WO2014103460A1 - Medium for magnetic sensor test, method for testing magnetic sensor, and method for manufacturing medium for magn etic sensor test - Google Patents
Medium for magnetic sensor test, method for testing magnetic sensor, and method for manufacturing medium for magn etic sensor test Download PDFInfo
- Publication number
- WO2014103460A1 WO2014103460A1 PCT/JP2013/076773 JP2013076773W WO2014103460A1 WO 2014103460 A1 WO2014103460 A1 WO 2014103460A1 JP 2013076773 W JP2013076773 W JP 2013076773W WO 2014103460 A1 WO2014103460 A1 WO 2014103460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic sensor
- magnetic
- test
- medium
- sensor test
- Prior art date
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 380
- 238000012360 testing method Methods 0.000 title claims abstract description 157
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000000034 method Methods 0.000 title description 4
- 239000002184 metal Substances 0.000 claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 claims abstract description 44
- 238000005096 rolling process Methods 0.000 claims description 39
- 229910000963 austenitic stainless steel Inorganic materials 0.000 claims description 17
- 229910000734 martensite Inorganic materials 0.000 claims description 17
- 229910001566 austenite Inorganic materials 0.000 claims description 12
- 229910001220 stainless steel Inorganic materials 0.000 claims description 12
- 239000010935 stainless steel Substances 0.000 claims description 11
- 239000000696 magnetic material Substances 0.000 claims description 10
- 238000010998 test method Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 abstract description 12
- 239000012212 insulator Substances 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 75
- 230000035699 permeability Effects 0.000 description 26
- 230000002950 deficient Effects 0.000 description 23
- 239000000758 substrate Substances 0.000 description 13
- 230000001681 protective effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 229910001047 Hard ferrite Inorganic materials 0.000 description 4
- 239000002390 adhesive tape Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000005389 magnetism Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- -1 specifically Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/04—Testing magnetic properties of the materials thereof, e.g. by detection of magnetic imprint
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/455—Arrangements for functional testing of heads; Measuring arrangements for heads
Definitions
- the present invention relates to a magnetic sensor test medium used for a magnetic sensor characteristic test.
- a bill recognition device mounted on a bill handling device such as an automated teller machine (ATM) or a vending machine has a magnetic sensor for identifying the authenticity of the bill and the bill type. Is installed.
- a magnetic sensor is mounted to identify the authenticity of a ticket and the type of ticket. The magnetic sensor outputs a detection signal in response to magnetic information of a magnetic medium such as a bill or a ticket used in these devices.
- the sensor elements constituting the magnetic sensor have variations in the elements themselves and manufacturing variations. Therefore, the magnetic sensor needs to be classified into a non-defective product and a defective product by a characteristic test at the time of manufacture.
- a characteristic test of a magnetic sensor for banknote identification may be performed using an actual banknote.
- the person who performs the characteristic test arranges the banknote close to the magnetic sensor after arranging the magnetic sensor in the magnetic sensor test apparatus.
- a magnetic sensor detects the magnetic information of the magnetic ink apply
- the magnetic sensor test apparatus measures the magnitude of the detection signal and determines whether or not the detection signal has a desired magnitude, thereby selecting a good or defective magnetic sensor.
- the characteristic test of the magnetic sensor for banknote identification may be performed using a magnetic sensor test medium in which magnetic ink is applied to an insulator such as paper instead of an actual banknote.
- Patent Document 1 describes that a magnetic sensor characteristic test is performed using a magnetic sensor test medium including a conductor made of a metal such as copper.
- a magnetic sensor test medium including a linear conductor and an insulator sandwiching the conductor is used.
- the person who performs the characteristic test arranges the magnetic sensor test medium close to the magnetic sensor after arranging the magnetic sensor in the magnetic sensor test apparatus.
- the conductor of the magnetic sensor test medium is connected to an alternating current generation circuit provided in the magnetic sensor test apparatus.
- a magnetic field is generated.
- the magnetic sensor detects the generated magnetic field and outputs a detection signal (detection voltage).
- the magnetic sensor test apparatus measures the magnitude of the detection signal and determines whether or not the detection signal has a desired magnitude, thereby selecting a good or defective magnetic sensor.
- the characteristic test of a magnetic sensor using an actual banknote has the following problems.
- the actual banknotes have variations in magnetic information because the magnetic ink is worn during the use / distribution process, and the magnetic permeability decreases when the magnetic ink is worn. For this reason, when the magnetic ink of the banknote used for the characteristic test is worn, the magnetic ink has a low magnetic permeability, so that the detection signal output from the magnetic sensor is small and the magnetic sensor is good. A situation in which the product is determined to be defective may occur, and it is not possible to correctly determine whether the magnetic sensor is good or defective.
- the magnetic ink permeability may decrease due to a change with time, and magnetic information varies. Even in such a case, the detection signal output from the magnetic sensor becomes small, and even if the magnetic sensor is a non-defective product, it may be determined that the magnetic sensor is defective. Judgment cannot be performed correctly.
- the non-defective product or the defective product of the magnetic sensor is correctly determined based on the variation of the magnetic information due to the wear of the magnetic ink in the banknote used for the characteristic test or the change with time. Therefore, an error may occur in the selection between non-defective products and defective products.
- banknotes have printing variations in magnetic ink density or applied magnetic ink thickness. Therefore, a banknote has variation in magnetic information by having variation in printing. For this reason, in the characteristic test of the magnetic sensor using the actual banknote, the non-defective or defective product of the magnetic sensor is not correctly determined due to the variation in magnetic information due to the variation in printing of the magnetic ink on the banknote used for the characteristic test. An error may occur in the selection between a good product and a defective product. Therefore, it is difficult to select a banknote serving as a reference for determining whether the magnetic sensor is good or defective. It is difficult to select a reference magnetic medium not only for bills but also for tickets applied with magnetic ink for the same reason as bills.
- a characteristic test of a magnetic sensor using a magnetic sensor test medium in which magnetic ink is applied to an insulator such as paper has the following problems.
- a plurality of magnetic sensor test media having the same magnetic information are stored in order to periodically replace the magnetic sensor test media in consideration of wear of magnetic ink caused by repeated use of the magnetic sensor test media. It is necessary to prepare.
- the magnetic sensor test medium in which the magnetic ink is applied to the insulator has variations in magnetic information due to variations in printing of the magnetic ink, as in the case of banknotes. For this reason, it is necessary to prepare a plurality of magnetic sensor test media having the same magnetic information by preparing a large number of magnetic sensor test media and then selecting one having the same magnetic information.
- the characteristic test of the magnetic sensor described in Patent Document 1 has the following problems. While the magnetic sensor is used to output a detection signal in response to magnetic information of the magnetic medium, in the magnetic sensor characteristic test described in Patent Document 1, an alternating current is passed through the conductor. The detection signal is output in response to the generated magnetic field. For this reason, in the magnetic sensor characteristic test described in Patent Document 1, the detection signal of the magnetic sensor in a state completely different from the state in which the magnetic sensor is used is measured. For this reason, a difference may occur between the detection signal at the time of actual use and the detection signal at the time of the characteristic test.
- the magnitude of the detection signal of the magnetic sensor is easily affected by the distance between the detection target such as a magnetic medium and the magnetic sensor.
- the magnetic sensor when the magnetic sensor outputs a detection signal in response to a magnetic field generated by an alternating current flowing through a conductor as in the characteristic test of the magnetic sensor described in Patent Document 1, the magnetic sensor is a magnetic medium.
- detection is performed by the distance between the detection target (the magnetic sensor test medium having a conductor in the magnetic sensor characteristic test described in Patent Document 1) and the magnetic sensor.
- the effect on the signal size is significant. Therefore, in the magnetic sensor characteristic test described in Patent Document 1, the magnetic sensor test medium must be arranged at a desired position with high accuracy.
- the magnetic sensor characteristic test described in Patent Document 1 may not be used depending on the configuration of the magnetic sensor.
- a magnetic sensor characteristic test described in Patent Document 1 is performed on a magnetic sensor in which a sensor element is disposed between two magnets, an AC current is caused to flow through the conductor of the magnetic sensor test medium. Since the magnetic field is canceled by the two magnets, the magnetic sensor does not output a detection signal.
- the present invention does not include a conductor that generates a magnetic field when an alternating current is passed, and has higher durability than a magnetic sensor test medium in which magnetic ink is applied to an insulator such as banknote or paper. It is an object of the present invention to provide a magnetic sensor test medium that has a characteristic and can perform a magnetic sensor characteristic test with high accuracy.
- the magnetic sensor test medium of the present invention includes a magnetic member made of a metal that is a magnetic material.
- the metal as the magnetic material is stainless steel including an austenite phase and a martensite phase.
- the stainless steel is formed by rolling a member made of austenitic stainless steel.
- the magnetic sensor test method of the present invention uses the above magnetic sensor test medium.
- the method for producing a magnetic sensor test medium of the present invention forms a magnetic member made of stainless steel including an austenitic phase and a martensite phase by processing a member made of austenitic stainless steel.
- the magnetic sensor test medium has high durability, and the characteristic test of the magnetic sensor can be performed with high accuracy.
- FIG. 1A is a plan view of the magnetic sensor test medium 1.
- FIG. 1B is a cross-sectional view of the magnetic sensor test medium 1 taken along the line AA shown in FIG.
- the magnetic sensor test medium 1 includes a substrate 10, a magnetic member 11, a protective member 12, and adhesive tapes 13a and 13b.
- the substrate 10 is made of a resin such as acrylic, and is an insulator and a nonmagnetic material.
- the substrate 10 has a rectangular parallelepiped shape and a thickness of 5 mm.
- the magnetic member 11 is made of a metal that is a magnetic material, specifically, stainless steel containing an austenite phase and a martensite phase.
- the magnetic member 11 has a magnetic permeability of 1.10 H / m.
- the magnetic member 11 has a rectangular parallelepiped shape and a thickness of 5 ⁇ m.
- the magnetic member 11 is disposed on the upper surface of the substrate 10.
- the magnetic member 11 may be made of a ferritic stainless steel such as SUS430.
- the magnetic member 11 is made of SUS304, which is an austenitic stainless steel, and is formed by cold (room temperature) rolling at a rolling rate of about 30% on a metal plate having a thickness of about 7 ⁇ m.
- SUS304 is cold-rolled (normal temperature)
- a part of the austenite phase that is a non-magnetic material becomes a martensite phase that is a magnetic material.
- a magnetic member 11 made of a metal that is a magnetic material specifically, stainless steel containing an austenite phase and a martensite phase is formed.
- the magnetic member 11 is not limited to SUS304, and may be formed by cold (room temperature) rolling of a metal plate made of other austenitic stainless steel such as SUS301, SUS305, ST-M1, SUS316, and SUS316L. .
- the protective member 12 is made of a resin such as polyethylene, and is an insulator and a nonmagnetic material.
- the protection member 12 has a rectangular parallelepiped shape and is provided so as to cover a part of the substrate 10 and the magnetic member 11.
- the adhesive tapes 13 a and 13 b are provided for bonding the protective member 12 and the substrate 10.
- the magnetic member 11 Since the thickness of the substrate 10 is 5 mm and the thickness of the magnetic member 11 is 5 ⁇ m, the magnetic member 11 is very thin compared to the substrate 10. For this reason, the clearance gap between the board
- FIG. 1C is a diagram illustrating a magnetic sensor characteristic test using the magnetic sensor test medium 1 according to the present embodiment.
- FIG. 1D is a block diagram of a circuit including a magnetic sensor used in a magnetic sensor characteristic test and a magnetic sensor test apparatus.
- the magnetic sensor test apparatus includes a circuit unit 21 and a calculation / determination unit 22.
- the circuit unit 21 is connected to the magnetic sensor 2 that is the target of the characteristic test.
- the magnetic sensor 2 includes a semiconductor magnetoresistive element that is a sensor element.
- the magnetic sensor 2 is not limited to a semiconductor magnetoresistive element as a sensor element, but includes a magnetic thin film (MTF) element, a magnetic impedance (Magneto-Impedance: MI) element, an anisotropic magnetoresistance effect ( Other sensor elements such as an anisotropic magneto-resistive effect (AMR) element and a giant magneto-resistive effect (GMR) element may be provided.
- the magnetic sensor 2 may include a coil.
- the magnetic sensor 2 that is the target of the characteristic test is arranged in the magnetic sensor test apparatus, and the magnetic sensor 2 is placed in the circuit unit 21. Connect electrically.
- the magnetic sensor test medium 1 is moved along the transport direction X so that the protective member 12 of the magnetic sensor test medium 1 is in contact with the magnetic sensor 2. Be transported.
- the magnetic sensor 2 outputs a detection signal (detection voltage) in response to the magnetism (magnetic permeability) of the magnetic member 11.
- the detection signal of the magnetic sensor 2 is input to the circuit unit 21, converted into a voltage value in the circuit unit 21, and then input to the calculation / determination unit 22.
- the calculation / determination unit 22 determines that the magnetic sensor 2 is a non-defective product if the voltage value falls within a desired range, and the magnetic sensor 2 fails if the voltage value does not fall within the desired range. Judged to be non-defective. Based on the determination result of the calculation / determination unit 22, the magnetic sensor 2 is selected as a non-defective product or a defective product.
- the circuit unit 21 converts the input detection signal of the magnetic sensor 2 into a voltage waveform indicating a voltage value for each time, and the calculation / determination unit 22 is input from the circuit unit 21. It may be determined that the magnetic sensor 2 is a good product or a defective product by comparing the voltage waveform pattern with a desired pattern.
- the magnetic member 11 Since the magnetic member 11 is made of metal and covered with the protective member 12, the magnetic member 11 is not worn like a banknote or magnetic ink applied to a conventional magnetic sensor test medium. Therefore, the magnetic sensor test medium 1 has high durability, and the magnetic permeability hardly changes. Therefore, in the magnetic sensor characteristic test using the magnetic sensor test medium 1, it is possible to correctly determine whether the magnetic sensor is a good product or a defective product.
- the magnetic sensor test medium 1 is preferably used for a characteristic test of a magnetic sensor including a plurality of sensor elements.
- FIG. 2 is a graph showing variation among individuals of the magnetic sensor test medium 1 according to the present embodiment.
- An arbitrary magnetic sensor test medium 1 and another magnetic sensor test medium 1 different from the arbitrary magnetic sensor test medium 1 are used, and the same magnetic sensor is formed in the same manner as the above-described magnetic sensor characteristic test.
- the voltage value obtained by converting the detection signal (detection voltage) of the magnetic sensor in the circuit unit was obtained 30 times.
- the 30 points shown in FIG. 2 indicate the obtained results.
- the horizontal axis represents the voltage value of the detection signal of the magnetic sensor when an arbitrary magnetic sensor test medium 1 is used
- the vertical axis represents another magnetism different from the arbitrary magnetic sensor test medium 1. This is the voltage value of the detection signal of the magnetic sensor when the sensor test medium 1 is used.
- the correlation coefficient R 2 of the 30 points is 0.99, is substantially positive correlation. That is, the magnetic sensor test medium 1 has a very small variation among individuals. Thus, a plurality of magnetic sensor test media 1 having the same magnetic information can be easily prepared.
- a magnetic field generated when an alternating current is passed through the conductor of the magnetic sensor test medium Is not detected by the magnetic sensor, and can be used for a characteristic test of a magnetic sensor in which a sensor element is disposed between two magnets.
- the thickness of the magnetic member 11 When the magnetic member 11 is thick, the magnetic flux collecting effect is increased, the magnetic flux density near the sensor element of the magnetic sensor 2 is increased, and the detection signal of the magnetic sensor 2 is increased. On the other hand, when the magnetic member 11 is thin, the magnetic flux collecting effect is lowered, the magnetic flux density near the sensor element of the magnetic sensor 2 is lowered, and the detection signal of the magnetic sensor 2 is reduced. Thus, when the magnetic member 11 becomes thick, the detection signal of the magnetic sensor 2 increases. Therefore, the magnitude of the detection signal (detection voltage) of the magnetic sensor 2 can be adjusted by adjusting the thickness of the magnetic member 11.
- the magnetic sensor test medium 1 including the magnetic member 11 having a thickness of 10 ⁇ m is used.
- the detection signal of the magnetic sensor 2 is slightly larger than the detection signal of the magnetic sensor 2 when an actual banknote is used.
- the detection signal of the magnetic sensor 2 is detected by the magnetic sensor 2 when an actual banknote is used. It is almost equal to the signal.
- the magnetic sensor test medium 1 according to the present embodiment can be suitably used for a characteristic test of a magnetic sensor for banknote identification.
- FIG. 3 is a graph showing a comparison result between the detection signal (detection voltage) of the magnetic sensor using the magnetic sensor test medium 1 according to the present embodiment and the detection signal (detection voltage) of the magnetic sensor using an actual banknote.
- the horizontal axis is the voltage value of the detection signal (detection voltage) of the magnetic sensor when an unused actual banknote is used
- the vertical axis is the magnetic sensor in which the thickness of the magnetic member 11 is 5 ⁇ m. This is a voltage value of a detection signal (detection voltage) of the magnetic sensor when the test medium 1 is used.
- the correlation coefficient R 2 of the 30 points is 0.99, is substantially positive correlation. That is, it can be seen that the magnetic sensor test medium 1 having the thickness of the magnetic member 11 of 5 ⁇ m has substantially the same magnetic information as an unused actual banknote. Therefore, the magnetic sensor test medium 1 according to the present embodiment can be suitably used for the characteristic test of the magnetic sensor for banknote identification.
- the magnitude of the detection signal (detection voltage) of the magnetic sensor 2 can be adjusted by adjusting the thickness of the magnetic member 11.
- the detection signal of the magnetic sensor 2 increases.
- the detection signal of the magnetic sensor 2 decreases.
- the magnitude of the detection signal of the magnetic sensor 2 can also be adjusted by adjusting.
- the magnetic member 11 is made of stainless steel including an austenitic phase and a martensite phase
- a metal plate made of austenitic stainless steel is formed by cold (room temperature) rolling, cold (room temperature) rolling is performed.
- the magnetic permeability of the magnetic member 11 can be adjusted by adjusting the rolling rate. The greater the content of the martensite phase in the magnetic member 11, the greater the magnetic permeability of the magnetic member 11.
- a metal plate made of austenitic stainless steel is cold-rolled (normal temperature), whereby a part of the austenite phase that is a non-magnetic material becomes a martensite phase that is a magnetic material.
- the magnetic permeability of the magnetic member 11 can be adjusted by adjusting the rolling rate in the cold (room temperature) rolling process, and as a result, the magnitude of the detection signal (detection voltage) of the magnetic sensor 2 is increased. Can be adjusted.
- FIG. 4 is a graph showing the relationship between the rolling rate in cold (room temperature) rolling of a metal plate made of austenitic stainless steel and the magnetic permeability of the metal plate.
- FIG. 4 shows the relationship between the rolling rate in cold (room temperature) rolling and the magnetic permeability of the metal plate in each of the metal plate made of SUS304, the metal plate made of SUS305, and the metal plate made of ST-M1.
- the magnetic permeability increases as the rolling ratio in the cold (room temperature) rolling process increases.
- the magnetic sensor test medium 1 used for the characteristic test of the magnetic sensor for banknote identification
- the magnetic permeability of the magnetic member 11 is the same as that of the hard ferrite contained in the magnetic ink.
- the magnetic permeability of the hard ferrite contained in the magnetic ink applied to the actual banknote is approximately 1.10 H / m. Therefore, when the magnetic sensor test medium 1 according to the present embodiment is used for a characteristic test of a magnetic sensor for identifying banknotes, the magnetic permeability of the magnetic member 11 is preferably approximately 1.10 H / m.
- a metal plate made of SUS304 has a permeability of approximately 1.10 H / m at a rolling rate of about 30%. For this reason, when the magnetic member 11 is formed by cold (room temperature) rolling with a rolling rate of about 30%, a metal plate made of SUS304, which is austenitic stainless steel, the magnetic member 11 is an actual banknote. It has a magnetic permeability almost the same as that of the hard ferrite contained in the magnetic ink applied to the magnetic ink. Therefore, the magnetic sensor test medium 1 can be suitably used for a characteristic test of a magnetic sensor for banknote identification.
- FIG. 4 shows the case of a metal plate made of SUS304, a metal plate made of SUS305, and a metal plate made of ST-M1.
- the permeability increases as the rolling ratio in cold (room temperature) rolling increases.
- a metal plate made of SUS304 is preferable as the material of the magnetic member 11 because a large magnetic permeability can be obtained even if the rolling rate is small.
- the magnetic sensor In the magnetic sensor, there are minute irregularities due to processing variations and the like on the surface which is in contact with the bill and the magnetic sensor test medium as the detection surface.
- the thickness of the magnetic member 11 is 10 ⁇ m or less, the magnetic member 11 is deformed according to the unevenness of the detection surface of the magnetic sensor, so that the distance between the magnetic member 11 and the detection surface of the magnetic sensor is substantially constant.
- the occurrence of variations in the magnitude of the detection signal (detection voltage) of the magnetic sensor can be prevented.
- the magnetic member 11 has a rectangular parallelepiped shape.
- the magnetic member 11 may have another shape, and may have a desired shape depending on the use of a magnetic sensor for performing a characteristic test.
- a metal plate 11a made of SUS304, which is austenitic stainless steel, and having a thickness of about 7 ⁇ m is prepared.
- the metal plate 11a is cold-rolled at a rolling rate of about 30% using a roller.
- a part of the austenite phase becomes the martensite phase in the metal plate 11a.
- a metal plate 11b made of stainless steel including an austenite phase and a martensite phase is formed.
- the magnetic member 11 is formed by cutting the metal plate 11b.
- a protective member 12 is disposed so as to cover a part of the substrate 10 and the magnetic member 11, and the adhesive tape 13a, The protective member 12 and the substrate 10 are bonded by 13b.
- the magnetic member 11 When the magnetic member 11 is made of stainless steel including an austenite phase and a martensite phase, the magnetic member 11 may be formed by rolling a metal plate made of austenitic stainless steel as described above. It may be formed by quenching a metal plate made of austenitic stainless steel.
- the magnetic member 11 may be formed only by rolling instead of forming the magnetic member 11 by cutting the rolled metal plate.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inspection Of Paper Currency And Valuable Securities (AREA)
Abstract
The present invention realizes a medium for a magnetic sensor test that is not provided with a conductor generating a magnetic field upon conduction of an AC current, has higher durability than a medium for a magnetic sensor test made of an insulator, such as a banknote or paper, which has a magnetic ink coated thereto, and is capable of testing the characteristic of a magnetic sensor with high accuracy. The medium for a magnetic sensor test is provided with a magnetic member comprising a metal which is a magnetic substance. The medium for a magnetic sensor test thereby has high durability and is able to test the characteristic of a magnetic sensor with high accuracy.
Description
この発明は、磁気センサの特性試験に用いられる磁気センサ試験用媒体に関するものである。
The present invention relates to a magnetic sensor test medium used for a magnetic sensor characteristic test.
従来、現金自動預け払い機(Automated Teller Machine:ATM)および自動販売機などの紙幣を取り扱う装置に搭載される紙幣認識装置には、紙幣の真偽および紙幣の種類を識別するために、磁気センサが搭載されている。交通機関の自動改札機においても、切符の真偽および切符の種類を識別するために、磁気センサが搭載されている。磁気センサは、これら装置で用いられる紙幣や切符などの磁気媒体の磁気情報に反応して検出信号を出力する。
2. Description of the Related Art Conventionally, a bill recognition device mounted on a bill handling device such as an automated teller machine (ATM) or a vending machine has a magnetic sensor for identifying the authenticity of the bill and the bill type. Is installed. In an automatic ticket gate for transportation, a magnetic sensor is mounted to identify the authenticity of a ticket and the type of ticket. The magnetic sensor outputs a detection signal in response to magnetic information of a magnetic medium such as a bill or a ticket used in these devices.
磁気センサを構成するセンサ素子は、素子自体のばらつきや製造ばらつきを有する。よって、磁気センサは、製造時の特性試験により、良品と不良品とに選別される必要がある。
The sensor elements constituting the magnetic sensor have variations in the elements themselves and manufacturing variations. Therefore, the magnetic sensor needs to be classified into a non-defective product and a defective product by a characteristic test at the time of manufacture.
紙幣識別用の磁気センサの特性試験は、実際の紙幣を用いて行われることがある。この場合、特性試験を行う者は、磁気センサ試験装置に磁気センサを配置した後に、紙幣を磁気センサに近づけて配置する。すると、磁気センサは、紙幣に塗布された磁気インクの磁気情報を検出し、検出信号(検出電圧)を出力する。磁気センサ試験装置は、検出信号の大きさを測定し、検出信号が所望の大きさであるか否かを判定することで、磁気センサの良品と不良品との選別を行う。
A characteristic test of a magnetic sensor for banknote identification may be performed using an actual banknote. In this case, the person who performs the characteristic test arranges the banknote close to the magnetic sensor after arranging the magnetic sensor in the magnetic sensor test apparatus. Then, a magnetic sensor detects the magnetic information of the magnetic ink apply | coated to the banknote, and outputs a detection signal (detection voltage). The magnetic sensor test apparatus measures the magnitude of the detection signal and determines whether or not the detection signal has a desired magnitude, thereby selecting a good or defective magnetic sensor.
なお、紙幣識別用の磁気センサの特性試験は、実際の紙幣ではなく、紙などの絶縁体に磁気インクが塗布されている磁気センサ試験用媒体を用いて行われることもある。
In addition, the characteristic test of the magnetic sensor for banknote identification may be performed using a magnetic sensor test medium in which magnetic ink is applied to an insulator such as paper instead of an actual banknote.
また、特許文献1には、銅などの金属からなる導体を備える磁気センサ試験用媒体を用いて、磁気センサの特性試験を行う旨が記載されている。特許文献1に記載の磁気センサの特性試験では、直線状の導体と、導体を挟みこんでいる絶縁体と、を備える磁気センサ試験用媒体が用いられる。特性試験を行う者は、磁気センサ試験装置に磁気センサを配置した後に、磁気センサ試験用媒体を磁気センサに近づけて配置する。このとき、磁気センサ試験用媒体の導体は、磁気センサ試験装置が備える交流電流発生回路に接続される。このような状態で、交流電流発生回路によって導体に交流電流が流されると、磁界が発生する。磁気センサは、発生した磁界を検出し、検出信号(検出電圧)を出力する。磁気センサ試験装置は、検出信号の大きさを測定し、検出信号が所望の大きさであるか否かを判定することで、磁気センサの良品と不良品との選別を行う。
Patent Document 1 describes that a magnetic sensor characteristic test is performed using a magnetic sensor test medium including a conductor made of a metal such as copper. In the magnetic sensor characteristic test described in Patent Document 1, a magnetic sensor test medium including a linear conductor and an insulator sandwiching the conductor is used. The person who performs the characteristic test arranges the magnetic sensor test medium close to the magnetic sensor after arranging the magnetic sensor in the magnetic sensor test apparatus. At this time, the conductor of the magnetic sensor test medium is connected to an alternating current generation circuit provided in the magnetic sensor test apparatus. In this state, when an alternating current is passed through the conductor by the alternating current generation circuit, a magnetic field is generated. The magnetic sensor detects the generated magnetic field and outputs a detection signal (detection voltage). The magnetic sensor test apparatus measures the magnitude of the detection signal and determines whether or not the detection signal has a desired magnitude, thereby selecting a good or defective magnetic sensor.
しかし、実際の紙幣を用いた磁気センサの特性試験は以下のような問題を有する。実際の紙幣は、使用・流通過程で磁気インクが摩耗し、磁気インクが摩耗すると透磁率が低下することから、磁気情報にばらつきを有する。そのため、特性試験に用いられる紙幣の磁気インクが摩耗している場合には、磁気インクの透磁率が低いことから、磁気センサが出力する検出信号が小さくなって、磁気センサが良品であっても不良品と判定される事態が発生することがあり、磁気センサの良品と不良品との判定を正しく行うことができない。また、実際の紙幣では、経時変化によって磁気インクの透磁率が低下することがあり、磁気情報にばらつきを有する。このような場合にも、磁気センサが出力する検出信号が小さくなって、磁気センサが良品であっても不良品と判定される事態が発生することがあり、磁気センサの良品と不良品との判定を正しく行うことができない。
However, the characteristic test of a magnetic sensor using an actual banknote has the following problems. The actual banknotes have variations in magnetic information because the magnetic ink is worn during the use / distribution process, and the magnetic permeability decreases when the magnetic ink is worn. For this reason, when the magnetic ink of the banknote used for the characteristic test is worn, the magnetic ink has a low magnetic permeability, so that the detection signal output from the magnetic sensor is small and the magnetic sensor is good. A situation in which the product is determined to be defective may occur, and it is not possible to correctly determine whether the magnetic sensor is good or defective. Moreover, in an actual banknote, the magnetic ink permeability may decrease due to a change with time, and magnetic information varies. Even in such a case, the detection signal output from the magnetic sensor becomes small, and even if the magnetic sensor is a non-defective product, it may be determined that the magnetic sensor is defective. Judgment cannot be performed correctly.
以上のように、実際の紙幣を用いた磁気センサの特性試験では、特性試験に用いる紙幣における磁気インクの摩耗や経時変化による磁気情報のばらつきによって、磁気センサの良品または不良品の判定が正しく行われず、良品と不良品との選別に誤りが発生することがある。
As described above, in the characteristic test of the magnetic sensor using the actual banknote, the non-defective product or the defective product of the magnetic sensor is correctly determined based on the variation of the magnetic information due to the wear of the magnetic ink in the banknote used for the characteristic test or the change with time. Therefore, an error may occur in the selection between non-defective products and defective products.
また、紙幣には、磁気インクの濃度または塗布された磁気インクの厚さにおいて、印刷のばらつきがある。よって、紙幣は、印刷のばらつきを有することにより、磁気情報にばらつきを有する。このため、実際の紙幣を用いた磁気センサの特性試験では、特性試験に用いる紙幣における磁気インクの印刷のばらつきによる磁気情報のばらつきによっても、磁気センサの良品または不良品の判定が正しく行われず、良品と不良品との選別に誤りが発生することがある。よって、磁気センサの良品または不良品を判定するための基準となる紙幣の選定は、難しい。紙幣に限らず磁気インクが塗布された切符等においても、紙幣と同様の理由で、基準となる磁気媒体を選定することは、難しい。
Also, banknotes have printing variations in magnetic ink density or applied magnetic ink thickness. Therefore, a banknote has variation in magnetic information by having variation in printing. For this reason, in the characteristic test of the magnetic sensor using the actual banknote, the non-defective or defective product of the magnetic sensor is not correctly determined due to the variation in magnetic information due to the variation in printing of the magnetic ink on the banknote used for the characteristic test. An error may occur in the selection between a good product and a defective product. Therefore, it is difficult to select a banknote serving as a reference for determining whether the magnetic sensor is good or defective. It is difficult to select a reference magnetic medium not only for bills but also for tickets applied with magnetic ink for the same reason as bills.
次に、紙などの絶縁体に磁気インクが塗布されている磁気センサ試験用媒体を用いた磁気センサの特性試験は以下のような問題を有する。この試験方法では、磁気センサ試験用媒体を繰り返し使用することによる磁気インクの摩耗を考慮して磁気センサ試験用媒体を定期的に交換するため、同じ磁気情報を有する複数の磁気センサ試験用媒体を用意する必要がある。ここで、絶縁体に磁気インクが塗布されている磁気センサ試験用媒体には、紙幣と同様に磁気インクの印刷のばらつきによる磁気情報のばらつきがある。このため、非常に多くの磁気センサ試験用媒体を作製した上で同じ磁気情報を有するものを選定することで、同じ磁気情報を有する複数の磁気センサ試験用媒体を用意する必要があり、非常に多くの時間と手間がかかる。特に、複数のセンサ素子を備える磁気センサの特性試験に用いられる磁気センサ試験用媒体では、面内における磁気インクの印刷ばらつきがあるため、同じ磁気情報を有する複数の磁気センサ試験用媒体を用意することは非常に困難である。
Next, a characteristic test of a magnetic sensor using a magnetic sensor test medium in which magnetic ink is applied to an insulator such as paper has the following problems. In this test method, a plurality of magnetic sensor test media having the same magnetic information are stored in order to periodically replace the magnetic sensor test media in consideration of wear of magnetic ink caused by repeated use of the magnetic sensor test media. It is necessary to prepare. Here, the magnetic sensor test medium in which the magnetic ink is applied to the insulator has variations in magnetic information due to variations in printing of the magnetic ink, as in the case of banknotes. For this reason, it is necessary to prepare a plurality of magnetic sensor test media having the same magnetic information by preparing a large number of magnetic sensor test media and then selecting one having the same magnetic information. It takes a lot of time and effort. In particular, in a magnetic sensor test medium used for a characteristic test of a magnetic sensor having a plurality of sensor elements, since there is a variation in printing of magnetic ink in the surface, a plurality of magnetic sensor test media having the same magnetic information are prepared. It is very difficult.
そして、特許文献1に記載の磁気センサの特性試験は以下のような問題を有する。磁気センサは磁気媒体の磁気情報に反応して検出信号を出力するように使用されるのに対して、特許文献1に記載の磁気センサの特性試験では、磁気センサが導体に交流電流が流されることで発生した磁界に反応して検出信号を出力するように使用されている。このため、特許文献1に記載の磁気センサの特性試験では、磁気センサが使用される状態とは全く異なる状態における磁気センサの検出信号を測定している。このため、実際の使用時の検出信号と特性試験時の検出信号とにずれが生じることがある。
And the characteristic test of the magnetic sensor described in Patent Document 1 has the following problems. While the magnetic sensor is used to output a detection signal in response to magnetic information of the magnetic medium, in the magnetic sensor characteristic test described in Patent Document 1, an alternating current is passed through the conductor. The detection signal is output in response to the generated magnetic field. For this reason, in the magnetic sensor characteristic test described in Patent Document 1, the detection signal of the magnetic sensor in a state completely different from the state in which the magnetic sensor is used is measured. For this reason, a difference may occur between the detection signal at the time of actual use and the detection signal at the time of the characteristic test.
磁気センサの検出信号の大きさは、磁気媒体などの検出対象と磁気センサとの間隔による影響を受けやすい。ここで、特許文献1に記載の磁気センサの特性試験のように磁気センサが導体に交流電流が流されることで発生した磁界に反応して検出信号を出力する場合には、磁気センサが磁気媒体の磁気情報に反応して検出信号を出力する場合と比較して、検出対象(特許文献1に記載の磁気センサの特性試験では導体を備える磁気センサ試験用媒体)と磁気センサとの間隔による検出信号の大きさへの影響は大きい。よって、特許文献1に記載の磁気センサの特性試験では、磁気センサ試験用媒体を高い精度で所望の位置に配置しなければならない。
The magnitude of the detection signal of the magnetic sensor is easily affected by the distance between the detection target such as a magnetic medium and the magnetic sensor. Here, when the magnetic sensor outputs a detection signal in response to a magnetic field generated by an alternating current flowing through a conductor as in the characteristic test of the magnetic sensor described in Patent Document 1, the magnetic sensor is a magnetic medium. Compared with the case where a detection signal is output in response to the magnetic information of the sensor, detection is performed by the distance between the detection target (the magnetic sensor test medium having a conductor in the magnetic sensor characteristic test described in Patent Document 1) and the magnetic sensor. The effect on the signal size is significant. Therefore, in the magnetic sensor characteristic test described in Patent Document 1, the magnetic sensor test medium must be arranged at a desired position with high accuracy.
また、特許文献1に記載の磁気センサの特性試験は、磁気センサの構成によっては用いることができない場合がある。センサ素子が2つの磁石の間に配置されている磁気センサに対して特許文献1に記載の磁気センサの特性試験を行うと、磁気センサ試験用媒体の導体に交流電流が流されることで発生した磁界が2つの磁石によってキャンセルされるので、磁気センサが検出信号を出力しないことになる。
Also, the magnetic sensor characteristic test described in Patent Document 1 may not be used depending on the configuration of the magnetic sensor. When a magnetic sensor characteristic test described in Patent Document 1 is performed on a magnetic sensor in which a sensor element is disposed between two magnets, an AC current is caused to flow through the conductor of the magnetic sensor test medium. Since the magnetic field is canceled by the two magnets, the magnetic sensor does not output a detection signal.
そこで、この発明は、交流電流が流されることで磁界を発生させる導体を備えておらず、紙幣、紙などの絶縁体に磁気インクが塗布されている磁気センサ試験用媒体に比べて高い耐久性を有しており、かつ高い精度で磁気センサの特性試験を行うことができる、磁気センサ試験用媒体を実現することを目的とする。
Therefore, the present invention does not include a conductor that generates a magnetic field when an alternating current is passed, and has higher durability than a magnetic sensor test medium in which magnetic ink is applied to an insulator such as banknote or paper. It is an object of the present invention to provide a magnetic sensor test medium that has a characteristic and can perform a magnetic sensor characteristic test with high accuracy.
本発明の磁気センサ試験用媒体は、磁性体である金属からなる磁性部材を備える。
The magnetic sensor test medium of the present invention includes a magnetic member made of a metal that is a magnetic material.
また、磁性体である金属は、オーステナイト相とマルテンサイト相とを含むステンレスであることが望ましい。
Further, it is desirable that the metal as the magnetic material is stainless steel including an austenite phase and a martensite phase.
また、ステンレスは、オーステナイト系ステンレスからなる部材が圧延加工されてなることが望ましい。
Also, it is desirable that the stainless steel is formed by rolling a member made of austenitic stainless steel.
本発明の磁気センサ試験方法は、上記の磁気センサ試験用媒体を用いる。
The magnetic sensor test method of the present invention uses the above magnetic sensor test medium.
本発明の磁気センサ試験用媒体の製造方法は、オーステナイト系ステンレスからなる部材を加工することにより、オーステナイト相とマルテンサイト相とを含むステンレスからなる磁性部材を形成する。
The method for producing a magnetic sensor test medium of the present invention forms a magnetic member made of stainless steel including an austenitic phase and a martensite phase by processing a member made of austenitic stainless steel.
この発明によれば、磁気センサ試験用媒体は高い耐久性を有しており、高い精度で磁気センサの特性試験を行うことができる。
According to the present invention, the magnetic sensor test medium has high durability, and the characteristic test of the magnetic sensor can be performed with high accuracy.
図1を参照して、本発明の実施形態に係る磁気センサ試験用媒体1を説明する。図1(A)は、磁気センサ試験用媒体1の平面図である。図1(B)は、図1(A)に示すA―A線の位置における、磁気センサ試験用媒体1の断面図である。
A magnetic sensor test medium 1 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1A is a plan view of the magnetic sensor test medium 1. FIG. 1B is a cross-sectional view of the magnetic sensor test medium 1 taken along the line AA shown in FIG.
磁気センサ試験用媒体1は、基板10と、磁性部材11と、保護部材12と、接着テープ13a,13bとを備える。
The magnetic sensor test medium 1 includes a substrate 10, a magnetic member 11, a protective member 12, and adhesive tapes 13a and 13b.
基板10は、アクリルなどの樹脂からなり、絶縁体かつ非磁性体である。基板10は、直方体形状であり、厚さが5mmである。
The substrate 10 is made of a resin such as acrylic, and is an insulator and a nonmagnetic material. The substrate 10 has a rectangular parallelepiped shape and a thickness of 5 mm.
磁性部材11は、磁性体である金属、具体的にはオーステナイト相とマルテンサイト相とを含むステンレスからなる。磁性部材11の透磁率は、1.10H/mである。磁性部材11は、直方体形状であり、厚さが5μmである。磁性部材11は、基板10の上面に配置されている。なお、磁性部材11は、SUS430などのフェライト系ステンレスからなるものであってもよい。
The magnetic member 11 is made of a metal that is a magnetic material, specifically, stainless steel containing an austenite phase and a martensite phase. The magnetic member 11 has a magnetic permeability of 1.10 H / m. The magnetic member 11 has a rectangular parallelepiped shape and a thickness of 5 μm. The magnetic member 11 is disposed on the upper surface of the substrate 10. The magnetic member 11 may be made of a ferritic stainless steel such as SUS430.
磁性部材11は、オーステナイト系ステンレスであるSUS304からなり、厚さが約7μmである金属板が圧延率約30%で冷間(常温)圧延加工されることで形成されている。SUS304からなる金属板が冷間(常温)圧延加工されることによって、金属板において、非磁性体であるオーステナイト相の一部が磁性体であるマルテンサイト相になる。この結果、磁性体である金属、具体的にはオーステナイト相とマルテンサイト相とを含むステンレスからなる磁性部材11が形成される。
The magnetic member 11 is made of SUS304, which is an austenitic stainless steel, and is formed by cold (room temperature) rolling at a rolling rate of about 30% on a metal plate having a thickness of about 7 μm. When a metal plate made of SUS304 is cold-rolled (normal temperature), a part of the austenite phase that is a non-magnetic material becomes a martensite phase that is a magnetic material. As a result, a magnetic member 11 made of a metal that is a magnetic material, specifically, stainless steel containing an austenite phase and a martensite phase is formed.
磁性部材11は、SUS304に限らず、SUS301、SUS305、ST-M1、SUS316、SUS316Lなどの他のオーステナイト系ステンレスからなる金属板が冷間(常温)圧延加工されることによって形成されていてもよい。
The magnetic member 11 is not limited to SUS304, and may be formed by cold (room temperature) rolling of a metal plate made of other austenitic stainless steel such as SUS301, SUS305, ST-M1, SUS316, and SUS316L. .
保護部材12は、ポリエチレンなどの樹脂からなり、絶縁体かつ非磁性体である。保護部材12は、直方体形状であり、基板10と磁性部材11との一部を覆うように設けられている。
The protective member 12 is made of a resin such as polyethylene, and is an insulator and a nonmagnetic material. The protection member 12 has a rectangular parallelepiped shape and is provided so as to cover a part of the substrate 10 and the magnetic member 11.
接着テープ13a,13bは、保護部材12と基板10とを接着するために設けられている。
The adhesive tapes 13 a and 13 b are provided for bonding the protective member 12 and the substrate 10.
基板10の厚さが5mmであり、磁性部材11の厚さが5μmであることから、磁性部材11は基板10に比べて非常に薄い。このため、磁性部材11の厚さによって形成される基板10と保護部材12との間の隙間は、非常に小さい。よって、磁気センサ試験用媒体1の上面はほぼ平坦である。また、磁気センサ試験用媒体1は、薄い板形状であることから、実際の紙幣と同じように用いられる。
Since the thickness of the substrate 10 is 5 mm and the thickness of the magnetic member 11 is 5 μm, the magnetic member 11 is very thin compared to the substrate 10. For this reason, the clearance gap between the board | substrate 10 and the protection member 12 formed with the thickness of the magnetic member 11 is very small. Therefore, the upper surface of the magnetic sensor test medium 1 is substantially flat. Moreover, since the magnetic sensor test medium 1 has a thin plate shape, it is used in the same manner as an actual banknote.
図1(C)は、本実施形態に係る磁気センサ試験用媒体1を用いた磁気センサの特性試験を説明する図である。図1(D)は、磁気センサの特性試験で用いられる磁気センサと磁気センサ試験用装置からなる回路のブロック図である。磁気センサ試験用装置は、回路部21と、演算・判定部22とを備える。回路部21は、特性試験の対象である磁気センサ2に接続される。
FIG. 1C is a diagram illustrating a magnetic sensor characteristic test using the magnetic sensor test medium 1 according to the present embodiment. FIG. 1D is a block diagram of a circuit including a magnetic sensor used in a magnetic sensor characteristic test and a magnetic sensor test apparatus. The magnetic sensor test apparatus includes a circuit unit 21 and a calculation / determination unit 22. The circuit unit 21 is connected to the magnetic sensor 2 that is the target of the characteristic test.
磁気センサ2は、センサ素子である半導体磁気抵抗素子を備える。なお、磁気センサ2は、センサ素子として半導体磁気抵抗素子を備えるものに限らず、磁性薄膜(Magnetic Thin Film:MTF)素子、磁気インピーダンス(Magneto-Impedance: MI)素子、異方性磁気抵抗効果(Anisotropic Magneto-Resistive Effect:AMR)素子、巨大磁気抵抗効果(Giant Magneto-Resistive Effect:GMR)素子などの他のセンサ素子を備えるものであってもよい。また、磁気センサ2は、コイルを備えるものであってもよい。
The magnetic sensor 2 includes a semiconductor magnetoresistive element that is a sensor element. The magnetic sensor 2 is not limited to a semiconductor magnetoresistive element as a sensor element, but includes a magnetic thin film (MTF) element, a magnetic impedance (Magneto-Impedance: MI) element, an anisotropic magnetoresistance effect ( Other sensor elements such as an anisotropic magneto-resistive effect (AMR) element and a giant magneto-resistive effect (GMR) element may be provided. The magnetic sensor 2 may include a coil.
本実施形態に係る磁気センサ試験用媒体1を用いた磁気センサの特性試験では、まず、特性試験の対象である磁気センサ2を磁気センサ試験用装置に配置し、磁気センサ2を回路部21に電気的に接続する。このような状態で、図1(C)に示すように、磁気センサ試験用媒体1の保護部材12が磁気センサ2に接触するようにして、磁気センサ試験用媒体1が搬送方向Xに沿って搬送される。このとき、磁気センサ2は磁性部材11の磁性(透磁率)に反応して検出信号(検出電圧)を出力する。磁気センサ2の検出信号は、回路部21に入力され、回路部21において電圧値に変換された後に、演算・判定部22に入力される。演算・判定部22は、電圧値が所望の範囲に含まれる値であれば磁気センサ2が良品であると判定し、電圧値が所望の範囲に含まれない値であれば磁気センサ2が不良品であると判定する。演算・判定部22の判定結果に基づき、磁気センサ2は良品または不良品として選別される。
In the characteristic test of the magnetic sensor using the magnetic sensor test medium 1 according to the present embodiment, first, the magnetic sensor 2 that is the target of the characteristic test is arranged in the magnetic sensor test apparatus, and the magnetic sensor 2 is placed in the circuit unit 21. Connect electrically. In this state, as shown in FIG. 1C, the magnetic sensor test medium 1 is moved along the transport direction X so that the protective member 12 of the magnetic sensor test medium 1 is in contact with the magnetic sensor 2. Be transported. At this time, the magnetic sensor 2 outputs a detection signal (detection voltage) in response to the magnetism (magnetic permeability) of the magnetic member 11. The detection signal of the magnetic sensor 2 is input to the circuit unit 21, converted into a voltage value in the circuit unit 21, and then input to the calculation / determination unit 22. The calculation / determination unit 22 determines that the magnetic sensor 2 is a non-defective product if the voltage value falls within a desired range, and the magnetic sensor 2 fails if the voltage value does not fall within the desired range. Judged to be non-defective. Based on the determination result of the calculation / determination unit 22, the magnetic sensor 2 is selected as a non-defective product or a defective product.
なお、磁気センサ試験用装置において、回路部21は、入力される磁気センサ2の検出信号を時間ごとの電圧値を示す電圧波形に変換し、演算・判定部22は回路部21から入力される電圧波形のパターンを所望のパターンと比較することで、磁気センサ2が良品または不良品であると判定するものであってもよい。
In the magnetic sensor test apparatus, the circuit unit 21 converts the input detection signal of the magnetic sensor 2 into a voltage waveform indicating a voltage value for each time, and the calculation / determination unit 22 is input from the circuit unit 21. It may be determined that the magnetic sensor 2 is a good product or a defective product by comparing the voltage waveform pattern with a desired pattern.
磁性部材11は金属からなり、保護部材12で覆われていることから、紙幣や従来の磁気センサ試験用媒体に塗布されている磁気インクのように摩耗することはない。そのため、磁気センサ試験用媒体1は高い耐久性を有しており、透磁率がほとんど変化しない。そのため、磁気センサ試験用媒体1を用いた磁気センサの特性試験では、磁気センサの良品と不良品との判定を正しく行うことができる。
Since the magnetic member 11 is made of metal and covered with the protective member 12, the magnetic member 11 is not worn like a banknote or magnetic ink applied to a conventional magnetic sensor test medium. Therefore, the magnetic sensor test medium 1 has high durability, and the magnetic permeability hardly changes. Therefore, in the magnetic sensor characteristic test using the magnetic sensor test medium 1, it is possible to correctly determine whether the magnetic sensor is a good product or a defective product.
また、磁性部材11がオーステナイト系ステンレスからなる金属板が冷間(常温)圧延加工されることで形成されている場合、冷間(常温)圧延加工では金属板に対してほぼ均一に圧力を加えることができるため、加工のばらつきによる磁性部材の面内における磁性(透磁率)のばらつきや個々の磁性部材間の磁性(透磁率)のばらつきは非常に小さい。このため、同じ磁気情報を有する複数の磁気センサ試験用媒体1を容易に用意することができる。また、磁気センサ試験用媒体1は、複数のセンサ素子を備える磁気センサの特性試験に好適に用いられる。
Further, when the magnetic member 11 is formed by cold (room temperature) rolling of a metal plate made of austenitic stainless steel, the cold (room temperature) rolling process applies almost uniform pressure to the metal plate. Therefore, variations in magnetism (permeability) in the plane of the magnetic member due to processing variations and variations in magnetism (permeability) between individual magnetic members are very small. Therefore, a plurality of magnetic sensor test media 1 having the same magnetic information can be easily prepared. The magnetic sensor test medium 1 is preferably used for a characteristic test of a magnetic sensor including a plurality of sensor elements.
図2は、本実施形態に係る磁気センサ試験用媒体1の個体間のばらつきを示すグラフである。任意の磁気センサ試験用媒体1と、任意の磁気センサ試験用媒体1とは異なる他の磁気センサ試験用媒体1とを用い、上述した磁気センサの特性試験と同様の方法で同一の磁気センサを用いて、磁気センサの検出信号(検出電圧)が回路部において変換された電圧値を得ることを30回行った。図2に示す30個の点はそれぞれ得られた結果を示す。図2において、横軸は、任意の磁気センサ試験用媒体1を用いた場合の磁気センサの検出信号の電圧値であり、縦軸は、任意の磁気センサ試験用媒体1とは異なる他の磁気センサ試験用媒体1を用いた場合の磁気センサの検出信号の電圧値である。
FIG. 2 is a graph showing variation among individuals of the magnetic sensor test medium 1 according to the present embodiment. An arbitrary magnetic sensor test medium 1 and another magnetic sensor test medium 1 different from the arbitrary magnetic sensor test medium 1 are used, and the same magnetic sensor is formed in the same manner as the above-described magnetic sensor characteristic test. Using this, the voltage value obtained by converting the detection signal (detection voltage) of the magnetic sensor in the circuit unit was obtained 30 times. The 30 points shown in FIG. 2 indicate the obtained results. In FIG. 2, the horizontal axis represents the voltage value of the detection signal of the magnetic sensor when an arbitrary magnetic sensor test medium 1 is used, and the vertical axis represents another magnetism different from the arbitrary magnetic sensor test medium 1. This is the voltage value of the detection signal of the magnetic sensor when the sensor test medium 1 is used.
30個の点の相関係数R2は、0.99であり、略正相関である。すなわち、磁気センサ試験用媒体1は、個体間でのばらつきが非常に小さい。このように、同じ磁気情報を有する複数の磁気センサ試験用媒体1を容易に用意することができる。
The correlation coefficient R 2 of the 30 points is 0.99, is substantially positive correlation. That is, the magnetic sensor test medium 1 has a very small variation among individuals. Thus, a plurality of magnetic sensor test media 1 having the same magnetic information can be easily prepared.
また、磁気センサ試験用媒体1を用いた磁気センサの特性試験では、特許文献1に記載の磁気センサの特性試験と異なり、磁気センサが使用される状態とはほぼ同じ状態における磁気センサの検出信号を測定している。このため、磁気センサにおいて、実際の使用時の検出信号と特性試験時の検出信号とにずれが生じにくい。また、磁気センサ試験用媒体1を用いた磁気センサの特性試験では、特許文献1に記載の磁気センサの特性試験と比較して、磁気センサ試験用媒体と磁気センサとの間隔による検出信号の大きさへの影響は小さい。よって、磁気センサ試験用媒体1を用いた磁気センサの特性試験では、特許文献1に記載の磁気センサの特性試験のように、高い精度で所望の位置に磁気センサ試験用媒体を配置する必要がなく、容易に特性試験を行うことができる。
Further, in the magnetic sensor characteristic test using the magnetic sensor test medium 1, unlike the magnetic sensor characteristic test described in Patent Document 1, the detection signal of the magnetic sensor in a state almost the same as the state in which the magnetic sensor is used. Is measuring. For this reason, in the magnetic sensor, the detection signal at the time of actual use and the detection signal at the time of the characteristic test are not easily displaced. Further, in the magnetic sensor characteristic test using the magnetic sensor test medium 1, compared with the magnetic sensor characteristic test described in Patent Document 1, the magnitude of the detection signal due to the interval between the magnetic sensor test medium and the magnetic sensor is larger. The impact on the size is small. Therefore, in the magnetic sensor characteristic test using the magnetic sensor test medium 1, it is necessary to arrange the magnetic sensor test medium at a desired position with high accuracy as in the magnetic sensor characteristic test described in Patent Document 1. The characteristic test can be easily performed.
さらに、磁気センサ試験用媒体1を用いた磁気センサの特性試験では、特許文献1に記載の磁気センサの特性試験と異なり、磁気センサ試験用媒体の導体に交流電流が流されることで発生した磁界を磁気センサが検出するものではないため、センサ素子が2つの磁石の間に配置されている磁気センサの特性試験にも用いることができる。
Further, in the magnetic sensor characteristic test using the magnetic sensor test medium 1, unlike the magnetic sensor characteristic test described in Patent Document 1, a magnetic field generated when an alternating current is passed through the conductor of the magnetic sensor test medium. Is not detected by the magnetic sensor, and can be used for a characteristic test of a magnetic sensor in which a sensor element is disposed between two magnets.
次に、磁性部材11の厚さと、磁気センサ2の検出信号(検出電圧)の大きさとの関係について説明する。磁性部材11が厚いと、磁束の集磁効果が高くなって磁気センサ2のセンサ素子付近の磁束密度が高くなり、磁気センサ2の検出信号が大きくなる。一方、磁性部材11が薄いと、磁束の集磁効果が低くなって磁気センサ2のセンサ素子付近の磁束密度が低くなり、磁気センサ2の検出信号が小さくなる。このように、磁性部材11が厚くなると、磁気センサ2の検出信号は大きくなる。よって、磁性部材11の厚さを調整することにより、磁気センサ2の検出信号(検出電圧)の大きさを調整することができる。
Next, the relationship between the thickness of the magnetic member 11 and the magnitude of the detection signal (detection voltage) of the magnetic sensor 2 will be described. When the magnetic member 11 is thick, the magnetic flux collecting effect is increased, the magnetic flux density near the sensor element of the magnetic sensor 2 is increased, and the detection signal of the magnetic sensor 2 is increased. On the other hand, when the magnetic member 11 is thin, the magnetic flux collecting effect is lowered, the magnetic flux density near the sensor element of the magnetic sensor 2 is lowered, and the detection signal of the magnetic sensor 2 is reduced. Thus, when the magnetic member 11 becomes thick, the detection signal of the magnetic sensor 2 increases. Therefore, the magnitude of the detection signal (detection voltage) of the magnetic sensor 2 can be adjusted by adjusting the thickness of the magnetic member 11.
例えば、オーステナイト系ステンレスであるSUS304からなる金属板が圧延加工されることで磁性部材11が形成されている場合、厚さが10μmである磁性部材11を備える磁気センサ試験用媒体1を用いた磁気センサの特性試験では、磁気センサ2の検出信号は、実際の紙幣を用いた場合の磁気センサ2の検出信号よりも僅かに大きい程度である。一方、厚さが5μmである磁性部材11を備える磁気センサ試験用媒体1を用いた磁気センサの特性試験では、磁気センサ2の検出信号は、実際の紙幣を用いた場合の磁気センサ2の検出信号と略等しい。
For example, when the magnetic member 11 is formed by rolling a metal plate made of SUS304, which is austenitic stainless steel, the magnetic sensor test medium 1 including the magnetic member 11 having a thickness of 10 μm is used. In the sensor characteristic test, the detection signal of the magnetic sensor 2 is slightly larger than the detection signal of the magnetic sensor 2 when an actual banknote is used. On the other hand, in the magnetic sensor characteristic test using the magnetic sensor test medium 1 having the magnetic member 11 having a thickness of 5 μm, the detection signal of the magnetic sensor 2 is detected by the magnetic sensor 2 when an actual banknote is used. It is almost equal to the signal.
以下、実験例を用いて、本実施形態に係る磁気センサ試験用媒体1が紙幣識別用の磁気センサの特性試験に好適に用いることができることを説明する。
Hereinafter, it will be described using an experimental example that the magnetic sensor test medium 1 according to the present embodiment can be suitably used for a characteristic test of a magnetic sensor for banknote identification.
図3は、本実施形態に係る磁気センサ試験用媒体1による磁気センサの検出信号(検出電圧)と、実際の紙幣による磁気センサの検出信号(検出電圧)との比較結果を示すグラフである。このとき、磁性部材11の厚さが5μmである磁気センサ試験用媒体1と、未使用の実際の紙幣とを用い、上述した磁気センサの特性試験と同様に磁気センサ試験用装置を用いて、同一の磁気センサの検出信号(検出電圧)が回路部において変換された電圧値を得ることを30回行った。図3に示す30個の点はそれぞれ得られた結果を示す。図3において、横軸は、未使用の実際の紙幣を用いた場合の磁気センサの検出信号(検出電圧)の電圧値であり、縦軸は、磁性部材11の厚さが5μmである磁気センサ試験用媒体1を用いた場合の磁気センサの検出信号(検出電圧)の電圧値である。
FIG. 3 is a graph showing a comparison result between the detection signal (detection voltage) of the magnetic sensor using the magnetic sensor test medium 1 according to the present embodiment and the detection signal (detection voltage) of the magnetic sensor using an actual banknote. At this time, using the magnetic sensor test medium 1 having a thickness of the magnetic member 11 of 5 μm and an unused actual banknote, using the magnetic sensor test apparatus in the same manner as the magnetic sensor characteristic test described above, Obtaining a voltage value obtained by converting the detection signal (detection voltage) of the same magnetic sensor in the circuit unit was performed 30 times. The 30 points shown in FIG. 3 indicate the obtained results. In FIG. 3, the horizontal axis is the voltage value of the detection signal (detection voltage) of the magnetic sensor when an unused actual banknote is used, and the vertical axis is the magnetic sensor in which the thickness of the magnetic member 11 is 5 μm. This is a voltage value of a detection signal (detection voltage) of the magnetic sensor when the test medium 1 is used.
30個の点の相関係数R2は、0.99であり、略正相関である。すなわち、磁性部材11の厚さが5μmである磁気センサ試験用媒体1は、未使用の実際の紙幣とほぼ同じ磁気情報を有することが分かる。よって、本実施形態に係る磁気センサ試験用媒体1は、紙幣識別用の磁気センサの特性試験に好適に用いることができる。
The correlation coefficient R 2 of the 30 points is 0.99, is substantially positive correlation. That is, it can be seen that the magnetic sensor test medium 1 having the thickness of the magnetic member 11 of 5 μm has substantially the same magnetic information as an unused actual banknote. Therefore, the magnetic sensor test medium 1 according to the present embodiment can be suitably used for the characteristic test of the magnetic sensor for banknote identification.
次に、磁性部材11がオーステナイト系ステンレスからなる金属板が冷間(常温)圧延加工されることで形成されている場合における、冷間(常温)圧延加工での圧延率と、磁気センサ2の検出信号(検出電圧)の大きさとの関係について説明する。
Next, when the magnetic member 11 is formed by cold (room temperature) rolling of a metal plate made of austenitic stainless steel, the rolling rate in the cold (room temperature) rolling process and the magnetic sensor 2 The relationship with the magnitude of the detection signal (detection voltage) will be described.
上述のように、磁性部材11の厚さを調整することにより、磁気センサ2の検出信号(検出電圧)の大きさを調整することができる。一方で、磁性部材11の透磁率が大きいと磁気センサ2の検出信号が大きくなり、磁性部材11の透磁率が小さいと磁気センサ2の検出信号が小さくなることから、磁性部材11の透磁率を調整することによっても、磁気センサ2の検出信号の大きさを調整することができる。
As described above, the magnitude of the detection signal (detection voltage) of the magnetic sensor 2 can be adjusted by adjusting the thickness of the magnetic member 11. On the other hand, when the magnetic member 11 has a high magnetic permeability, the detection signal of the magnetic sensor 2 increases. When the magnetic member 11 has a low magnetic permeability, the detection signal of the magnetic sensor 2 decreases. The magnitude of the detection signal of the magnetic sensor 2 can also be adjusted by adjusting.
磁性部材11がオーステナイト相とマルテンサイト相とを含むステンレスからなり、オーステナイト系ステンレスからなる金属板が冷間(常温)圧延加工されることで形成されている場合、冷間(常温)圧延加工での圧延率を調整することによって、磁性部材11の透磁率を調整することができる。磁性部材11におけるマルテンサイト相の含有率が大きいほど、磁性部材11の透磁率は大きくなる。上述したように、オーステナイト系ステンレスからなる金属板は冷間(常温)圧延加工されることによって、非磁性体であるオーステナイト相の一部が磁性体であるマルテンサイト相になる。このため、冷間(常温)圧延加工での圧延率が大きいと、金属板におけるオーステナイト相からマルテンサイト相になる部分が大きくなり、磁性部材11におけるマルテンサイト相の含有率が大きくなる。一方、冷間(常温)圧延加工での圧延率が小さいと、金属板におけるオーステナイト相からマルテンサイト相になる部分が小さくなり、磁性部材11におけるマルテンサイト相の含有率が小さくなる。このように、冷間(常温)圧延加工での圧延率を調整することによって、磁性部材11の透磁率を調整することができ、その結果として、磁気センサ2の検出信号(検出電圧)の大きさを調整することができる。
When the magnetic member 11 is made of stainless steel including an austenitic phase and a martensite phase, and a metal plate made of austenitic stainless steel is formed by cold (room temperature) rolling, cold (room temperature) rolling is performed. The magnetic permeability of the magnetic member 11 can be adjusted by adjusting the rolling rate. The greater the content of the martensite phase in the magnetic member 11, the greater the magnetic permeability of the magnetic member 11. As described above, a metal plate made of austenitic stainless steel is cold-rolled (normal temperature), whereby a part of the austenite phase that is a non-magnetic material becomes a martensite phase that is a magnetic material. For this reason, when the rolling rate in the cold (room temperature) rolling process is large, the portion of the metal plate that changes from the austenite phase to the martensite phase increases, and the content of the martensite phase in the magnetic member 11 increases. On the other hand, when the rolling rate in the cold (room temperature) rolling process is small, the portion of the metal plate that changes from the austenite phase to the martensite phase decreases, and the content of the martensite phase in the magnetic member 11 decreases. Thus, the magnetic permeability of the magnetic member 11 can be adjusted by adjusting the rolling rate in the cold (room temperature) rolling process, and as a result, the magnitude of the detection signal (detection voltage) of the magnetic sensor 2 is increased. Can be adjusted.
図4は、オーステナイト系ステンレスからなる金属板の冷間(常温)圧延加工における圧延率と、金属板の透磁率との関係を示すグラフである。図4では、SUS304からなる金属板、SUS305からなる金属板、ST-M1からなる金属板のそれぞれにおける、冷間(常温)圧延加工における圧延率と、金属板の透磁率との関係を示す。図4に示すように、いずれの金属板においても、冷間(常温)圧延加工での圧延率が大きいほど、透磁率が大きくなっている。
FIG. 4 is a graph showing the relationship between the rolling rate in cold (room temperature) rolling of a metal plate made of austenitic stainless steel and the magnetic permeability of the metal plate. FIG. 4 shows the relationship between the rolling rate in cold (room temperature) rolling and the magnetic permeability of the metal plate in each of the metal plate made of SUS304, the metal plate made of SUS305, and the metal plate made of ST-M1. As shown in FIG. 4, in any metal plate, the magnetic permeability increases as the rolling ratio in the cold (room temperature) rolling process increases.
紙幣識別用の磁気センサの特性試験に用いられる磁気センサ試験用媒体において、磁性部材の透磁率が実際の紙幣に塗布されている磁気インクに含有されているハードフェライトの透磁率よりもかなり大きい場合には、特性試験における磁気センサの検出信号が非常に大きくなり、実際の使用時の検出信号の大きさとの差異が大きいため、磁気センサの良品と不良品との判定を正しく行うことが難しくなる。そのため、磁気センサ試験用媒体1が紙幣識別用の磁気センサの特性試験に用いられる場合には、磁性部材11の透磁率は、磁気インクに含有されているハードフェライトの透磁率と同じ大きさであることが好ましい。ここで、実際の紙幣に塗布されている磁気インクに含有されているハードフェライトの透磁率は、略1.10H/mである。よって、本実施形態に係る磁気センサ試験用媒体1が紙幣識別用の磁気センサの特性試験に用いられる場合には、磁性部材11の透磁率は、略1.10H/mであることが望ましい。
In the magnetic sensor test medium used for the magnetic sensor characteristic test for banknote identification, when the permeability of the magnetic member is considerably larger than the permeability of the hard ferrite contained in the magnetic ink applied to the actual banknote In the characteristic test, the detection signal of the magnetic sensor becomes very large, and the difference between the detection signal in actual use is large and it is difficult to correctly determine whether the magnetic sensor is good or defective. . Therefore, when the magnetic sensor test medium 1 is used for the characteristic test of the magnetic sensor for banknote identification, the magnetic permeability of the magnetic member 11 is the same as that of the hard ferrite contained in the magnetic ink. Preferably there is. Here, the magnetic permeability of the hard ferrite contained in the magnetic ink applied to the actual banknote is approximately 1.10 H / m. Therefore, when the magnetic sensor test medium 1 according to the present embodiment is used for a characteristic test of a magnetic sensor for identifying banknotes, the magnetic permeability of the magnetic member 11 is preferably approximately 1.10 H / m.
SUS304からなる金属板では、圧延率約30%で透磁率が略1.10H/mになる。このため、磁性部材11がオーステナイト系ステンレスであるSUS304からなる金属板が圧延率約30%で冷間(常温)圧延加工されることで形成されている場合には、磁性部材11は実際の紙幣に塗布されている磁気インクに含有されているハードフェライトの透磁率とほぼ同じ透磁率を有する。よって、磁気センサ試験用媒体1は紙幣識別用の磁気センサの特性試験に好適に用いることができる。
A metal plate made of SUS304 has a permeability of approximately 1.10 H / m at a rolling rate of about 30%. For this reason, when the magnetic member 11 is formed by cold (room temperature) rolling with a rolling rate of about 30%, a metal plate made of SUS304, which is austenitic stainless steel, the magnetic member 11 is an actual banknote. It has a magnetic permeability almost the same as that of the hard ferrite contained in the magnetic ink applied to the magnetic ink. Therefore, the magnetic sensor test medium 1 can be suitably used for a characteristic test of a magnetic sensor for banknote identification.
図4では、SUS304からなる金属板、SUS305からなる金属板、ST-M1からなる金属板の場合を示したが、SUS301、SUS316、SUS316Lなどの他のオーステナイト系ステンレスからなる金属板においても同様に、冷間(常温)圧延加工での圧延率が大きいほど、透磁率が大きくなる。ただし、SUS304からなる金属板は、圧延率が小さくても大きな透磁率が得られるため、磁性部材11の材料として好ましい。
FIG. 4 shows the case of a metal plate made of SUS304, a metal plate made of SUS305, and a metal plate made of ST-M1. The permeability increases as the rolling ratio in cold (room temperature) rolling increases. However, a metal plate made of SUS304 is preferable as the material of the magnetic member 11 because a large magnetic permeability can be obtained even if the rolling rate is small.
磁気センサでは、検知面である紙幣や磁気センサ試験用媒体と接触する面には、加工ばらつき等により微小な凹凸が存在する。磁性部材11の厚さが10μm以下である場合には、磁性部材11が磁気センサの検知面の凹凸に応じて変形するため、磁性部材11と磁気センサの検知面との間隔はほぼ一定になり、磁気センサの検出信号(検出電圧)の大きさのばらつきの発生を防ぐことができる。
In the magnetic sensor, there are minute irregularities due to processing variations and the like on the surface which is in contact with the bill and the magnetic sensor test medium as the detection surface. When the thickness of the magnetic member 11 is 10 μm or less, the magnetic member 11 is deformed according to the unevenness of the detection surface of the magnetic sensor, so that the distance between the magnetic member 11 and the detection surface of the magnetic sensor is substantially constant. The occurrence of variations in the magnitude of the detection signal (detection voltage) of the magnetic sensor can be prevented.
なお、本実施形態では、磁性部材11が直方体形状であったが、磁性部材11は他の形状であってもよく、特性試験を行う磁気センサの用途などによって所望の形状とされる。
In this embodiment, the magnetic member 11 has a rectangular parallelepiped shape. However, the magnetic member 11 may have another shape, and may have a desired shape depending on the use of a magnetic sensor for performing a characteristic test.
次に、図5を参酌して本実施形態に係る磁気センサ試験用媒体1の製造方法を説明する。
Next, a method for manufacturing the magnetic sensor test medium 1 according to the present embodiment will be described with reference to FIG.
まず、図5(A)に示すように、オーステナイト系ステンレスであるSUS304からなり、厚さが約7μmである金属板11aを用意する。
First, as shown in FIG. 5A, a metal plate 11a made of SUS304, which is austenitic stainless steel, and having a thickness of about 7 μm is prepared.
次に、図5(B)に示すように、ローラーを用いて、金属板11aを圧延率約30%で冷間(常温)圧延加工する。この工程により、金属板11aにおいて、オーステナイト相の一部がマルテンサイト相になる。この結果、オーステナイト相とマルテンサイト相とを含むステンレスからなる金属板11bが形成される。なお、ローラーによる圧延加工は、金属板が所望の圧延率になるまで、複数回行ってもよい。
Next, as shown in FIG. 5 (B), the metal plate 11a is cold-rolled at a rolling rate of about 30% using a roller. By this step, a part of the austenite phase becomes the martensite phase in the metal plate 11a. As a result, a metal plate 11b made of stainless steel including an austenite phase and a martensite phase is formed. In addition, you may perform the rolling process by a roller in multiple times until a metal plate becomes a desired rolling rate.
次に、図5(C)に示すように、金属板11bを切断することにより、磁性部材11を形成する。そして、図5(D)に示すように、磁性部材11を基板10の上面に配置した後に、基板10と磁性部材11との一部を覆うように保護部材12を配置し、接着テープ13a,13bによって保護部材12と基板10とを接着する。
Next, as shown in FIG. 5C, the magnetic member 11 is formed by cutting the metal plate 11b. Then, as shown in FIG. 5D, after the magnetic member 11 is disposed on the upper surface of the substrate 10, a protective member 12 is disposed so as to cover a part of the substrate 10 and the magnetic member 11, and the adhesive tape 13a, The protective member 12 and the substrate 10 are bonded by 13b.
なお、磁性部材11がオーステナイト相とマルテンサイト相とを含むステンレスからなる場合、磁性部材11は上記のようにオーステナイト系ステンレスからなる金属板が圧延加工されることで形成されていてもよいし、オーステナイト系ステンレスからなる金属板が焼入れされることで形成されていてもよい。
When the magnetic member 11 is made of stainless steel including an austenite phase and a martensite phase, the magnetic member 11 may be formed by rolling a metal plate made of austenitic stainless steel as described above. It may be formed by quenching a metal plate made of austenitic stainless steel.
また、圧延加工された金属板を切断することにより、磁性部材11を形成するのではなく、圧延加工のみによって磁性部材11を形成してもよい。
Alternatively, the magnetic member 11 may be formed only by rolling instead of forming the magnetic member 11 by cutting the rolled metal plate.
1…磁気センサ試験用媒体
2…磁気センサ
10…基板
11…磁性部材
12…保護部材
13a、13b…接着テープ DESCRIPTION OFSYMBOLS 1 ... Magnetic sensor test medium 2 ... Magnetic sensor 10 ... Board | substrate 11 ... Magnetic member 12 ... Protection member 13a, 13b ... Adhesive tape
2…磁気センサ
10…基板
11…磁性部材
12…保護部材
13a、13b…接着テープ DESCRIPTION OF
Claims (5)
- 磁性体である金属からなる磁性部材を備えることを特徴とする、磁気センサ試験用媒体。 A magnetic sensor test medium comprising a magnetic member made of a metal that is a magnetic material.
- 前記磁性体である金属は、オーステナイト相とマルテンサイト相とを含むステンレスである、
請求項1に記載の磁気センサ試験用媒体。 The metal as the magnetic material is stainless steel containing an austenite phase and a martensite phase.
The magnetic sensor test medium according to claim 1. - 前記ステンレスは、オーステナイト系ステンレスからなる部材が圧延加工されてなる、
請求項2に記載の磁気センサ試験用媒体。 The stainless steel is formed by rolling a member made of austenitic stainless steel,
The magnetic sensor test medium according to claim 2. - 請求項1乃至請求項3のいずれかに記載の磁気センサ試験用媒体を用いる、磁気センサ試験方法。 A magnetic sensor test method using the magnetic sensor test medium according to any one of claims 1 to 3.
- オーステナイト系ステンレスからなる部材を加工することにより、オーステナイト相とマルテンサイト相とを含むステンレスからなる磁性部材を形成することを特徴とする、
磁気センサ試験用媒体の製造方法。 By processing a member made of austenitic stainless steel, a magnetic member made of stainless steel containing an austenite phase and a martensite phase is formed,
Manufacturing method of magnetic sensor test medium.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2012-287769 | 2012-12-28 | ||
| JP2012287769 | 2012-12-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014103460A1 true WO2014103460A1 (en) | 2014-07-03 |
Family
ID=51020561
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2013/076773 WO2014103460A1 (en) | 2012-12-28 | 2013-10-02 | Medium for magnetic sensor test, method for testing magnetic sensor, and method for manufacturing medium for magn etic sensor test |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2014103460A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03239594A (en) * | 1990-02-16 | 1991-10-25 | Glory Ltd | Cardlike recording medium |
| JPH10143840A (en) * | 1996-11-13 | 1998-05-29 | Tokyo Jiki Insatsu Kk | Magnetic recording medium and magnetic recording and reproducing method |
| JP2000311304A (en) * | 1999-04-26 | 2000-11-07 | Oki Electric Ind Co Ltd | Magnetic sensor adjusting medium and magnetic sensor adjusting method using the same |
| JP2010225247A (en) * | 2009-03-25 | 2010-10-07 | Hitachi High-Technologies Corp | Magnetic head positioning device, magnetic head inspection device, and magnetic disk inspection device |
-
2013
- 2013-10-02 WO PCT/JP2013/076773 patent/WO2014103460A1/en active Application Filing
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03239594A (en) * | 1990-02-16 | 1991-10-25 | Glory Ltd | Cardlike recording medium |
| JPH10143840A (en) * | 1996-11-13 | 1998-05-29 | Tokyo Jiki Insatsu Kk | Magnetic recording medium and magnetic recording and reproducing method |
| JP2000311304A (en) * | 1999-04-26 | 2000-11-07 | Oki Electric Ind Co Ltd | Magnetic sensor adjusting medium and magnetic sensor adjusting method using the same |
| JP2010225247A (en) * | 2009-03-25 | 2010-10-07 | Hitachi High-Technologies Corp | Magnetic head positioning device, magnetic head inspection device, and magnetic disk inspection device |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5262436B2 (en) | Magnetic measurement method and apparatus | |
| JP5127440B2 (en) | Magnetic pattern detector | |
| JP4105147B2 (en) | Current sensor | |
| JP5901768B2 (en) | Measuring device for measuring the magnetic properties of its surroundings | |
| JP4105142B2 (en) | Current sensor | |
| US20090152356A1 (en) | Non-contact magnetic pattern recognition sensor | |
| EP2353162B1 (en) | Gmr biosensor with aligned magnetic field | |
| JPH07168903A (en) | Magnetic head device and measuring method of magnetic hysteresis characteristic | |
| JP6842741B2 (en) | Magnetic sensor | |
| JP2011163831A (en) | Magnetic sensor device | |
| JP4512079B2 (en) | Apparatus and method for measuring magnetic properties and mechanical strength of thin steel sheet | |
| JP5332474B2 (en) | Magnetic characteristic measuring apparatus and magnetic characteristic measuring method | |
| Stupakov | Local non-contact evaluation of the ac magnetic hysteresis parameters of electrical steels by the Barkhausen noise technique | |
| US6610425B2 (en) | Soft magnetic alloy fiber, manufacturing method for soft magnetic alloy fiber, and information recording article using soft magnetic alloy fiber | |
| WO2006120825A1 (en) | Magnetic sensor and device for identifying sheet | |
| JP2018124266A (en) | Processing state evaluation method, processing state evaluation device, and manufacturing method of grain-oriented electrical steel sheet | |
| JPH0474667B2 (en) | ||
| WO2014103460A1 (en) | Medium for magnetic sensor test, method for testing magnetic sensor, and method for manufacturing medium for magn etic sensor test | |
| JP5195247B2 (en) | Magnetic characteristic measuring apparatus and magnetic characteristic measuring method | |
| JP4541136B2 (en) | Magnetic body detection sensor and magnetic body detection line sensor | |
| JP3283930B2 (en) | Magnetic material detection method | |
| JP2014010118A (en) | Magnetic sensor device | |
| Smith et al. | GMR Magnetic Sensor Arrays for NDE Eddy‐Current Testing | |
| Alves et al. | New 1D–2D magnetic sensors for applied electromagnetic engineering | |
| JP2005031014A (en) | Magnetic sensor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13866620 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 13866620 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |