WO2014101874A1 - 一种负压相变发电系统及汽轮发电装置 - Google Patents

一种负压相变发电系统及汽轮发电装置 Download PDF

Info

Publication number
WO2014101874A1
WO2014101874A1 PCT/CN2013/090981 CN2013090981W WO2014101874A1 WO 2014101874 A1 WO2014101874 A1 WO 2014101874A1 CN 2013090981 W CN2013090981 W CN 2013090981W WO 2014101874 A1 WO2014101874 A1 WO 2014101874A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
heat
pipe
heating
liquid
Prior art date
Application number
PCT/CN2013/090981
Other languages
English (en)
French (fr)
Other versions
WO2014101874A8 (zh
Inventor
金季藩
Original Assignee
兰州金福乐生物工程有限公司
金星国际有限公司
春天有限公司
法国金金太平洋企业公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兰州金福乐生物工程有限公司, 金星国际有限公司, 春天有限公司, 法国金金太平洋企业公司 filed Critical 兰州金福乐生物工程有限公司
Priority to CN201380068644.8A priority Critical patent/CN105283668B/zh
Publication of WO2014101874A1 publication Critical patent/WO2014101874A1/zh
Publication of WO2014101874A8 publication Critical patent/WO2014101874A8/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature

Definitions

  • the present invention relates to the field of phase change power generation technology, and in particular to a negative voltage phase change power generation system and a steam turbine power generation device. Background technique
  • An object of the present invention is to solve the drawbacks of the conventional power generating device that it is energy intensive, expensive, environmentally unfriendly, and limited in power generation.
  • an aspect of the present invention provides a negative voltage phase change power generation system, including a heating superconducting heat pipe, a heat dissipating super heat pipe, a heating room, a condensation chamber, and a gas conveying pipe;
  • the heat absorbing end of the heating superconducting heat pipe is connected to a heat source, and the heat radiating end of the heating super heat pipe is connected to the heating plate, the heating plate is installed in the heating room, and the heating room is provided with a thermal liquid state.
  • a heat dissipation plate is disposed in the condensation chamber of the medium, and the heat dissipation plate is connected to the heat absorption end of the heat dissipation superheat pipe, and the heat dissipation end of the heat dissipation superheat pipe is connected to the low temperature heat source.
  • the power generating unit includes a first power generating box and a second power generating box;
  • the power generation box is connected to the second power generation box through the power generation box motion connecting device;
  • the upper part of the heating room is provided with a liquid filling valve;
  • the bottom of the condensation room is provided with a liquid filling valve; It is connected with the first power generation box, bypasses the power generation box guiding device, enters the generator set, and is connected to the generator set, exits from the generator set, bypasses the power generation box body guiding device, and connects the other end to the second power generation box body.
  • the power generating unit includes a water wheel, a water wheel power generating device, a water tank drinking water tank, a water wheel shaft, a water wheel supporting device, and a water tank drain receiving device under the closed tank water wheel; the water wheel a drain receiving device is connected to the drain pipe, and the drain pipe is connected to the heating chamber;
  • the bottom of the condensing chamber is provided with a water injection pipe, the water injection pipe injects the liquid in the condensing chamber onto the water wheel; the water gas isolating device is installed on the water injection pipe; the water tank of the water wheel receives the liquid injected by the water injection pipe, Under the action of liquid gravity, the water wheel is rotated, and the water outlet moves from the highest point of potential energy to the lowest point, and the liquid is discharged to the drain pipe.
  • the method further includes: a rectifying and energy storage device for the electrical energy.
  • a fixing and stabilizing device is further included, and the gas delivery pipe is mounted on the fixing and stabilizing device.
  • the heating chamber, the gas delivery conduit and the condensation chamber form a closed space, and the liquid medium is injected between the sealed spaces, and the sealed space is in a relatively vacuum state.
  • the heating compartment, the gas delivery duct, the condensing compartment, the first power generating box and the second power generating box are each provided with a protective layer, and the protective layer is made of a heat insulating constant temperature material.
  • the heating superconducting heat pipe is composed of a super heat pipe or a heat pipe.
  • a steam turbine power generating device including a natural energy supplier, a water supply pump, a condenser, a steam turbine, a superconducting heat pipe, and a geothermal layer;
  • the heat absorbing end of the superconducting heat pipe is connected to the geothermal layer, and transmits the energy of the geothermal layer to a natural energy supplier connected to the heat radiating end of the superconducting heat pipe; the natural energy supplier changes the working medium therein into a liquid state After the medium is heated, it is transformed into a high temperature and high pressure gaseous medium.
  • the high temperature and high pressure gaseous medium is transported to the steam turbine through the conveying pipeline.
  • the high temperature and high pressure gaseous medium drives the steam turbine to operate.
  • the steam turbine drives the steam turbine generator to generate electric energy.
  • the high temperature and high pressure gaseous medium push steam turbine After the operation, the steam turbine is exhausted, and the condenser is turned into a condenser through the outlet pipe to convert the gaseous medium into a liquid state and enter the transmission pipe to enter the water supply. Pump, the water pump delivers the condensed liquid medium to the natural energy feeder.
  • the natural energy supplier, the water supply pump, the condenser, the steam turbine, and the conveying pipe are each provided with a protective layer made of an insulating constant temperature material.
  • the above technical solution of the present invention has the following advantages:
  • the present invention introduces the natural energy of the earth through a heat pipe or a super-duct into a recombination phase-change power generation, effectively replacing conventional energy such as coal nuclear energy, and maximizing the utilization of infinite natural resources.
  • the power generation system is simple in equipment, low in cost, easy to manufacture, and free from pollution, which is conducive to environmental protection.
  • FIG. 1 is a schematic view of a low-temperature negative-voltage phase-change power generation device according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a low temperature negative voltage phase change power generating device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a high temperature negative voltage phase change power generating device according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of a fourth high temperature negative voltage phase change power generating device according to an embodiment of the present invention.
  • Figure 5 Figure 6, Figure 7, Figure 8, Figure 9 are the operational profiles of Figure 1;
  • FIG. 10 is a schematic diagram of a five-phase water wheel power generating device according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a six-phase water wheel power generating device according to an embodiment of the present invention.
  • Figure 12 is a schematic view of a seven-wheel turbine power generating apparatus according to an embodiment of the present invention.
  • 1 first power generation box; B2, power generation box; 3: gas transmission pipe; 4: heating room; 5: heating plate; 6: heating super heat pipe; 7: fixing and stabilizing device; 9: heat sink; 10: heat-dissipating superconducting tube; 11: power box guiding device; 12: generator set; 14: cooling room; 15: power box moving connection device; 16: liquid filling valve; 18: water injection pipe, 19: receiving device for water wheel drainage; 20: drain pipe; 21: water tank sink; 22: water wheel; 23: water wheel power generating device; 24: water wheel shaft; 25 water wheel supporting equipment; 26: airtight Box; 27: negative pressure environment; 28: water gas isolation device; 30: natural energy supply; 31: water supply pump; 32: condenser; 33: steam turbine; 34: super heat pipe; 35: geothermal layer.
  • a low-temperature negative-voltage phase-change power generation device includes a first power generation box, a second power generation box, a gas delivery pipe 3, and a heating chamber (the liquid in the power generation box is placed therein, and then In the liquefaction device) 4, the heating plate 5, the heating superconducting tube 6, the fixing and stabilizing device 7 of the whole device, the heat dissipating plate 9, the heat dissipating superheat pipe 10, the power generating box guiding device 11, the generator set 12, the condensation chamber 14.
  • the heating plate 5 is connected to the heat dissipating end of the heating superconducting tube 6, so that the heat conduction is more uniform and faster.
  • the heat sink 9 is made of a material having a high thermal conductivity, and the heat sink 9 is connected to the refrigerating compartment and the superconducting heat pipe to make the heat conduction more uniform and rapid.
  • the liquid filling valve 16 is used for the transportation of liquid and gas in the isostatic state between the first power generating box 1 and the second power generating box 2 and the condensing chamber 14 and the heating chamber 4.
  • the heating chamber 4, the gas delivery conduit 3, and the condensation chamber 14 constitute a closed system.
  • the entire closed system can be pumped to a relative vacuum, and then the liquid medium is injected into the chamber.
  • the heating chamber 4 of the closed system can thus easily vaporize the liquid medium at a lower temperature, thereby providing the necessary conditions for the low-temperature negative-pressure phase-change power generation of the present invention.
  • the heating chamber 4, the gas delivery pipe 3, the condensation chamber 14, the first power generation box 1, the second power generation box 2, and the like are all made of a material having a very good heat insulation effect as a protective layer, and the heat energy loss is reduced to The lowest process.
  • the heating superheat pipe 6 is composed of a super heat pipe or a heat pipe, and the heat absorbing end of the heating super heat pipe 6 is connected with a heat source (such as geothermal heat), and the heat source (such as geothermal energy) is heated by the heat absorbing end of the heating super heat pipe 6.
  • a heat source such as geothermal heat
  • geothermal energy such as geothermal energy
  • the heat absorption is transmitted to the heat radiating end of the heating superheat pipe 6, and the heat radiating end of the heating super heat pipe 6 is connected with the heating plate 5, and the heat in the heat source (such as geothermal heat) is transmitted to the heating plate 5, and the heating plate 5 is a thermal conductivity coefficient.
  • the heating plate 5 is installed in the heating chamber 4.
  • the heating chamber 4 has a pre-added thermal liquid medium, and the heating plate 5 in the heating chamber 4 is heated to heat the medium to change the medium from a liquid state to a gaseous state.
  • the heating chamber 4 has a liquid filling valve 16 at the upper portion, and the liquid filling valve 16 carries the liquid and gas in the same state of the first power generating box 1, the second power generating box 2, the condensing chamber 14, and the heating chamber 4.
  • the liquid medium is heated by the heating plate 5, and the liquid medium is converted into a gaseous medium, gas
  • the medium is diffused from the heating chamber 4 into the gas conveying pipe 3 connected to the heating chamber 4, and the gas conveying pipe 3 is installed on the fixing and stabilizing device 7, and the pipe wall of the gas conveying pipe 3 has a heat insulating constant temperature protection layer, The loss of thermal energy is reduced to the lowest level of the process, so that the gaseous medium does not change from a gaseous state to a liquid state due to cooling during the transfer process, resulting in a decrease in operational efficiency.
  • the gaseous medium diffuses into the condensation chamber 14 through the gas delivery conduit 3, and there is a certain height difference between the condensation chamber 14 and the heating chamber 4.
  • the condensation chamber 14 is provided with a heat dissipation plate 9, a heat dissipation plate 9 and a condensation chamber 14 and a heat dissipation superconducting tube.
  • the heat absorbing end of 10 is connected, and the heat sink 9 is made of a material having a very high thermal conductivity, and has a structure for increasing the heat conductive area, so that the heat conduction is more uniform and rapid, and the heat sink 9 is connected to the heat absorbing end of the heat radiating super heat pipe 10, and will be in a gaseous state.
  • the heat energy released during the transition from the medium to the liquid state is conducted to the heat dissipation plate 9, and the heat dissipation plate 9 conducts heat to the heat dissipation superheat pipe 10, and is conducted to the heat dissipation end of the heat dissipation superheat pipe 10, and the heat dissipation pipe and the low temperature heat source of the heat dissipation superheat pipe (air, surface water, etc.) are connected, and the heat energy of the heat radiating end of the heat radiating superheat pipe 10 is diffused into a low temperature heat source (air, surface water, etc.).
  • the gaseous medium entering the condensing chamber 14 When the gaseous medium entering the condensing chamber 14 is in contact with the heat sink 9, the gaseous medium is converted from a gaseous state to a liquid state due to a decrease in temperature, the liquid medium is concentrated to the bottom of the condensing chamber 14, and a liquid infusion valve 16 is disposed at the bottom of the condensing chamber 14.
  • the liquid filling valve 16 introduces the liquid medium in the condensing chamber 14 into the first power generating box body 1, and the liquid filling valve 16 is connected to the first power generating box 1 to prepare to introduce the liquid medium in the condensing chamber 14 to the first power generating box In the body 1, the liquid filling valve 16 is first opened, and then the liquid medium is injected into the first power generating box 1.
  • the power generation box 1 is disengaged from the liquid filling valve 16 and moves downward by gravity.
  • the first power generation box 1 is connected to the second power generation box 2 through the power generation box motion connecting device 15 to generate power box movement.
  • the connecting device 15 is connected to the first power generating box 1 , bypasses the power generating box guiding device 11 , enters the generator set 12 , and is connected to the generator set 12 . (In the power generating box moving connecting device 15 in the first power generating box 1 Or the second power generating box 2 is driven to move, and then the power generating box motion connecting device 15 drives the generator set 12 to generate electric energy.
  • the generator set 12 bypasses the power generating box guiding device 11 , the other end and the second Power generation box 2 connected.
  • the generator set 12 is driven to generate electric energy, and at the same time, the empty second power generating box 2 is moved upward, and the first power generating is filled with liquid.
  • the tank 1 is moved by gravity to the top of the heating chamber 4 at the bottom of the fixing and stabilizing device 7 of the entire device, the first power generating box
  • the body 1 is connected to the liquid filling valve 16 of the heating chamber 4, the liquid filling valve 16 is opened, the liquid medium is injected into the heating chamber 4, and after the liquid in the first power generating box 1 is discharged, the liquid filling valve 16 is closed.
  • the second power generating box 2 is moved upward to the bottom of the condensing chamber 14 at the top of the fixing and stabilizing device 7 of the entire device, and the second power generating box 2 is connected to the liquid filling valve 16 of the condensing chamber 14, the liquid filling valve 16 introduces the liquid medium in the condensing chamber 14 into the second power generating box 2, first opens the liquid filling valve 16, and then the liquid medium is injected into the second power generating box 2, and the second power generating box 2 is filled with the liquid After that, the liquid filling valve 16 is closed, and the second power generating box 2 filled with liquid is disengaged from the liquid filling valve 16, and moves downward by gravity to drive the generator set 12 to generate electric energy, and simultaneously drives the first emptying.
  • the power generating box 1 moves upward, and when the second power generating box 2 filled with liquid moves under the action of gravity to the top of the heating chamber 4 at the bottom of the fixing and stabilizing device 7 of the entire device, the second power generating box 2 and the heating chamber 4 liquid irrigation
  • the injection valve 16 is connected, the liquid filling valve 16 is opened, the liquid medium is injected into the heating chamber 4, after the liquid in the second power generating box 2 is discharged, the liquid filling valve 16 is closed, and the second power generating box 2 is heated. Since the middle 4 is disengaged, since a large amount of heat energy is always introduced into the heating plate 5 of the heating chamber 4, the liquid medium in the heating chamber 4 is continuously vaporized, and after gasification, the gas delivery conduit 3 continuously enters the condensation chamber. 14.
  • the liquefaction of the vaporized medium is continuously converted into a liquid medium, and the liquid medium is transported to the heating chamber through the up and down movement of the first power generation box 1 and the second power generation box 2. 4, and then heating the liquid medium through the heating of the heating plate 5 in the heating chamber 4, thereby forming a stable circulation process, thereby converting the energy transmitted from the heat source into electric energy.
  • the design of the phase change power generation of the present invention is completed.
  • the heating chamber 4, the gas delivery conduit 3, and the condensation chamber 14 constitute a closed system.
  • the entire closed system can be pumped to a relative vacuum, and then the liquid medium is injected into the chamber.
  • the heating chamber 4 of the closed system can thus easily vaporize the liquid medium at a lower temperature, thereby providing the necessary conditions for the low-temperature negative-pressure phase-change power generation of the present invention.
  • the heating chamber 4, the gas delivery pipe 3, the condensation chamber 14, the first power generation box 1, the second power generation box 2, and the like are all made of a material having a very good heat insulation effect as a protective layer, and the heat energy loss is reduced to The lowest process.
  • the entire process is maintained in a closed environment. Thereby, the tightness and vacuum conditions of the system constituted by the heating chamber 4, the gas delivery conduit 3, and the condensation chamber 14 are ensured.
  • Figure 1 is suitable for use with a high temperature heat source at the bottom of the unit and a high temperature heat source at the top.
  • a high temperature heat source at the bottom of the unit
  • a high temperature heat source at the top.
  • underground geothermal energy is used as a high-temperature heat source
  • ground air and surface water are used as low-temperature heat sources.
  • the heating chamber 4, the gas delivery conduit 3, and the condensation chamber 14 constitute a closed system, the entire closed system is in a relatively vacuum internal environment state before operation, and therefore at a lower high temperature heat source, such as at a low temperature
  • the phase change can also be accomplished in this secret system under negative pressure (below atmospheric pressure).
  • the difference between this embodiment and the above embodiment is that the structure of the heating superconducting tube 6 and the heat dissipating superconducting tube 10 is somewhat different.
  • the heating superconducting tube 6 absorbs heat energy from the entire device.
  • the top high-temperature heat source of the fixing and stabilizing device 7 absorbs heat energy, and then transfers the heat energy to the heating chamber 4 by heating the super-heat-conducting tube 6, and the heat energy released during the conversion of the gaseous medium into the liquid medium in the condensing chamber passes through the heat-dissipating super-heat-conducting tube. 10
  • This heat energy is transferred to the bottom low temperature heat source of the fixing and stabilizing device 7 of the entire device, thereby completing the phase change power generation process and generating electric energy.
  • Figure 2 is suitable for use with a high temperature heat source at the bottom of the unit and a low temperature heat source at the top.
  • a high temperature heat source at the bottom of the unit and a low temperature heat source at the top.
  • solar thermal collectors on the surface high-temperature heat sources on the surface of deserts, waste heat from thermal power plants and factories, and high-temperature heat sources are used, and underground aquifers or groundwater layers are used as low-temperature heat sources.
  • high-temperature heat sources they are only relatively high temperature, just higher than the low-temperature heat source. Relative to their low-temperature heat source, most of them are below 100 °C, and the device has a closed vacuum environment, forming a low-pressure negative pressure.
  • a device for phase change power generation can be performed under the conditions.
  • the structure of FIG. 3 is the same as that of FIG. 1, except for the heating chamber 4, the gas delivery conduit 3, the condensation chamber 14, the first power generation box 1, the second power generation box 2, and the second power generation box. 2, etc.
  • These devices should choose materials that can withstand high temperatures and pressures.
  • the underground hot air is used as a high-temperature heat source
  • the ground air and surface water are used as low-temperature heat sources.
  • the high temperature heat source selected in Figure 3 is above 100 °C and the pressure generated is greater than the normal atmospheric pressure.
  • FIG. 4 the structure of FIG. 4 is the same as that of FIG. 2 except for the heating chamber 4, the gas delivery conduit 3, the condensation chamber 14, the first power generation box 1, the second power generation box 2, and the second power generation box. 2, etc.
  • These devices should choose materials that can withstand high temperatures and pressures. For example, using solar collectors on the surface, waste heat from thermal power plants and factories as high-temperature heat sources, and underground aquifers or groundwater layers as low-temperature heat sources.
  • the high temperature heat source selected in Figure 4 is above 100 °C and the pressure generated is greater than the normal atmospheric pressure.
  • Figure 5 Figure 6, Figure 7, Figure 8, and Figure 9 are the operational profiles of Figure 1.
  • FIG 5 shows that after the entire equipment is prepared, the working medium phase change liquid medium is added to the heating chamber 4, and the heating superheat pipe 6 is turned on to transfer the energy of the heat source to the heating chamber 4 to start heating the liquid medium.
  • Fig. 6 shows that the liquid medium is converted into a gaseous state by heating of the heating plate 5 in the heating chamber 4, and the gaseous medium is diffused into the gas delivery pipe 3 connected to the heating chamber 4, ready to enter the condensation chamber 14.
  • Figure 7 shows the diffusion of the gaseous medium in the diffusion gas delivery conduit 3 into the condensation chamber 14, opening the heat-dissipating superconducting tube 10 connected to the heat sink 9 in the condensation chamber 14, and conducting the heat carried by the gas to the low-temperature heat source (such as a low temperature region)
  • the outside air or water converts the gaseous medium into a liquid medium and concentrates to the bottom of the condensation chamber 14.
  • Figure 8 injects the liquid medium concentrated to the bottom of the condensing chamber 14 into the first power generating box 1 through the liquid filling valve 16.
  • Figure 9 is a liquid-filled first power generating box 1 moving from the condensation chamber 14 end under the action of gravity to the heating chamber 4 end to drive the power generating device to generate electric energy, and at the same time driving the second power generating box 2 the second power generating box 2 (internal Maintain the same pressure as the condensate) from the end of the heating chamber 4 to the end of the condensing chamber 14.
  • the phase change water wheel power generation device of the embodiment of the present invention includes a gas transmission pipe 3, a heating chamber 4, a heating plate 5, a heating superheat pipe 6, a fixing and stabilizing device 7 of the entire device, a heat dissipation plate 9, and heat dissipation.
  • Superheat pipe 10 condensing room 14, rectification and energy storage device 17 for electric energy, water injection pipe (injecting condensed liquid into the water wheel to drive the water wheel to rotate) 18, receiving device for water wheel drainage (on the water wheel The drained water is introduced into the drain pipe. 19. Drainage pipe (discharge the water discharged from the water wheel to the heating room for gasification) 20.
  • the water tank eats the water tank (receives the liquid injected into the water pipe, and then the gravity of the liquid Under the action, the rotation of the water wheel is driven, the water outlet moves from the highest point of the potential energy to the lowest point, and finally the liquid is discharged to the drain pipe.
  • the water wheel 22, the power generating device 23 of the water wheel, the water wheel shaft 24, the supporting device of the water wheel 25.
  • the heating superheat pipe 6 is composed of a super heat pipe or a heat pipe, and the heat absorbing end of the heating super heat pipe 6 is connected with a heat source (such as geothermal heat), and the heat source (such as geothermal energy) is heated by the heat absorbing end of the heating super heat pipe 6.
  • a heat source such as geothermal heat
  • geothermal energy such as geothermal energy
  • the heat absorption is transmitted to the heat radiating end of the heating superheat pipe 6, the heat radiating end of the heating super heat pipe 6 is connected with the heating plate 5, and the heat in the heat source (such as geothermal heat) is transmitted to the heating plate 5, and the heating plate 5 has a very high thermal conductivity.
  • Made of high material it has a structure that increases the heat transfer area, making heat transfer more uniform and fast.
  • the heating plate 5 is installed in the heating chamber 4.
  • the heating chamber 4 has a pre-added thermal liquid medium, and the heating plate 5 in the heating chamber 4 is heated to heat the medium to change the medium from a liquid state to a gaseous state.
  • the liquid medium is heated by the heating plate 5, and the liquid medium is converted into a gaseous medium.
  • the gaseous medium is diffused from the heating chamber 4 into the gas delivery conduit 3 connected to the heating chamber 4, and the gas delivery conduit 3 is fixed and fixed.
  • the pipe wall of the gas conveying pipe 3 has a heat insulating constant temperature protection layer, which reduces the loss of thermal energy to the lowest level of the process, so that the gaseous medium can not be cooled by cooling during the process of transmission.
  • the gaseous medium diffuses through the gas delivery conduit 3 into the condensation chamber 14, and there is a certain height difference H between the condensation chamber 14 and the heating chamber 4.
  • the condensation chamber 14 is provided with a heat dissipation plate 9, a heat dissipation plate 9 and a condensation chamber 14 and a heat conduction superconductor.
  • the heat absorption end of the heat pipe 10 is connected, and the heat dissipation plate 9 is made of a material having a very high thermal conductivity, and has a structure for increasing the heat conduction area, so that the heat conduction is more uniform and rapid, and the heat dissipation plate 9 is connected to the heat absorption end of the heat dissipation superheat pipe 10,
  • the heat energy released during the conversion of the gaseous medium into a liquid state is conducted to the heat dissipation plate 9, and the heat dissipation plate 9 conducts heat to the heat dissipation superheat pipe 10, and the heat dissipation end of the heat dissipation superheat pipe 10 is connected with a low temperature heat source (air, surface water, etc.).
  • the heat energy of the heat dissipating end of the heat dissipating superconducting tube 10 is diffused into a low temperature heat source (air, surface water, etc.).
  • a low temperature heat source air, surface water, etc.
  • the gaseous medium entering the condensation chamber 14 is in contact with the heat sink 9
  • the gaseous medium changes from a gaseous state to a liquid state due to a decrease in temperature
  • the liquid medium is concentrated to the bottom of the condensation chamber 14, and a water injection pipe 18 is provided at the bottom of the condensation chamber 14.
  • a water gas isolating device 28 is mounted on the water pipe 18, and the liquid medium can be flowed from the bottom of the condensing chamber 14 through the water injection pipe 18 to the water tank drinking water tank 21 under equal pressure conditions;), the water injection pipe 18 passes the condensing chamber 14 through the injection
  • the water pipe 18 injects the condensed liquid into the water tank eating water tank 21 provided on the water wheel 22, (the water wheel 22 is fixed by the support
  • the device is stabilized by the fixed water wheel supporting device 25, and then the gravity wheel is driven to rotate around the water wheel shaft 24 under the action of gravity, thereby driving the water turbine generator set 23 installed on the water wheel to generate electric energy, and generating rectification for transferring electric energy to the electric energy. It is stored with the energy storage device 17.
  • the liquid medium in the water tank eating tank moves from the highest point of the water wheel (14 sections of the condensation chamber) to the lowest point of the water wheel (four ends of the heating chamber) as the water wheel rotates, and water is set at the lowest point of the water wheel.
  • the receiving device 19 for the wheel drainage can introduce the liquid medium discharged from the water tank sink 21 into the drain pipe 20, and transport the liquid medium discharged from the water wheel to the heating chamber 4 for gasification, on the drain pipe 20.
  • the water gas isolating device 28 is installed to allow the liquid medium to be introduced into the heating chamber 4 without the gaseous medium being discharged from the drain pipe 20, resulting in a decrease in the efficiency of the entire apparatus.
  • the liquid medium enters the heating chamber 4 from the drain pipe 20, passes through the heating of the heating plate 5 in the heating chamber 4, and is converted into a gaseous state.
  • the gaseous medium diffuses through the gas delivery pipe 3 to the condensation chamber 14, and is cooled by the heat dissipation plate 9 in the condensation chamber 14.
  • the gaseous medium is converted into a liquid state, and then the liquid medium is discharged to the water tank eating tank 21 through the water injection pipe 18, the water wheel 22 is rotated, and electric energy is generated, and the liquid medium is transported through the eating water tank 21 to the receiving device 19 of the water wheel drainage.
  • the liquid medium is discharged to the heating chamber 4 through the drain pipe 20, thereby completing the cycle of the entire phase change process, since the heating superheat pipe 6 can continuously transmit the heat energy of the heat source to the heating plate 5 of the heating room 4,
  • the liquid medium is very stable and continuously vaporized into a gaseous medium, and then the gaseous medium can be stably diffused into the condensation chamber 14 through the gas delivery pipe 3, and the cooling medium is cooled by the heat sink 9 in the condensation chamber 14
  • the steady stream of continuous conversion into a liquid medium the liquid medium can be very stable and continuously discharged through the water injection pipe 18 to the water tank eating tank 21,
  • the water wheel 22 is continuously rotated stably, and at the same time, the continuous stable electric energy is generated, and the liquid medium is transported to the receiving device 19 of the water wheel drainage through the drinking water tank 21, and then the liquid medium is stably discharged through the drain pipe 20 to the source.
  • the heating chamber 4 is completed to complete the entire phase change power generation process, and the heat energy is stably converted
  • the heating chamber 4, the gas delivery conduit 3, the condensation chamber 14, and the closed chamber 26 constitute a closed system.
  • the entire closed system can be first drawn into a relative vacuum to form a sealed system.
  • the negative pressure environment 27, and then the liquid medium is injected into the heating chamber 4 of the closed system, so that the liquid medium can be easily vaporized at a lower temperature, thereby generating the low-temperature negative pressure and high-temperature high-pressure phase-change power generation of the present invention.
  • the heating chamber 4, the gas conveying pipe 3, the condensing chamber 14, the closed box 26, and the like are all made of a material having a very good heat insulating effect as a protective layer, and the loss of heat energy is reduced to the lowest level of the process.
  • Figure 10 and Figure 11 are suitable for use in situations where there is a temperature difference between the high temperature heat source ring and the low temperature heat source.
  • the ground air and surface water are used as low-temperature heat sources.
  • the steam turbine power generating apparatus includes a natural energy supplier 30, a water supply pump 31, a condenser 32, a steam turbine 33, a superconducting heat pipe 34, and a geothermal layer 35.
  • the heat absorbing end of the super heat pipe 34 is connected to the geothermal layer 35 (or a high temperature heat source), and the energy of the geothermal layer 35 (or high temperature heat source) is transmitted to the natural energy supplier 30 connected to the heat radiating end of the super heat pipe 34,
  • the natural energy supplier 30 is a boiler-like heating device.
  • the natural energy supplier 30 uses the heat conducted by the superconducting heat pipe 34 to heat the working medium phase change liquid medium to change from a liquid medium to a high temperature and high pressure gas state.
  • the medium, the high temperature and high pressure gaseous medium is transported to the steam turbine 33 through the conveying pipeline, and the high temperature and high pressure gaseous medium drives the steam turbine 33 to operate, the steam turbine 33 drives the steam turbine generator to rotate to generate electric energy, and the high temperature and high pressure gaseous medium push steam turbine 33 operates to discharge the steam turbine 33.
  • the heat pipe 34 can continuously transfer energy from the heat source to the self Power supply 30, so that the entire cycle of the above-described continuous steady stream of running down, converting thermal energy into electrical energy.
  • the natural energy feeder 30, the water supply pump 31, the condenser 32, the steam turbine 33 and all the conveying pipes in the device are made of a material having a very good heat insulating effect as a protective layer, and the heat energy loss is reduced to the lowest process. .
  • the invention introduces the natural energy of the earth into the phase-change power generation by recombination through the heat pipe or the super-duct, effectively replaces the conventional energy such as coal nuclear energy, and maximizes the utilization of the infinite natural resources.
  • the utilization rate of natural resources is improved, and the power generation system is simple in equipment, low in cost, easy to operate, and free from pollution, which is conducive to environmental protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本发明涉及发电设备技术领域,特别涉及一种负压相变发电系统和汽轮发电装置。该系统包括加热超导热管、散热超导热管、加热间、冷凝间和气体输送管道;加热间和冷凝间之间具有高度差且通过气体输送管道相连通;加热超导热管的吸热端与热源相连接,加热超导热管的散热端与加热板相连接,加热间内设有热工液态介质冷凝间内设有散热板,散热板与散热超导热管的吸热端相连,散热超导热管的散热端与低温热源相连接。本发明将地球自然能量通过热管或超导管导入重新组合配置的相变发电,有效地替代了煤炭核能等常规能源,最大程度的将无穷的自然资源利用起来,提高自然资源的利用率,同时该发电系统设备简单、成本投入低、制作容易且无污染。

Description

一种负压相变发电系统及汽轮发电装置 技术领域
本发明涉及相变发电技术领域, 尤其涉及一种负压相变发电系统及汽轮 发电装置。 背景技术
随着科学技术的不断发展, 各行各业对能源的需求曰益迫切。 目前, 大 部分的发电系统还停留在利用煤炭等相对传统的方式进行发电, 一方面煤炭 资源有限, 满足不了大功率的发电需求, 另一方便, 利用煤炭发电加重了对 自然环境的污染和破坏, 不利于环保。
近几年来, 利用风能、 水力、 太阳能、 核能等发电技术逐步发展开来, 但这些发电技术能耗大, 耗资巨大且非常容易受到自然外界环境的影响, 导 致其发电量受到一定的限制, 满足不了今后各行各业对电能的需求。 发明内容
(一) 要解决的技术问题
本发明的目的是解决现有的发电装置耗能大、 成本 贵、 不利于环保且 发电量有限等缺陷。
(二)技术方案
为了解决上述技术问题, 本发明一方面提供一种负压相变发电系统, 包 括加热超导热管、 散热超导热管、 加热间、 冷凝间和气体输送管道;
所述加热间和冷凝间之间具有高度差, 且通过气体输送管道相连通; 所 述加热间和冷凝间之间设有发电单元;
所述加热超导热管的吸热端与热源相连接, 所述加热超导热管的散热端 与加热板相连接, 所述加热板安装在加热间中, 所述加热间内设有热工液态 介质所述冷凝间内设有散热板, 所述散热板与散热超导热管的吸热端相连, 所述散热超导热管的散热端与低温热源相连接。
进一步地, 所述发电单元包括第一发电箱体、 第二发电箱体; 所述第一 发电箱体通过发电箱体运动连接装置和第二发电箱体连接; 所述加热间上部 设有液体灌注阀; 所述冷凝间的底部设有液体灌注阀; 所述发电箱体运动连 接装置一端与第一发电箱体连接, 绕过发电箱体导向装置, 进入发电机组, 与发电机组连接, 从发电机组出来, 绕过发电箱体导向装置, 另一端与第二 发电箱体连接。
进一步地, 所述发电单元单元包括水轮、 水轮发电装置、 水轮的吃水槽、 水轮轴、 水轮的支撑设备、 密闭箱体水轮下方设有水轮排水接收装置; 所述 水轮排水接收装置连接排水管, 所述排水管连通加热间;
所述冷凝间的底部设有注水管, 所述注水管将冷凝间的液体注入到水轮 上; 所述注水管上安装水气隔离装置; 水轮的吃水槽接收注水管注入的液体, 在液体重力的作用下, 带动水轮的转动, 出水槽从势能最高处运动到最低处, 将液体排到排水管。
进一步地, 还包括: 电能的整流与储能装置。
进一步地, 还包括固定与稳定装置, 所述气体输送管道安装在固定与稳 定装置上。
进一步地, 所述加热间、 气体输送管道和冷凝间构成一个密闭空间, 在 液态介质注入到该密闭空间之间, 所述密闭空间处于相对真空状态。
进一步地, 其特征在于, 加热间、 气体输送管道、 冷凝间、 第一发电箱 体和第二发电箱体均设有保护层, 所述保护层由隔热恒温材料制成。
进一步地, 其特征在于, 所述加热超导热管由超导热管或热管构成。 另一方面, 还提供一种汽轮发电装置, 包括自然能量供给器、 供水泵、 凝汽器、 汽轮机、 超导热管和地热层;
所述超导热管的吸热端与地热层相连接, 将地热层的能量传输到与超导 热管散热端相连接的自然能量供给器; 所述自然能量供给器将其中的工质相 变液态介质加热后转变为高温高压的气态介质, 高温高压的气态介质通过输 送管道被运送到汽轮机, 高温高压的气态介质推动汽轮机运转, 汽轮机带动 汽轮发电机转动产生电能,高温高压的气态介质推汽轮机运转后排出汽轮机, 通过出送管道进入凝汽器将气态介质冷凝转变为液态进入传输管道进入供水 泵, 供水泵将冷凝后的液态介质传送给自然能量供给器。
进一步地, 自然能量供给器、 供水泵、 凝汽器、 汽轮机以及输送管道均 设有保护层, 所述保护层由隔热恒温材料制成。
(三)有益效果
本发明的上述技术方案具有如下优点: 本发明将地球自然能量通过热管 或超导管导入重新组合配置的相变发电,有效地替代了煤炭核能等常规能源, 最大程度的将无穷的自然资源利用起来, 提高自然资源的利用率, 同时该发 电系统设备简单、 成本投入低、 制作容易且无污染, 有利于环保。 附图说明
图 1为本发明实施例一低温负压相变发电装置的示意图;
图 2为本发明实施例二低温负压相变发电装置的示意图;
图 3为本发明实施例三高温负压相变发电装置的示意图;
图 4为本发明实施例四高温负压相变发电装置的示意图;
图 5、 图 6、 图 7、 图 8、 图 9为图 1的运行分布图;
图 10为本发明实施例五相变水轮发电装置的示意图
图 11为本发明实施例六相变水轮发电装置的示意图;
图 12是本发明实施例七汽轮发电装置的示意图。
图中: 1 : 第一发电箱体; B2、 发电箱体; 3: 气体输送管道; 4: 加热间; 5: 加热板; 6: 加热超导热管; 7: 固定与稳定装置; 8:; 9: 散热板; 10: 散热超导热管; 11 : 发电箱体导向装置; 12: 发电机组; 14: 制冷间; 15: 发电箱体运动连接装置; 16: 液体灌注阀; 18: 注水管、 19: 水轮排水的接 收装置; 20: 排水管; 21 : 水轮的吃水槽; 22: 水轮; 23: 水轮的发电装置; 24: 水轮轴; 25水轮的支撑设备; 26: 密闭箱体; 27: 负压的环境; 28: 水 气隔离装置; 30: 自然能量供给器; 31 : 供水泵; 32: 凝汽器; 33: 汽轮机; 34: 超导热管; 35: 地热层。 具体实施方式
下面结合附图和实施例对本发明的具体实施方式作进一步详细描述。 以 下实施例用于说明本发明, 但不用来限制本发明的范围。
实施例一
如图 1所示, 本发明实施例低温负压相变发电装置包括第一发电箱体、 第二发电箱体、 气体输送管道 3、 加热间 (将发电箱体中的液体置入其中, 然后在进行液化的装置) 4、 加热板 5、 加热超导热管 6、 整个装置的固定与 稳定装置 7、 散热板 9、 散热超导热管 10、 发电箱体导向装置 11、 发电机组 12、 冷凝间 14、 发电箱体运动连接装置 15、 液体灌注阀 16。
该加热板 5与和加热超导热管 6的散热端连接, 使得热传导更加均匀快 速。 散热板 9由高导热系数材料制成, 该散热板 9与制冷间和超导热管相连, 使热传导更加均匀快速。该液体灌注阀 16用于第一发电箱体 1和第二发电箱 体 2与冷凝间 14、 加热间 4进行等压状态下的液体与气体的运输。
在该装置中, 加热间 4、 气体输送管道 3、 冷凝间 14构成一个密闭的系 统, 在加热间中加入液态介质之前, 可先将整个密闭的系统抽为相对真空, 再将液态介质注入到该密闭系统的加热间 4, 这样可以在较低的温度下液态 介质也可以很容易气化,从而为本发明的低温负压相变发电提供必要的条件。
加热间 4、 气体输送管道 3、 冷凝间 14、 第一发电箱体 1、 第二发电箱体 2 等都是由有隔热恒温效果非常好的材料作为其保护层, 将热能的损耗降到 工艺的最低。
其中加热超导热管 6由超导热管或热管构成, 加热超导热管 6的吸热端 与热源 (如地热)相连接, 由加热超导热管 6的吸热端将热源 (如地热能) 中的热量吸收传送到加热超导热管 6的散热端, 加热超导热管 6的散热端与 加热板 5相连接, 将热源 (如地热) 中的热量传送到加热板 5 , 加热板 5为 导热系数非常高的材料做成, 有增加导热面积的结构, 使热量传导更加均匀 快速。 加热板 5安装在加热间 4中, 加热间 4中有预先加入的热工液态介质, 加热间 4 中的加热板 5 , 经过热交换加热介质, 使介质由液态加热后变为气 态。 加热间 4上部有液体灌注阀 16, 液体灌注阀 16为第一发电箱体 1、 第二 发电箱体 2与冷凝间 14、 加热间 4进行等压状态下进行液体与气体的运输。 在加热间 4中液态介质通过加热板 5的加热, 液态介质转变为气态介质, 气 态介质由加热间 4中扩散进入到与加热间 4相连接的气体输送管道 3, 气体 输送管道 3安装在固定与稳定装置 7上, 气体输送管道 3的管道壁有隔热恒 温保护层, 将热能的损失降到工艺的最低, 可以使气态介质在传输的过程中 不会因为冷却而由气态变为液态, 造成运行效率的降低。 气态介质通过气体 输送管道 3扩散进入到冷凝间 14, 冷凝间 14与加热间 4之间有一定的高度 差, 冷凝间 14配置有散热板 9, 散热板 9与冷凝间 14和散热超导热管 10的 吸热端相连, 散热板 9为导热系数非常高的材料做成, 有增加导热面积的结 构, 使热传导更加均匀快速, 散热板 9与散热超导热管 10的吸热端相连, 将 气态介质转变为液态过程中释放的热能传导到散热板 9, 散热板 9将热量传 导给散热超导热管 10, 传导给散热超导热管 10的散热端, 该散热超导热管 的散热管与低温热源(空气、 地表水等)相连接, 将散热超导热管 10的散热 端的热能扩散到低温热源(空气、 地表水等) 中。 当进入冷凝间 14中的气态 介质与散热板 9接触后, 气态介质由于温度降低冷凝由气态转变为液态, 液 态介质集中到冷凝间 14的底部, 冷凝间 14的底部设置有液体灌注阀 16。 液 体灌注阀 16将冷凝间 14中的液体介质导入到第一发电箱体 1中, 液体灌注 阀 16与第一发电箱体 1连接后准备将冷凝间 14中的液体介质导入到第一发 电箱体 1中, 先将液体灌注阀 16打开, 然后液体介质被注入到第一发电箱体 1中, 第一发电箱体 1中注满液体后, 液体灌注阀 16关闭, 注满液体的第一 发电箱体 1与液体灌注阀 16脱开, 在重力的作用下向下运动, 第一发电箱体 1通过发电箱体运动连接装置 15与第二发电箱体 2连接在一起, 发电箱体运 动连接装置 15—端与第一发电箱体 1连接, 绕过发电箱体导向装置 11 , 进 入发电机组 12, 与发电机组 12连接, (在发电箱体运动连接装置 15在第一 发电箱体 1或第二发电箱体 2的带动下运动, 然后发电箱体运动连接装置 15 带动发电机组 12运转产生电能。 )然后从发电机组 12出来, 绕过发电箱体导 向装置 11 , 另一端与第二发电箱体 2连接在一起。 当注满液体的第一发电箱 体 1在重力的作用下向下运动时, 带动发电机组 12运转产生电能, 同时带动 空的第二发电箱体 2向上运动, 当注满液体的第一发电箱体 1在重力的作用 下运动到整个装置的固定与稳定装置 7底部的加热间 4的顶部, 第一发电箱 体 1与加热间 4的液体灌注阀 16相连接, 将液体灌注阀 16打开, 液体介质 被注入到加热间 4中,第一发电箱体 1中的液体放完后,液体灌注阀 16关闭, 在这个过程的同时第二发电箱体 2 向上运动到整个装置的固定与稳定装置 7 顶部冷凝间 14的底部,第二发电箱体 2与冷凝间 14的液体灌注阀 16相连接, 液体灌注阀 16将冷凝间 14中的液体介质导入到第二发电箱体 2中, 先将液 体灌注阀 16打开, 然后液体介质被注入到第二发电箱体 2中, 第二发电箱体 2注满液体后, 液体灌注阀 16关闭, 注满液体的第二发电箱体 2与液体灌注 阀 16脱开, 在重力的作用下向下运动, 带动发电机组 12运转产生电能, 同 时带动排空的第一发电箱体 1向上运动, 当注满液体的第二发电箱体 2在重 力的作用下运动到整个装置的固定与稳定装置 7底部的加热间 4的顶部, 第 二发电箱体 2与加热间 4的液体灌注阀 16相连接, 将液体灌注阀 16打开, 液体介质被注入到加热间 4中, 第二发电箱体 2中的液体放完后, 液体灌注 阀 16关闭, 第二发电箱体 2与加热间 4脱开, 由于一直有大量的热能导入到 加热间 4的加热板 5 , 加热间 4中的液态介质就会连续的被气化, 气化后经 过气体输送管道 3源源不断的进入冷凝间 14, 经过冷凝间 14中散热板 9的 冷凝将气化后的介质液化源源不断的转变为液态介质, 液态介质经过第一发 电箱体 1和第二发电箱体 2的上下运动运送到加热间 4中, 然后又经过加热 间 4中的加热板 5的加热将液态介质气化, 从而形成一个稳定的循环过程, 从而将热源中传输出来的能量转变为电能。 完成本发明相变发电的设计。
在该装置中, 加热间 4、 气体输送管道 3、 冷凝间 14构成一个密闭的系 统, 在加热间中加入液态介质之前, 可先将整个密闭的系统抽为相对真空, 再将液态介质注入到该密闭系统的加热间 4, 这样可以在较低的温度下液态 介质也可以很容易气化,从而为本发明的低温负压相变发电提供必要的条件。
加热间 4、 气体输送管道 3、 冷凝间 14、 第一发电箱体 1、 第二发电箱体 2 等都是由有隔热恒温效果非常好的材料作为其保护层, 将热能的损耗降到 工艺的最低。
在该装置运行中, 第一发电箱体 1、 第二发电箱体 2在与加热间 4、 冷凝 间 14连接在一体将液态介质注入时, 要保持整个过程在密闭的环境中运行, 从而保证加热间 4、 气体输送管道 3、 冷凝间 14构成的系统的密性和真空条 件。
图 1适用于在装置的底部为高温热源, 顶部为高温热源的条件下。 如利 用地下的地热作为高温热源, 将地面的空气、 地表水等作为低温热源。 由于 在该装置中, 加热间 4、 气体输送管道 3、 冷凝间 14构成一个密闭的系统, 整个密闭的系统在运行前为相对真空的内部环境状态, 因此在较低的高温热 源, 如在低于 100°C的高温热源的环境下, 在负压 (低于大气压强) 的条件 下, 也可以在这种秘密的系统中完成相变。
实施例二
如图 2所示, 本实施例与上述实施例的区别在于, 加热超导热管 6和散 热超导热管 10的结构上有些不同,在图 2中加热超导热管 6吸取热能是从整 个装置的固定与稳定装置 7的顶部高温热源吸取热能, 然后通过加热超导热 管 6将热能传输到加热间 4, 而将冷凝间中在气态介质转变为液态介质的过 程中释放的热能通过散热超导热管 10 将这些热能传送到整个装置的固定与 稳定装置 7的底部低温热源处, 从而完成相变发电的过程, 产生电能。
图 2适用于在装置的底部为高温热源, 顶部为低温热源的条件下。 如利 用地表的太阳能集热装置, 沙漠表层高温热源, 热电厂、 工厂排放的余热作 为高温热源, 将地下含水层或地下水层作为低温热源。 对于这些高温热源, 只是相对的高温, 只是高于低温热源而已, 相对于其低温热源而已, 大多都 低于 100°C , 而该装置有一个密闭真空的环境, 形成了一个在低温负压的条 件下就可以进行相变发电的装置。
实施例三
如图 3所示, 图 3的结构与图 1的结构相同, 只是在加热间 4、 气体输 送管道 3、 冷凝间 14、 第一发电箱体 1、 第二发电箱体 2第二发电箱体 2等 这些装置要选择能够承受高温高压的材料。 如利用地下的温度较高的地热作 为高温热源, 将地面的空气、 地表水等作为低温热源。
图 3 中所选择的高温热源为高于 100°C , 产生的压力大于正常的大气压 强。 实施例四
如图 4所示, 图 4的结构与图 2的结构相同, 只是在加热间 4、 气体输 送管道 3、 冷凝间 14、 第一发电箱体 1、 第二发电箱体 2第二发电箱体 2等 这些装置要选择能够承受高温高压的材料。 如利用地表的太阳能集热装置, 热电厂、 工厂排放的余热作为高温热源, 将地下含水层或地下水层作为低温 热源。 图 4 中所选择的高温热源为高于 100°C , 产生的压力大于正常的大气 压强。
图 5、 图 6、 图 7、 图 8、 图 9为图 1的运行分布图。
图 5为整个装备准备后, 在加热间 4中加入工质相变液态介质, 开启加 热超导热管 6将热源的能量传输到加热间 4开始加热液态介质。
图 6为液态介质在加热间 4中加热板 5的加热下转变为气态, 气态介质 扩散到与加热间 4相连接的气体输送管道 3中, 准备进入冷凝间 14。
图 7为扩散气体输送管道 3中的气态介质扩散进入到冷凝间 14, 开启冷 凝间 14中的与散热板 9相连接的散热超导热管 10, 将气体携带的热传导到 低温热源(低温区如外界的空气中或水中), 从而将气态介质冷凝转变为液态 介质, 集中到冷凝间 14的底部。
图 8将集中到冷凝间 14的底部的液态介质通过液体灌注阀 16注入到第 一发电箱体 1。
图 9注满液体的第一发电箱体 1从冷凝间 14端在重力的作用下运动到加 热间 4端带动发电装置产生电能, 同时带动第二发电箱体 2第二发电箱体 2 (内部保持与冷凝间相同的压强 )从加热间 4端运动到冷凝间 14端。
实施例五
如图 10所示, 本发明实施例相变水轮发电装置包括气体输送管道 3、 加 热间 4、 加热板 5、 加热超导热管 6、 整个装置的固定与稳定装置 7、 散热板 9、 散热超导热管 10、 冷凝间 14、 电能的整流与储能装置 17、 注水管 (将冷 凝间冷凝的液体注入到水轮上带动水轮转动) 18、 水轮排水的接收装置(将 水轮上排下的水导入到排水管) 19、 排水管 (将水轮上排下的水排到加热间 进行气化) 20、 水轮的吃水槽 (接收注水管注入的液体, 然后在液体重力的 作用下, 带动水轮的转动, 出水槽从势能最高处运动到最低处, 最后将液体 排到排水管) 21、 水轮 22、 水轮的发电装置 23、 水轮轴 24、 水轮的支撑设 备 25、 密闭箱体 26、 负压的环境 27、 水气隔离装置 28。
加热超导热管 6由超导热管或热管构成, 加热超导热管 6的吸热端与热 源 (如地热)相连接, 由加热超导热管 6的吸热端将热源 (如地热能) 中的 热量吸收传送到加热超导热管 6的散热端, 加热超导热管 6的散热端与加热 板 5相连接, 将热源 (如地热) 中的热量传送到加热板 5 , 加热板 5为导热 系数非常高的材料做成, 有增加导热面积的结构, 使热量传导更加均匀快速。 加热板 5安装在加热间 4中, 加热间 4中有预先加入的热工液态介质, 加热 间 4 中的加热板 5 , 经过热交换加热介质, 使介质由液态加热后变为气态。 在加热间 4中液态介质通过加热板 5的加热, 液态介质转变为气态介质, 气 态介质由加热间 4中扩散进入到与加热间 4相连接的气体输送管道 3 , 气体 输送管道 3安装固定在整个装置的固定与稳定装置 7上, 气体输送管道 3的 管道壁有隔热恒温保护层, 将热能的损失降到工艺的最低, 可以使气态介质 在传输的过程中不会因为冷却而由气态变为液态, 造成运行效率的降低。 气 态介质通过气体输送管道 3扩散进入到冷凝间 14, 冷凝间 14与加热间 4之 间有一定的高度差 H, 冷凝间 14配置有散热板 9, 散热板 9与冷凝间 14和 散热超导热管 10的吸热端相连, 散热板 9为导热系数非常高的材料做成, 有 增加导热面积的结构, 使热传导更加均匀快速, 散热板 9与散热超导热管 10 的吸热端相连, 将气态介质转变为液态过程中释放的热能传导到散热板 9, 散热板 9将热量传导给散热超导热管 10, 散热超导热管 10的散热端与低温 热源(空气、 地表水等)相连接, 将散热超导热管 10的散热端的热能扩散到 低温热源 (空气、 地表水等) 中。 当进入冷凝间 14中的气态介质与散热板 9 接触后, 气态介质由于温度降低冷凝由气态转变为液态, 液态介质集中到冷 凝间 14的底部, 冷凝间 14的底部设置有注水管 18 (注水管 18上安装有水 气隔离装置 28, 可将液态介质在等压的条件下从冷凝间 14 的底部通过注水 管 18流向水轮吃水槽 21中;), 注水管 18使冷凝间 14通过注水管 18将冷凝 的液体注入到水轮 22上设置的水轮吃水槽 21中, (水轮 22由通过支撑固定 装置稳定的固定水轮支撑设备 25上)然后在重力的作用下带动水轮转动绕水 轮轴 24转动, 从而带动水轮上安装的水轮发电机组 23转动产生电能, 产生 电能传输到电能的整流与储能装置 17存储起来。水轮吃水槽中的液态介质随 着水轮的转动由水轮的最高点(冷凝间 14段)运动到水轮的最低点(加热间 4端), 在水轮的最低点处设置有水轮排水的接收装置 19, 可以将水轮吃水槽 21 中排下的液态介质导入到排水管 20 中, 将水轮上排下的液态介质输送到 加热间 4进行气化, 在排水管 20上安装有水气隔离装置 28、 可以使液态介 质导入到加热间 4的同时, 而不会有气态介质从排水管 20中排出, 造成整个 装置效率的降低。 由排水管 20进入加热间 4液态介质经过加热间 4中加热板 5的加热, 有转变为气态, 气态介质通过气体输送管道 3扩散到冷凝间 14, 经过冷凝间 14中散热板 9的冷却, 使气态介质转变为液态, 然后液态介质在 经过注水管 18排到水轮吃水槽 21 , 带动水轮 22转动, 同时产生电能, 再将 液态介质通过吃水槽 21运送到水轮排水的接收装置 19, 在经过排水管 20将 液态介质排到加热间 4, 从而完成整个相变过程的循环, 由于加热超导热管 6 可以源源不断的将热源的热能传导到加热间 4的加热板 5 , 可将液态介质非 常稳定的源源不断的气化为气态介质, 然后气态介质可以通过气体输送管道 3非常稳定的源源不断的扩散到冷凝间 14,经过冷凝间 14中散热板 9的冷却, 将液态介质非常稳定的源源不断的转变为液态介质, 液态介质又可非常稳定 的源源不断的通过注水管 18排到水轮吃水槽 21 , 带动水轮 22持续稳定的转 动, 同时产生持续稳定的电能, 再将液态介质通过吃水槽 21运送到水轮排水 的接收装置 19, 再经过排水管 20将液态介质非常稳定的源源不断的排到加 热间 4, 从而完成整个相变发电的过程, 将热能非常稳定的源源不断的转换 为电能。
在该装置中, 加热间 4、 气体输送管道 3、 冷凝间 14、 密闭箱体 26构成 一个密闭的系统, 在加热间中加入液态介质之前, 可先将整个密闭的系统抽 为相对真空形成一个负压环境 27 , 再将液态介质注入到该密闭系统的加热间 4, 这样可以在较低的温度下液态介质也可以很容易气化, 从而为本发明的低 温负压和高温高压相变发电提供必要的条件。 加热间 4、 气体输送管道 3、 冷凝间 14、 密闭箱体 26等都是由有隔热恒 温效果非常好的材料作为其保护层, 将热能的损耗降到工艺的最低。
图 10、 图 11适用于具有高温热源环和低温热源之间存在温度差的条件 下。 如利用地下的地热作为高温热源, 将地面的空气、 地表水等作为低温热 源。
实施例七
如图 12 所示, 本发明实施例提供的汽轮发电装置包括自然能量供给器 30、 供水泵 31、 凝汽器 32、 汽轮机 33、 超导热管 34、 地热层 35。 其中超导 热管 34的吸热端与地热层 35 (或高温热源)相连接, 将地热层 35 (或高温 热源) 的能量传输到与超导热管 34散热端相连接的自然能量供给器 30、 自 然能量供给器 30为一个类似于锅炉的加热装置, 自然能量供给器 30利用超 导热管 34传导过来的热量将其中的工质相变液态介质加热,使之由液态介质 转变为高温高压的气态介质, 高温高压的气态介质通过输送管道被运送到汽 轮机 33 , 高温高压的气态介质推动汽轮机 33运转, 汽轮机 33带动汽轮发电 机转动产生电能, 高温高压的气态介质推汽轮机 33运转后排出汽轮机 33 , 然后通过出送管道进入凝汽器 32 将气态介质冷凝转变为液态进入传输管道 进入供水泵 31 , 供水泵 31将冷凝后的液态介质传送给自然能量供给器 30, 从而完成整个循环, 由于超导热管 34可以从热源源源不断的吸收能量传递给 自然能量供给器 30, 从而使上述的整个循环连续的源源不断的运行下去, 将 热能转换为电能。 该装置中自然能量供给器 30、 供水泵 31、 凝汽器 32、 汽 轮机 33 以及所有输送管道都是由有隔热恒温效果非常好的材料作为其保护 层, 将热能的损耗降到工艺的最低。
以上所述仅是本发明的一种优选实施方式, 应当指出, 对于本技术领域 的普通技术人员来说, 在不脱离本发明技术原理的前提下, 还可以做出若干 改进和变型, 这些改进和变型也应视为本发明的保护范围。 工业实用性
本发明将地球自然能量通过热管或超导管导入重新组合配置的相变发 电, 有效地替代了煤炭核能等常规能源, 最大程度的将无穷的自然资源利用 起来, 提高自然资源的利用率, 同时该发电系统设备简单、 成本投入低、 作容易且无污染, 有利于环保。

Claims

权 利 要 求 书
1、 一种负压相变发电系统, 其特征在于, 包括加热超导热管、 散热超 导热管、 加热间、 冷凝间和气体输送管道;
之间具有高度差, 且通过气体输送管道相连通; 所
Figure imgf000015_0001
所述加热超导热管的吸热端与热源相连接, 所述加热超导热管的散热端 与加热板相连接, 所述加热板安装在加热间中, 所述加热间内设有热工液态 介质所述冷凝间内设有散热板, 所述散热板与散热超导热管的吸热端相连, 所述散热超导热管的散热端与低温热源相连接。
2、 如权利要求 1所述负压相变发电系统, 其特征在于, 所述发电单元包 括第一发电箱体、 第二发电箱体; 所述第一发电箱体通过发电箱体运动连接 装置和第二发电箱体连接; 所述加热间上部设有液体灌注阀; 所述冷凝间的 底部设有液体灌注阀;所述发电箱体运动连接装置一端与第一发电箱体连接, 绕过发电箱体导向装置, 进入发电机组, 与发电机组连接, 从发电机组出来, 绕过发电箱体导向装置, 另一端与第二发电箱体连接。
3、 如权利要求 1所述负压相变发电系统, 其特征在于, 所述发电单元单 元包括水轮、 水轮发电装置、 水轮的吃水槽、 水轮轴、 水轮的支撑设备、 密 闭箱体水轮下方设有水轮排水接收装置;所述水轮排水接收装置连接排水管, 所述排水管连通加热间;
所述冷凝间的底部设有注水管, 所述注水管将冷凝间的液体注入到水轮 上; 所述注水管上安装水气隔离装置; 水轮的吃水槽接收注水管注入的液体, 在液体重力的作用下, 带动水轮的转动, 出水槽从势能最高处运动到最低处, 将液体排到排水管。
4、 如权利要求 3所述负压相变发电系统, 其特征在于, 还包括: 电能的 整流与储能装置。
5、 如权利要求 1所述负压相变发电系统, 其特征在于, 还包括固定与稳 定装置, 所述气体输送管道安装在固定与稳定装置上。
6、 如权利要求 1所述负压相变发电系统, 其特征在于, 所述加热间、 气 体输送管道和冷凝间构成一个密闭空间,在液态介质注入到该密闭空间之间, 所述密闭空间处于相对真空状态。
7、 如权利要求 2所述负压相变发电系统, 其特征在于, 加热间、 气体输 送管道、 冷凝间、 第一发电箱体和第二发电箱体均设有保护层, 所述保护层 由隔热恒温材料制成。
8、 如权利要求 1所述负压相变发电系统, 其特征在于, 所述加热超导热 管由超导热管或热管构成。
9、 一种汽轮发电装置, 其特征在于, 包括自然能量供给器、 供水泵、 凝 汽器、 汽轮机、 超导热管和地热层;
所述超导热管的吸热端与地热层相连接, 将地热层的能量传输到与超导 热管散热端相连接的自然能量供给器; 所述自然能量供给器将其中的工质相 变液态介质加热后转变为高温高压的气态介质, 高温高压的气态介质通过输 送管道被运送到汽轮机, 高温高压的气态介质推动汽轮机运转, 汽轮机带动 汽轮发电机转动产生电能,高温高压的气态介质推汽轮机运转后排出汽轮机, 通过出送管道进入凝汽器将气态介质冷凝转变为液态进入传输管道进入供水 泵, 供水泵将冷凝后的液态介质传送给自然能量供给器。
10、 如权利要求 9所述的汽轮发电装置, 其特征在于, 自然能量供给器、 供水泵、 凝汽器、 汽轮机以及输送管道均设有保护层, 所述保护层由隔热恒
PCT/CN2013/090981 2012-12-28 2013-12-30 一种负压相变发电系统及汽轮发电装置 WO2014101874A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380068644.8A CN105283668B (zh) 2012-12-28 2013-12-30 一种负压相变发电系统及汽轮发电装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210583963 2012-12-28
CN201210583963.X 2012-12-28

Publications (2)

Publication Number Publication Date
WO2014101874A1 true WO2014101874A1 (zh) 2014-07-03
WO2014101874A8 WO2014101874A8 (zh) 2014-10-23

Family

ID=51019897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090981 WO2014101874A1 (zh) 2012-12-28 2013-12-30 一种负压相变发电系统及汽轮发电装置

Country Status (2)

Country Link
CN (1) CN105283668B (zh)
WO (1) WO2014101874A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1609446A (zh) * 2004-08-15 2005-04-27 陈培豪 一种发电方法
CN1769670A (zh) * 2005-11-27 2006-05-10 高耀君 流体温差能热浮力能位势能虹桥动力源及增效应用法
CN101684936A (zh) * 2008-09-27 2010-03-31 郭颂玮 一种利用空调原理循环利用热能用以发电的方法和装置
CN101892964A (zh) * 2010-07-30 2010-11-24 龚智勇 万米单深井重力真空辅助热管循环干热岩发电方法及装置
US20100300091A1 (en) * 2009-05-27 2010-12-02 Lewis William E Geothermal power generation system and method of making power using the system
CN101956679A (zh) * 2009-07-17 2011-01-26 龚智勇 地热能或太阳能温差发动机装置、其发电方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8522552B2 (en) * 2009-02-20 2013-09-03 American Thermal Power, Llc Thermodynamic power generation system
CN202370587U (zh) * 2011-06-09 2012-08-08 山东宏力空调设备有限公司 一种低温发电及热水供暖系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1609446A (zh) * 2004-08-15 2005-04-27 陈培豪 一种发电方法
CN1769670A (zh) * 2005-11-27 2006-05-10 高耀君 流体温差能热浮力能位势能虹桥动力源及增效应用法
CN101684936A (zh) * 2008-09-27 2010-03-31 郭颂玮 一种利用空调原理循环利用热能用以发电的方法和装置
US20100300091A1 (en) * 2009-05-27 2010-12-02 Lewis William E Geothermal power generation system and method of making power using the system
CN101956679A (zh) * 2009-07-17 2011-01-26 龚智勇 地热能或太阳能温差发动机装置、其发电方法及应用
CN101892964A (zh) * 2010-07-30 2010-11-24 龚智勇 万米单深井重力真空辅助热管循环干热岩发电方法及装置

Also Published As

Publication number Publication date
CN105283668A (zh) 2016-01-27
CN105283668B (zh) 2018-05-08
WO2014101874A8 (zh) 2014-10-23

Similar Documents

Publication Publication Date Title
US10907620B2 (en) Thermal heat storage system
CN202395699U (zh) 一种利用地热资源的发电系统
CN103527271B (zh) 非能动式低温热能有机物工质发电方法
CN105431686B (zh) 地热源与远距离供热网的热工连接
CN101892964B (zh) 万米单深井重力真空辅助热管循环干热岩发电方法及装置
CN102338051B (zh) 一种太阳能及地源热一体化电冷热联供装置
BRPI0709837A2 (pt) mÉtodo, dispositivo e sistema para a conversço de energia
CN201650630U (zh) 一种利用太阳能和地热发电的装置
CN202579063U (zh) Tr有机郎肯循环地热发电装置
CN1896501A (zh) 能量转换方法及装置及发电方法及装置
CN113557406A (zh) 一种用于存储和传递热量的系统和方法
CN203476624U (zh) 一种低温型有机朗肯循环太阳热发电系统
CN202395698U (zh) 地热源发电的热电转换系统
CN102080635A (zh) 一种利用太阳能和地热发电的装置及该装置的使用方法
CN103166516A (zh) 一种地热发电系统
CN201858918U (zh) 万米单深井重力热管传热装置
CN111425366A (zh) 月球温差磁悬浮发电系统
CN202073729U (zh) 大气层温差发电装置
CN102182661A (zh) 大气层温差发电装置
WO2006005242A1 (fr) Equipement de production d'energie et procede associe
CN101726134A (zh) 压缩式供热系统以及供热方法
Abas et al. A solar water heater for subzero temperature areas
CN204386829U (zh) 温差发电设备
CN207947726U (zh) 基于平板热管的温差发电模块及其构成的热管循环余热温差发电系统
WO2014101874A1 (zh) 一种负压相变发电系统及汽轮发电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380068644.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/11/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13869829

Country of ref document: EP

Kind code of ref document: A1