WO2014103696A1 - Optical element and lighting device - Google Patents

Optical element and lighting device Download PDF

Info

Publication number
WO2014103696A1
WO2014103696A1 PCT/JP2013/083046 JP2013083046W WO2014103696A1 WO 2014103696 A1 WO2014103696 A1 WO 2014103696A1 JP 2013083046 W JP2013083046 W JP 2013083046W WO 2014103696 A1 WO2014103696 A1 WO 2014103696A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
optical element
boundary
light
color
Prior art date
Application number
PCT/JP2013/083046
Other languages
French (fr)
Japanese (ja)
Inventor
三森 満
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014103696A1 publication Critical patent/WO2014103696A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED

Definitions

  • the present invention relates to an illuminating device that is installed on the back side of a surface member having a relatively large area and performs backlight illumination so that light passes through the surface member, and an optical element used therefor.
  • a conventional large-sized liquid crystal display device In a conventional large-sized liquid crystal display device, light from a number of cold-cathode tubes arranged on the back side of the liquid crystal panel is guided to the back side of the liquid crystal panel via a diffusion plate, a reflector, etc., and is uniformly used as a backlight. By illuminating, the image was clearly visible.
  • an LED light source has been used as a light source of a backlight from the viewpoint of energy saving. Further, from the viewpoint that brightness and darkness can be controlled according to the image displayed on the liquid crystal display device, the LED light source is easy to use, thereby further reducing the power consumption of the liquid crystal display device.
  • Patent Documents 1 to 3 disclose optical elements for liquid crystal backlights that can convert light from an LED light source into illumination light with as uniform illuminance as possible.
  • JP 2008-532300 A JP 2006-92983 A JP 2009-44016 JP 2009-192915
  • the optical elements disclosed in Patent Documents 1 to 3 have a continuous emission surface shape, and thus the light distribution characteristics of the emitted light are continuous.
  • an LED light source that emits white light is generally used for the backlight.
  • the LED light source that emits white light in this manner at present, a combination of a blue LED chip that emits a blue light beam and a phosphor that emits yellow light when excited by the blue light beam emitted from the blue LED chip is used. Widely used.
  • the reason why the light beam is divided into a strong blue light beam and a strong yellow light beam is that the light beam emitted from the vicinity of the blue LED chip along the optical axis and the light beam emitted toward the periphery differ in the distance passing through the phosphor. It will be. This is because the amount of blue light beam that reacts with the phosphor to become a yellow light beam is different.
  • Patent Documents 1 to 3 do not specifically disclose measures for effective suppression of color unevenness.
  • Patent Document 4 discloses a technique for improving color unevenness by using an incident surface as an optical surface having two different characteristics.
  • the technique of Patent Document 4 since the roughness and characteristics of the optical surface change greatly in the region near the optical axis on the incident surface, color unevenness may be suppressed, but the illuminance (luminance) near the center decreases. May cause uneven illumination.
  • the vicinity of the optical axis on the incident surface is made rough, the light distribution of the light that has passed through may not be spread, and the diffusion effect may not be sufficiently obtained.
  • the present invention has been made in view of the problems of the prior art, and is suitable for illuminating from behind the panel, and provides an illumination device and an optical element for a backlight that can suppress illuminance unevenness and color unevenness.
  • the purpose is to do.
  • the optical element according to claim 1 is an optical element for a backlight including an incident surface on which a light beam from an LED light source is incident and an output surface that emits the light beam.
  • the LED light source is a combination of an LED chip and a phosphor having a larger area than the LED chip in the optical axis direction.
  • the exit surface of the optical element has a boundary that is divided into two regions in the direction perpendicular to the optical axis, a region closer to the optical axis than the boundary is defined as a first region, and a region outside the boundary is defined as a second region.
  • the function defining the exit surface shape of the first region and the function defining the exit surface shape of the second region are discontinuous, Of the light beams emitted from the LED light source and entering the optical element via the incident surface, at least a light beam emitted from the first region and a light beam emitted from the second region across the boundary are at least An optical element that partially intersects.
  • ⁇ Backlight optical elements generally have a larger exit surface area than the entrance surface area. Therefore, in order to suppress color unevenness, the shape of the light exit surface can be adjusted more accurately than the case of adjusting the shape of the light entrance surface, and the influence of the shape error can be reduced even if a shape error occurs. . Therefore, in the present invention, the emission surface shape is adjusted. Specifically, in order to suppress color unevenness, the exit surface of the optical element is divided into at least two regions with a boundary in the direction orthogonal to the optical axis, and a region closer to the optical axis than the boundary is defined as a first region. The region outside the boundary is defined as a second region, and the function defining the exit surface shape of the first region and the function defining the exit surface shape of the second region are discontinuous.
  • FIGS. 1A and 1B are enlarged views showing the vicinity of the boundary BD between the first area AR1 and the second area AR2 which is the emission surface of the optical element.
  • the example of FIG. 1A is emitted from the center of the light emitting surface of the LED light source. The light ray path of the light beam is shown.
  • the light ray that has passed through the first area AR1 is refracted at an angle ⁇ 1
  • the light ray that has passed through the second area AR2 is The light can be refracted at an angle ⁇ 2 (> ⁇ 1).
  • FIG. 1B shows a light beam path of a light beam emitted from the vicinity of the light emitting surface of the LED light source.
  • the light beam group L incident from the incident surface the light beam L enters the first area AR1 near the boundary BD.
  • the incident light beam L is totally reflected, the light beam density can be locally reduced, and the light beam L incident on the second area AR2 is transmitted.
  • the light beam L ′ incident on the first region AR1 at a position away from the boundary BD is refracted, but this at least partially intersects the light beam L emitted from the second region AR2.
  • the LED light source is a combination of an LED chip and a phosphor having a larger area than the LED chip in the optical axis direction
  • color separation is likely to occur in a ring shape in the light flux that has passed through the optical element, and this is recognized as color unevenness.
  • the distance passing through the phosphor becomes longer and the color becomes different. Therefore, in the present invention, for example, the vicinity where the light beam with the most color separation is emitted is defined as a boundary BD, and the function defining the emission surface shape of the first region and the emission surface shape of the second region are defined here.
  • the LED light source is configured such that the LED chip that emits a first color light beam and the first color light beam are incident.
  • the phosphor that emits a second color different from the first color is combined.
  • the present invention is particularly effective when such an LED light source is used.
  • the optical element according to the first or second aspect wherein the second region shifts to the side away from the LED light source with respect to the first region at the boundary. Is formed.
  • the light beam Lx (dotted line) emitted from the first area AR1 close to the boundary BD is incident on the step ST formed on the boundary BD, and again passes through the optical element from another location. Since it is emitted, it is not used directly for illumination.
  • a part of the light beams Lx ′ (dotted lines) out of the light beams L ′ emitted from the first area AR1 far from the boundary BD enters the step ST formed on the boundary BD. Again, since it is emitted from another place through the optical element, it is not directly used for illumination. This is called a step vignetting effect.
  • the light flux close to the first color or the second color is completely uneven even if color mixing is performed by crossing light beams. Is less likely to be resolved. Therefore, in the present invention, the light flux that cannot completely eliminate the color unevenness even if color mixing is performed is not directly used for illumination due to the vignetting effect of the step, but is emitted from another part of the optical element, and the influence of the color unevenness appears. The light is guided to the non-existing portion, thereby further suppressing the color unevenness of the illumination light. In addition, it can also be made to give a diffused effect to reflected light by making level
  • optical element according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, the step is 5 ⁇ m or more.
  • the step When the step is 5 ⁇ m or more, an effective vignetting effect can be exhibited and color unevenness can be suppressed.
  • the step is preferably 15 ⁇ m or less. If the step becomes too large, the vignetting becomes too large, which may cause uneven illuminance.
  • the optical element according to claim 5 is the optical element according to any one of claims 1 to 4, wherein the normal line of the first region at a position adjacent to the boundary and the second line at a position adjacent to the boundary. It is characterized in that the normal of the region is different.
  • An optical element according to a sixth aspect of the present invention is the optical element according to any one of the first to fifth aspects, wherein the emission surface has a recess, and the boundary has a diameter of the emission surface with respect to a surface vertex of the emission surface. It is characterized by being formed at a position within ⁇ 10%.
  • the exit surface Since the exit surface has a recess, the apex of the surface exists at a position away from the optical axis. For this reason, within ⁇ 10% of the exit surface diameter with respect to the surface apex of the exit surface is a portion that has a large influence on the occurrence of color unevenness in the first place, and ring-shaped unevenness occurs due to the reflection inside the lens and the effect of total reflection. Since this is an easy region, if a step is provided in this region, the vignetting effect can be exhibited with a small step.
  • a third region is formed on the light exit surface with another boundary outside the second region in the direction perpendicular to the optical axis.
  • the function defining the exit surface shape of the second region and the function defining the exit surface shape of the third region are discontinuous.
  • An optical element according to an eighth aspect of the invention according to the seventh aspect of the invention is the optical element according to the seventh aspect, wherein the third region shifts toward the LED light source closer to the second region with respect to the second region. Is formed.
  • the step between the second region and the third region is 15 ⁇ m to 40 ⁇ m. If the step becomes too large, the vignetting becomes too large, which may cause uneven illuminance.
  • the optical element according to claim 9 is characterized in that, in the invention according to claim 7 or 8, a diffusion surface is formed in the third region.
  • the illuminance unevenness can be further suppressed by giving a diffusion effect to the emitted light beam by passing through the diffusion surface of the third region.
  • An optical element according to a tenth aspect is the invention according to any one of the first to ninth aspects, wherein the exit surface has an aspherical shape, and the vicinity of the optical axis of the first region is recessed.
  • An optical element according to an eleventh aspect is characterized in that, in the invention according to any one of the first to tenth aspects, the incident surface has a concave aspherical shape.
  • the lighting device wherein an LED chip that emits a light beam of a first color and a second color that is different from the first color by the light beam of the first color emitted from the LED chip. And an optical element according to any one of claims 1 to 11, and an optical element according to any one of claims 1 to 11.
  • the illumination device has an LED (Light Emitting Diode) light source and an optical element.
  • LED Light Emitting Diode
  • LED light sources can be used, but it is preferable to use a white LED having a flat light emission surface and emitting white light.
  • the white LED a combination of a blue LED chip and a phosphor such as a YAG phosphor that emits yellow light by a blue light beam emitted from the blue LED chip is preferably used.
  • a white LED for example, one described in Japanese Patent Application Laid-Open No. 2008-231218 can be used, but is not limited thereto.
  • the white LED is disposed on the package substrate PT, and the LED chip CP connected to the electrode ET and the LED chip CP are sealed thereon.
  • the phosphor layer EL having a larger area than the LED chip in the optical axis direction, a tapered reflecting surface MR surrounding the phosphor layer EL, and a case CS supporting the reflecting surface MR.
  • the LED chip CP emits light of a first predetermined wavelength (first color light), and emits blue light in the present embodiment.
  • the wavelength of the LED chip of the present invention and the wavelength of the emitted light from the phosphor are not limited, and the wavelength of the emitted light from the LED chip and the wavelength of the emitted light from the phosphor are in a complementary color relationship and the synthesized light is white. Any combination that provides light can be used.
  • the LED chip CP has an area corresponding to a square having a side of 0.5 mm to 1.3 mm
  • the phosphor layer EL has an area corresponding to a circle having a diameter of ⁇ 2.1 mm to ⁇ 3.2 mm, and its thickness. Is preferably 0.5 mm to 1.0 mm.
  • a known blue LED chip can be used as such an LED chip.
  • the blue LED chip any existing one including InxGa1-xN can be used.
  • the emission peak wavelength of the blue LED chip is preferably 440 to 480 nm.
  • the LED chip is mounted on the substrate and directly radiated upward or sideward, or the blue LED chip is mounted on a transparent substrate such as a sapphire substrate, and bumps are formed on the surface thereof.
  • Any form of LED chip such as a so-called flip chip connection type, in which it is formed and turned over and connected to an electrode on a substrate, can be applied.
  • the phosphor layer EL converts the light having the first predetermined wavelength emitted from the LED chip CP into the light having the second predetermined wavelength (light of the second color).
  • the LED light source can be said to be a surface emitting light source having an emission surface having a predetermined area.
  • the phosphor used for such a phosphor layer uses an oxide or a compound that easily becomes an oxide at a high temperature as a raw material of Y, Gd, Ce, Sm, Al, La and Ga, and converts them into a stoichiometric amount.
  • the raw material is obtained by thoroughly mixing in a theoretical ratio.
  • a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of oxalic acid with a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio, and aluminum oxide and gallium oxide. Mix to obtain a mixed raw material.
  • the compact can be packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
  • the LED light source is preferably a high-power LED light source.
  • the high-power LED light source can be constituted by an LED having an output of 0.5 watts or more.
  • the optical element for LED is disposed on the light emission side of the LED light source, and is an incident surface on which light emitted from the LED light source is incident, and a generally convex emission surface that emits light emitted from the LED light source to the outside.
  • the entrance surface of the lens and the light emission surface of the LED light source are preferably not in contact with each other, and the space between the entrance surface and the LED light source is preferably filled with air.
  • the optical element has a leg portion that comes into contact with the substrate provided with the LED light source, and the height of the leg portion is preferably lower than the height of the LED light source.
  • This leg is preferably formed discontinuously in the circumferential direction.
  • the optical element is preferably made of plastic.
  • a plastic constituting the optical element for example, polycarbonate or acrylic can be used. By using polycarbonate or acrylic, it can be manufactured by injection molding, and the manufacturing cost can be greatly reduced.
  • the diffusion surface may be a mirror surface, including a surface subjected to graining or roughening.
  • the surface roughness is Ra 0.2 or more.
  • a backlight illumination device and an optical element that are suitable for illuminating from behind the panel and that can suppress uneven illuminance and uneven color.
  • FIG. 1A and 2B are diagrams illustrating an optical element of Example 1, where FIG. 3A is a view seen from the light exit surface side, FIG. 3B is a cross-sectional view along the optical axis VIB-VIB, and FIG. (D) is the figure seen from the bottom face side.
  • FIG. 1 It is a figure which shows the relationship between the radius H and SAG (H) in the entrance plane and exit surface of Example 1.
  • FIG. The relationship between the radius H and ⁇ (H) on the entrance surface and the exit surface of Example 1 is tin. It is a figure which shows the relationship between the radius H and SAG (H) 'in the entrance plane and exit surface of Example 1.
  • FIG. It is a figure which shows the relationship between the radius H and SAG (H) "in the entrance plane and exit surface of Example 1.
  • (A) is a schematic diagram on the exit surface side of an ideal optical element
  • (b) is a sectional view in the optical axis direction of the irradiation surface of the ideal optical element, the vertical axis is illuminance, and the horizontal axis is light. It corresponds to the position with reference to the axis.
  • (C) is the schematic diagram by the side of the output surface of the optical element designed by the same idea as Example 1,
  • (d) is the optical axis direction sectional drawing of the irradiation surface in this optical element,
  • shaft is The illuminance and the horizontal axis correspond to the position relative to the optical axis.
  • (A) superimposes the illuminance curve of the light beam emitted from the vicinity of the center of the light emitting surface of the LED light source of Example 1 and the illuminance curve of the light beam emitted from the peripheral portion of the light emitting surface on the ideal curve
  • (B) superimposes the illuminance curve of the light beam emitted from the vicinity of the center of the light emitting surface of the LED light source of the comparative example and the illuminance curve of the light beam emitted from the peripheral portion of the light emitting surface on the ideal curve
  • the vertical axis corresponds to the illuminance
  • the horizontal axis corresponds to the position based on the optical axis.
  • Example 1 The illuminance curves in Example 1 and the comparative example are superimposed on the ideal curve.
  • (A) is an enlarged view showing an optical path near the step ST at the boundary between the second region 1b2 and the third region 1b3 in the example in which the third region 1b3 of the emission surface is a mirror surface
  • (b) is It is an enlarged view which shows the optical path at the time of the light beam radiate
  • (c) is diffusing 3rd area
  • FIG. 7 is an enlarged view showing an optical path near a step ST ′ at the boundary between the second region 1b2 and the third region 1b3 ′ in the example of the lower surface of the surface PT, and (d) is a diagram illustrating the second region 1b2 and the third region. It is an enlarged view which shows the optical path at the time of the light beam radiate
  • the illuminance curve concerning the light beam emitted from the periphery of the LED light source in Example 1 in which the third region is a mirror surface and a diffusion surface is superimposed on the ideal curve.
  • Example 5 is a diagram illustrating an optical element of Example 2, where (a) is a view seen from the exit surface side, (b) is a cross-sectional view along the optical axis direction XIB-XIB, and (c) is a cross-sectional view along the optical axis direction XIC-XIC; (D) is the figure seen from the bottom face side.
  • FIG. 3 is a cross-sectional view in the optical axis direction of the illumination device according to the present embodiment.
  • the backlight illumination device according to the present embodiment includes an optical element 1 and an LED light source 2 formed on a circuit board 3.
  • the LED light source 2 is formed by laminating an LED chip that emits blue light and a yellow phosphor provided on the light emitting side, and has an overall square plate shape.
  • the light emission surface 2a is flat.
  • the LED light source 2 is basically the same as that shown in FIG.
  • CP is a square with a side of 0.76 mm and an area of about 0.6 mm 2
  • EL is a circle with a diameter of ⁇ 2.5 mm.
  • the area is about 4.9 mm 2
  • the area ratio is 1: 8.5
  • the thickness of the LED module is 0.8 mm.
  • the optical element 1 uses polycarbonate or acrylic as plastic. Further, the optical element 1 is disposed on the light emission side of the LED light source 2, and has a concave incident surface 1a on which the light emitted from the LED light source 2 is incident, and the vicinity of the optical axis OA is concave, but is generally convex. And an exit surface 1b that emits light incident from the entrance surface 1a to the outside, a bottom surface 1d that faces the substrate 3, an outer peripheral surface 1f that is a cylindrical surface or a conical surface provided on the outer periphery of the exit surface 1b, Have The outer peripheral surface 1f is a portion where a gate is provided when the LED optical element 1 is injection-molded.
  • the concave incident surface 1a is a spherical or aspherical refracting surface 1g through which a normal line (coincidence with the optical axis OA) at the center of the light emitting surface 2a of the LED light source 2 passes, and closer to the LED light source 2 than the refracting surface 1g.
  • a diffusing surface 1h provided outside the direction orthogonal to the optical axis and having a light diffusing action.
  • the diffusion surface 1h has a tapered shape in which the dimension in the direction perpendicular to the optical axis decreases as the distance from the light emitting surface 2a of the LED light source 2 increases, and the corresponding transfer surface of the mold for molding the LED optical element 1 By increasing the roughness, the surface can be roughened. At this time, by providing a step 1i that faces the LED light source 2 between the diffusion surface side end of the incident surface 1a and the incident surface side end of the diffusion surface 1h, for example, a transfer corresponding to the diffusion surface 1h. When performing shot peening processing or the like to increase the roughness of the surface, it becomes easier to mask the incident surface 1a.
  • the emission surface 1b is divided into three regions in the present embodiment. More specifically, the first region 1b1 around the optical axis OA is composed of a first region 1b1, an outer second region 1b2, and an outermost third region 1b3. It has become.
  • the function that defines the exit surface shape of the first region 1b1 and the function that defines the exit surface shape of the second region 1b2 are discontinuous. Normals at positions adjacent to the boundary B1 between the first region 1b1 and the second region 1b2 are not parallel to each other. Further, the function that defines the exit surface shape of the second region 1b2 and the function that defines the exit surface shape of the third region 1b3 are discontinuous. Although not visible in FIG.
  • the outer region is shifted upward at the boundary B1, thereby forming a step of 5 ⁇ m. Further, the outer region is shifted upward at the boundary B2, thereby forming a step of 20 ⁇ m.
  • the third region 1b3 is a rough surface.
  • the bottom surface 1d can be a rough surface having a diffusing action by increasing the roughness of the corresponding transfer surface of the mold in the same manner as the diffusion surface 1h.
  • the outer peripheral surface 1f can also be a roughened surface having a diffusion action by increasing the roughness of the corresponding transfer surface of the mold.
  • the bottom surface 1d has three leg portions 1j at equal intervals in the circumferential direction, and is attached with the leg portions 1j in contact with the surface of the substrate 3.
  • the entire leg portion 1j can be made a rough surface having a diffusion action by increasing the roughness of the corresponding transfer surface of the mold, like the diffusion surface 1h.
  • the height of the leg 1j is lower than the height of the LED light source 2, so that when the LED optical element 1 is attached to the LED light source 2, the bottom surface 1d is lighter than the light emitting surface 2a of the LED light source 2. Arranged on the opposite side to the discharge direction. Thereby, it can suppress that the light discharge
  • the positions of the emission surfaces where the color separation of the first color and the second color is most likely to occur are the boundaries B1 and B2, and the boundaries B1 and B2 are defined by providing discontinuity of the surfaces.
  • Interstitial light beams that have passed through the inner region and the outer region are crossed with each other to promote color mixing, and unevenness in illuminance can be suppressed by complementing each other's light density.
  • the uneven color of the illumination light can be further suppressed by the vignetting effect of the steps provided at the boundaries B1 and B2.
  • the third region 1b3 a diffusing surface, it is possible to emit a high-quality white light by exhibiting a diffusing effect and moderating a change in light density near the boundary.
  • Example 1 4A to 4D show an optical element according to Example 1.
  • FIG. The numbers in the figure are dimensions (mm). Each part is given the same reference numeral as in the above-described embodiment.
  • the leg parts 1j are installed at unequal intervals. 1k is formed.
  • the refractive surface 1g of the entrance surface 1a and the exit surface 1b are aspherical.
  • Table 1 shows lens data of Example 1.
  • a power of 10 (for example, 2.5 ⁇ 10 ⁇ 3 ) may be expressed using E (for example, 2.5 ⁇ E ⁇ 3).
  • E for example, 2.5 ⁇ E ⁇ 3
  • the optical surface of the optical element is assigned the coefficient shown in Table 1 in the equation (1). It is formed into an aspherical surface that is axisymmetric about the optical axis, which is defined by the above formula.
  • X (H) is the distance from the origin to the optical axis direction
  • is the conical coefficient
  • Ai is the aspherical coefficient
  • H is the optical axis perpendicular to the optical axis.
  • the distance (radius), r is the radius of curvature.
  • the refracting surface 1g of the incident surface is a single aspherical surface, and the exit surface is composed of a first region 1b1 including the optical axis, a second region 1b2 outside thereof, and a third region 1b3 outside thereof. Consists of regions.
  • the third region 1b3 is a mirror surface.
  • Has a step of about 0.025 mm see sag amount SAG (H) in Tables 2 and 3).
  • the step is a step in a direction in which the second region 1b2 is thicker than the other regions 1b1 and 1b3. Further, the surface vertex is on the boundary between the first region 1b1 and the second region 1b2.
  • Tables 2 and 3 show data such as the sag amount on the exit surface of Example 1.
  • SAG (H) is a coordinate (unit: mm) in the optical axis direction at the radius H, and the direction in which the light emitted from the LED light source travels is positive.
  • ⁇ (H) is an angle (unit: degree) formed by the normal of the optical axis at the radius H and the exit surface.
  • SAG (H) ′ is a primary differential value at a radius H
  • SAG (H) ′′ is a secondary differential value at a radius H
  • ⁇ (H) and SAG (H) ′ are unit systems. Are different but have the same meaning (angle and differential value)
  • Fig. 5 shows the relationship between radius H and SAG (H)
  • Fig. 6 shows the relationship between radius H and ⁇ (H)
  • 7 shows the relationship between the radius H and SAG (H) ′
  • FIG. 8 shows the relationship between the radius H and SAG (H) ′′.
  • ⁇ (H) and SAG (H) ′ are discontinuous before and after the boundary between the first region 1b1 and the second region 1b2, and compared with the first region 1b1 before and after this boundary. It can be seen that the refractive surface of the second region 1b2 has a large positive power. That is, the second region 1b2 has a weaker power for diffusing light than the first region 1b1, and thus the light beams emitted before and after the boundary intersect each other. Further, SAG (H) "is a further differentiation of the inclination of the surface, which can be used as an index indirectly representing a change in the light density at the radius H.
  • the boundary between the first region 1b1 and the second region 1b2 It can be seen that the direction of discontinuity and change is different between the front and the back, as shown in Fig. 1.
  • the light rays on the right side of the figure have a low density and the light rays on the left side have a high density. Is designed to have a lower density, and it can be seen from the relationship between ⁇ (H) and SAG (H) ′ that the density is complemented before and after the boundary.
  • the illuminance simulation result comparing Example 1 and the comparative example will be described.
  • the third region 1b3 on the exit surface side is expressed by one aspheric function continuous to the optical axis as compared with the first embodiment, that is, the aspheric shape is similar. There are no discontinuous points or steps. Other shapes are the same as those in the first embodiment.
  • FIG. 9A is a schematic view of an irradiation surface of an ideal optical element assuming that, for example, a point light source is used
  • FIG. 9B is an irradiation surface of the ideal optical element. Is a sectional view in the optical axis direction, and the vertical axis corresponds to illuminance.
  • the illuminating device it is ideal to obtain a Gaussian-shaped illuminance curve as shown in FIG. 9B.
  • the ideal curve is not always obtained. Therefore, a discontinuous portion is provided on the emission surface.
  • FIG. 9C is a schematic view of the irradiation surface viewed from the top when an optical element having a discontinuity between the first region and the second region of the emission surface is seen, and the dotted line passes through the first region.
  • the illuminance distribution on the irradiation surface by the luminous flux and the solid line passing through the second region are shown.
  • FIG. 9D is a sectional view in the optical axis direction of the irradiated surface. Referring to FIG. 9 (c), it can be seen that there is a portion where the light beams overlap in the vicinity of the connecting portion between the first region and the second region, and the relationship of compensating the illuminance in total. In other words, it can be seen that the illuminance curve approaches the ideal curve shown in FIG. Example 1 was designed based on this idea.
  • FIG. 10A shows the illuminance curve of Example 1 superimposed on the ideal curve
  • FIG. 10B shows the illuminance curve of the comparative example superimposed on the ideal curve.
  • the illuminance curves were drawn independently for the luminous flux emitted from the vicinity of the optical axis of the LED light source ( ⁇ 0.2 mm) and the luminous flux from the periphery of the LED light source ( ⁇ 2.3 to 2.5 mm).
  • Example 1 has a slightly smaller ideal curve.
  • the illuminance curve is almost the same.
  • the reason why the illuminance near the optical axis is reduced with respect to the ideal curve is that the light beam reflected inside the optical element is reflected / scattered on the back surface or the light beam that is transmitted from the back surface and diffusely reflected on the substrate. This is because they gather near the center of the surface to be irradiated and eventually have an illuminance distribution close to the ideal curve.
  • FIG. 11 is a graph in which the illuminance curve relating to the luminous flux emitted from the entire emission surface of the LED light source in Example 1 and the comparative example is superimposed on the ideal curve.
  • the illuminance curve of Example 1 is closer to the ideal curve than the comparative example near the optical axis, and the effect of Example 1 was confirmed.
  • the illuminance curve of Example 1 has a strong wave at a position away from the optical axis. However, since the original illuminance is small at such a peripheral position, the influence is small in actual use.
  • FIG. 12A is an enlarged view showing an optical path in the vicinity of the step ST at the boundary between the second region 1b2 and the third region 1b3 in the example in which the third region 1b3 on the emission surface is a mirror surface.
  • b) is an enlarged view showing an optical path when light beams emitted from the second region 1b2 and the third region 1b3 are incident on a diffusion plate as an irradiated surface.
  • FIG. 12A is an enlarged view showing an optical path in the vicinity of the step ST at the boundary between the second region 1b2 and the third region 1b3 in the example in which the third region 1b3 on the emission surface is a mirror surface.
  • b) is an enlarged view showing an optical path when light beams emitted from the second region 1b2 and the third region 1b3 are incident on a diffusion plate as an irradiated surface.
  • FIG. 12A is an enlarged view showing an optical path in the vicinity of the step ST at the boundary between the second region 1b2 and the
  • FIG. 12C is an enlarged view showing an optical path in the vicinity of the step ST ′ at the boundary between the second region 1b2 and the third region 1b3 ′ in the example in which the third region 1b3 ′ on the emission surface is the diffusion surface.
  • FIG. 12D is an enlarged view showing an optical path when the light beams emitted from the second region 1b2 and the third region 1b3 ′ are incident on the lower surface of the diffusion plate PT as the irradiated surface.
  • the step ST ′ is also a diffusion surface.
  • the step ST is preferably not too large.
  • the light emitted from the third region 1b3 is diffused to partially change the emission direction, so that the diffusion is performed as shown in FIG.
  • a shadow portion caused by the vignetting effect becomes inconspicuous.
  • FIG. 13 is a graph in which an illuminance curve relating to a light beam emitted from the entire surface of the LED light source in Example 1 in which the third region is a mirror surface and a diffusion surface is superimposed on the ideal curve. It can be seen that if the third region is a diffusing surface, the unevenness of the curve is reduced compared to the case where the third region is a mirror surface, particularly in the range PR away from the optical axis, and closer to the ideal curve.
  • FIG. 14 shows an optical element according to Example 2.
  • the numbers in the figure are dimensions (mm).
  • recesses 1m serving as assembling references are formed in the vicinity of three leg portions 1j arranged at equal intervals in the circumferential direction.
  • the incident surface shape and the output surface shape are the same as those in the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

A lighting device and optical element for a backlight that are suitable for illumination from behind a panel and which can suppress illuminance variation and color variation are provided. Letting the proximity where luminous flux, wherein a color division between a first color and a second color is greatest, is radiated be a boundary (BD), a site having irregularity is provided here. Thus, at the boundary (BD), luminous fluxes for which the colors passing through a first region (AR1) and a second region (AR2) are different from each other are made to cross each other, and along with achieving a mixed color, brightness variations are suppressed by the light ray densities complementing each other.

Description

光学素子及び照明装置Optical element and illumination device
 本発明は、比較的大面積の面部材の背面側に設置され、前記面部材を介して光が通過するようにバックライト照明を行う照明装置及びそれに用いる光学素子に関する。 The present invention relates to an illuminating device that is installed on the back side of a surface member having a relatively large area and performs backlight illumination so that light passes through the surface member, and an optical element used therefor.
 従来の大型の液晶ディスプレイ装置では、液晶パネル背面に配置された多数の冷陰極管からの光を拡散板や反射板等を介して、液晶パネルの背面側に導光し、バックライトとして均一に照明することで明瞭に画像が視認できるようにしていた。これに対し近年では、省エネの観点から、バックライトの光源としてLED光源が使用されるようになってきた。また、液晶ディスプレイ装置に表示される画像に応じて明暗を制御することができるという観点からも、LED光源は使いやすく、これにより更に液晶ディスプレイ装置の消費電力を下げることができる。 In a conventional large-sized liquid crystal display device, light from a number of cold-cathode tubes arranged on the back side of the liquid crystal panel is guided to the back side of the liquid crystal panel via a diffusion plate, a reflector, etc., and is uniformly used as a backlight. By illuminating, the image was clearly visible. On the other hand, in recent years, an LED light source has been used as a light source of a backlight from the viewpoint of energy saving. Further, from the viewpoint that brightness and darkness can be controlled according to the image displayed on the liquid crystal display device, the LED light source is easy to use, thereby further reducing the power consumption of the liquid crystal display device.
 このように液晶ディスプレイ装置のバックライトとしてLED光源を用いる場合、LED光源のチップ自体が小さいため、かかるチップを液晶パネルの背面側に直接配置しようとすると、均一な照度を確保するためには、無数のチップが必要になって現実的でない。そこで、LEDチップから放出された光を均一照度の照明光に変換する光学素子が必要になる。特許文献1~3には、LED光源からの光を入射してなるべく均一照度な照明光に変換することができる、液晶用バックライト用の光学素子が開示されている。 Thus, when using an LED light source as a backlight of a liquid crystal display device, since the chip of the LED light source itself is small, in order to secure a uniform illuminance when trying to arrange such a chip directly on the back side of the liquid crystal panel, It is not realistic because countless chips are required. Therefore, an optical element that converts light emitted from the LED chip into illumination light with uniform illuminance is required. Patent Documents 1 to 3 disclose optical elements for liquid crystal backlights that can convert light from an LED light source into illumination light with as uniform illuminance as possible.
特開2008-532300号公報JP 2008-532300 A 特開2006-92983号公報JP 2006-92983 A 特開2009-44016号公報JP 2009-44016 特開2009-192915号公報JP 2009-192915
 ところで、特許文献1~3に開示された光学素子は、出射面形状が連続的であり、従って出射光の配光特性が連続的となっている。ここで、液晶パネルで表示される画像を自然な色で発色させるために、白色光を発光させるLED光源がバックライトに一般的に用いられる。このように白色光を発光させるLED光源としては、現在のところ、青色光束を放出する青色LEDチップと、青色LEDチップから発せられた青色光束によって励起され黄色に発光する蛍光体を組み合わせたものが広く用いられている。 By the way, the optical elements disclosed in Patent Documents 1 to 3 have a continuous emission surface shape, and thus the light distribution characteristics of the emitted light are continuous. Here, in order to develop an image displayed on the liquid crystal panel with a natural color, an LED light source that emits white light is generally used for the backlight. As the LED light source that emits white light in this manner, at present, a combination of a blue LED chip that emits a blue light beam and a phosphor that emits yellow light when excited by the blue light beam emitted from the blue LED chip is used. Widely used.
 しかるに、青色LEDチップと蛍光体とを用いた白色LED光源の課題として、光学素子を通過した白色光において光軸を中心としたイエローリングと呼ばれる色ムラが生じる恐れがあり、このような色ムラが生じた白色光を液晶パネルの背面に照射すると、液晶パネルに表示される画像の自然な発色を損なう恐れがある。特に、青色LEDチップを、それより大きな蛍光体で封止するタイプのLED光源では、蛍光体の全面から光が出射する光源(ある面積の出射面から光を出射する光源を、以下、面発光光源という)となるが、発光面の中心部付近となる青色LEDチップ近傍と発光面の周辺部となる蛍光体封止材の外周よりの部分を近傍で見た場合、それぞれ青みが強い光束と黄みの強い光束となり、光学素子により拡大投影されるためイエローリングが発生する。上記のように青みが強い光束と黄みの強い光束に別れる原因としては、青色LEDチップ近傍から光軸に沿って出射する光束と周辺に向かって出射する光束とでは蛍光体を通る距離が異なることとなる。そうすると青色の光束が蛍光体に反応して黄色の光束となる量が異なる結果となるためである。また、発光面の面積と光学素子の入射面の面積が近い大きさの場合、出射面の同じ位置でも、発光面の異なる位置から出射された異なる入射角の光束があるため、これにより、複数のイエローリングによる色ムラ発生する傾向がある。しかしながら、特許文献1~3には、有効な色ムラの抑制についての対策が具体的に開示されていない。 However, as a problem of a white LED light source using a blue LED chip and a phosphor, there is a possibility that color unevenness called a yellow ring centering on the optical axis may occur in white light that has passed through an optical element. When the white light with the generated light is irradiated on the back surface of the liquid crystal panel, there is a risk that natural color development of an image displayed on the liquid crystal panel is impaired. In particular, in an LED light source of a type in which a blue LED chip is sealed with a larger phosphor, a light source that emits light from the entire surface of the phosphor (a light source that emits light from an emission surface of a certain area is referred to as surface emission hereinafter). Light source)), when the vicinity of the blue LED chip near the center of the light emitting surface and the outer periphery of the phosphor sealing material that is the peripheral portion of the light emitting surface are viewed in the vicinity, Since the light beam is intensely yellowish and is enlarged and projected by the optical element, yellow ring is generated. As described above, the reason why the light beam is divided into a strong blue light beam and a strong yellow light beam is that the light beam emitted from the vicinity of the blue LED chip along the optical axis and the light beam emitted toward the periphery differ in the distance passing through the phosphor. It will be. This is because the amount of blue light beam that reacts with the phosphor to become a yellow light beam is different. In addition, when the area of the light emitting surface and the area of the incident surface of the optical element are close to each other, there are light beams with different incident angles emitted from different positions on the light emitting surface even at the same position on the light emitting surface. There is a tendency for color unevenness to occur due to the yellow ring. However, Patent Documents 1 to 3 do not specifically disclose measures for effective suppression of color unevenness.
 これに対し特許文献4には、入射面を2つの異なる特性を持つ光学面とすることで、色ムラ改善を図る技術が開示されている。しかしながら、特許文献4の技術では、入射面における光軸付近の領域で光学面の粗さや特性が大きく変わるため、色ムラは抑制されるかもしれないが、中心付近の照度(輝度)が低下して照度ムラを発生する恐れがある。また、入射面における光軸付近を粗面にすると、通過した光の配光が広がらず、拡散効果を十分に得られない恐れもある。 On the other hand, Patent Document 4 discloses a technique for improving color unevenness by using an incident surface as an optical surface having two different characteristics. However, in the technique of Patent Document 4, since the roughness and characteristics of the optical surface change greatly in the region near the optical axis on the incident surface, color unevenness may be suppressed, but the illuminance (luminance) near the center decreases. May cause uneven illumination. In addition, if the vicinity of the optical axis on the incident surface is made rough, the light distribution of the light that has passed through may not be spread, and the diffusion effect may not be sufficiently obtained.
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、パネルの背後から照明するのに好適であり、照度ムラと色ムラを抑制できるバックライト用の照明装置及び光学素子を提供することを目的とする。 The present invention has been made in view of the problems of the prior art, and is suitable for illuminating from behind the panel, and provides an illumination device and an optical element for a backlight that can suppress illuminance unevenness and color unevenness. The purpose is to do.
 請求項1に記載の光学素子は、LED光源からの光束が入射する入射面と、前記光束を出射する出射面とを備えたバックライト用の光学素子であって、
 前記LED光源は、LEDチップと、光軸方向において前記LEDチップよりも面積が大きい蛍光体と、を組み合わせてなり、
 前記光学素子の出射面は、光軸直交方向において2領域に分割する境界を有し、前記境界より光軸に近い側の領域を第1領域とし、前記境界より外側の領域を第2領域としたときに、前記第1領域の出射面形状を規定する関数と、前記第2領域の出射面形状を規定する関数とが不連続であり、
 前記LED光源から出射され、前記入射面を介して前記光学素子内に入射した光束のうち、前記第1領域から出射した光束と、前記境界を隔てて前記第2領域から出射した光束とが少なくとも一部交わることを特徴とする光学素子。
The optical element according to claim 1 is an optical element for a backlight including an incident surface on which a light beam from an LED light source is incident and an output surface that emits the light beam.
The LED light source is a combination of an LED chip and a phosphor having a larger area than the LED chip in the optical axis direction.
The exit surface of the optical element has a boundary that is divided into two regions in the direction perpendicular to the optical axis, a region closer to the optical axis than the boundary is defined as a first region, and a region outside the boundary is defined as a second region. The function defining the exit surface shape of the first region and the function defining the exit surface shape of the second region are discontinuous,
Of the light beams emitted from the LED light source and entering the optical element via the incident surface, at least a light beam emitted from the first region and a light beam emitted from the second region across the boundary are at least An optical element that partially intersects.
 バックライト用の光学素子は、一般的に入射面の面積より出射面の面積の方が大きい。従って、色ムラを抑制するために、入射面形状を調整するよりも、出射面形状を調整した方が、形状を精度良く整えることができ、且つ形状誤差が生じてもそれによる影響も小さくなる。そこで、本発明では出射面形状を調整することとした。色ムラを抑制すべく具体的には、前記光学素子の出射面を、光軸直交方向において境界を挟んで少なくとも2領域に分割し、前記境界より光軸に近い側の領域を第1領域とし、前記境界より外側の領域を第2領域とし、更に、前記第1領域の出射面形状を規定する関数と、前記第2領域の出射面形状を規定する関数とを不連続とする。 ¡Backlight optical elements generally have a larger exit surface area than the entrance surface area. Therefore, in order to suppress color unevenness, the shape of the light exit surface can be adjusted more accurately than the case of adjusting the shape of the light entrance surface, and the influence of the shape error can be reduced even if a shape error occurs. . Therefore, in the present invention, the emission surface shape is adjusted. Specifically, in order to suppress color unevenness, the exit surface of the optical element is divided into at least two regions with a boundary in the direction orthogonal to the optical axis, and a region closer to the optical axis than the boundary is defined as a first region. The region outside the boundary is defined as a second region, and the function defining the exit surface shape of the first region and the function defining the exit surface shape of the second region are discontinuous.
 前記出射面が前記境界で不連続となる場合、第1領域を通過した光束と、第2領域を通過した光束とで振る舞いが異なる。これを、図1を参照して説明する。図1(a)(b)は、光学素子の出射面である第1領域AR1と第2領域AR2の境界BD近傍を拡大して示す図である。ここで、第1領域AR1を規定する関数と、第2領域AR2を規定する関数とを不連続とすることで、例えば図1(a)の例は、LED光源の発光面の中心から出射した光束の光線経路を示しており、入射面から入射した略平行な光線群Lにおいて、第1の領域AR1を通過した光線が角度θ1で屈折したときに、第2の領域AR2を通過した光線は角度θ2(>θ1)で屈折させることができる。これにより、第1領域AR1から出射した光束と、境界BDを隔てて第2領域AR2から出射した光束とが少なくとも一部交わることとなる。 When the exit surface is discontinuous at the boundary, the behavior differs between the light beam that has passed through the first region and the light beam that has passed through the second region. This will be described with reference to FIG. FIGS. 1A and 1B are enlarged views showing the vicinity of the boundary BD between the first area AR1 and the second area AR2 which is the emission surface of the optical element. Here, by making the function defining the first area AR1 and the function defining the second area AR2 discontinuous, for example, the example of FIG. 1A is emitted from the center of the light emitting surface of the LED light source. The light ray path of the light beam is shown. In the substantially parallel light ray group L incident from the incident surface, when the light ray that has passed through the first area AR1 is refracted at an angle θ1, the light ray that has passed through the second area AR2 is The light can be refracted at an angle θ2 (> θ1). Thereby, at least a part of the light beam emitted from the first area AR1 and the light beam emitted from the second area AR2 across the boundary BD intersect each other.
 一方、図1(b)の例は、LED光源の発光面周辺付近から出射した光束の光線経路を示しており、入射面から入射した光線群Lにおいて、境界BD近傍で第1の領域AR1に入射した光線Lは全反射し、光線密度を局所的に減少させることができるとともに、第2の領域AR2に入射した光線Lは透過するようになっている。一方、境界BDから離れた位置で第1の領域AR1に入射した光線L’は屈折するが、これが第2領域AR2から出射した光線Lとが少なくとも一部交わることとなる。 On the other hand, the example of FIG. 1B shows a light beam path of a light beam emitted from the vicinity of the light emitting surface of the LED light source. In the light beam group L incident from the incident surface, the light beam L enters the first area AR1 near the boundary BD. The incident light beam L is totally reflected, the light beam density can be locally reduced, and the light beam L incident on the second area AR2 is transmitted. On the other hand, the light beam L ′ incident on the first region AR1 at a position away from the boundary BD is refracted, but this at least partially intersects the light beam L emitted from the second region AR2.
 LED光源が、LEDチップと、光軸方向において前記LEDチップよりも面積が大きい蛍光体とを組み合わせてなる場合、光学素子を通過した光束において色分かれがリング状に生じやすく、これが色ムラとして認識される可能性が高い。これは上記したように周辺方向に光束が出射するほど蛍光体を通過する距離が長くなりより異なる色となるからである。そこで、本発明では、例えば最も色分かれが生じた光束が出射する付近を境界BDとして、ここに前記第1領域の出射面形状を規定する関数と、前記第2領域の出射面形状を規定する関数とを不連続するようにし、これにより境界BDで、第1の領域AR1と第2の領域AR2とを通過した互いに色が違う光束同士をクロスさせ、混色を促すとともに、お互いの光線密度を補完しあうことで照度ムラを抑制しているのである。 When the LED light source is a combination of an LED chip and a phosphor having a larger area than the LED chip in the optical axis direction, color separation is likely to occur in a ring shape in the light flux that has passed through the optical element, and this is recognized as color unevenness. There is a high possibility of being. This is because, as described above, as the luminous flux is emitted in the peripheral direction, the distance passing through the phosphor becomes longer and the color becomes different. Therefore, in the present invention, for example, the vicinity where the light beam with the most color separation is emitted is defined as a boundary BD, and the function defining the emission surface shape of the first region and the emission surface shape of the second region are defined here. By making the function discontinuous, the light beams having different colors that have passed through the first area AR1 and the second area AR2 are crossed at the boundary BD to promote color mixing and to increase the light density of each other. By complementing each other, uneven illumination is suppressed.
 請求項2に記載の光学素子は、請求項1に記載の発明において、前記LED光源は、第1の色の光線を出射する前記LEDチップと、前記第1の色の光線が入射することにより、前記第1の色とは異なる第2の色を出射する前記蛍光体を組み合わせることを特徴とする。 According to a second aspect of the present invention, in the optical element according to the first aspect, the LED light source is configured such that the LED chip that emits a first color light beam and the first color light beam are incident. The phosphor that emits a second color different from the first color is combined.
 このようなLED光源を用いる場合、本発明が特に有効である。 The present invention is particularly effective when such an LED light source is used.
 請求項3に記載の光学素子は、請求項1又は2に記載の発明において、前記境界において、前記第1領域に対して、前記第2領域が前記LED光源から離れる側にシフトすることにより段差が形成されることを特徴とする。 According to a third aspect of the present invention, there is provided the optical element according to the first or second aspect, wherein the second region shifts to the side away from the LED light source with respect to the first region at the boundary. Is formed.
 図1(a)の例では、境界BDに近い第1領域AR1から出射した光線Lx(点線)は、境界BDに形成された段差STに入射し、再度、光学素子内を通り別の場所から出射されるため直接は照明に用いられない。一方、図1(b)の例では、境界BDから離れた第1領域AR1から出射した光線L’のうち一部の光線Lx’(点線)は、境界BDに形成された段差STに入射し、再度、光学素子内を通り別の場所から出射されるため直接は照明に用いられない。これを段差のケラレ効果という。光束をクロスさせることで色ムラを解消させることには、本来的に限界があるため、第1の色又は第2の色に近い光束は、光線のクロスにより混色を行っても完全に色ムラが解消する可能性が薄い。そこで、本発明においては、混色を行っても色ムラを完全に解消できない光束については、段差のケラレ効果により直接は照明に用いず、光学素子の別の部分から出射し色ムラの影響の出ない部分に光を導き、これにより照明光の色ムラを更に抑制するようにしているのである。尚、段差STを拡散面とすることで、反射光に拡散効果を与えるようにもできる。 In the example of FIG. 1A, the light beam Lx (dotted line) emitted from the first area AR1 close to the boundary BD is incident on the step ST formed on the boundary BD, and again passes through the optical element from another location. Since it is emitted, it is not used directly for illumination. On the other hand, in the example of FIG. 1B, a part of the light beams Lx ′ (dotted lines) out of the light beams L ′ emitted from the first area AR1 far from the boundary BD enters the step ST formed on the boundary BD. Again, since it is emitted from another place through the optical element, it is not directly used for illumination. This is called a step vignetting effect. Since there is an inherent limitation in eliminating color unevenness by crossing light beams, the light flux close to the first color or the second color is completely uneven even if color mixing is performed by crossing light beams. Is less likely to be resolved. Therefore, in the present invention, the light flux that cannot completely eliminate the color unevenness even if color mixing is performed is not directly used for illumination due to the vignetting effect of the step, but is emitted from another part of the optical element, and the influence of the color unevenness appears. The light is guided to the non-existing portion, thereby further suppressing the color unevenness of the illumination light. In addition, it can also be made to give a diffused effect to reflected light by making level | step difference ST into a diffused surface.
 請求項4に記載の光学素子は、請求項1~3のいずれかに記載の発明において、前記段差は5μm以上であることを特徴とする。 The optical element according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, the step is 5 μm or more.
 前記段差を5μm以上とすることで、有効なケラレ効果を発揮でき、色ムラを抑制できる。尚、前記段差は15μm以下であると好ましい。段差が大きくなりすぎるとケラレが大きくなりすぎ、逆に照度ムラの原因となる場合がある。 When the step is 5 μm or more, an effective vignetting effect can be exhibited and color unevenness can be suppressed. The step is preferably 15 μm or less. If the step becomes too large, the vignetting becomes too large, which may cause uneven illuminance.
 請求項5に記載の光学素子は、請求項1~4のいずれかに記載の発明において、前記境界に隣接した位置における前記第1領域の法線と、前記境界に隣接した位置における前記第2領域の法線とが異なっていることを特徴とする。 The optical element according to claim 5 is the optical element according to any one of claims 1 to 4, wherein the normal line of the first region at a position adjacent to the boundary and the second line at a position adjacent to the boundary. It is characterized in that the normal of the region is different.
 これにより、前記境界を挟んで、第1の領域AR1と第2の領域AR2とを通過した互いに色が違う光線同士を近接した方向に屈折させることができ、混色を促すことができる。 Thereby, light beams having different colors that have passed through the first area AR1 and the second area AR2 across the boundary can be refracted in directions close to each other, and color mixing can be promoted.
 請求項6に記載の光学素子は、請求項1~5のいずれかに記載の発明において、前記出射面は凹部を有し、前記境界は、前記出射面の面頂点に対し前記出射面径の±10%以内の位置に形成されていることを特徴とする。 An optical element according to a sixth aspect of the present invention is the optical element according to any one of the first to fifth aspects, wherein the emission surface has a recess, and the boundary has a diameter of the emission surface with respect to a surface vertex of the emission surface. It is characterized by being formed at a position within ± 10%.
 前記出射面は凹部を有しているため、面の頂点は光軸から離れた位置に存在している。そのため前記出射面の面頂点に対し前記出射面径の±10%以内は、そもそも色ムラ発生に影響の大きな部分であるとともに、レンズ内部での反射や全反射の影響でリング状のムラが起きやすい領域であるため、この領域に段差を設けると、小さめの段差でケラレ効果を発揮することができる。 Since the exit surface has a recess, the apex of the surface exists at a position away from the optical axis. For this reason, within ± 10% of the exit surface diameter with respect to the surface apex of the exit surface is a portion that has a large influence on the occurrence of color unevenness in the first place, and ring-shaped unevenness occurs due to the reflection inside the lens and the effect of total reflection. Since this is an easy region, if a step is provided in this region, the vignetting effect can be exhibited with a small step.
 請求項7に記載の光学素子は、請求項1~6のいずれかに記載の発明において、前記出射面において前記第2領域の光軸直交方向外側に別な境界を挟んで第3領域が形成され、前記第2領域の出射面形状を規定する関数と、前記第3領域の出射面形状を規定する関数とが不連続であることを特徴とする。 According to a seventh aspect of the present invention, in the optical element according to any one of the first to sixth aspects, a third region is formed on the light exit surface with another boundary outside the second region in the direction perpendicular to the optical axis. The function defining the exit surface shape of the second region and the function defining the exit surface shape of the third region are discontinuous.
 これにより、前記第2の領域と前記第3の領域とを通過した光束を制御することで、より高品質な照明を得ることができる。 Thereby, higher quality illumination can be obtained by controlling the light flux that has passed through the second region and the third region.
 請求項8に記載の光学素子は、請求項7に記載の発明において、前記別な境界において、前記第2領域に対して、前記第3領域が前記LED光源に近づく側にシフトすることにより段差が形成されることを特徴とする。 An optical element according to an eighth aspect of the invention according to the seventh aspect of the invention is the optical element according to the seventh aspect, wherein the third region shifts toward the LED light source closer to the second region with respect to the second region. Is formed.
 前記第2の領域と前記第3の領域との境界に段差を設けることで、ケラレ効果を発揮して、不要な光束を照明に用いないようにできる。前記第2の領域と前記第3の領域との段差は15μm~40μmであると好ましい。段差が大きくなりすぎるとケラレが大きくなりすぎ、逆に照度ムラの原因となる場合がある。 By providing a step at the boundary between the second region and the third region, an vignetting effect can be exhibited so that an unnecessary light beam is not used for illumination. Preferably, the step between the second region and the third region is 15 μm to 40 μm. If the step becomes too large, the vignetting becomes too large, which may cause uneven illuminance.
 請求項9に記載の光学素子は、請求項7又は8に記載の発明において、前記第3領域には拡散面が形成されていることを特徴とする。 The optical element according to claim 9 is characterized in that, in the invention according to claim 7 or 8, a diffusion surface is formed in the third region.
 前記第3領域の拡散面を通過することで、出射した光束に拡散効果を与えることで、より照度ムラを抑制できる。 The illuminance unevenness can be further suppressed by giving a diffusion effect to the emitted light beam by passing through the diffusion surface of the third region.
 請求項10に記載の光学素子は、請求項1~9のいずれかに記載の発明において、前記出射面は非球面形状であって、前記第1領域の光軸付近はくぼんでいることを特徴とする。 An optical element according to a tenth aspect is the invention according to any one of the first to ninth aspects, wherein the exit surface has an aspherical shape, and the vicinity of the optical axis of the first region is recessed. And
 これにより出射光を分散させることで、照度ムラを抑制できる。 This can suppress uneven illumination by dispersing the emitted light.
 請求項11に記載の光学素子は、請求項1~10のいずれかに記載の発明において、前記入射面は、凹状の非球面形状であることを特徴とする。 An optical element according to an eleventh aspect is characterized in that, in the invention according to any one of the first to tenth aspects, the incident surface has a concave aspherical shape.
 これにより出射光を分散させることで、照度ムラを抑制できる。 This can suppress uneven illumination by dispersing the emitted light.
 請求項12に記載の照明装置は、第1の色の光束を出射するLEDチップと、前記LEDチップから発せられた前記第1の色の光束によって前記第1の色とは異なる第2の色に発光する蛍光体を組み合わせてなるLED光源と、請求項1~11のいずれかに記載の光学素子と、を有することを特徴とする。 The lighting device according to claim 12, wherein an LED chip that emits a light beam of a first color and a second color that is different from the first color by the light beam of the first color emitted from the LED chip. And an optical element according to any one of claims 1 to 11, and an optical element according to any one of claims 1 to 11.
 本発明に係る照明装置は、LED(Light Emitting Diode)光源と、光学素子と、を有するものである。 The illumination device according to the present invention has an LED (Light Emitting Diode) light source and an optical element.
 LED光源としては、様々なものを用いることが出来るが、光放出面がフラットな形状を有し、更に白色光を出射する白色LEDを用いることが好ましい。 Various LED light sources can be used, but it is preferable to use a white LED having a flat light emission surface and emitting white light.
 白色LEDとしては、青色LEDチップと青色LEDチップから発せられた青色光束によって黄色に発光するYAG蛍光体等の蛍光体を組み合わせたものが好ましく用いられる。白色LEDとしては、例えば特開2008-231218号公報に記載されたものを用いることができるが、これに限られない。 As the white LED, a combination of a blue LED chip and a phosphor such as a YAG phosphor that emits yellow light by a blue light beam emitted from the blue LED chip is preferably used. As the white LED, for example, one described in Japanese Patent Application Laid-Open No. 2008-231218 can be used, but is not limited thereto.
 白色LEDは、一例として図2(a)(b)に示すように、パッケージ基板PT上に配置され、電極ETに接続されたLEDチップCPと、LEDチップCPを封止するようにしてその上に形成された、光軸方向においてLEDチップよりも面積が大きい蛍光体層ELと、蛍光体層ELを周囲で囲うテーパ状の反射面MRと、反射面MRを支持するケースCSとからなる。LEDチップCPは、第1の所定波長の光(第1の色の光)を出射するものであり、本実施の形態においては青色光を出射するようになっている。但し、本発明のLEDチップの波長及び蛍光体の出射光の波長は限定されず、LEDチップによる出射光の波長と、蛍光体による出射光の波長とが補色関係にあり合成された光が白色光となる組合せであればものであれば、使用可能である。尚、LEDチップCPは、1辺0.5mmから1.3mmの正方形相当の面積を有し、蛍光体層ELは、直径φ2.1mmからφ3.2mmの円形相当の面積を有し、その厚みは、0.5mmから1.0mmであると好ましい。 As an example, as shown in FIGS. 2A and 2B, the white LED is disposed on the package substrate PT, and the LED chip CP connected to the electrode ET and the LED chip CP are sealed thereon. The phosphor layer EL having a larger area than the LED chip in the optical axis direction, a tapered reflecting surface MR surrounding the phosphor layer EL, and a case CS supporting the reflecting surface MR. The LED chip CP emits light of a first predetermined wavelength (first color light), and emits blue light in the present embodiment. However, the wavelength of the LED chip of the present invention and the wavelength of the emitted light from the phosphor are not limited, and the wavelength of the emitted light from the LED chip and the wavelength of the emitted light from the phosphor are in a complementary color relationship and the synthesized light is white. Any combination that provides light can be used. The LED chip CP has an area corresponding to a square having a side of 0.5 mm to 1.3 mm, and the phosphor layer EL has an area corresponding to a circle having a diameter of φ2.1 mm to φ3.2 mm, and its thickness. Is preferably 0.5 mm to 1.0 mm.
 このようなLEDチップとしては、公知の青色LEDチップを用いることができる。青色LEDチップとしては、InxGa1-xN系をはじめ既存のあらゆるものを使用することができる。青色LEDチップの発光ピーク波長は440~480nmのものが好ましい。また、LEDチップの形態としては、基板上にLEDチップを実装し、そのまま上方または側方に放射させるタイプ、又は、サファイア基板などの透明基板上に青色LEDチップを実装し、その表面にバンプを形成した後、裏返して基板上の電極と接続する、いわゆるフリップチップ接続タイプなど、どのような形態のLEDチップでも適用することが可能である。 A known blue LED chip can be used as such an LED chip. As the blue LED chip, any existing one including InxGa1-xN can be used. The emission peak wavelength of the blue LED chip is preferably 440 to 480 nm. In addition, as a form of the LED chip, the LED chip is mounted on the substrate and directly radiated upward or sideward, or the blue LED chip is mounted on a transparent substrate such as a sapphire substrate, and bumps are formed on the surface thereof. Any form of LED chip, such as a so-called flip chip connection type, in which it is formed and turned over and connected to an electrode on a substrate, can be applied.
 図2(a)(b)で、蛍光体層ELは、LEDチップCPから出射される第1の所定波長の光を第2の所定波長の光(第2の色の光)に変換する蛍光体を有している。後述する実施の形態では、LEDチップから出射される青色光を黄色光に変換するようになっている。これにより、図2(b)の蛍光体層ELの全面より白色光が出射するようになっている。すなわち、LED光源は、出射面が所定の面積を有する面発光光源ということができる。 In FIGS. 2A and 2B, the phosphor layer EL converts the light having the first predetermined wavelength emitted from the LED chip CP into the light having the second predetermined wavelength (light of the second color). Have a body. In an embodiment described later, blue light emitted from the LED chip is converted into yellow light. As a result, white light is emitted from the entire surface of the phosphor layer EL in FIG. That is, the LED light source can be said to be a surface emitting light source having an emission surface having a predetermined area.
 このような蛍光体層に用いられる蛍光体は、Y、Gd、Ce、Sm、Al、La及びGaの原料として酸化物、又は高温で容易に酸化物になる化合物を使用し、それらを化学量論比で十分に混合して原料を得る。又は、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶解液を蓚酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し成形体を得る。成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成して、蛍光体の発光特性を持った焼結体を得ることができる。 The phosphor used for such a phosphor layer uses an oxide or a compound that easily becomes an oxide at a high temperature as a raw material of Y, Gd, Ce, Sm, Al, La and Ga, and converts them into a stoichiometric amount. The raw material is obtained by thoroughly mixing in a theoretical ratio. Alternatively, a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of oxalic acid with a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid at a stoichiometric ratio, and aluminum oxide and gallium oxide. Mix to obtain a mixed raw material. An appropriate amount of fluoride such as ammonium fluoride is mixed with this as a flux and pressed to obtain a molded body. The compact can be packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the phosphor emission characteristics.
 LED光源は、高出力LED光源であることが好ましい。ここで、高出力LED光源としては、出力が0.5ワット以上のLEDにより構成することができる。 The LED light source is preferably a high-power LED light source. Here, the high-power LED light source can be constituted by an LED having an output of 0.5 watts or more.
 LED用光学素子は、LED光源の光放出側に配置されており、LED光源からの発光光が入射する入射面と、LED光源からの発光光を外部に出射する全体的に凸状の出射面を有する。レンズの入射面とLED光源の光放出面は非接触となっていると好ましく、また入射面とLED光源との間は空気により充填されていることが好ましい。 The optical element for LED is disposed on the light emission side of the LED light source, and is an incident surface on which light emitted from the LED light source is incident, and a generally convex emission surface that emits light emitted from the LED light source to the outside. Have The entrance surface of the lens and the light emission surface of the LED light source are preferably not in contact with each other, and the space between the entrance surface and the LED light source is preferably filled with air.
 光学素子は、LED光源を設けた基板に当接する脚部を有し、この脚部の高さは前記LED光源の高さより低いと好ましい。この脚部は、周方向に不連続に形成されていると好ましい。 The optical element has a leg portion that comes into contact with the substrate provided with the LED light source, and the height of the leg portion is preferably lower than the height of the LED light source. This leg is preferably formed discontinuously in the circumferential direction.
 光学素子は、プラスチックで構成されていると好ましい。光学素子を構成するプラスチックとしては、例えばポリカーボネートやアクリルを用いることができる。ポリカーボネートやアクリルを用いることで、射出成形により製造でき、製造コストを大幅に低減させることができる。 The optical element is preferably made of plastic. As a plastic constituting the optical element, for example, polycarbonate or acrylic can be used. By using polycarbonate or acrylic, it can be manufactured by injection molding, and the manufacturing cost can be greatly reduced.
 拡散面としては、鏡面でなければ良く、シボ加工や粗し加工を施した面も含む。好ましくは面粗さがRa0.2以上のものをいう。表面粗さRaを光束の波長の1/2以上の値にすることで拡散効果を有することが可能となる。また、一般的に鏡面はRa0.025以下をいう。 The diffusion surface may be a mirror surface, including a surface subjected to graining or roughening. Preferably, the surface roughness is Ra 0.2 or more. By setting the surface roughness Ra to a value that is 1/2 or more of the wavelength of the light beam, it is possible to have a diffusion effect. Moreover, generally a mirror surface says Ra0.025 or less.
 本発明によれば、パネルの背後から照明するのに好適であり、照度ムラと色ムラを抑制できるバックライト用の照明装置及び光学素子を提供することができる。 According to the present invention, it is possible to provide a backlight illumination device and an optical element that are suitable for illuminating from behind the panel and that can suppress uneven illuminance and uneven color.
(a)および(b)は出射面の第1領域と第2領域の境界部付近を拡大して示す図である。(A) And (b) is a figure which expands and shows the boundary part vicinity of the 1st area | region and 2nd area | region of an output surface. LED光源の例を示す図であり、(a)はLED光源の断面図、(b)は正面図である。It is a figure which shows the example of a LED light source, (a) is sectional drawing of a LED light source, (b) is a front view. 本実施の形態にかかる照明装置の光軸方向断面図である。It is optical axis direction sectional drawing of the illuminating device concerning this Embodiment. 実施例1の光学素子を示す図であり、(a)は出射面側から見た図、(b)は光軸方向VIB-VIB断面図、(c)は光軸方向VIC-VIC断面図、(d)は底面側から見た図である。2A and 2B are diagrams illustrating an optical element of Example 1, where FIG. 3A is a view seen from the light exit surface side, FIG. 3B is a cross-sectional view along the optical axis VIB-VIB, and FIG. (D) is the figure seen from the bottom face side. 実施例1の入射面と出射面において、半径HとSAG(H)との関係を示す図である。It is a figure which shows the relationship between the radius H and SAG (H) in the entrance plane and exit surface of Example 1. FIG. 実施例1の入射面と出射面において、半径Hとθ(H)との関係を示スズである。The relationship between the radius H and θ (H) on the entrance surface and the exit surface of Example 1 is tin. 実施例1の入射面と出射面において、半径HとSAG(H)’との関係を示す図である。It is a figure which shows the relationship between the radius H and SAG (H) 'in the entrance plane and exit surface of Example 1. FIG. 実施例1の入射面と出射面において、半径HとSAG(H)”との関係を示す図である。It is a figure which shows the relationship between the radius H and SAG (H) "in the entrance plane and exit surface of Example 1. FIG. (a)は理想的な光学素子の出射面側の模式図であり、(b)は、理想的な光学素子における照射面の光軸方向断面図であり、縦軸は照度,横軸が光軸を基準とした位置に相当する。(c)は、実施例1と同じ思想で設計された光学素子の出射面側の模式図であり、(d)は、この光学素子における照射面の光軸方向断面図であり、縦軸は照度,横軸が光軸を基準とした位置に相当する。(A) is a schematic diagram on the exit surface side of an ideal optical element, (b) is a sectional view in the optical axis direction of the irradiation surface of the ideal optical element, the vertical axis is illuminance, and the horizontal axis is light. It corresponds to the position with reference to the axis. (C) is the schematic diagram by the side of the output surface of the optical element designed by the same idea as Example 1, (d) is the optical axis direction sectional drawing of the irradiation surface in this optical element, A vertical axis | shaft is The illuminance and the horizontal axis correspond to the position relative to the optical axis. (a)は理想カーブに対して実施例1のLED光源の発光面の中心付近から出射された光束の照度曲線と発光面の周辺部から出射された光束の照度曲線を重ねたものであり、(b)は、理想カーブに対して比較例のLED光源の発光面の中心付近から出射された光束の照度曲線と発光面の周辺部から出射された光束の照度曲線を重ねたものであり、縦軸は照度,横軸が光軸を基準とした位置に相当する。(A) superimposes the illuminance curve of the light beam emitted from the vicinity of the center of the light emitting surface of the LED light source of Example 1 and the illuminance curve of the light beam emitted from the peripheral portion of the light emitting surface on the ideal curve, (B) superimposes the illuminance curve of the light beam emitted from the vicinity of the center of the light emitting surface of the LED light source of the comparative example and the illuminance curve of the light beam emitted from the peripheral portion of the light emitting surface on the ideal curve, The vertical axis corresponds to the illuminance, and the horizontal axis corresponds to the position based on the optical axis. 理想カーブに対して実施例1と比較例における照度曲線を重ねたものである。The illuminance curves in Example 1 and the comparative example are superimposed on the ideal curve. (a)は、出射面の第3領域1b3を鏡面とした例における、第2領域1b2と第3領域1b3との境界にある段差ST付近の光路を示す拡大図であり、(b)は、第2領域1b2と第3領域1b3から出射した光束が、被照射面としての拡散板に入射する際の光路を示す拡大図であり、(c)は、出射面の第3領域1b3’を拡散面PTの下面とした例における、第2領域1b2と第3領域1b3’との境界にある段差ST’付近の光路を示す拡大図であり、(d)は、第2領域1b2と第3領域1b3’から出射した光束が、被照射面としての拡散板PTの下面に入射する際の光路を示す拡大図である。(A) is an enlarged view showing an optical path near the step ST at the boundary between the second region 1b2 and the third region 1b3 in the example in which the third region 1b3 of the emission surface is a mirror surface, and (b) is It is an enlarged view which shows the optical path at the time of the light beam radiate | emitted from 2nd area | region 1b2 and 3rd area | region 1b3 injecting into the diffuser plate as a to-be-irradiated surface, (c) is diffusing 3rd area | region 1b3 'of an output surface. FIG. 7 is an enlarged view showing an optical path near a step ST ′ at the boundary between the second region 1b2 and the third region 1b3 ′ in the example of the lower surface of the surface PT, and (d) is a diagram illustrating the second region 1b2 and the third region. It is an enlarged view which shows the optical path at the time of the light beam radiate | emitted from 1b3 'injecting into the lower surface of the diffusion plate PT as an irradiated surface. 理想カーブに対して、第3領域を鏡面及び拡散面とした実施例1における、LED光源の周辺から出射された光束にかかる照度曲線を重ねたものである。The illuminance curve concerning the light beam emitted from the periphery of the LED light source in Example 1 in which the third region is a mirror surface and a diffusion surface is superimposed on the ideal curve. 実施例2の光学素子を示す図であり、(a)は出射面側から見た図、(b)は光軸方向XIB-XIB断面図、(c)は光軸方向XIC-XIC断面図、(d)は底面側から見た図である。FIG. 5 is a diagram illustrating an optical element of Example 2, where (a) is a view seen from the exit surface side, (b) is a cross-sectional view along the optical axis direction XIB-XIB, and (c) is a cross-sectional view along the optical axis direction XIC-XIC; (D) is the figure seen from the bottom face side.
 以下、添付した図面を参照しながら、本発明の実施形態を説明する。図3は、本実施の形態にかかる照明装置の光軸方向断面図である。本実施の形態にかかるバックライト用照明装置は、光学素子1と、回路基板3上に形成されたLED光源2とを有している。詳細は図示していないが、LED光源2は、青色光を放出するLEDチップと、その光放出側に設けられた黄色蛍光体とを積層してなり、全体的に正方形板状を有し、光放出面2aはフラットになっている。尚、LED光源2は、図2に示すものと基本的に同様であり、ここでCPは1辺が0.76mmの正方形で面積が約0.6mm2、ELは直径φ2.5mmの円形で面積が約4.9mm2となっており、その面積比は1:8.5、LEDモジュールの厚みは0.8mmとなっている。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 3 is a cross-sectional view in the optical axis direction of the illumination device according to the present embodiment. The backlight illumination device according to the present embodiment includes an optical element 1 and an LED light source 2 formed on a circuit board 3. Although not shown in detail, the LED light source 2 is formed by laminating an LED chip that emits blue light and a yellow phosphor provided on the light emitting side, and has an overall square plate shape. The light emission surface 2a is flat. The LED light source 2 is basically the same as that shown in FIG. 2, where CP is a square with a side of 0.76 mm and an area of about 0.6 mm 2 , and EL is a circle with a diameter of φ2.5 mm. The area is about 4.9 mm 2 , the area ratio is 1: 8.5, and the thickness of the LED module is 0.8 mm.
 光学素子1は、プラスチックとしてポリカーボネート又はアクリルを用いている。さらに、光学素子1は、LED光源2の光放出側に配置されており、LED光源2からの発光光が入射する凹状の入射面1aと、光軸OA付近は凹状であるが全体的に凸状であって入射面1aから入射した光を外部に放出する出射面1bと、基板3に対向する底面1dと、出射面1bの外周に設けられた円筒面もしくは円錐面である外周面1fとを有する。外周面1fは、LED用光学素子1を射出成形する際に、ゲートが設けられる部位である。 The optical element 1 uses polycarbonate or acrylic as plastic. Further, the optical element 1 is disposed on the light emission side of the LED light source 2, and has a concave incident surface 1a on which the light emitted from the LED light source 2 is incident, and the vicinity of the optical axis OA is concave, but is generally convex. And an exit surface 1b that emits light incident from the entrance surface 1a to the outside, a bottom surface 1d that faces the substrate 3, an outer peripheral surface 1f that is a cylindrical surface or a conical surface provided on the outer periphery of the exit surface 1b, Have The outer peripheral surface 1f is a portion where a gate is provided when the LED optical element 1 is injection-molded.
 凹状の入射面1aは、LED光源2の光放出面2aの中心における法線(光軸OAと一致)が通過する球面もしくは非球面の屈折面1gと、屈折面1gよりもLED光源2側であって光軸直交方向外側に設けられ、光の拡散作用を持つ拡散面1hとを有する。 The concave incident surface 1a is a spherical or aspherical refracting surface 1g through which a normal line (coincidence with the optical axis OA) at the center of the light emitting surface 2a of the LED light source 2 passes, and closer to the LED light source 2 than the refracting surface 1g. And a diffusing surface 1h provided outside the direction orthogonal to the optical axis and having a light diffusing action.
 拡散面1hは、LED光源2の光放出面2aから遠ざかるに連れて光軸直交方向の寸法が小さくなるテーパ形状を有しており、LED用光学素子1を成形する金型の対応する転写面の粗度を高めることで、粗し面にできる。このとき、入射面1aの拡散面側端部と、拡散面1hの入射面側端部との間に、LED光源2を向くような段差1iを設けることで、例えば拡散面1hに対応する転写面の粗度を高めるべくショットピーニング処理などを行う際に、入射面1aを覆うマスキングなどをし易くなる。 The diffusion surface 1h has a tapered shape in which the dimension in the direction perpendicular to the optical axis decreases as the distance from the light emitting surface 2a of the LED light source 2 increases, and the corresponding transfer surface of the mold for molding the LED optical element 1 By increasing the roughness, the surface can be roughened. At this time, by providing a step 1i that faces the LED light source 2 between the diffusion surface side end of the incident surface 1a and the incident surface side end of the diffusion surface 1h, for example, a transfer corresponding to the diffusion surface 1h. When performing shot peening processing or the like to increase the roughness of the surface, it becomes easier to mask the incident surface 1a.
 出射面1bは、本実施の形態では、3領域に分けられている。より具体的には、光軸OAの周囲の第1領域1b1と、その外側の第2領域1b2と、最も外側の第3領域1b3とからなり光軸を中心とした第1領域1b1が凹部形状となっている。第1領域1b1の出射面形状を規定する関数と、第2領域1b2の出射面形状を規定する関数とが不連続となる。第1領域1b1と第2領域1b2の境界B1に隣接する位置の法線は、互いに非平行である。又、第2領域1b2の出射面形状を規定する関数と、第3領域1b3の出射面形状を規定する関数とが不連続となる。図3では見えないが、境界B1で外側の領域が上方にシフトしており、これにより5μmの段差が形成されている。又、境界B2で外側の領域が上方にシフトしており、これにより20μmの段差が形成されている。第3領域1b3は粗し面となっている。 The emission surface 1b is divided into three regions in the present embodiment. More specifically, the first region 1b1 around the optical axis OA is composed of a first region 1b1, an outer second region 1b2, and an outermost third region 1b3. It has become. The function that defines the exit surface shape of the first region 1b1 and the function that defines the exit surface shape of the second region 1b2 are discontinuous. Normals at positions adjacent to the boundary B1 between the first region 1b1 and the second region 1b2 are not parallel to each other. Further, the function that defines the exit surface shape of the second region 1b2 and the function that defines the exit surface shape of the third region 1b3 are discontinuous. Although not visible in FIG. 3, the outer region is shifted upward at the boundary B1, thereby forming a step of 5 μm. Further, the outer region is shifted upward at the boundary B2, thereby forming a step of 20 μm. The third region 1b3 is a rough surface.
 底面1dは、拡散面1hと同様に、金型の対応する転写面の粗度を高めることで、拡散作用を持つ粗し面とできる。また、外周面1fも、金型の対応する転写面の粗度を高めることで、拡散作用を持つ粗し面とできる。 The bottom surface 1d can be a rough surface having a diffusing action by increasing the roughness of the corresponding transfer surface of the mold in the same manner as the diffusion surface 1h. The outer peripheral surface 1f can also be a roughened surface having a diffusion action by increasing the roughness of the corresponding transfer surface of the mold.
 本実施の形態では、底面1dは、周方向に等間隔に3つの脚部1jを有しており、脚部1jを基板3の表面に当接させて取り付けられている。脚部1jを周方向に不連続に配置することで、LED光源2を密封することが抑制され、LED光源2の配線の引き出しや通気性の確保を行える。脚部1j全体は、拡散面1hと同様に、金型の対応する転写面の粗度を高めることで、拡散作用を持つ粗し面にできる。 In the present embodiment, the bottom surface 1d has three leg portions 1j at equal intervals in the circumferential direction, and is attached with the leg portions 1j in contact with the surface of the substrate 3. By disposing the legs 1j discontinuously in the circumferential direction, sealing the LED light source 2 can be suppressed, and the wiring of the LED light source 2 can be pulled out and air permeability can be ensured. The entire leg portion 1j can be made a rough surface having a diffusion action by increasing the roughness of the corresponding transfer surface of the mold, like the diffusion surface 1h.
 脚部1jの高さはLED光源2の高さより低くなっており、よってLED用光学素子1をLED光源2に対して取り付けたとき、底面1dは、LED光源2の光放出面2aよりも光放出方向と逆側に配置される。これにより、光放出面2aから放出された光が、底面1d側に回り込むことを抑制できる。 The height of the leg 1j is lower than the height of the LED light source 2, so that when the LED optical element 1 is attached to the LED light source 2, the bottom surface 1d is lighter than the light emitting surface 2a of the LED light source 2. Arranged on the opposite side to the discharge direction. Thereby, it can suppress that the light discharge | released from the light emission surface 2a wraps around to the bottom face 1d side.
 本実施の形態では、最も第1の色と第2の色の色分かれが生じやすい出射面の位置を境界B1,B2として、ここに面の不連続を持たせることにより、境界B1,B2を挟んで、内側の領域と外側の領域とを通過した互いに色が違う光束同士をクロスさせ、混色を促すとともに、お互いの光線密度を補完しあうことで照度ムラを抑制できる。又、境界B1,B2に設けた段差のケラレ効果により、照明光の色ムラを更に抑制できる。加えて第3領域1b3を拡散面とすることで、拡散効果を発揮して境界付近の光線密度変化を穏やかにし、高品質な白色光を出射できる。 In the present embodiment, the positions of the emission surfaces where the color separation of the first color and the second color is most likely to occur are the boundaries B1 and B2, and the boundaries B1 and B2 are defined by providing discontinuity of the surfaces. Interstitial light beams that have passed through the inner region and the outer region are crossed with each other to promote color mixing, and unevenness in illuminance can be suppressed by complementing each other's light density. Moreover, the uneven color of the illumination light can be further suppressed by the vignetting effect of the steps provided at the boundaries B1 and B2. In addition, by making the third region 1b3 a diffusing surface, it is possible to emit a high-quality white light by exhibiting a diffusing effect and moderating a change in light density near the boundary.
 次に、光学素子の好適な実施例について説明する。 Next, a preferred embodiment of the optical element will be described.
(実施例1)
 図4(a)~(d)に、実施例1にかかる光学素子を示す。図中の数字は、寸法(mm)である。各部については、上述した実施の形態と同じ符号を付すが、本実施例では脚部1jが不等間隔に設置され、外周面1fにおいて、1つの脚部1j近傍に、組み付け基準となる凸部1kを形成している。
(Example 1)
4A to 4D show an optical element according to Example 1. FIG. The numbers in the figure are dimensions (mm). Each part is given the same reference numeral as in the above-described embodiment. In this example, the leg parts 1j are installed at unequal intervals. 1k is formed.
 入射面1aの屈折面1gと、出射面1bは非球面形状である。表1に実施例1のレンズデータを示す。 The refractive surface 1g of the entrance surface 1a and the exit surface 1b are aspherical. Table 1 shows lens data of Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 尚、これ以降(表のレンズデータ含む)において、10のべき乗数(例えば、2.5×10-3)を、E(例えば、2.5×E-3)を用いて表す場合がある。LED光源の光出射面の中心部の座標を原点とし、原点を通る、出射面に垂直な線を光軸とした時、光学素子の光学面は、それぞれ数1式に表に示す係数を代入した数式で規定される、光軸の周りに軸対称な非球面に形成されている。 In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −3 ) may be expressed using E (for example, 2.5 × E−3). When the coordinates of the center of the light exit surface of the LED light source are the origin, and the optical axis is a line that passes through the origin and is perpendicular to the exit surface, the optical surface of the optical element is assigned the coefficient shown in Table 1 in the equation (1). It is formed into an aspherical surface that is axisymmetric about the optical axis, which is defined by the above formula.
 ここで、X(H)は原点から光軸方向の距離、κは円錐係数、Aiは非球面係数、A0は各面のH=0におけるサグ量、Hは光軸垂直方向の光軸からの距離(半径)、rは曲率半径である。 Here, X (H) is the distance from the origin to the optical axis direction, κ is the conical coefficient, Ai is the aspherical coefficient, A0 is the sag amount at H = 0 of each surface, and H is the optical axis perpendicular to the optical axis. The distance (radius), r is the radius of curvature.
 実施例1において、入射面の屈折面1gは単一の非球面であり、出射面は、光軸を含む第1領域1b1,その外側の第2領域1b2、その外側の第3領域1b3の3領域からなる。但し、第3領域1b3は鏡面である。第1領域1b1と第2領域1b2の境界は、H=3mmの位置に約0.005mmの段差を有しており、第2領域1b2と第3領域1b3の境界は、H=6.2mmの位置に約0.025mmの段差を有している(表2、表3のサグ量SAG(H)参照)。その段差は、第2領域1b2が他の領域1b1,1b3よりもレンズが厚くなる方向の段差となっている。又、面頂点は第1領域1b1と第2領域1b2の境界上である。 In Example 1, the refracting surface 1g of the incident surface is a single aspherical surface, and the exit surface is composed of a first region 1b1 including the optical axis, a second region 1b2 outside thereof, and a third region 1b3 outside thereof. Consists of regions. However, the third region 1b3 is a mirror surface. The boundary between the first region 1b1 and the second region 1b2 has a step of about 0.005 mm at a position where H = 3 mm, and the boundary between the second region 1b2 and the third region 1b3 is a position where H = 6.2 mm. Has a step of about 0.025 mm (see sag amount SAG (H) in Tables 2 and 3). The step is a step in a direction in which the second region 1b2 is thicker than the other regions 1b1 and 1b3. Further, the surface vertex is on the boundary between the first region 1b1 and the second region 1b2.
 表2、表3に、実施例1の出射面におけるサグ量等のデータを示す。表中、SAG(H)は、半径Hにおける光軸方向の座標(単位:mm)であるが、LED光源から出射された光が進む方向を正とする。又、θ(H)は、半径Hにおける光軸と出射面の法線のなす角(単位:度)である。θ(H)が正から負に連続的に変化すると、徐々に凸レンズの効果を持つように変化していることを表す。一方、正から負に不連続に変化すると、急激に凸に変化することを表す。例えば、第1領域1b1と第2領域1b2との間(H=3mm)で、θ(H)が不連続に変化しているが、第1領域1b1に比べて第2領域1b2は光線角度が集光寄りに変化するということになり、互いの領域から出射した光束の一部がクロスするようにできる。 Tables 2 and 3 show data such as the sag amount on the exit surface of Example 1. In the table, SAG (H) is a coordinate (unit: mm) in the optical axis direction at the radius H, and the direction in which the light emitted from the LED light source travels is positive. Θ (H) is an angle (unit: degree) formed by the normal of the optical axis at the radius H and the exit surface. When θ (H) continuously changes from positive to negative, it indicates that the angle gradually changes to have a convex lens effect. On the other hand, if it changes discontinuously from positive to negative, it represents a sudden change in convexity. For example, θ (H) changes discontinuously between the first region 1b1 and the second region 1b2 (H = 3 mm), but the light ray angle of the second region 1b2 is smaller than that of the first region 1b1. This means that the light flux is changed toward the light condensing, and a part of the light beams emitted from each other region can be crossed.
 SAG(H)’は、半径Hにおける1次微分値であり、SAG(H)”は、半径Hにおける2次微分値である。ここで、θ(H)とSAG(H)’は単位系が異なるが、同じ意味を持つ(角度と微分値)。図5に、半径HとSAG(H)との関係を示し、図6に、半径Hとθ(H)との関係を示し、図7に、半径HとSAG(H)’との関係を示し、図8に、半径HとSAG(H)”との関係を示す。 SAG (H) ′ is a primary differential value at a radius H, and SAG (H) ″ is a secondary differential value at a radius H. Here, θ (H) and SAG (H) ′ are unit systems. Are different but have the same meaning (angle and differential value), Fig. 5 shows the relationship between radius H and SAG (H), Fig. 6 shows the relationship between radius H and θ (H), 7 shows the relationship between the radius H and SAG (H) ′, and FIG. 8 shows the relationship between the radius H and SAG (H) ″.
 表2、表3から、第1領域1b1と第2領域1b2の境界前後で、θ(H)、SAG(H)’が不連続となっており、この境界前後で、第1領域1b1に比べ第2領域1b2の屈折面が、大きな正のパワーをもっていることがわかる。つまり、第1領域1b1よりも、第2領域1b2の方が、光を拡散するパワーが弱くなっており、従って境界前後で出射する光束が交差する形状となっている。また、SAG(H)”は面の傾きをさらに微分したものであり、これは半径Hにおける光線密度変化を間接的に表す指標とできる。これにより、第1領域1b1と第2領域1b2の境界前後で不連続且つ変化している方向が違うことがわかる。図1に示すように、図の右寄りの光線が低密度、左寄りの光線が高密度となる。つまり、第1領域から出射する光束は、より低密度となるよう設計されている。これと、θ(H),SAG(H)’との関係から、境界部前後で密度を補完しあう関係であることがわかる。 From Tables 2 and 3, θ (H) and SAG (H) ′ are discontinuous before and after the boundary between the first region 1b1 and the second region 1b2, and compared with the first region 1b1 before and after this boundary. It can be seen that the refractive surface of the second region 1b2 has a large positive power. That is, the second region 1b2 has a weaker power for diffusing light than the first region 1b1, and thus the light beams emitted before and after the boundary intersect each other. Further, SAG (H) "is a further differentiation of the inclination of the surface, which can be used as an index indirectly representing a change in the light density at the radius H. Thus, the boundary between the first region 1b1 and the second region 1b2 It can be seen that the direction of discontinuity and change is different between the front and the back, as shown in Fig. 1. The light rays on the right side of the figure have a low density and the light rays on the left side have a high density. Is designed to have a lower density, and it can be seen from the relationship between θ (H) and SAG (H) ′ that the density is complemented before and after the boundary.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 ここで、実施例1と比較例とを比較した照度のシミュレーション結果を説明する。ここで用いる比較例は、実施例1に対して、出射面側の第3領域1b3を光軸まで連続した1つの非球面関数で表したものであり、つまり非球面形状は類似しているが、不連続する点も段差もないものである。それ以外の形状は,実施例1と同じである。 Here, the illuminance simulation result comparing Example 1 and the comparative example will be described. In the comparative example used here, the third region 1b3 on the exit surface side is expressed by one aspheric function continuous to the optical axis as compared with the first embodiment, that is, the aspheric shape is similar. There are no discontinuous points or steps. Other shapes are the same as those in the first embodiment.
 まず、光学素子の設計目標である理想モデルを考える。図9(a)は、例えば点光源等を用いることを想定した理想的な光学素子による照射面を上面から見た模式図であり、図9(b)は、理想的な光学素子における照射面の光軸方向断面図であり、縦軸は照度に相当する。照明装置においては、図9(b)に示すようなガウシャン形状の照度曲線を得ることが理想であるが、LED光源などの面発光光源を用いると、必ずしも理想曲線を得られるとは限らない。そこで、出射面に不連続な部位を持たせるのである。 First, consider the ideal model, which is the design goal of optical elements. FIG. 9A is a schematic view of an irradiation surface of an ideal optical element assuming that, for example, a point light source is used, and FIG. 9B is an irradiation surface of the ideal optical element. Is a sectional view in the optical axis direction, and the vertical axis corresponds to illuminance. In the illuminating device, it is ideal to obtain a Gaussian-shaped illuminance curve as shown in FIG. 9B. However, when a surface-emitting light source such as an LED light source is used, the ideal curve is not always obtained. Therefore, a discontinuous portion is provided on the emission surface.
 図9(c)は、出射面の第1領域と第2領域の間を不連続とした光学素子を用いたときの照射面を上面から見た模式図であり、点線が第1領域を通った光束、実線が第2領域を通った光束による照射面の照度分布を表す。図9(d)は、照射面の光軸方向断面図である。図9(c)を参照すると、第1領域と第2領域の接続部付近で光束が重なる部分が発生し、トータルで照度を補償する関係となっていることがわかる。つまり、出射面に不連続な部位を持たせることで、照度曲線が図9(b)に示す理想カーブに近づくことが分かる。このような思想で、実施例1を設計した。 FIG. 9C is a schematic view of the irradiation surface viewed from the top when an optical element having a discontinuity between the first region and the second region of the emission surface is seen, and the dotted line passes through the first region. The illuminance distribution on the irradiation surface by the luminous flux and the solid line passing through the second region are shown. FIG. 9D is a sectional view in the optical axis direction of the irradiated surface. Referring to FIG. 9 (c), it can be seen that there is a portion where the light beams overlap in the vicinity of the connecting portion between the first region and the second region, and the relationship of compensating the illuminance in total. In other words, it can be seen that the illuminance curve approaches the ideal curve shown in FIG. Example 1 was designed based on this idea.
 図10(a)は、理想カーブに対して実施例1の照度曲線を重ねたものであり、図10(b)は、理想カーブに対して比較例の照度曲線を重ねたものであり、それぞれLED光源の光軸付近(φ0.2mm)から出射された光束と、LED光源の周辺(φ2.3~2.5mm)からの光束とについて、照度曲線を独立して描いた。ここで、図10(a)、(b)を比較するに、LED光源の光軸付近から出射された光束については、実施例1と比較例とでは、実施例1の方が理想カーブにわずかに近いがほぼ同様な照度曲線となる。尚、光軸付近の照度を理想カーブに対して低下させているのは、光学素子内部で反射した光束が裏面で反射/散乱されることや裏面から透過し基板上で拡散反射される光束が被照射面の中心付近に集まり、最終的には理想カーブに近い照度分布となるためである。 FIG. 10A shows the illuminance curve of Example 1 superimposed on the ideal curve, and FIG. 10B shows the illuminance curve of the comparative example superimposed on the ideal curve. The illuminance curves were drawn independently for the luminous flux emitted from the vicinity of the optical axis of the LED light source (φ0.2 mm) and the luminous flux from the periphery of the LED light source (φ2.3 to 2.5 mm). Here, comparing FIGS. 10A and 10B, with respect to the light beam emitted from the vicinity of the optical axis of the LED light source, in Example 1 and the comparative example, Example 1 has a slightly smaller ideal curve. However, the illuminance curve is almost the same. The reason why the illuminance near the optical axis is reduced with respect to the ideal curve is that the light beam reflected inside the optical element is reflected / scattered on the back surface or the light beam that is transmitted from the back surface and diffusely reflected on the substrate. This is because they gather near the center of the surface to be irradiated and eventually have an illuminance distribution close to the ideal curve.
 一方、LED光源の周辺から出射された光束については、実施例1と比較例とでは明らかに異なっている。図11は、理想カーブに対して実施例1と比較例におけるLED光源の出射面全体から出射された光束にかかる照度曲線を重ねたものである。図11を参照すると、光軸付近では、実施例1の照度曲線が比較例よりも理想カーブに近づいており、実施例1の効果が確認された。尚、図11において、光軸から離れた位置では、実施例1の照度曲線が強く波を打っているが、このような周辺位置では元々の照度が小さいため、実使用上、影響は小さい。 On the other hand, the luminous flux emitted from the periphery of the LED light source is clearly different between Example 1 and the comparative example. FIG. 11 is a graph in which the illuminance curve relating to the luminous flux emitted from the entire emission surface of the LED light source in Example 1 and the comparative example is superimposed on the ideal curve. Referring to FIG. 11, the illuminance curve of Example 1 is closer to the ideal curve than the comparative example near the optical axis, and the effect of Example 1 was confirmed. In FIG. 11, the illuminance curve of Example 1 has a strong wave at a position away from the optical axis. However, since the original illuminance is small at such a peripheral position, the influence is small in actual use.
 次に、実施例1において、出射面の第3領域を拡散面とした場合についての効果について説明する。図12(a)は、出射面の第3領域1b3を鏡面とした例における、第2領域1b2と第3領域1b3との境界にある段差ST付近の光路を示す拡大図であり、図12(b)は、第2領域1b2と第3領域1b3から出射した光線が、被照射面としての拡散板に入射する際の光路を示す拡大図である。一方、図12(c)は、出射面の第3領域1b3’を拡散面とした例における、第2領域1b2と第3領域1b3’との境界にある段差ST’付近の光路を示す拡大図であり、図12(d)は、第2領域1b2と第3領域1b3’から出射した光線が、被照射面としての拡散板PTの下面に入射する際の光路を示す拡大図である。尚、段差ST’も拡散面としている。 Next, effects in the case where the third region of the emission surface is a diffusion surface in Example 1 will be described. FIG. 12A is an enlarged view showing an optical path in the vicinity of the step ST at the boundary between the second region 1b2 and the third region 1b3 in the example in which the third region 1b3 on the emission surface is a mirror surface. b) is an enlarged view showing an optical path when light beams emitted from the second region 1b2 and the third region 1b3 are incident on a diffusion plate as an irradiated surface. On the other hand, FIG. 12C is an enlarged view showing an optical path in the vicinity of the step ST ′ at the boundary between the second region 1b2 and the third region 1b3 ′ in the example in which the third region 1b3 ′ on the emission surface is the diffusion surface. FIG. 12D is an enlarged view showing an optical path when the light beams emitted from the second region 1b2 and the third region 1b3 ′ are incident on the lower surface of the diffusion plate PT as the irradiated surface. The step ST ′ is also a diffusion surface.
 第3領域1b3を鏡面とすると、図12(a)に示すように、段差STのケラレ効果によって、第2領域1b2から出射された光線と、第3領域1b3から出射された光線とが交差しないので、図12(b)に示すように、拡散板PTの下面に入射する際に、光量が低い影の部分SHが生じる。ケラレ効果によって、段差STを通過後に異なる方向に出射される光束は青味もしくは黄味が強い光束で,色ムラの原因になりやすいため、段差STは大き過ぎないことが好ましい。 If the third region 1b3 is a mirror surface, as shown in FIG. 12A, the light emitted from the second region 1b2 and the light emitted from the third region 1b3 do not intersect due to the vignetting effect of the step ST. Therefore, as shown in FIG. 12B, when entering the lower surface of the diffusion plate PT, a shadow portion SH having a low light amount is generated. Due to the vignetting effect, the light beam emitted in different directions after passing through the step ST is a light beam having a strong bluish or yellowish tint and is likely to cause color unevenness. Therefore, the step ST is preferably not too large.
 これに対し、図12(c)に示すように、第3領域1b3から出射された光線が拡散されることで、部分的に出射方向が変わるため、図12(d)に示すように、拡散板PTの下面に入射する際に、ケラレの効果によって生じる影の部分が目立たなくなる。尚、段差ST’を拡散面とすることで、段差ST’を通過後に出射光線が拡散されるので、色ムラ発生を抑制することができる。 On the other hand, as shown in FIG. 12C, the light emitted from the third region 1b3 is diffused to partially change the emission direction, so that the diffusion is performed as shown in FIG. When entering the lower surface of the plate PT, a shadow portion caused by the vignetting effect becomes inconspicuous. By setting the step ST ′ as a diffusing surface, the emitted light is diffused after passing through the step ST ′, so that the occurrence of color unevenness can be suppressed.
 図13は、理想カーブに対して、第3領域を鏡面及び拡散面とした実施例1における、LED光源の全面から出射された光束にかかる照度曲線を重ねたものである。第3領域を拡散面とすると、特に光軸から離れた範囲PRで、第3領域を鏡面とした場合に比べて曲線の凹凸が減少し、より理想カーブに近づくことが分かる。 FIG. 13 is a graph in which an illuminance curve relating to a light beam emitted from the entire surface of the LED light source in Example 1 in which the third region is a mirror surface and a diffusion surface is superimposed on the ideal curve. It can be seen that if the third region is a diffusing surface, the unevenness of the curve is reduced compared to the case where the third region is a mirror surface, particularly in the range PR away from the optical axis, and closer to the ideal curve.
(実施例2)
 図14に、実施例2にかかる光学素子を示す。図中の数字は、寸法(mm)である。本実施例では外周面1fにおいて、周方向に等間隔に配置した3つの脚部1j近傍に、組み付け基準となる凹部1mをそれぞれ形成している。入射面形状及び出射面形状は、実施例1と同じである。
(Example 2)
FIG. 14 shows an optical element according to Example 2. The numbers in the figure are dimensions (mm). In this embodiment, on the outer peripheral surface 1f, recesses 1m serving as assembling references are formed in the vicinity of three leg portions 1j arranged at equal intervals in the circumferential direction. The incident surface shape and the output surface shape are the same as those in the first embodiment.
 本発明は、明細書に記載の実施形態・実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施形態や実施例や技術思想から本分野の当業者にとって明らかである。 The present invention is not limited to the embodiments and examples described in the specification, and includes other examples and modifications based on the embodiments, examples, and technical ideas described in the present specification. It will be apparent to those skilled in the art.
 1 学素子
 1a 入射面
 1b 出射面
 1b1 第1領域
 1b2 第2領域
 1b3 第3領域
 1d 底面
 1f 外周面
 1g 屈折面
 1h 拡散面
 1i 段差
 1j 脚部
 1k 凸部
 1m 凹部
 B1,B2 境界
 ST 段差
 2 LED光源
 2a 光放出面
 3 回路基板
DESCRIPTION OF SYMBOLS 1 Scientific element 1a Incident surface 1b Output surface 1b1 1st area | region 1b2 2nd area | region 1b3 3rd area | region 1d Bottom face 1f Outer peripheral surface 1g Refraction surface 1h Diffusion surface 1i Step difference 1j Leg part 1k Convex part 1m Concave part B1, B2 Boundary ST step 2LED Light source 2a Light emission surface 3 Circuit board

Claims (12)

  1.  LED光源からの光束が入射する入射面と、前記光束を出射する出射面とを備えたバックライト用の光学素子であって、
     前記LED光源は、LEDチップと、光軸方向において前記LEDチップよりも面積が大きい蛍光体と、を組み合わせてなり、
     前記光学素子の出射面は、光軸直交方向において2領域に分割する境界を有し、前記境界より光軸に近い側の領域を第1領域とし、前記境界より外側の領域を第2領域としたときに、前記第1領域の出射面形状を規定する関数と、前記第2領域の出射面形状を規定する関数とが不連続であり、
     前記LED光源から出射され、前記入射面を介して前記光学素子内に入射した光束のうち、前記第1領域から出射した光束と、前記境界を隔てて前記第2領域から出射した光束とが少なくとも一部交わることを特徴とする光学素子。
    An optical element for a backlight including an incident surface on which a light beam from an LED light source is incident and an output surface that emits the light beam,
    The LED light source is a combination of an LED chip and a phosphor having a larger area than the LED chip in the optical axis direction.
    The exit surface of the optical element has a boundary that is divided into two regions in the direction perpendicular to the optical axis, a region closer to the optical axis than the boundary is defined as a first region, and a region outside the boundary is defined as a second region. The function defining the exit surface shape of the first region and the function defining the exit surface shape of the second region are discontinuous,
    Of the light beams emitted from the LED light source and entering the optical element via the incident surface, at least a light beam emitted from the first region and a light beam emitted from the second region across the boundary are at least An optical element that partially intersects.
  2.  前記LED光源は、第1の色の光線を出射する前記LEDチップと、前記第1の色の光線が入射することにより、前記第1の色とは異なる第2の色を出射する前記蛍光体を組み合わせることを特徴とする請求項1に記載の光学素子。 The LED light source emits the LED chip that emits a light beam of a first color and the phosphor that emits a second color different from the first color when the light beam of the first color enters. The optical element according to claim 1, wherein:
  3.  前記境界において、前記第1領域に対して、前記第2領域が前記LED光源から離れる側にシフトすることにより段差が形成されることを特徴とする請求項1又は2に記載の光学素子。 3. The optical element according to claim 1, wherein a step is formed at the boundary by shifting the second region away from the LED light source with respect to the first region.
  4.  前記段差は5μm以上であることを特徴とする請求項1~3のいずれかに記載の光学素子。 4. The optical element according to claim 1, wherein the step is 5 μm or more.
  5.  前記境界に隣接した位置における前記第1領域の法線と、前記境界に隣接した位置における前記第2領域の法線とが異なっていることを特徴とする請求項1~4のいずれかに記載の光学素子。 The normal line of the first region at a position adjacent to the boundary is different from the normal line of the second region at a position adjacent to the boundary. Optical elements.
  6.  前記出射面は凹部を有し、前記境界は、前記出射面の面頂点に対し前記出射面径の±10%以内の位置に形成されていることを特徴とする請求項1~5のいずれかに記載の光学素子。 6. The exit surface according to claim 1, wherein the exit surface has a recess, and the boundary is formed at a position within ± 10% of the exit surface diameter with respect to a surface vertex of the exit surface. An optical element according to 1.
  7.  前記出射面において前記第2領域の光軸直交方向外側に別な境界を挟んで第3領域が形成され、前記第2領域の出射面形状を規定する関数と、前記第3領域の出射面形状を規定する関数とが不連続であることを特徴とする請求項1~6のいずれかに記載の光学素子。 A third region is formed on the exit surface on the outer side in the direction perpendicular to the optical axis of the second region, and a function defining the exit surface shape of the second region, and the exit surface shape of the third region The optical element according to any one of claims 1 to 6, wherein the function defining the distance is discontinuous.
  8.  前記別な境界において、前記第2領域に対して、前記第3領域が前記LED光源に近づく側にシフトすることにより段差が形成されることを特徴とする請求項7に記載の光学素子。 The optical element according to claim 7, wherein a step is formed by shifting the third region toward the side closer to the LED light source with respect to the second region at the other boundary.
  9.  前記第3領域には拡散面が形成されていることを特徴とする請求項7又は8に記載の光学素子。 9. The optical element according to claim 7, wherein a diffusion surface is formed in the third region.
  10.  前記出射面は非球面形状であって、前記第1領域の光軸付近はくぼんでいることを特徴とする請求項1~9のいずれかに記載の光学素子。 10. The optical element according to claim 1, wherein the exit surface has an aspherical shape, and the vicinity of the optical axis of the first region is recessed.
  11.  前記入射面は、凹状の非球面形状であることを特徴とする請求項1~10のいずれかに記載の光学素子。 11. The optical element according to claim 1, wherein the incident surface has a concave aspherical shape.
  12.  第1の色の光束を出射するLEDチップと、前記LEDチップから発せられた前記第1の色の光束によって前記第1の色とは異なる第2の色に発光する蛍光体を組み合わせてなるLED光源と、請求項1~11のいずれかに記載の光学素子と、を有することを特徴とする照明装置。 An LED comprising a combination of an LED chip that emits a first color light beam and a phosphor that emits light in a second color different from the first color by the first color light beam emitted from the LED chip. An illumination device comprising: a light source; and the optical element according to any one of claims 1 to 11.
PCT/JP2013/083046 2012-12-28 2013-12-10 Optical element and lighting device WO2014103696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-287928 2012-12-28
JP2012287928 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014103696A1 true WO2014103696A1 (en) 2014-07-03

Family

ID=51020787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083046 WO2014103696A1 (en) 2012-12-28 2013-12-10 Optical element and lighting device

Country Status (1)

Country Link
WO (1) WO2014103696A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005424A1 (en) * 2013-07-10 2015-01-15 ナルックス株式会社 Optical element and illumination device including optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114863A (en) * 2004-10-18 2006-04-27 Samsung Electronics Co Ltd Light emitting diode and lens therefor
JP2011054756A (en) * 2009-09-02 2011-03-17 Nichia Corp Light-emitting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114863A (en) * 2004-10-18 2006-04-27 Samsung Electronics Co Ltd Light emitting diode and lens therefor
JP2011054756A (en) * 2009-09-02 2011-03-17 Nichia Corp Light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005424A1 (en) * 2013-07-10 2015-01-15 ナルックス株式会社 Optical element and illumination device including optical element

Similar Documents

Publication Publication Date Title
KR101226436B1 (en) Lens for deviation of light-emitting diode
US11231568B2 (en) Illumination apparatus
US8967833B2 (en) LED lens and light source device using the same
US8926142B2 (en) LED lens and light emitting device using the same
JP5325639B2 (en) Light emitting device
JP5849193B2 (en) Light emitting device, surface light source, liquid crystal display device, and lens
CN104806926B (en) Surface light source device and display device
JP2014102485A (en) Optical element for led, and led illumination device
JP2018098162A (en) Surface light source device and display device
TWM580691U (en) A direct type backlight device
US20140071674A1 (en) Light emitting apparatus and lens
JP2016110869A (en) Light-emitting device and light flux control member
JP2011009052A (en) Surface light source, and liquid crystal display device
CN203258494U (en) Light-emitting device and relevant projection system
JP6748424B2 (en) Light emitting device, surface light source device, and display device
JP5849192B2 (en) Surface light source and liquid crystal display device
TWI454799B (en) Backlight module
JP4842107B2 (en) Illumination device and liquid crystal display device including the same
WO2014024681A1 (en) Optical element for led and led illumination device
WO2017002725A1 (en) Light-emitting device, surface light source device and display device
CN105627250A (en) Optical component and lighting device having said optical component
WO2014103696A1 (en) Optical element and lighting device
JP2014146530A (en) Lighting apparatus and optical element for led
WO2013146261A1 (en) Optical component for led, and led lighting device
CN109791323B (en) Light source and lighting device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP