WO2014103334A1 - Ultrasonic transducer cell, ultrasonic probe, and control method for ultrasonic transducer cell - Google Patents

Ultrasonic transducer cell, ultrasonic probe, and control method for ultrasonic transducer cell Download PDF

Info

Publication number
WO2014103334A1
WO2014103334A1 PCT/JP2013/007685 JP2013007685W WO2014103334A1 WO 2014103334 A1 WO2014103334 A1 WO 2014103334A1 JP 2013007685 W JP2013007685 W JP 2013007685W WO 2014103334 A1 WO2014103334 A1 WO 2014103334A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
ultrasonic
ultrasonic transducer
transducer cell
electrode
Prior art date
Application number
PCT/JP2013/007685
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 永田
高志 小椋
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014554160A priority Critical patent/JP6390428B2/en
Publication of WO2014103334A1 publication Critical patent/WO2014103334A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type

Definitions

  • the present invention relates to an ultrasonic probe used for ultrasonic inspection.
  • the ultrasonic probe is attached to the main body of the ultrasonic diagnostic equipment that has the function to send out ultrasonic waves to the inside of the subject, receive ultrasonic signals reflected inside the subject, and acquire information inside the subject.
  • the ultrasonic probe is attached to the main body of the ultrasonic diagnostic equipment that has the function to send out ultrasonic waves to the inside of the subject, receive ultrasonic signals reflected inside the subject, and acquire information inside the subject.
  • Device is attached to the main body of the ultrasonic diagnostic equipment that has the function to send out ultrasonic waves to the inside of the subject, receive ultrasonic signals reflected inside the subject, and acquire information inside the subject.
  • Ultrasonic transducers used for ultrasonic probes are mainly composed of piezoelectric ceramics typified by PZT (lead zirconate titanate) arranged in a row, but in recent years, 3D / 4D ultrasonic imaging has become popular.
  • Two-dimensional transducers have been studied for the purpose of realizing an inexpensive and small probe that can be used, and cMUT (Capacitive Micromachined Ultrasonic Transducer) elements have been widely studied as a method suitable for array structures (for example, Patent Document 1).
  • This cMUT element is composed of a capacitance type MEMS that drives a vibrating membrane (hereinafter referred to as a membrane) with electrostatic force, and has a structure as shown in FIG. 28, for example.
  • FIG. 28A is a perspective view of the cMUT element
  • FIG. 28B is an exploded perspective view of the cMUT element
  • FIG. 28C is a side sectional view of the cMUT element.
  • the cMUT element 50 includes a substrate 51, a lower layer electrode 52 disposed inside the substrate 51, and an insulating film disposed to face the lower layer electrode 52 with a cavity (cavity) 53 interposed therebetween. 55, a membrane 56, and a membrane support 54 are provided.
  • the cavity 53 includes a space surrounded by the membrane 56, the membrane support portion 54, and the lower layer electrode 52, and is configured to be substantially vacuum.
  • the membrane 56 also serves as an electrode, and the lower layer electrode 52 and the membrane 56 are connected to wirings 60a and 60b, respectively.
  • the membrane 56 is vibrated by the received ultrasonic wave (sound pressure), and the received ultrasonic wave is changed based on the capacitance change between the membrane 56 and the lower layer electrode 52 that occurs at this time.
  • the cMUT element 50 can transmit ultrasonic waves by vibrating the membrane 56 by applying DC and AC voltages between the membrane 56 and the lower layer electrode 52.
  • Such a cMUT element has a merit that wiring is easy and suitable for a two-dimensional array of multiple elements, but has a problem that a transmission output is low.
  • 3D / 4D ultrasonic imaging it is necessary to further increase the transmission output in the cMUT element in order to acquire a high-quality ultrasonic image in a wide range from a shallow part to a deep part from the subject surface.
  • the present invention aims to improve the output sensitivity of a cMUT and improve the transmission output while maintaining a low supply voltage equivalent to that of an ultrasonic probe using a conventional piezoelectric element.
  • an ultrasonic transducer cell includes a substrate, a first electrode disposed on or in the substrate, and a direction perpendicular to the upper surface of the first electrode.
  • a first membrane disposed opposite to the first electrode in a state of being separated from the first membrane; a second membrane disposed opposite to the first membrane in a state of being spaced apart from the upper surface of the first membrane;
  • a first membrane supporting portion disposed in a gap between the substrate and the first membrane and surrounding a space in the gap; and a space in the gap between the first membrane and the second membrane.
  • a second membrane supporting portion surrounding the first membrane, a first wiring portion electrically connected to the first membrane, and a second wiring portion electrically connected to the second membrane (a)
  • the first membrane is the first The thickness in the direction perpendicular to the upper surface of the first membrane is larger than the membrane, or (b) the second gap layer surrounded by the first membrane support part is surrounded by the second membrane support part.
  • the space area in the direction parallel to the upper surface of the first membrane is smaller than the space layer, or (c) the second membrane is perpendicular to the upper surface of the first membrane than the first membrane.
  • the second gap layer surrounded by the second membrane support part has a surface above the first membrane than the first gap layer surrounded by the first membrane support part. It has at least one feature that the space area in the parallel direction is small.
  • the first membrane includes a lower membrane part facing the first gap layer surrounded by the first membrane support part, and the second membrane support part positioned above the lower membrane part.
  • An upper membrane portion facing the second void layer and a connection portion connecting the lower layer membrane portion and the upper membrane portion are laminated, and the upper membrane portion and the lower membrane portion Are electrically connected by the connecting portion, and a cross-sectional area of the connecting portion in a direction parallel to the top surface of the first membrane is parallel to a top surface of the first membrane of the lower membrane portion and the upper membrane portion. It is characterized by being smaller than the cross-sectional area.
  • the above-described ultrasonic probe according to one aspect of the present invention adopts the above configuration in a structure having an ultrasonic transducer cell in which cMUTs are stacked, thereby reducing the deflection of the upper surface of the first membrane and causing a larger displacement than the second membrane. Can be generated. Therefore, a larger ultrasonic transmission output can be obtained as compared with the case of a single layer, and the transmission output characteristics of the ultrasonic probe can be improved.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of an ultrasonic probe 102 according to Embodiment 1.
  • FIG. 3 is a top view showing the arrangement of the ultrasonic transducer array 112 of the ultrasonic probe 102 according to Embodiment 1.
  • FIG. (A) A top view showing the basic structure of the ultrasonic transducer 11 according to the first embodiment, and (b) is a cross-sectional view taken along the line AA in FIG. 2 is a functional block diagram of an ultrasonic diagnostic apparatus 100 using the ultrasonic probe 102 according to Embodiment 1.
  • FIG. 2A is a perspective view of an ultrasonic transducer cell 12 according to Embodiment 1
  • FIG. 2B is an exploded perspective view of the ultrasonic transducer cell 12.
  • FIG. 3 is an explanatory diagram showing the operation of the ultrasonic transducer cell 12 according to the first embodiment, where (a) is a cross-sectional view (b) in a state in which a bias voltage is not applied to the ultrasonic transducer cell 12; It is sectional drawing of the state which applied.
  • 5 is a schematic view showing a method for manufacturing the ultrasonic transducer cell 12 according to Embodiment 1.
  • FIG. 5 is a schematic view showing a method for manufacturing the ultrasonic transducer cell 12 according to Embodiment 1.
  • FIG. FIG. 4 is a diagram illustrating voltages applied to wiring portions 30a, 30b, and 30c and timings in the ultrasonic transducer cell 12.
  • FIG. 6 is a diagram comparing the ultrasonic transmission characteristics of the ultrasonic transducer 11 according to the first embodiment and the ultrasonic transmission characteristics of conventional and comparative capacitive ultrasonic transducers. It is sectional drawing of the ultrasonic transducer
  • FIG. 6 is a diagram comparing the ultrasonic transmission characteristics of the ultrasonic transducer 11 according to the first modification of the first embodiment and the ultrasonic transmission characteristics of a conventional capacitive ultrasonic transducer. It is the chart which showed the conditions at the time of investigating the ultrasonic transmission characteristic shown in FIG. 6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a second modification of the first embodiment.
  • FIG. 6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a third modification of the first embodiment.
  • FIG. 4A is a top view showing a basic structure of an ultrasonic transducer used in an ultrasonic probe 102 according to Embodiment 2, and FIG.
  • FIG. 4B is a cross-sectional view taken along the line AA in FIG. (A) A sectional view in a state where a bias voltage is not applied to the ultrasonic transducer cell 12 according to the second embodiment, and (b) is a sectional view in a state where a bias voltage is applied.
  • 6 is a schematic view showing a method for manufacturing the ultrasonic transducer cell 12 according to Embodiment 2.
  • FIG. 6 is a schematic view showing a method for manufacturing the ultrasonic transducer cell 12 according to Embodiment 2.
  • FIG. 6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a first modification of the second embodiment.
  • FIG. FIG. 10 is a diagram showing ultrasonic transmission characteristics of an ultrasonic transducer 11 according to Modification 1 of Embodiment 2.
  • 6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a second modification of the second embodiment.
  • FIG. FIG. 10 is a diagram comparing the ultrasonic transmission characteristics of the ultrasonic transducer 11 according to the second embodiment and the ultrasonic transmission characteristics of the ultrasonic transducer according to the second modification of the first embodiment.
  • 6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a third modification of the second embodiment.
  • A A perspective view of a conventional capacitive ultrasonic transducer cell, (b) a top view of a conventional capacitive ultrasonic transducer cell, and (c) a conventional capacitive ultrasonic transducer cell. It is sectional drawing. It is the figure which showed the shape of the conventional convex probe.
  • the inventors conducted various studies in order to further improve the ultrasonic transmission / reception sensitivity of the ultrasonic transducer cell using the cMUT element.
  • the conventional cMUT element has the advantage that it is easy to wire and is suitable for a two-dimensional array of multiple elements, while it has a problem that the transmission output is low. Proposals have been made to date.
  • a new operation mode called a collapse mode has been proposed.
  • the collapse mode when a DC voltage is applied to the lower electrode, a specific voltage higher than that in the normal mode is applied to attract the membrane with the DC electrostatic force of the lower electrode, and the membrane is in contact with the lower electrode. This is the operating mode to be activated.
  • this collapse mode it is said that the sensitivity and drive capability are higher than in the normal mode.
  • Patent Document 1 an application structure as shown in Patent Document 1 has been proposed.
  • Patent Document 1 is devised to reduce the necessary DC voltage by fusing the membrane and the substrate in contact with each other, but it can cope with the reliability problem of the collapse mode. Not. That is, in the collapse mode, the membrane and the substrate repeatedly collide around the region where the membrane and the substrate are always in contact with each other, and there is still a problem that the thin insulating film is destroyed.
  • both surfaces sandwiching the cavity function as a membrane, and are configured to bend in the opposite direction when the bias voltage is applied (bend in the direction in which the cavity is contracted).
  • the transmission output characteristics are not improved in a configuration in which both surfaces sandwiching the cavity are bent in opposite directions as a membrane when a bias voltage is applied.
  • the following embodiment solves the problems of the conventional cMUT based on the above findings based on the inventors' investigation, and maintains the same supply voltage as that of an ultrasonic probe using a piezoelectric element that has been conventionally used. However, it is intended to increase transmission / reception sensitivity by structural improvement of cMUT.
  • the ultrasonic transducer cell includes a substrate, a first electrode disposed on or in the substrate, and the first electrode in a state of being vertically separated from the upper surface of the first electrode.
  • a first membrane disposed opposite to the first membrane; a second membrane disposed opposite to the first membrane in a state of being vertically separated from the upper surface of the first membrane; and the substrate and the first membrane A first membrane support portion disposed in the gap and surrounding the space in the gap; and a second membrane support portion disposed in the gap between the first membrane and the second membrane and surrounding the space in the gap.
  • the first membrane support portion when having the feature (b), has a larger cross-sectional area in a direction parallel to the upper surface of the first membrane than the second membrane support portion. May be.
  • the second membrane support portion when having the feature (d), has a larger cross-sectional area in a direction parallel to the upper surface of the first membrane than the first membrane support portion. Also good.
  • the first membrane support portion may have a configuration in which maximum widths in a direction parallel to the second membrane support portion and the upper surface of the first membrane are substantially equal.
  • the substrate, the first electrode disposed on or in the substrate, and the first electrode are arranged opposite to the first electrode in a state of being vertically separated from the upper surface of the first electrode.
  • the upper membrane part and the lower membrane part are electrically connected by the connection part, and the cross-sectional area of the connection part in a direction parallel to the upper surface of the first membrane is
  • the lower layer membrane part and the upper layer membrane part may have a configuration smaller than a cross-sectional area in a direction parallel to the upper surface of the first membrane.
  • the upper membrane portion may have a greater thickness in the direction perpendicular to the upper surface of the first membrane than the second membrane.
  • the lower layer membrane portion may have a greater thickness in a direction perpendicular to the upper surface of the first membrane than the second membrane.
  • the lower membrane portion may have a smaller width in a direction parallel to the upper surface of the first membrane than the second membrane.
  • the lower layer membrane portion, the upper layer membrane portion, and the connection portion may have a configuration in which center positions in a direction parallel to the upper surface of the first membrane coincide with each other.
  • the submembrane electrically connected to the second wiring portion, and the submembrane supporting portion that supports the submembrane and electrically connects the submembrane and the wiring inside the substrate.
  • the structure which has these may be sufficient.
  • first membrane and the second membrane may be conductive.
  • a configuration may be provided that further includes a first insulating membrane made of an insulating material laminated above the first membrane.
  • the configuration may further include a second insulating membrane made of an insulating material stacked above the second membrane.
  • the ultrasonic transducer cell includes a plurality of the ultrasonic transducer cells, and at least one of the second membrane or the second wiring portion of the ultrasonic transducer cells adjacent to each other is connected to the plurality of the ultrasonic transducer cells. It may be an ultrasonic transducer in which the second wiring part of the ultrasonic transducer cell is electrically connected.
  • the ultrasonic transducer includes a plurality of ultrasonic transducers, and the plurality of ultrasonic transducers are arranged two-dimensionally in a plane parallel to the upper surface of the second membrane to constitute a transducer array.
  • An ultrasonic probe may be used.
  • a method for controlling the ultrasonic transducer cell wherein a bias voltage is applied to the first electrode and the second wiring part, and a pulse voltage is applied to the first wiring part.
  • a method for controlling an ultrasonic transducer cell that transmits ultrasonic waves may be used.
  • a method for controlling the ultrasonic transducer cell wherein a bias voltage is applied to the first wiring part, and a pulse voltage is applied to the first electrode and the second wiring part.
  • a method for controlling an ultrasonic transducer cell that transmits ultrasonic waves may be used.
  • FIG. 1 is a schematic diagram showing the overall configuration of the ultrasonic probe 102 according to the first embodiment.
  • an ultrasonic probe 102 includes an ultrasonic transducer array 112 (hereinafter referred to as “vibrator array 112”) that transmits and receives ultrasonic waves inside a probe case 111, and an transducer array 112. And a printed circuit board 114 on which a plurality of signal lines for inputting / outputting electric signals independently of the ultrasonic transducer (element) are printed.
  • the ultrasonic probe 102 is connected to the ultrasonic diagnostic apparatus main body 109 via the probe cable 115.
  • FIG. 2 is a top view showing the arrangement of the transducer array 112 of the ultrasonic probe 102 according to the first embodiment.
  • FIG. 3A is a top view showing the basic structure of the ultrasonic transducer 11 according to the first embodiment
  • FIG. 3B is a cross-sectional view taken along the line AA in FIG.
  • the transducer array 112 includes an ultrasonic transducer 11 (hereinafter referred to as “vibrator 11”) composed of a plurality of ultrasonic transducer cells 12 (hereinafter referred to as “vibrator cells 12”). Are two-dimensionally arranged.
  • the transducer 11 is a capacitive ultrasonic transducer (cMUT) manufactured using MEMS (Micro Electro Mechanical System) technology, and is configured to transmit and receive ultrasonic waves three-dimensionally within a subject. ing.
  • Each transducer cell 12 mutually converts electrical energy and mechanical energy due to vibration.
  • the vibrator 11 includes four vibrator cells 12.
  • the diameter of each transducer cell 12 is, for example, 40 to 80 ⁇ m.
  • the number and size of the transducer cells 12 constituting the transducer 11 can be arbitrarily set and are not limited to the above.
  • the transducer cells 12 included in the same transducer 11 are electrically connected and configured to transmit ultrasonic waves in the same phase by applying a pulsed voltage.
  • a driving voltage with a predetermined time difference for each transducer 11, it is possible to focus and deflect the generated ultrasonic waves.
  • the ultrasonic probe 102 is configured to perform sector scanning by transmitting ultrasonic waves in a three-dimensional direction.
  • FIG. 4 is a functional block diagram of the ultrasonic diagnostic apparatus 100 using the ultrasonic probe 102 according to the first embodiment.
  • the ultrasonic diagnostic apparatus 100 transmits an ultrasonic wave to the subject 101, generates an ultrasonic probe 102 that receives an ultrasonic signal reflected inside the subject 101, and a drive signal for transmitting the ultrasonic wave. And transmitting and receiving the signal detected by the ultrasonic element of the ultrasonic probe 102 and amplifying and digitally converting the signal detected by the ultrasonic element of the ultrasonic probe 102 and the signal output from the transmitter and receiver 103.
  • a signal processing unit 104 that performs digital beam forming, an image processing unit 105 that performs rendering processing of a three-dimensional image based on the three-dimensional data generated by the signal processing unit 104, and processed image data
  • the image display unit 106 that displays an image based on the control, and the control that controls the transmission / reception unit 103 to generate a drive signal at a predetermined timing And a 107.
  • the transmission / reception unit 103, the signal processing unit 104, the image processing unit 105, the image display unit 106, and the control unit 107 are stored in the ultrasonic diagnostic apparatus main body 109, and a plurality of signals are exchanged with the ultrasonic probe 102. They are connected by a probe cable that covers the cables of the wires together. Note that some functions of the transmission / reception unit 103 such as detection signal amplification and digital conversion may be realized in the ultrasonic probe 102.
  • FIG. 5A is a perspective view of the transducer cell 12 according to Embodiment 1
  • FIG. 5B is an exploded perspective view of the transducer cell 12.
  • 6A and 6B are explanatory diagrams showing the operation of the transducer cell 12 according to the first embodiment.
  • FIG. 6A is a cross-sectional view of a state in which a bias voltage is not applied to the transducer cell 12
  • FIG. 3 is a cross-sectional view of a state in which a bias voltage is applied to a transducer cell 12.
  • FIG. 6A is a cross-sectional view of a state in which a bias voltage is not applied to the transducer cell 12
  • FIG. 3 is a cross-sectional view of a state in which a bias voltage is applied to a transducer cell 12.
  • the vibrator cell 12 includes a substrate 21 made of an electrically insulating material such as a silicon wafer, glass, quartz, and the like, and the inside of the substrate 21.
  • a conductive lower layer electrode 22, a first membrane 25 disposed to face the lower electrode 22 across the first cavity 23 (first gap layer), and a second cavity 27 (second A second membrane 29, a first membrane support portion 31a, and a second membrane support portion 31b are provided so as to be opposed to the first membrane 25 with a gap layer therebetween.
  • Insulating films 24 and 26 are provided below and above the first membrane 25, respectively, and an insulating film 28 is provided below the second membrane 29.
  • the thickness of the first membrane 25 in the direction perpendicular to the substrate 12 is configured to be larger than the thickness of the second membrane 29.
  • the thickness of the first membrane 25 may be 2 to 4 ⁇ m
  • the thickness of the second membrane 29 may be 1 to 2 ⁇ m.
  • the lower layer electrode 22 can be made of, for example, a conductive metal such as aluminum, silver, copper, or chromium.
  • the film thickness can be about 4 ⁇ m.
  • the first membrane and the second membrane are made of a conductive material.
  • a metal such as aluminum, silver, copper, or chromium, a conductive resin, or the like can be used.
  • the first membrane 25 and the second membrane 29 also serve as electrodes, and the lower layer electrode 22, the first membrane 25, and the second membrane 29 are connected to the wiring portions 30a, 30b, and 30c, respectively.
  • an insulating thin film material can be used for the first membrane support part 31a, the second membrane support part 31b, and the insulating films 24, 26, and 28, an insulating thin film material can be used.
  • SiC, SiO 2 , SiN, or a mixture thereof is used. May be.
  • the thickness of the first membrane support portion 31a and the second membrane support portion 31b in the plane direction parallel to the upper surface of the substrate 21 in FIG. 6A can be configured to be 2 to 4 ⁇ m, for example.
  • the thickness of the one membrane support portion 31a in the planar direction in FIG. 6A is larger than the thickness of the second membrane support portion 31b.
  • the first membrane support 31a can be 3 to 5 ⁇ m
  • the second membrane support 31b can be 2 to 3 ⁇ m.
  • the first cavity 23 is a space surrounded by the first membrane 25, the membrane support portion 31 a, and the substrate 21, and the second cavity 27 is surrounded by the first membrane 25, the membrane support portion 31 b, and the second membrane 29. Space. Both the first cavity 23 and the second cavity 27 are configured to be substantially vacuum.
  • the first cavity 23 is smaller in width in the direction parallel to the upper surface of the substrate 21 in FIG. 6A than the second cavity 27, that is, the cross-sectional area perpendicular to the stacking direction of the membrane is It is configured to be smaller than the second cavity 27.
  • the width of the first cavity 23 and the second cavity 27 in the direction parallel to the upper surface of the substrate 21 in FIG. 6A can be set to 40 to 80 ⁇ m, for example.
  • the height of the first cavity 23 and the second cavity 27 can be set to 200 to 300 nm, for example.
  • the insulating films 24, 26, and 28 are disposed between the first cavity 23 and the second cavity 27 and the first membrane 25 and the second membrane 29, respectively.
  • the thickness of the insulating films 24, 26, and 28 can be set to 200 to 400 nm, for example.
  • the cross-sectional area of the cavity or the membrane support part perpendicular to the stacking direction of the membrane is simply expressed as the cross-sectional area of the cavity or the cross-sectional area of the membrane support part.
  • the first membrane 25 also serving as an electrode
  • an electrode may be formed on or in the first membrane 25.
  • the second membrane 29 also serving as an electrode
  • an electrode may be formed on or in the second membrane 29.
  • the lower layer electrode 22 may be disposed on the substrate 21 instead of being disposed inside the substrate 21.
  • the first membrane 25 has a first insulating membrane made of an insulating material and upper and lower electrode layers arranged so as to sandwich the first insulating membrane, and the upper and lower electrode layers are electrically connected. It is good also as composition which has.
  • the second membrane 29 may include a second insulating membrane made of an insulating material and an electrode layer.
  • transducer cell 12 in the present embodiment has a hexagonal shape as an example, it is not limited to this and may have other shapes.
  • FIG. 7 and 8 are schematic views showing a method for manufacturing the transducer cell 12 according to the first embodiment.
  • an insulating film to be the wiring layer 120 and the substrate 21 is formed on the upper surface of the semiconductor substrate, and a lower layer electrode 22 configured to be connected to the wiring layer 120 is patterned on the upper surface by etching. Further, a thin insulating film 21A is formed thereon (FIG. 7A).
  • the first sacrificial layer 121 for forming the first cavity 23 and the insulating film 24 are formed on the upper surface of the insulating film 21A. Then, a mask corresponding to a portion where the first cavity 23 is formed is two-dimensionally arranged, and a portion not subjected to the mask is removed by an etching process or the like to form a recess 121A reaching the lower layer electrode 22 (FIG. 7). (B)).
  • the first membrane 25 and the insulating film 26 are formed so as to fill the recess 121A and cover the insulating film 24. Then, a hole 25A that penetrates the first membrane 25 and the insulating film 26 and reaches the first sacrificial layer 121 is formed (FIG. 7C).
  • the hole between the cells may have a groove shape that separates the cells.
  • the first sacrificial layer 121 is removed from the hole by etching using a reactive gas or the like to form the first cavity 23 (FIG. 7D).
  • the third sacrificial layer 123 for forming the second cavity 27 and the insulating film 28 are formed on the upper surface of the insulating film 26. Then, a mask corresponding to a portion where the second cavity 27 is to be formed is two-dimensionally arranged, and the third sacrificial layer 123 and the insulating film 28 are partially removed by etching in a portion where the mask is not applied, so as to be insulated. A recess 123A reaching the film 26 is formed (FIG. 8A). At this time, the lateral opening width of the recess 123A is formed smaller than the lateral opening width of the recess 121A. The insulating film 26 is not removed because the second membrane 29 and the first membrane 25 are insulated.
  • a second membrane 29 is formed that fills the portion of the recess 123A removed in the previous step and covers the insulating film 28.
  • the film thickness of the second membrane 29 is formed thinner than the film thickness of the first membrane 25.
  • the hole 29A which penetrates the 2nd membrane 29 and reaches the 3rd sacrificial layer 123 is formed (FIG.8 (b)).
  • the holes between the cells may be groove-shaped, but the cells in the same element are formed so as to be at least partially connected.
  • the third sacrificial layer 123 is removed by etching from the hole 29A formed in the previous step to form the second cavity 27, and the cover layer 124 is formed so that the inside of the second cavity 27 is kept in a vacuum state.
  • the transducer cell 12 is completed by sealing (FIG. 8C).
  • the first cavity 23 and the second cavity 27 are completely sealed and configured to be almost in a vacuum state.
  • These cavities can be formed using a known MEMS technique, for example, SM method (Surface Micromachining method; a method of forming a cavity by removing a sacrificial layer).
  • a sacrificial layer removal hole (not shown) is provided between the second cavity 27 and the first cavity 23 so as to pass through the inside of the second membrane 29 and the insulating film 28. Both cavities can be formed. Further, if the sacrificial layer removal hole on the second membrane 29 is closed, both cavities can be sealed.
  • FIG. 9 is a diagram showing voltages applied to the wiring portions 30a, 30b, and 30c in the transducer cell 12 shown in FIGS. 6A and 6B and timings thereof.
  • 71 indicates a voltage applied to the wiring portions 30a and 30c
  • 72 indicates a voltage applied to the wiring portion 30b.
  • a DC bias voltage for example, ⁇ 100 V
  • the wiring portion 30b is set to 0V.
  • electrostatic attraction acts between the first membrane 25 and the second membrane 29, and the second membrane 29 bends downward.
  • electrostatic attraction acts between the lower layer electrode 22 and the first membrane 25, and the first membrane 25 is slightly bent downward.
  • the first membrane 25 At the moment when the pulse voltage is applied to the wiring portion 30b, the first membrane 25 generates a small acceleration but a large acceleration. This acceleration is transmitted to the second membrane 29, and is also synergistic with the elastic force of the second membrane 29. Since a large displacement is generated in the second membrane 29, an output larger than that of the single layer structure can be obtained.
  • the operation of the transducer cell 12 has been described.
  • the transducer 11 configured by the transducer cell 12 and the transducer array 112 configured by the transducer 11 are described. Is the same operation.
  • the ultrasonic transmission characteristics of the transducer cell 12 will be described.
  • the ultrasonic transmission characteristics of the vibrator according to the first embodiment, the vibrator having the conventional single layer structure, and the vibrator according to the comparative example in which the conventional single layer structure is simply laminated are determined by the finite element method. The analysis results are compared using structural analysis simulation.
  • FIG. 10 is a diagram comparing the ultrasonic transmission characteristics of the vibrator 11 according to the first embodiment and the ultrasonic transmission characteristics of the conventional and comparative capacitive vibrators.
  • FIG. 11 is a cross-sectional view of a transducer cell according to a comparative example in which conventional capacitive transducer structures are simply stacked.
  • FIG. 12 is a chart showing conditions for examining the ultrasonic transmission characteristics shown in FIG.
  • an ultrasonic transmission characteristic 83 represents a simulation result of the ultrasonic transmission characteristic of the transducer 11 in the first embodiment, and the ultrasonic transmission characteristic 81 has the conventional single-layer structure shown in FIG. It is a simulation result of the ultrasonic transmission characteristic of a vibrator.
  • the ultrasonic transmission characteristic 82 is a simulation result of the ultrasonic transmission characteristic of the vibrator according to the comparative example shown in FIG. 11 in which the membranes are simply laminated without changing the membrane thickness and the cavity cross-sectional area.
  • the membrane thickness and the cross-sectional area of the cavity are as shown in the table of FIG.
  • the sound pressure at a position separated from the transducer cell 12 by a predetermined distance was obtained by simulation.
  • the ultrasonic transmission characteristic 81 according to the conventional example when the ultrasonic transmission characteristic 81 according to the conventional example is compared with the ultrasonic transmission characteristic 82 according to the comparative example, the ultrasonic transmission characteristic 81 according to the conventional example having a single-layer structure has a greater membrane thickness.
  • the ultrasonic output was higher than the ultrasonic transmission characteristic 82 according to the comparative example in which the layers were simply laminated without changing the cross-sectional area of the cavity.
  • an output twice (6 dB improvement) was obtained as compared with the ultrasonic transmission characteristic 81 according to the conventional example.
  • the ultrasonic output was improved by changing the thickness of the membrane and the cross-sectional area (lateral width) of the cavity.
  • it is set as the structure which changes the cross-sectional area of a cavity by changing the cross-sectional area of a membrane support part.
  • the first membrane 25 In the vibrator cell in which the capacitive vibrator structure shown in the first embodiment or the comparative example is laminated, the first membrane 25 generates a small acceleration but a large acceleration at the moment when the pulse voltage is applied to the wiring portion 30b. The acceleration is transmitted to the second membrane 29, and a displacement is generated in the second membrane 29 by a synergistic effect with the elastic force of the second membrane 29.
  • the frequency of the first membrane 25 is configured to be higher than the frequency of the second membrane 29 by changing the thickness of the membrane and the sectional area (lateral width) of the cavity. Therefore, the phase at the time of displacement of each membrane can be made different between the first membrane 25 and the second membrane 29, and an output larger than that of the single layer structure can be obtained.
  • the first membrane 25 does not bend when the second membrane 29 is displaced.
  • the bending of the first membrane 25 can be reduced by changing the thickness of the membrane and the cross-sectional area (lateral width) of the cavity. As described above, since the first membrane 25 is made difficult to bend, a large displacement can be generated in the second membrane 29, so that it is considered that an improvement in the ultrasonic output was observed.
  • the shape of the membrane or the like is square for simplicity, but it is considered that the same tendency can be obtained even if simulation is performed with other shapes.
  • the bias voltage is applied to the wiring portions 30a and 30c and the pulse voltage is applied to the wiring portion 30b.
  • the bias voltage is applied to the wiring portion 30b and the wiring portions 30a and 30c are applied.
  • a pulse voltage can also be applied.
  • different pulse voltages can be applied to the wiring portions 30a and 30c, it is effective to apply voltages with pulse widths that match the respective resonance frequencies of the first membrane 25 and the second membrane 29.
  • the optimum driving frequency varies depending on the diagnostic purpose of the ultrasonic probe and the location of the subject to be diagnosed. It is preferable to set and drive the resonance frequency of the transducer cell according to the purpose.
  • the driving frequency is preferably selected from a range including 3 MHz to 10 MHz.
  • the timing of applying a voltage to the second membrane 29 is slightly delayed, the reaction force from the subject is reduced and the second membrane can be greatly deformed to the subject side, so that the output can be further improved.
  • the same bias voltage is applied to the wiring portions 30a and 30c.
  • different bias voltages may be applied.
  • the voltage is unbalanced by setting ⁇ 100V to the wiring portion 30a and ⁇ 90V to the wiring portion 30c, and the first membrane 25 is attracted to the substrate 21 side.
  • the stroke of the second membrane 29 can be made larger than the interval (vertical width) of the second cavities 27, and the transmission output can be improved.
  • the vibrator 11 according to the first embodiment can greatly improve the transmission output, which has been a problem with the conventional structure.
  • a two-dimensional array probe capable of transmitting and receiving ultrasonic waves in a wide range from a shallow site to a deep site can be realized, and ultrasonic diagnosis capable of 3D / 4D imaging with a wide range and high image quality is possible.
  • FIG. 13 is a cross-sectional view of the transducer cell 12 according to the first modification of the first embodiment.
  • the first membrane 25 is configured to be thicker than the second membrane 29, and the first cavity 23 has a smaller cross-sectional area (lateral width in the drawing) than the second cavity 27.
  • the second membrane 29 is configured to be thicker than the first membrane 25, and the second cavity 27 has a smaller width than the first cavity 23. It is configured as follows.
  • FIG. 14 is a diagram comparing the ultrasonic transmission characteristics of the vibrator 11 according to the first modification of the first embodiment and the ultrasonic transmission characteristics of a conventional capacitive vibrator.
  • the ultrasonic transmission characteristic 81 is the ultrasonic transmission characteristic of the vibrator having the conventional single layer structure shown in FIG. 10
  • the ultrasonic transmission characteristic 83 is the ultrasonic wave of the vibrator according to the first embodiment.
  • the transmission characteristic, the ultrasonic transmission characteristic 84 shows the simulation result of the ultrasonic transmission characteristic of the vibrator according to the first modification.
  • the membrane thickness and the cross-sectional area of the cavity are as shown in FIG. Modification 1 and Embodiment 1 are simulation results under conditions in which the membrane thickness and the cavity cross-sectional area are reversed.
  • the ultrasonic transmission characteristic 84 according to the first modification is higher than about 12 Mhz in comparison with the ultrasonic transmission characteristic 83 according to the first embodiment and the ultrasonic transmission characteristic 81 according to the conventional example. High sound pressure level at frequency. From the simulation results in the first embodiment and the first modification, it can be seen that stacking the membranes with different membrane thicknesses or cavity cross-sectional areas is effective in improving the ultrasonic transmission characteristics.
  • the membrane thickness or the sectional area of the cavity is equal to the resonance frequency of the membrane. You can see that it has an effect.
  • FIG. 16 is a cross-sectional view of the transducer cell 12 according to the second modification of the first embodiment.
  • the modification 2 has a structure in which the structure is laminated in three stages as shown in FIG.
  • the third membrane 44 disposed so as to face the second membrane 29, and between the second membrane 29 and the third membrane 44.
  • a membrane supporting portion 31c surrounding the third cavity 42 disposed, and insulating films 41 and 43 inserted between the third cavity 42 and the second membrane 29 and the third membrane 44 are provided.
  • the electrodes or membranes of each layer are connected to the wiring portions 30a, 30b, 30c, and 30d, and an ultrasonic wave is transmitted by applying a bias voltage to the wiring portions 30a and 30c and a pulse voltage to the wiring portions 30b and 30d.
  • the thickness of the third membrane 44 is formed thinner than the thickness of the second membrane 29.
  • the lateral width of the third cavity 42 is configured to be larger than the lateral width of the second cavity 27.
  • FIG. 17 is a cross-sectional view of the transducer cell 12 according to the third modification of the first embodiment.
  • the capacitive vibrator has been described with a symmetric structure.
  • the center positions of the first cavity 23 and the second cavity 27 are set as shown in FIG. It has a configuration shifted in the horizontal direction.
  • the widths of the membrane support portions on the left and right sides of the first cavity 23 and the widths of the membrane support portions on the left and right sides of the second cavity 27 are different between the first cavity 23 and the second cavity 27.
  • the center position of each cavity can be shifted in the lateral direction. With this configuration, ultrasonic waves can be transmitted in a direction inclined with respect to the vertical direction of the transducer cell.
  • a convex probe as shown in FIG. 29 is used in an application that requires a wide scanning angle with a large ultrasonic transmission range.
  • a wide scanning angle is realized by arranging the piezoelectric element 45 on a curved surface.
  • the piezoelectric element 45 is arranged on a plane.
  • strong ultrasonic waves can be transmitted in a direction inclined from the vertical direction, and can be used for applications that require a wide scanning angle.
  • FIG. 18A is a top view showing the basic structure of the transducer 11 used in the ultrasonic probe 102 according to the second embodiment
  • FIG. 18B is a cross-sectional view taken along the line AA in FIG.
  • FIG. 19A is a cross-sectional view in a state where a bias voltage is not applied to the transducer cell 12 according to the second embodiment
  • FIG. 19B is a cross-sectional view in a state where a bias voltage is applied.
  • the transducer cell 12 includes a substrate 21 made of an electrically insulating material such as a silicon wafer, glass, quartz, and the like.
  • the second membrane 29, the first membrane support portion 31a, and the second membrane support portion 31b are arranged.
  • Insulating films 24 and 26 are provided below and above the first membrane 25, respectively, and an insulating film 28 is provided below the second membrane 29.
  • the first membrane 25 includes a lower layer membrane portion 25a, a connection portion 25b, and an upper layer membrane portion 25c.
  • the connecting portion 25b is configured such that the width in the horizontal direction in FIG. 19A is smaller than the width in the horizontal direction of the lower layer membrane portion 25a and the upper layer membrane portion 25c. Therefore, the lower layer membrane portion 25a and the upper layer membrane portion 25c can reduce the influence of each displacement on the other.
  • the lateral width of the lower layer membrane portion 25a and the upper layer membrane portion 25c may be 40 to 50 ⁇ m
  • the lateral width of the connection portion 25b may be 20 to 40 ⁇ m.
  • the lower layer membrane portion 25a and the upper layer membrane portion 25c are electrically connected to each other by the connection portion 25b.
  • the first membrane 25 and the second membrane 29 also serve as electrodes, and the lower layer electrode 22, the first membrane 25, and the second membrane 29, which will be described later, are connected to the wiring portions 30a, 30b, and 30c, respectively.
  • the thickness of the lower layer membrane portion 25a and the upper layer membrane portion 25c of the first membrane 25 and the thickness of the second membrane 29 can be configured in the range of 1 to 4 ⁇ m.
  • the thickness of the connecting portion 25b can be 2 to 3 ⁇ m.
  • the lower layer electrode 22 can be made of, for example, a conductive metal such as aluminum, silver, copper, or chromium.
  • a conductive metal such as aluminum, silver, copper, or chromium.
  • the film thickness can be about 4 ⁇ m.
  • the first membrane and the second membrane are made of a conductive material.
  • a metal such as aluminum, silver, copper, or chromium, a conductive resin, or the like can be used.
  • an insulating thin film material can be used for the first membrane support part 31a, the second membrane support part 31b, and the insulating films 24, 26, and 28, an insulating thin film material can be used.
  • SiC, SiO 2 , SiN, or a mixture thereof is used. May be.
  • the thickness of the first membrane support portion 31a and the second membrane support portion 31b in the planar direction in FIG. 19A can be configured to be 2 to 4 ⁇ m, for example.
  • the thickness of the planar direction in FIG. 19A of the 1st membrane support part 31a and the 2nd membrane support part 31b is substantially the same.
  • the first cavity 23 (first gap) is a space surrounded by the first membrane 25, the membrane support 31a and the substrate 21, and the second cavity 27 (second gap) is the first membrane 25 and the membrane support. This is a space surrounded by 31b and the second membrane 29. Both the first cavity 23 and the second cavity 27 are configured to be substantially vacuum.
  • the first cavity 23 has substantially the same lateral width in the drawing as the second cavity 27, that is, the cross-sectional area perpendicular to the lamination direction of the membrane is substantially the same in the first cavity 23 and the second cavity 27. It is configured. In other words, the cross-sectional area in the direction perpendicular to the lamination direction of the membrane is the same as that of the membrane support portion 31a and the membrane support portion 31b.
  • the lateral width of the first cavity 23 and the second cavity 27 in FIG. 19A can be set to 40 to 80 ⁇ m, for example.
  • the height of the first cavity 23 and the second cavity 27 can be set to 200 to 300 nm, for example.
  • insulating films 24, 26, and 28 are disposed between the first cavity 23 and the second cavity 27 and the first membrane 25 and the second membrane 29, respectively.
  • the thickness of the insulating films 24, 26, and 28 can be set to 200 to 400 nm, for example.
  • the first membrane 25 also serving as an electrode
  • an electrode may be formed on or in the first membrane 25.
  • the second membrane 29 also serving as an electrode
  • an electrode may be formed on or in the second membrane 29.
  • the lower layer electrode 22 may be disposed on the substrate 21 instead of being disposed inside the substrate 21.
  • the 1st membrane 25 can take the structure which has the 1st insulating membrane which has insulation, and the upper and lower electrode layers arrange
  • the 2nd membrane 29 can take a structure, if it has the 2nd insulating membrane and electrode layer which have insulation. Also in this case, an electrode layer is inserted between the second insulating membrane and the insulating layer 28.
  • the transducer cell 12 in the present embodiment has a hexagonal shape as an example, it is not limited to this and may have other shapes.
  • Method for Manufacturing Vibrator Cell 12 Next, a method for manufacturing the transducer cell 12 will be described. 20 and 21 are schematic diagrams showing a method for manufacturing the transducer cell 12 according to the second embodiment.
  • an insulating film to be the wiring layer 120 and the substrate 21 is formed on the upper surface of the semiconductor substrate, and a lower layer electrode 22 configured to be connected to the wiring layer 120 is patterned on the upper surface by etching. Further, a thin insulating film 21A is formed thereon (FIG. 20A).
  • the first sacrificial layer 121 for forming the first cavity 23 and the insulating film 24 are formed on the upper surface of the insulating film 21A. Then, a mask corresponding to the portion where the first cavity 23 is to be formed is two-dimensionally arranged, and the portion not provided with the mask is removed by etching or the like to form a recess 121A reaching the lower layer electrode 22 (FIG. 20). (B)).
  • a lower layer membrane portion 25a is formed so as to fill the recess 121A and cover the insulating film 24. And the hole 25B which penetrates the lower layer membrane part 25a and reaches the 1st sacrificial layer 121 is formed (FIG.20 (c)).
  • the hole between the cells may have a groove shape that separates the cells.
  • the first sacrificial layer 121 is removed from the hole by etching using a reactive gas or the like to form the first cavity 23, and patterning is newly performed on the lower layer membrane portion 25a by etching or the like.
  • a second sacrificial layer 122 is formed (FIG. 20D).
  • the connecting portion 25b and the upper membrane portion 25a are formed so as to fill the space between the patterned second sacrificial layers 122 and cover the second sacrificial layers 122. Then, a hole 25D that penetrates through the upper membrane portion 25a and reaches the second sacrificial layer 122 is formed (FIG. 21A). Again, the pores between the cells may be in the form of grooves separating the cells.
  • the second sacrificial layer 122 is removed using a reactive gas or the like. Thereafter, as in the second step, the third sacrificial layer 123 and the insulating film 28 for forming the second cavity 27 are formed on the upper surface of the insulating film 26, and the third sacrificial layer 123 and the insulating film 28 are partially formed by etching. To remove. Note that the insulating film 26 is not removed in order to insulate the second membrane 29 and the upper layer membrane portion 25a.
  • a second membrane 29 that is a film that fills the portion removed in the previous process and covers the insulating film 28 is formed.
  • the hole 29A which penetrates the 2nd membrane 29 and reaches the 3rd sacrificial layer 123 is formed (FIG.21 (b)).
  • the holes between the cells may be groove-shaped, but the cells in the same element are formed so as to be at least partially connected.
  • the third sacrificial layer 123 is removed by etching from the hole 29A formed in the previous step to form the second cavity 27, and the cover layer 124 is formed and sealed so that the inside of the second cavity 27 is kept in a vacuum state. Then, the vibrator cell 12 is completed (FIG. 21C).
  • the first cavity 23 and the second cavity 27 are completely sealed and configured to be almost in a vacuum state.
  • These cavities can be formed using a known MEMS technique, for example, SM method (Surface Micromachining method; a method of forming a cavity by removing a sacrificial layer).
  • both cavities can be formed with a single sacrificial layer etch. Further, if the sacrificial layer removal hole on the second membrane 29 is closed, both cavities can be sealed. Therefore, the gap 34 can be sealed in a substantially vacuum state by using such a forming method.
  • a DC bias voltage for example, ⁇ 100 V
  • the wiring portion 30b is set to 0V.
  • an electrostatic attractive force acts between the lower layer electrode 22 and the first membrane 25, and the lower layer membrane portion 25a of the first membrane 25 bends downward. Further, electrostatic attraction also acts between the upper membrane portion 25c of the first membrane 25 and the second membrane 29, and the second membrane 29 bends downward.
  • FIG. 22 is a diagram comparing the ultrasonic transmission characteristics of the transducer 11 according to the second embodiment and the ultrasonic transmission characteristics of a conventional capacitive transducer.
  • an ultrasonic transmission characteristic 81 indicates the ultrasonic transmission characteristic in the conventional example
  • an ultrasonic transmission characteristic 82 indicates the ultrasonic transmission characteristic in the second embodiment.
  • the ultrasonic transmission characteristic 82 As shown in FIG. 22, in the ultrasonic transmission characteristic 82 according to the second embodiment, an output three times or more (an improvement of 10 dB or more) was obtained as compared with the ultrasonic transmission characteristic 81 according to the conventional example.
  • the thickness of the lower layer membrane portion 25a and the upper layer membrane portion 25c is 3 ⁇ m
  • the thickness of the second membrane 29 is 1 ⁇ m
  • the lower layer membrane portion 25a and the upper layer of the first membrane 25 are
  • the membrane portion 25c is configured to be thicker than the second membrane 29.
  • the lower membrane part 25a In the vibrator cell in which the capacitive vibrator structure according to the second embodiment is laminated, at the moment when the pulse voltage is applied to the wiring part 30b, the lower membrane part 25a generates a large acceleration with a small displacement. Is transmitted to the second membrane 29, and the second membrane 29 is displaced due to a synergistic effect with the elastic force of the second membrane 29. At this time, it is desirable that the upper membrane part 25c does not bend, and it is considered that a large displacement can be generated in the second membrane 29 by suppressing the bending of the upper membrane part 25c.
  • the upper layer membrane portion 25c and the lower layer membrane portion 25a are configured to be connected by the narrow connection portion 25b, so that the upper layer membrane portion 25c can reduce bending, and as a result, It is considered that a large displacement can be generated in the second membrane 29 and the ultrasonic output is improved.
  • the shape of the membrane or the like is square for simplicity, but it is considered that the same tendency can be obtained even if simulation is performed with other shapes.
  • the bias voltage is applied to the wiring portions 30a and 30c and the pulse voltage is applied to the wiring portion 30b.
  • the bias voltage is applied to the wiring portion 30b and the wiring portions 30a and 30c are applied.
  • a pulse voltage can also be applied.
  • different pulse voltages can be applied to the wiring portions 30a and 30c, it is effective to apply voltages with pulse widths that match the respective resonance frequencies of the lower layer membrane portion 25a and the second membrane 29. Can be operated automatically.
  • the optimum driving frequency varies depending on the diagnostic purpose of the ultrasonic probe and the location of the subject to be diagnosed. It is preferable to set and drive the resonance frequency of the transducer cell according to the purpose. In the ultrasonic probe, the driving frequency is preferably selected from a range including 3 MHz to 10 MHz.
  • the timing of applying a voltage to the second membrane 29 is slightly delayed, the reaction force from the subject is reduced and the second membrane can be greatly deformed toward the subject, so that the output can be improved.
  • the same bias voltage is applied to the wiring portions 30a and 30c.
  • different bias voltages may be applied.
  • the vibrator 11 according to the first embodiment can greatly improve the transmission output, which has been a problem with the conventional structure.
  • a two-dimensional array probe capable of transmitting and receiving ultrasonic waves in a wide range from a shallow site to a deep site can be realized, and ultrasonic diagnosis capable of 3D / 4D imaging with a wide range and high image quality is possible.
  • FIG. 23 is a cross-sectional view of the transducer cell 12 according to the first modification of the second embodiment.
  • the lateral width of the lower layer membrane portion 25 a is made smaller than the lateral width of the second membrane 29. Since other configurations are the same as those in the second embodiment, description thereof is omitted.
  • FIG. 24 is a diagram illustrating the ultrasonic transmission characteristics of the transducer 11 according to the first modification of the second embodiment.
  • the ultrasonic transmission characteristic 84 of the vibrator according to the modification 1 is superimposed on the simulation result of FIG.
  • the ultrasonic transmission characteristic 81 is the ultrasonic transmission characteristic in the conventional example
  • the ultrasonic transmission characteristic 82 is the ultrasonic transmission characteristic in the second embodiment
  • the ultrasonic transmission characteristic 84 is the ultrasonic transmission characteristic in the first modification. Is shown. As shown in FIG. 24, in the ultrasonic transmission characteristic 84 according to the first modification, an output having a higher sound pressure level near the peak was obtained as compared with the ultrasonic transmission characteristic 82 according to the second embodiment. In addition, an output with a sound pressure level that is at least twice as high as the ultrasonic transmission characteristic 81 of the conventional example is obtained.
  • the ultrasonic transmission characteristic 82 according to the second embodiment is the ultrasonic transmission characteristic according to the first modification, in which the lateral width of the first cavity 23 is 28 um.
  • No. 84 was simulated with the lateral width of the first cavity 23 being 24 um. That is, in the transducer cell 12 of the first modification, the lateral width of the lower layer membrane portion 25 a is configured to be smaller than the lateral width of the second membrane 29. At this time, the thicknesses of the lower layer membrane portion 25a and the second membrane 29 are both 1 um.
  • the comparison between the ultrasonic transmission characteristic 84 according to Modification 1 and the ultrasonic transmission characteristic 82 according to Embodiment 2 shows that the lateral width of the lower layer membrane portion 25 a and the second membrane 29 is It can be seen that this affects the resonance frequency.
  • the simulation is performed by changing the horizontal width of the lower membrane portion 25a and the second membrane 29.
  • the horizontal width may be changed and the length in the depth direction of the drawing may be changed.
  • you may change the cross-sectional area of the lower layer membrane part 25a and a 2nd membrane.
  • FIG. 25 is a cross-sectional view of the transducer cell 12 according to the second modification of the second embodiment.
  • the second membrane 29 since the second membrane 29 also serves as an electrode, adjacent cells in the same element are connected by the second membrane 29.
  • a submembrane 32 serving as a path for applying a bias voltage to the second membrane 29 is provided, and the second membrane 29 is pulled out via the submembrane 32.
  • the wiring is configured to be connected to an adjacent cell by wiring in the substrate 21. Except for the point that the sub-membrane 32 is provided, it is the same as the second embodiment, and the description thereof is omitted.
  • the sub-membrane 32 serving as a path for applying a bias voltage to the second membrane 29 may be connected to the first membrane 25 as shown in FIG.
  • this configuration can be adopted by providing the insulating portion 33 between the upper membrane portion 25c and the portion to which the submembrane 32 is connected.
  • FIG. 26 is a diagram comparing the ultrasonic transmission characteristics of the vibrator 11 according to the second modification of the first embodiment and the ultrasonic transmission characteristics of the vibrator according to the comparative example in which the submembrane 32 is removed from the second modification. It is. Here, the simulation is performed assuming that the submembrane 32 is disposed on the first membrane 25.
  • the ultrasonic transmission characteristic 83 indicates the ultrasonic transmission characteristic of the vibrator 11 according to the comparative example
  • the ultrasonic transmission characteristic 85 indicates the ultrasonic transmission characteristic of the vibrator 11 according to the modification 2.
  • the ultrasonic transmission characteristic 83 according to the comparative example shows a frequency characteristic having two peaks, but the ultrasonic transmission characteristic 85 according to the modified example 2 has a wide band characteristic. It is considered that this is because the submembrane 32 seals the gap 34 by providing the submembrane 32. Thus, it is considered that excessive vibration in the lateral direction that occurred in the comparative example was suppressed, and a wide band characteristic was obtained.
  • FIG. 27 is a cross-sectional view of the transducer cell 12 according to the third modification of the second embodiment.
  • the second embodiment, the first modification, and the second modification have been described in the form in which the structure of the capacitive vibrator is stacked in two stages. However, as shown in FIG. 27, a three-stage structure may be used.
  • the additional portion 46 has the same structure as the first membrane 25, the insulating film 26, the second cavity 27, and the insulating film 28, and the third membrane 44 is formed thereon.
  • the electrode or membrane of each layer is connected to the wiring portions 30a, 30b, 30c, and 30d, and an ultrasonic wave is transmitted by applying a bias voltage to the wiring portions 30a and 30c and a pulse voltage to the wiring portions 30b and 30d.
  • the transmission output can be further improved by increasing the number of layers in this way.
  • the ultrasonic probe, ultrasonic transducer, and ultrasonic transducer cell according to each embodiment have been described above.
  • the present invention is not limited to each embodiment.
  • some or all of the processing units included in the ultrasonic diagnostic apparatus in each embodiment may be included in the ultrasonic probe 102.
  • each processing unit included in the ultrasonic diagnostic apparatus is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • ultrasonic diagnostic apparatus may be realized by a processor such as a CPU executing a program.
  • the present invention may be the above program or a non-transitory computer-readable recording medium on which the above program is recorded.
  • the program can be distributed via a transmission medium such as the Internet.
  • division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be.
  • functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
  • the above-described ultrasonic probe according to one aspect of the present invention adopts the above-described configuration in a structure having an ultrasonic transducer cell in which cMUTs are stacked, thereby reducing the deflection of the upper surface of the first membrane and making the second membrane 29 larger. A displacement can be generated. Thereby, it is possible to obtain a larger ultrasonic transmission output than in the case of a single layer, and to improve the transmission output characteristics of the ultrasonic probe. Thereby, a clear ultrasonic image with less noise can be obtained in 3D / 4D ultrasonic imaging as compared with a conventional cMUT.
  • the ultrasonic transducer cell the ultrasonic transducer, the ultrasonic probe, and the ultrasonic diagnostic apparatus, there are members such as circuit components and lead wires on the substrate.
  • members such as circuit components and lead wires on the substrate.
  • the embodiment it is possible to realize a two-dimensional array probe having high sensitivity up to a deep part.
  • high-quality 3D / 4D imaging can be realized with a small probe in a wide range from a shallow part to a deep part.
  • a clear ultrasonic image with little noise can be obtained.
  • the voltage applied to the ultrasonic transducer can be reduced. Thereby, it can contribute to the power saving of an apparatus. For this reason, it has become a technology that extends to the mobile use of ultrasonic diagnostic equipment by extending battery life, and can be widely used for ultrasonic transducer cells, ultrasonic vibrators, ultrasonic probes, and ultrasonic diagnostic equipment. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

Provided is an ultrasonic transducer cell in which a cMUT element is stacked on a substrate using a structure that is easy to wire to each electrode, said ultrasonic transducer cell having at least one of the following characteristics: (a) the thickness in a direction that is perpendicular to the upper surface of a first membrane is larger in the first membrane than in a second membrane and/or (b) the spatial area in a direction that is parallel to the upper surface of the first membrane is smaller in a first gap layer that is surrounded by a first membrane support section than in a second gap layer that is surrounded by a second membrane support section; or (c) the thickness in a direction that is perpendicular to the upper surface of the first membrane is thicker in the second membrane than in the first membrane and/or (d) the spatial area in a direction that is parallel to the upper surface of the first membrane is smaller in the second gap layer that is surrounded by the second membrane support section than in the first gap layer that is surrounded by the first membrane support section.

Description

超音波振動子セル、超音波プローブ、及び超音波振動子セルの制御方法Ultrasonic transducer cell, ultrasonic probe, and control method of ultrasonic transducer cell
 本発明は、超音波検査に用いられる超音波プローブに関する。 The present invention relates to an ultrasonic probe used for ultrasonic inspection.
 超音波プローブは、被験体の内部に超音波を送出するとともに、被験体内部で反射した超音波信号を受信し、被験体内部の情報を取得する機能を持った超音波検診断装置本体の付属装置である。 The ultrasonic probe is attached to the main body of the ultrasonic diagnostic equipment that has the function to send out ultrasonic waves to the inside of the subject, receive ultrasonic signals reflected inside the subject, and acquire information inside the subject. Device.
 超音波プローブに用いられる超音波振動子は、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックを一列に配列して構成されるものが主流だが、近年では、3D/4D超音波イメージングが可能な安価で小型なプローブの実現を目的として振動子の2次元化が検討され、アレイ構造に適した手法としてcMUT(Capacitive Micromachined Ultrasound Transducer)素子が広く研究されている(例えば、特許文献1)。このcMUT素子は静電気力で振動膜(以後、メンブレン)を駆動させる静電容量型のMEMSで構成され、例えば、図28に示すような構造をしている。図28(a)は、cMUT素子の斜視図、(b)はcMUT素子の分解斜視図、(c)はcMUT素子の側断面図である。図28に示すように、cMUT素子50は、基板51と、基板51内部に配置された下層電極52と、キャビティ(空洞部)53を挟んで下層電極52と対向するように配置された絶縁膜55及びメンブレン56と、メンブレン支持部54を備えている。ここでキャビティ53はメンブレン56とメンブレン支持部54と下層電極52で囲まれた空間からなり、略真空となるように構成される。また、メンブレン56は電極を兼ねており、下層電極52及びメンブレン56は夫々配線60a、60bに接続される。 Ultrasonic transducers used for ultrasonic probes are mainly composed of piezoelectric ceramics typified by PZT (lead zirconate titanate) arranged in a row, but in recent years, 3D / 4D ultrasonic imaging has become popular. Two-dimensional transducers have been studied for the purpose of realizing an inexpensive and small probe that can be used, and cMUT (Capacitive Micromachined Ultrasonic Transducer) elements have been widely studied as a method suitable for array structures (for example, Patent Document 1). . This cMUT element is composed of a capacitance type MEMS that drives a vibrating membrane (hereinafter referred to as a membrane) with electrostatic force, and has a structure as shown in FIG. 28, for example. FIG. 28A is a perspective view of the cMUT element, FIG. 28B is an exploded perspective view of the cMUT element, and FIG. 28C is a side sectional view of the cMUT element. As shown in FIG. 28, the cMUT element 50 includes a substrate 51, a lower layer electrode 52 disposed inside the substrate 51, and an insulating film disposed to face the lower layer electrode 52 with a cavity (cavity) 53 interposed therebetween. 55, a membrane 56, and a membrane support 54 are provided. Here, the cavity 53 includes a space surrounded by the membrane 56, the membrane support portion 54, and the lower layer electrode 52, and is configured to be substantially vacuum. The membrane 56 also serves as an electrode, and the lower layer electrode 52 and the membrane 56 are connected to wirings 60a and 60b, respectively.
 このような構成のcMUT素子50は、受信した超音波(音圧)によってメンブレン56が振動し、この際に起きるメンブレン56及び下層電極52の間の静電容量変化に基づき、受信した超音波に係る電気信号を取得することができる。また、このcMUT素子50は、メンブレン56及び下層電極52の間にDC及びAC電圧を印加することによりメンブレン56を振動させ、超音波を送信することができる。 In the cMUT element 50 having such a configuration, the membrane 56 is vibrated by the received ultrasonic wave (sound pressure), and the received ultrasonic wave is changed based on the capacitance change between the membrane 56 and the lower layer electrode 52 that occurs at this time. Such an electrical signal can be obtained. The cMUT element 50 can transmit ultrasonic waves by vibrating the membrane 56 by applying DC and AC voltages between the membrane 56 and the lower layer electrode 52.
特開2009-100459号公報JP 2009-100459 A 特開2007-229328号公報JP 2007-229328 A 特開2009-194934号公報JP 2009-194934 A
 このようなcMUT素子は、配線が容易で多素子の2次元アレイに適しているというメリットを有する一方、送信出力が低いという課題を有していた。3D/4D超音波イメージングにおいて、被検体表面から浅い部位から深い部位まで広範囲に高画質な超音波画像を取得するためにcMUT素子における送信出力をさらに増加させることが必要となる。 Such a cMUT element has a merit that wiring is easy and suitable for a two-dimensional array of multiple elements, but has a problem that a transmission output is low. In 3D / 4D ultrasonic imaging, it is necessary to further increase the transmission output in the cMUT element in order to acquire a high-quality ultrasonic image in a wide range from a shallow part to a deep part from the subject surface.
 本発明は、上記課題に鑑み、従来の圧電素子を用いた超音波プローブと同等の低供給電圧を維持しながら、cMUTの出力感度を高め送信出力を向上することを目的とする。 In view of the above problems, the present invention aims to improve the output sensitivity of a cMUT and improve the transmission output while maintaining a low supply voltage equivalent to that of an ultrasonic probe using a conventional piezoelectric element.
 上記課題を解決するために、本発明の一態様に係る超音波振動子セルは、基板と、前記基板上又は前記基板内部に配置された第1電極と、前記第1電極上面に対し垂直方向に離間した状態で前記第1電極と対向して配された第1メンブレンと、前記第1メンブレン上面と垂直方向に離間した状態で前記第1メンブレンと対向して配された第2メンブレンと、前記基板と前記第1メンブレンとの間隙に配され、当該間隙内の空間を囲繞する第1メンブレン支持部と、前記第1メンブレンと前記第2メンブレンとの間隙に配され、当該間隙内の空間を囲繞する第2メンブレン支持部と、前記第1メンブレンに電気的に接続された第1配線部と、前記第2メンブレンに電気的に接続された第2配線部とを備え、(a)前記第1メンブレンは前記第2メンブレンよりも、前記1メンブレン上面と垂直な方向の厚さが大きい、若しくは、(b)前記第1メンブレン支持部に囲繞された第1空隙層は前記第2メンブレン支持部に囲繞された第2空隙層よりも、前記1メンブレン上面と平行な方向の空間面積が小さい、の少なくとも一方の特徴を有する、又は、(c)前記第2メンブレンは前記第1メンブレンよりも、前記1メンブレン上面と垂直な方向の厚さが大きい、若しくは、(d)前記第2メンブレン支持部に囲繞された第2空隙層は前記第1メンブレン支持部に囲繞された第1空隙層よりも、前記1メンブレン上面と平行な方向の空間面積が小さい、の少なくとも一方の特徴を有する。 In order to solve the above problems, an ultrasonic transducer cell according to an aspect of the present invention includes a substrate, a first electrode disposed on or in the substrate, and a direction perpendicular to the upper surface of the first electrode. A first membrane disposed opposite to the first electrode in a state of being separated from the first membrane; a second membrane disposed opposite to the first membrane in a state of being spaced apart from the upper surface of the first membrane; A first membrane supporting portion disposed in a gap between the substrate and the first membrane and surrounding a space in the gap; and a space in the gap between the first membrane and the second membrane. A second membrane supporting portion surrounding the first membrane, a first wiring portion electrically connected to the first membrane, and a second wiring portion electrically connected to the second membrane, (a) The first membrane is the first The thickness in the direction perpendicular to the upper surface of the first membrane is larger than the membrane, or (b) the second gap layer surrounded by the first membrane support part is surrounded by the second membrane support part. The space area in the direction parallel to the upper surface of the first membrane is smaller than the space layer, or (c) the second membrane is perpendicular to the upper surface of the first membrane than the first membrane. Or (d) the second gap layer surrounded by the second membrane support part has a surface above the first membrane than the first gap layer surrounded by the first membrane support part. It has at least one feature that the space area in the parallel direction is small.
 また、別の態様では、前記第1メンブレンは、前記第1メンブレン支持部に囲繞された第1空隙層に面した下層メンブレン部と、前記下層メンブレン部の上方に位置し前記第2メンブレン支持部に囲繞された第2空隙層に面した上層メンブレン部と、前記下層メンブレン部と上層メンブレン部とを接続する接続部とが、積層された構造を有し、前記上層メンブレン部と前記下層メンブレン部とは前記接続部により電気的に接続され、前記接続部の前記第1メンブレン上面と平行な方向の断面積は、前記下層メンブレン部及び前記上層メンブレン部の前記第1メンブレン上面と平行な方向の断面積よりも小さいことを特徴とする。 In another aspect, the first membrane includes a lower membrane part facing the first gap layer surrounded by the first membrane support part, and the second membrane support part positioned above the lower membrane part. An upper membrane portion facing the second void layer and a connection portion connecting the lower layer membrane portion and the upper membrane portion are laminated, and the upper membrane portion and the lower membrane portion Are electrically connected by the connecting portion, and a cross-sectional area of the connecting portion in a direction parallel to the top surface of the first membrane is parallel to a top surface of the first membrane of the lower membrane portion and the upper membrane portion. It is characterized by being smaller than the cross-sectional area.
 上記した本発明の一態様に係る超音波プローブは、cMUTを積層した超音波振動子セルを有する構造において上記構成を採ることにより、第1メンブレン上面の撓みを減少させ第2メンブレンより大きな変位を発生させることができる。そのため、単層の場合と比較してより大きな超音波送信出力を得ることができ、超音波プローブの送信出力特性を改善することができる。 The above-described ultrasonic probe according to one aspect of the present invention adopts the above configuration in a structure having an ultrasonic transducer cell in which cMUTs are stacked, thereby reducing the deflection of the upper surface of the first membrane and causing a larger displacement than the second membrane. Can be generated. Therefore, a larger ultrasonic transmission output can be obtained as compared with the case of a single layer, and the transmission output characteristics of the ultrasonic probe can be improved.
実施の形態1に係る超音波プローブ102の全体構成を示す概略図である。1 is a schematic diagram illustrating an overall configuration of an ultrasonic probe 102 according to Embodiment 1. FIG. 実施の形態1に係る超音波プローブ102の超音波振動子アレイ112の配列を示した上面図である。3 is a top view showing the arrangement of the ultrasonic transducer array 112 of the ultrasonic probe 102 according to Embodiment 1. FIG. (a)実施の形態1に係る超音波振動子11の基本構造を示した上面図、(b)は(a)図中A-A断面の断面図である。(A) A top view showing the basic structure of the ultrasonic transducer 11 according to the first embodiment, and (b) is a cross-sectional view taken along the line AA in FIG. 実施の形態1に係る超音波プローブ102を用いた超音波診断装置100超の機能ブロック図である。2 is a functional block diagram of an ultrasonic diagnostic apparatus 100 using the ultrasonic probe 102 according to Embodiment 1. FIG. (a)実施の形態1に係る超音波振動子セル12の斜視図、(b)超音波振動子セル12の分解斜視図である。2A is a perspective view of an ultrasonic transducer cell 12 according to Embodiment 1, and FIG. 2B is an exploded perspective view of the ultrasonic transducer cell 12. FIG. 実施の形態1に係る超音波振動子セル12の動作を示す説明図であり、(a)は超音波振動子セル12にバイアス電圧を印加していない状態の断面図(b)は、バイアス電圧を印加した状態の断面図である。FIG. 3 is an explanatory diagram showing the operation of the ultrasonic transducer cell 12 according to the first embodiment, where (a) is a cross-sectional view (b) in a state in which a bias voltage is not applied to the ultrasonic transducer cell 12; It is sectional drawing of the state which applied. 実施の形態1に係る超音波振動子セル12の製造方法を示す概略図である。5 is a schematic view showing a method for manufacturing the ultrasonic transducer cell 12 according to Embodiment 1. FIG. 実施の形態1に係る超音波振動子セル12の製造方法を示す概略図である。5 is a schematic view showing a method for manufacturing the ultrasonic transducer cell 12 according to Embodiment 1. FIG. 超音波振動子セル12における配線部30a、30b、30cに印加される電圧とそのタイミングを示した図である。FIG. 4 is a diagram illustrating voltages applied to wiring portions 30a, 30b, and 30c and timings in the ultrasonic transducer cell 12. 実施の形態1に係る超音波振動子11の超音波送信特性と従来及び比較例の静電容量型超音波振動子の超音波送信特性とを比較した図である。FIG. 6 is a diagram comparing the ultrasonic transmission characteristics of the ultrasonic transducer 11 according to the first embodiment and the ultrasonic transmission characteristics of conventional and comparative capacitive ultrasonic transducers. 従来の静電容量型超音波振動子構造を単純に積層させた比較例に係る超音波振動子セル12の断面図である。It is sectional drawing of the ultrasonic transducer | vibrator cell 12 which concerns on the comparative example which laminated | stacked the conventional capacitive ultrasonic transducer structure simply. 図10に示した超音波送信特性を調べる際の条件を示したチャートである。It is the chart which showed the conditions at the time of investigating the ultrasonic transmission characteristic shown in FIG. 実施の形態1の変形例1に係る超音波振動子セル12の断面図である。6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a first modification of the first embodiment. FIG. 実施の形態1の変形例1の超音波振動子11の超音波送信特性と従来の静電容量型超音波振動子の超音波送信特性とを比較した図である。FIG. 6 is a diagram comparing the ultrasonic transmission characteristics of the ultrasonic transducer 11 according to the first modification of the first embodiment and the ultrasonic transmission characteristics of a conventional capacitive ultrasonic transducer. 図14に示した超音波送信特性を調べる際の条件を示したチャートである。It is the chart which showed the conditions at the time of investigating the ultrasonic transmission characteristic shown in FIG. 実施の形態1の変形例2に係る超音波振動子セル12の断面図である。6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a second modification of the first embodiment. FIG. 実施の形態1の変形例3に係る超音波振動子セル12の断面図である。6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a third modification of the first embodiment. FIG. (a)実施の形態2に係る超音波プローブ102に用いる超音波振動子の基本構造を示した上面図、(b)(a)図中A-A断面の断面図である。4A is a top view showing a basic structure of an ultrasonic transducer used in an ultrasonic probe 102 according to Embodiment 2, and FIG. 4B is a cross-sectional view taken along the line AA in FIG. (a)実施の形態2に係る超音波振動子セル12にバイアス電圧を印加していない状態の断面図、(b)はバイアス電圧を印加した状態の断面図である。(A) A sectional view in a state where a bias voltage is not applied to the ultrasonic transducer cell 12 according to the second embodiment, and (b) is a sectional view in a state where a bias voltage is applied. 実施の形態2に係る超音波振動子セル12の製造方法を示す概略図である。6 is a schematic view showing a method for manufacturing the ultrasonic transducer cell 12 according to Embodiment 2. FIG. 実施の形態2に係る超音波振動子セル12の製造方法を示す概略図である。6 is a schematic view showing a method for manufacturing the ultrasonic transducer cell 12 according to Embodiment 2. FIG. 実施の形態2に係る超音波振動子11の超音波送信特性と従来の静電容量型超音波振動子の超音波送信特性とを比較した図である。It is the figure which compared the ultrasonic transmission characteristic of the ultrasonic transducer | vibrator 11 which concerns on Embodiment 2, and the ultrasonic transmission characteristic of the conventional capacitive ultrasonic transducer. 実施の形態2の変形例1に係る超音波振動子セル12の断面図である。6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a first modification of the second embodiment. FIG. 実施の形態2の変形例1に係る超音波振動子11の超音波送信特性を示した図である。FIG. 10 is a diagram showing ultrasonic transmission characteristics of an ultrasonic transducer 11 according to Modification 1 of Embodiment 2. 実施の形態2の変形例2に係る超音波振動子セル12の断面図である。6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a second modification of the second embodiment. FIG. 実施の形態2に係る超音波振動子11の超音波送信特性と実施の形態1の変形例2に係る超音波振動子の超音波送信特性とを比較した図である。FIG. 10 is a diagram comparing the ultrasonic transmission characteristics of the ultrasonic transducer 11 according to the second embodiment and the ultrasonic transmission characteristics of the ultrasonic transducer according to the second modification of the first embodiment. 実施の形態2の変形例3に係る超音波振動子セル12の断面図である。6 is a cross-sectional view of an ultrasonic transducer cell 12 according to a third modification of the second embodiment. FIG. (a)従来の静電容量型超音波素子セルの斜視図、(b)従来の静電容量型超音波振動子セルの上面図、(c)従来の静電容量型超音波振動子セルの断面図である。(A) A perspective view of a conventional capacitive ultrasonic transducer cell, (b) a top view of a conventional capacitive ultrasonic transducer cell, and (c) a conventional capacitive ultrasonic transducer cell. It is sectional drawing. 従来のコンベックス型プローブの形状を示した図である。It is the figure which showed the shape of the conventional convex probe.
 ≪本発明を実施するための形態に到った経緯について≫
 発明者らは、cMUT素子を用いた超音波振動子セルの超音波送受信感度をさらに向上するために各種の検討を行った。上述のとおり、従来のcMUT素子は、配線が容易で多素子の2次元アレイに適しているというメリットを有する一方、送信出力が低いという課題を有しており、送受信感度を向上させるための様々な提案が今日までに成されている。
<< Background to the form for carrying out the present invention >>
The inventors conducted various studies in order to further improve the ultrasonic transmission / reception sensitivity of the ultrasonic transducer cell using the cMUT element. As described above, the conventional cMUT element has the advantage that it is easy to wire and is suitable for a two-dimensional array of multiple elements, while it has a problem that the transmission output is low. Proposals have been made to date.
 一例として、コラプスモード(collapse mode)と呼ばれる新しい動作モードが提案されている。コラプスモードとは、下層電極にDC電圧をかける際に、通常モードよりも大きい特定の電圧をかけることにより、メンブレンを下層電極のDC静電力で吸引し、メンブレンが下層電極に接触した状態で作動させる作動モードをいう。このコラプスモードでは、通常のモードより感度、駆動能力が高いと言われており、例えば、特許文献1に示すような応用構造が提案されている。 As an example, a new operation mode called a collapse mode has been proposed. In the collapse mode, when a DC voltage is applied to the lower electrode, a specific voltage higher than that in the normal mode is applied to attract the membrane with the DC electrostatic force of the lower electrode, and the membrane is in contact with the lower electrode. This is the operating mode to be activated. In this collapse mode, it is said that the sensitivity and drive capability are higher than in the normal mode. For example, an application structure as shown in Patent Document 1 has been proposed.
 しかしながら、コラプスモードを利用する場合は、一般的に、約130~150Vの極めて高いDC電圧をかけることが必要であり、このような電圧を提供できない場合には、このモードを作動させ維持して行くことができない。また、超音波診断に用いる場合、このような高電圧は人体に対して好ましくない影響を及ぼすおそれがある。これに対し、特許文献1の構成はメンブレンと基板が接触した状態で融着させることで、必要なDC電圧を下げる工夫がされているが、コラプスモードの信頼性の課題に対しては対処できていない。すなわち、コラプスモードではメンブレンと基板が常時接触している領域の周辺では、メンブレンと基板が衝突を繰り返すことになり、薄膜の絶縁膜が破壊されてしまうという課題を依然有している。 However, when utilizing the collapse mode, it is generally necessary to apply a very high DC voltage of about 130-150V, and if this voltage cannot be provided, this mode can be activated and maintained. I can't go. Further, when used for ultrasonic diagnosis, such a high voltage may adversely affect the human body. On the other hand, the configuration of Patent Document 1 is devised to reduce the necessary DC voltage by fusing the membrane and the substrate in contact with each other, but it can cope with the reliability problem of the collapse mode. Not. That is, in the collapse mode, the membrane and the substrate repeatedly collide around the region where the membrane and the substrate are always in contact with each other, and there is still a problem that the thin insulating film is destroyed.
 また、素子を積層することにより出力向上を図る手法が検討されている。例えば、特許文献2に示すような圧電方式のpMUT(piezoelectric Micromachined Ultrasonic Transducer)とcMUTを組み合わせた構成が提案されている。しかしながら、特許文献2に記載された構成では、pMUTとcMUTをそれぞれ異なるパルス電圧で駆動する必要があり回路構成が複雑になる。また、製造プロセスが複雑になり、ばらつきが大きくなることが予想される。 Also, techniques for improving output by stacking elements are being studied. For example, a configuration in which a piezoelectric pMUT (piezoelectric Micromachined Ultrasonic Transducer) and a cMUT as shown in Patent Document 2 are combined has been proposed. However, in the configuration described in Patent Document 2, it is necessary to drive pMUT and cMUT with different pulse voltages, and the circuit configuration becomes complicated. Moreover, it is expected that the manufacturing process becomes complicated and the variation becomes large.
 さらに、素子を積層することにより出力向上を図る他の手法として、例えば、特許文献3に示すようなcMUTをピラミッド状に積層した構成が提案されている。しかしながら、特許文献3に記載された構成では、ピラミッド状に積層されているため、上層になるほど電極の総面積が小さくなり、超音波の送受信に使える有効な領域が小さくなるので効率的ではない。さらに、例えば2段の構成を考えると、上層のメンブレンが下層の複数のメンブレンをまたぐ形態となっているため、上層のキャビティを封止するためにメンブレン支持部の間に壁を設けると、壁を設けた部分では下層のメンブレンが機能しなくなるという課題を有している。 Furthermore, as another technique for improving the output by stacking elements, for example, a configuration in which cMUTs are stacked in a pyramid shape as shown in Patent Document 3 has been proposed. However, in the configuration described in Patent Document 3, since the layers are stacked in a pyramid shape, the total area of the electrode becomes smaller as the layer becomes higher, and the effective area that can be used for transmission / reception of ultrasonic waves becomes smaller, which is not efficient. Furthermore, considering a two-stage configuration, for example, the upper membrane is in a form straddling a plurality of lower membranes. Therefore, if a wall is provided between the membrane support parts to seal the upper cavity, There is a problem that the lower layer membrane does not function in the portion provided with.
 上述の素子を積層する構成では、キャビティを挟んだ両側の面がメンブレンとして機能し、バイアス電圧印加時に夫々逆向きに撓む(キャビティが縮む方向に撓む)ように構成されている。発明者らは送受信感度向上に向けた検討により、キャビティを挟んだ両側の面がメンブレンとしてバイアス電圧印加時に夫々逆向きに撓む構成では送信出力特性が向上しないという知見を得た。また、これに対し一方の側の撓みを抑え他方を大きく撓ませた方が大きな振動子セル全体としては高い送信出力特性が得られるという知見も得た。以下に示す実施の形態は、発明者ら検討に基づく上記知見をもとに従来cMUTの課題を解決するもので、従来から使用される圧電素子を用いた超音波プローブと同等の供給電圧を維持しながら、cMUTの構造的な改善によって送受信感度を高めることを目的とするものである。 In the configuration in which the above-described elements are stacked, both surfaces sandwiching the cavity function as a membrane, and are configured to bend in the opposite direction when the bias voltage is applied (bend in the direction in which the cavity is contracted). As a result of studies aimed at improving transmission / reception sensitivity, the inventors have found that the transmission output characteristics are not improved in a configuration in which both surfaces sandwiching the cavity are bent in opposite directions as a membrane when a bias voltage is applied. In addition, it has also been found that if the deflection of one side is suppressed and the other is largely bent, a high transducer output characteristic can be obtained as a whole large transducer cell. The following embodiment solves the problems of the conventional cMUT based on the above findings based on the inventors' investigation, and maintains the same supply voltage as that of an ultrasonic probe using a piezoelectric element that has been conventionally used. However, it is intended to increase transmission / reception sensitivity by structural improvement of cMUT.
 以下、実施の形態に係る超音波振動子セルについて、図面を参照しながら説明する。 Hereinafter, the ultrasonic transducer cell according to the embodiment will be described with reference to the drawings.
 ≪本発明を実施するための形態の概要≫
 本実施の形態に係る超音波振動子セルは、基板と、前記基板上又は前記基板内部に配置された第1電極と、前記第1電極上面に対し垂直方向に離間した状態で前記第1電極と対向して配された第1メンブレンと、前記第1メンブレン上面と垂直方向に離間した状態で前記第1メンブレンと対向して配された第2メンブレンと、前記基板と前記第1メンブレンとの間隙に配され、当該間隙内の空間を囲繞する第1メンブレン支持部と、前記第1メンブレンと前記第2メンブレンとの間隙に配され、当該間隙内の空間を囲繞する第2メンブレン支持部と、前記第1メンブレンに電気的に接続された第1配線部と、前記第2メンブレンに電気的に接続された第2配線部とを備え、(a)前記第1メンブレンは前記第2メンブレンよりも、前記1メンブレン上面と垂直な方向の厚さが大きい、若しくは、(b)前記第1メンブレン支持部に囲繞された第1空隙層は前記第2メンブレン支持部に囲繞された第2空隙層よりも、前記1メンブレン上面と平行な方向の空間面積が小さい、の少なくとも一方の特徴を有する、又は、(c)前記第2メンブレンは前記第1メンブレンよりも、前記1メンブレン上面と垂直な方向の厚さが大きい、若しくは、(d)前記第2メンブレン支持部に囲繞された第2空隙層は前記第1メンブレン支持部に囲繞された第1空隙層よりも、前記1メンブレン上面と平行な方向の空間面積が小さい、の少なくとも一方の特徴を有する。
<< Outline of Embodiment for Implementing the Present Invention >>
The ultrasonic transducer cell according to the present embodiment includes a substrate, a first electrode disposed on or in the substrate, and the first electrode in a state of being vertically separated from the upper surface of the first electrode. A first membrane disposed opposite to the first membrane; a second membrane disposed opposite to the first membrane in a state of being vertically separated from the upper surface of the first membrane; and the substrate and the first membrane A first membrane support portion disposed in the gap and surrounding the space in the gap; and a second membrane support portion disposed in the gap between the first membrane and the second membrane and surrounding the space in the gap. A first wiring portion electrically connected to the first membrane, and a second wiring portion electrically connected to the second membrane; (a) the first membrane is more than the second membrane; Also said 1 men The thickness in the direction perpendicular to the upper surface of the lens is large, or (b) the first gap layer surrounded by the first membrane support part is more than the second gap layer surrounded by the second membrane support part. Or (c) the second membrane has a thickness in a direction perpendicular to the upper surface of the first membrane rather than the first membrane. (D) The second void layer surrounded by the second membrane support portion is larger in spatial area in a direction parallel to the upper surface of the first membrane than the first void layer surrounded by the first membrane support portion. Has at least one of the following characteristics.
 また、別の態様では、前記(b)の特徴を有するときに、前記第1メンブレン支持部は前記第2メンブレン支持部よりも、前記1メンブレン上面と平行な方向の断面積が大きい構成であってもよい。 In another aspect, when having the feature (b), the first membrane support portion has a larger cross-sectional area in a direction parallel to the upper surface of the first membrane than the second membrane support portion. May be.
 また、別の態様では、前記(d)の特徴を有するときに、前記第2メンブレン支持部は前記第1メンブレン支持部よりも前記1メンブレン上面と平行な方向の断面積が大きい構成であってもよい。 In another aspect, when having the feature (d), the second membrane support portion has a larger cross-sectional area in a direction parallel to the upper surface of the first membrane than the first membrane support portion. Also good.
 また、別の態様では、前記第1メンブレン支持部は前記第2メンブレン支持部と前記1メンブレン上面と平行な方向における最大幅が略等しい構成であってもよい。 In another aspect, the first membrane support portion may have a configuration in which maximum widths in a direction parallel to the second membrane support portion and the upper surface of the first membrane are substantially equal.
 また、別の態様では、基板と、前記基板上又は前記基板内部に配置された第1電極と、前記第1電極上面に対し垂直方向に離間した状態で前記第1電極と対向して配された第1メンブレンと、前記第1メンブレン上面と垂直方向に離間した状態で前記第1メンブレンと対向して配された第2メンブレンと、前記基板と前記第1メンブレンとの間隙に配され当該間隙内の空隙層を囲繞する第1メンブレン支持部と、前記第1メンブレンと前記第2メンブレンとの間隙に配され当該間隙内の空隙層を囲繞する第2メンブレン支持部と、前記第1メンブレンと電気的に接続された第1配線部と、前記第2メンブレンと電気的に接続された第2配線部とを備え、前記第1メンブレンは、前記第1メンブレン支持部に囲繞された第1空隙層に面した下層メンブレン部と、前記下層メンブレン部の上方に位置し前記第2メンブレン支持部に囲繞された第2空隙層に面した上層メンブレン部と、前上層メンブレン部と、前記下層メンブレン部とを接続する接続部とが、積層された構造を有し、前記上層メンブレン部と前記下層メンブレン部とは前記接続部により電気的に接続され、前記接続部の前記第1メンブレン上面と平行な方向の断面積は、前記下層メンブレン部及び前記上層メンブレン部の前記第1メンブレン上面と平行な方向の断面積よりも小さい構成であってもよい。 In another aspect, the substrate, the first electrode disposed on or in the substrate, and the first electrode are arranged opposite to the first electrode in a state of being vertically separated from the upper surface of the first electrode. A first membrane, a second membrane disposed opposite to the first membrane in a state of being vertically separated from an upper surface of the first membrane, and a gap between the substrate and the first membrane. A first membrane support that surrounds the void layer, a second membrane support that is disposed in the gap between the first membrane and the second membrane and surrounds the void layer in the gap, and the first membrane A first wiring part electrically connected to the second membrane and a second wiring part electrically connected to the second membrane, wherein the first membrane is surrounded by the first membrane support part; Bottom facing layer A connection connecting the membrane portion, the upper membrane portion facing the second void layer located above the lower membrane support portion and surrounded by the second membrane support portion, the front upper membrane portion, and the lower membrane portion The upper membrane part and the lower membrane part are electrically connected by the connection part, and the cross-sectional area of the connection part in a direction parallel to the upper surface of the first membrane is The lower layer membrane part and the upper layer membrane part may have a configuration smaller than a cross-sectional area in a direction parallel to the upper surface of the first membrane.
 また、別の態様では、前記上層メンブレン部は前記第2メンブレンよりも前記第1メンブレン上面と垂直方向の厚さが大きい構成であってもよい。 In another aspect, the upper membrane portion may have a greater thickness in the direction perpendicular to the upper surface of the first membrane than the second membrane.
 また、別の態様では、前記下層メンブレン部は前記第2メンブレンよりも前記第1メンブレン上面と垂直方向の厚さが大きい構成であってもよい。 In another aspect, the lower layer membrane portion may have a greater thickness in a direction perpendicular to the upper surface of the first membrane than the second membrane.
 また、別の態様では、前記下層メンブレン部は前記第2メンブレンよりも前記第1メンブレン上面と平行な方向の幅が小さい構成であってもよい。 In another aspect, the lower membrane portion may have a smaller width in a direction parallel to the upper surface of the first membrane than the second membrane.
 また、別の態様では、前記下層メンブレン部、前記上層メンブレン部、前記接続部の前記第1メンブレン上面と平行な方向における中心位置は一致している構成であってもよい。 Further, in another aspect, the lower layer membrane portion, the upper layer membrane portion, and the connection portion may have a configuration in which center positions in a direction parallel to the upper surface of the first membrane coincide with each other.
 また、別の態様では、前記第2配線部と電気的に接続されたサブメンブレンと、当該サブメンブレンを支持しかつ前記サブメンブレンと前記基板内部の配線とを電気的に接続するサブメンブレン支持部とを有する構成であってもよい。 In another aspect, the submembrane electrically connected to the second wiring portion, and the submembrane supporting portion that supports the submembrane and electrically connects the submembrane and the wiring inside the substrate. The structure which has these may be sufficient.
 また、別の態様では、前記第1メンブレン及び第2メンブレンは導電性を有する構成であってもよい。 In another aspect, the first membrane and the second membrane may be conductive.
 また、別の態様では、さらに、前記第1メンブレン上方に積層された絶縁性材料からなる第1絶縁性メンブレンを備えた構成であってもよい。 Further, in another aspect, a configuration may be provided that further includes a first insulating membrane made of an insulating material laminated above the first membrane.
 また、別の態様では、さらに、前記第2メンブレン上方に積層された絶縁性材料からなる第2絶縁性メンブレンを備えた構成であってもよい。 Further, in another aspect, the configuration may further include a second insulating membrane made of an insulating material stacked above the second membrane.
 また、別の態様では、上記超音波振動子セルを複数有し、互いに隣接する前記超音波振動子セルの前記第2メンブレン又は前記第2配線部の少なくとも一方が連結されることにより前記複数の超音波振動子セルの前記第2配線部が電気的に接続されている超音波振動子であってもよい。 In another aspect, the ultrasonic transducer cell includes a plurality of the ultrasonic transducer cells, and at least one of the second membrane or the second wiring portion of the ultrasonic transducer cells adjacent to each other is connected to the plurality of the ultrasonic transducer cells. It may be an ultrasonic transducer in which the second wiring part of the ultrasonic transducer cell is electrically connected.
 また、別の態様では、上記超音波振動子を複数有し、当該複数の超音波振動子は、前記第2メンブレン上面と平行な平面において2次元に配列されて振動子アレイを構成している超音波プローブであってもよい。 In another aspect, the ultrasonic transducer includes a plurality of ultrasonic transducers, and the plurality of ultrasonic transducers are arranged two-dimensionally in a plane parallel to the upper surface of the second membrane to constitute a transducer array. An ultrasonic probe may be used.
 また、別の態様では、上記超音波振動子セルを制御する方法であって、前記第1電極及び前記第2配線部にバイアス電圧を印加し、前記第1配線部にパルス電圧を印加して超音波を送信する超音波振動子セルの制御方法であってもよい。 According to another aspect, there is provided a method for controlling the ultrasonic transducer cell, wherein a bias voltage is applied to the first electrode and the second wiring part, and a pulse voltage is applied to the first wiring part. A method for controlling an ultrasonic transducer cell that transmits ultrasonic waves may be used.
 また、別の態様では、上記超音波振動子セルを制御する方法であって、前記第1配線部にバイアス電圧を印加し、前記第1電極及び前記第2配線部にパルス電圧を印加して超音波を送信する超音波振動子セルの制御方法であってもよい。 According to another aspect, there is provided a method for controlling the ultrasonic transducer cell, wherein a bias voltage is applied to the first wiring part, and a pulse voltage is applied to the first electrode and the second wiring part. A method for controlling an ultrasonic transducer cell that transmits ultrasonic waves may be used.
 また、別の態様では、前記第1電極にパルス電圧を印加するタイミングと前記第2配線部にパルス電圧を印加するタイミングが異なる超音波振動子セルの制御方法であってもよい。 In another aspect, there may be a method for controlling an ultrasonic transducer cell in which a timing for applying a pulse voltage to the first electrode and a timing for applying a pulse voltage to the second wiring portion are different.
 また、別の態様では、前記第1の電極に印加するパルス電圧のパルス幅と前記第3の電極に印加するパルス電圧のパルス幅とが異なる超音波振動子セルの制御方法であってもよい。 In another aspect, a method of controlling an ultrasonic transducer cell in which a pulse width of a pulse voltage applied to the first electrode and a pulse width of a pulse voltage applied to the third electrode are different. .
 以下、実施の形態について、図面を参照しながら説明する。なお、同一の構成要素には同一の参照番号を付して説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In addition, the same reference number is attached | subjected to the same component and description is abbreviate | omitted.
 ≪実施の形態1≫
 <超音波プローブ102の構成>
 図1は、実施の形態1に係る超音波プローブ102の全体構成を示す概略図である。図1に示すように、超音波プローブ102は、プローブケース111の内部に超音波を送受波する超音波振動子アレイ112(以後、「振動子アレイ112」とする)と、振動子アレイ112内の超音波振動子(エレメント)に対して独立に電気信号を入出力するための複数の信号線がプリントされたプリント基板114とを備えている。また、超音波プローブ102は、プローブケーブル115を介して超音波診断装置本体109に接続されている。
<< Embodiment 1 >>
<Configuration of Ultrasonic Probe 102>
FIG. 1 is a schematic diagram showing the overall configuration of the ultrasonic probe 102 according to the first embodiment. As shown in FIG. 1, an ultrasonic probe 102 includes an ultrasonic transducer array 112 (hereinafter referred to as “vibrator array 112”) that transmits and receives ultrasonic waves inside a probe case 111, and an transducer array 112. And a printed circuit board 114 on which a plurality of signal lines for inputting / outputting electric signals independently of the ultrasonic transducer (element) are printed. The ultrasonic probe 102 is connected to the ultrasonic diagnostic apparatus main body 109 via the probe cable 115.
 図2は、実施の形態1に係る超音波プローブ102の振動子アレイ112の配列を示した上面図である。図3(a)は、実施の形態1に係る超音波振動子11の基本構造を示した上面図、(b)は(a)図中A-A断面の断面図である。 FIG. 2 is a top view showing the arrangement of the transducer array 112 of the ultrasonic probe 102 according to the first embodiment. FIG. 3A is a top view showing the basic structure of the ultrasonic transducer 11 according to the first embodiment, and FIG. 3B is a cross-sectional view taken along the line AA in FIG.
 図2に示すように、振動子アレイ112は複数の超音波振動子セル12(以後、「振動子セル12」とする)からなる超音波振動子11(以後、「振動子11」とする)を2次元的に配列して構成される。振動子11は、MEMS(Micro Electro Mechanical System)技術を用いて製造される静電容量型超音波振動子(cMUT)であり、被検体内に3次元的に超音波を送受信できるように構成されている。各振動子セル12は電気的エネルギー及び振動による機械的エネルギーを相互変換させる。図2、3に示すように、実施の形態1では、一例として、振動子11は4個の振動子セル12から構成されている。また、各振動子セル12の直径は、例えば、40から80μmである。しかしながら、振動子11を構成する振動子セル12の個数、サイズは任意に設定可能であり上記には限られない。 As shown in FIG. 2, the transducer array 112 includes an ultrasonic transducer 11 (hereinafter referred to as “vibrator 11”) composed of a plurality of ultrasonic transducer cells 12 (hereinafter referred to as “vibrator cells 12”). Are two-dimensionally arranged. The transducer 11 is a capacitive ultrasonic transducer (cMUT) manufactured using MEMS (Micro Electro Mechanical System) technology, and is configured to transmit and receive ultrasonic waves three-dimensionally within a subject. ing. Each transducer cell 12 mutually converts electrical energy and mechanical energy due to vibration. As shown in FIGS. 2 and 3, in the first embodiment, as an example, the vibrator 11 includes four vibrator cells 12. The diameter of each transducer cell 12 is, for example, 40 to 80 μm. However, the number and size of the transducer cells 12 constituting the transducer 11 can be arbitrarily set and are not limited to the above.
 同一の振動子11に含まれる振動子セル12は電気的に接続され、パルス状の電圧を印加することにより同位相で超音波を送信するように構成されている。また、振動子11毎に所定の時間差を設けて駆動電圧を供給することにより、発生した超音波をフォーカス及び偏向することができる。この構成により、超音波プローブ102は3次元方向に超音波を送信してセクタ走査が行えるように構成されている。 The transducer cells 12 included in the same transducer 11 are electrically connected and configured to transmit ultrasonic waves in the same phase by applying a pulsed voltage. In addition, by supplying a driving voltage with a predetermined time difference for each transducer 11, it is possible to focus and deflect the generated ultrasonic waves. With this configuration, the ultrasonic probe 102 is configured to perform sector scanning by transmitting ultrasonic waves in a three-dimensional direction.
 <超音波診断装置100の構成>
 図4は、実施の形態1に係る超音波プローブ102を用いた超音波診断装置100の機能ブロック図である。超音波診断装置100は、超音波を被検体101に送信するとともに、被検体101の内部で反射した超音波信号を受信する超音波プローブ102と、超音波を送信するための駆動信号を発生して超音波プローブ102の超音波素子に供給するとともに、超音波プローブ102の超音波素子で検出した信号を増幅及びデジタル変換して出力する送受信部103と、送受信部103から出力された信号を用いてデジタルビームフォーミング等を行う信号処理部104と、信号処理部104で生成された3次元データに基づいて、3次元画像のレンダリング処理等を施す画像処理部105と、処理を施された画像データに基づいて画像を表示する画像表示部106と、所定のタイミングで駆動信号を発生するように送受信部103を制御する制御部107とを有している。
<Configuration of ultrasonic diagnostic apparatus 100>
FIG. 4 is a functional block diagram of the ultrasonic diagnostic apparatus 100 using the ultrasonic probe 102 according to the first embodiment. The ultrasonic diagnostic apparatus 100 transmits an ultrasonic wave to the subject 101, generates an ultrasonic probe 102 that receives an ultrasonic signal reflected inside the subject 101, and a drive signal for transmitting the ultrasonic wave. And transmitting and receiving the signal detected by the ultrasonic element of the ultrasonic probe 102 and amplifying and digitally converting the signal detected by the ultrasonic element of the ultrasonic probe 102 and the signal output from the transmitter and receiver 103. A signal processing unit 104 that performs digital beam forming, an image processing unit 105 that performs rendering processing of a three-dimensional image based on the three-dimensional data generated by the signal processing unit 104, and processed image data The image display unit 106 that displays an image based on the control, and the control that controls the transmission / reception unit 103 to generate a drive signal at a predetermined timing And a 107.
 また、送受信部103、信号処理部104、画像処理部105、画像表示部106、制御部107は、超音波診断装置本体109に格納されており、超音波プローブ102との間は、複数の信号線のケーブルをひとまとめにして被覆したプローブケーブルで接続されている。なお、検出信号の増幅及びデジタル変換等、送受信部103の一部の機能は超音波プローブ102内で実現されていてもよい。 The transmission / reception unit 103, the signal processing unit 104, the image processing unit 105, the image display unit 106, and the control unit 107 are stored in the ultrasonic diagnostic apparatus main body 109, and a plurality of signals are exchanged with the ultrasonic probe 102. They are connected by a probe cable that covers the cables of the wires together. Note that some functions of the transmission / reception unit 103 such as detection signal amplification and digital conversion may be realized in the ultrasonic probe 102.
 <振動子セル12の構成>
 図5(a)は、実施の形態1に係る振動子セル12の斜視図、(b)は、振動子セル12の分解斜視図である。図6は、実施の形態1に係る振動子セル12の動作を示す説明図であり、(a)は、振動子セル12にバイアス電圧を印加していない状態の断面図、(b)は、振動子セル12にバイアス電圧を印加した状態の断面図である。
<Configuration of vibrator cell 12>
FIG. 5A is a perspective view of the transducer cell 12 according to Embodiment 1, and FIG. 5B is an exploded perspective view of the transducer cell 12. 6A and 6B are explanatory diagrams showing the operation of the transducer cell 12 according to the first embodiment. FIG. 6A is a cross-sectional view of a state in which a bias voltage is not applied to the transducer cell 12, and FIG. 3 is a cross-sectional view of a state in which a bias voltage is applied to a transducer cell 12. FIG.
 図5(a)、(b)、図6(a)に示すように、振動子セル12はシリコンウエハー、ガラス、石英等の電気絶縁性を有する素材で構成された基板21と、基板21内部に配置された導電性を有する下層電極22と、第1キャビティ23(第1空隙層)を挟んで下層電極22と対向するように配置された第1メンブレン25と、第2キャビティ27(第2空隙層)を挟んで第1メンブレン25と対向するように配置された第2メンブレン29と第1メンブレン支持部31a、第2メンブレン支持部31bを備えている。また、第1メンブレン25の下方及び上方に各々絶縁膜24及び26、第2メンブレン29の下方に絶縁膜28を備えている。 As shown in FIGS. 5A, 5B, and 6A, the vibrator cell 12 includes a substrate 21 made of an electrically insulating material such as a silicon wafer, glass, quartz, and the like, and the inside of the substrate 21. A conductive lower layer electrode 22, a first membrane 25 disposed to face the lower electrode 22 across the first cavity 23 (first gap layer), and a second cavity 27 (second A second membrane 29, a first membrane support portion 31a, and a second membrane support portion 31b are provided so as to be opposed to the first membrane 25 with a gap layer therebetween. Insulating films 24 and 26 are provided below and above the first membrane 25, respectively, and an insulating film 28 is provided below the second membrane 29.
 ここで、第1メンブレン25の基板12と垂直な方向の厚みは第2メンブレン29の厚みよりも厚くなるように構成されている。例えば、第1メンブレン25の厚みを2から4μmとし、第2メンブレン29の厚みを1から2μmとしてもよい。 Here, the thickness of the first membrane 25 in the direction perpendicular to the substrate 12 is configured to be larger than the thickness of the second membrane 29. For example, the thickness of the first membrane 25 may be 2 to 4 μm, and the thickness of the second membrane 29 may be 1 to 2 μm.
 下層電極22は、例えば、導電性を有するアルミ、銀、銅、クロム等の金属を用いることができ、例えば、膜厚は約4μmで構成することができる。第1メンブレン及び第2メンブレンは、導電性を有する材料からなり、例えば、アルミ、銀、銅、クロム等の金属、導電性樹脂等を用いることができる。第1メンブレン25及び第2メンブレン29は電極を兼ねており、下層電極22、第1メンブレン25、第2メンブレン29は夫々配線部30a、30b、30cに接続されている。 The lower layer electrode 22 can be made of, for example, a conductive metal such as aluminum, silver, copper, or chromium. For example, the film thickness can be about 4 μm. The first membrane and the second membrane are made of a conductive material. For example, a metal such as aluminum, silver, copper, or chromium, a conductive resin, or the like can be used. The first membrane 25 and the second membrane 29 also serve as electrodes, and the lower layer electrode 22, the first membrane 25, and the second membrane 29 are connected to the wiring portions 30a, 30b, and 30c, respectively.
 第1メンブレン支持部31a、第2メンブレン支持部31b、絶縁膜24、26、28は、絶縁性を有する薄膜材料を用いることができ、例えば、SiC、SiO2、SiNや、これらの混合物を用いてもよい。第1メンブレン支持部31a、第2メンブレン支持部31bの図6(a)における基板21上面と平行な平面方向の厚みは、例えば、2から4μmに構成することができる。ここで、1メンブレン支持部31aの図6(a)における平面方向の厚みは、第2メンブレン支持部31bの厚みより大きい。例えば、第1メンブレン支持部31aを3から5μmとし、第2メンブレン支持部31bを2から3μmに構成することができる。 For the first membrane support part 31a, the second membrane support part 31b, and the insulating films 24, 26, and 28, an insulating thin film material can be used. For example, SiC, SiO 2 , SiN, or a mixture thereof is used. May be. The thickness of the first membrane support portion 31a and the second membrane support portion 31b in the plane direction parallel to the upper surface of the substrate 21 in FIG. 6A can be configured to be 2 to 4 μm, for example. Here, the thickness of the one membrane support portion 31a in the planar direction in FIG. 6A is larger than the thickness of the second membrane support portion 31b. For example, the first membrane support 31a can be 3 to 5 μm, and the second membrane support 31b can be 2 to 3 μm.
 第1キャビティ23は、第1メンブレン25とメンブレン支持部31aと基板21とで囲まれた空間であり、第2キャビティ27は第1メンブレン25とメンブレン支持部31bと第2メンブレン29とで囲まれた空間である。第1キャビティ23、第2キャビティ27ともに、略真空となるように構成される。 The first cavity 23 is a space surrounded by the first membrane 25, the membrane support portion 31 a, and the substrate 21, and the second cavity 27 is surrounded by the first membrane 25, the membrane support portion 31 b, and the second membrane 29. Space. Both the first cavity 23 and the second cavity 27 are configured to be substantially vacuum.
 第1キャビティ23は、第2キャビティ27よりも図6(a)における基板21上面と平行な方向の幅が小さくなるように、即ちメンブレンの積層方向に垂直な断面積は、第1キャビティ23が第2キャビティ27よりも小さくなるように構成されている。第1キャビティ23及び第2キャビティ27の、図6(a)における基板21上面と平行な方向の幅は、例えば、40から80μmとすることができる。また、第1キャビティ23及び第2キャビティ27の高さは、例えば、200から300nmとすることができる。 The first cavity 23 is smaller in width in the direction parallel to the upper surface of the substrate 21 in FIG. 6A than the second cavity 27, that is, the cross-sectional area perpendicular to the stacking direction of the membrane is It is configured to be smaller than the second cavity 27. The width of the first cavity 23 and the second cavity 27 in the direction parallel to the upper surface of the substrate 21 in FIG. 6A can be set to 40 to 80 μm, for example. The height of the first cavity 23 and the second cavity 27 can be set to 200 to 300 nm, for example.
 また、上述のとおり、第1キャビティ23及び第2キャビティ27と第1メンブレン25及び第2メンブレン29の間には、それぞれ絶縁膜24、26、28が配置されている。絶縁膜24、26、28の厚みは、例えば200から400nmとすることができる。 Also, as described above, the insulating films 24, 26, and 28 are disposed between the first cavity 23 and the second cavity 27 and the first membrane 25 and the second membrane 29, respectively. The thickness of the insulating films 24, 26, and 28 can be set to 200 to 400 nm, for example.
 以下、メンブレンの積層方向に垂直なキャビティもしくはメンブレン支持部の断面積は、単にキャビティの断面積もしくはメンブレン支持部の断面積と表現する。 Hereinafter, the cross-sectional area of the cavity or the membrane support part perpendicular to the stacking direction of the membrane is simply expressed as the cross-sectional area of the cavity or the cross-sectional area of the membrane support part.
 なお、第1メンブレン25が電極を兼ねる代わりに、第1メンブレン25上もしくは内部に電極を形成してもよい。同様に第2メンブレン29が電極を兼ねる代わりに、第2メンブレン29上もしくは内部に電極を形成してもよい。また、下層電極22を基板21内部に配置する代わりに、基板21上に配置してもよい。例えば、第1メンブレン25は絶縁性材料からなる第1絶縁性メンブレンと、第1絶縁性メンブレンを挟むように配置された上下の電極層とを有し、上下の電極層は電気的に接続されている構成としてもよい。また、第2メンブレン29は絶縁性材料からなる第2絶縁性メンブレンと電極層とを有する構成としてもよい。 In addition, instead of the first membrane 25 also serving as an electrode, an electrode may be formed on or in the first membrane 25. Similarly, instead of the second membrane 29 also serving as an electrode, an electrode may be formed on or in the second membrane 29. Further, the lower layer electrode 22 may be disposed on the substrate 21 instead of being disposed inside the substrate 21. For example, the first membrane 25 has a first insulating membrane made of an insulating material and upper and lower electrode layers arranged so as to sandwich the first insulating membrane, and the upper and lower electrode layers are electrically connected. It is good also as composition which has. In addition, the second membrane 29 may include a second insulating membrane made of an insulating material and an electrode layer.
 また、本実施の形態における振動子セル12は、一例として六角形状のものを挙げているが、これに限ったものではなくその他の形状であってもよい。 Further, although the transducer cell 12 in the present embodiment has a hexagonal shape as an example, it is not limited to this and may have other shapes.
 <振動子セル12の製造方法>
 次に、振動子セル12の製造方法について説明する。図7、図8は、実施の形態1に係る振動子セル12の製造方法を示す概略図である。
<Method for Manufacturing Vibrator Cell 12>
Next, a method for manufacturing the transducer cell 12 will be described. 7 and 8 are schematic views showing a method for manufacturing the transducer cell 12 according to the first embodiment.
 第1ステップにおいて、半導体基板の上面に配線層120及び基板21となる絶縁膜を形成し、その上面に配線層120と連結するように構成される下層電極22をエッチングによりパターニングして形成する。さらにその上に薄い絶縁膜21Aを形成する(図7(a))。 In the first step, an insulating film to be the wiring layer 120 and the substrate 21 is formed on the upper surface of the semiconductor substrate, and a lower layer electrode 22 configured to be connected to the wiring layer 120 is patterned on the upper surface by etching. Further, a thin insulating film 21A is formed thereon (FIG. 7A).
 次に、第2ステップにおいて、絶縁膜21Aの上面に第1キャビティ23形成用の第1犠牲層121と絶縁膜24とを形成する。そして、第1キャビティ23を形成する部分に対応したマスクを2次元的に配列させ、マスクを施されていない部分をエッチング処理等で除去して下層電極22に届く凹部121Aを形成する(図7(b))。 Next, in the second step, the first sacrificial layer 121 for forming the first cavity 23 and the insulating film 24 are formed on the upper surface of the insulating film 21A. Then, a mask corresponding to a portion where the first cavity 23 is formed is two-dimensionally arranged, and a portion not subjected to the mask is removed by an etching process or the like to form a recess 121A reaching the lower layer electrode 22 (FIG. 7). (B)).
 次に、第3ステップにおいて、凹部121Aを充填するとともに絶縁膜24を覆うように第1メンブレン25と絶縁膜26とを形成する。そして、第1メンブレン25と絶縁膜26とを貫通し第1犠牲層121に届く孔25Aを形成する(図7(c))。セルとセルの間の孔はセル同士を分離する溝形状であってもよい。 Next, in the third step, the first membrane 25 and the insulating film 26 are formed so as to fill the recess 121A and cover the insulating film 24. Then, a hole 25A that penetrates the first membrane 25 and the insulating film 26 and reaches the first sacrificial layer 121 is formed (FIG. 7C). The hole between the cells may have a groove shape that separates the cells.
 次に、第4ステップにおいて、反応性のガス等を用いて孔からエッチングにより第1犠牲層121を除去して第1キャビティ23を形成する(図7(d)。 Next, in a fourth step, the first sacrificial layer 121 is removed from the hole by etching using a reactive gas or the like to form the first cavity 23 (FIG. 7D).
 次に、第5ステップにおいて、第2ステップと同様に、絶縁膜26の上面に第2キャビティ27形成用の第3犠牲層123と絶縁膜28を形成する。そして、第2キャビティ27を形成する部分に対応したマスクを2次元的に配列させ、マスクを施されていない部分をエッチングにより第3の犠牲層123及び絶縁膜28を部分的に除去して絶縁膜26に届く凹部123Aを形成する(図8(a))。このとき、凹部123Aの横方向の開口幅は凹部121Aの横方向の開口幅よりも小さく形成する。なお、第2メンブレン29と第1メンブレン25を絶縁するため、絶縁膜26は除去しない。 Next, in the fifth step, as in the second step, the third sacrificial layer 123 for forming the second cavity 27 and the insulating film 28 are formed on the upper surface of the insulating film 26. Then, a mask corresponding to a portion where the second cavity 27 is to be formed is two-dimensionally arranged, and the third sacrificial layer 123 and the insulating film 28 are partially removed by etching in a portion where the mask is not applied, so as to be insulated. A recess 123A reaching the film 26 is formed (FIG. 8A). At this time, the lateral opening width of the recess 123A is formed smaller than the lateral opening width of the recess 121A. The insulating film 26 is not removed because the second membrane 29 and the first membrane 25 are insulated.
 次に、第6ステップにおいて、第3ステップと同様に、前工程で除去した凹部123Aの部分を充填すると共に絶縁膜28を覆う膜である第2メンブレン29を形成する。このとき、第2メンブレン29の膜厚を第1メンブレン25の膜厚よりも薄く形成する。そして、第2メンブレン29を貫通し、第3の犠牲層123に届く孔29Aを形成する(図8(b))。セルとセルの間の孔は溝形状であってもよいが同一のエレメント内のセル同士は少なくとも一部がつながるように形成する。 Next, in the sixth step, as in the third step, a second membrane 29 is formed that fills the portion of the recess 123A removed in the previous step and covers the insulating film 28. At this time, the film thickness of the second membrane 29 is formed thinner than the film thickness of the first membrane 25. And the hole 29A which penetrates the 2nd membrane 29 and reaches the 3rd sacrificial layer 123 is formed (FIG.8 (b)). The holes between the cells may be groove-shaped, but the cells in the same element are formed so as to be at least partially connected.
 最後に前工程で形成した孔29Aからエッチングにより第3の犠牲層123を除去して第2キャビティ27を形成し、第2キャビティ27の内部が真空状態を保つようにカバー層124を形成して封止して振動子セル12を完成する(図8(c))。 Finally, the third sacrificial layer 123 is removed by etching from the hole 29A formed in the previous step to form the second cavity 27, and the cover layer 124 is formed so that the inside of the second cavity 27 is kept in a vacuum state. The transducer cell 12 is completed by sealing (FIG. 8C).
 ところで、上記の製造方法において、第1キャビティ23、及び、第2キャビティ27は完全に封止され、ほぼ真空状態となるように構成されている。これらのキャビティは公知のMEMS技術、例えば、SM法(Surface Micromachining法;犠牲層を除去し、キャビティを形成する方法)等を用いて形成することができる。 By the way, in the manufacturing method described above, the first cavity 23 and the second cavity 27 are completely sealed and configured to be almost in a vacuum state. These cavities can be formed using a known MEMS technique, for example, SM method (Surface Micromachining method; a method of forming a cavity by removing a sacrificial layer).
 この時、第2メンブレン29及び絶縁膜28内部を通るように第2キャビティ27から第1キャビティ23まで間に犠牲層除去孔(図示は省略)を空けておくことで、一度の犠牲層エッチングで両方のキャビティを形成することができる。また、第2メンブレン29上の犠牲層除去孔を塞げば両方のキャビティを封止できる。 At this time, a sacrificial layer removal hole (not shown) is provided between the second cavity 27 and the first cavity 23 so as to pass through the inside of the second membrane 29 and the insulating film 28. Both cavities can be formed. Further, if the sacrificial layer removal hole on the second membrane 29 is closed, both cavities can be sealed.
 <振動子セル12の動作について>
 次に、このように構成された実施の形態1の振動子セル12の動作について説明する。図9は、図6(a)、(b)の振動子セル12における配線部30a、30b、30cに印加される電圧とそのタイミングを示した図である。ここで、71は、配線部30a、30cに対して印加する電圧、72は配線部30bに印加する電圧を示している。
<Operation of the vibrator cell 12>
Next, the operation of the transducer cell 12 of the first embodiment configured as described above will be described. FIG. 9 is a diagram showing voltages applied to the wiring portions 30a, 30b, and 30c in the transducer cell 12 shown in FIGS. 6A and 6B and timings thereof. Here, 71 indicates a voltage applied to the wiring portions 30a and 30c, and 72 indicates a voltage applied to the wiring portion 30b.
 まず、初期状態(t=t0のタイミング)において、配線部30a、30cにはDCバイアス電圧(例えば、-100V)を印加し、配線部30bは0Vとしておく。 First, in an initial state (timing at t = t0), a DC bias voltage (for example, −100 V) is applied to the wiring portions 30a and 30c, and the wiring portion 30b is set to 0V.
 このような状態下では、図6(b)に示すように、第1メンブレン25と第2メンブレン29の間に静電引力が働き、第2メンブレン29が下側に撓む。また、下層電極22と第1メンブレン25の間にも静電引力が働き第1メンブレン25が僅かに下側に撓む。 Under such a state, as shown in FIG. 6B, electrostatic attraction acts between the first membrane 25 and the second membrane 29, and the second membrane 29 bends downward. In addition, electrostatic attraction acts between the lower layer electrode 22 and the first membrane 25, and the first membrane 25 is slightly bent downward.
 次にt=t1のタイミングで、配線部30a、30cにバイアス電圧を印加したまま、配線部30bにバイアス電圧程度のパルス電圧を印加する。そうすると、下層電極22、第1メンブレン25、及び、第2メンブレン29の間の電位差は瞬間的にほぼ0Vとなり、各電極間に発生していた静電気力が失われ、第1メンブレン25及び第2メンブレン29の弾性力によって図6(a)に示すような状態に戻る。この反動作用によって、第2メンブレン29の上方に超音波を発生させる。 Next, at the timing of t = t1, while applying a bias voltage to the wiring portions 30a and 30c, a pulse voltage of about the bias voltage is applied to the wiring portion 30b. Then, the potential difference among the lower layer electrode 22, the first membrane 25, and the second membrane 29 instantaneously becomes almost 0V, and the electrostatic force generated between the electrodes is lost, and the first membrane 25 and the second membrane 29 The state shown in FIG. 6A is restored by the elastic force of the membrane 29. By this reaction, an ultrasonic wave is generated above the second membrane 29.
 パルス電圧を配線部30bに印加した瞬間に、第1メンブレン25では変位は小さいが大きな加速度が発生し、この加速度が第2メンブレン29に伝わるとともに、第2メンブレン29の弾性力との相乗効果で第2メンブレン29に大きな変位を発生させるので、単層構造のものより大きな出力が得られる。 At the moment when the pulse voltage is applied to the wiring portion 30b, the first membrane 25 generates a small acceleration but a large acceleration. This acceleration is transmitted to the second membrane 29, and is also synergistic with the elastic force of the second membrane 29. Since a large displacement is generated in the second membrane 29, an output larger than that of the single layer structure can be obtained.
 また、バイアス電圧を印加した状態で超音波(音圧)を受信すると、第1メンブレン25及び第2メンブレン29が振動し、この際に起きる下層電極22と第1メンブレン25の間の静電容量変化、及び、第1メンブレン25と第2メンブレン29の間の静電容量変化に基づき、受信した超音波に係る電気信号を取得することができる。 When an ultrasonic wave (sound pressure) is received with a bias voltage applied, the first membrane 25 and the second membrane 29 vibrate, and the capacitance between the lower layer electrode 22 and the first membrane 25 that occurs at this time is generated. Based on the change and the capacitance change between the first membrane 25 and the second membrane 29, an electrical signal related to the received ultrasonic wave can be acquired.
 なお、図6(a)、(b)の説明においては、振動子セル12の動作として説明したが、振動子セル12によって構成された振動子11、振動子11によって構成された振動子アレイ112も同様の動作となる。 6A and 6B, the operation of the transducer cell 12 has been described. However, the transducer 11 configured by the transducer cell 12 and the transducer array 112 configured by the transducer 11 are described. Is the same operation.
 <振動子セル12の超音波送信特性について>
 次に、振動子セル12の超音波送信特性について説明する。ここでは、実施の形態1における振動子、従来の単層構造の振動子、従来の単層構造のを単純に積層した比較例に係る振動子について、各々の超音波送信特性を有限要素法による構造解析シミュレーションを用いて解析その結果を比較する。
<Regarding the ultrasonic transmission characteristics of the transducer cell 12>
Next, the ultrasonic transmission characteristics of the transducer cell 12 will be described. Here, the ultrasonic transmission characteristics of the vibrator according to the first embodiment, the vibrator having the conventional single layer structure, and the vibrator according to the comparative example in which the conventional single layer structure is simply laminated are determined by the finite element method. The analysis results are compared using structural analysis simulation.
 図10は、実施の形態1に係る振動子11の超音波送信特性と従来及び比較例の静電容量型振動子の超音波送信特性とを比較した図である。図11は、従来の静電容量型振動子構造を単純に積層させた比較例に係る振動子セルの断面図である。図12は、図10に示した超音波送信特性を調べる際の条件を示したチャートである。 FIG. 10 is a diagram comparing the ultrasonic transmission characteristics of the vibrator 11 according to the first embodiment and the ultrasonic transmission characteristics of the conventional and comparative capacitive vibrators. FIG. 11 is a cross-sectional view of a transducer cell according to a comparative example in which conventional capacitive transducer structures are simply stacked. FIG. 12 is a chart showing conditions for examining the ultrasonic transmission characteristics shown in FIG.
 ここで、図10において、超音波送信特性83は実施の形態1における振動子11の超音波送信特性のシミュレーション結果を表し、超音波送信特性81は図28に示した従来の単層構造を有する振動子の超音波送信特性のシミュレーション結果である。また、超音波送信特性82は、メンブレン厚とキャビティ断面積を変えずに単純にメンブレンを積層した図11に示した比較例に係る振動子の超音波送信特性のシミュレーション結果である。ここで、メンブレン厚及びキャビティの断面積は、図12の表に示したとおりである。超音波送信特性として振動子セル12から所定の距離離間した位置における音圧をシミュレーションで求めた。 Here, in FIG. 10, an ultrasonic transmission characteristic 83 represents a simulation result of the ultrasonic transmission characteristic of the transducer 11 in the first embodiment, and the ultrasonic transmission characteristic 81 has the conventional single-layer structure shown in FIG. It is a simulation result of the ultrasonic transmission characteristic of a vibrator. The ultrasonic transmission characteristic 82 is a simulation result of the ultrasonic transmission characteristic of the vibrator according to the comparative example shown in FIG. 11 in which the membranes are simply laminated without changing the membrane thickness and the cavity cross-sectional area. Here, the membrane thickness and the cross-sectional area of the cavity are as shown in the table of FIG. As an ultrasonic transmission characteristic, the sound pressure at a position separated from the transducer cell 12 by a predetermined distance was obtained by simulation.
 図10に示すように、従来例に係る超音波送信特性81と比較例に係る超音波送信特性82とを比較すると、単層構造の従来例に係る超音波送信特性81の方が、メンブレン厚とキャビティの断面積を変えずに単純積層した比較例に係る超音波送信特性82よりも高い超音波出力を示した。これに対し、実施の形態1に係る超音波送信特性83では、従来例に係る超音波送信特性81に比べて2倍(6dB改善)の出力が得られた。すなわち、実施の形態1に係る超音波送信特性83では、メンブレン厚やキャビティの断面積(横幅)を変えて積層させることで超音波出力の改善が見られた。ここで、メンブレン支持部の断面積を変えることによりキャビティの断面積を変化させる構成としている。 As shown in FIG. 10, when the ultrasonic transmission characteristic 81 according to the conventional example is compared with the ultrasonic transmission characteristic 82 according to the comparative example, the ultrasonic transmission characteristic 81 according to the conventional example having a single-layer structure has a greater membrane thickness. The ultrasonic output was higher than the ultrasonic transmission characteristic 82 according to the comparative example in which the layers were simply laminated without changing the cross-sectional area of the cavity. On the other hand, in the ultrasonic transmission characteristic 83 according to the first embodiment, an output twice (6 dB improvement) was obtained as compared with the ultrasonic transmission characteristic 81 according to the conventional example. That is, in the ultrasonic transmission characteristic 83 according to Embodiment 1, the ultrasonic output was improved by changing the thickness of the membrane and the cross-sectional area (lateral width) of the cavity. Here, it is set as the structure which changes the cross-sectional area of a cavity by changing the cross-sectional area of a membrane support part.
 実施の形態1や比較例に示した静電容量型振動子構造を積層させ振動子セルでは、パルス電圧を配線部30bに印加した瞬間に、第1メンブレン25では変位は小さいが大きな加速度が発生し、この加速度が第2メンブレン29に伝わるとともに、第2メンブレン29の弾性力との相乗効果で第2メンブレン29に変位を発生させる。この際、実施の形態1では、メンブレン厚やキャビティの断面積(横幅)を変えて積層させたことで、第1メンブレン25の周波数が第2メンブレン29の周波数よりも高く構成されている。そのため、第1メンブレン25と第2メンブレン29との間で各メンブレンの変位時の位相を異ならせることができ、単層構造のものより大きな出力が得られる。 In the vibrator cell in which the capacitive vibrator structure shown in the first embodiment or the comparative example is laminated, the first membrane 25 generates a small acceleration but a large acceleration at the moment when the pulse voltage is applied to the wiring portion 30b. The acceleration is transmitted to the second membrane 29, and a displacement is generated in the second membrane 29 by a synergistic effect with the elastic force of the second membrane 29. At this time, in Embodiment 1, the frequency of the first membrane 25 is configured to be higher than the frequency of the second membrane 29 by changing the thickness of the membrane and the sectional area (lateral width) of the cavity. Therefore, the phase at the time of displacement of each membrane can be made different between the first membrane 25 and the second membrane 29, and an output larger than that of the single layer structure can be obtained.
 また、第2メンブレン29が変位するときには、第1メンブレン25は撓まない方が望ましい。実施の形態1では、第1メンブレン25を第2メンブレン29よりも厚く構成することで撓みを抑えることができると考えられる。実施の形態1に係る超音波送信特性83では、メンブレン厚やキャビティの断面積(横幅)を変えて積層させることで、第1メンブレン25の撓みを減少させることができる。このように、第1メンブレン25を撓みにくくしたことで、第2メンブレン29に大きな変位を発生させることができるので超音波出力の改善が見られたと考えられる。 Also, it is desirable that the first membrane 25 does not bend when the second membrane 29 is displaced. In the first embodiment, it is considered that bending can be suppressed by configuring the first membrane 25 to be thicker than the second membrane 29. In the ultrasonic transmission characteristic 83 according to the first embodiment, the bending of the first membrane 25 can be reduced by changing the thickness of the membrane and the cross-sectional area (lateral width) of the cavity. As described above, since the first membrane 25 is made difficult to bend, a large displacement can be generated in the second membrane 29, so that it is considered that an improvement in the ultrasonic output was observed.
 なお、本シミュレーションでは簡単のため、メンブレン等の形状を正方形としているが、その他の形状でシミュレーションをさせても同様の傾向が得られると考えられる。 In this simulation, the shape of the membrane or the like is square for simplicity, but it is considered that the same tendency can be obtained even if simulation is performed with other shapes.
 また、本実施の形態では、配線部30a、30cにバイアス電圧を印加し、配線部30bにパルス電圧を印加する構成としたが、配線部30bにバイアス電圧を印加し、配線部30a、30cにパルス電圧を印加することもできる。この場合、配線部30a、30cには夫々異なるパルス電圧を印加することができるため、第1メンブレン25、及び第2メンブレン29のそれぞれの共振周波数に合わせたパルス幅で電圧を印加することで効果的に動作させることができる。駆動周波数は超音波プローブの診断目的や診断する被検体の部位に応じて最適値が異なる。その目的に応じて振動子セルの共振周波数を設定し駆動することが好ましい。例えば、腹部など皮膚面から深い部位については約3Mhzが好ましく、頸動脈などの皮膚面から浅い部位については約10MHzが好ましい。また、乳房に対しては約7MHzが好ましい。そのため、駆動周波数は3MHzから10MHzを含む範囲から選択されることが好ましい。 In the present embodiment, the bias voltage is applied to the wiring portions 30a and 30c and the pulse voltage is applied to the wiring portion 30b. However, the bias voltage is applied to the wiring portion 30b and the wiring portions 30a and 30c are applied. A pulse voltage can also be applied. In this case, since different pulse voltages can be applied to the wiring portions 30a and 30c, it is effective to apply voltages with pulse widths that match the respective resonance frequencies of the first membrane 25 and the second membrane 29. Can be operated automatically. The optimum driving frequency varies depending on the diagnostic purpose of the ultrasonic probe and the location of the subject to be diagnosed. It is preferable to set and drive the resonance frequency of the transducer cell according to the purpose. For example, about 3 Mhz is preferable for a site deep from the skin surface such as the abdomen, and about 10 MHz is preferable for a site shallow from the skin surface such as the carotid artery. Also, about 7 MHz is preferable for the breast. Therefore, the driving frequency is preferably selected from a range including 3 MHz to 10 MHz.
 また、第2メンブレン29に電圧を印加するタイミングをわずかに遅らせると、被検体からの反力が低減し第2メンブレンを被検体側に大きく変形させられるので、さらに出力を向上させることができる。 Further, if the timing of applying a voltage to the second membrane 29 is slightly delayed, the reaction force from the subject is reduced and the second membrane can be greatly deformed to the subject side, so that the output can be further improved.
 また、実施の形態1では、配線部30a、30cに同じ電圧のバイアス電圧を印加する構成としたが、それぞれ異なるバイアス電圧を印加してもよい。例えば、配線部30aに-100V、配線部30cに-90Vとして電圧のバランスを崩し、第1メンブレン25を基板21側により引き付けるように構成する。この場合、構成次第では第2メンブレン29のストロークを第2キャビティ27の間隔(縦幅)よりも大きくすることができ、送信出力を向上させることができる。 In the first embodiment, the same bias voltage is applied to the wiring portions 30a and 30c. However, different bias voltages may be applied. For example, the voltage is unbalanced by setting −100V to the wiring portion 30a and −90V to the wiring portion 30c, and the first membrane 25 is attracted to the substrate 21 side. In this case, depending on the configuration, the stroke of the second membrane 29 can be made larger than the interval (vertical width) of the second cavities 27, and the transmission output can be improved.
 以上に説明したように本実施の形態1の振動子11は、従来構造で課題であった送信出力を大幅に改善することができる。これにより、浅い部位から深い部位まで広範囲に超音波を送受信できる2次元アレイプローブが実現でき、広範囲で高画質な3D/4Dイメージングが可能な超音波診断が可能となる。 As described above, the vibrator 11 according to the first embodiment can greatly improve the transmission output, which has been a problem with the conventional structure. As a result, a two-dimensional array probe capable of transmitting and receiving ultrasonic waves in a wide range from a shallow site to a deep site can be realized, and ultrasonic diagnosis capable of 3D / 4D imaging with a wide range and high image quality is possible.
 <変形例1>
 図13は、実施の形態1の変形例1に係る振動子セル12の断面図である。実施の形態1では、第1メンブレン25の厚みは第2メンブレン29よりも厚くなるように構成し、第1キャビティ23は第2キャビティ27よりも断面積(図面上では横幅)が小さくなるように構成したが、変形例1では図13に示すように、第2メンブレン29の厚みを第1メンブレン25よりも厚くなるように構成し、第2キャビティ27は第1キャビティ23よりも横幅が小さくなるように構成している。
<Modification 1>
FIG. 13 is a cross-sectional view of the transducer cell 12 according to the first modification of the first embodiment. In the first embodiment, the first membrane 25 is configured to be thicker than the second membrane 29, and the first cavity 23 has a smaller cross-sectional area (lateral width in the drawing) than the second cavity 27. In the first modification, as shown in FIG. 13, the second membrane 29 is configured to be thicker than the first membrane 25, and the second cavity 27 has a smaller width than the first cavity 23. It is configured as follows.
 図14は、実施の形態1の変形例1の振動子11の超音波送信特性と従来の静電容量型振動子の超音波送信特性とを比較した図である。図14において、超音波送信特性81は、図10に示した従来の単層構造を有する振動子の超音波送信特性を、超音波送信特性83は、実施の形態1に係る振動子の超音波送信特性を、超音波送信特性84は変形例1に係る振動子の超音波送信特性のシミュレーション結果を示している。ここで、メンブレン厚及びキャビティの断面積は、図15に示したとおりである。変形例1と実施の形態1とはメンブレン厚及びキャビティ断面積を逆にした条件の下でのシミュレーション結果である。 FIG. 14 is a diagram comparing the ultrasonic transmission characteristics of the vibrator 11 according to the first modification of the first embodiment and the ultrasonic transmission characteristics of a conventional capacitive vibrator. In FIG. 14, the ultrasonic transmission characteristic 81 is the ultrasonic transmission characteristic of the vibrator having the conventional single layer structure shown in FIG. 10, and the ultrasonic transmission characteristic 83 is the ultrasonic wave of the vibrator according to the first embodiment. The transmission characteristic, the ultrasonic transmission characteristic 84, shows the simulation result of the ultrasonic transmission characteristic of the vibrator according to the first modification. Here, the membrane thickness and the cross-sectional area of the cavity are as shown in FIG. Modification 1 and Embodiment 1 are simulation results under conditions in which the membrane thickness and the cavity cross-sectional area are reversed.
 図14に示すように、変形例1に係る超音波送信特性84においては、実施の形態1に係る超音波送信特性83及び従来例に係る超音波送信特性81との比較において、約12Mhzより高い周波数において高い音圧レベルを示す。実施の形態1及び変形例1におけるシミュレーション結果から、メンブレン厚あるいはキャビティの断面積を異ならせてメンブレンを積層させることが超音波送信特性の向上に効果的であることがわかる。 As shown in FIG. 14, the ultrasonic transmission characteristic 84 according to the first modification is higher than about 12 Mhz in comparison with the ultrasonic transmission characteristic 83 according to the first embodiment and the ultrasonic transmission characteristic 81 according to the conventional example. High sound pressure level at frequency. From the simulation results in the first embodiment and the first modification, it can be seen that stacking the membranes with different membrane thicknesses or cavity cross-sectional areas is effective in improving the ultrasonic transmission characteristics.
 また、図14に示すように、変形例1に係る超音波送信特性84と実施の形態1に係る超音波送信特性83との比較により、メンブレン厚あるいはキャビティの断面積は、メンブレンの共振周波数に影響していることがわかる。 Further, as shown in FIG. 14, by comparing the ultrasonic transmission characteristic 84 according to the modification 1 and the ultrasonic transmission characteristic 83 according to the first embodiment, the membrane thickness or the sectional area of the cavity is equal to the resonance frequency of the membrane. You can see that it has an effect.
 <変形例2>
 図16は、実施の形態1の変形例2に係る振動子セル12の断面図である。実施の形態1は静電容量型振動子の構造を2段積層した形態で説明したが、変形例2では、図16に示すように3段に積層した構成としている。図16に示すように、変形例2は、実施の形態1の構成に加えて、第2メンブレン29と対向するように配置された第3メンブレン44、第2メンブレン29と第3メンブレン44間に配置されている第3キャビティ42を取り囲むメンブレン支持部31c、及び第3キャビティ42と第2メンブレン29及び第3メンブレン44の間に挿入された絶縁膜41及び43を有する。
<Modification 2>
FIG. 16 is a cross-sectional view of the transducer cell 12 according to the second modification of the first embodiment. Although the first embodiment has been described in the form in which the structure of the capacitive vibrator is laminated in two stages, the modification 2 has a structure in which the structure is laminated in three stages as shown in FIG. As shown in FIG. 16, in the second modification, in addition to the configuration of the first embodiment, the third membrane 44 disposed so as to face the second membrane 29, and between the second membrane 29 and the third membrane 44. A membrane supporting portion 31c surrounding the third cavity 42 disposed, and insulating films 41 and 43 inserted between the third cavity 42 and the second membrane 29 and the third membrane 44 are provided.
 各層の電極あるいはメンブレンは配線部30a、30b、30c、30dに連結され、配線部30a、30cにバイアス電圧、配線部30b、配線部30dにパルス電圧を印加することにより超音波が送信される。 The electrodes or membranes of each layer are connected to the wiring portions 30a, 30b, 30c, and 30d, and an ultrasonic wave is transmitted by applying a bias voltage to the wiring portions 30a and 30c and a pulse voltage to the wiring portions 30b and 30d.
 ここで、第3メンブレン44の厚みは第2メンブレン29の厚みよりも薄く形成されている。また、第3キャビティ42の横方向の幅は、第2キャビティ27の横方向の幅よりも大きく構成されている。このように、メンブレン厚もしくはキャビティの断面積を変化させながらメンブレンを積層を増やすことで、実施の形態1及び変形例1に対してさらに超音波送信出力を向上させることができる。 Here, the thickness of the third membrane 44 is formed thinner than the thickness of the second membrane 29. Further, the lateral width of the third cavity 42 is configured to be larger than the lateral width of the second cavity 27. Thus, by increasing the number of laminated layers while changing the membrane thickness or the cross-sectional area of the cavity, the ultrasonic transmission output can be further improved with respect to the first embodiment and the first modification.
 <変形例3>
 図17は、実施の形態1の変形例3に係る振動子セル12の断面図である。実施の形態1では静電容量型振動子を対称な構造で説明したが、変形例3に係る振動子セルでは、図17に示すように、第1キャビティ23と第2キャビティ27の中心位置を横方向にずらした構成を有している。例えば、第1キャビティ23の左右両側でのメンブレン支持部の幅と、第2キャビティ27の左右両側でのメンブレン支持部の幅とを、第1キャビティ23と第2キャビティ27とで相互に異ならせて配置することにより、各キャビティの中心位置を横方向にずらすことができる。このように構成することで、振動子セルの垂直方向に対して傾いた方向に超音波を送信することができる。
<Modification 3>
FIG. 17 is a cross-sectional view of the transducer cell 12 according to the third modification of the first embodiment. In the first embodiment, the capacitive vibrator has been described with a symmetric structure. However, in the vibrator cell according to the third modification, the center positions of the first cavity 23 and the second cavity 27 are set as shown in FIG. It has a configuration shifted in the horizontal direction. For example, the widths of the membrane support portions on the left and right sides of the first cavity 23 and the widths of the membrane support portions on the left and right sides of the second cavity 27 are different between the first cavity 23 and the second cavity 27. The center position of each cavity can be shifted in the lateral direction. With this configuration, ultrasonic waves can be transmitted in a direction inclined with respect to the vertical direction of the transducer cell.
 従来の圧電素子を用いた超音波プローブにおいて、超音波を送信する範囲が大きい広い走査角を必要とする用途では、図29に示すようなコンベックス型のプローブが用いられる。このようなコンベックス型のプローブでは、圧電素子45を曲面上に配置することで広い走査角を実現している、これに対し、変形例3係る振動子セルを用いることにより、平面上に配置しても鉛直方向から傾いた方向に強い超音波を送信でき、広い走査角が必要な用途にも利用することができる。 In a conventional ultrasonic probe using a piezoelectric element, a convex probe as shown in FIG. 29 is used in an application that requires a wide scanning angle with a large ultrasonic transmission range. In such a convex probe, a wide scanning angle is realized by arranging the piezoelectric element 45 on a curved surface. On the other hand, by using the transducer cell according to the modified example 3, the piezoelectric element 45 is arranged on a plane. However, strong ultrasonic waves can be transmitted in a direction inclined from the vertical direction, and can be used for applications that require a wide scanning angle.
 ≪実施の形態2≫
 次に、実施の形態2に係る振動しセルについて、図面を用いて説明する。
<< Embodiment 2 >>
Next, the vibrating cell according to the second embodiment will be described with reference to the drawings.
 <振動子セル12の構成>
 図18(a)は、実施の形態2に係る超音波プローブ102に用いる振動子11の基本構造を示した上面図、(b)(a)図中A-A断面の断面図である。図19(a)は、実施の形態2に係る振動子セル12にバイアス電圧を印加していない状態の断面図、(b)は、バイアス電圧を印加した状態の断面図である。
<Configuration of vibrator cell 12>
18A is a top view showing the basic structure of the transducer 11 used in the ultrasonic probe 102 according to the second embodiment, and FIG. 18B is a cross-sectional view taken along the line AA in FIG. FIG. 19A is a cross-sectional view in a state where a bias voltage is not applied to the transducer cell 12 according to the second embodiment, and FIG. 19B is a cross-sectional view in a state where a bias voltage is applied.
 図18(a)、(b)、図19(a)に示すように、振動子セル12はシリコンウエハー、ガラス、石英等の電気絶縁性を有する素材で構成された基板21と、基板21内部に配置された導電性を有する下層電極22と、第1キャビティ23を挟んで下層電極22と対向するように配置された第1メンブレン25と、第2キャビティ27を挟んで第1メンブレン25と対向するように配置された第2メンブレン29と第1メンブレン支持部31a、第2メンブレン支持部31bを備えている。また、第1メンブレン25の下方及び上方に各々絶縁膜24及び26、第2メンブレン29の下方に絶縁膜28を備えている。 As shown in FIGS. 18A, 18B, and 19A, the transducer cell 12 includes a substrate 21 made of an electrically insulating material such as a silicon wafer, glass, quartz, and the like. The conductive lower layer electrode 22, the first cavity 25 disposed so as to face the lower layer electrode 22 across the first cavity 23, and the first membrane 25 opposed across the second cavity 27 The second membrane 29, the first membrane support portion 31a, and the second membrane support portion 31b are arranged. Insulating films 24 and 26 are provided below and above the first membrane 25, respectively, and an insulating film 28 is provided below the second membrane 29.
 第1のメンブレン25は、下層メンブレン部25a、接続部25b、上層メンブレン部25cから構成されている。接続部25bは、図19(a)における横方向の幅は、下層メンブレン部25a及び上層メンブレン部25cの横方向の幅より小さく構成されている。そのため、下層メンブレン部25a及び上層メンブレン部25cは、各々の変位の他方への影響を少なくすることができる。例えば、下層メンブレン部25a及び上層メンブレン部25cの横方向の幅を40から50μmとし、接続部25bの横方向の幅を20から40μmとしてもよい。また、下層メンブレン部25a及び上層メンブレン部25cは、接続部25bによって互いに電気的に接続されている。第1メンブレン25及び第2メンブレン29は電極を兼ねており、後述する下層電極22、第1メンブレン25、第2メンブレン29は夫々配線部30a、30b、30cに接続されている。第1メンブレン25の下層メンブレン部25aおよび上層メンブレン部25cの厚み及び第2メンブレン29の厚みは、1から4μmの範囲に構成することができる。接続部25bの厚みは、2から3μmとすることができる。 The first membrane 25 includes a lower layer membrane portion 25a, a connection portion 25b, and an upper layer membrane portion 25c. The connecting portion 25b is configured such that the width in the horizontal direction in FIG. 19A is smaller than the width in the horizontal direction of the lower layer membrane portion 25a and the upper layer membrane portion 25c. Therefore, the lower layer membrane portion 25a and the upper layer membrane portion 25c can reduce the influence of each displacement on the other. For example, the lateral width of the lower layer membrane portion 25a and the upper layer membrane portion 25c may be 40 to 50 μm, and the lateral width of the connection portion 25b may be 20 to 40 μm. Further, the lower layer membrane portion 25a and the upper layer membrane portion 25c are electrically connected to each other by the connection portion 25b. The first membrane 25 and the second membrane 29 also serve as electrodes, and the lower layer electrode 22, the first membrane 25, and the second membrane 29, which will be described later, are connected to the wiring portions 30a, 30b, and 30c, respectively. The thickness of the lower layer membrane portion 25a and the upper layer membrane portion 25c of the first membrane 25 and the thickness of the second membrane 29 can be configured in the range of 1 to 4 μm. The thickness of the connecting portion 25b can be 2 to 3 μm.
 下層電極22は、例えば、導電性を有するアルミ、銀、銅、クロム等の金属を用いることができ、例えば、膜厚は約4μmで構成することができる。第1メンブレン及び第2メンブレンは、導電性を有する材料からなり、例えば、アルミ、銀、銅、クロム等の金属、導電性樹脂等を用いることができる。 The lower layer electrode 22 can be made of, for example, a conductive metal such as aluminum, silver, copper, or chromium. For example, the film thickness can be about 4 μm. The first membrane and the second membrane are made of a conductive material. For example, a metal such as aluminum, silver, copper, or chromium, a conductive resin, or the like can be used.
 第1メンブレン支持部31a、第2メンブレン支持部31b、絶縁膜24、26、28は、絶縁性を有する薄膜材料を用いることができ、例えば、SiC、SiO2、SiNや、これらの混合物を用いてもよい。第1メンブレン支持部31a、第2メンブレン支持部31bの図19(a)における平面方向の厚みは、例えば、2から4μmに構成することができる。また、第1メンブレン支持部31aと第2メンブレン支持部31bの図19(a)における平面方向の厚みは略同一である。 For the first membrane support part 31a, the second membrane support part 31b, and the insulating films 24, 26, and 28, an insulating thin film material can be used. For example, SiC, SiO 2 , SiN, or a mixture thereof is used. May be. The thickness of the first membrane support portion 31a and the second membrane support portion 31b in the planar direction in FIG. 19A can be configured to be 2 to 4 μm, for example. Moreover, the thickness of the planar direction in FIG. 19A of the 1st membrane support part 31a and the 2nd membrane support part 31b is substantially the same.
 第1キャビティ23(第1間隙)は、第1メンブレン25とメンブレン支持部31aと基板21とで囲まれた空間であり、第2キャビティ27(第2間隙)は第1メンブレン25とメンブレン支持部31bと第2メンブレン29とで囲まれた空間である。第1キャビティ23、第2キャビティ27ともに、略真空となるように構成される。 The first cavity 23 (first gap) is a space surrounded by the first membrane 25, the membrane support 31a and the substrate 21, and the second cavity 27 (second gap) is the first membrane 25 and the membrane support. This is a space surrounded by 31b and the second membrane 29. Both the first cavity 23 and the second cavity 27 are configured to be substantially vacuum.
 第1キャビティ23は第2キャビティ27よりも図面上の横方向の幅は略同一となるように、即ちメンブレンの積層方向に垂直な断面積は、第1キャビティ23と第2キャビティ27において略同一に構成されている。言い換えるとメンブレン支持部31aとメンブレン支持部31bよりもメンブレンの積層方向に垂直な方向の断面積は同じである。第1キャビティ23、第2キャビティ27の図19(a)における横方向の幅は、例えば、40から80μmとすることができる。また、第1キャビティ23及び第2キャビティ27の高さは、例えば、200から300nmとすることができる。 The first cavity 23 has substantially the same lateral width in the drawing as the second cavity 27, that is, the cross-sectional area perpendicular to the lamination direction of the membrane is substantially the same in the first cavity 23 and the second cavity 27. It is configured. In other words, the cross-sectional area in the direction perpendicular to the lamination direction of the membrane is the same as that of the membrane support portion 31a and the membrane support portion 31b. The lateral width of the first cavity 23 and the second cavity 27 in FIG. 19A can be set to 40 to 80 μm, for example. The height of the first cavity 23 and the second cavity 27 can be set to 200 to 300 nm, for example.
 また、第1キャビティ23及び第2キャビティ27と第1メンブレン25及び第2メンブレン29の間には、それぞれ絶縁膜24、26、28が配置されている。絶縁膜24、26、28の厚みは、例えば200から400nmとすることができる。 Further, insulating films 24, 26, and 28 are disposed between the first cavity 23 and the second cavity 27 and the first membrane 25 and the second membrane 29, respectively. The thickness of the insulating films 24, 26, and 28 can be set to 200 to 400 nm, for example.
 なお、第1メンブレン25が電極を兼ねる代わりに、第1メンブレン25上もしくは内部に電極を形成してもよい。同様に第2メンブレン29が電極を兼ねる代わりに、第2メンブレン29上もしくは内部に電極を形成してもよい。また、下層電極22を基板21内部に配置する代わりに、基板21上に配置してもよい。また、第1メンブレン25は絶縁性を有する第1絶縁性メンブレンと第1絶縁性メンブレンを挟むように配置された上下の電極層とを有する構成を採ることができる。この場合、第1絶縁性メンブレンと絶縁層24および26との間に電極層を挿入する構成となる。同様に、第2メンブレン29は絶縁性を有する第2絶縁性メンブレンと電極層とを有すると構成を採ることができる。この場合も第2絶縁性メンブレンと絶縁層28の間に電極層を挿入する構成となる。 In addition, instead of the first membrane 25 also serving as an electrode, an electrode may be formed on or in the first membrane 25. Similarly, instead of the second membrane 29 also serving as an electrode, an electrode may be formed on or in the second membrane 29. Further, the lower layer electrode 22 may be disposed on the substrate 21 instead of being disposed inside the substrate 21. Moreover, the 1st membrane 25 can take the structure which has the 1st insulating membrane which has insulation, and the upper and lower electrode layers arrange | positioned so that the 1st insulating membrane may be pinched | interposed. In this case, an electrode layer is inserted between the first insulating membrane and the insulating layers 24 and 26. Similarly, the 2nd membrane 29 can take a structure, if it has the 2nd insulating membrane and electrode layer which have insulation. Also in this case, an electrode layer is inserted between the second insulating membrane and the insulating layer 28.
 また、本実施の形態における振動子セル12は、一例として六角形状のものを挙げているが、これに限ったものではなくその他の形状であってもよい。
<振動子セル12の製造方法>
 次に、振動子セル12の製造方法について説明する。図20、図21は、実施の形態2に係る振動子セル12の製造方法を示す概略図である。
In addition, although the transducer cell 12 in the present embodiment has a hexagonal shape as an example, it is not limited to this and may have other shapes.
<Method for Manufacturing Vibrator Cell 12>
Next, a method for manufacturing the transducer cell 12 will be described. 20 and 21 are schematic diagrams showing a method for manufacturing the transducer cell 12 according to the second embodiment.
 第1ステップにおいて、半導体基板の上面に配線層120及び基板21となる絶縁膜を形成し、その上面に配線層120と連結するように構成される下層電極22をエッチングによりパターニングして形成する。さらにその上に薄い絶縁膜21Aを形成する(図20(a))。 In the first step, an insulating film to be the wiring layer 120 and the substrate 21 is formed on the upper surface of the semiconductor substrate, and a lower layer electrode 22 configured to be connected to the wiring layer 120 is patterned on the upper surface by etching. Further, a thin insulating film 21A is formed thereon (FIG. 20A).
 次に、第2ステップにおいて、絶縁膜21Aの上面に第1キャビティ23形成用の第1犠牲層121と絶縁膜24とを形成する。そして、第1キャビティ23を形成する部分に対応したマスクを2次元的に配列させ、マスクを施されていない部分をエッチング処理等で除去して下層電極22に届く凹部121Aを形成する(図20(b))。 Next, in the second step, the first sacrificial layer 121 for forming the first cavity 23 and the insulating film 24 are formed on the upper surface of the insulating film 21A. Then, a mask corresponding to the portion where the first cavity 23 is to be formed is two-dimensionally arranged, and the portion not provided with the mask is removed by etching or the like to form a recess 121A reaching the lower layer electrode 22 (FIG. 20). (B)).
 次に、第3ステップにおいて、凹部121Aを充填するとともに絶縁膜24を覆うように下層メンブレン部25aを形成する。そして、下層メンブレン部25aを貫通し第1犠牲層121に届く孔25Bを形成する(図20(c))。セルとセルの間の孔はセル同士を分離する溝形状であってもよい。 Next, in a third step, a lower layer membrane portion 25a is formed so as to fill the recess 121A and cover the insulating film 24. And the hole 25B which penetrates the lower layer membrane part 25a and reaches the 1st sacrificial layer 121 is formed (FIG.20 (c)). The hole between the cells may have a groove shape that separates the cells.
 次に、第4ステップにおいて、反応性のガス等を用いて孔からエッチングにより第1犠牲層121を除去して第1キャビティ23を形成し、下層メンブレン部25a上に新たにエッチング等でパターニングした第2犠牲層122を形成する(図20(d)。 Next, in the fourth step, the first sacrificial layer 121 is removed from the hole by etching using a reactive gas or the like to form the first cavity 23, and patterning is newly performed on the lower layer membrane portion 25a by etching or the like. A second sacrificial layer 122 is formed (FIG. 20D).
 次に、第5ステップにおいて、パターニングされた第2犠牲層122の間を埋めるとともに第2犠牲層122を覆うように接続部25b及び上層メンブレン部25aを形成する。そして、上層メンブレン部25aを貫通し、第2犠牲層122に届く孔25Dを形成する(図21(a))。ここでも、セルとセルの間の孔はセル同士を分離する溝形状であってもよい。 Next, in the fifth step, the connecting portion 25b and the upper membrane portion 25a are formed so as to fill the space between the patterned second sacrificial layers 122 and cover the second sacrificial layers 122. Then, a hole 25D that penetrates through the upper membrane portion 25a and reaches the second sacrificial layer 122 is formed (FIG. 21A). Again, the pores between the cells may be in the form of grooves separating the cells.
 ここで、反応性のガス等を用いて第2犠牲層122を除去する。その後、第2ステップと同様に、絶縁膜26の上面に第2キャビティ27形成用の第3犠牲層123と絶縁膜28を形成し、エッチングにより第3の犠牲層123及び絶縁膜28を部分的に除去する。なお、第2メンブレン29と上層メンブレン部25aを絶縁するため、絶縁膜26は除去しない。 Here, the second sacrificial layer 122 is removed using a reactive gas or the like. Thereafter, as in the second step, the third sacrificial layer 123 and the insulating film 28 for forming the second cavity 27 are formed on the upper surface of the insulating film 26, and the third sacrificial layer 123 and the insulating film 28 are partially formed by etching. To remove. Note that the insulating film 26 is not removed in order to insulate the second membrane 29 and the upper layer membrane portion 25a.
 次に、第6ステップにおいて、第3ステップと同様に、前工程で除去した部分を充填すると共に絶縁膜28を覆う膜である第2メンブレン29を形成する。そして、第2メンブレン29を貫通し、第3犠牲層123に届く孔29Aを形成する(図21(b))。セルとセルの間の孔は溝形状であってもよいが同一のエレメント内のセル同士は少なくとも一部がつながるように形成する。 Next, in the sixth step, as in the third step, a second membrane 29 that is a film that fills the portion removed in the previous process and covers the insulating film 28 is formed. And the hole 29A which penetrates the 2nd membrane 29 and reaches the 3rd sacrificial layer 123 is formed (FIG.21 (b)). The holes between the cells may be groove-shaped, but the cells in the same element are formed so as to be at least partially connected.
 最後に前工程で形成した孔29Aからエッチングにより第3犠牲層123を除去して第2キャビティ27を形成し、第2キャビティ27の内部が真空状態を保つようにカバー層124を形成して封止して振動子セル12を完成する(図21(c))。 Finally, the third sacrificial layer 123 is removed by etching from the hole 29A formed in the previous step to form the second cavity 27, and the cover layer 124 is formed and sealed so that the inside of the second cavity 27 is kept in a vacuum state. Then, the vibrator cell 12 is completed (FIG. 21C).
 ところで、上記の製造方法において、第1キャビティ23、及び、第2キャビティ27は完全に封止され、ほぼ真空状態となるように構成されている。これらのキャビティは公知のMEMS技術、例えば、SM法(Surface Micromachining法;犠牲層を除去し、キャビティを形成する方法)等を用いて形成することができる。 By the way, in the manufacturing method described above, the first cavity 23 and the second cavity 27 are completely sealed and configured to be almost in a vacuum state. These cavities can be formed using a known MEMS technique, for example, SM method (Surface Micromachining method; a method of forming a cavity by removing a sacrificial layer).
 この時、第2メンブレン29及び絶縁膜28と、接続部25bの内部を通るように第2キャビティ27から第1キャビティ23まで間に犠牲層除去孔(図示は省略)を空けておくことで、一度の犠牲層エッチングで両方のキャビティを形成することができる。また、第2メンブレン29上の犠牲層除去孔を塞げば両方のキャビティを封止できる。従って、空隙34もこのような形成方法を用いれば、ほぼ真空状態で封止することができる。 At this time, by sacrificing a sacrificial layer removal hole (not shown) between the second cavity 29 and the first cavity 23 so as to pass through the inside of the connection portion 25b with the second membrane 29 and the insulating film 28, Both cavities can be formed with a single sacrificial layer etch. Further, if the sacrificial layer removal hole on the second membrane 29 is closed, both cavities can be sealed. Therefore, the gap 34 can be sealed in a substantially vacuum state by using such a forming method.
 <振動子セル12の動作について>
 次に、このように構成された実施の形態1の振動子セル12の動作について説明する。
実施の形態1の振動子セル12の配線部30a、30b、30cに印加される電圧とそのタイミングは、図9に示した実施の形態1の例と同じである。図9において、71は、配線部30a、30cに対して印加する電圧、72は配線部30bに印加する電圧を示している。
<Operation of the vibrator cell 12>
Next, the operation of the transducer cell 12 of the first embodiment configured as described above will be described.
The voltages applied to the wiring portions 30a, 30b, and 30c of the transducer cell 12 of the first embodiment and the timing thereof are the same as in the example of the first embodiment shown in FIG. In FIG. 9, reference numeral 71 denotes a voltage applied to the wiring portions 30a and 30c, and 72 denotes a voltage applied to the wiring portion 30b.
 まず、初期状態(t=t0のタイミング)において、配線部30a、30cにはDCバイアス電圧(例えば、-100V)を印加し、配線部30bは0Vとしておく。 First, in an initial state (timing at t = t0), a DC bias voltage (for example, −100 V) is applied to the wiring portions 30a and 30c, and the wiring portion 30b is set to 0V.
 このような状態下では、図19(b)に示すように、下層電極22と第1メンブレン25の間に静電引力が働き第1メンブレン25の下層メンブレン部25aが下側に撓む。また、第1メンブレン25の上層メンブレン部25cと第2メンブレン29の間にも静電引力が働き、第2メンブレン29が下側に撓む。 In such a state, as shown in FIG. 19B, an electrostatic attractive force acts between the lower layer electrode 22 and the first membrane 25, and the lower layer membrane portion 25a of the first membrane 25 bends downward. Further, electrostatic attraction also acts between the upper membrane portion 25c of the first membrane 25 and the second membrane 29, and the second membrane 29 bends downward.
 次にt=t1のタイミングで、配線部30a、30cにバイアス電圧を印加したまま、配線部30bにバイアス電圧程度のパルス電圧を印加する。そうすると、下層電極22、第1メンブレン25、及び、第2メンブレン29の間の電位差は瞬間的にほぼ0Vとなり、各電極間に発生していた静電気力が失われ、下層メンブレン部25a及び第2メンブレン29の弾性力によって図19(a)に示すような状態に戻る。この反動作用によって、第2メンブレン29の上方に超音波を発生させる。 Next, at the timing of t = t1, while applying a bias voltage to the wiring portions 30a and 30c, a pulse voltage of about the bias voltage is applied to the wiring portion 30b. Then, the potential difference among the lower layer electrode 22, the first membrane 25, and the second membrane 29 instantaneously becomes almost 0V, and the electrostatic force generated between the electrodes is lost, and the lower layer membrane portion 25a and the second membrane portion The state shown in FIG. 19A is restored by the elastic force of the membrane 29. By this reaction, an ultrasonic wave is generated above the second membrane 29.
 パルス電圧を配線部30bに印加した瞬間に、下層メンブレン部25aでは大きな加速度が発生し、この加速度が接続部25b及び上層メンブレン部25cを介して第2メンブレン29に伝わるとともに、第2メンブレン29の弾性力との相乗効果で第2メンブレン29に大きな変位を発生させるので、単層構造のものより大きな出力が得られる。また、このとき、上層メンブレン部25cが変形が発生しないことにより、第2メンブレン29により大きな加速度を与えることができると考えられる。 At the moment when the pulse voltage is applied to the wiring portion 30b, a large acceleration is generated in the lower layer membrane portion 25a, and this acceleration is transmitted to the second membrane 29 via the connection portion 25b and the upper layer membrane portion 25c. Since a large displacement is generated in the second membrane 29 by a synergistic effect with the elastic force, an output larger than that of the single-layer structure can be obtained. Further, at this time, it is considered that a large acceleration can be given to the second membrane 29 because the upper membrane part 25c is not deformed.
 また、バイアス電圧を印加した状態で超音波(音圧)を受信すると、下層メンブレン部25a及び第2メンブレン29が振動し、この際に起きる下層電極22と下層メンブレン部25aの間の静電容量変化、及び、上層メンブレン部25cと第2メンブレン29の間の静電容量変化に基づき、受信した超音波に係る電気信号を取得することができる。 Further, when an ultrasonic wave (sound pressure) is received in a state where a bias voltage is applied, the lower layer membrane portion 25a and the second membrane 29 vibrate, and the capacitance between the lower layer electrode 22 and the lower layer membrane portion 25a that occurs at this time is generated. Based on the change and the capacitance change between the upper layer membrane portion 25c and the second membrane 29, an electrical signal related to the received ultrasonic wave can be acquired.
 なお、図19(a)、(b)の説明においては、振動子セル12の動作として説明したが、振動子セル12によって構成された振動子11、振動子11によって構成された振動子アレイ112も同様の動作となる。 19A and 19B, the operation of the transducer cell 12 has been described. However, the transducer 11 configured by the transducer cell 12 and the transducer array 112 configured by the transducer 11 are described. Is the same operation.
 <振動子セル12の超音波送信特性について>
 次に、振動子セル12の超音波送信特性について説明する。ここでは、実施の形態2における振動子、従来の単層構造の振動子について各々の超音波送信特性を、有限要素法による構造解析シミュレーションを用いて解析その結果を比較する。図22は、実施の形態2に係る振動子11の超音波送信特性と従来の静電容量型振動子の超音波送信特性とを比較した図である。図22において、超音波送信特性81が従来例における超音波送信特性を示し、超音波送信特性82が実施の形態2における超音波送信特性を示している。
<Regarding the ultrasonic transmission characteristics of the transducer cell 12>
Next, the ultrasonic transmission characteristics of the transducer cell 12 will be described. Here, the ultrasonic transmission characteristics of the vibrator according to the second embodiment and the conventional single-layer vibrator are analyzed using a structural analysis simulation by a finite element method, and the results are compared. FIG. 22 is a diagram comparing the ultrasonic transmission characteristics of the transducer 11 according to the second embodiment and the ultrasonic transmission characteristics of a conventional capacitive transducer. In FIG. 22, an ultrasonic transmission characteristic 81 indicates the ultrasonic transmission characteristic in the conventional example, and an ultrasonic transmission characteristic 82 indicates the ultrasonic transmission characteristic in the second embodiment.
 図22に示すように、実施の形態2に係る超音波送信特性82では、従来例に係る超音波送信特性81に比べて3倍以上(10dB以上改善)の出力が得られた。図22に示した超音波送信特性シミュレーションでは、下層メンブレン部25a及び上層メンブレン部25cの厚さを3um、第2メンブレン29の厚さを1umとしており、第1メンブレン25の下層メンブレン部25a及び上層メンブレン部25cを第2メンブレン29よりも厚くなるように構成している。このように構成することで、従来構造の2倍以上の出力が発生する結果が得られている。 As shown in FIG. 22, in the ultrasonic transmission characteristic 82 according to the second embodiment, an output three times or more (an improvement of 10 dB or more) was obtained as compared with the ultrasonic transmission characteristic 81 according to the conventional example. In the ultrasonic transmission characteristic simulation shown in FIG. 22, the thickness of the lower layer membrane portion 25a and the upper layer membrane portion 25c is 3 μm, the thickness of the second membrane 29 is 1 μm, and the lower layer membrane portion 25a and the upper layer of the first membrane 25 are The membrane portion 25c is configured to be thicker than the second membrane 29. With such a configuration, a result that an output more than twice that of the conventional structure is generated is obtained.
 実施の形態2に係る静電容量型振動子構造を積層させ振動子セルでは、パルス電圧を配線部30bに印加した瞬間に、下層メンブレン部25aでは変位は小さいが大きな加速度が発生し、この加速度が第2メンブレン29に伝わるとともに、第2メンブレン29の弾性力との相乗効果で第2メンブレン29に変位を発生させる。このとき、上層メンブレン部25cは撓まない方が望ましく、上層メンブレン部25cの撓みを抑えることにより第2メンブレン29に大きな変位を発生させることができると考えられる。超音波送信特性83では、上層メンブレン部25cと下層メンブレン部25aとが幅狭の接続部25bによって接続されている構成することで、上層メンブレン部25cは撓みを減少させることができ、その結果、第2メンブレン29に大きな変位を発生させることができ超音波出力の改善が見られたと考えられる。 In the vibrator cell in which the capacitive vibrator structure according to the second embodiment is laminated, at the moment when the pulse voltage is applied to the wiring part 30b, the lower membrane part 25a generates a large acceleration with a small displacement. Is transmitted to the second membrane 29, and the second membrane 29 is displaced due to a synergistic effect with the elastic force of the second membrane 29. At this time, it is desirable that the upper membrane part 25c does not bend, and it is considered that a large displacement can be generated in the second membrane 29 by suppressing the bending of the upper membrane part 25c. In the ultrasonic transmission characteristic 83, the upper layer membrane portion 25c and the lower layer membrane portion 25a are configured to be connected by the narrow connection portion 25b, so that the upper layer membrane portion 25c can reduce bending, and as a result, It is considered that a large displacement can be generated in the second membrane 29 and the ultrasonic output is improved.
 なお、本シミュレーションでは簡単のため、メンブレン等の形状を正方形としているが、その他の形状でシミュレーションをさせても同様の傾向が得られると考えられる。 In this simulation, the shape of the membrane or the like is square for simplicity, but it is considered that the same tendency can be obtained even if simulation is performed with other shapes.
 なお、本実施の形態では、配線部30a、30cにバイアス電圧を印加し、配線部30bにパルス電圧を印加する構成としたが、配線部30bにバイアス電圧を印加し、配線部30a、30cにパルス電圧を印加することもできる。この場合、配線部30a、30cには夫々異なるパルス電圧を印加することができるため、下層メンブレン部25a、及び第2メンブレン29のそれぞれの共振周波数に合わせたパルス幅で電圧を印加することで効果的に動作させることができる。駆動周波数は超音波プローブの診断目的や診断する被検体の部位に応じて最適値が異なる。その目的に応じて振動子セルの共振周波数を設定し駆動することが好ましい。超音波プローブでは、駆動周波数は3MHzから10MHzを含む範囲から選択されることが好ましい。 In the present embodiment, the bias voltage is applied to the wiring portions 30a and 30c and the pulse voltage is applied to the wiring portion 30b. However, the bias voltage is applied to the wiring portion 30b and the wiring portions 30a and 30c are applied. A pulse voltage can also be applied. In this case, since different pulse voltages can be applied to the wiring portions 30a and 30c, it is effective to apply voltages with pulse widths that match the respective resonance frequencies of the lower layer membrane portion 25a and the second membrane 29. Can be operated automatically. The optimum driving frequency varies depending on the diagnostic purpose of the ultrasonic probe and the location of the subject to be diagnosed. It is preferable to set and drive the resonance frequency of the transducer cell according to the purpose. In the ultrasonic probe, the driving frequency is preferably selected from a range including 3 MHz to 10 MHz.
 さらに、第2メンブレン29に電圧を印加するタイミングをわずかに遅らせると、被検体からの反力が低減し第2メンブレンを被検体側に大きく変形させられるので、されに出力を向上させることができる。 Furthermore, if the timing of applying a voltage to the second membrane 29 is slightly delayed, the reaction force from the subject is reduced and the second membrane can be greatly deformed toward the subject, so that the output can be improved. .
 また、本実施の形態では、配線部30a、30cに同じ電圧のバイアス電圧を印加する構成としたが、それぞれ異なるバイアス電圧を印加してもよい。 以上に説明したように本実施の形態1の振動子11は、従来構造で課題であった送信出力を大幅に改善することができる。これにより、浅い部位から深い部位まで広範囲に超音波を送受信できる2次元アレイプローブが実現でき、広範囲で高画質な3D/4Dイメージングが可能な超音波診断が可能となる。 In the present embodiment, the same bias voltage is applied to the wiring portions 30a and 30c. However, different bias voltages may be applied. As described above, the vibrator 11 according to the first embodiment can greatly improve the transmission output, which has been a problem with the conventional structure. As a result, a two-dimensional array probe capable of transmitting and receiving ultrasonic waves in a wide range from a shallow site to a deep site can be realized, and ultrasonic diagnosis capable of 3D / 4D imaging with a wide range and high image quality is possible.
 <変形例1>
 図23は、実施の形態2の変形例1に係る振動子セル12の断面図である。ここでは、下層メンブレン部25aの横方向の幅を第2メンブレン29の横方向の幅より小さくしている。その他の構成については、実施の形態2と同様であるため、説明を省略する。
<Modification 1>
FIG. 23 is a cross-sectional view of the transducer cell 12 according to the first modification of the second embodiment. Here, the lateral width of the lower layer membrane portion 25 a is made smaller than the lateral width of the second membrane 29. Since other configurations are the same as those in the second embodiment, description thereof is omitted.
 図24は、実施の形態2の変形例1に係る振動子11の超音波送信特性を示した図である。図22のシミュレーション結果に、変形例1に係る振動子の超音波送信特性84を重ねて示したものである。 FIG. 24 is a diagram illustrating the ultrasonic transmission characteristics of the transducer 11 according to the first modification of the second embodiment. The ultrasonic transmission characteristic 84 of the vibrator according to the modification 1 is superimposed on the simulation result of FIG.
 図24において、超音波送信特性81が従来例における超音波送信特性を、超音波送信特性82が実施の形態2における超音波送信特性を、超音波送信特性84が変形例1における超音波送信特性を示している。図24に示すように、変形例1に係る超音波送信特性84では、実施の形態2に係る超音波送信特性82に比べて、ピーク付近における高い音圧レベルの出力が得られた。また、従来例の超音波送信特性81に比べて2倍以上高い音圧レベルの出力が得られている。 24, the ultrasonic transmission characteristic 81 is the ultrasonic transmission characteristic in the conventional example, the ultrasonic transmission characteristic 82 is the ultrasonic transmission characteristic in the second embodiment, and the ultrasonic transmission characteristic 84 is the ultrasonic transmission characteristic in the first modification. Is shown. As shown in FIG. 24, in the ultrasonic transmission characteristic 84 according to the first modification, an output having a higher sound pressure level near the peak was obtained as compared with the ultrasonic transmission characteristic 82 according to the second embodiment. In addition, an output with a sound pressure level that is at least twice as high as the ultrasonic transmission characteristic 81 of the conventional example is obtained.
 ここで、図24に示した超音波送信特性シミュレーションでは、実施の形態2に係る超音波送信特性82は、第1キャビティ23の横方向の幅を28umとして、変形例1に係る超音波送信特性84は第1キャビティ23の横方向の幅を24umとしてシミュレーションした。すなわち、変形例1の振動子セル12では下層メンブレン部25aの横方向の幅を第2メンブレン29の横方向の幅より小さく構成している。このとき、下層メンブレン部25a及び第2メンブレン29の厚みはともに1umである。 Here, in the ultrasonic transmission characteristic simulation shown in FIG. 24, the ultrasonic transmission characteristic 82 according to the second embodiment is the ultrasonic transmission characteristic according to the first modification, in which the lateral width of the first cavity 23 is 28 um. No. 84 was simulated with the lateral width of the first cavity 23 being 24 um. That is, in the transducer cell 12 of the first modification, the lateral width of the lower layer membrane portion 25 a is configured to be smaller than the lateral width of the second membrane 29. At this time, the thicknesses of the lower layer membrane portion 25a and the second membrane 29 are both 1 um.
 また、図24に示すように、変形例1に係る超音波送信特性84と実施の形態2に係る超音波送信特性82との比較により、下層メンブレン部25a及び第2メンブレン29の横幅は、メンブレンの共振周波数に影響していることがわかる。 Further, as shown in FIG. 24, the comparison between the ultrasonic transmission characteristic 84 according to Modification 1 and the ultrasonic transmission characteristic 82 according to Embodiment 2 shows that the lateral width of the lower layer membrane portion 25 a and the second membrane 29 is It can be seen that this affects the resonance frequency.
 なお、変形例1においては、下層メンブレン部25aと第2メンブレン29の横幅を変化させてシミュレーションさせたが、横幅を変化させると共に図面奥方向の長さも変化させてもよい。また、下層メンブレン部25aと第2メンブレンの断面積を変化させてもよい。 In the first modification, the simulation is performed by changing the horizontal width of the lower membrane portion 25a and the second membrane 29. However, the horizontal width may be changed and the length in the depth direction of the drawing may be changed. Moreover, you may change the cross-sectional area of the lower layer membrane part 25a and a 2nd membrane.
 <変形例2>
 図25は、実施の形態2の変形例2に係る振動子セル12の断面図である。実施の形態2では、第2メンブレン29が電極を兼ねているため、同じエレメント内の隣接セル同士が第2メンブレン29によって連結された構造としていた。これに対し、変形例2においては、図25に示すように、第2メンブレン29にバイアス電圧を印加する経路となるサブメンブレン32を設け、第2メンブレン29からサブメンブレン32を介して引き出された配線は、基板21内の配線によって隣接セルと連結するように構成している。サブメンブレン32を設けた点を除いては、実施の形態2と同様であり説明を省略する。
<Modification 2>
FIG. 25 is a cross-sectional view of the transducer cell 12 according to the second modification of the second embodiment. In the second embodiment, since the second membrane 29 also serves as an electrode, adjacent cells in the same element are connected by the second membrane 29. On the other hand, in the second modification, as shown in FIG. 25, a submembrane 32 serving as a path for applying a bias voltage to the second membrane 29 is provided, and the second membrane 29 is pulled out via the submembrane 32. The wiring is configured to be connected to an adjacent cell by wiring in the substrate 21. Except for the point that the sub-membrane 32 is provided, it is the same as the second embodiment, and the description thereof is omitted.
 ここで、第2メンブレン29にバイアス電圧を印加する経路となるサブメンブレン32は、図25に示すように、第1メンブレン25に接続されている構成としてもよい。この場合には上層メンブレン部25cとサブメンブレン32が接続される部分との間に絶縁部33を備えることでこの構成を採ることができる。 Here, the sub-membrane 32 serving as a path for applying a bias voltage to the second membrane 29 may be connected to the first membrane 25 as shown in FIG. In this case, this configuration can be adopted by providing the insulating portion 33 between the upper membrane portion 25c and the portion to which the submembrane 32 is connected.
 図26は、実施の形態1の変形例2に係る振動子11の超音波送信特性と、変形例2からサブメンブレン32を除いた比較例に係る振動子の超音波送信特性とを比較した図である。ここで、サブメンブレン32は、第1メンブレン25に配置されているとしてシミュレーションしている。図25において、超音波送信特性83が比較例に係る振動子11の超音波送信特性を示し、超音波送信特性85が変形例2に係る振動子11の超音波送信特性を示している。 FIG. 26 is a diagram comparing the ultrasonic transmission characteristics of the vibrator 11 according to the second modification of the first embodiment and the ultrasonic transmission characteristics of the vibrator according to the comparative example in which the submembrane 32 is removed from the second modification. It is. Here, the simulation is performed assuming that the submembrane 32 is disposed on the first membrane 25. In FIG. 25, the ultrasonic transmission characteristic 83 indicates the ultrasonic transmission characteristic of the vibrator 11 according to the comparative example, and the ultrasonic transmission characteristic 85 indicates the ultrasonic transmission characteristic of the vibrator 11 according to the modification 2.
 図25に示すように、比較例に係る超音波送信特性83では2つのピークを有する周波数特性を示すが、変形例2に係る超音波送信特性85では帯域の広い特性が得られる。サブメンブレン32を設けたことにより、サブメンブレン32が空隙34を封止するためであると考えられる。これにより、比較例において生じていた横方向への余分な振動が抑制され帯域の広い特性が得られたと考えられる。 25, the ultrasonic transmission characteristic 83 according to the comparative example shows a frequency characteristic having two peaks, but the ultrasonic transmission characteristic 85 according to the modified example 2 has a wide band characteristic. It is considered that this is because the submembrane 32 seals the gap 34 by providing the submembrane 32. Thus, it is considered that excessive vibration in the lateral direction that occurred in the comparative example was suppressed, and a wide band characteristic was obtained.
 <変形例3>
 図27は、実施の形態2の変形例3に係る振動子セル12の断面図である。実施の形態2、変形例1、変形例2は静電容量型振動子の構造を2段積層した形態で説明したが、図27に示すように、3段の構成であってもよい。
<Modification 3>
FIG. 27 is a cross-sectional view of the transducer cell 12 according to the third modification of the second embodiment. The second embodiment, the first modification, and the second modification have been described in the form in which the structure of the capacitive vibrator is stacked in two stages. However, as shown in FIG. 27, a three-stage structure may be used.
 図27の構成において、追加部46は、第1メンブレン25、絶縁膜26、第2キャビティ27、絶縁膜28と同じ構造であり、その上に第3メンブレン44が形成されている。各層の電極あるいはメンブレンは配線部30a、30b、30c、30dに連結され、配線部30a、30cにバイアス電圧、配線部30b、配線部30dにパルス電圧を印加することにより超音波が送信される。 27, the additional portion 46 has the same structure as the first membrane 25, the insulating film 26, the second cavity 27, and the insulating film 28, and the third membrane 44 is formed thereon. The electrode or membrane of each layer is connected to the wiring portions 30a, 30b, 30c, and 30d, and an ultrasonic wave is transmitted by applying a bias voltage to the wiring portions 30a and 30c and a pulse voltage to the wiring portions 30b and 30d.
 このように積層を増やすことでさらに送信出力を向上させることができる。 The transmission output can be further improved by increasing the number of layers in this way.
 ≪その他の変形例≫
 以上、各実施の形態に係る超音波プローブ、超音波振動子、超音波振動子セルについて説明した。本発明は、各実施の形態に限定されるものではない。例えば、各実施の形態における超音波診断装置に含まれる処理部の一部又は全部が、超音波プローブ102に含まれてもよい。
≪Other variations≫
The ultrasonic probe, ultrasonic transducer, and ultrasonic transducer cell according to each embodiment have been described above. The present invention is not limited to each embodiment. For example, some or all of the processing units included in the ultrasonic diagnostic apparatus in each embodiment may be included in the ultrasonic probe 102.
 また、各実施の形態に係る超音波診断装置に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。 Further, each processing unit included in the ultrasonic diagnostic apparatus according to each embodiment is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the integration of circuits is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 また、各実施の形態に係る、超音波診断装置の機能の一部又は全てを、CPU等のプロセッサがプログラムを実行することにより実現してもよい。 Further, some or all of the functions of the ultrasonic diagnostic apparatus according to each embodiment may be realized by a processor such as a CPU executing a program.
 さらに、本発明は上記プログラムであってもよいし、上記プログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体であってもよい。また、上記プログラムは、インターネット等の伝送媒体を介して流通させることができるのは言うまでもない。 Furthermore, the present invention may be the above program or a non-transitory computer-readable recording medium on which the above program is recorded. Needless to say, the program can be distributed via a transmission medium such as the Internet.
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。 In addition, division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be. In addition, functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
 また、上記のステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。 Further, the order in which the above steps are executed is for illustration in order to specifically describe the present invention, and may be in an order other than the above. Also, some of the above steps may be executed simultaneously (in parallel) with other steps.
 また、各実施の形態に係る超音波振動子セル、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。 Further, at least a part of the functions of the ultrasonic transducer cell according to each embodiment and the modified example thereof may be combined.
 さらに、本発明の主旨を逸脱しない限り、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。 Furthermore, various modifications in which the present embodiment is modified within the scope conceived by those skilled in the art are also included in the present invention without departing from the gist of the present invention.
 ≪まとめ≫
 上記した本発明の一態様に係る超音波プローブは、cMUTを積層した超音波振動子セルを有する構造において上記構成を採ることにより、第1メンブレン上面の撓みを減少して第2メンブレン29により大きな変位を発生させることができる。これにより、単層の場合と比較してより大きな超音波送信出力を得ることができ、超音波プローブの送信出力特性を改善することができる。これにより、3D/4D超音波イメージングにおいて従来のcMUTと比較してノイズの少ない明瞭な超音波画像を得ることができる。
≪Summary≫
The above-described ultrasonic probe according to one aspect of the present invention adopts the above-described configuration in a structure having an ultrasonic transducer cell in which cMUTs are stacked, thereby reducing the deflection of the upper surface of the first membrane and making the second membrane 29 larger. A displacement can be generated. Thereby, it is possible to obtain a larger ultrasonic transmission output than in the case of a single layer, and to improve the transmission output characteristics of the ultrasonic probe. Thereby, a clear ultrasonic image with less noise can be obtained in 3D / 4D ultrasonic imaging as compared with a conventional cMUT.
 ≪補足≫
 以上で説明した実施の形態は、いずれも本発明の好ましい一具体例を示すものである。実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、工程、工程の順序などは一例であり、本発明を限定する主旨ではない。また、実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない工程については、より好ましい形態を構成する任意の構成要素として説明される。
<Supplement>
Each of the embodiments described above shows a preferred specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, steps, order of steps, and the like shown in the embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the embodiment, steps that are not described in the independent claims indicating the highest concept of the present invention are described as arbitrary constituent elements constituting a more preferable form.
 また、発明の理解の容易のため、上記各実施の形態で挙げた各図の構成要素の縮尺は実際のものと異なる場合がある。また本発明は上記各実施の形態の記載によって限定されるものではなく、本発明の要旨を逸脱しない範囲において適宜変更可能である。 Also, in order to facilitate understanding of the invention, the scales of the constituent elements in the drawings described in the above embodiments may differ from actual ones. The present invention is not limited by the description of each of the above embodiments, and can be appropriately changed without departing from the gist of the present invention.
 さらに、超音波振動子セル、超音波振動子、超音波プローブ、超音波診断装置においては基板上に回路部品、リード線等の部材も存在するが、電気的配線、電気回路について当該技術分野における通常の知識に基づいて様々な態様を実施可能であり、本発明の説明として直接的には無関係のため、説明を省略している。尚、上記示した各図は模式図であり、必ずしも厳密に図示したものではない。 Furthermore, in the ultrasonic transducer cell, the ultrasonic transducer, the ultrasonic probe, and the ultrasonic diagnostic apparatus, there are members such as circuit components and lead wires on the substrate. Various aspects can be implemented on the basis of ordinary knowledge, and are not directly related to the description of the present invention, so the description is omitted. Each figure shown above is a schematic diagram, and is not necessarily illustrated strictly.
 以上、実施の形態によれば、深部まで高感度な2次元アレイプローブを実現できる。これにより、浅い部位から深い部位まで広範囲で高画質な3D/4Dイメージングを小型のプローブで実現できる。また、ノイズの少ない明瞭な超音波画像を得ることができる。あるいは、超音波振動子への印加電圧を低減すことができる。これにより機器の省電力化に貢献することができる。そのため、バッテリーの長寿命化により超音波診断装置のモバイル化に波及する技術となり、超音波振動子セル、超音波振動子、超音波プローブ、および超音波診断装置等に広く活用することが可能である。 As described above, according to the embodiment, it is possible to realize a two-dimensional array probe having high sensitivity up to a deep part. As a result, high-quality 3D / 4D imaging can be realized with a small probe in a wide range from a shallow part to a deep part. In addition, a clear ultrasonic image with little noise can be obtained. Alternatively, the voltage applied to the ultrasonic transducer can be reduced. Thereby, it can contribute to the power saving of an apparatus. For this reason, it has become a technology that extends to the mobile use of ultrasonic diagnostic equipment by extending battery life, and can be widely used for ultrasonic transducer cells, ultrasonic vibrators, ultrasonic probes, and ultrasonic diagnostic equipment. is there.
 11  超音波振動子
 12  超音波振動子セル
 21  基板
 22  下層電極
 23  第1キャビティ
 24、26、28  絶縁膜
 25  第1メンブレン
 25a  下層メンブレン部
 25b  接続部
 25c  上層メンブレン部
 27  第2キャビティ
 29  第2メンブレン
 30a、30b、30c、30d  配線
 31a、31b、31c  メンブレン支持部
 32  サブメンブレン
 33  絶縁部
 41、43  絶縁膜
 42  第3キャビティ
 44  第3メンブレン
 45  圧電素子
 46  追加部
 50  従来の超音波振動子セル
 51  基板
 52  下層電極
 53  キャビティ
 54  メンブレン支持部
 55  絶縁膜
 56 メンブレン
 60a、60b  配線
 102 超音波プローブ
 109 診断装置本体
 100 超音波診断装置
 112 超音波振動子アレイ
DESCRIPTION OF SYMBOLS 11 Ultrasonic transducer 12 Ultrasonic transducer cell 21 Substrate 22 Lower layer electrode 23 1st cavity 24, 26, 28 Insulating film 25 1st membrane 25a Lower layer membrane part 25b Connection part 25c Upper layer membrane part 27 2nd cavity 29 2nd membrane 30a, 30b, 30c, 30d Wiring 31a, 31b, 31c Membrane support portion 32 Submembrane 33 Insulating portion 41, 43 Insulating film 42 Third cavity 44 Third membrane 45 Piezoelectric element 46 Additional portion 50 Conventional ultrasonic transducer cell 51 Substrate 52 Lower layer electrode 53 Cavity 54 Membrane support part 55 Insulating film 56 Membrane 60a, 60b Wiring 102 Ultrasonic probe 109 Diagnostic apparatus body 100 Ultrasonic diagnostic apparatus 112 Ultrasonic transducer array

Claims (19)

  1.  基板と、
     前記基板上又は前記基板内部に配置された第1電極と、
    前記第1電極上面に対し垂直方向に離間した状態で前記第1電極と対向して配された第1メンブレンと、
     前記第1メンブレン上面と垂直方向に離間した状態で前記第1メンブレンと対向して配された第2メンブレンと、
     前記基板と前記第1メンブレンとの間隙に配され、当該間隙内の空間を囲繞する第1メンブレン支持部と、
     前記第1メンブレンと前記第2メンブレンとの間隙に配され、当該間隙内の空間を囲繞する第2メンブレン支持部と、
     前記第1メンブレンに電気的に接続された第1配線部と、
     前記第2メンブレンに電気的に接続された第2配線部と、
    を備え、
     (a)前記第1メンブレンは前記第2メンブレンよりも、前記1メンブレン上面と垂直な方向の厚さが大きい、若しくは、(b)前記第1メンブレン支持部に囲繞された第1空隙層は前記第2メンブレン支持部に囲繞された第2空隙層よりも、前記1メンブレン上面と平行な方向の空間面積が小さい、の少なくとも一方の特徴を有する、又は、
     (c)前記第2メンブレンは前記第1メンブレンよりも、前記1メンブレン上面と垂直な方向の厚さが大きい、若しくは、(d)前記第2メンブレン支持部に囲繞された第2空隙層は前記第1メンブレン支持部に囲繞された第1空隙層よりも、前記1メンブレン上面と平行な方向の空間面積が小さい、の少なくとも一方の特徴を有する
     超音波振動子セル。
    A substrate,
    A first electrode disposed on or within the substrate;
    A first membrane disposed facing the first electrode in a state of being vertically separated from the upper surface of the first electrode;
    A second membrane disposed facing the first membrane in a state of being vertically separated from the upper surface of the first membrane;
    A first membrane support part disposed in a gap between the substrate and the first membrane and surrounding a space in the gap;
    A second membrane support portion disposed in a gap between the first membrane and the second membrane and surrounding a space in the gap;
    A first wiring portion electrically connected to the first membrane;
    A second wiring portion electrically connected to the second membrane;
    With
    (A) The first membrane is thicker in the direction perpendicular to the top surface of the first membrane than the second membrane, or (b) the first gap layer surrounded by the first membrane support is It has at least one of the characteristics that the space area in the direction parallel to the upper surface of the first membrane is smaller than the second gap layer surrounded by the second membrane support part, or
    (C) The second membrane is thicker in the direction perpendicular to the top surface of the first membrane than the first membrane, or (d) the second gap layer surrounded by the second membrane support is An ultrasonic transducer cell having at least one feature that a spatial area in a direction parallel to the upper surface of the first membrane is smaller than that of a first gap layer surrounded by a first membrane support.
  2.  前記(b)の特徴を有するときに、前記第1メンブレン支持部は前記第2メンブレン支持部よりも、前記1メンブレン上面と平行な方向の断面積が大きい
     請求項1に記載の超音波振動子セル。
    2. The ultrasonic transducer according to claim 1, wherein the first membrane support portion has a larger cross-sectional area in a direction parallel to the upper surface of the first membrane than the second membrane support portion when having the feature (b). cell.
  3.  前記(d)の特徴を有するときに、前記第2メンブレン支持部は前記第1メンブレン支持部よりも前記1メンブレン上面と平行な方向の断面積が大きい
     請求項1に記載の超音波振動子セル。
    2. The ultrasonic transducer cell according to claim 1, wherein the second membrane support portion has a larger cross-sectional area in a direction parallel to the upper surface of the first membrane than the first membrane support portion when having the feature (d). .
  4.  前記第1メンブレン支持部は前記第2メンブレン支持部と前記1メンブレン上面と平行な方向における最大幅が略等しい、
     請求項2又は3の何れか1項に記載の超音波振動子セル。
    The first membrane support portion has a substantially equal maximum width in a direction parallel to the second membrane support portion and the top surface of the first membrane;
    The ultrasonic transducer cell according to claim 2.
  5.  基板と、
     前記基板上又は前記基板内部に配置された第1電極と、
     前記第1電極上面に対し垂直方向に離間した状態で前記第1電極と対向して配された第1メンブレンと、
     前記第1メンブレン上面と垂直方向に離間した状態で前記第1メンブレンと対向して配された第2メンブレンと、
     前記基板と前記第1メンブレンとの間隙に配され当該間隙内の空隙層を囲繞する第1メンブレン支持部と、
     前記第1メンブレンと前記第2メンブレンとの間隙に配され当該間隙内の空隙層を囲繞する第2メンブレン支持部と、
     前記第1メンブレンと電気的に接続された第1配線部と、
     前記第2メンブレンと電気的に接続された第2配線部と、
    を備え、
     前記第1メンブレンは、前記第1メンブレン支持部に囲繞された第1空隙層に面した下層メンブレン部と、前記下層メンブレン部の上方に位置し前記第2メンブレン支持部に囲繞された第2空隙層に面した上層メンブレン部と、前記下層メンブレン部と上層メンブレン部とを接続する接続部とが、積層された構造を有し、
     前記上層メンブレン部と前記下層メンブレン部とは前記接続部により電気的に接続され、
     前記接続部の前記第1メンブレン上面と平行な方向の断面積は、前記下層メンブレン部及び前記上層メンブレン部の前記第1メンブレン上面と平行な方向の断面積よりも小さい
     超音波振動子セル。
    A substrate,
    A first electrode disposed on or within the substrate;
    A first membrane disposed facing the first electrode in a state of being vertically separated from the upper surface of the first electrode;
    A second membrane disposed facing the first membrane in a state of being vertically separated from the upper surface of the first membrane;
    A first membrane support portion disposed in a gap between the substrate and the first membrane and surrounding a void layer in the gap;
    A second membrane support portion disposed in a gap between the first membrane and the second membrane and surrounding a void layer in the gap;
    A first wiring portion electrically connected to the first membrane;
    A second wiring portion electrically connected to the second membrane;
    With
    The first membrane includes a lower layer membrane portion facing the first gap layer surrounded by the first membrane support portion, and a second gap located above the lower layer membrane portion and surrounded by the second membrane support portion. The upper membrane part facing the layer and the connection part connecting the lower membrane part and the upper membrane part have a laminated structure,
    The upper layer membrane part and the lower layer membrane part are electrically connected by the connection part,
    The ultrasonic transducer cell, wherein a cross-sectional area of the connection portion in a direction parallel to the upper surface of the first membrane is smaller than a cross-sectional area of the lower layer membrane portion and the upper layer membrane portion in a direction parallel to the first membrane upper surface.
  6.  前記上層メンブレン部は前記第2メンブレンよりも前記第1メンブレン上面と垂直方向の厚さが大きい
     請求項5に記載の超音波振動子セル。
    The ultrasonic transducer cell according to claim 5, wherein the upper membrane portion is thicker in the direction perpendicular to the upper surface of the first membrane than the second membrane.
  7.  前記下層メンブレン部は前記第2メンブレンよりも前記第1メンブレン上面と垂直方向の厚さが大きい
     請求項5~6のいずれか1項に記載の超音波振動子セル。
    The ultrasonic transducer cell according to any one of claims 5 to 6, wherein the lower layer membrane portion is thicker in the direction perpendicular to the upper surface of the first membrane than the second membrane.
  8.  前記下層メンブレン部は前記第2メンブレンよりも前記第1メンブレン上面と平行な方向の幅が小さい
     請求項5~7のいずれか1項に記載の超音波振動子セル。
    The ultrasonic transducer cell according to any one of claims 5 to 7, wherein the lower membrane portion has a width in a direction parallel to the upper surface of the first membrane smaller than that of the second membrane.
  9.  前記下層メンブレン部、前記上層メンブレン部、前記接続部の前記第1メンブレン上面と平行な方向における中心位置は一致している
     請求項5~8のいずれか1項に記載の超音波振動子セル。
    The ultrasonic transducer cell according to any one of claims 5 to 8, wherein center positions of the lower layer membrane portion, the upper layer membrane portion, and the connection portion in a direction parallel to the upper surface of the first membrane coincide with each other.
  10.  前記第2配線部と電気的に接続されたサブメンブレンと、当該サブメンブレンを支持しかつ前記サブメンブレンと前記基板内部の配線とを電気的に接続するサブメンブレン支持部とを有する
     請求項5~9のいずれか1項に記載の超音波振動子セル。
    6. A submembrane electrically connected to the second wiring portion, and a submembrane supporting portion that supports the submembrane and electrically connects the submembrane and the wiring inside the substrate. The ultrasonic transducer cell according to any one of 9.
  11.  前記第1メンブレン及び第2メンブレンは導電性を有する
     請求項1又は5に記載の超音波振動子セル。
    The ultrasonic transducer cell according to claim 1, wherein the first membrane and the second membrane have conductivity.
  12.  前記第1メンブレンは絶縁性材料からなる第1絶縁性メンブレンと、前記第1絶縁性メンブレンを挟むように配置された上下の電極層を備え、前記上下の電極層は電気的に接続されている請求項1又は5に記載の超音波振動子セル。 The first membrane includes a first insulating membrane made of an insulating material and upper and lower electrode layers arranged so as to sandwich the first insulating membrane, and the upper and lower electrode layers are electrically connected. The ultrasonic transducer cell according to claim 1 or 5.
  13.  さらに、前記第2メンブレンは絶縁性材料からなる第2絶縁性メンブレンと、電極層を備えた
     請求項1又は5に記載の超音波振動子セル。
    The ultrasonic transducer cell according to claim 1, wherein the second membrane includes a second insulating membrane made of an insulating material and an electrode layer.
  14.  請求項1~13のいずれか1項に記載の超音波振動子セルを複数有し、
     互いに隣接する前記超音波振動子セルの前記第2メンブレン又は前記第2配線部の少なくとも一方が連結されることにより前記複数の超音波振動子セルの前記第2配線部が電気的に接続されている
     超音波振動子。
    A plurality of the ultrasonic transducer cells according to any one of claims 1 to 13,
    By connecting at least one of the second membrane or the second wiring portion of the ultrasonic transducer cells adjacent to each other, the second wiring portions of the plurality of ultrasonic transducer cells are electrically connected. An ultrasonic transducer.
  15.  請求項14に記載の超音波振動子を複数有し、
     当該複数の超音波振動子は、前記第2メンブレン上面と平行な平面において2次元に配列されて振動子アレイを構成している
     超音波プローブ。
    A plurality of ultrasonic transducers according to claim 14,
    The ultrasonic probe in which the plurality of ultrasonic transducers are arranged two-dimensionally in a plane parallel to the upper surface of the second membrane to constitute a transducer array.
  16.  請求項1~13のいずれか1項に記載の超音波振動子セルを制御する方法であって、
     前記第1電極及び前記第2配線部にバイアス電圧を印加し、
     前記第1配線部にパルス電圧を印加して超音波を送信する
     超音波振動子セルの制御方法。
    A method for controlling an ultrasonic transducer cell according to any one of claims 1 to 13, comprising:
    Applying a bias voltage to the first electrode and the second wiring part;
    A method for controlling an ultrasonic transducer cell, wherein a pulse voltage is applied to the first wiring portion to transmit ultrasonic waves.
  17.  請求項1~13のいずれか1項に記載の超音波振動子セルを制御する方法であって、
     前記第1配線部にバイアス電圧を印加し、
     前記第1電極及び前記第2配線部にパルス電圧を印加して超音波を送信する
     超音波振動子セルの制御方法。
    A method for controlling an ultrasonic transducer cell according to any one of claims 1 to 13, comprising:
    Applying a bias voltage to the first wiring portion;
    An ultrasonic transducer cell control method for transmitting an ultrasonic wave by applying a pulse voltage to the first electrode and the second wiring part.
  18.  前記第1電極にパルス電圧を印加するタイミングと前記第2配線部にパルス電圧を印加するタイミングが異なる
     請求項17に記載の超音波振動子セルの制御方法。
    The method of controlling an ultrasonic transducer cell according to claim 17, wherein a timing at which a pulse voltage is applied to the first electrode is different from a timing at which a pulse voltage is applied to the second wiring portion.
  19.  前記第1の電極に印加するパルス電圧のパルス幅と前記第3の電極に印加するパルス電圧のパルス幅とが異なる
     請求項18記載の超音波振動子セルの制御方法。
    The method for controlling an ultrasonic transducer cell according to claim 18, wherein a pulse width of a pulse voltage applied to the first electrode is different from a pulse width of a pulse voltage applied to the third electrode.
PCT/JP2013/007685 2012-12-28 2013-12-27 Ultrasonic transducer cell, ultrasonic probe, and control method for ultrasonic transducer cell WO2014103334A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014554160A JP6390428B2 (en) 2012-12-28 2013-12-27 Ultrasonic transducer cell, ultrasonic probe, and control method of ultrasonic transducer cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-287098 2012-12-28
JP2012287098 2012-12-28
JP2013046306 2013-03-08
JP2013-046306 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014103334A1 true WO2014103334A1 (en) 2014-07-03

Family

ID=51020448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007685 WO2014103334A1 (en) 2012-12-28 2013-12-27 Ultrasonic transducer cell, ultrasonic probe, and control method for ultrasonic transducer cell

Country Status (2)

Country Link
JP (1) JP6390428B2 (en)
WO (1) WO2014103334A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194208A1 (en) * 2015-06-04 2016-12-08 株式会社日立製作所 Ultrasonic transducer element, method for manufacturing same, and ultrasonic image pickup device
JP2021515887A (en) * 2018-02-28 2021-06-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Pressure detection using capacitive pressure sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858498A1 (en) * 2020-02-03 2021-08-04 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO Ultrasonic transducer with stacked membranes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008099036A (en) * 2006-10-12 2008-04-24 Olympus Medical Systems Corp Ultrasonic transducer, ultrasonic probe and ultrasonic diagnostic device
JP2009194934A (en) * 2004-06-03 2009-08-27 Olympus Corp Capacitive ultrasonic transducer, method of manufacturing stacked capacitive ultrasonic transducer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194934A (en) * 2004-06-03 2009-08-27 Olympus Corp Capacitive ultrasonic transducer, method of manufacturing stacked capacitive ultrasonic transducer
JP2008099036A (en) * 2006-10-12 2008-04-24 Olympus Medical Systems Corp Ultrasonic transducer, ultrasonic probe and ultrasonic diagnostic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194208A1 (en) * 2015-06-04 2016-12-08 株式会社日立製作所 Ultrasonic transducer element, method for manufacturing same, and ultrasonic image pickup device
JPWO2016194208A1 (en) * 2015-06-04 2018-05-24 株式会社日立製作所 Ultrasonic transducer element, method for manufacturing the same, and ultrasonic imaging apparatus
US10610890B2 (en) 2015-06-04 2020-04-07 Hitachi, Ltd. Ultrasonic transducer element, method of manufacturing the same, and ultrasonic image pickup device
JP2021515887A (en) * 2018-02-28 2021-06-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Pressure detection using capacitive pressure sensor

Also Published As

Publication number Publication date
JP6390428B2 (en) 2018-09-19
JPWO2014103334A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6776074B2 (en) Piezoelectric devices and ultrasonic devices
CN110545731B (en) Imaging device with piezoelectric sensor
JP4730162B2 (en) Ultrasonic transmitting / receiving device, ultrasonic probe, and manufacturing method thereof
US9120126B2 (en) Electro-acoustic transducer and method of manufacturing the same
US8687466B2 (en) Cell, element of ultrasonic transducer, ultrasonic transducer including the same, and method of manufacturing cell of ultrasonic transducer
JP5128470B2 (en) Microelectromechanical transducer with insulation extension
JP4804961B2 (en) Ultrasonic transducer and intracorporeal ultrasonic diagnostic apparatus equipped with the same
JP5019997B2 (en) Ultrasonic transducer, ultrasonic diagnostic apparatus and ultrasonic microscope
JP2008099036A (en) Ultrasonic transducer, ultrasonic probe and ultrasonic diagnostic device
JP5851238B6 (en) Ultrasonic transducer, its manufacturing method, and ultrasonic probe using the same
CN112118791A (en) Integrated ultrasonic transducer
JP2012147418A (en) Acoustic transducer and method of driving the same
KR101761819B1 (en) Ultrasonic transducer and method of manufacturing the sames
KR102250185B1 (en) Electro acoustic transducer
JP2016097033A (en) Capacitance type transducer and subject information acquisition device
JP6390428B2 (en) Ultrasonic transducer cell, ultrasonic probe, and control method of ultrasonic transducer cell
JP6636516B2 (en) Ultrasonic transducer element and ultrasonic imaging device
JP6267787B2 (en) Ultrasonic transducer, method for manufacturing the same, and ultrasonic inspection apparatus
JP2018056734A (en) Ultrasonic transducer, manufacturing method thereof, and ultrasonic imaging device
KR102184454B1 (en) Ultrasonic transducer and method of manufacturing ultrasonic transducer
JP5776542B2 (en) Ultrasonic probe and ultrasonic inspection device
JP2008043529A (en) Electrode structure of ultrasound probe, ultrasound probe, and substrate of ultrasound probe
US20230002213A1 (en) Micro-machined ultrasound transducers with insulation layer and methods of manufacture
EP4363369A1 (en) Micro-machined ultrasound transducers with insulation layer and methods of manufacture
JP2007274620A (en) Array probe, array probe device, and method of manufacturing array probe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554160

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866871

Country of ref document: EP

Kind code of ref document: A1