundaries through the formation of subgrain boundaries while being pinned by nanoprecipitates (recrystallization process) Is used to produce a metal structure composed of crystal grains having an average grain size of 2 ⁇ m or less.
  • the processing applied to the aluminum-scandium alloy is 4 or more in terms of equivalent strain.
  • the equivalent strain When the equivalent strain is less than 4, there are few dislocations accumulated in the crystal grains, a sufficient subgrain boundary is not formed, and a metal structure composed of crystal grains having an average grain size of 2 ⁇ m or less cannot be obtained. It is.
  • the grain boundary when a grain boundary is gradually formed through a sub-grain boundary, the grain boundary acts as an absorption source of dislocations. Within the grains, the generation and absorption of dislocations are balanced.
  • the crystal grains constituting the metal structure are increasingly refined as the processing is performed until the equivalent strain reaches about 10. However, even when processing with an equivalent strain exceeding 10 was applied, no significant progress of crystal grain refinement was observed.
  • the upper limit of processing applied to the aluminum-scandium alloy is set to an equivalent strain of 10.
  • the shape of the aluminum-scandium alloy may be prepared in advance by plastic processing such as rolling so that the main processing can be easily performed. Good.
  • plastic processing is performed to adjust the shape, heat treatment is performed at a heat treatment temperature that is 30 to 70% of the melting point of the aluminum-scandium alloy before the main processing, and strain (accumulation accumulated during the plastic processing) is accumulated. It is preferable to improve the workability in the main processing by removing the dislocations) and making the crystal grains of the aluminum-scandium alloy crystal equiaxed (fine granular crystals).
  • the strain introduced into the crystal grains is removed during the recrystallization (crystal grain refinement) process, but part of the introduced strain is crystallized after refinement. It remains in the grains. For this reason, the residual strain is removed by heat-treating the aluminum-scandium alloy after the main processing at a temperature lower than the recrystallization temperature.
  • the grain boundary angle is increased in the process of removing the residual strain from the crystal grains (for example, the average grain boundary angle is 15 degrees or more and 30 degrees or less), and the strain is increased.
  • the aluminum-scandium alloy after the main processing is performed so that the Vickers hardness becomes a value within the predetermined range.
  • heat treatment conditions are defined by temperature and time
  • the crystal grains are the aluminum-based alloy, and the aluminum-based alloy contains 0.1% by mass or more and 0.2% by mass or less of zirconium.
  • the metal structure preferably includes 15% or more of the crystal grains having a cross-sectional area ratio of 1 ⁇ m or less.
  • the crystal structure of 1 ⁇ m or less is included in the metal structure at 20% or more in terms of the cross-sectional area ratio, it can withstand a dynamic drive test (that is, not break) at least 10 million times of repeated bending. .
  • the cable according to the second invention that meets the above object uses the aluminum-based conductive material according to the first invention for the conductor wire, and the wire diameter of the conductor wire is 0.05 mm or more and 0.5 mm or less.
  • the cable can be used as a robot cable, a connector cable for a quick charging stand machine, a cabtyre cable, a bus bar cable, or an in-device wiring cable.
  • the cable can also be used for an automobile cable, an aircraft cable, a rocket cable, or a satellite cable.
  • the aluminum-based conductive material according to the first invention is obtained by subjecting an aged aluminum-scandium-based alloy to a process in which the equivalent strain is 4 or more, and crystal grains of aluminum or an aluminum-based alloy having an average grain size of 2 ⁇ m or less, Comprising an aluminum-scandium-based nanoprecipitate having an average particle size of 1 nm or more and 60 nm or less and existing at a grain boundary of 0.1% by mass or more and 1% by mass or less;
  • the Vickers hardness of the metal structure to be 50 or more and 70 or less, the grain growth of the formed metal structure is prevented (maintaining that the average grain size of the crystal grains is 2 ⁇ m or less),
  • the strain existing in the crystal grains can be removed, and the extensibility can be improved. For this reason, bending is repeatedly added to the metal structure, and strain is hardly accumulated in the metal structure.
  • the average grain size of the crystal grains constituting the metal structure is 2 ⁇ m or less, even if a crack occurs, the crack frequently collides with the crystal grain when propagating, and the crack is deflected. The branching of the crack is promoted, and the speed at which the crack propagates in one direction decreases.
  • the tip of the generated crack can be pinned effectively by the nanoprecipitate, and the crack growth is stopped or the crack growth rate is reduced. Is further promoted.
  • repeated bending can be at least a fatigue strength when the repeat count 10 6 times 180MPa in fatigue test to load, for example, can be guaranteed to withstand higher dynamic drive 10 million times.
  • the aluminum-based conductive material can be used in the wiring of robots or various devices, particularly in the wiring of parts that require bending resistance, such as the drive portion.
  • the zirconium when the aluminum-based alloy contains zirconium in an amount of 0.1% by mass or more and 0.2% by mass or less, the zirconium is present in the crystal grains and in the grain boundaries, and the aluminum-based conductive material Even if it receives a high temperature heat history, the fall of tensile strength can be prevented.
  • the zirconium content is less than 0.1% by mass, the tensile strength cannot be prevented from being lowered, and if the zirconium content exceeds 0.2% by mass, the conductivity decreases, which is not preferable.
  • the metal structure contains crystal grains of 1 ⁇ m or less in a cross-sectional area ratio of 15% or more, fatigue cracks propagate in the metal structure of the aluminum-based conductive material.
  • the frequency of collisions with the crystal grains is improved, deflection of fatigue cracks and crack branching can be promoted, the resistance associated with the growth of fatigue cracks increases, and the fatigue crack growth rate decreases.
  • the metal structure contains crystal grains of 1 ⁇ m or less in a cross-sectional area ratio of 20% or more
  • the collision frequency with the crystal grains is further improved, Crack deflection and crack branching can be further promoted.
  • the resistance accompanying the crack growth is further increased, the crack growth speed can be further reduced, and it is possible to withstand at least 10 million dynamic drive tests.
  • the aluminum-based conductive material according to the first invention is used for the conductor wire, and the wire diameter of the conductor wire is 0.05 mm or more and 0.5 mm or less.
  • the strain generated in the conductor wire when bending is applied can be reduced, and a cable having bending resistance can be easily manufactured. Thereby, early disconnection at the time of cable use can be prevented, the reliability of various apparatuses using this cable can be improved, and the maintenance burden of various apparatuses can be reduced.
  • the cable when the cable is used for a robot cable, the cable is lightweight because it is made of an aluminum-based conductive material, so that drivability, operability, and workability can be improved. Moreover, when using a cable for the connector cable of a quick-charging stand machine, a connector cable becomes lightweight and can improve operativity. Furthermore, when the cable is used as a cab tire cable, for example, a cab tire cable of an electric welding machine, even if the cab tire cable becomes light and the cab tire cable becomes long when a large structure is manufactured. The cabtire cable can be moved relatively easily, and the workability of welding can be improved.
  • the workability is improved because the cable is lightweight.
  • the weight of the device and the wiring target can be reduced.
  • the aluminum-based conductive material 10 has a residual strain after an aging-treated aluminum-scandium alloy is processed to have an equivalent strain of 4 or more.
  • the aluminum crystal grains 11 having an average grain diameter of 2 ⁇ m or less obtained by the removal, and the average grain diameter of 1 nm to 60 nm, and 0.1 to 1 mass% at the grain boundary 12 of the crystal grains 11 And a Vickers hardness of 50 or more and 70 or less, and a fatigue strength at the time of 10 6 repetitions in a fatigue test in which repeated bending is applied. 180 MPa. Details will be described below.
  • nanoprecipitates 13 exist at the grain boundaries of the aluminum crystal grains.
  • the amount of scandium in the aluminum-scandium alloy is adjusted in advance so that the nanoprecipitate 13 is generated in an amount of 0.1% by mass to 1% by mass.
  • the aluminum-scandium alloy in which the nanoprecipitates 13 are formed is subjected to processing with an equivalent strain of 4 or more, dislocations are accumulated in the aluminum crystal grains, and after the formation of subgrain boundaries, Refinement occurs, and crystal grains 11 having an average grain size of 2 ⁇ m or less are formed.
  • the mismatch of the lattice constant between the nanoprecipitates 13 and the crystal grains existing in the grain boundaries of the aluminum crystal grains after the aging treatment is small, the coarsening of the nanoprecipitates 13 is suppressed and the nanoprecipitates are reduced. 13 is dispersed in the grain boundaries of the aluminum crystal grains.
  • a metal structure having crystal grains 11 and nanoprecipitates 13 having an average grain diameter of 1 nm or more and 60 nm or less and existing in a grain boundary 12 of the crystal grains 11 by 0.1 mass% or more and 1 mass% or less is obtained.
  • the dislocations introduced into the crystal grains when processing with an equivalent strain of 4 or more occurs at the grain boundaries of the crystal grains in the process of making the crystal grains fine and forming the crystal grains 11 having an average grain size of 2 ⁇ m or less. Although absorbed, some of the dislocations introduced during processing remain in the crystal grains 11 having an average grain size of 2 ⁇ m or less, and strain exists in the crystal grains 11. For this reason, the Vickers hardness of the metal structure immediately after refinement is higher than the original value predicted from the composition of the aluminum-scandium alloy, and the elongation (deformability) of the aluminum-scandium alloy after processing ) Is falling.
  • the elongation of the aluminum-scandium alloy can be recovered. Since grain growth occurs in 11, the tensile strength and bending resistance are greatly reduced. Therefore, if the heat treatment conditions are set so that the processed aluminum-scandium alloy has a Vickers hardness of 50 or more and 70 or less, the growth of the crystal grains 11 is suppressed and the dislocations existing in the crystal grains 11 are absorbed by the grain boundaries. Thus, the strain remaining in the crystal grains 11 can be removed. As a result, the stretchability (deformability) of the aluminum-scandium alloy after processing can be recovered.
  • the grain boundary angle increases, and for example, the average grain boundary angle becomes 15 degrees or more and 30 degrees or less. For this reason, the dislocations introduced into the crystal grains 11 in the fatigue test in which repeated bending is applied are easily absorbed by the grain boundaries because the grain boundaries are highly angled, and the accumulation of strain in the crystal grains is suppressed.
  • the metal structure formed by subjecting the aluminum-scandium-based alloy in which the nanoprecipitate 13 has been produced to a processing with an equivalent strain of 4 or more (the aluminum crystal grains 11 having an average grain diameter of 2 ⁇ m or less, the average
  • the fatigue crack Even if a fatigue crack occurs in the metal structure, the fatigue crack frequently collides with the crystal grain 11 when propagating in the metal structure having the crystal grain 11 having an average grain size of 2 ⁇ m or less, and fatigue occurs.
  • the crack is deflected, crack branching is promoted, the speed at which the fatigue crack propagates in one direction decreases, and when the fatigue crack collides with the nanoprecipitate 13, the fatigue crack becomes a nanoprecipitate 13. Therefore, the fatigue crack growth rate is further reduced.
  • the metal structure is composed of crystal grains 11 having a maximum grain size of 4 ⁇ m, and the number of repetitions in the fatigue test is 10 6 times.
  • the fatigue strength of can be 180 MPa.
  • the average grain size of the crystal grains 11 can be 1.6 ⁇ m by including 15% or less of the crystal grains 11 of 1 ⁇ m or less in the metal structure.
  • the fatigue strength at the 6th time can be 190 MPa.
  • the average grain size of the crystal grains 11 can be 1.5 ⁇ m, and the number of repetitions in the fatigue test is 10
  • the fatigue strength at the sixth time can be 200 MPa.
  • the average grain diameter of the crystal grains 11 can be 1.2 ⁇ m, and the number of repetitions in the fatigue test is 10 6 times.
  • the fatigue strength can be 220 MPa. Therefore, it is preferable that the crystal structure 11 of 1 ⁇ m or less is included in the metal structure by 15% or more (preferably 20% or more) in terms of the cross-sectional area.
  • the nanoprecipitate 13 By causing the nanoprecipitate 13 to exist in an amount of 0.1% by mass or more and 1% by mass or less, it is possible to achieve a crack pinning effect while suppressing a decrease in conductivity of the aluminum-based conductive material 10.
  • the nanoprecipitate 13 is less than 0.1% by mass, the nanoprecipitate 13 is reduced, and the pinning effect of cracks is reduced.
  • the nanoprecipitate 13 exceeds 1.0% by mass, Although the nanoprecipitate 13 present in the boundary increases and the pinning effect of the fatigue crack is improved, it is not preferable because the conductivity is lowered. Therefore, the content of the nanoprecipitate 13 is set in the range of 0.1 to 1.0% by mass.
  • the particle size of the nanoprecipitates 13 decreases as the number of nanoprecipitates 13 increases.
  • the particle size of the nanoprecipitate 13 increases.
  • the fatigue crack generated in the metal structure propagates, the effect of the fatigue crack being pinned by the nanoprecipitate 13 is that as the number of nanoprecipitates 13 increases, the particle size of the nanoprecipitate 13 increases. It increases as becomes larger.
  • the average particle size of the nanoprecipitates 13 is less than 1 nm, the number of nanoprecipitates 13 increases and the frequency of occurrence of pinning of fatigue cracks increases. The action is not large and the pinning effect of fatigue cracks is not significant.
  • the average particle size of the nanoprecipitates 13 exceeds 60 nm, the fatigue crack pinning effect by the nanoprecipitates 13 increases, but the number of nanoprecipitates 13 decreases and fatigue crack pinning occurs. The frequency of cracks decreases and the pinning effect of fatigue cracks is not significant.
  • the nanoprecipitates 13 are maintained at a high frequency while pinching of fatigue cracks is maintained at a high level by setting the average particle size of the nanoprecipitates 13 to 60 nm.
  • the pinning action of the fatigue crack due to the can also be maintained at a high level, and the pinning effect of the fatigue crack due to the nanoprecipitate 13 can be improved.
  • the processed aluminum-scandium alloy when the processed aluminum-scandium alloy is heat-treated, when the Vickers hardness after the heat treatment exceeds 70, strain is not sufficiently removed, and the elongation of the metal structure is based on the composition of the aluminum-scandium alloy. It does not recover to the expected original value. In addition, the grain boundary angle cannot be increased.
  • the Vickers hardness after the heat treatment is less than 50, the strain is sufficiently removed and the elongation of the metal structure is restored to the original value predicted from the composition of the aluminum-scandium alloy. At the same time, the growth of crystal grains 11 occurs, and the tensile strength and the bending resistance are greatly reduced.
  • a method for manufacturing a conductor wire made of the aluminum-based conductive material 10 will be described.
  • a conductive material block made of an aluminum-scandium alloy containing 0.27 to 0.32% by mass of scandium is cast using aluminum having a purity of 99.9% by mass or more and scandium having a purity of 99% by mass or more. To do.
  • an aging treatment is performed at 250 to 450 ° C. for 0.5 to 30 hours, and a rod having a diameter of, for example, 10 mm is manufactured by cutting from the conductive material block after the aging treatment.
  • the average particle diameter of the nanoprecipitate can be set in the range of 1 nm to 60 nm by adjusting the conditions of the aging treatment (heating temperature and heating time). For example, when the heating temperature is 350 ° C.
  • the maximum particle size of the nanoprecipitate 13 is 3 nm and the average particle size is 1 nm.
  • the heating temperature is 350 ° C. and the heating time is 3 hours
  • the maximum particle size of the nanoprecipitate 13 is 10 nm
  • the average particle size is 5 nm.
  • the heating temperature is 350 ° C. and the heating time is 40 hours
  • the maximum particle size of the nanoprecipitate 13 is 100 nm and the average particle size is 60 nm.
  • the wire is formed by rolling the rod using a swaging machine so that the outer diameter is, for example, about 1.5 to 2 mm. Then, wire drawing of the wire is performed to form an original conductor strand having a wire diameter of 0.05 mm or more and 0.5 mm or less.
  • a heat treatment for promoting equiaxed crystal formation for example, the heat treatment temperature is 30 to 70 of the melting point of the rod. %), And then, an original conductor wire is formed from the wire by die drawing.
  • the average grain size of the crystal grains 11 constituting the metal structure is 2 ⁇ m. It becomes. Note that the presence of the nanoprecipitates 13 at the grain boundaries of the crystal grains constituting the metal structure of the wire causes recrystallization to occur in the metal structure constituting the wire as a result of processing. Is formed, grain growth is suppressed, and it becomes easy to make the average grain size of the crystal grains 11 be 2 ⁇ m or less.
  • the crystal grain 11 constituting the metal structure is formed by setting the processing degree of forming the wire from the rod to 3 to 4 and the processing degree of the die drawing process to 4 to 6.5, preferably 6 to 6.5.
  • the average grain size of 1.6 ⁇ m and the ratio of crystal grains 11 of 1 ⁇ m or less is 15% in terms of the cross-sectional area
  • the degree of processing to form a wire from a rod is 3 to 4
  • the degree of processing of die wire drawing Is set to 4 to 7, preferably 6.5 to 7, the average grain size of the crystal grains 11 constituting the metal structure is 1.5 ⁇ m
  • the ratio of the crystal grains 11 of 1 ⁇ m or less is the cross-sectional area ratio. 20%.
  • the degree of processing for forming a wire from a rod is 3 to 4, and the degree of processing for die drawing is 5 to 8 (or 9), preferably more than 7 and 8 or less.
  • the average particle size of the grains 11 is 1.2 ⁇ m, and the ratio of the crystal grains 11 of 1 ⁇ m or less is 50% in terms of the cross-sectional area.
  • the temperature of the heat treatment is a temperature lower than the recrystallization temperature of the crystal grains 11 constituting the metal structure of the original conductor wire.
  • the Vickers of the metal structure forming the original conductor wire The hardness is 72 to 80.
  • the heat treatment temperature is set to 250 to 350 ° C., and the treatment time is set to 0.1 to 3 hours.
  • the degree of processing at the time of forming the original conductor wire is 4 to 6.5, and the existing ratio of the crystal grains 11 constituting the metal structure is 1 ⁇ m or less in terms of a cross-sectional area ratio of 15% (the average grain diameter of the crystal grains 11).
  • the Vickers hardness of the metal structure forming the original conductor wire is 72 to 80.
  • the heat treatment temperature is 250 to 350 ° C. Set the treatment time to 0.1-3 hours.
  • the degree of processing at the time of forming the original conductor wire is 4 to 7, the existing ratio of 1 ⁇ m or less is 20% in terms of the cross-sectional area ratio (the average particle diameter of the crystal grains 11 is 1.5 ⁇ m).
  • the Vickers hardness of the metal structure forming the strand is 72 to 85.
  • the heat treatment temperature is set to 250 to 350 ° C. and the treatment time is set to 0.1 to 3 hours. To do.
  • the degree of processing when forming the original conductor wire is 5 to 8, and the existing ratio of 1 ⁇ m or less is 50% in terms of the cross-sectional area ratio (the average particle diameter of the crystal grains 11 is 1.2 ⁇ m)
  • the Vickers hardness of the metal structure forming the strand is 72 to 90.
  • the heat treatment temperature is set to 250 to 350 ° C. and the treatment time is set to 0.1 to 3 hours. To do.
  • a cable made of an aluminum-based conductive material 10 according to the first embodiment of the present invention and using a conductor wire having a conductor wire diameter of 0.05 mm or more and 0.5 mm or less is used as a robot cable.
  • high durability prevention of early cable breakage
  • the apparatus can be stably operated over a long period of time.
  • the reliability of the apparatus can be improved and the maintenance burden can be reduced.
  • the aluminum-based conductive material 14 according to the second embodiment of the present invention remains after an aging-treated aluminum-zirconium-scandium alloy is processed to have an equivalent strain of 4 or more. Obtained by removing the strain, the crystal grain 15 of the aluminum-based alloy having an average grain size of 2 ⁇ m or less, and the average grain size of 1 nm or more and 60 nm or less, and 0.1 mass% or more at the grain boundary 16 of the crystal grain 15 It is composed of a metal structure having aluminum-scandium-based nanoprecipitates 17 present in an amount of 1% by mass or less, having a Vickers hardness of 50 or more and 70 or less, and a repetition number of 10 6 times in a fatigue test in which repeated bending is applied. The fatigue strength is at least 180 MPa. Details will be described below.
  • the aluminum-zirconium-scandium alloy By aging the aluminum-zirconium-scandium alloy, scandium and aluminum in the aluminum-zirconium-scandium alloy react to form Al 3 Sc, which is an aluminum-scandium intermetallic compound, as nanoprecipitates 17.
  • the generated nanoprecipitates 17 are present at the grain boundaries of the crystal grains of the aluminum-based alloy.
  • the amount of scandium in the aluminum-zirconium-scandium-based alloy is adjusted in advance so that the nanoprecipitate 17 is generated in an amount of 0.1 mass% to 1 mass%.
  • a part of zirconium is dissolved in the crystal grains of the aluminum-based alloy, and the rest is present at the grain boundaries.
  • the aluminum-zirconium-scandium alloy in which the nanoprecipitates 17 are formed is subjected to processing with an equivalent strain of 4 or more, dislocations are accumulated in the crystal grains of the aluminum-based alloy, thereby forming subgrain boundaries.
  • crystal grains are refined, and crystal grains 15 having an average grain size of 2 ⁇ m or less are formed.
  • the mismatch of the lattice constant between the nanoprecipitate 17 and the crystal grain existing in the grain boundary of the aluminum-based alloy after the aging treatment is small, the coarsening of the nanoprecipitate 17 is suppressed, The precipitates 17 are dispersed at the grain boundaries of the aluminum-based alloy crystal grains.
  • the aluminum-zirconium-scandium alloy has an average grain size of 2 ⁇ m or less.
  • a metal structure having crystal grains 15 of the aluminum-based alloy and nanoprecipitates 17 having an average grain diameter of 1 nm or more and 60 nm or less and existing at the grain boundaries 16 of the crystal grains 15 is obtained.
  • a part of zirconium is dissolved in the crystal grains 15, and the remaining part is present at the grain boundaries 16.
  • the dislocations introduced into the crystal grains of the aluminum-based alloy when processing with an equivalent strain of 4 or more occurs during the process in which the crystal grains are refined to form crystal grains 15 having an average grain size of 2 ⁇ m or less.
  • some of the dislocations introduced during processing remain in the crystal grains 15 having an average grain size of 2 ⁇ m or less, and strain exists in the crystal grains 15.
  • the Vickers hardness of the metal structure immediately after refinement is higher than the original value predicted from the composition of the aluminum-zirconium-scandium alloy, and the elongation of the aluminum-zirconium-scandium alloy after processing The property (deformability) is reduced.
  • the strain remaining in the crystal grains is removed by performing, for example, heat treatment on the processed aluminum-zirconium-scandium alloy, the extensibility of the aluminum-zirconium-scandium alloy can be recovered. Since grain growth occurs in the crystal grains 15 by the heat treatment, the tensile strength and the bending resistance are greatly lowered. Therefore, if the heat treatment conditions are set so that the processed aluminum-zirconium scandium alloy has a Vickers hardness of 50 or more and 70 or less, the growth of the crystal grains 15 is suppressed, and the dislocations existing in the crystal grains 15 are separated from the grain boundaries. Thus, the strain remaining in the crystal grains 15 can be removed. As a result, the elongation (deformability) of the processed aluminum-zirconium-scandium alloy can be recovered.
  • the grain boundary angle is increased, and for example, the average grain boundary angle is 15 degrees or more and 30 degrees or less. For this reason, dislocations introduced into the crystal grains 15 in a fatigue test in which repeated bending is applied are easily absorbed by the grain boundaries 16 because the grain boundaries 16 are angled, and strain is accumulated in the crystal grains 15. Is suppressed.
  • the metal structure having a diameter of 1 nm to 60 nm and having nanoprecipitates 17 present at the grain boundaries 16 of the crystal grains 15 is heat-treated to remove strain remaining in the crystal grains 15, thereby repeatedly bending It is possible to suppress the occurrence of fatigue cracks in the metal structure when a load is applied.
  • the fatigue crack Even if a fatigue crack occurs in the metal structure, the fatigue crack frequently collides with the crystal grains 15 when propagating in the metal structure having the crystal grains 15 having an average grain size of 2 ⁇ m or less, and fatigue occurs.
  • the crack is deflected, crack branching is promoted, the speed at which the fatigue crack propagates in one direction is reduced, and when the fatigue crack collides with the nanoprecipitate 17, the fatigue crack becomes a nanoprecipitate 17. Therefore, the fatigue crack growth rate is further reduced.
  • the metal structure is composed of the crystal grains 15 having a maximum grain size of 4 ⁇ m from the microscopic observation of the metal structure, and the number of repetitions in the fatigue test is 10 6 times.
  • the fatigue strength of can be 180 MPa.
  • the average grain size of the crystal grains 11 can be 1.6 ⁇ m by including 15% of the crystal grains 15 of 1 ⁇ m or less in the metal structure in terms of the cross-sectional area ratio, and the number of repetitions in the fatigue test is 10
  • the fatigue strength at the 6th time can be 190 MPa.
  • the average grain size of the crystal grains 15 can be made 1.5 ⁇ m, and the number of repetitions in the fatigue test is 10
  • the fatigue strength at the sixth time can be 200 MPa.
  • the average grain size of the crystal grains 15 can be 1.2 ⁇ m, and the number of repetitions in the fatigue test is 10 6 times.
  • the fatigue strength can be 220 MPa.
  • an aged aluminum-zirconium-scandium-based alloy is processed to have an equivalent strain of 4 or more, and the aluminum-based alloy crystal grains 15 having an average grain size of 2 ⁇ m or less and an average grain size of A metal structure having an aluminum-scandium-based nanoprecipitate 17 present at the grain boundary 16 of the crystal grain 15 and having a heat treatment so that the Vickers hardness is 50 or more and 70 or less. Since the effect by removing the remaining distortion is the same as the effect in the aluminum-based conductive material 10 according to the first embodiment, the description is omitted. Hereafter, the effect regarding containing 0.1 mass% or more and 0.2 mass% or less of zirconium which is the characteristics of the aluminum-based conductive material 14 according to the second embodiment will be described.
  • the tensile strength ⁇ RT at room temperature of a wire having a metal structure in which 0.3 mass% of aluminum-scandium nanoprecipitates exist at the grain boundaries of aluminum crystal grains is 300 MPa.
  • the tensile strength ⁇ 260 immediately after the time heating is 294 MPa, and when the heat resistance is evaluated by ( ⁇ 260 / ⁇ RT ) ⁇ 100, the heat resistance is 98%.
  • the tensile strength ⁇ RT at room temperature of a wire having a metal structure in which 0.3 mass% of aluminum-scandium-based nanoprecipitates are present at the grain boundaries of an aluminum-based alloy in which 0.1 mass of zirconium is dissolved is The tensile strength ⁇ 260 immediately after heating the wire at 260 ° C. for 1 hour is 309 MPa, and the heat resistance is 100%.
  • the presence of zirconium in the crystal grains 15 constituting the metal structure of the aluminum-based conductive material 14 and in the grain boundaries 16 allows the aluminum-based conductive material 14 to receive a high-temperature thermal history. It can be seen that structural changes such as grain growth can be prevented, and a decrease in tensile strength can be prevented.
  • the solid solution amount (content) of zirconium exceeds 0.2% by mass, the effect of improving the tensile strength after the heat history increases, but the conductivity decreases and the function as the conductive material decreases. For this reason, it is preferable that content of zirconium shall be 0.1 to 0.2 mass%.
  • the aluminum-based conductive material 14 contains zirconium in an amount of 0.1% by mass or more and 0.2% by mass or less, even if the aluminum-based conductive material 14 receives a high-temperature thermal history, the aluminum-based conductive material Therefore, the strength of the aluminum-based conductive material 14 can be maintained.
  • a method for manufacturing a conductor wire made of the aluminum-based conductive material 14 will be described.
  • aluminum having a purity of 99.9% by mass or more, scandium having a purity of 99% by mass or more, and zirconium having a purity of 99% by mass or more scandium is 0.27 to 0.32% by mass, and zirconium is 0.8%.
  • a conductive material block made of an aluminum-zirconium-scandium alloy containing 1% by mass to 0.2% by mass is cast.
  • an aging treatment is performed at 250 to 450 ° C. for 0.5 to 30 hours, and a rod having a diameter of, for example, 10 mm is manufactured by cutting from the conductive material block after the aging treatment.
  • the average particle diameter of the nanoprecipitate 17 can be set in the range of 1 nm or more and 60 nm or less by adjusting the conditions of the aging treatment (heating temperature and heating time). For example, when the heating temperature is 350 ° C.
  • the maximum particle size of the nanoprecipitate 17 is 2 nm and the average particle size is 1 nm.
  • the heating temperature is 350 ° C. and the heating time is 3 hours
  • the maximum particle size of the nanoprecipitate 13 is 10 nm
  • the average particle size is 5 nm.
  • the heating temperature is 350 ° C. and the heating time is 40 hours
  • the maximum particle size of the nanoprecipitate 13 is 90 nm and the average particle size is 60 nm.
  • the wire is formed by rolling the rod using a swaging machine so that the outer diameter is, for example, about 1.5 to 2 mm. Then, wire drawing of the wire is performed to form an original conductor strand having a wire diameter of 0.05 mm or more and 0.5 mm or less.
  • a heat treatment for promoting equiaxed crystal formation for example, the heat treatment temperature is 30 to 70 of the melting point of the rod. %), And then, an original conductor wire is formed from the wire by die drawing.
  • the average grain size of the crystal grains 15 constituting the metal structure is 2 ⁇ m. It becomes. Note that the presence of the nanoprecipitate 17 at the grain boundaries of the crystal grains constituting the metal structure of the wire causes recrystallization to occur in the metal structure constituting the wire as a result of processing. Is formed, grain growth is suppressed, and the average grain size of the crystal grains 15 can be easily reduced to 2 ⁇ m or less.
  • the degree of processing for forming a wire from a rod is 3 to 4, and the degree of processing for die drawing is 4 to 6.5, preferably 6 to 6.5.
  • the average grain size of 1.6 ⁇ m and the proportion of crystal grains 15 of 1 ⁇ m or less is 15% in terms of cross-sectional area, and the degree of processing to form a wire from a rod is 3 to 4, and the degree of processing of die wire drawing Is set to 4 to 7, and preferably 6.5 to 7, the average grain size of the crystal grains 15 constituting the metal structure is 1.5 ⁇ m, and the ratio of the crystal grains 15 of 1 ⁇ m or less is the cross-sectional area ratio. 20%.
  • the processing degree of forming the wire from the rod is 3 to 4, and the processing degree of the die drawing process is 5 to 8, preferably more than 7 and 8 or less, so that the average of the crystal grains 15 constituting the metal structure
  • the ratio of the presence of crystal grains 15 having a grain size of 1.2 ⁇ m and 1 ⁇ m or less is 50% in terms of the cross-sectional area ratio.
  • the temperature of the heat treatment is a temperature lower than the recrystallization temperature of the crystal grains 15 constituting the metal structure of the original conductor wire.
  • the Vickers of the metal structure forming the original conductor wire The hardness is 75 to 85.
  • the heat treatment temperature is set to 250 to 400 ° C., and the treatment time is set to 0.1 to 5 hours.
  • the degree of processing at the time of forming the original conductor wire is 4 to 6.5, and the existing ratio of the crystal grains 15 constituting the metal structure of 1 ⁇ m or less is 15% in terms of the cross-sectional area ratio (the average grain diameter of the crystal grains 15).
  • the Vickers hardness of the metal structure forming the original conductor wire is 75 to 85.
  • the heat treatment temperature is set to 250 to 400 ° C. Set the treatment time to 0.1-5 hours.
  • the original conductor The Vickers hardness of the metal structure forming the strand is 75 to 90.
  • the heat treatment temperature is set to 250 to 400 ° C. and the treatment time is set to 0.1 to 5 hours. To do.
  • the degree of processing at the time of forming the original conductor wire is 5 to 8
  • the existing ratio of 1 ⁇ m or less is 50% in terms of the cross-sectional area ratio (the average particle diameter of the crystal grains 15 is 1.2 ⁇ m)
  • the original conductor The Vickers hardness of the metal structure forming the strand is 80 to 95.
  • the heat treatment temperature is set to 250 to 400 ° C. and the treatment time is set to 0.1 to 5 hours. To do.
  • a cable made of an aluminum-based conductive material 14 according to the second embodiment of the present invention and using a conductor wire having a conductor wire diameter of 0.05 mm or more and 0.5 mm or less is used as a robot cable, such as a factory or disaster site.
  • a robot cable such as a factory or disaster site.
  • the robot can be stably operated over the design operation period estimated from the fatigue life data of the cable, and the reliability of the robot can be improved and the burden of maintenance can be reduced.
  • a cable made of an aluminum-based conductive material 14 according to a second embodiment of the present invention and having a conductor wire diameter of 0.05 mm or more and 0.5 mm or less is used as a connector for a quick charging stand machine of an electric vehicle.
  • a cable or a cabtyre cable of an electric welder even if a large current flows during use and the temperature of the cable temporarily rises, the cable's tensile strength and eventually durability can be maintained. It can be used stably over the design operation period estimated from the fatigue life data of the cable, and the reliability of the quick charging stand machine and the electric welding machine can be improved and the burden of maintenance can be reduced.
  • a conductor strand having a conductor strand diameter of 0.05 mm to 0.5 mm.
  • Example 1 to 18 An aluminum crystal grain having an average particle diameter of 2 ⁇ m, and a metal structure in which 0.1 mass% of an aluminum-scandium-based nanoprecipitate having an average particle diameter of 5 nm is present at the grain boundary of the aluminum crystal grain, Conductor wires 1, 2, and 3 made of an aluminum-based conductive material with Vickers hardness adjusted to 50, 60, and 70, respectively, aluminum crystal grains having an average grain diameter of 2 ⁇ m, and aluminum crystals An aluminum base composed of a metal structure in which 0.3 mass% of aluminum-scandium nanoprecipitates having an average particle diameter of 5 nm are present at the grain boundaries of the grains, and the Vickers hardness is adjusted to 50, 60, and 70, respectively.
  • the conductor strands 4, 5, 6 made of a conductive material, aluminum crystal grains having an average grain diameter of 2 ⁇ m, and grain boundaries of aluminum crystal grains
  • 80 ⁇ m conductor wires 7, 8, and 9 were produced, respectively, and twisted wires were formed using the obtained conductor composite wires 1 to 9 to produce cables 1 to 9 having a cross-sectional area of 0.2 mm 2 .
  • aluminum-scandium having an average particle diameter of 5 nm at the grain boundary of aluminum crystal grains having an average grain diameter of 1.5 ⁇ m (crystal grains of 1 ⁇ m or less are present in a cross-sectional area ratio of 20%) and aluminum crystal grains.
  • Conductor strands 10 and 11 having a wire diameter of 80 ⁇ m made of an aluminum-based conductive material composed of a metal structure containing 0.1% by mass of nanoprecipitates and adjusted to Vickers hardness of 50, 60 and 70, respectively.
  • Conductor strands 16, 17 and 18 having a diameter of 80 ⁇ m were respectively produced, and twisted wires were formed using the obtained conductor strands 10 to 18 to produce cables 10 to 18 having a cross-sectional area of 0.2 mm 2 .
  • a bending test (dynamic driving test) is performed in which a bending radius is 15 mm and a bending angle range is ⁇ 90 degrees, and bending is performed repeatedly to determine the number of breaks. It was.
  • the electrical conductivities were obtained using the produced cables 1 to 18, respectively. Table 1 shows the number of breaks and electrical conductivity obtained.
  • test pieces 1 to 18 were prepared by mirror finishing the surface of the member in which the circular hole was formed. Subsequently, a holder is attached to the other end of each of the test pieces 1 to 18 so that the tip of the holder is 1 mm from the center of the circular hole, and the holder is attached to the acoustic speaker with one end of the test pieces 1 to 18 facing downward.
  • a fatigue test was performed by fixing the test piece 1 to 18 to the primary resonance state by fixing the test piece 1 to 18 with the voice coil being vibrated. It should be noted that the maximum stress generated at the base of the holders of the test pieces 1 to 18 was obtained from the bending stress formula of the cantilever beam and used as the stress amplitude during the fatigue test. And the breaking stress whose stress repetition number is 10 6 times was calculated
  • Conductor wires R4, R5, R6 made of a conductive material and having a diameter of 80 ⁇ m, aluminum crystal grains having an average grain size of 1.5 ⁇ m, aluminum Aluminum composed of a metal structure in which 0.05% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 5 nm is present at the grain boundary of crystal grains, and Vickers hardness is adjusted to 50, 60, and 70, respectively.
  • Wires R10, R11, and R12 are respectively produced, and twisted wires are formed using the obtained conductor strands R1 to R12, and cables R1 to R1 having a cross-sectional area of 0.2 mm 2 are formed. 2 was produced.
  • the conductor strands R19, R20, R21 having a wire diameter of 80 ⁇ m and made of an aluminum-based conductive material adjusted to an average diameter of 2.5 ⁇ m of aluminum crystal grains and the grain boundaries of the aluminum crystal grains
  • R22, R23, and R24 each having a diameter of 80 ⁇ m are respectively produced, and twisted wires are formed using the obtained conductor wires R13 to R24, and the cross-sectional area is 0.2 mm 2. Cables R13 to R24 were prepared.
  • the cables R1 to R24 were subjected to the same bending test as in Experimental Example 1 to obtain the number of breaks, and the electrical conductivities were obtained using the cables R1 to R24 produced.
  • Table 2 shows the obtained number of breaks and electrical conductivity.
  • conductor strands R1 to R24 and test pieces R1 to R24 having a substantially similar cross-sectional structure on average were produced and subjected to a fatigue test, and the number of stress repetitions was 10 6 times. The stress was obtained and used as fatigue strength. The obtained fatigue strength is shown in Table 2.
  • an aluminum-scandium-based nanoprecipitate having an average particle diameter of 5 nm was made of an aluminum-based conductive material composed of a metal structure in which 0.3% by mass was present and the Vickers hardness was adjusted to 45 and 75, respectively.
  • an average grain Conductor element having a wire diameter of 80 ⁇ m made of an aluminum-based conductive material composed of a metal structure containing 1% by mass of aluminum-scandium nanoprecipitates having a diameter of 5 nm and having Vickers hardness adjusted to 45 and 75, respectively.
  • Wires R29 and R30 were produced respectively, and twisted wires were formed using the obtained conductor composite strands R25 to R30 to produce cables R25 to R30 having a cross-sectional area of 0.2 mm 2 .
  • aluminum-scandium having an average particle diameter of 5 nm at the grain boundary of aluminum crystal grains having an average grain diameter of 1.5 ⁇ m (crystal grains of 1 ⁇ m or less are present in a cross-sectional area ratio of 20%) and aluminum crystal grains.
  • Conductor strands R31 and R32 having a wire diameter of 80 ⁇ m made of an aluminum-based conductive material that is composed of a metal structure in which 0.1% by mass of nanoprecipitates of the system are present and whose Vickers hardness is adjusted to 45 and 75, respectively;
  • An aluminum-scandium-based aluminum particle having an average particle diameter of 5 nm is formed at the grain boundary between aluminum crystal grains having an average grain diameter of 1.5 ⁇ m (crystal grains of 1 ⁇ m or less are present in a cross-sectional area of 20%) and aluminum crystal grains.
  • the average grain size is 5 nm at the grain boundaries of the strands R33 and R34, aluminum crystal grains having an average grain size of 1.5 ⁇ m (crystal grains of 1 ⁇ m or less are present in a cross-sectional area of 20%), and aluminum crystal grains.
  • R36 was produced, respectively, and twisted wires were formed using the obtained conductor strands R31 to R36, and cables R31 to R36 having a cross-sectional area of 0.2 mm 2 were produced.
  • Conductor strands R41 and R42 having a wire diameter of 80 ⁇ m made of the material, aluminum crystal grains having an average grain diameter of 2.5 ⁇ m, and aluminum-scandium having an average grain diameter of 5 nm at the grain boundaries of the aluminum crystal grains
  • Conductor strands R43 and R44 having a wire diameter of 80 ⁇ m made of an aluminum-based conductive material composed of a metal structure containing 1% by mass of nanoprecipitates and having Vickers hardness adjusted to 45 and 75, respectively,
  • An aluminum-scandium nanocrystal having an average grain size of 5 nm at the grain boundaries of aluminum having a diameter of 2.5 ⁇ m and the grain of aluminum.
  • Conductor strands R45 and R46 having a wire diameter of 80 ⁇ m made of an aluminum-based conductive material that is composed of a metal structure with 1.1% by mass of the extract and adjusted to Vickers hardness of 45 and 75, respectively.
  • twisted wires were formed to produce cables R37 to R46 having a cross-sectional area of 0.2 mm 2 .
  • the cables R25 to R46 were subjected to the same bending test as in Experimental Example 1 to obtain the number of breaks, and the electrical conductivities were obtained using the cables R25 to R46 produced. Table 3 shows the number of breaks and electrical conductivity obtained.
  • conductor strands R25 to R46 and test pieces R25 to R46 having a substantially similar cross-sectional structure on average were produced and subjected to a fatigue test, and the number of stress repetitions was 10 6 times. The stress was obtained and used as fatigue strength. The obtained fatigue strength is shown in Table 3.
  • Example 19 to 36 An aluminum crystal grain having an average particle diameter of 2 ⁇ m, and a metal structure in which 0.1 mass% of an aluminum-scandium nanoprecipitate having an average particle diameter of 1 nm is present at the grain boundary of the aluminum crystal grain; Conductor strands 19, 20, and 21 made of an aluminum-based conductive material with Vickers hardness adjusted to 50, 60, and 70, respectively, aluminum crystal grains having an average grain size of 2 ⁇ m, and aluminum crystals An aluminum base composed of a metal structure in which 0.3 mass% of aluminum-scandium nanoprecipitates having an average particle diameter of 1 nm are present at the grain boundaries of the grains, and the Vickers hardness is adjusted to 50, 60, and 70, respectively.
  • Conductor wires 22, 23, and 24 made of a conductive material, an aluminum crystal grain having an average grain size of 2 ⁇ m, and an aluminum crystal grain
  • An aluminum-based conductive material composed of a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 1 nm is present at the grain boundary, and the Vickers hardness is adjusted to 50, 60, and 70, respectively.
  • the produced conductor strands 25, 26 and 27 having a wire diameter of 80 ⁇ m are respectively produced, and twisted wires are formed using the obtained conductor composite strands 19 to 27, and the cables 19 to 27 having a cross-sectional area of 0.2 mm 2 are formed.
  • aluminum-scandium having an average grain size of 1 nm at the grain boundary between aluminum crystal grains having an average grain diameter of 1.5 ⁇ m (crystal grains having a size of 1 ⁇ m or less are present in a cross-sectional area of 20%) and aluminum crystal grains.
  • Conductor strands 28 and 29 having a wire diameter of 80 ⁇ m made of an aluminum-based conductive material composed of a metal structure containing 0.1% by mass of nanoprecipitates and having Vickers hardness adjusted to 50, 60 and 70, respectively.
  • an aluminum grain having an average grain size of 1 nm at the grain boundary of aluminum grains having an average grain diameter of 1.5 ⁇ m crystal grains of 1 ⁇ m or less are present in a cross-sectional area of 20%
  • Conductor wires 31, 32, 33 having a diameter of 80 ⁇ m, aluminum crystal grains having an average grain size of 1.5 ⁇ m (crystal grains having a diameter of 1 ⁇ m or less are present in a cross-sectional area of 20%), and grain boundaries of the aluminum crystal grains
  • Conductor strands 34, 35, and 36 having a diameter of 80 ⁇ m were produced, respectively, and twisted wires were formed using the obtained conductor strands 28 to 36 to produce cables 28 to 36 having a cross-sectional area of 0.2 mm 2 .
  • the cables 19 to 36 were subjected to the same bending test as in Experimental Example 1 to obtain the number of breaks, and the electrical conductivity was obtained using the cables 19 to 36 produced.
  • Table 4 shows the number of breaks and electrical conductivity obtained.
  • the conductor strands 19 to 36 and the test pieces 19 to 36 having substantially the same cross-sectional structure on average were prepared and subjected to a fatigue test, and the number of stress repetitions was 10 6 times. The stress was obtained and used as fatigue strength. Table 4 shows the obtained fatigue strength.
  • Conductor wires 40, 41, and 42 made of a conductive material, an aluminum crystal grain having an average grain size of 2 ⁇ m, and a bonding of aluminum.
  • Aluminum-based electrical conductivity composed of a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 60 nm is present at a grain boundary, and the Vickers hardness is adjusted to 50, 60, and 70, respectively.
  • Conductor strands 43, 44, and 45 made of a material having a wire diameter of 80 ⁇ m are respectively fabricated, and twisted wires are formed using the obtained conductor composite strands 37 to 45, and the cross-sectional area of the cable 37 is 0.2 mm 2 . To 45 were produced.
  • aluminum-scandium having an average grain size of 60 nm at the grain boundary between aluminum crystal grains having an average grain diameter of 1.5 ⁇ m (crystal grains of 1 ⁇ m or less are present in a cross-sectional area of 20%) and aluminum crystal grains.
  • aluminum having an average grain size of 1.5 ⁇ m (a crystal grain of 1 ⁇ m or less is present in a cross-sectional area of 20%) and aluminum having an average grain size of 60 nm at the grain boundary of the aluminum crystal grains -Made of an aluminum-based conductive material composed of a metal structure containing 0.3% by mass of scandium-based nanoprecipitates and adjusted to Vickers hardness of 50, 60, and 70, respectively.
  • Conductor strands 52, 53, and 54 having a wire diameter of 80 ⁇ m were respectively produced, and twisted wires were formed using the obtained conductor strands 46 to 54 to produce cables 46 to 54 having a cross-sectional area of 0.2 mm 2 . .
  • Conductor strands R53, R54, and R55 made of an aluminum-based conductive material having a wire diameter of 80 ⁇ m are respectively fabricated, and twisted wires are formed using the obtained conductor composite strands R47 to R55, and the cross-sectional area is 0.2 mm. Two cables R47 to R55 were produced.
  • aluminum grains having an average grain size of 1.5 ⁇ m are present in a cross-sectional area of 20%
  • Aluminum-based conductive material composed of a metal structure in which 0.3% by mass of aluminum-scandium nanoprecipitates having a thickness of 5 nm are present, and having a Vickers hardness adjusted to 50, 60, and 70, respectively
  • Aluminum base composed of a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 0.5 nm is present at the grain boundary of the grain, and the Vickers hardness is adjusted to 50, 60, and 70, respectively.
  • Conductor strands R62, R63, R64 made of a conductive material and having a wire diameter of 80 ⁇ m are respectively produced, and twisted wires are formed using the obtained conductor strands R56 to R64, and a cable R56 having a cross-sectional area of 0.2 mm 2 To R64 were produced.
  • the cables R47 to R64 were subjected to the same bending test as in Experimental Example 1 to obtain the number of breaks, and the electrical conductivities were obtained using the cables R47 to R64 produced.
  • the obtained number of breaks and electrical conductivity are shown in Table 6.
  • conductor strands R47 to R64 and test pieces R47 to R64 having a substantially similar cross-sectional structure on average were produced and subjected to a fatigue test, and the number of stress repetitions was 10 6 times. The stress was obtained and used as fatigue strength. The obtained fatigue strength is shown in Table 6.
  • Conductor strands R68, R69, R70 made of a conductive material, aluminum crystal grains having an average grain size of 2 ⁇ m, and Al Aluminum having an aluminum-scandium-based nanoprecipitate with an average particle diameter of 65 nm at the grain boundary of the minium crystal grains and having a Vickers hardness adjusted to 50, 60, and 70, respectively.
  • Conductor wires R71, R72, and R73 each made of a base conductive material and having a wire diameter of 80 ⁇ m are prepared, and twisted wires are formed using the obtained conductor composite wires R65 to R73, and the cross-sectional area is 0.2 mm 2 . Cables R65 to R73 were produced.
  • aluminum-scandium having an average grain size of 65 nm at the grain boundary between aluminum crystal grains having an average grain diameter of 1.5 ⁇ m (crystal grains of 1 ⁇ m or less are present in a cross-sectional area ratio of 20%) and aluminum crystal grains.
  • Conductor strands R74 and R75 having a wire diameter of 80 ⁇ m made of an aluminum-based conductive material composed of a metal structure containing 0.1% by mass of nanoprecipitates and adjusted to Vickers hardness of 50, 60, and 70, respectively.
  • R76 aluminum having an average grain size of 1.5 nm (a crystal grain of 1 ⁇ m or less is present in a cross-sectional area of 20%) and aluminum having an average grain size of 65 nm at the grain boundary of the aluminum crystal grains -Made of an aluminum-based conductive material composed of a metal structure containing 0.3% by mass of scandium-based nanoprecipitates and adjusted to Vickers hardness of 50, 60 and 70, respectively.
  • the produced conductor strands R80, R81, and R82 having a wire diameter of 80 ⁇ m are respectively produced, and twisted wires are formed using the obtained conductor strands R74 to R82, and cables R74 to R82 having a cross-sectional area of 0.2 mm 2 are formed. Produced.
  • aluminum crystal grains having an average grain diameter of 2 ⁇ m or less and average grain diameters of 1 nm to 60 nm are present at a grain boundary of 0.1 to 1% by mass.
  • aluminum - consists of a metal structure having a nanoprecipitates scandium system, a Vickers hardness of 50 or more 70 or less, when the fatigue strength when the repeat count 10 6 times in fatigue test to load the repeated bending of at least 180MPa It can be confirmed that the conductivity is 56% IACS or more and the number of breaks is 10 million times or more. Therefore, when a cable made using this aluminum-based conductive material is used, for example, as an electric wire for wiring of a drive unit of an industrial robot, the reliability of the robot can be improved and the maintenance burden can be reduced. Can do.
  • the present invention has been described above with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. Other possible embodiments and modifications are also included. Further, the present invention includes a combination of components included in the present embodiment and other embodiments and modifications.
  • the cable using the aluminum-based conductive material according to the first embodiment is used as a robot cable and is used as a wiring cable (an example of an in-apparatus wiring cable) for an elevator elevator part has been described. It can be used for a connector cable, a cabtyre cable, a bus bar cable, an automobile cable, an aircraft cable, a rocket cable, or a satellite cable of a quick charging stand machine.
  • the cable using the aluminum-based conductive material according to the second embodiment is used as a robot cable, as a connector cable for a quick charging stand machine of an electric vehicle, as a cabtire cable of an electric welder, and to connect a photovoltaic power generation module
  • a cable an example of an in-apparatus wiring cable
  • it can be used for a cabtyre cable, a bus bar cable, an automobile cable, an aircraft cable, a rocket cable, or a satellite cable .
  • Aluminum-based conductive material that can be used for the wiring of the drive part of a robot or various devices by improving the tensile strength, bending resistance and elongation while miniaturizing the structure and reducing the residual strain, and the same A cable using can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

An aluminum-based electrically conductive material (10) produced by subjecting an aged aluminum-scandium-based alloy to a processing treatment so as to impart an equivalent strain of 4 or more to the alloy and then removing the remaining strain from the resultant product. The aluminum-based electrically conductive material (10) is composed of a metallic structure which comprises crystal grains (11) of aluminum or an aluminum-based alloy having an average grain diameter of 2 μm or less and aluminum-scandium-based nano-precipitates (13) having an average grain diameter of 1 to 60 nm inclusive and existing on grain boundaries (12) of the crystal grains (11) in an amount of 0.1 to 1 mass% inclusive, has a Vickers hardness of 50 to 70 inclusive, and also has fatigue strength of at least 180 MPa when the aluminum-based electrically conductive material (10) is bent repeatedly 106 times in a fatigue test in which repeated bending is loaded to the aluminum-based electrically conductive material (10). Thus, it becomes possible to provide: an aluminum-based electrically conductive material which can be used in the wiring of a driving part of each of robots and various devices; and a cable manufactured using the aluminum-based electrically conductive material.

Description

アルミニウム基導電材料及びそれを用いたケーブルAluminum-based conductive material and cable using the same
本発明は、例えば、産業用ロボット、民生用ロボット、又は各種装置の配線において、特に駆動部分等の屈曲変形を繰り返し受ける配線に使用される耐屈曲性を備えたアルミニウム基導電材料及びそれを用いたケーブルに関する。 The present invention provides, for example, an aluminum-based conductive material having bending resistance used for wiring that repeatedly undergoes bending deformation of a drive portion or the like in wiring for industrial robots, consumer robots, or various devices, and the like. Related to the cable.
産業用ロボットや民生用ロボットの駆動部分、例えば、アーム部分の配線に使用するケーブルには、アームの駆動時に繰り返し曲げが負荷される。また、自動車のドア部分の配線に使用するケーブルには、ドアの開閉時に繰り返し曲げが負荷される。このため、繰り返し曲げが負荷されるケーブルには、通常の導線ではなく耐屈曲性に優れる導線が使用されている。また、導線が細くなると、同材質であっても耐屈曲性が向上するので、ケーブルに使用する導線には、単線ではなく、複数本の細線から構成された縒り線が使用されている。 A driving part of an industrial robot or a consumer robot, for example, a cable used for wiring an arm part, is repeatedly subjected to bending when the arm is driven. Further, the cable used for wiring the door portion of the automobile is repeatedly bent when the door is opened and closed. For this reason, not a normal conducting wire but a conducting wire excellent in bending resistance is used for a cable subjected to repeated bending. Further, when the conducting wire is thinned, the bending resistance is improved even with the same material. Therefore, the conducting wire used for the cable is not a single wire but a twisted wire composed of a plurality of fine wires.
例えば、特許文献1には、常温におけるひずみ振幅が±0.15%の繰り返し曲げを加えた場合の破断回数(疲労寿命)が5万回以上である導線として、鉄を0.1~0.4質量%、銅を0.1~0.3質量%、マグネシウムを0.02~0.2質量%、シリコンを0.02~0.2質量%、チタンとバナジウムを合わせて0.001~0.01質量%含み、伸線方向の垂直断面における結晶粒径が5~25μmであるアルミニウム合金線材が開示されている。 For example, in Patent Document 1, iron is used as a conductive wire having a number of breaks (fatigue life) of 50,000 times or more when repeated bending with a strain amplitude of ± 0.15% at room temperature is applied. 4% by mass, copper 0.1-0.3% by mass, magnesium 0.02-0.2% by mass, silicon 0.02-0.2% by mass, titanium and vanadium together 0.001- An aluminum alloy wire containing 0.01% by mass and having a crystal grain size of 5 to 25 μm in a vertical cross section in the wire drawing direction is disclosed.
また、例えば、特許文献2には、軽量で耐熱性、引張強度、及び導電性に優れたアルミニウム系の導電材料として、スカンジウムを0.1~0.3質量%(重量%)含むアルミニウム合金が開示されている。
更に、スカンジウムを含有するアルミニウム合金の耐熱性を更に向上させたものとして、例えば、特許文献3には、ジルコニウムを0.1~0.5質量%、スカンジウムを0.05~0.5質量%含み、熱処理後に冷間加工を行って製造するアルミニウム合金が、特許文献4には、ジルコニウムを0.1~0.4質量%、スカンジウムを0.05~0.3質量%含み、塑性加工後に熱処理を行って製造するアルミニウム合金が、特許文献5には、ジルコニウムを0.1~0.5質量%、スカンジウムを0.05~0.5質量%含み、熱処理後に冷間加工を行って製造するアルミニウム合金が、特許文献6には、ジルコニウムを0.1~0.5質量%、スカンジウムを0.05~0.5質量%含み、冷間加工した後に熱処理を行い、再度冷間加工を行って製造するアルミニウム合金がそれぞれ開示されている。
For example, Patent Document 2 discloses an aluminum alloy containing scandium in an amount of 0.1 to 0.3% by mass (weight%) as an aluminum-based conductive material that is lightweight and has excellent heat resistance, tensile strength, and conductivity. It is disclosed.
Furthermore, as an example of further improving the heat resistance of an aluminum alloy containing scandium, Patent Document 3 discloses that zirconium is 0.1 to 0.5 mass% and scandium is 0.05 to 0.5 mass%. An aluminum alloy that is manufactured by performing cold working after heat treatment includes Patent Document 4 containing 0.1 to 0.4% by mass of zirconium and 0.05 to 0.3% by mass of scandium. An aluminum alloy manufactured by heat treatment is disclosed in Patent Document 5, which contains 0.1 to 0.5 mass% of zirconium and 0.05 to 0.5 mass% of scandium, and is subjected to cold working after the heat treatment. Patent Document 6 discloses that an aluminum alloy containing 0.1 to 0.5% by mass of zirconium and 0.05 to 0.5% by mass of scandium is subjected to a heat treatment after cold working, and then cold-worked again. Aluminum alloy production performed is disclosed, respectively.
特開2010-163675号公報JP 2010-163675 A 特開平7-316705号公報JP 7-316705 A 特開2001-131719号公報JP 2001-131719 A 特開2001-348637号公報JP 2001-348637 A 特開2002-266043号公報JP 2002-266043 A 特開2002-302727号公報JP 2002-302727 A
特許文献1に記載のアルミニウム合金線材は、疲労寿命を5万回以上としており、実際のロボットにおいて、一回の屈曲動作に2秒を要すると仮定すると、2日間の総屈曲回数は86400回となって、屈曲回数は最低寿命を超えてしまう。このため、特許文献1に記載のアルミニウム合金線材から形成した素線を用いて作製したケーブルをロボット用ケーブルとして適用した場合、ロボットを長期間に亘って安定して稼動させることができないという問題がある。 The aluminum alloy wire described in Patent Document 1 has a fatigue life of 50,000 times or more, and assuming that an actual robot requires 2 seconds for one bending operation, the total number of bendings for two days is 86400 times. Thus, the number of flexing times exceeds the minimum life. For this reason, when the cable produced using the strand formed from the aluminum alloy wire described in Patent Document 1 is applied as a robot cable, there is a problem that the robot cannot be stably operated for a long period of time. is there.
一方、特許文献2~5に記載されたスカンジウムを含むアルミニウム合金から、例えば、線径が80μmの素線を形成し、この素線を用いて断面積が0.2mmのケーブルを作製して、動的駆動試験(例えば、試験体に荷重100gを負荷した状態で、曲げ半径が15mm、折り曲げ角度範囲が±90度となる左右屈曲(左右繰り返し曲げ)試験)を行うと、ケーブルの破断回数は、30~400万回(アルミニウム合金の組成や素線の製造過程により異なる)となる。このため、特許文献2~5に記載のアルミニウム合金を用いて作製したケーブルをロボット用ケーブルとして使用しても、ロボットを長期間に亘って安定して稼動させるには十分ではない。 On the other hand, for example, a strand having a wire diameter of 80 μm is formed from an aluminum alloy containing scandium described in Patent Documents 2 to 5, and a cable having a cross-sectional area of 0.2 mm 2 is produced using the strand. When a dynamic drive test (for example, a left / right bending (left / right repeated bending) test in which a bending radius is 15 mm and a bending angle range is ± 90 degrees in a state where a load of 100 g is applied to the test body) is performed, the number of times the cable is broken Is 3 to 4 million times (depending on the composition of the aluminum alloy and the manufacturing process of the wire). For this reason, even if a cable produced using an aluminum alloy described in Patent Documents 2 to 5 is used as a robot cable, it is not sufficient to stably operate the robot for a long period of time.
また、特許文献2~5において、アルミニウム合金を冷間加工(塑性加工)し、熱処理して線材とする場合、冷間加工で形成された微細組織には、熱処理時に微細組織を構成している結晶粒に粒成長が生じるため、粒成長の進行に伴って線材の引張強度が低下するという問題がある。また、粒成長により線材を構成する組織に不均一性が生じることになると、この線材を用いて作製したケーブルでは屈曲試験における破断回数が低下すると共に、破断回数のばらつきが増大するという問題がある。更に、特許文献3、5、6において、アルミニウム合金を冷間加工して線材を形成する場合、線材中には冷間加工時のひずみが蓄積されているため、線材の硬度及び引張強度は上昇するが、線材の伸び性は低下している。このため、ケーブル製造時における線材の断線頻度が高くなって製造歩留が低下するという問題がある。しかも、ケーブルに使用されている線材にはひずみが残存しており伸び性は低下した状態であるため、このケーブルを実使用した場合、耐屈曲性が低下するという問題が生じる。 In Patent Documents 2 to 5, when an aluminum alloy is cold-worked (plastic working) and heat-treated to form a wire, the fine structure formed by cold-working constitutes a fine structure during heat-treatment. Since grain growth occurs in the crystal grains, there is a problem that the tensile strength of the wire decreases with the progress of grain growth. Further, when non-uniformity occurs in the structure constituting the wire due to the grain growth, the cable manufactured using this wire has a problem that the number of breaks in the bending test is reduced and the variation in the number of breaks is increased. . Further, in Patent Documents 3, 5, and 6, when a wire is formed by cold working an aluminum alloy, strains during cold working are accumulated in the wire, so the hardness and tensile strength of the wire are increased. However, the extensibility of the wire is decreasing. For this reason, there is a problem that the frequency of disconnection of the wire at the time of cable manufacture increases and the manufacturing yield decreases. Moreover, strain remains in the wire used for the cable and the extensibility is lowered. Therefore, when this cable is actually used, there arises a problem that the bending resistance is lowered.
本発明は、かかる事情に鑑みてなされたもので、組織の微細化及び残存ひずみの低減を行いながら引張強度、耐屈曲性、及び伸び性の向上を図って、ロボット又は各種装置の駆動部分の配線に使用することが可能なアルミニウム基導電材料及びそれを用いたケーブルを提供することを目的とする。 The present invention has been made in view of such circumstances, and is intended to improve the tensile strength, the bending resistance, and the extensibility while miniaturizing the structure and reducing the residual strain, and to improve the driving part of the robot or various devices. It is an object to provide an aluminum-based conductive material that can be used for wiring and a cable using the same.
前記目的に沿う第1の発明に係るアルミニウム基導電材料は、時効処理したアルミニウム-スカンジウム系合金に相当ひずみが小数点以下を四捨五入して4以上となる加工を行った後、残存するひずみを除去して得られるアルミニウム基導電材料であって、
平均粒径が2μm以下のアルミニウム又はアルミニウム基合金の結晶粒と、平均粒径が1nm以上60nm以下であって、前記結晶粒の粒界に0.1質量%以上1質量%以下存在するアルミニウム-スカンジウム系のナノ析出物とを有する金属組織で構成され、
ビッカース硬度は50以上70以下であって、繰り返し曲げを負荷する疲労試験における繰り返し回数10回時の疲労強度が少なくとも180MPaである。
本発明では、アルミニウム-スカンジウム系合金の金属組織を構成している結晶粒の粒界に、アルミニウム-スカンジウム系のナノ析出物を析出(分散)させた後に変形を加え(加工を行い)、その際のひずみ導入に伴ってアルミニウム-スカンジウム系合金の結晶粒内に蓄積される転位が、ナノ析出物にピンニングされながら亜結晶粒界の形成を経て結晶粒界を形成する過程(再結晶過程)を利用して、平均粒径が2μm以下となる結晶粒で構成された金属組織を生成させている。ここで、アルミニウム-スカンジウム系合金に加える加工は、相当ひずみで4以上とする。相当ひずみが4未満では、結晶粒内に蓄積される転位が少なく、十分な亜結晶粒界が形成されず、平均粒径が2μm以下となる結晶粒で構成された金属組織が得られないからである。一方、亜結晶粒界を経て結晶粒界が徐々に形成されてくると、結晶粒界は転位の吸収源として作用するため、加工を更に加えて結晶粒内に転位を蓄積しようとしても、結晶粒内では転位の発生と吸収がバランスする状態となる。アルミニウム-スカンジウム系合金に加工を加えて、その際に得られる金属組織を観察した結果、相当ひずみが10程度までは、加工を加えるほど金属組織を構成している結晶粒の微細化が進行することが認められたが、相当ひずみが10を超える加工を加えても、結晶粒の微細化の顕著な進行は認められなかった。従って、経済性の観点からは、アルミニウム-スカンジウム系合金に加える加工の上限を、相当ひずみ10とした。
相当ひずみが4以上10以下となる加工(本加工)を行う場合、本加工を容易に行うことができるように、アルミニウム-スカンジウム系合金の形状を圧延等の塑性加工により予め整えておいてもよい。なお、形状を調えるための塑性加工を行った際は、本加工前にアルミニウム-スカンジウム系合金の融点の30~70%となる熱処理温度で熱処理を行って、塑性加工時に導入されたひずみ(蓄積された転位)を除去すると共にアルミニウム-スカンジウム系合金の結晶粒を等軸晶(微細粒状晶)化して、本加工における加工性の向上を図ることが好ましい。
本加工後のアルミニウム-スカンジウム系合金では、結晶粒内に導入されたひずみは、再結晶(結晶粒の微細化)過程で除去されるが、導入されたひずみの一部は微細化後の結晶粒内に残存する。このため、本加工後のアルミニウム-スカンジウム系合金を、再結晶温度未満の温度で熱処理することで、残存ひずみを除去する。なお、本加工後のアルミニウム-スカンジウム系合金では、結晶粒内から残存ひずみが除去される過程で粒界角度が高角化(例えば、平均粒界角度が15度以上30度以下)して、ひずみ(蓄積された転位)が粒界に吸収され易くなっているので、本加工後のアルミニウム-スカンジウム系合金の結晶粒内にひずみが導入(転位が蓄積)されても、ひずみ(転位)は結晶粒内に蓄積されることが抑制される。これにより、アルミニウム-スカンジウム系合金に、例えば、繰り返し曲げが加えられても、強度(疲労強度)の低下を防止できる。ここで、結晶粒内のひずみ増加に伴ってビッカース硬度が増加するという関係が一般に成立するので、アルミニウム-スカンジウム系合金において、平均粒径1~60nmのアルミニウム-スカンジウム系のナノ析出物が、平均粒径2μm以下の結晶粒の粒界に存在する金属組織の有するビッカース硬度の範囲を予め求めておくと、ビッカース硬度が所定範囲の値となるように、本加工後のアルミニウム-スカンジウム系合金の熱処理(条件は温度と時間で規定される)を行うことにより、結晶粒の成長を防止しながら結晶粒内の残存ひずみの除去を行うことができる。
The aluminum-based conductive material according to the first invention that meets the above-mentioned object is to remove the remaining strain after subjecting an aged aluminum-scandium alloy to a process in which the equivalent strain is rounded off to 4 or more. An aluminum-based conductive material obtained by
Aluminum or aluminum-based alloy crystal grains having an average grain diameter of 2 μm or less, and aluminum having an average grain diameter of 1 nm to 60 nm and present at 0.1 to 1 mass% at the grain boundaries of the crystal grains— It is composed of a metal structure having scandium-based nanoprecipitates,
Vickers hardness is a 50 or more 70 or less, the fatigue strength when the repeat count 10 6 times in fatigue test to load the repeated bending of at least 180 MPa.
In the present invention, the aluminum-scandium-based nanoprecipitate is precipitated (dispersed) at the grain boundaries of the crystal grains constituting the metal structure of the aluminum-scandium-based alloy, and then deformed (processed). Dislocations accumulated in the crystal grains of an aluminum-scandium alloy due to the introduction of strain during the formation of grain boundaries through the formation of subgrain boundaries while being pinned by nanoprecipitates (recrystallization process) Is used to produce a metal structure composed of crystal grains having an average grain size of 2 μm or less. Here, the processing applied to the aluminum-scandium alloy is 4 or more in terms of equivalent strain. When the equivalent strain is less than 4, there are few dislocations accumulated in the crystal grains, a sufficient subgrain boundary is not formed, and a metal structure composed of crystal grains having an average grain size of 2 μm or less cannot be obtained. It is. On the other hand, when a grain boundary is gradually formed through a sub-grain boundary, the grain boundary acts as an absorption source of dislocations. Within the grains, the generation and absorption of dislocations are balanced. As a result of processing the aluminum-scandium-based alloy and observing the metal structure obtained at that time, the crystal grains constituting the metal structure are increasingly refined as the processing is performed until the equivalent strain reaches about 10. However, even when processing with an equivalent strain exceeding 10 was applied, no significant progress of crystal grain refinement was observed. Therefore, from the viewpoint of economy, the upper limit of processing applied to the aluminum-scandium alloy is set to an equivalent strain of 10.
When processing (main processing) in which the equivalent strain is 4 or more and 10 or less, the shape of the aluminum-scandium alloy may be prepared in advance by plastic processing such as rolling so that the main processing can be easily performed. Good. When plastic processing is performed to adjust the shape, heat treatment is performed at a heat treatment temperature that is 30 to 70% of the melting point of the aluminum-scandium alloy before the main processing, and strain (accumulation accumulated during the plastic processing) is accumulated. It is preferable to improve the workability in the main processing by removing the dislocations) and making the crystal grains of the aluminum-scandium alloy crystal equiaxed (fine granular crystals).
In the aluminum-scandium alloy after this processing, the strain introduced into the crystal grains is removed during the recrystallization (crystal grain refinement) process, but part of the introduced strain is crystallized after refinement. It remains in the grains. For this reason, the residual strain is removed by heat-treating the aluminum-scandium alloy after the main processing at a temperature lower than the recrystallization temperature. In the aluminum-scandium alloy after this processing, the grain boundary angle is increased in the process of removing the residual strain from the crystal grains (for example, the average grain boundary angle is 15 degrees or more and 30 degrees or less), and the strain is increased. Since (accumulated dislocations) are easily absorbed by the grain boundaries, even if strain is introduced into the crystal grains of the aluminum-scandium alloy after this processing (dislocations are accumulated), the strain (dislocations) is crystallized. Accumulation in the grains is suppressed. As a result, even if the aluminum-scandium alloy is repeatedly bent, for example, it is possible to prevent a decrease in strength (fatigue strength). Here, since the relationship that the Vickers hardness increases with increasing strain in the crystal grains is generally established, in the aluminum-scandium alloy, aluminum-scandium nanoprecipitates having an average particle diameter of 1 to 60 nm are averaged. If the range of the Vickers hardness of the metal structure existing in the grain boundary of the crystal grain having a grain size of 2 μm or less is determined in advance, the aluminum-scandium alloy after the main processing is performed so that the Vickers hardness becomes a value within the predetermined range. By performing heat treatment (conditions are defined by temperature and time), residual strain in the crystal grains can be removed while preventing crystal grain growth.
第1の発明に係るアルミニウム基導電材料において、前記結晶粒は前記アルミニウム基合金であって、前記アルミニウム基合金は0.1質量%以上0.2質量%以下のジルコニウムを含むことが好ましい。 In the aluminum-based conductive material according to the first invention, it is preferable that the crystal grains are the aluminum-based alloy, and the aluminum-based alloy contains 0.1% by mass or more and 0.2% by mass or less of zirconium.
第1の発明に係るアルミニウム基導電材料において、前記金属組織には、1μm以下の前記結晶粒が断面積率で15%以上含まれていることが好ましい。
また、前記金属組織に、1μm以下の前記結晶粒が断面積率で20%以上含まれると、少なくとも1000万回の繰り返し曲げを負荷する動的駆動試験に耐える(即ち、破断しない)ことができる。
In the aluminum-based conductive material according to the first invention, the metal structure preferably includes 15% or more of the crystal grains having a cross-sectional area ratio of 1 μm or less.
In addition, when the crystal structure of 1 μm or less is included in the metal structure at 20% or more in terms of the cross-sectional area ratio, it can withstand a dynamic drive test (that is, not break) at least 10 million times of repeated bending. .
前記目的に沿う第2の発明に係るケーブルは、第1の発明に係るアルミニウム基導電材料を導体素線に使用し、該導体素線の線径は、0.05mm以上0.5mm以下である。
そして、該ケーブルをロボット用ケーブル、急速充電スタンド機のコネクターケーブル、キャブタイヤケーブル、ブスバーケーブル、又は機器内配線用ケーブルに使用することができる。
また、該ケーブルを自動車用ケーブル、航空機用ケーブル、ロケット用ケーブル、又は衛星用ケーブルに使用することもできる。
The cable according to the second invention that meets the above object uses the aluminum-based conductive material according to the first invention for the conductor wire, and the wire diameter of the conductor wire is 0.05 mm or more and 0.5 mm or less. .
The cable can be used as a robot cable, a connector cable for a quick charging stand machine, a cabtyre cable, a bus bar cable, or an in-device wiring cable.
The cable can also be used for an automobile cable, an aircraft cable, a rocket cable, or a satellite cable.
第1の発明に係るアルミニウム基導電材料は、時効処理したアルミニウム-スカンジウム系合金に相当ひずみが4以上となる加工を行って、平均粒径が2μm以下のアルミニウム又はアルミニウム基合金の結晶粒と、平均粒径が1nm以上60nm以下であって、結晶粒の粒界に0.1質量%以上1質量%以下存在するアルミニウム-スカンジウム系のナノ析出物とを有する金属組織を構成し、更に、この金属組織のビッカース硬度を50以上70以下となるように調整することで、形成された金属組織の粒成長を防止して(結晶粒の平均粒径が2μm以下であることを維持して)、結晶粒内に存在するひずみを除去することができ、伸び性を向上させることができる。このため、金属組織に繰り返し曲げが加えられて、金属組織内にひずみが蓄積され難くなる。 The aluminum-based conductive material according to the first invention is obtained by subjecting an aged aluminum-scandium-based alloy to a process in which the equivalent strain is 4 or more, and crystal grains of aluminum or an aluminum-based alloy having an average grain size of 2 μm or less, Comprising an aluminum-scandium-based nanoprecipitate having an average particle size of 1 nm or more and 60 nm or less and existing at a grain boundary of 0.1% by mass or more and 1% by mass or less; By adjusting the Vickers hardness of the metal structure to be 50 or more and 70 or less, the grain growth of the formed metal structure is prevented (maintaining that the average grain size of the crystal grains is 2 μm or less), The strain existing in the crystal grains can be removed, and the extensibility can be improved. For this reason, bending is repeatedly added to the metal structure, and strain is hardly accumulated in the metal structure.
ここで、金属組織を構成している結晶粒の平均粒径が2μm以下のため、き裂が発生しても、き裂は伝播する際に結晶粒と頻繁に衝突し、き裂の偏向とき裂の分岐が促進され、き裂が一方向に進展する際の速度が低下する。また、結晶粒とナノ析出物との間のミスマッチが小さいため、発生したき裂の先端をナノ析出物により効果的にピン止めすることができ、き裂の進展停止又はき裂の進展速度低下が更に促進される。これにより、繰り返し曲げを負荷する疲労試験における繰り返し回数10回時の疲労強度を少なくとも180MPaとすることができ、例えば、1000万回以上の動的駆動に耐えることを保証できる。その結果、アルミニウム基導電材料を、ロボット又は各種装置の配線において、特に駆動部分等の耐屈曲性が要求される部位の配線に使用することができる。 Here, since the average grain size of the crystal grains constituting the metal structure is 2 μm or less, even if a crack occurs, the crack frequently collides with the crystal grain when propagating, and the crack is deflected. The branching of the crack is promoted, and the speed at which the crack propagates in one direction decreases. In addition, since the mismatch between the crystal grains and the nanoprecipitate is small, the tip of the generated crack can be pinned effectively by the nanoprecipitate, and the crack growth is stopped or the crack growth rate is reduced. Is further promoted. Thus, repeated bending can be at least a fatigue strength when the repeat count 10 6 times 180MPa in fatigue test to load, for example, can be guaranteed to withstand higher dynamic drive 10 million times. As a result, the aluminum-based conductive material can be used in the wiring of robots or various devices, particularly in the wiring of parts that require bending resistance, such as the drive portion.
第1の発明に係るアルミニウム基導電材料において、アルミニウム基合金が0.1質量%以上0.2質量%以下のジルコニウムを含む場合、ジルコニウムが結晶粒内及び粒界に存在し、アルミニウム基導電材料が高温の熱履歴を受けても引張強度の低下を防止できる。ここで、ジルコニウム含有量が0.1質量%未満では、引張強度の低下防止が図れず、ジルコニウムの含有量が0.2質量%を超えると導電性が低下するので好ましくない。 In the aluminum-based conductive material according to the first invention, when the aluminum-based alloy contains zirconium in an amount of 0.1% by mass or more and 0.2% by mass or less, the zirconium is present in the crystal grains and in the grain boundaries, and the aluminum-based conductive material Even if it receives a high temperature heat history, the fall of tensile strength can be prevented. Here, if the zirconium content is less than 0.1% by mass, the tensile strength cannot be prevented from being lowered, and if the zirconium content exceeds 0.2% by mass, the conductivity decreases, which is not preferable.
第1の発明に係るアルミニウム基導電材料において、金属組織に、1μm以下の結晶粒が断面積率で15%以上含まれている場合、疲労き裂がアルミニウム基導電材料の金属組織内を伝播する際に、結晶粒との衝突頻度が向上し、疲労き裂の偏向、き裂分岐を促進することができ、疲労き裂の進展に伴う抵抗が大きくなって、疲労き裂の進展速度を低下させることができる。
また、金属組織に、1μm以下の結晶粒が断面積率で20%以上含まれている場合、発生したき裂が金属組織内を伝播する際に、結晶粒との衝突頻度を更に向上させ、き裂の偏向、き裂の分岐を更に促進することができる。これにより、き裂の進展に伴う抵抗が更に大きくなって、き裂の進展速度を更に低下させることができ、少なくとも1000万回の動的駆動試験に耐えることが可能になる。
In the aluminum-based conductive material according to the first aspect of the present invention, if the metal structure contains crystal grains of 1 μm or less in a cross-sectional area ratio of 15% or more, fatigue cracks propagate in the metal structure of the aluminum-based conductive material. In this case, the frequency of collisions with the crystal grains is improved, deflection of fatigue cracks and crack branching can be promoted, the resistance associated with the growth of fatigue cracks increases, and the fatigue crack growth rate decreases. Can be made.
In addition, when the metal structure contains crystal grains of 1 μm or less in a cross-sectional area ratio of 20% or more, when the generated crack propagates in the metal structure, the collision frequency with the crystal grains is further improved, Crack deflection and crack branching can be further promoted. As a result, the resistance accompanying the crack growth is further increased, the crack growth speed can be further reduced, and it is possible to withstand at least 10 million dynamic drive tests.
第2の発明に係るケーブルにおいては、第1の発明に係るアルミニウム基導電材料を導体素線に使用し、導体素線の線径は0.05mm以上0.5mm以下であるので、ケーブルに繰り返し曲げが負荷された際に導体素線に生じるひずみを小さくすることができ、耐屈曲性を有するケーブルを容易に作製することができる。これにより、ケーブル使用時の早期断線を防止して、このケーブルを使用した各種装置の信頼性を向上させることができると共に、各種装置のメンテナンス負担を軽減することができる。 In the cable according to the second invention, the aluminum-based conductive material according to the first invention is used for the conductor wire, and the wire diameter of the conductor wire is 0.05 mm or more and 0.5 mm or less. The strain generated in the conductor wire when bending is applied can be reduced, and a cable having bending resistance can be easily manufactured. Thereby, early disconnection at the time of cable use can be prevented, the reliability of various apparatuses using this cable can be improved, and the maintenance burden of various apparatuses can be reduced.
第2の発明に係るケーブルにおいて、ケーブルをロボット用ケーブルに使用する場合、アルミニウム基導電材料で構成されているためケーブルが軽量となって、駆動性、操作性、及び作業性を向上できる。
また、ケーブルを急速充電スタンド機のコネクターケーブルに使用する場合、コネクターケーブルが軽量となって、操作性を向上できる。
更に、ケーブルをキャブタイヤケーブル、例えば、電気溶接機のキャブタイヤケーブルに使用する場合、キャブタイヤケーブルが軽量となって、大型構造物の作製を行う際にキャブタイヤケーブルが長尺になっても、キャブタイヤケーブルの移動を比較的容易に行うことができ、溶接の作業性を向上させることができる。
そして、ケーブルをブスバーケーブル又は機器内配線用ケーブルに使用する場合及びケーブルを自動車用ケーブル、航空機用ケーブル、ロケット用ケーブル、又は衛星用ケーブルに使用する場合、ケーブルが軽量なため配線作業性が向上すると共に、機器や被配線対象物の軽量化を図ることができる。
In the cable according to the second aspect of the invention, when the cable is used for a robot cable, the cable is lightweight because it is made of an aluminum-based conductive material, so that drivability, operability, and workability can be improved.
Moreover, when using a cable for the connector cable of a quick-charging stand machine, a connector cable becomes lightweight and can improve operativity.
Furthermore, when the cable is used as a cab tire cable, for example, a cab tire cable of an electric welding machine, even if the cab tire cable becomes light and the cab tire cable becomes long when a large structure is manufactured. The cabtire cable can be moved relatively easily, and the workability of welding can be improved.
And when the cable is used as a busbar cable or an in-device wiring cable and when the cable is used as an automobile cable, an aircraft cable, a rocket cable, or a satellite cable, the workability is improved because the cable is lightweight. In addition, the weight of the device and the wiring target can be reduced.
本発明の第1の実施例に係るアルミニウム基導電材料の組織の説明図である。It is explanatory drawing of the structure | tissue of the aluminum group electrically-conductive material which concerns on the 1st Example of this invention. 本発明の第2の実施例に係るアルミニウム基導電材料の組織の説明図である。It is explanatory drawing of the structure | tissue of the aluminum group electrically-conductive material which concerns on the 2nd Example of this invention.
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
本発明の第1の実施例に係るアルミニウム基導電材料10は、図1に示すように、時効処理したアルミニウム-スカンジウム系合金に相当ひずみが4以上となる加工を行った後、残存するひずみを除去して得られ、平均粒径が2μm以下のアルミニウムの結晶粒11と、平均粒径が1nm以上60nm以下であって、結晶粒11の粒界12に0.1質量%以上1質量%以下存在するアルミニウム-スカンジウム系のナノ析出物13とを有する金属組織で構成され、ビッカース硬度は50以上70以下であって、繰り返し曲げを負荷する疲労試験における繰り返し回数10回時の疲労強度が少なくとも180MPaである。以下、詳細に説明する。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, the aluminum-based conductive material 10 according to the first embodiment of the present invention has a residual strain after an aging-treated aluminum-scandium alloy is processed to have an equivalent strain of 4 or more. The aluminum crystal grains 11 having an average grain diameter of 2 μm or less obtained by the removal, and the average grain diameter of 1 nm to 60 nm, and 0.1 to 1 mass% at the grain boundary 12 of the crystal grains 11 And a Vickers hardness of 50 or more and 70 or less, and a fatigue strength at the time of 10 6 repetitions in a fatigue test in which repeated bending is applied. 180 MPa. Details will be described below.
アルミニウム-スカンジウム系合金を時効処理することにより、アルミニウム-スカンジウム系合金中のスカンジウムとアルミニウムは反応して、アルミニウム-スカンジウム系の金属間化合物であるAlScをナノ析出物13として生成し、生成したナノ析出物13は、アルミニウムの結晶粒の粒界に存在する。ここで、アルミニウム-スカンジウム系合金中のスカンジウム量は、ナノ析出物13が0.1質量%以上1質量%以下生成するように予め調節されている。 By aging the aluminum-scandium alloy, scandium and aluminum in the aluminum-scandium alloy react to produce Al 3 Sc, an aluminum-scandium-based intermetallic compound, as nanoprecipitates 13. The nanoprecipitates 13 exist at the grain boundaries of the aluminum crystal grains. Here, the amount of scandium in the aluminum-scandium alloy is adjusted in advance so that the nanoprecipitate 13 is generated in an amount of 0.1% by mass to 1% by mass.
そして、ナノ析出物13が生成したアルミニウム-スカンジウム系合金に、相当ひずみが4以上となる加工を加えると、アルミニウムの結晶粒内に転位が蓄積され、亜結晶粒界の形成を経て結晶粒の微細化が生じ、平均粒径が2μm以下の結晶粒11が形成される。ここで、時効処理後のアルミニウムの結晶粒の粒界に存在しているナノ析出物13と結晶粒との格子定数のミスマッチは小さいので、ナノ析出物13の粗大化が抑制され、ナノ析出物13はアルミニウムの結晶粒の粒界に分散する。このため、相当ひずみが4以上となる加工を加えて結晶粒が微細化される際に、結晶粒の異常粒成長が抑制され、アルミニウム-スカンジウム系合金は、平均粒径が2μm以下のアルミニウムの結晶粒11と、平均粒径が1nm以上60nm以下であって、結晶粒11の粒界12に0.1質量%以上1質量%以下存在するナノ析出物13とを有する金属組織となる。 Then, when the aluminum-scandium alloy in which the nanoprecipitates 13 are formed is subjected to processing with an equivalent strain of 4 or more, dislocations are accumulated in the aluminum crystal grains, and after the formation of subgrain boundaries, Refinement occurs, and crystal grains 11 having an average grain size of 2 μm or less are formed. Here, since the mismatch of the lattice constant between the nanoprecipitates 13 and the crystal grains existing in the grain boundaries of the aluminum crystal grains after the aging treatment is small, the coarsening of the nanoprecipitates 13 is suppressed and the nanoprecipitates are reduced. 13 is dispersed in the grain boundaries of the aluminum crystal grains. For this reason, when a crystal grain is refined by applying a process with an equivalent strain of 4 or more, abnormal grain growth of the crystal grain is suppressed, and an aluminum-scandium alloy is made of aluminum having an average grain size of 2 μm or less. A metal structure having crystal grains 11 and nanoprecipitates 13 having an average grain diameter of 1 nm or more and 60 nm or less and existing in a grain boundary 12 of the crystal grains 11 by 0.1 mass% or more and 1 mass% or less is obtained.
相当ひずみが4以上となる加工を行った際に結晶粒内に導入された転位は、結晶粒が微細化して平均粒径が2μm以下の結晶粒11を形成する過程で結晶粒の粒界に吸収されるが、平均粒径が2μm以下の結晶粒11内には、加工時に導入された転位の一部が残存し、結晶粒11内にはひずみが存在している。このため、微細化直後の金属組織の有するビッカース硬度は、アルミニウム-スカンジウム系合金の組成から予測される本来の値よりも高い値を示し、加工後のアルミニウム-スカンジウム系合金の伸び性(変形性)は低下している。 The dislocations introduced into the crystal grains when processing with an equivalent strain of 4 or more occurs at the grain boundaries of the crystal grains in the process of making the crystal grains fine and forming the crystal grains 11 having an average grain size of 2 μm or less. Although absorbed, some of the dislocations introduced during processing remain in the crystal grains 11 having an average grain size of 2 μm or less, and strain exists in the crystal grains 11. For this reason, the Vickers hardness of the metal structure immediately after refinement is higher than the original value predicted from the composition of the aluminum-scandium alloy, and the elongation (deformability) of the aluminum-scandium alloy after processing ) Is falling.
ここで、加工後のアルミニウム-スカンジウム系合金に、例えば、熱処理を行って結晶粒内に残存するひずみを除去すると、アルミニウム-スカンジウム系合金の伸び性を回復させることができるが、熱処理により結晶粒11に粒成長が生じるので、引張強度及び耐屈曲性が大幅に低下する。そこで、加工後のアルミニウム-スカンジウム系合金のビッカース硬度が50以上70以下となるように熱処理条件を設定すると、結晶粒11の成長を抑えて、結晶粒11内に存在する転位を粒界に吸収させて結晶粒11内に残存するひずみを除去することができる。その結果、加工後のアルミニウム-スカンジウム系合金の伸び性(変形性)を回復させることができる。 Here, for example, if the aluminum-scandium alloy after processing is subjected to a heat treatment to remove strain remaining in the crystal grains, the elongation of the aluminum-scandium alloy can be recovered. Since grain growth occurs in 11, the tensile strength and bending resistance are greatly reduced. Therefore, if the heat treatment conditions are set so that the processed aluminum-scandium alloy has a Vickers hardness of 50 or more and 70 or less, the growth of the crystal grains 11 is suppressed and the dislocations existing in the crystal grains 11 are absorbed by the grain boundaries. Thus, the strain remaining in the crystal grains 11 can be removed. As a result, the stretchability (deformability) of the aluminum-scandium alloy after processing can be recovered.
なお、転位が粒界で吸収されることに伴って、粒界角度が高角化し、例えば、平均粒界角度は15度以上30度以下となる。このため、繰り返し曲げを負荷する疲労試験において結晶粒11内に導入される転位は、粒界が高角化しているため粒界に吸収され易く、結晶粒内にひずみが蓄積されることが抑制される。 As the dislocation is absorbed at the grain boundary, the grain boundary angle increases, and for example, the average grain boundary angle becomes 15 degrees or more and 30 degrees or less. For this reason, the dislocations introduced into the crystal grains 11 in the fatigue test in which repeated bending is applied are easily absorbed by the grain boundaries because the grain boundaries are highly angled, and the accumulation of strain in the crystal grains is suppressed. The
以上のように、ナノ析出物13が生成したアルミニウム-スカンジウム系合金に、相当ひずみ4以上の加工を施すことにより形成される金属組織(平均粒径が2μm以下のアルミニウムの結晶粒11と、平均粒径が1nm以上60nm以下であって、結晶粒11の粒界に存在するナノ析出物13とを有する金属組織)を熱処理して結晶粒11内に残存するひずみを除去することにより、繰り返し曲げが負荷された際に金属組織内に疲労き裂が発生することを抑制できる。 As described above, the metal structure formed by subjecting the aluminum-scandium-based alloy in which the nanoprecipitate 13 has been produced to a processing with an equivalent strain of 4 or more (the aluminum crystal grains 11 having an average grain diameter of 2 μm or less, the average By repeatedly heat-treating the metal structure having a grain size of 1 nm or more and 60 nm or less and having nanoprecipitates 13 present at the grain boundaries of the crystal grains 11 to remove strain remaining in the crystal grains 11, repeated bending It is possible to suppress the occurrence of fatigue cracks in the metal structure when a load is applied.
そして、金属組織内に疲労き裂が発生しても、平均粒径が2μm以下の結晶粒11を有する金属組織では、疲労き裂は、伝播する際に結晶粒11と頻繁に衝突し、疲労き裂の偏向とき裂分岐が促進されて、疲労き裂が一方向に進展する際の速度が低下し、更に、ナノ析出物13に疲労き裂が衝突すると、疲労き裂はナノ析出物13によりピン止めされるため、疲労き裂の進展速度が更に低下する。 Even if a fatigue crack occurs in the metal structure, the fatigue crack frequently collides with the crystal grain 11 when propagating in the metal structure having the crystal grain 11 having an average grain size of 2 μm or less, and fatigue occurs. When the crack is deflected, crack branching is promoted, the speed at which the fatigue crack propagates in one direction decreases, and when the fatigue crack collides with the nanoprecipitate 13, the fatigue crack becomes a nanoprecipitate 13. Therefore, the fatigue crack growth rate is further reduced.
ここで、結晶粒11の平均粒径を2μmに制御した場合、金属組織の顕微鏡観察から、金属組織は、最大粒径が4μmの結晶粒11から構成され、疲労試験における繰り返し回数10回時の疲労強度を180MPaにすることができる。そして、金属組織中に1μm以下の結晶粒11が断面積率で15%含まれるようにすることで、結晶粒11の平均粒径を1.6μmにすることができ、疲労試験における繰り返し回数10回時の疲労強度を190MPaとすることができる。また、金属組織中に1μm以下の結晶粒11が断面積率で20%含まれるようにすることで、結晶粒11の平均粒径を1.5μmにすることができ、疲労試験における繰り返し回数10回時の疲労強度を200MPaとすることができる。更に、1μm以下の結晶粒11が断面積率で50%含まれるようにすることで、結晶粒11の平均粒径を1.2μmにすることができ、疲労試験における繰り返し回数10回時の疲労強度を220MPaとすることができる。
従って、金属組織には、1μm以下の結晶粒11が断面積率で15%以上(好ましくは、20%以上)含まれているのがよい。
Here, when the average grain size of the crystal grains 11 is controlled to 2 μm, the metal structure is composed of crystal grains 11 having a maximum grain size of 4 μm, and the number of repetitions in the fatigue test is 10 6 times. The fatigue strength of can be 180 MPa. The average grain size of the crystal grains 11 can be 1.6 μm by including 15% or less of the crystal grains 11 of 1 μm or less in the metal structure. The fatigue strength at the 6th time can be 190 MPa. In addition, by making 20% of the crystal grains 11 of 1 μm or less in the metal structure in a cross-sectional area ratio, the average grain size of the crystal grains 11 can be 1.5 μm, and the number of repetitions in the fatigue test is 10 The fatigue strength at the sixth time can be 200 MPa. Furthermore, by making 50% of the crystal grains 11 of 1 μm or less in a cross-sectional area ratio, the average grain diameter of the crystal grains 11 can be 1.2 μm, and the number of repetitions in the fatigue test is 10 6 times. The fatigue strength can be 220 MPa.
Therefore, it is preferable that the crystal structure 11 of 1 μm or less is included in the metal structure by 15% or more (preferably 20% or more) in terms of the cross-sectional area.
ナノ析出物13を0.1質量%以上1質量%以下存在させることにより、アルミニウム基導電材料10の導電性の低下を抑制しながら、き裂のピン止め効果を達成することができる。ここで、ナノ析出物13が0.1質量%未満では、ナノ析出物13が少なくなって、き裂のピン止め効果が低下し、ナノ析出物13が1.0質量%を超えると、粒界に存在するナノ析出物13が多くなって疲労き裂のピン止め効果は向上するが、導電性が低下するため好ましくない。このため、ナノ析出物13の含有量を0.1~1.0質量%の範囲とした。 By causing the nanoprecipitate 13 to exist in an amount of 0.1% by mass or more and 1% by mass or less, it is possible to achieve a crack pinning effect while suppressing a decrease in conductivity of the aluminum-based conductive material 10. Here, if the nanoprecipitate 13 is less than 0.1% by mass, the nanoprecipitate 13 is reduced, and the pinning effect of cracks is reduced. If the nanoprecipitate 13 exceeds 1.0% by mass, Although the nanoprecipitate 13 present in the boundary increases and the pinning effect of the fatigue crack is improved, it is not preferable because the conductivity is lowered. Therefore, the content of the nanoprecipitate 13 is set in the range of 0.1 to 1.0% by mass.
生成するナノ析出物13の総量は、アルミニウム-スカンジウム系合金中のスカンジウムの含有量で決まるので、ナノ析出物13の個数が増加するとナノ析出物13の粒径は減少し、ナノ析出物13の個数が減少するとナノ析出物13の粒径は増加することになる。一方、金属組織中に発生した疲労き裂が進展する際に、疲労き裂がナノ析出物13によりピン止めされる効果は、ナノ析出物13の個数が多くなるほど、ナノ析出物13の粒径が大きくなるほど増加する。 Since the total amount of the nanoprecipitates 13 is determined by the content of scandium in the aluminum-scandium-based alloy, the particle size of the nanoprecipitates 13 decreases as the number of nanoprecipitates 13 increases. When the number decreases, the particle size of the nanoprecipitate 13 increases. On the other hand, when the fatigue crack generated in the metal structure propagates, the effect of the fatigue crack being pinned by the nanoprecipitate 13 is that as the number of nanoprecipitates 13 increases, the particle size of the nanoprecipitate 13 increases. It increases as becomes larger.
ここで、ナノ析出物13の平均粒径が1nm未満では、ナノ析出物13の個数が多くなって疲労き裂のピン止め発生の頻度は高まるが、ナノ析出物13による疲労き裂のピン止め作用は大きくなく、疲労き裂のピン止め効果は顕著とならない。一方、ナノ析出物13の平均粒径が60nmを超えると、ナノ析出物13による疲労き裂のピン止め作用は大きくなるが、ナノ析出物13の個数が少なくなって疲労き裂のピン止め発生の頻度は低下し、疲労き裂のピン止め効果は顕著とならない。このため、ナノ析出物13の総量が一定の場合、ナノ析出物13の平均粒径を1~60nmにすることで、疲労き裂のピン止め発生の頻度を高位に維持しながらナノ析出物13による疲労き裂のピン止め作用も高位に維持することができ、ナノ析出物13による疲労き裂のピン止め効果を向上させることができる。 Here, if the average particle size of the nanoprecipitates 13 is less than 1 nm, the number of nanoprecipitates 13 increases and the frequency of occurrence of pinning of fatigue cracks increases. The action is not large and the pinning effect of fatigue cracks is not significant. On the other hand, if the average particle size of the nanoprecipitates 13 exceeds 60 nm, the fatigue crack pinning effect by the nanoprecipitates 13 increases, but the number of nanoprecipitates 13 decreases and fatigue crack pinning occurs. The frequency of cracks decreases and the pinning effect of fatigue cracks is not significant. For this reason, when the total amount of the nanoprecipitates 13 is constant, the nanoprecipitates 13 are maintained at a high frequency while pinching of fatigue cracks is maintained at a high level by setting the average particle size of the nanoprecipitates 13 to 60 nm. The pinning action of the fatigue crack due to the can also be maintained at a high level, and the pinning effect of the fatigue crack due to the nanoprecipitate 13 can be improved.
また、加工後のアルミニウム-スカンジウム系合金を熱処理した際、熱処理後のビッカース硬度が70を超える状態ではひずみの除去が不十分で、金属組織の有する伸び性が、アルミニウム-スカンジウム系合金の組成から予測される本来の値まで回復しない。また、粒界角度の高角化も達成されない。一方、熱処理後のビッカース硬度が50未満の状態では、ひずみの除去が十分に行われて金属組織の有する伸び性が、アルミニウム-スカンジウム系合金の組成から予測される本来の値まで回復するが、同時に結晶粒11の成長が生じ、引張強度及び耐屈曲性の大幅な低下が生じる。 In addition, when the processed aluminum-scandium alloy is heat-treated, when the Vickers hardness after the heat treatment exceeds 70, strain is not sufficiently removed, and the elongation of the metal structure is based on the composition of the aluminum-scandium alloy. It does not recover to the expected original value. In addition, the grain boundary angle cannot be increased. On the other hand, when the Vickers hardness after the heat treatment is less than 50, the strain is sufficiently removed and the elongation of the metal structure is restored to the original value predicted from the composition of the aluminum-scandium alloy. At the same time, the growth of crystal grains 11 occurs, and the tensile strength and the bending resistance are greatly reduced.
続いて、アルミニウム基導電材料10からなる導体素線の製造方法について説明する。
純度が99.9質量%以上のアルミニウムと、純度が99質量%以上のスカンジウムを用いて、スカンジウムが0.27~0.32質量%含有されるアルミニウム-スカンジウム系合金からなる導電材料ブロックを鋳造する。次いで、250~450℃で0.5~30時間の時効処理を行い、時効処理後の導電材料ブロックから、例えば、直径が10mmのロッドを切削加工により作製する。
Next, a method for manufacturing a conductor wire made of the aluminum-based conductive material 10 will be described.
A conductive material block made of an aluminum-scandium alloy containing 0.27 to 0.32% by mass of scandium is cast using aluminum having a purity of 99.9% by mass or more and scandium having a purity of 99% by mass or more. To do. Next, an aging treatment is performed at 250 to 450 ° C. for 0.5 to 30 hours, and a rod having a diameter of, for example, 10 mm is manufactured by cutting from the conductive material block after the aging treatment.
アルミニウム-スカンジウム系合金を時効処理することにより、アルミニウム-スカンジウム系合金中のスカンジウムとアルミニウムは反応して、アルミニウム-スカンジウム系の金属間化合物であるAlScがナノ析出物13として、アルミニウムの結晶粒の粒界に生成する。なお、金属組織中に存在するナノ析出物13の調査から、添加したスカンジウムのほぼ全量がアルミニウムと反応してAlScを生成していることが確認できた。
ここで、時効処理の条件(加熱温度と加熱時間)を調節することで、ナノ析出物の平均粒径を1nm以上60nm以下の範囲に設定できる。例えば、加熱温度を350℃、加熱時間を0.1時間とすると、ナノ析出物13の最大粒径は3nmとなって、平均粒径は1nmとなる。また、加熱温度を350℃、加熱時間を3時間とすると、ナノ析出物13の最大粒径は10nmとなって、平均粒径は5nmとなる。更に、加熱温度を350℃、加熱時間を40時間とすると、ナノ析出物13の最大粒径は100nmとなって、平均粒径は60nmとなる。
By aging the aluminum-scandium-based alloy, scandium and aluminum in the aluminum-scandium-based alloy react with each other, and Al 3 Sc, which is an aluminum-scandium-based intermetallic compound, forms nanoprecipitates 13 as aluminum crystals. Generated at grain boundaries. In addition, from the investigation of the nanoprecipitate 13 present in the metal structure, it was confirmed that almost all of the added scandium reacted with aluminum to produce Al 3 Sc.
Here, the average particle diameter of the nanoprecipitate can be set in the range of 1 nm to 60 nm by adjusting the conditions of the aging treatment (heating temperature and heating time). For example, when the heating temperature is 350 ° C. and the heating time is 0.1 hour, the maximum particle size of the nanoprecipitate 13 is 3 nm and the average particle size is 1 nm. When the heating temperature is 350 ° C. and the heating time is 3 hours, the maximum particle size of the nanoprecipitate 13 is 10 nm, and the average particle size is 5 nm. Furthermore, when the heating temperature is 350 ° C. and the heating time is 40 hours, the maximum particle size of the nanoprecipitate 13 is 100 nm and the average particle size is 60 nm.
次いで、スエージング機を用いてロッドを、例えば、外径が1.5~2mm程度となるように圧延してワイヤを形成する。そして、ワイヤのダイス伸線加工を行って、線径が0.05mm以上0.5mm以下の原導体素線を形成する。ここで、ロッドの圧延によりワイヤを形成する際の加工度(相当ひずみ)を3~4とした後に、等軸晶形成を促進するための熱処理(例えば、熱処理温度はロッドの融点の30~70%)を行い、その後、ダイス伸線加工によりワイヤから原導体素線を形成する。ここで、原導体素線を形成する際の加工度(相当ひずみ)を、例えば、4~6、好ましくは5~6とすることにより、金属組織を構成する結晶粒11の平均粒径が2μmとなる。なお、ワイヤの金属組織を構成している結晶粒の粒界にナノ析出物13が存在していることにより、加工に伴ってワイヤを構成している金属組織に再結晶が生じて結晶粒11が形成される際、粒成長が抑制され、結晶粒11の平均粒径を2μm以下にすることが容易となる。 Next, the wire is formed by rolling the rod using a swaging machine so that the outer diameter is, for example, about 1.5 to 2 mm. Then, wire drawing of the wire is performed to form an original conductor strand having a wire diameter of 0.05 mm or more and 0.5 mm or less. Here, after the degree of work (corresponding strain) in forming the wire by rolling the rod is set to 3 to 4, a heat treatment for promoting equiaxed crystal formation (for example, the heat treatment temperature is 30 to 70 of the melting point of the rod). %), And then, an original conductor wire is formed from the wire by die drawing. Here, by setting the degree of processing (equivalent strain) when forming the original conductor wire to, for example, 4 to 6, preferably 5 to 6, the average grain size of the crystal grains 11 constituting the metal structure is 2 μm. It becomes. Note that the presence of the nanoprecipitates 13 at the grain boundaries of the crystal grains constituting the metal structure of the wire causes recrystallization to occur in the metal structure constituting the wire as a result of processing. Is formed, grain growth is suppressed, and it becomes easy to make the average grain size of the crystal grains 11 be 2 μm or less.
なお、ロッドからワイヤを形成する加工度を3~4とし、ダイス伸線加工の加工度を4~6.5、好ましくは6~6.5とすることにより、金属組織を構成する結晶粒11の平均粒径が1.6μmで、1μm以下の結晶粒11が存在する割合が断面積率で15%となり、ロッドからワイヤを形成する加工度を3~4とし、ダイス伸線加工の加工度を4~7、好ましくは6.5~7とすることにより、金属組織を構成する結晶粒11の平均粒径が1.5μmで、1μm以下の結晶粒11が存在する割合が断面積率で20%となる。また、ロッドからワイヤを形成する加工度を3~4とし、ダイス伸線加工の加工度を5~8(又は9)、好ましくは7を超え8以下とすることにより、金属組織を構成する結晶粒11の平均粒径が1.2μmで、1μm以下の結晶粒11が存在する割合が断面積率で50%となる。 Note that the crystal grain 11 constituting the metal structure is formed by setting the processing degree of forming the wire from the rod to 3 to 4 and the processing degree of the die drawing process to 4 to 6.5, preferably 6 to 6.5. The average grain size of 1.6 μm and the ratio of crystal grains 11 of 1 μm or less is 15% in terms of the cross-sectional area, and the degree of processing to form a wire from a rod is 3 to 4, and the degree of processing of die wire drawing Is set to 4 to 7, preferably 6.5 to 7, the average grain size of the crystal grains 11 constituting the metal structure is 1.5 μm, and the ratio of the crystal grains 11 of 1 μm or less is the cross-sectional area ratio. 20%. In addition, the degree of processing for forming a wire from a rod is 3 to 4, and the degree of processing for die drawing is 5 to 8 (or 9), preferably more than 7 and 8 or less. The average particle size of the grains 11 is 1.2 μm, and the ratio of the crystal grains 11 of 1 μm or less is 50% in terms of the cross-sectional area.
続いて、原導体素線の熱処理を行って、原導体素線の金属組織を構成している結晶粒11内に残存するひずみを除去することにより導体素線が得られる。なお、熱処理の温度は、原導体素線の金属組織を構成している結晶粒11の再結晶温度未満の温度である。例えば、原導体素線を形成する際の加工度を4~6として、金属組織を構成する結晶粒11の平均粒径を2μmとした場合、原導体素線を形成している金属組織のビッカース硬度は72~80であり、ビッカース硬度を50~70に低下させるには、熱処理温度を250~350℃とし処理時間を0.1~3時間に設定する。 Subsequently, a heat treatment is performed on the original conductor wire to remove strain remaining in the crystal grains 11 constituting the metal structure of the original conductor wire, thereby obtaining a conductor wire. The temperature of the heat treatment is a temperature lower than the recrystallization temperature of the crystal grains 11 constituting the metal structure of the original conductor wire. For example, when the processing degree when forming the original conductor wire is 4 to 6 and the average grain size of the crystal grains 11 constituting the metal structure is 2 μm, the Vickers of the metal structure forming the original conductor wire The hardness is 72 to 80. In order to reduce the Vickers hardness to 50 to 70, the heat treatment temperature is set to 250 to 350 ° C., and the treatment time is set to 0.1 to 3 hours.
また、原導体素線を形成する際の加工度を4~6.5として、金属組織を構成する結晶粒11の1μm以下の存在割合を断面積率で15%(結晶粒11の平均粒径を1.6μm)とした場合、原導体素線を形成している金属組織のビッカース硬度は72~80であり、ビッカース硬度を50~70に低下させるには、熱処理温度を250~350℃とし処理時間を0.1~3時間に設定する。更に、原導体素線を形成する際の加工度を4~7として、1μm以下の存在割合を断面積率で20%(結晶粒11の平均粒径を1.5μm)とした場合、原導体素線を形成している金属組織のビッカース硬度は72~85であり、ビッカース硬度を50~70に低下させるには、熱処理温度を250~350℃とし処理時間を0.1~3時間に設定する。そして、原導体素線を形成する際の加工度を5~8として、1μm以下の存在割合を断面積率で50%(結晶粒11の平均粒径を1.2μm)とした場合、原導体素線を形成している金属組織のビッカース硬度は72~90であり、ビッカース硬度を50~70に低下させるには、熱処理温度を250~350℃とし処理時間を0.1~3時間に設定する。 In addition, the degree of processing at the time of forming the original conductor wire is 4 to 6.5, and the existing ratio of the crystal grains 11 constituting the metal structure is 1 μm or less in terms of a cross-sectional area ratio of 15% (the average grain diameter of the crystal grains 11). 1.6 μm), the Vickers hardness of the metal structure forming the original conductor wire is 72 to 80. To reduce the Vickers hardness to 50 to 70, the heat treatment temperature is 250 to 350 ° C. Set the treatment time to 0.1-3 hours. Furthermore, when the degree of processing at the time of forming the original conductor wire is 4 to 7, the existing ratio of 1 μm or less is 20% in terms of the cross-sectional area ratio (the average particle diameter of the crystal grains 11 is 1.5 μm). The Vickers hardness of the metal structure forming the strand is 72 to 85. In order to reduce the Vickers hardness to 50 to 70, the heat treatment temperature is set to 250 to 350 ° C. and the treatment time is set to 0.1 to 3 hours. To do. When the degree of processing when forming the original conductor wire is 5 to 8, and the existing ratio of 1 μm or less is 50% in terms of the cross-sectional area ratio (the average particle diameter of the crystal grains 11 is 1.2 μm), the original conductor The Vickers hardness of the metal structure forming the strand is 72 to 90. To reduce the Vickers hardness to 50 to 70, the heat treatment temperature is set to 250 to 350 ° C. and the treatment time is set to 0.1 to 3 hours. To do.
本発明の第1の実施例に係るアルミニウム基導電材料10からなり、導体素線径が0.05mm以上0.5mm以下の導体素線を使用したケーブルを、ロボット用ケーブルとしてロボットのアーム部分等の駆動部の配線に使用することにより、あるいは、機器内配線用ケーブルとしてエレベータの昇降部に使用することにより、ケーブルに繰り返し曲げが負荷されても、導体素線に生じるひずみを小さくすることができ、導体素線(ケーブル)の早期断線を防止することができる。その結果、アルミニウム基導電材料の特徴である軽量化及び高柔軟性に加えて、高耐久性(ケーブルの早期断線防止)を達成することができ、装置を長期間に亘って安定して稼動させることができ、装置の信頼性を向上させると共に、メンテナンスの負担を軽減することができる。 A cable made of an aluminum-based conductive material 10 according to the first embodiment of the present invention and using a conductor wire having a conductor wire diameter of 0.05 mm or more and 0.5 mm or less is used as a robot cable. By using it for the wiring of the driving part of the machine or by using it for the elevator lifting part as an in-apparatus wiring cable, it is possible to reduce the strain generated in the conductor wire even when the cable is repeatedly bent. It is possible to prevent early disconnection of the conductor wire (cable). As a result, in addition to the light weight and high flexibility that are the characteristics of the aluminum-based conductive material, high durability (prevention of early cable breakage) can be achieved, and the apparatus can be stably operated over a long period of time. Thus, the reliability of the apparatus can be improved and the maintenance burden can be reduced.
本発明の第2の実施例に係るアルミニウム基導電材料14は、図2に示すように、時効処理したアルミニウム-ジルコニウム-スカンジウム系合金に相当ひずみが4以上となる加工を行った後、残存するひずみを除去して得られ、平均粒径が2μm以下のアルミニウム基合金の結晶粒15と、平均粒径が1nm以上60nm以下であって、結晶粒15の粒界16に0.1質量%以上1質量%以下存在するアルミニウム-スカンジウム系のナノ析出物17とを有する金属組織で構成され、ビッカース硬度は50以上70以下であって、繰り返し曲げを負荷する疲労試験における繰り返し回数10回時の疲労強度が少なくとも180MPaである。以下、詳細に説明する。 As shown in FIG. 2, the aluminum-based conductive material 14 according to the second embodiment of the present invention remains after an aging-treated aluminum-zirconium-scandium alloy is processed to have an equivalent strain of 4 or more. Obtained by removing the strain, the crystal grain 15 of the aluminum-based alloy having an average grain size of 2 μm or less, and the average grain size of 1 nm or more and 60 nm or less, and 0.1 mass% or more at the grain boundary 16 of the crystal grain 15 It is composed of a metal structure having aluminum-scandium-based nanoprecipitates 17 present in an amount of 1% by mass or less, having a Vickers hardness of 50 or more and 70 or less, and a repetition number of 10 6 times in a fatigue test in which repeated bending is applied. The fatigue strength is at least 180 MPa. Details will be described below.
アルミニウム-ジルコニウム-スカンジウム系合金を時効処理することにより、アルミニウム-ジルコニウム-スカンジウム系合金中のスカンジウムとアルミニウムは反応して、アルミニウム-スカンジウム系の金属間化合物であるAlScをナノ析出物17として生成し、生成したナノ析出物17は、アルミニウム基合金の結晶粒の粒界に存在する。ここで、アルミニウム-ジルコニウム-スカンジウム系合金中のスカンジウム量は、ナノ析出物17が0.1質量%以上1質量%以下生成するように予め調節されている。なお、ジルコニウムの一部はアルミニウム基合金の結晶粒内に固溶し、残部は粒界に存在している。 By aging the aluminum-zirconium-scandium alloy, scandium and aluminum in the aluminum-zirconium-scandium alloy react to form Al 3 Sc, which is an aluminum-scandium intermetallic compound, as nanoprecipitates 17. The generated nanoprecipitates 17 are present at the grain boundaries of the crystal grains of the aluminum-based alloy. Here, the amount of scandium in the aluminum-zirconium-scandium-based alloy is adjusted in advance so that the nanoprecipitate 17 is generated in an amount of 0.1 mass% to 1 mass%. A part of zirconium is dissolved in the crystal grains of the aluminum-based alloy, and the rest is present at the grain boundaries.
そして、ナノ析出物17が生成したアルミニウム-ジルコニウム-スカンジウム系合金に、相当ひずみが4以上となる加工を加えると、アルミニウム基合金の結晶粒内に転位が蓄積され、亜結晶粒界の形成を経て結晶粒の微細化が生じ、平均粒径が2μm以下の結晶粒15が形成される。ここで、時効処理後のアルミニウム基合金の結晶粒の粒界に存在しているナノ析出物17と結晶粒との格子定数のミスマッチは小さいので、ナノ析出物17の粗大化が抑制され、ナノ析出物17はアルミニウム基合金の結晶粒の粒界に分散する。このため、相当ひずみが4以上となる加工を加えて結晶粒が微細化される際に、結晶粒の異常粒成長が抑制され、アルミニウム-ジルコニウム-スカンジウム系合金は、平均粒径が2μm以下のアルミニウム基合金の結晶粒15と、平均粒径が1nm以上60nm以下であって、結晶粒15の粒界16に存在するナノ析出物17とを有する金属組織となる。なお、ジルコニウムの一部は結晶粒15内に固溶し、残部は粒界16に存在している。 Then, when the aluminum-zirconium-scandium alloy in which the nanoprecipitates 17 are formed is subjected to processing with an equivalent strain of 4 or more, dislocations are accumulated in the crystal grains of the aluminum-based alloy, thereby forming subgrain boundaries. As a result, crystal grains are refined, and crystal grains 15 having an average grain size of 2 μm or less are formed. Here, since the mismatch of the lattice constant between the nanoprecipitate 17 and the crystal grain existing in the grain boundary of the aluminum-based alloy after the aging treatment is small, the coarsening of the nanoprecipitate 17 is suppressed, The precipitates 17 are dispersed at the grain boundaries of the aluminum-based alloy crystal grains. For this reason, when the crystal grains are refined by applying a process with an equivalent strain of 4 or more, abnormal grain growth of the crystal grains is suppressed, and the aluminum-zirconium-scandium alloy has an average grain size of 2 μm or less. A metal structure having crystal grains 15 of the aluminum-based alloy and nanoprecipitates 17 having an average grain diameter of 1 nm or more and 60 nm or less and existing at the grain boundaries 16 of the crystal grains 15 is obtained. A part of zirconium is dissolved in the crystal grains 15, and the remaining part is present at the grain boundaries 16.
相当ひずみが4以上となる加工を行った際にアルミニウム基合金の結晶粒内に導入された転位は、結晶粒が微細化して平均粒径が2μm以下の結晶粒15を形成する過程で結晶粒の粒界に吸収されるが、平均粒径が2μm以下の結晶粒15内には、加工時に導入された転位の一部が残存し、結晶粒15内にはひずみが存在している。このため、微細化直後の金属組織の有するビッカース硬度は、アルミニウム-ジルコニウム-スカンジウム系合金の組成から予測される本来の値よりも高い値を示し、加工後のアルミニウム-ジルコニウム-スカンジウム系合金の伸び性(変形性)は低下している。 The dislocations introduced into the crystal grains of the aluminum-based alloy when processing with an equivalent strain of 4 or more occurs during the process in which the crystal grains are refined to form crystal grains 15 having an average grain size of 2 μm or less. However, some of the dislocations introduced during processing remain in the crystal grains 15 having an average grain size of 2 μm or less, and strain exists in the crystal grains 15. For this reason, the Vickers hardness of the metal structure immediately after refinement is higher than the original value predicted from the composition of the aluminum-zirconium-scandium alloy, and the elongation of the aluminum-zirconium-scandium alloy after processing The property (deformability) is reduced.
ここで、加工後のアルミニウム-ジルコニウム-スカンジウム系合金に、例えば、熱処理を行って結晶粒内に残存するひずみを除去すると、アルミニウム-ジルコニウム-スカンジウム系合金の伸び性を回復させることができるが、熱処理により結晶粒15に粒成長が生じるので、引張強度及び耐屈曲性が大幅に低下する。そこで、加工後のアルミニウム-ジルコニウムースカンジウム系合金のビッカース硬度が50以上70以下となるように熱処理条件を設定すると、結晶粒15の成長を押えて、結晶粒15内に存在する転位を粒界16に吸収させて結晶粒15内に残存するひずみを除去することができる。その結果、加工後のアルミニウム-ジルコニウム-スカンジウム系合金の伸び性(変形性)を回復させることができる。 Here, if the strain remaining in the crystal grains is removed by performing, for example, heat treatment on the processed aluminum-zirconium-scandium alloy, the extensibility of the aluminum-zirconium-scandium alloy can be recovered. Since grain growth occurs in the crystal grains 15 by the heat treatment, the tensile strength and the bending resistance are greatly lowered. Therefore, if the heat treatment conditions are set so that the processed aluminum-zirconium scandium alloy has a Vickers hardness of 50 or more and 70 or less, the growth of the crystal grains 15 is suppressed, and the dislocations existing in the crystal grains 15 are separated from the grain boundaries. Thus, the strain remaining in the crystal grains 15 can be removed. As a result, the elongation (deformability) of the processed aluminum-zirconium-scandium alloy can be recovered.
なお、転位が粒界16で吸収されることに伴って、粒界角度が高角化し、例えば、平均粒界角度は15度以上30度以下となる。このため、繰り返し曲げを負荷する疲労試験において結晶粒15内に導入される転位は、粒界16が高角化しているため粒界16に吸収され易く、結晶粒15内にひずみが蓄積されることが抑制される。 As the dislocation is absorbed at the grain boundary 16, the grain boundary angle is increased, and for example, the average grain boundary angle is 15 degrees or more and 30 degrees or less. For this reason, dislocations introduced into the crystal grains 15 in a fatigue test in which repeated bending is applied are easily absorbed by the grain boundaries 16 because the grain boundaries 16 are angled, and strain is accumulated in the crystal grains 15. Is suppressed.
ナノ析出物17が生成したアルミニウム-ジルコニウム-スカンジウム系合金に、相当ひずみ4以上の加工を施すことにより形成される金属組織(平均粒径が2μm以下のアルミニウム基合金の結晶粒15と、平均粒径が1nm以上60nm以下であって、結晶粒15の粒界16に存在するナノ析出物17とを有する金属組織)を熱処理して結晶粒15内に残存するひずみを除去することにより、繰り返し曲げが負荷された際に金属組織内に疲労き裂が発生することを抑制できる。そして、金属組織内に疲労き裂が発生しても、平均粒径が2μm以下の結晶粒15を有する金属組織では、疲労き裂は、伝播する際に結晶粒15と頻繁に衝突し、疲労き裂の偏向とき裂分岐が促進されて、疲労き裂が一方向に進展する際の速度が低下し、更に、ナノ析出物17に疲労き裂が衝突すると、疲労き裂はナノ析出物17によりピン止めされるため、疲労き裂の進展速度が更に低下する。 Metal structure formed by subjecting the aluminum-zirconium-scandium alloy produced with nanoprecipitates 17 to processing with an equivalent strain of 4 or more (crystal grains 15 of an aluminum-based alloy having an average grain size of 2 μm or less, and average grains) The metal structure having a diameter of 1 nm to 60 nm and having nanoprecipitates 17 present at the grain boundaries 16 of the crystal grains 15 is heat-treated to remove strain remaining in the crystal grains 15, thereby repeatedly bending It is possible to suppress the occurrence of fatigue cracks in the metal structure when a load is applied. Even if a fatigue crack occurs in the metal structure, the fatigue crack frequently collides with the crystal grains 15 when propagating in the metal structure having the crystal grains 15 having an average grain size of 2 μm or less, and fatigue occurs. When the crack is deflected, crack branching is promoted, the speed at which the fatigue crack propagates in one direction is reduced, and when the fatigue crack collides with the nanoprecipitate 17, the fatigue crack becomes a nanoprecipitate 17. Therefore, the fatigue crack growth rate is further reduced.
ここで、結晶粒15の平均粒径を2μmに制御した場合、金属組織の顕微鏡観察から、金属組織は、最大粒径が4μmの結晶粒15から構成され、疲労試験における繰り返し回数10回時の疲労強度を180MPaにすることができる。そして、金属組織中に1μm以下の結晶粒15が断面積率で15%含まれるようにすることで、結晶粒11の平均粒径を1.6μmにすることができ、疲労試験における繰り返し回数10回時の疲労強度を190MPaとすることができる。また、金属組織中に1μm以下の結晶粒15が断面積率で20%含まれるようにすることで、結晶粒15の平均粒径を1.5μmにすることができ、疲労試験における繰り返し回数10回時の疲労強度を200MPaとすることができる。更に、1μm以下の結晶粒15が断面積率で50%含まれるようにすることで、結晶粒15の平均粒径を1.2μmにすることができ、疲労試験における繰り返し回数10回時の疲労強度を220MPaとすることができる。 Here, when the average grain size of the crystal grains 15 is controlled to 2 μm, the metal structure is composed of the crystal grains 15 having a maximum grain size of 4 μm from the microscopic observation of the metal structure, and the number of repetitions in the fatigue test is 10 6 times. The fatigue strength of can be 180 MPa. The average grain size of the crystal grains 11 can be 1.6 μm by including 15% of the crystal grains 15 of 1 μm or less in the metal structure in terms of the cross-sectional area ratio, and the number of repetitions in the fatigue test is 10 The fatigue strength at the 6th time can be 190 MPa. Further, by making 20% of the crystal grains 15 of 1 μm or less in the metal structure in terms of the cross-sectional area ratio, the average grain size of the crystal grains 15 can be made 1.5 μm, and the number of repetitions in the fatigue test is 10 The fatigue strength at the sixth time can be 200 MPa. Furthermore, by making the crystal grains 15 of 1 μm or less contain 50% in terms of the cross-sectional area ratio, the average grain size of the crystal grains 15 can be 1.2 μm, and the number of repetitions in the fatigue test is 10 6 times. The fatigue strength can be 220 MPa.
アルミニウム基導電材料14において、時効処理したアルミニウム-ジルコニウム-スカンジウム系合金に相当ひずみが4以上となる加工を行って、平均粒径が2μm以下のアルミニウム基合金の結晶粒15と、平均粒径が1nm以上60nm以下であって、結晶粒15の粒界16に存在するアルミニウム-スカンジウム系のナノ析出物17とを有する金属組織を構成し、ビッカース硬度が50以上70以下となるように熱処理して残存するひずみを除去することによる作用効果は、第1の実施例に係るアルミニウム基導電材料10における作用効果と同一であるので説明は省略する。以下、第2の実施例に係るアルミニウム基導電材料14の特徴であるジルコニウムを0.1質量%以上0.2質量%以下含有することに関する作用効果について説明する。 In the aluminum-based conductive material 14, an aged aluminum-zirconium-scandium-based alloy is processed to have an equivalent strain of 4 or more, and the aluminum-based alloy crystal grains 15 having an average grain size of 2 μm or less and an average grain size of A metal structure having an aluminum-scandium-based nanoprecipitate 17 present at the grain boundary 16 of the crystal grain 15 and having a heat treatment so that the Vickers hardness is 50 or more and 70 or less. Since the effect by removing the remaining distortion is the same as the effect in the aluminum-based conductive material 10 according to the first embodiment, the description is omitted. Hereafter, the effect regarding containing 0.1 mass% or more and 0.2 mass% or less of zirconium which is the characteristics of the aluminum-based conductive material 14 according to the second embodiment will be described.
例えば、アルミニウムの結晶粒の粒界にアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織を有する線材の常温における引張強度σRTは300MPaであり、この線材を260℃で1時間加熱した直後における引張強度σ260は294MPaとなって、耐熱性を、(σ260/σRT)×100で評価すると、耐熱性は98%となる。一方、ジルコニウムが0.01質量%固溶したアルミニウム基合金の結晶粒の粒界にアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織を有する線材の常温における引張強度σRTは300MPaであり、この線材を260℃で1時間加熱した直後における引張強度σ260は294MPaとなって耐熱性は98%となる。また、ジルコニウムが0.05質量%固溶したアルミニウム基合金の結晶粒の粒界にアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織を有する線材の常温における引張強度σRTは305MPaであり、この線材を260℃で1時間加熱した直後における引張強度σ260は303MPaとなって耐熱性は99%となる。更に、ジルコニウムが0.1質量固溶したアルミニウム基合金の結晶粒の粒界にアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織を有する線材の常温における引張強度σRTは310MPaであり、この線材を260℃で1時間加熱した直後における引張強度σ260は309MPaとなって耐熱性は100%となる。 For example, the tensile strength σ RT at room temperature of a wire having a metal structure in which 0.3 mass% of aluminum-scandium nanoprecipitates exist at the grain boundaries of aluminum crystal grains is 300 MPa. The tensile strength σ 260 immediately after the time heating is 294 MPa, and when the heat resistance is evaluated by (σ 260 / σ RT ) × 100, the heat resistance is 98%. On the other hand, a tensile strength σ RT at room temperature of a wire having a metal structure in which 0.3 mass% of aluminum-scandium-based nanoprecipitates are present at the grain boundaries of an aluminum-based alloy in which 0.01 mass% of zirconium is dissolved. Is 300 MPa, and the tensile strength σ 260 immediately after heating this wire at 260 ° C. for 1 hour is 294 MPa, and the heat resistance is 98%. Also, tensile strength at room temperature σ RT of a wire having a metal structure in which 0.3 mass% of aluminum-scandium-based nanoprecipitates are present at the grain boundaries of an aluminum-based alloy in which 0.05 mass% of zirconium is dissolved. Is 305 MPa. Immediately after heating the wire at 260 ° C. for 1 hour, the tensile strength σ 260 is 303 MPa, and the heat resistance is 99%. Furthermore, the tensile strength σ RT at room temperature of a wire having a metal structure in which 0.3 mass% of aluminum-scandium-based nanoprecipitates are present at the grain boundaries of an aluminum-based alloy in which 0.1 mass of zirconium is dissolved is The tensile strength σ 260 immediately after heating the wire at 260 ° C. for 1 hour is 309 MPa, and the heat resistance is 100%.
以上のように、アルミニウム基導電材料14の金属組織を構成している結晶粒15の粒内及び粒界16にジルコニウムが存在することで、アルミニウム基導電材料14が高温の熱履歴を受けても粒成長等の組織変化が生じることを防止でき、引張強度の低下を防止できることが解る。ここで、ジルコニウムの固溶量(含有量)が0.2質量%を超えると、熱履歴後の引張強度改善効果は増大するが、導電性が低下し、導電材料としての機能が低下する。このため、ジルコニウムの含有量は0.1質量%以上0.2質量%以下とすることが好ましい。したがって、アルミニウム基導電材料14がジルコニウムを、0.1質量%以上0.2質量%以下含有するようにすることで、アルミニウム基導電材料14が高温の熱履歴を受けても、アルミニウム基導電材料14の引張強度の低下が防止できるため、アルミニウム基導電材料14としての強度が維持できる。 As described above, the presence of zirconium in the crystal grains 15 constituting the metal structure of the aluminum-based conductive material 14 and in the grain boundaries 16 allows the aluminum-based conductive material 14 to receive a high-temperature thermal history. It can be seen that structural changes such as grain growth can be prevented, and a decrease in tensile strength can be prevented. Here, when the solid solution amount (content) of zirconium exceeds 0.2% by mass, the effect of improving the tensile strength after the heat history increases, but the conductivity decreases and the function as the conductive material decreases. For this reason, it is preferable that content of zirconium shall be 0.1 to 0.2 mass%. Therefore, by making the aluminum-based conductive material 14 contain zirconium in an amount of 0.1% by mass or more and 0.2% by mass or less, even if the aluminum-based conductive material 14 receives a high-temperature thermal history, the aluminum-based conductive material Therefore, the strength of the aluminum-based conductive material 14 can be maintained.
続いて、アルミニウム基導電材料14からなる導体素線の製造方法について説明する。
純度が99.9質量%以上のアルミニウムと、純度が99質量%以上のスカンジウムと、純度が99質量%以上のジルコニウムを用いて、スカンジウムが0.27~0.32質量%、ジルコニウムが0.1質量%以上0.2質量%以下それぞれ含有されるアルミニウム-ジルコニウム-スカンジウム系合金からなる導電材料ブロックを鋳造する。次いで、250~450℃で0.5~30時間の時効処理を行い、時効処理後の導電材料ブロックから、例えば、直径が10mmのロッドを切削加工により作製する。
Next, a method for manufacturing a conductor wire made of the aluminum-based conductive material 14 will be described.
Using aluminum having a purity of 99.9% by mass or more, scandium having a purity of 99% by mass or more, and zirconium having a purity of 99% by mass or more, scandium is 0.27 to 0.32% by mass, and zirconium is 0.8%. A conductive material block made of an aluminum-zirconium-scandium alloy containing 1% by mass to 0.2% by mass is cast. Next, an aging treatment is performed at 250 to 450 ° C. for 0.5 to 30 hours, and a rod having a diameter of, for example, 10 mm is manufactured by cutting from the conductive material block after the aging treatment.
アルミニウム-ジルコニウム-スカンジウム系合金を時効処理することにより、アルミニウム-ジルコニウム-スカンジウム系合金中のスカンジウムとアルミニウムは反応して、アルミニウム-スカンジウム系の金属間化合物であるAlScがナノ析出物17として、アルミニウム基合金の結晶粒の粒界に生成する。なお、金属組織中に存在するナノ析出物17の調査から、添加したスカンジウムのほぼ全量がアルミニウムと反応してAlScを生成していることが確認できた。
ここで、時効処理の条件(加熱温度と加熱時間)を調節することで、ナノ析出物17の平均粒径を1nm以上60nm以下の範囲に設定できる。例えば、加熱温度を350℃、加熱時間を0.1時間とすると、ナノ析出物17の最大粒径は2nmとなって、平均粒径は1nmとなる。また、加熱温度を350℃、加熱時間を3時間とすると、ナノ析出物13の最大粒径は10nmとなって、平均粒径は5nmとなる。更に、加熱温度を350℃、加熱時間を40時間とすると、ナノ析出物13の最大粒径は90nmとなって、平均粒径は60nmとなる。
By aging the aluminum-zirconium-scandium alloy, scandium and aluminum in the aluminum-zirconium-scandium alloy react with each other, and Al 3 Sc, which is an aluminum-scandium-based intermetallic compound, becomes a nanoprecipitate 17. And formed at the grain boundaries of aluminum-based alloy crystal grains. From the investigation of the nanoprecipitate 17 present in the metal structure, it was confirmed that almost all of the added scandium reacted with aluminum to produce Al 3 Sc.
Here, the average particle diameter of the nanoprecipitate 17 can be set in the range of 1 nm or more and 60 nm or less by adjusting the conditions of the aging treatment (heating temperature and heating time). For example, when the heating temperature is 350 ° C. and the heating time is 0.1 hour, the maximum particle size of the nanoprecipitate 17 is 2 nm and the average particle size is 1 nm. When the heating temperature is 350 ° C. and the heating time is 3 hours, the maximum particle size of the nanoprecipitate 13 is 10 nm, and the average particle size is 5 nm. Furthermore, when the heating temperature is 350 ° C. and the heating time is 40 hours, the maximum particle size of the nanoprecipitate 13 is 90 nm and the average particle size is 60 nm.
次いで、スエージング機を用いてロッドを、例えば、外径が1.5~2mm程度となるように圧延してワイヤを形成する。そして、ワイヤのダイス伸線加工を行って、線径が0.05mm以上0.5mm以下の原導体素線を形成する。ここで、ロッドの圧延によりワイヤを形成する際の加工度(相当ひずみ)を3~4とした後に、等軸晶形成を促進するための熱処理(例えば、熱処理温度はロッドの融点の30~70%)を行い、その後、ダイス伸線加工によりワイヤから原導体素線を形成する。ここで、原導体素線を形成する際の加工度(相当ひずみ)を、例えば、4~6、好ましくは5~6とすることにより、金属組織を構成する結晶粒15の平均粒径が2μmとなる。なお、ワイヤの金属組織を構成している結晶粒の粒界にナノ析出物17が存在していることにより、加工に伴ってワイヤを構成している金属組織に再結晶が生じて結晶粒15が形成される際、粒成長が抑制され、結晶粒15の平均粒径を2μm以下にすることが容易となる。 Next, the wire is formed by rolling the rod using a swaging machine so that the outer diameter is, for example, about 1.5 to 2 mm. Then, wire drawing of the wire is performed to form an original conductor strand having a wire diameter of 0.05 mm or more and 0.5 mm or less. Here, after the degree of work (corresponding strain) in forming the wire by rolling the rod is set to 3 to 4, a heat treatment for promoting equiaxed crystal formation (for example, the heat treatment temperature is 30 to 70 of the melting point of the rod). %), And then, an original conductor wire is formed from the wire by die drawing. Here, by setting the degree of processing (equivalent strain) when forming the original conductor wire to, for example, 4 to 6, preferably 5 to 6, the average grain size of the crystal grains 15 constituting the metal structure is 2 μm. It becomes. Note that the presence of the nanoprecipitate 17 at the grain boundaries of the crystal grains constituting the metal structure of the wire causes recrystallization to occur in the metal structure constituting the wire as a result of processing. Is formed, grain growth is suppressed, and the average grain size of the crystal grains 15 can be easily reduced to 2 μm or less.
なお、ロッドからワイヤを形成する加工度を3~4とし、ダイス伸線加工の加工度を4~6.5、好ましくは6~6.5とすることにより、金属組織を構成する結晶粒15の平均粒径が1.6μmで、1μm以下の結晶粒15が存在する割合が断面積率で15%となり、ロッドからワイヤを形成する加工度を3~4とし、ダイス伸線加工の加工度を4~7、好ましくは6.5~7とすることにより、金属組織を構成する結晶粒15の平均粒径が1.5μmで、1μm以下の結晶粒15が存在する割合が断面積率で20%となる。また、ロッドからワイヤを形成する加工度を3~4とし、ダイス伸線加工の加工度を5~8、好ましくは7を超え8以下とすることにより、金属組織を構成する結晶粒15の平均粒径が1.2μmで、1μm以下の結晶粒15が存在する割合が断面積率で50%となる。 The degree of processing for forming a wire from a rod is 3 to 4, and the degree of processing for die drawing is 4 to 6.5, preferably 6 to 6.5. The average grain size of 1.6 μm and the proportion of crystal grains 15 of 1 μm or less is 15% in terms of cross-sectional area, and the degree of processing to form a wire from a rod is 3 to 4, and the degree of processing of die wire drawing Is set to 4 to 7, and preferably 6.5 to 7, the average grain size of the crystal grains 15 constituting the metal structure is 1.5 μm, and the ratio of the crystal grains 15 of 1 μm or less is the cross-sectional area ratio. 20%. Further, the processing degree of forming the wire from the rod is 3 to 4, and the processing degree of the die drawing process is 5 to 8, preferably more than 7 and 8 or less, so that the average of the crystal grains 15 constituting the metal structure The ratio of the presence of crystal grains 15 having a grain size of 1.2 μm and 1 μm or less is 50% in terms of the cross-sectional area ratio.
続いて、原導体素線の熱処理を行って、原導体素線の金属組織を構成している結晶粒15内に残存するひずみを除去することにより導体素線が得られる。なお、熱処理の温度は、原導体素線の金属組織を構成している結晶粒15の再結晶温度未満の温度である。例えば、原導体素線を形成する際の加工度を4~6として、金属組織を構成する結晶粒15の平均粒径を2μmとした場合、原導体素線を形成している金属組織のビッカース硬度は75~85であり、ビッカース硬度を50~70に低下させるには、熱処理温度を250~400℃とし処理時間を0.1~5時間に設定する。 Subsequently, a heat treatment is performed on the original conductor wire to remove strain remaining in the crystal grains 15 constituting the metal structure of the original conductor wire, thereby obtaining a conductor wire. The temperature of the heat treatment is a temperature lower than the recrystallization temperature of the crystal grains 15 constituting the metal structure of the original conductor wire. For example, when the processing degree when forming the original conductor wire is 4 to 6 and the average grain size of the crystal grains 15 constituting the metal structure is 2 μm, the Vickers of the metal structure forming the original conductor wire The hardness is 75 to 85. In order to reduce the Vickers hardness to 50 to 70, the heat treatment temperature is set to 250 to 400 ° C., and the treatment time is set to 0.1 to 5 hours.
また、原導体素線を形成する際の加工度を4~6.5として、金属組織を構成する結晶粒15の1μm以下の存在割合を断面積率で15%(結晶粒15の平均粒径を1.6μm)とした場合、原導体素線を形成している金属組織のビッカース硬度は75~85であり、ビッカース硬度を50~70に低下させるには、熱処理温度を250~400℃とし処理時間を0.1~5時間に設定する。更に、原導体素線を形成する際の加工度を4~7として、1μm以下の存在割合を断面積率で20%(結晶粒15の平均粒径を1.5μm)とした場合、原導体素線を形成している金属組織のビッカース硬度は75~90であり、ビッカース硬度を50~70に低下させるには、熱処理温度を250~400℃とし処理時間を0.1~5時間に設定する。そして、原導体素線を形成する際の加工度を5~8として、1μm以下の存在割合を断面積率で50%(結晶粒15の平均粒径を1.2μm)とした場合、原導体素線を形成している金属組織のビッカース硬度は80~95であり、ビッカース硬度を50~70に低下させるには、熱処理温度を250~400℃とし処理時間を0.1~5時間に設定する。 In addition, the degree of processing at the time of forming the original conductor wire is 4 to 6.5, and the existing ratio of the crystal grains 15 constituting the metal structure of 1 μm or less is 15% in terms of the cross-sectional area ratio (the average grain diameter of the crystal grains 15). 1.6 μm), the Vickers hardness of the metal structure forming the original conductor wire is 75 to 85. To reduce the Vickers hardness to 50 to 70, the heat treatment temperature is set to 250 to 400 ° C. Set the treatment time to 0.1-5 hours. Furthermore, when the degree of processing at the time of forming the original conductor wire is 4 to 7, and the existing ratio of 1 μm or less is 20% in terms of the cross-sectional area ratio (the average particle diameter of the crystal grains 15 is 1.5 μm), the original conductor The Vickers hardness of the metal structure forming the strand is 75 to 90. To reduce the Vickers hardness to 50 to 70, the heat treatment temperature is set to 250 to 400 ° C. and the treatment time is set to 0.1 to 5 hours. To do. Then, when the degree of processing at the time of forming the original conductor wire is 5 to 8, the existing ratio of 1 μm or less is 50% in terms of the cross-sectional area ratio (the average particle diameter of the crystal grains 15 is 1.2 μm), the original conductor The Vickers hardness of the metal structure forming the strand is 80 to 95. To reduce the Vickers hardness to 50 to 70, the heat treatment temperature is set to 250 to 400 ° C. and the treatment time is set to 0.1 to 5 hours. To do.
本発明の第2の実施例に係るアルミニウム基導電材料14からなり、導体素線径が0.05mm以上0.5mm以下の導体素線を使用したケーブルを、ロボット用ケーブルとして工場や災害現場等の高温環境下に曝される可能性のあるロボットのアーム部分等の駆動部の配線に使用すると、ロボットが一時的高熱下に曝されてもケーブルの引張強度ひいては耐久性を維持することができるので、ロボットを、例えば、ケーブルの疲労寿命データから推定される設計稼動期間に亘って安定して稼動させることができ、ロボットの信頼性を向上させると共に、メンテナンスの負担を軽減することができる。 A cable made of an aluminum-based conductive material 14 according to the second embodiment of the present invention and using a conductor wire having a conductor wire diameter of 0.05 mm or more and 0.5 mm or less is used as a robot cable, such as a factory or disaster site. When used for wiring of a drive unit such as a robot arm that may be exposed to a high temperature environment, the tensile strength and durability of the cable can be maintained even if the robot is temporarily exposed to high heat. Therefore, for example, the robot can be stably operated over the design operation period estimated from the fatigue life data of the cable, and the reliability of the robot can be improved and the burden of maintenance can be reduced.
本発明の第2の実施例に係るアルミニウム基導電材料14からなり、導体素線径が0.05mm以上0.5mm以下の導体素線を使用したケーブルを、電気自動車の急速充電スタンド機のコネクターケーブルや電気溶接機のキャブタイヤケーブルとして使用すると、使用時に大きな電流が流れて一時的にケーブルの温度が上昇しても、ケーブルの引張強度ひいては耐久性を維持することができるので、ケーブルを、ケーブルの疲労寿命データから推定される設計稼動期間に亘って安定して使用することができ、急速充電スタンド機や電気溶接機の信頼性を向上させると共に、メンテナンスの負担を軽減することができる。 A cable made of an aluminum-based conductive material 14 according to a second embodiment of the present invention and having a conductor wire diameter of 0.05 mm or more and 0.5 mm or less is used as a connector for a quick charging stand machine of an electric vehicle. When used as a cable or a cabtyre cable of an electric welder, even if a large current flows during use and the temperature of the cable temporarily rises, the cable's tensile strength and eventually durability can be maintained. It can be used stably over the design operation period estimated from the fatigue life data of the cable, and the reliability of the quick charging stand machine and the electric welding machine can be improved and the burden of maintenance can be reduced.
本発明の第2の実施例に係るアルミニウム基導電材料14からなり、導体素線径が0.05mm以上0.5mm以下の導体素線を使用したケーブルを、機器内配線用ケーブルとして太陽光発電モジュールの接続用ケーブルに使用すると、環境変化によりケーブルの温度が大きく変化しても、ケーブルの引張り強度ひいては耐久性を維持することができ、ケーブルを、ケーブルの疲労寿命データから推定される設計稼動期間に亘って安定して使用することができ、太陽光発電モジュールの信頼性を向上させると共に、メンテナンスの負担を軽減することができる。 Photovoltaic power generation using, as an in-apparatus wiring cable, a cable made of an aluminum-based conductive material 14 according to a second embodiment of the present invention and using a conductor strand having a conductor strand diameter of 0.05 mm to 0.5 mm. When used as a module connection cable, even if the cable temperature changes greatly due to environmental changes, the cable's tensile strength and durability can be maintained, and the cable is designed and operated from the fatigue life data of the cable. It can be used stably over a period of time, improves the reliability of the photovoltaic power generation module, and reduces the maintenance burden.
次に、本発明の作用効果を確認するために行った実験例、比較例について、以下に説明する。
(実験例1~18)
平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線1、2、3と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線4、5、6と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線7、8、9をそれぞれ作製し、得られた導体複合素線1~9を用いて縒り線を形成し断面積が0.2mmのケーブル1~9を作製した。
Next, experimental examples and comparative examples performed for confirming the effects of the present invention will be described below.
(Experimental Examples 1 to 18)
An aluminum crystal grain having an average particle diameter of 2 μm, and a metal structure in which 0.1 mass% of an aluminum-scandium-based nanoprecipitate having an average particle diameter of 5 nm is present at the grain boundary of the aluminum crystal grain, Conductor wires 1, 2, and 3 made of an aluminum-based conductive material with Vickers hardness adjusted to 50, 60, and 70, respectively, aluminum crystal grains having an average grain diameter of 2 μm, and aluminum crystals An aluminum base composed of a metal structure in which 0.3 mass% of aluminum-scandium nanoprecipitates having an average particle diameter of 5 nm are present at the grain boundaries of the grains, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. The conductor strands 4, 5, 6 made of a conductive material, aluminum crystal grains having an average grain diameter of 2 μm, and grain boundaries of aluminum crystal grains A wire diameter made of an aluminum-based conductive material composed of a metal structure in which 1% by mass of aluminum-scandium nanoprecipitates having an average particle diameter of 5 nm are present and Vickers hardness is adjusted to 50, 60, and 70, respectively. 80 μm conductor wires 7, 8, and 9 were produced, respectively, and twisted wires were formed using the obtained conductor composite wires 1 to 9 to produce cables 1 to 9 having a cross-sectional area of 0.2 mm 2 .
また、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線10、11、12と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線13、14、15と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線16、17、18をそれぞれ作製し、得られた導体素線10~18を用いて縒り線を形成し断面積が0.2mmのケーブル10~18を作製した。 Also, aluminum-scandium having an average particle diameter of 5 nm at the grain boundary of aluminum crystal grains having an average grain diameter of 1.5 μm (crystal grains of 1 μm or less are present in a cross-sectional area ratio of 20%) and aluminum crystal grains. Conductor strands 10 and 11 having a wire diameter of 80 μm made of an aluminum-based conductive material composed of a metal structure containing 0.1% by mass of nanoprecipitates and adjusted to Vickers hardness of 50, 60 and 70, respectively. 12 and aluminum having an average grain size of 1.5 nm (a crystal grain of 1 μm or less is present in a cross-sectional area of 20%) and aluminum having an average grain size of 5 nm at the grain boundary of the aluminum crystal grains -A wire made of an aluminum-based conductive material composed of a metal structure containing 0.3% by mass of scandium-based nanoprecipitates and adjusted to Vickers hardness of 50, 60 and 70, respectively. Conductor wires 13, 14, 15 having a diameter of 80 μm, aluminum crystal grains having an average grain size of 1.5 μm (crystal grains of 1 μm or less are present in a cross-sectional area ratio of 20%), and grain boundaries of the aluminum crystal grains A wire made of an aluminum-based conductive material composed of a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 5 nm is present and having a Vickers hardness adjusted to 50, 60, and 70, respectively. Conductor strands 16, 17 and 18 having a diameter of 80 μm were respectively produced, and twisted wires were formed using the obtained conductor strands 10 to 18 to produce cables 10 to 18 having a cross-sectional area of 0.2 mm 2 .
そして、常温でケーブル1~18に荷重100gを負荷した状態で、曲げ半径が15mm、折り曲げ角度範囲が±90度の左右繰り返し曲げを加える屈曲試験(動的駆動試験)を行って破断回数を求めた。また、作製したケーブル1~18を用いて、導電率をそれぞれ求めた。得られた破断回数及び導電率を表1に示す。 Then, with a load of 100 g applied to cables 1 to 18 at room temperature, a bending test (dynamic driving test) is performed in which a bending radius is 15 mm and a bending angle range is ± 90 degrees, and bending is performed repeatedly to determine the number of breaks. It was. In addition, the electrical conductivities were obtained using the produced cables 1 to 18, respectively. Table 1 shows the number of breaks and electrical conductivity obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
導体素線1~18と、平均的にほぼ同様の断面組織を有し、長さ30mm、幅3mm、厚さ0.3mmの部材をそれぞれ作製し、部材の一端から長手方向に24mm離れた部位の幅方向中央位置に、直径が0.5mmの円孔を形成した。次いで、円孔が形成された部材の表面を鏡面仕上げして試験片1~18を作製した。続いて、試験片1~18の他端側にホルダーを、ホルダーの先端が円孔中心から1mmの位置になるように取り付け、試験片1~18の一端を下方にしてホルダーを音響用スピーカのボイスコイル部に固定し、ボイスコイルを振動させて試験片1~18が1次共振状態になるようにして、疲労試験を行った。なお、試験片1~18のホルダー付け根に生じる最大応力を片持ち梁の曲げ応力の式から求め、疲労試験時の応力振幅とした。そして、応力繰り返し数が10回の破断応力を求め、疲労強度とした。得られた疲労強度を表1に示す。 Parts having the same cross-sectional structure on average as the conductor wires 1 to 18 and having a length of 30 mm, a width of 3 mm, and a thickness of 0.3 mm, respectively, and being 24 mm away from one end of the member in the longitudinal direction A circular hole having a diameter of 0.5 mm was formed at the center in the width direction. Next, test pieces 1 to 18 were prepared by mirror finishing the surface of the member in which the circular hole was formed. Subsequently, a holder is attached to the other end of each of the test pieces 1 to 18 so that the tip of the holder is 1 mm from the center of the circular hole, and the holder is attached to the acoustic speaker with one end of the test pieces 1 to 18 facing downward. A fatigue test was performed by fixing the test piece 1 to 18 to the primary resonance state by fixing the test piece 1 to 18 with the voice coil being vibrated. It should be noted that the maximum stress generated at the base of the holders of the test pieces 1 to 18 was obtained from the bending stress formula of the cantilever beam and used as the stress amplitude during the fatigue test. And the breaking stress whose stress repetition number is 10 6 times was calculated | required, and it was set as fatigue strength. Table 1 shows the obtained fatigue strength.
(比較例R1~R24)
平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.05質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R1、R2、R3と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が1.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R4、R5、R6と、平均粒径が1.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.05質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R7、R8、R9と、平均粒径が1.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が1.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R10、R11、R12をそれぞれ作製し、得られた導体素線R1~R12を用いて縒り線を形成し断面積が0.2mmのケーブルR1~R12を作製した。
(Comparative Examples R1 to R24)
An aluminum crystal grain having an average particle diameter of 2 μm and a metal structure in which 0.05 mass% of an aluminum-scandium-based nanoprecipitate having an average particle diameter of 5 nm is present at the grain boundary of the aluminum crystal grain, Conductor strands R1, R2, and R3 made of an aluminum-based conductive material with Vickers hardness adjusted to 50, 60, and 70, respectively, aluminum crystal grains having an average grain diameter of 2 μm, and aluminum crystals An aluminum base composed of a metal structure in which 1.1 mass% of aluminum-scandium nanoprecipitates having an average particle diameter of 5 nm are present at the grain boundaries of the grains, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. Conductor wires R4, R5, R6 made of a conductive material and having a diameter of 80 μm, aluminum crystal grains having an average grain size of 1.5 μm, aluminum Aluminum composed of a metal structure in which 0.05% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 5 nm is present at the grain boundary of crystal grains, and Vickers hardness is adjusted to 50, 60, and 70, respectively. Conductor strands R7, R8, R9 with a wire diameter of 80 μm made of a base conductive material, aluminum crystal grains with an average grain diameter of 1.5 μm, and grain boundaries of aluminum crystal grains with an average grain diameter of 5 nm Conductor element having a wire diameter of 80 μm made of an aluminum-based conductive material composed of a metal structure containing 1.1 mass% of an aluminum-scandium nanoprecipitate and having Vickers hardness adjusted to 50, 60, and 70, respectively. Wires R10, R11, and R12 are respectively produced, and twisted wires are formed using the obtained conductor strands R1 to R12, and cables R1 to R1 having a cross-sectional area of 0.2 mm 2 are formed. 2 was produced.
また、平均粒径が2.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.05質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R13、R14、R15と、平均粒径が2.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R16、R17、R18と、平均粒径が2.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R19、R20、R21と、平均粒径が2.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が1.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmのR22、R23、R24をそれぞれ作製し、得られた導体素線R13~R24を用いて縒り線を形成し断面積が0.2mmのケーブルR13~R24を作製した。 Further, a metal structure in which 0.05 mass% of aluminum-scandium-based nanoprecipitates having an average particle diameter of 5 nm are present at the grain boundaries between aluminum crystal grains having an average particle diameter of 2.5 μm and aluminum crystal grains. Conductor strands R13, R14, and R15 having a wire diameter of 80 μm and aluminum crystals having an average particle diameter of 2.5 μm and made of an aluminum-based conductive material adjusted to Vickers hardness of 50, 60, and 70, respectively. And a metal structure in which aluminum-scandium-based nanoprecipitates having an average particle diameter of 5 nm are present at grain boundaries between aluminum grains and Vickers hardness of 50, 60, and 70, respectively. Conductor strands R16, R17, R18 having a wire diameter of 80 μm and aluminum having an average particle diameter of 2.5 μm made of an aluminum-based conductive material adjusted to And a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 5 nm is present at the grain boundary of the aluminum crystal grains, and has a Vickers hardness of 50, 60, 70, respectively. The conductor strands R19, R20, R21 having a wire diameter of 80 μm and made of an aluminum-based conductive material adjusted to an average diameter of 2.5 μm of aluminum crystal grains and the grain boundaries of the aluminum crystal grains A wire made of an aluminum-based conductive material composed of a metal structure in which 1.1 mass% of aluminum-scandium nanoprecipitates having a particle size of 5 nm are present and Vickers hardness is adjusted to 50, 60, and 70, respectively. R22, R23, and R24 each having a diameter of 80 μm are respectively produced, and twisted wires are formed using the obtained conductor wires R13 to R24, and the cross-sectional area is 0.2 mm 2. Cables R13 to R24 were prepared.
そして、常温でケーブルR1~R24に実験例1と同様の屈曲試験を行って破断回数を求めると共に、作製したケーブルR1~R24を用いて、導電率をそれぞれ求めた。得られた破断回数及び導電率を表2に示す。また、実験例1と同様に、導体素線R1~R24と、平均的にほぼ同様の断面組織を有する試験片R1~R24を作製して疲労試験を行い、応力繰り返し数が10回の破断応力を求めて疲労強度とした。得られた疲労強度を表2に示す。 The cables R1 to R24 were subjected to the same bending test as in Experimental Example 1 to obtain the number of breaks, and the electrical conductivities were obtained using the cables R1 to R24 produced. Table 2 shows the obtained number of breaks and electrical conductivity. Similarly to Experimental Example 1, conductor strands R1 to R24 and test pieces R1 to R24 having a substantially similar cross-sectional structure on average were produced and subjected to a fatigue test, and the number of stress repetitions was 10 6 times. The stress was obtained and used as fatigue strength. The obtained fatigue strength is shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(比較例R25~R46)
平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R25、R26と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R27、R28と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R29、R30をそれぞれ作製し、得られた導体複合素線R25~R30を用いて縒り線を形成し断面積が0.2mmのケーブルR25~R30を作製した。
(Comparative Examples R25 to R46)
An aluminum crystal grain having an average particle diameter of 2 μm, and a metal structure in which 0.1 mass% of an aluminum-scandium-based nanoprecipitate having an average particle diameter of 5 nm is present at the grain boundary of the aluminum crystal grain, Conductor strands R25 and R26 having a wire diameter of 80 μm, made of an aluminum-based conductive material with Vickers hardness adjusted to 45 and 75, respectively, aluminum crystal grains having an average grain diameter of 2 μm, and grain boundaries of aluminum crystal grains In addition, an aluminum-scandium-based nanoprecipitate having an average particle diameter of 5 nm was made of an aluminum-based conductive material composed of a metal structure in which 0.3% by mass was present and the Vickers hardness was adjusted to 45 and 75, respectively. At the grain boundaries of conductor strands R27 and R28 having a wire diameter of 80 μm, aluminum crystal grains having an average grain diameter of 2 μm, and aluminum crystal grains, an average grain Conductor element having a wire diameter of 80 μm made of an aluminum-based conductive material composed of a metal structure containing 1% by mass of aluminum-scandium nanoprecipitates having a diameter of 5 nm and having Vickers hardness adjusted to 45 and 75, respectively. Wires R29 and R30 were produced respectively, and twisted wires were formed using the obtained conductor composite strands R25 to R30 to produce cables R25 to R30 having a cross-sectional area of 0.2 mm 2 .
また、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R31、R32と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R33、R34と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R35、R36をそれぞれ作製し、得られた導体素線R31~R36を用いて縒り線を形成し断面積が0.2mmのケーブルR31~R36を作製した。 Also, aluminum-scandium having an average particle diameter of 5 nm at the grain boundary of aluminum crystal grains having an average grain diameter of 1.5 μm (crystal grains of 1 μm or less are present in a cross-sectional area ratio of 20%) and aluminum crystal grains. Conductor strands R31 and R32 having a wire diameter of 80 μm made of an aluminum-based conductive material that is composed of a metal structure in which 0.1% by mass of nanoprecipitates of the system are present and whose Vickers hardness is adjusted to 45 and 75, respectively; An aluminum-scandium-based aluminum particle having an average particle diameter of 5 nm is formed at the grain boundary between aluminum crystal grains having an average grain diameter of 1.5 μm (crystal grains of 1 μm or less are present in a cross-sectional area of 20%) and aluminum crystal grains. Conductive material having a wire diameter of 80 μm made of an aluminum-based conductive material composed of a metal structure containing 0.3% by mass of nanoprecipitates and having Vickers hardness adjusted to 45 and 75, respectively. The average grain size is 5 nm at the grain boundaries of the strands R33 and R34, aluminum crystal grains having an average grain size of 1.5 μm (crystal grains of 1 μm or less are present in a cross-sectional area of 20%), and aluminum crystal grains. A conductor wire R35 having a wire diameter of 80 μm made of an aluminum-based conductive material composed of a metal structure containing 1% by mass of an aluminum-scandium nanoprecipitate and having a Vickers hardness adjusted to 45 and 75, respectively. R36 was produced, respectively, and twisted wires were formed using the obtained conductor strands R31 to R36, and cables R31 to R36 having a cross-sectional area of 0.2 mm 2 were produced.
また、平均粒径が2.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.05質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R37、R38、と、平均粒径が2.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R39、R40と、平均粒径が2.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R41、R42と、平均粒径が2.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R43、R44と、平均粒径が2.5μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が5nmであるアルミニウム-スカンジウム系のナノ析出物が1.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ45、75に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R45、R46をそれぞれ作製し、得られた導体素線R37~R46を用いて縒り線を形成し断面積が0.2mmのケーブルR37~R46を作製した。 Further, a metal structure in which 0.05 mass% of aluminum-scandium-based nanoprecipitates having an average particle diameter of 5 nm are present at the grain boundaries between aluminum crystal grains having an average particle diameter of 2.5 μm and aluminum crystal grains. Conductor wires R37 and R38 having a wire diameter of 80 μm and made of an aluminum-based conductive material adjusted to Vickers hardness of 45 and 75, respectively, and aluminum crystal grains having an average particle diameter of 2.5 μm, Aluminum having an aluminum-scandium-based nanoprecipitate having an average particle diameter of 5 nm at a grain boundary of aluminum and having a metal structure of 0.1% by mass, and having a Vickers hardness adjusted to 45 and 75, respectively. Conductor strands R39 and R40 having a wire diameter of 80 μm made of a base conductive material, aluminum crystal grains having an average particle diameter of 2.5 μm, and aluminum Aluminum-based conductivity composed of a metal structure in which 0.3% by mass of aluminum-scandium nanoprecipitates having an average particle diameter of 5 nm are present at the grain boundaries of the crystal grains, and the Vickers hardness is adjusted to 45 and 75, respectively. Conductor strands R41 and R42 having a wire diameter of 80 μm made of the material, aluminum crystal grains having an average grain diameter of 2.5 μm, and aluminum-scandium having an average grain diameter of 5 nm at the grain boundaries of the aluminum crystal grains Conductor strands R43 and R44 having a wire diameter of 80 μm made of an aluminum-based conductive material composed of a metal structure containing 1% by mass of nanoprecipitates and having Vickers hardness adjusted to 45 and 75, respectively, An aluminum-scandium nanocrystal having an average grain size of 5 nm at the grain boundaries of aluminum having a diameter of 2.5 μm and the grain of aluminum. Conductor strands R45 and R46 having a wire diameter of 80 μm made of an aluminum-based conductive material that is composed of a metal structure with 1.1% by mass of the extract and adjusted to Vickers hardness of 45 and 75, respectively. Using the obtained conductor wires R37 to R46, twisted wires were formed to produce cables R37 to R46 having a cross-sectional area of 0.2 mm 2 .
そして、常温でケーブルR25~R46に実験例1と同様の屈曲試験を行って破断回数を求めると共に、作製したケーブルR25~R46を用いて、導電率をそれぞれ求めた。得られた破断回数及び導電率を表3に示す。また、実験例1と同様に、導体素線R25~R46と、平均的にほぼ同様の断面組織を有する試験片R25~R46を作製して疲労試験を行い、応力繰り返し数が10回の破断応力を求めて疲労強度とした。得られた疲労強度を表3に示す。 The cables R25 to R46 were subjected to the same bending test as in Experimental Example 1 to obtain the number of breaks, and the electrical conductivities were obtained using the cables R25 to R46 produced. Table 3 shows the number of breaks and electrical conductivity obtained. Similarly to Experimental Example 1, conductor strands R25 to R46 and test pieces R25 to R46 having a substantially similar cross-sectional structure on average were produced and subjected to a fatigue test, and the number of stress repetitions was 10 6 times. The stress was obtained and used as fatigue strength. The obtained fatigue strength is shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実験例19~36)
平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が1nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線19、20、21と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が1nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線22、23、24と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が1nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線25、26、27をそれぞれ作製し、得られた導体複合素線19~27を用いて縒り線を形成し断面積が0.2mmのケーブル19~27を作製した。
(Experimental Examples 19 to 36)
An aluminum crystal grain having an average particle diameter of 2 μm, and a metal structure in which 0.1 mass% of an aluminum-scandium nanoprecipitate having an average particle diameter of 1 nm is present at the grain boundary of the aluminum crystal grain; Conductor strands 19, 20, and 21 made of an aluminum-based conductive material with Vickers hardness adjusted to 50, 60, and 70, respectively, aluminum crystal grains having an average grain size of 2 μm, and aluminum crystals An aluminum base composed of a metal structure in which 0.3 mass% of aluminum-scandium nanoprecipitates having an average particle diameter of 1 nm are present at the grain boundaries of the grains, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. Conductor wires 22, 23, and 24 made of a conductive material, an aluminum crystal grain having an average grain size of 2 μm, and an aluminum crystal grain An aluminum-based conductive material composed of a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 1 nm is present at the grain boundary, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. The produced conductor strands 25, 26 and 27 having a wire diameter of 80 μm are respectively produced, and twisted wires are formed using the obtained conductor composite strands 19 to 27, and the cables 19 to 27 having a cross-sectional area of 0.2 mm 2 are formed. Was made.
また、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が1nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線28、29、30と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が1nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線31、32、33と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が1nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線34、35、36をそれぞれ作製し、得られた導体素線28~36を用いて縒り線を形成し断面積が0.2mmのケーブル28~36を作製した。 In addition, aluminum-scandium having an average grain size of 1 nm at the grain boundary between aluminum crystal grains having an average grain diameter of 1.5 μm (crystal grains having a size of 1 μm or less are present in a cross-sectional area of 20%) and aluminum crystal grains. Conductor strands 28 and 29 having a wire diameter of 80 μm made of an aluminum-based conductive material composed of a metal structure containing 0.1% by mass of nanoprecipitates and having Vickers hardness adjusted to 50, 60 and 70, respectively. 30 and an aluminum grain having an average grain size of 1 nm at the grain boundary of aluminum grains having an average grain diameter of 1.5 μm (crystal grains of 1 μm or less are present in a cross-sectional area of 20%) and aluminum crystal grains -A wire made of an aluminum-based conductive material composed of a metal structure containing 0.3% by mass of scandium-based nanoprecipitates and adjusted to Vickers hardness of 50, 60 and 70, respectively. Conductor wires 31, 32, 33 having a diameter of 80 μm, aluminum crystal grains having an average grain size of 1.5 μm (crystal grains having a diameter of 1 μm or less are present in a cross-sectional area of 20%), and grain boundaries of the aluminum crystal grains A wire made of an aluminum-based conductive material composed of a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 1 nm is present and having a Vickers hardness adjusted to 50, 60, and 70, respectively. Conductor strands 34, 35, and 36 having a diameter of 80 μm were produced, respectively, and twisted wires were formed using the obtained conductor strands 28 to 36 to produce cables 28 to 36 having a cross-sectional area of 0.2 mm 2 .
そして、常温でケーブル19~36に実験例1と同様の屈曲試験を行って破断回数を求めると共に、作製したケーブル19~36を用いて、導電率をそれぞれ求めた。得られた破断回数及び導電率を表4に示す。また、実験例1と同様に、導体素線19~36と、平均的にほぼ同様の断面組織を有する試験片19~36を作製して疲労試験を行い、応力繰り返し数が10回の破断応力を求めて疲労強度とした。得られた疲労強度を表4に示す。 The cables 19 to 36 were subjected to the same bending test as in Experimental Example 1 to obtain the number of breaks, and the electrical conductivity was obtained using the cables 19 to 36 produced. Table 4 shows the number of breaks and electrical conductivity obtained. Similarly to Experimental Example 1, the conductor strands 19 to 36 and the test pieces 19 to 36 having substantially the same cross-sectional structure on average were prepared and subjected to a fatigue test, and the number of stress repetitions was 10 6 times. The stress was obtained and used as fatigue strength. Table 4 shows the obtained fatigue strength.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実験例37~54)
平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が60nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線37、38、39と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が60nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線40、41、42と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が60nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線43、44、45をそれぞれ作製し、得られた導体複合素線37~45を用いて縒り線を形成し断面積が0.2mmのケーブル37~45を作製した。
(Experimental Examples 37-54)
An aluminum crystal grain having an average particle diameter of 2 μm and a metal structure in which 0.1 mass% of an aluminum-scandium-based nanoprecipitate having an average particle diameter of 60 nm is present at the grain boundary of the aluminum crystal grain, Conductor strands 37, 38, 39 having a wire diameter of 80 μm, aluminum crystal grains having an average particle diameter of 2 μm, and aluminum crystals made of an aluminum-based conductive material with Vickers hardness adjusted to 50, 60, 70, respectively An aluminum base composed of a metal structure in which 0.3 mass% of aluminum-scandium nanoprecipitates having an average particle diameter of 60 nm are present at the grain boundaries of the grains, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. Conductor wires 40, 41, and 42 made of a conductive material, an aluminum crystal grain having an average grain size of 2 μm, and a bonding of aluminum. Aluminum-based electrical conductivity composed of a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 60 nm is present at a grain boundary, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. Conductor strands 43, 44, and 45 made of a material having a wire diameter of 80 μm are respectively fabricated, and twisted wires are formed using the obtained conductor composite strands 37 to 45, and the cross-sectional area of the cable 37 is 0.2 mm 2 . To 45 were produced.
また、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が60nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線46、47、48と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が60nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線49、50、51と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が60nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線52、53、54をそれぞれ作製し、得られた導体素線46~54を用いて縒り線を形成し断面積が0.2mmのケーブル46~54を作製した。 Also, aluminum-scandium having an average grain size of 60 nm at the grain boundary between aluminum crystal grains having an average grain diameter of 1.5 μm (crystal grains of 1 μm or less are present in a cross-sectional area of 20%) and aluminum crystal grains. Conductor wires 46 and 47 having a wire diameter of 80 μm made of an aluminum-based conductive material composed of a metal structure in which 0.1% by mass of nanoprecipitates of the system are present and Vickers hardness is adjusted to 50, 60 and 70, respectively. 48, aluminum having an average grain size of 1.5 μm (a crystal grain of 1 μm or less is present in a cross-sectional area of 20%) and aluminum having an average grain size of 60 nm at the grain boundary of the aluminum crystal grains -Made of an aluminum-based conductive material composed of a metal structure containing 0.3% by mass of scandium-based nanoprecipitates and adjusted to Vickers hardness of 50, 60, and 70, respectively. Conductor strands 49, 50, 51 having a wire diameter of 80 μm, aluminum crystal grains having an average grain size of 1.5 μm (crystal grains of 1 μm or less are present in a cross-sectional area ratio of 20%), and grains of aluminum crystal grains It is made of an aluminum-based conductive material composed of a metal structure in which 1% by mass of aluminum-scandium-based nanoprecipitates having an average particle diameter of 60 nm are present at the boundary, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. Conductor strands 52, 53, and 54 having a wire diameter of 80 μm were respectively produced, and twisted wires were formed using the obtained conductor strands 46 to 54 to produce cables 46 to 54 having a cross-sectional area of 0.2 mm 2 . .
そして、常温でケーブル37~54に実験例1と同様の屈曲試験を行って破断回数を求めると共に、作製したケーブル37~54を用いて、導電率をそれぞれ求めた。得られた破断回数及び導電率を表5に示す。また、実験例1と同様に、導体素線37~54と、平均的にほぼ同様の断面組織を有する試験片37~54を作製して疲労試験を行い、応力繰り返し数が10回の破断応力を求めて疲労強度とした。得られた疲労強度を表5に示す。 Then, the cables 37 to 54 were subjected to the same bending test as in Experimental Example 1 to obtain the number of breaks, and the electrical conductivities were obtained using the cables 37 to 54 produced. Table 5 shows the obtained number of breaks and electrical conductivity. Similarly to Experimental Example 1, conductor strands 37 to 54 and test pieces 37 to 54 having a substantially similar cross-sectional structure on average were produced and subjected to a fatigue test, and the number of stress repetitions was 10 6 times. The stress was obtained and used as fatigue strength. The obtained fatigue strength is shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(比較例R47~R64)
平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が0.5nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R47、R48、R49と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が0.5nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R50、R51、R52と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が0.5nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R53、R54、R55をそれぞれ作製し、得られた導体複合素線R47~R55を用いて縒り線を形成し断面積が0.2mmのケーブルR47~R55を作製した。
(Comparative Examples R47 to R64)
An aluminum crystal grain having an average particle diameter of 2 μm and a metal structure in which 0.1 mass% of an aluminum-scandium nanoprecipitate having an average particle diameter of 0.5 nm is present at the grain boundary of the aluminum crystal grain. Conductor strands R47, R48, R49 having a wire diameter of 80 μm, made of an aluminum-based conductive material with Vickers hardness adjusted to 50, 60, 70, respectively, aluminum crystal grains having an average particle size of 2 μm, and aluminum Composed of a metal structure in which 0.3% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 0.5 nm is present at the grain boundary of the crystal grains, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. Conductor strands R50, R51, R52 having a wire diameter of 80 μm and made of an aluminum-based conductive material, aluminum crystal grains having an average particle diameter of 2 μm, It is composed of a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 0.5 nm is present at the grain boundary of aluminum crystal grains, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. Conductor strands R53, R54, and R55 made of an aluminum-based conductive material having a wire diameter of 80 μm are respectively fabricated, and twisted wires are formed using the obtained conductor composite strands R47 to R55, and the cross-sectional area is 0.2 mm. Two cables R47 to R55 were produced.
また、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が0.5nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R56、R57、R58と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が0.5nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R59、R60、R61と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が0.5nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R62、R63、R64をそれぞれ作製し、得られた導体素線R56~R64を用いて縒り線を形成し断面積が0.2mmのケーブルR56~R64を作製した。 Further, aluminum grains having an average grain size of 1.5 μm (crystal grains having a size of 1 μm or less are present in a cross-sectional area of 20%) and aluminum having an average grain size of 0.5 nm at the grain boundaries of the aluminum crystal grains A conductor strand R56 having a wire diameter of 80 μm made of an aluminum-based conductive material composed of a metal structure containing scandium-based nanoprecipitates of 0.1% by mass and having Vickers hardness adjusted to 50, 60 and 70, respectively; , R57, R58, an average grain size of 0.1 μm between the grain boundaries of aluminum crystal grains having an average grain size of 1.5 μm (a crystal grain of 1 μm or less is 20% in cross-sectional area ratio) and aluminum crystal grains. Aluminum-based conductive material composed of a metal structure in which 0.3% by mass of aluminum-scandium nanoprecipitates having a thickness of 5 nm are present, and having a Vickers hardness adjusted to 50, 60, and 70, respectively Conductor wires R59, R60, R61 having a wire diameter of 80 μm, aluminum crystal grains having an average particle diameter of 1.5 μm (crystal grains having a diameter of 1 μm or less are present in a cross-sectional area ratio of 20%), and aluminum crystals Aluminum base composed of a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 0.5 nm is present at the grain boundary of the grain, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. Conductor strands R62, R63, R64 made of a conductive material and having a wire diameter of 80 μm are respectively produced, and twisted wires are formed using the obtained conductor strands R56 to R64, and a cable R56 having a cross-sectional area of 0.2 mm 2 To R64 were produced.
そして、常温でケーブルR47~R64に実験例1と同様の屈曲試験を行って破断回数を求めると共に、作製したケーブルR47~R64を用いて、導電率をそれぞれ求めた。得られた破断回数及び導電率を表6に示す。また、実験例1と同様に、導体素線R47~R64と、平均的にほぼ同様の断面組織を有する試験片R47~R64を作製して疲労試験を行い、応力繰り返し数が10回の破断応力を求めて疲労強度とした。得られた疲労強度を表6に示す。 The cables R47 to R64 were subjected to the same bending test as in Experimental Example 1 to obtain the number of breaks, and the electrical conductivities were obtained using the cables R47 to R64 produced. The obtained number of breaks and electrical conductivity are shown in Table 6. Similarly to Experimental Example 1, conductor strands R47 to R64 and test pieces R47 to R64 having a substantially similar cross-sectional structure on average were produced and subjected to a fatigue test, and the number of stress repetitions was 10 6 times. The stress was obtained and used as fatigue strength. The obtained fatigue strength is shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(比較例R65~R82)
平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が65nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R65、R66、R67と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が65nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R68、R69、R70と、平均粒径が2μmのアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が65nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R71、R72、R73をそれぞれ作製し、得られた導体複合素線R65~R73を用いて縒り線を形成し断面積が0.2mmのケーブルR65~R73を作製した。
(Comparative Examples R65 to R82)
An aluminum crystal grain having an average particle diameter of 2 μm, and a metal structure in which 0.1 mass% of an aluminum-scandium nanoprecipitate having an average particle diameter of 65 nm is present at the grain boundary of the aluminum crystal grain; Conductor wires R65, R66, R67 having a wire diameter of 80 μm, made of an aluminum-based conductive material with Vickers hardness adjusted to 50, 60, 70, respectively, aluminum crystal grains having an average particle size of 2 μm, and aluminum crystals An aluminum base composed of a metal structure in which 0.3 mass% of aluminum-scandium nanoprecipitates having an average particle diameter of 65 nm are present at the grain boundaries of the grains, and the Vickers hardness is adjusted to 50, 60, and 70, respectively. Conductor strands R68, R69, R70 made of a conductive material, aluminum crystal grains having an average grain size of 2 μm, and Al Aluminum having an aluminum-scandium-based nanoprecipitate with an average particle diameter of 65 nm at the grain boundary of the minium crystal grains and having a Vickers hardness adjusted to 50, 60, and 70, respectively. Conductor wires R71, R72, and R73 each made of a base conductive material and having a wire diameter of 80 μm are prepared, and twisted wires are formed using the obtained conductor composite wires R65 to R73, and the cross-sectional area is 0.2 mm 2 . Cables R65 to R73 were produced.
また、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が65nmであるアルミニウム-スカンジウム系のナノ析出物が0.1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R74、R75、R76と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が65nmであるアルミニウム-スカンジウム系のナノ析出物が0.3質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R77、R78、R79と、平均粒径が1.5μm(1μm以下の結晶粒が断面積率で20%存在)のアルミニウムの結晶粒と、アルミニウムの結晶粒の粒界に、平均粒径が65nmであるアルミニウム-スカンジウム系のナノ析出物が1質量%存在する金属組織で構成され、ビッカース硬度がそれぞれ50、60、70に調整されたアルミニウム基導電材料で作製された線径80μmの導体素線R80、R81、R82をそれぞれ作製し、得られた導体素線R74~R82を用いて縒り線を形成し断面積が0.2mmのケーブルR74~R82を作製した。 Also, aluminum-scandium having an average grain size of 65 nm at the grain boundary between aluminum crystal grains having an average grain diameter of 1.5 μm (crystal grains of 1 μm or less are present in a cross-sectional area ratio of 20%) and aluminum crystal grains. Conductor strands R74 and R75 having a wire diameter of 80 μm made of an aluminum-based conductive material composed of a metal structure containing 0.1% by mass of nanoprecipitates and adjusted to Vickers hardness of 50, 60, and 70, respectively. , R76, aluminum having an average grain size of 1.5 nm (a crystal grain of 1 μm or less is present in a cross-sectional area of 20%) and aluminum having an average grain size of 65 nm at the grain boundary of the aluminum crystal grains -Made of an aluminum-based conductive material composed of a metal structure containing 0.3% by mass of scandium-based nanoprecipitates and adjusted to Vickers hardness of 50, 60 and 70, respectively. Conductor strands R77, R78, R79 having a wire diameter of 80 μm, aluminum crystal grains having an average grain diameter of 1.5 μm (crystal grains having a diameter of 1 μm or less are present in a cross-sectional area of 20%), and aluminum crystal grains An aluminum-based conductive material composed of a metal structure in which 1% by mass of an aluminum-scandium nanoprecipitate having an average particle diameter of 65 nm is present at the grain boundary and the Vickers hardness is adjusted to 50, 60, and 70, respectively. The produced conductor strands R80, R81, and R82 having a wire diameter of 80 μm are respectively produced, and twisted wires are formed using the obtained conductor strands R74 to R82, and cables R74 to R82 having a cross-sectional area of 0.2 mm 2 are formed. Produced.
そして、常温でケーブルR65~R82に実験例1と同様の屈曲試験を行って破断回数を求めると共に、作製したケーブルR65~R82を用いて、導電率をそれぞれ求めた。得られた破断回数及び導電率を表7に示す。また、実験例1と同様に、導体素線R65~R82と、平均的にほぼ同様の断面組織を有する試験片R65~R82を作製して疲労試験を行い、応力繰り返し数が10回の破断応力を求めて疲労強度とした。得られた疲労強度を表7に示す。 Then, the cables R65 to R82 were subjected to the same bending test as in Experiment Example 1 to obtain the number of breaks, and the electrical conductivity was obtained using the cables R65 to R82 produced. Table 7 shows the number of breaks and electrical conductivity obtained. Similarly to Experimental Example 1, conductor strands R65 to R82 and test pieces R65 to R82 having a substantially similar cross-sectional structure on average were produced and subjected to a fatigue test, and the number of stress repetitions was 10 6 times. The stress was obtained and used as fatigue strength. Table 7 shows the obtained fatigue strength.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
表1~表7に示す結果から、平均粒径が2μm以下のアルミニウムの結晶粒と、平均粒径が1nm以上60nm以下であって、結晶粒の粒界に0.1~1質量%存在するアルミニウム-スカンジウム系のナノ析出物とを有する金属組織で構成され、ビッカース硬度が50以上70以下であって、繰り返し曲げを負荷する疲労試験における繰り返し回数10回時の疲労強度が少なくとも180MPaの場合、導電率が56%IACS以上、かつ、破断回数が1000万回以上となることが確認できる。
従って、このアルミニウム基導電材料を用いて作製したケーブルを、例えば、産業用ロボットの駆動部の配線用の電線に使用すると、ロボットの信頼性を向上させることができると共に、メンテナンス負担を軽減することができる。
From the results shown in Tables 1 to 7, aluminum crystal grains having an average grain diameter of 2 μm or less and average grain diameters of 1 nm to 60 nm are present at a grain boundary of 0.1 to 1% by mass. aluminum - consists of a metal structure having a nanoprecipitates scandium system, a Vickers hardness of 50 or more 70 or less, when the fatigue strength when the repeat count 10 6 times in fatigue test to load the repeated bending of at least 180MPa It can be confirmed that the conductivity is 56% IACS or more and the number of breaks is 10 million times or more.
Therefore, when a cable made using this aluminum-based conductive material is used, for example, as an electric wire for wiring of a drive unit of an industrial robot, the reliability of the robot can be improved and the maintenance burden can be reduced. Can do.
以上、本発明を、実施例を参照して説明してきたが、本発明は何ら上記した実施例に記載した構成に限定されるものではなく、請求の範囲に記載されている事項の範囲内で考えられるその他の実施例や変形例も含むものである。
更に、本実施例とその他の実施例や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
例えば、第1の実施例に係るアルミニウム基導電材料を用いたケーブルをロボット用ケーブルとして、エレベータの昇降部の配線用のケーブル(機器内配線用ケーブルの一例)としてそれぞれ使用する場合を説明したが、急速充電スタンド機のコネクターケーブル、キャブタイヤケーブル、ブスバーケーブル、自動車用ケーブル、航空機用ケーブル、ロケット用ケーブル、又は衛星用ケーブルに使用することができる。
また、第2の実施例に係るアルミニウム基導電材料を用いたケーブルをロボット用ケーブルとして、電気自動車の急速充電スタンド機のコネクターケーブルとして、電気溶接機のキャブタイヤケーブルとして、太陽光発電モジュールの接続用ケーブル(機器内配線用ケーブルの一例)としてそれぞれ使用する場合を説明したが、キャブタイヤケーブル、ブスバーケーブル、自動車用ケーブル、航空機用ケーブル、ロケット用ケーブル、又は衛星用ケーブルに使用することができる。
The present invention has been described above with reference to the embodiments. However, the present invention is not limited to the configurations described in the above-described embodiments, and is within the scope of the matters described in the claims. Other possible embodiments and modifications are also included.
Further, the present invention includes a combination of components included in the present embodiment and other embodiments and modifications.
For example, the case where the cable using the aluminum-based conductive material according to the first embodiment is used as a robot cable and is used as a wiring cable (an example of an in-apparatus wiring cable) for an elevator elevator part has been described. It can be used for a connector cable, a cabtyre cable, a bus bar cable, an automobile cable, an aircraft cable, a rocket cable, or a satellite cable of a quick charging stand machine.
In addition, the cable using the aluminum-based conductive material according to the second embodiment is used as a robot cable, as a connector cable for a quick charging stand machine of an electric vehicle, as a cabtire cable of an electric welder, and to connect a photovoltaic power generation module Although the case where it uses as a cable (an example of an in-apparatus wiring cable) respectively was demonstrated, it can be used for a cabtyre cable, a bus bar cable, an automobile cable, an aircraft cable, a rocket cable, or a satellite cable .
組織の微細化及び残存ひずみの低減を行いながら引張強度、耐屈曲性、及び伸び性の向上を図って、ロボット又は各種装置の駆動部分の配線に使用することが可能なアルミニウム基導電材料及びそれを用いたケーブルを提供できる。 Aluminum-based conductive material that can be used for the wiring of the drive part of a robot or various devices by improving the tensile strength, bending resistance and elongation while miniaturizing the structure and reducing the residual strain, and the same A cable using can be provided.
10:アルミニウム基導電材料、11:結晶粒、12:粒界、13:ナノ析出物、14:アルミニウム基導電材料、15:結晶粒、16:粒界、17:ナノ析出物 10: Aluminum based conductive material, 11: Crystal grain, 12: Grain boundary, 13: Nano precipitate, 14: Aluminum based conductive material, 15: Crystal grain, 16: Grain boundary, 17: Nano precipitate

Claims (7)

  1. 時効処理したアルミニウム-スカンジウム系合金に相当ひずみが4以上となる加工を行った後、残存するひずみを除去して得られるアルミニウム基導電材料であって、
    平均粒径が2μm以下のアルミニウム又はアルミニウム基合金の結晶粒と、平均粒径が1nm以上60nm以下であって、前記結晶粒の粒界に0.1質量%以上1質量%以下存在するアルミニウム-スカンジウム系のナノ析出物とを有する金属組織で構成され、
    ビッカース硬度は50以上70以下であって、繰り返し曲げを負荷する疲労試験における繰り返し回数10回時の疲労強度が少なくとも180MPaであることを特徴とするアルミニウム基導電材料。
    An aluminum-based conductive material obtained by subjecting an aged aluminum-scandium alloy to processing to obtain a corresponding strain of 4 or more and then removing the remaining strain,
    Aluminum or aluminum-based alloy crystal grains having an average grain diameter of 2 μm or less, and aluminum having an average grain diameter of 1 nm to 60 nm and present at 0.1 to 1 mass% at the grain boundaries of the crystal grains— It is composed of a metal structure having scandium-based nanoprecipitates,
    Vickers hardness is a 50 to 70 inclusive, Motoshirube conductive material, wherein the fatigue strength when the repeat count 10 6 times in fatigue test to load the repeated bending of at least 180 MPa.
  2. 請求項1記載のアルミニウム基導電材料において、前記結晶粒は前記アルミニウム基合金であって、前記アルミニウム基合金は0.1質量%以上0.2質量%以下のジルコニウムを含むことを特徴とするアルミニウム基導電材料。 2. The aluminum-based conductive material according to claim 1, wherein the crystal grains are the aluminum-based alloy, and the aluminum-based alloy contains 0.1% by mass or more and 0.2% by mass or less of zirconium. Base conductive material.
  3. 請求項1又は2記載のアルミニウム基導電材料において、前記金属組織には、1μm以下の前記結晶粒が断面積率で15%以上含まれていることを特徴とするアルミニウム基導電材料。 3. The aluminum-based conductive material according to claim 1, wherein the metal structure includes 15% or more of the crystal grains having a cross-sectional area ratio of 1 μm or less.
  4. 請求項3記載のアルミニウム基導電材料において、前記金属組織には、1μm以下の前記結晶粒が断面積率で20%以上含まれ、少なくとも1000万回の繰り返し曲げを負荷する動的駆動試験に耐えることを特徴とするアルミニウム基導電材料。 4. The aluminum-based conductive material according to claim 3, wherein the metal structure includes 20% or more of the crystal grains of 1 μm or less in terms of cross-sectional area, and withstands a dynamic drive test in which repeated bending is applied at least 10 million times. An aluminum-based conductive material characterized by that.
  5. 請求項1~4のいずれか1項に記載のアルミニウム基導電材料を導体素線に使用し、該導体素線の線径は0.05mm以上0.5mm以下であることを特徴とするケーブル。 5. A cable using the aluminum-based conductive material according to claim 1 as a conductor wire, wherein the conductor wire has a wire diameter of 0.05 mm or more and 0.5 mm or less.
  6. 請求項5記載のケーブルにおいて、該ケーブルをロボット用ケーブル、急速充電スタンド機のコネクターケーブル、キャブタイヤケーブル、ブスバーケーブル、又は機器内配線用ケーブルに使用することを特徴とするケーブル。 6. The cable according to claim 5, wherein the cable is used as a robot cable, a connector cable for a quick charging stand machine, a cabtyre cable, a bus bar cable, or an in-device wiring cable.
  7. 請求項5記載のケーブルにおいて、該ケーブルを自動車用ケーブル、航空機用ケーブル、ロケット用ケーブル、又は衛星用ケーブルに使用することを特徴とするケーブル。 6. The cable according to claim 5, wherein the cable is used for an automobile cable, an aircraft cable, a rocket cable, or a satellite cable.
PCT/JP2013/084136 2012-12-27 2013-12-19 Aluminum-based electrically conductive material, and cable manufactured using same WO2014103888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-285355 2012-12-27
JP2012285355A JP2016035079A (en) 2012-12-27 2012-12-27 Aluminum-based conductive material and cable using the same

Publications (1)

Publication Number Publication Date
WO2014103888A1 true WO2014103888A1 (en) 2014-07-03

Family

ID=51020975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084136 WO2014103888A1 (en) 2012-12-27 2013-12-19 Aluminum-based electrically conductive material, and cable manufactured using same

Country Status (2)

Country Link
JP (1) JP2016035079A (en)
WO (1) WO2014103888A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210733A (en) * 2020-10-10 2021-01-12 浙江华电器材检测研究所有限公司 Method for determining aging condition of fatigue performance of aluminum-magnesium-silicon alloy wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303131A (en) * 1999-04-19 2000-10-31 Showa Alum Corp High strength aluminum alloy
JP2001254132A (en) * 2000-03-13 2001-09-18 Nippon Light Metal Co Ltd Method of producing electrically conductive heat resistant aluminum alloy and alloy wire
JP2001348637A (en) * 2000-06-05 2001-12-18 Hitachi Cable Ltd Aluminum alloy material and method for producing wiring rod using the same
JP2002266043A (en) * 2001-03-12 2002-09-18 Hitachi Cable Ltd CONDUCTIVE HEAT-RESISTING Al-ALLOY WIRE, AND ITS MANUFACTURING METHOD
JP2002302727A (en) * 2001-04-06 2002-10-18 Hitachi Cable Ltd Electroconductive, heat-resistant aluminum alloy wire and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303131A (en) * 1999-04-19 2000-10-31 Showa Alum Corp High strength aluminum alloy
JP2001254132A (en) * 2000-03-13 2001-09-18 Nippon Light Metal Co Ltd Method of producing electrically conductive heat resistant aluminum alloy and alloy wire
JP2001348637A (en) * 2000-06-05 2001-12-18 Hitachi Cable Ltd Aluminum alloy material and method for producing wiring rod using the same
JP2002266043A (en) * 2001-03-12 2002-09-18 Hitachi Cable Ltd CONDUCTIVE HEAT-RESISTING Al-ALLOY WIRE, AND ITS MANUFACTURING METHOD
JP2002302727A (en) * 2001-04-06 2002-10-18 Hitachi Cable Ltd Electroconductive, heat-resistant aluminum alloy wire and production method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210733A (en) * 2020-10-10 2021-01-12 浙江华电器材检测研究所有限公司 Method for determining aging condition of fatigue performance of aluminum-magnesium-silicon alloy wire

Also Published As

Publication number Publication date
JP2016035079A (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP5589175B2 (en) Aluminum-based conductive material and electric wire and cable using the same
JP6356365B2 (en) Aluminum alloy material and conductive member, battery member, fastening component, spring component and structural component using the same
US9293232B2 (en) Composite conductor and electric wire using the same
CN104797724B (en) Aluminium alloy conductor, aluminium alloy stranded conductor, coated electric wire, the manufacture method of wire harness and aluminium alloy conductor
JP6782169B2 (en) Manufacturing method of aluminum alloy wire, aluminum alloy stranded wire, coated electric wire, wire harness, and aluminum alloy wire
CN114645165B (en) Aluminum alloy material, and fastening member, structural member, spring member, conductive member, and battery member each made of the same
JP6410967B2 (en) Aluminum alloy material and conductive member, battery member, fastening component, spring component and structural component using the same
WO2008053897A1 (en) Wire conductor and process for producing the same
JP6858311B2 (en) Aluminum alloy material and conductive members, battery members, fastener parts, spring parts, structural parts, cabtire cables using it
WO2018079047A1 (en) Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal
JP2013044038A (en) Aluminum alloy conductor
WO2018079048A1 (en) Aluminum alloy wire, aluminum alloy twisted wire, coated electrical wire, and electrical wire with terminal
WO2019131053A1 (en) Aluminium alloy material, and cable, electric wire, and spring member using same
CN107849670B (en) Method for manufacturing aluminum alloy wire and aluminum alloy wire
WO2014103888A1 (en) Aluminum-based electrically conductive material, and cable manufactured using same
JP6112438B1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
WO2020158682A1 (en) Aluminum alloy material, and electroconductive member, battery member, fastening component, spring component, structural component and cabtyre cable each using same
JP6840348B2 (en) Manufacturing method of aluminum alloy wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP