WO2014101850A1 - 一种低压配电网载波终端自动注册算法 - Google Patents

一种低压配电网载波终端自动注册算法 Download PDF

Info

Publication number
WO2014101850A1
WO2014101850A1 PCT/CN2013/090799 CN2013090799W WO2014101850A1 WO 2014101850 A1 WO2014101850 A1 WO 2014101850A1 CN 2013090799 W CN2013090799 W CN 2013090799W WO 2014101850 A1 WO2014101850 A1 WO 2014101850A1
Authority
WO
WIPO (PCT)
Prior art keywords
registration
carrier
node
concentrator
domain
Prior art date
Application number
PCT/CN2013/090799
Other languages
English (en)
French (fr)
Inventor
陈支龙
范伟光
岳京兴
王旭
刘宏军
Original Assignee
瑞斯康微电子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞斯康微电子(深圳)有限公司 filed Critical 瑞斯康微电子(深圳)有限公司
Priority to SG11201500446VA priority Critical patent/SG11201500446VA/en
Publication of WO2014101850A1 publication Critical patent/WO2014101850A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • G01D4/004Remote reading of utility meters to a fixed location
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/10Current supply arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5433Remote metering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Definitions

  • the invention relates to a power meter reading network management method, in particular to an automatic registration algorithm for a low voltage distribution network carrier terminal for a power carrier remote meter reading network.
  • a power carrier remote meter reading network usually consists of a main station computer installed in the power department customer management center and more than one station area divided according to the power supply range of the station area transformer (in the network meter reading, also called Composition for the domain).
  • the main station computer is located in the center of the remote meter reading network. It is responsible for the unified management of the meter reading work in the collection area and permanently saves the customer's electric energy data.
  • Each zone includes a zone transformer, a concentrator set near the transformer in the zone, and more than one meter (including carrier or non-carrier table) and collector set on the client.
  • the concentrator is responsible for collecting the meter data of all the customers who are powered by the transformers in the station area of the station area.
  • the collector can establish serial data communication with more than one non-carrier table and has a functional module for storing the table number data of the connected non-carrier table.
  • the meter is used to measure the electric energy consumed by the customer, and has a unique identification number (table number).
  • the main function of the meter reading system is to collect the electric energy data of the client meter and other state data of the meter.
  • the process of meter reading can be started by the concentrator itself, and the concentrator performs a point-and-click meter reading according to the meter number stored in the memory, temporarily storing the meter reading data in the memory, and the master station computer periodically accesses the meter.
  • the concentrator aggregates the meter reading data in the concentrator memory into its own database.
  • manual setting is required manually, that is, the meter number is collected by the staff first, and the master station computer is manually input, and then from the master station.
  • the computer is downloaded to the concentrator. This manual operation is cumbersome and inefficient, and has a high error rate.
  • the automatic registration algorithm since the automatic registration algorithm often runs in a set of stations composed of a plurality of adjacent stations, the carrier message may propagate across the station, thereby A concentrator in one zone is likely to interact with a meter that actually belongs to another zone. Since the premise of the meter registration is that the meter does not know its own station area in advance, the transmission of such carrier messages across the station area is likely to cause the meter belonging to one station to register the meter number to another area. In the device, there is a phenomenon that the meter number of one meter is registered in multiple concentrators at the same time, and these are factors that cause the unstable meter reading process to be unstable and the meter reading data to be inaccurate.
  • an object of the present invention is to provide an automatic registration algorithm for a low-voltage distribution network carrier terminal that enables a client meter to automatically and accurately complete a registry number to its own concentrator.
  • an automatic registration algorithm for a carrier terminal of a low voltage distribution network which includes the following steps:
  • Concentrator carrier module starts concentrator neighbor node registration:
  • the concentrator carrier module broadcasts to the carrier node a relayable registration command for initiating registration of the concentrator neighboring node;
  • the concentrator neighboring node receiving the step 1.1) registration command performs a carrier node registration process
  • Concentrator carrier module starts concentrator non-adjacent node registration:
  • the concentrator carrier module broadcasts to the carrier node a relayable registration command for initiating registration of the non-proximity node of the concentrator;
  • the concentrator non-proximity node receiving the step 2.1) registration command performs a carrier node registration procedure
  • Concentrator carrier module starts concentrator adjacent and non-adjacent node supplementary registration:
  • the concentrator carrier module broadcasts to the carrier node a relayable registration command for initiating supplementary registration of the concentrator adjacent and non-proximity nodes;
  • the carrier node registration procedure in the foregoing steps 1) to 3) includes the following steps: (1) the carrier node that receives the registration command clears its home domain identifier, enters the initial state of the registration state machine, and sets the registration state machine timer; The carrier node entering the initial state of the registration state machine clears its neighboring domain node table and the neighboring concentrator table, enters the registration state machine domain state, sets the registration state machine timer, and the carrier node of the collector also receives the concentration.
  • the search table command sent by the device starts the built-in function module to search for the non-carrier table under the jurisdiction; (3) the carrier node entering the state of the registered state machine broadcasts the non-relayable domain request to the concentrator and other carrier nodes, and Setting the registration state machine timer to a random interval time; (4) receiving the domain request node and the concentrator to send the non-relayable response information to the neighboring node in the domain, receiving the probe domain The requested concentrator also updates its built-in registration activity silence timer; (5) the carrier node that is exploring the domain receives the adjacent domain-bearing After all the response information returned by the wave node and the concentrator, the signal quality of each response information is checked, the signal quality parameter for measuring the proximity of the node is obtained, and the home domain information in the signal quality parameter and the response information is saved to its neighbor.
  • step (10) Receive the response information returned by the function module: if the response information returned by the function module is managed The non-carrier table has been all registered, the carrier node enters the registration state machine registration completion state, sets the sleep timer, and proceeds to step (14); if the response information returned by the function module is the registration data of a non-carrier table, converts
  • the home domain confirmation algorithm adopted in the above step (6) includes the following steps:
  • step 2 If the response message is sent by the concentrator, proceed to step 2;
  • the concentrator response information count is initialized to 1, and the concentrator count is incremented by 1.
  • the signal quality parameter is sequentially inserted in the signal quality parameter table of the entry, and the concentrator response information is incremented by one;
  • step 6 If the specified number of times is reached, go to step 6.
  • the domain carrier node response information count is initialized to 1, and the domain carrier node count is incremented by one;
  • step 6 If the specified number of times is reached, proceed to step 6;
  • the home domain identifier in the entry corresponding to the smallest item is taken out and confirmed as the home domain.
  • the carrier node that receives the table number registration information or confirms the registration information will relay the information, and the carrier node in the state of the probe domain or the active report state receives the table.
  • the registration information is confirmed or the registration information is confirmed: If the carrier node is in the non-domain state, the time avoidance algorithm is executed, and the information to be transmitted in the current transmission queue is cleared at the same time; if the carrier node is in the domain state, only the time avoidance algorithm is executed.
  • the time avoidance algorithm uses a collision avoidance algorithm based on physical layer carrier sense multiple access CSMA technology.
  • the registration activity silence timer is used to record the time in the station area where there is no domain and registration activity; the registration command uses a wildcard domain identifier, where the data field contains a domain identifier for recording the concentrator that sends the registration command.
  • the home domain identifier is used to record the time in the station area where there is no domain and registration activity; the registration command uses a wildcard domain identifier, where the data field contains a domain identifier for recording the concentrator that sends the registration command.
  • the home domain identifier The home domain identifier.
  • the concentrator will automatically stop the broadcast registration when receiving the probe request or table number registration information, or when the broadcast relayable registration command reaches the specified number of times, but has not received any probe request and table number registration information.
  • the carrier node in the non-domain state or the active reporting state does not respond when it receives the probe request.
  • the present invention has the following advantages due to the above technical solution: 1.
  • the present invention is centered on each regional concentrator, and is based on the registered domain nodes, and is registered with adjacent nodes and adjacent nodes, and adjacent
  • the registration process of the entire grid meter is completed wave-wise in a plurality of stages such as supplemental registration of non-adjacent nodes.
  • the meter can quickly and accurately obtain the registry number of the concentrator of the station, which is suitable for the station with close coupling.
  • the zone is also suitable for coupling to tightly-area zones, effectively avoiding high error rates due to manual registration. 2.
  • the invention measures the proximity of the registered nodes of the power grid by means of the signal quality parameters carried by the narrowband carrier signal of the power line across the station, and collects, calculates and compares these parameters through the home domain confirmation algorithm, thereby accurately determining the home station of the carrier node.
  • the area effectively solves the problem that the adjacent stations are simultaneously "registered” due to the spread of the narrowband carrier signal of the power line across the station.
  • the present invention adopts a high-efficiency collision avoidance and multi-priority carrier packet transmission and reception control algorithm based on physical layer carrier sense multi-access CSMA technology, and handles the priority of conflict and discharge messages, so that various communication nodes in the station area can simultaneously Competing to use the same communication medium, and enabling all the meters in the station to initiate registration at the same time, effectively saving registration time.
  • the invention can be used for registration of various types of grid meter reading network electric meters, and is particularly suitable for power meter remote meter reading network meter registration with complicated communication environment.
  • a carrier node refers to a node that can send and receive messages on a power line, here referred to as a collector or carrier table.
  • a domain state means that the carrier node has determined its own home domain.
  • the no-domain state means that the carrier node does not determine its own home domain.
  • Neighboring nodes refer to carrier nodes that do not need to relay each other to communicate directly through the power line.
  • a non-adjacent node refers to a carrier node that requires a relay to communicate with each other through a power line.
  • the automatic registration algorithm of the carrier terminal of the low-voltage distribution network is essentially a process in which the client meter determines its own zone and automatically registers with the zone concentrator. Since the whole grid is a set of stations composed of a combination of several adjacent stations, the carrier message may propagate across the station. Therefore, in order to achieve accurate registration of the entire grid meter, the algorithm adopts a staged meter automatic registration process:
  • Phase 1 The concentrator carrier module starts the concentrator neighboring node registration
  • Phase 2 The concentrator carrier module starts the concentrator non-adjacent node registration
  • Phase 3 The concentrator carrier module starts the concentrator and the non-adjacent node supplements the registration
  • Phase 1 includes the following steps:
  • the concentrator carrier module broadcasts a relayable registration command for initiating registration of the concentrator neighboring node to the carrier node to instruct the concentrator to initiate registration with the neighboring node.
  • the concentrator non-adjacent node (hereinafter referred to as the non-adjacent node) that receives the registration command clears its home domain identifier and enters the initial domain-free state.
  • the concentrator neighboring node (hereinafter referred to as the neighboring node) that receives the registration command performs the following carrier node registration process:
  • the setting of the registration state machine timer refers to setting the time interval for each action of the registration state machine. Whenever the timer expires, the next action of registering the state machine is performed.
  • the neighboring node entering the initial state of the registration state machine clears its neighboring domain node table and the neighboring concentrator table, and the related state data, enters the state of the registration state machine, sets the registration state machine timer; and among them is the collector
  • the neighboring node also receives the search table command sent by the concentrator, and starts the built-in function module to search for the non-carrier table under the jurisdiction.
  • the adjacent domain node table is a table for neighboring nodes to record domain carrier nodes that can communicate directly with themselves, the neighboring concentrator table being a table for neighboring nodes to record concentrators that can communicate directly with themselves.
  • the neighboring node entering the state of the registration state machine broadcasts a non-relayable domain request to the concentrator and other carrier nodes in order to obtain a response of the adjacent domain carrier node and the concentrator (which may be more than one). Thereby mastering the distribution of your neighborhood.
  • the registration state machine timer needs to be set to a random interval time, so that the probe domain request is sent again when the next state enters the same state.
  • the domain carrier node and the concentrator that receive the probe request reversely send non-relayable response information to the neighboring node in the probed domain, reporting its own home domain; in addition, the concentrator receiving the probe request is also simultaneously Update its built-in registration activity silence timer.
  • the registration activity silence timer is used to record the duration of the presence of the domain and the registration activity in the zone, and the concentrator re-updates the timer whenever there is a domain and registration activity.
  • the neighboring node in the probe domain After receiving the response information returned by the adjacent domain carrier node and the concentrator, the neighboring node in the probe domain checks the signal quality of each response information, obtains the signal quality parameter for measuring the proximity of the node, and obtains the signal quality parameter.
  • the home domain information in the response information is saved to its own neighboring domain node table and corresponding entries in the neighboring concentrator table.
  • step 3.8 If the neighboring node is a collector, proceed to step 3.8);
  • step 3.11) If the neighboring node is a carrier list, proceed to step 3.11).
  • the neighboring node enters the registration state machine registration completion state, sets the sleep timer, and proceeds to step 3.14);
  • the response information returned by the function module is the registration data of a non-carrier table, it is converted into the table number registration information, and proceeds to step 3.11).
  • the concentrator receiving the registration information of the table number reversely transmits the relayable acknowledgment registration information to the neighboring node being registered, and simultaneously updates the registration activity silence timer.
  • the neighboring node that is registering receives the confirmation registration information returned by the concentrator:
  • the neighboring node is a collector, send a confirmation message to the function module, and return to step 3.9);
  • the neighboring node is the carrier list, enter the registration state machine registration completion state, set the sleep timer, and proceed to step 3.14).
  • each zone forms an island zone centered on the concentrator and surrounded by carrier nodes that have been registered in the same zone.
  • the step of the concentrator entering phase two for meter registration is similar to phase one, except that in this phase, the registration command broadcast by the concentrator carrier module to the carrier node becomes a relayable registration command for starting the registration of the concentrator non-adjacent node. Accordingly, the subject performing the carrier node registration procedure becomes a concentrator non-proximity node.
  • the step of the concentrator entering phase three to supplement the meter registration is still similar to phase one, except that in this phase, the registration command broadcast by the concentrator carrier module to the carrier node becomes relayable for starting the concentrator proximity and non-proximity node supplementation.
  • the registered registration command correspondingly, the subject performing the carrier node registration process becomes a concentrator neighboring node and a non-proximity node that have not been registered, thereby detecting the addendum.
  • the registration process of the above three stages forms a concentrator-centric wave process in the network formed by the concentrator and the carrier table, and the carrier node in the non-domain state relies on the carrier node that has completed registration in the domain state, and gradually Complete your registration process until the entire network is calm.
  • the entire registration process of the present invention can be expanded into multiple stages (more than three stages) as needed, and is not described here.
  • the registration command broadcasted by the concentrator carrier module to the carrier node adopts a wildcard domain identifier, wherein the data domain includes a domain identifier for recording the home domain identifier of the concentrator that sends the registration command.
  • the present invention sets the registration state machine timer to a random interval time as needed to enable the sending of the command.
  • information interval fixed interval + random interval + send physical random wait time.
  • the present invention in order to avoid the physical channels conflicting when the carrier nodes are registered, the present invention also adopts a time avoidance algorithm based on the physical layer carrier sense multiple access CSMA technology, according to the registration state of the carrier node, and the carrier node sends the packet.
  • the registration status timer time is recalculated
  • the registration state timer time is recalculated.
  • the registration state timer time is recalculated
  • the system uses a multi-priority carrier packet transceiver control algorithm to handle the priority of conflicting and outgoing messages.
  • the table number registration information and the confirmation registration information are priority packets, and the carrier node that receives the table number registration information or confirms the registration information will relay the information.
  • the carrier node in the probed state or the active reporting state when receiving the registration information of the table number sent by other nodes or the confirmation registration information sent by the concentrator:
  • the time avoidance algorithm is executed, and the information to be sent in the current sending queue is cleared, and the table number registration information or the confirmation registration information is given way;
  • the carrier node in the non-domain state or the active reporting state does not respond when receiving the probe request.
  • the concentrator when receiving the probe request or table number registration information, or when the broadcast relayable registration command reaches the specified number of times, but has not received any probe request and table number registration information, the concentrator will The broadcast registration command is automatically stopped.
  • each carrier node records the concentrator and the domain carrier node capable of directly communicating with itself, and their communication signals by means of their own neighbor concentrator table and the adjacent domain node table. Quality, determine the home domain by comparing the quality of the communication signal.
  • Each of the entries in the neighboring concentrator table stores a home domain identifier of the concentrator, and the signal quality parameter of the response information of the concentrator and the response information are counted.
  • Each of the entries adjacent to the domain node table stores a node identifier with a domain carrier node, a home domain identifier, a signal quality parameter of the response information of the node, and a response information count.
  • the signal quality parameters in the adjacent concentrator table and the adjacent domain node table are sorted and saved according to the size of the value.
  • step 2 If the response message is sent by the concentrator, proceed to step 2;
  • the concentrator response information count is initialized to 1, and the concentrator count is incremented by 1.
  • the signal quality parameter is inserted in order in the signal quality parameter table of the entry, and the concentrator response information count is incremented by one.
  • step 6 If the specified number of times is reached, proceed to step 6;
  • the domain carrier node response information count is initialized to 1, and the domain carrier node count is incremented by one;
  • the signal quality parameter is inserted in the signal quality parameter table of the entry in sequence, and the domain carrier node response information is incremented by one.
  • step 6 If the specified number of times is reached, proceed to step 6;
  • the home domain identifier in the entry corresponding to the smallest item is taken out and confirmed as the home domain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种低压配电网载波终端自动注册算法,它以各台区集中器为中心,以已完成注册的有域载波节点为依托,分临近节点注册和非临近节点注册,以及临近及非临近节点补充注册等多个阶段波浪式地完成整个电网电表的注册过程,并借助电力线窄带载波信号跨台区传播时所携信号质量参数来衡量电网注册节点的临近度,通过归属域确认算法收集、计算并比较这些参数,从而准确地确定载波节点的归属台区,此外,还采用基于物理层CSMA技术的高效率冲突避让和多优先级载波包收发控制算法,处理冲突与排出消息的优先级,使台区中各类通信节点同时竞争使用同一通信媒介。本发明可以用于多种类型的电网抄表网络电表注册,尤其适用于通信环境较复杂的电力载波远程抄表网络电表注册。

Description

一种低压配电网载波终端自动注册算法 技术领域
本发明涉及一种电力抄表网络管理方法,特别是关于一种用于电力载波远程抄表网络的低压配电网载波终端自动注册算法。
背景技术
现有技术中,一电力载波远程抄表网络通常由一安装在电力部门客户管理中心的主站计算机和一个以上的根据台区变压器供电范围划分的台区(在组网抄表中,也称为域)组成。主站计算机位于远程抄表网络的中心,负责统一管理台区集合的抄表工作,并永久保存客户的电能量数据。每一台区辖区内包括有一台区变压器、一设置在台区变压器附近的集中器、一个以上设置在客户端的电表(包括载波表或非载波表)与采集器。其中集中器负责收集由所在台区台区变压器供电的所有客户的电表数据,它一方面通过GPRS或其它网络通信媒介与主站计算机建立数据通信;另一方面通过电力线与载波表建立直接数据通信,或通过电力线和采集器的帮助与非载波表建立间接数据通信。采集器可以与一个以上的非载波表建立串行数据通信,并具有一用于存储所连接的非载波表的表号数据的功能模块。电表用于计量客户消费的电能量,具有唯一的标识号码(表号),而抄表系统的主要功能就是收集客户端电表的电能量数据及电表的其他状态数据。
一般而言,抄表的过程可以由集中器自行启动完成,集中器根据保存在其存储器中的电表表号进行点名式抄表,将抄表数据暂存于存储器中,主站计算机通过定期访问集中器,将集中器存储器中的抄表数据汇总到自己的数据库中。但是,在台区安装初期,由于集中器中并没有设置电表表号,因此需要人工进行手动设置,也即先由工作人员收集电表表号,通过手动方式输入主站计算机,然后再从主站计算机下载到集中器中。这种人工作业方式繁琐低效,且出错率高。此外,由于台区中的电表集合还会因为如更换,建立新户,撤销旧户等原因经常发生变化,因此需要对集中器存储器中的电表表号及时更新,而传统的人工作业方式显然已不能胜任这样的要求。
目前,虽然已有一些电表自动注册算法能够解决上述问题,但由于自动注册算法往往运行在由多个相互临近的台区所构成的台区集合中,载波消息可能会跨越台区传播,从而使一个台区的集中器很可能与事实上属于其他台区的电表进行交互。由于电表注册的前提是电表事先并不了解自己的归属台区,因此,这种载波消息跨越台区传播的情况很可能会导致属于一个台区的电表将表号注册到另一台区的集中器中,或者出现一电表的表号同时在多个集中器中注册的现象,而这些都是造成后期抄表过程不稳定,抄表数据不准确的因素。
技术问题
针对上述问题,本发明的目的是提供一种能够使客户端电表自动、准确地完成向所属台区集中器注册表号的低压配电网载波终端自动注册算法。
技术解决方案
为实现上述目的,本发明采取以下技术方案:一种低压配电网载波终端自动注册算法,其包括以下步骤:
1)集中器载波模块启动集中器临近节点注册:
1.1)集中器载波模块向载波节点广播可中继的用于启动集中器临近节点注册的注册命令;
1.2)收到步骤1.1)注册命令的集中器非临近节点清除自己的归属域标识;
1.3)收到步骤1.1)注册命令的集中器临近节点执行载波节点注册流程;
1.4)当集中器内置的注册活动静默定时器超时时,进入步骤2);
2)集中器载波模块启动集中器非临近节点注册:
2.1)集中器载波模块向载波节点广播可中继的用于启动集中器非临近节点注册的注册命令;
2.2)收到步骤2.1)注册命令的集中器非临近节点执行载波节点注册流程;
2.3)当集中器内置的注册活动静默定时器超时时,进入步骤3);
3)集中器载波模块启动集中器临近及非临近节点补充注册:
3.1)集中器载波模块向载波节点广播可中继的用于启动集中器临近及非临近节点补充注册的注册命令;
3.2)收到步骤3.1)注册命令且尚未注册的集中器临近节点及非临近节点执行载波节点注册流程;
3.3)当集中器内置的注册活动静默定时器超时时,结束。
上述步骤1)~3)中的载波节点注册流程包括以下步骤:(1)收到注册命令的载波节点清除自己的归属域标识,进入注册状态机初始状态,设置注册状态机定时器;(2)进入注册状态机初始状态的载波节点清空自己的临近有域节点表和临近集中器表,进入注册状态机探域状态,设置注册状态机定时器,而其中是采集器的载波节点还接收集中器发送的搜表命令,启动内置的功能模块搜寻所管辖的非载波表;(3)进入注册状态机探域状态的载波节点向集中器和其他载波节点广播不可中继的探域请求,并将注册状态机定时器设置到一随机间隔时间;(4)收到探域请求的有域载波节点和集中器反向发送不可中继的响应信息到正在探域的临近节点,收到探域请求的集中器还同时更新其内置的注册活动静默定时器;(5)正在探域的载波节点收到临近的有域载波节点和集中器返回的所有响应信息后,检查每一响应信息的信号质量,获取衡量节点临近度的信号质量参数,并将信号质量参数和响应信息中的归属域信息保存至自己的临近有域节点表和临近集中器表中的对应项中;(6)按设定的次数重复执行步骤(3)~(5):当属同一归属域的响应的次数达到给定阈值时,执行归属域确认算法确定自己的归属域,并停止探域请求消息;(7)确定归属域的载波节点向所在归属域的集中器注册:如果载波节点是采集器,进入步骤(8);如果载波节点是载波表,进入步骤(11);(8)进入注册状态机注册数据请求状态,设置注册状态机定时器;(9)向功能模块发出注册数据请求命令,进入注册状态机等待数据状态,设置注册状态机定时器;(10)接收功能模块返回的响应信息:如果功能模块返回的响应信息是所管辖的非载波表已全部注册,载波节点进入注册状态机注册完成状态,设置睡眠定时器,进入步骤(14);如果功能模块返回的响应信息是一非载波表的注册数据,则将其转换为表号注册信息,进入步骤(11);(11)进入注册状态机等待主动上报状态,将注册状态机定时器设置到一随机间隔时间,准备发送表号注册信息;在设定时间到后,发送可中继的表号注册信息到所在归属域的集中器,进入注册状态机主动上报状态,并将注册状态机定时器重新设置到一随机间隔时间;(12)收到表号注册信息的集中器反向发送可中继的确认注册信息到正在注册的载波节点,同时更新注册活动静默定时器;(13)正在注册的载波节点收到集中器返回的确认注册信息:如果载波节点是采集器,发送确认信息给功能模块,返回步骤(9);如果载波节点是载波表,进入注册状态机注册完成状态,设置睡眠定时器,进入步骤(14);(14)当所有收到注册命令的载波节点都进入注册状态机注册完成状态时,停止发送表号注册信息。
上述步骤(6)采用的归属域确认算法包括以下步骤:
①载波节点对收到的响应信息查看信息信号源:
如果响应信息是由集中器发出,进入步骤②;
如果响应信息是由有域载波节点发出,进入步骤④;
②根据归属域标识,在临近集中器表中搜寻与此集中器对应的表项:
如果表项不存在,新建表项,填写归属域标识,保存信号质量参数,此集中器响应信息计数初始化为1,集中器计数加1;
如果表项已存在,在表项的信号质量参数表中按序插入信号质量参数,此集中器响应信息计数加1;
③检查当前集中器响应信息计数是否已达到指定次数:
如果达到指定次数,执行步骤⑥;
如果未达到指定次数,返回步骤(3);
④根据归属域标识,在临近有域节点表中搜寻与此有域载波节点对应的表项:
如果表项不存在,新建表项,填写载波节点标识,归属域标识,保存信号质量参数,此有域载波节点响应信息计数初始化为1,有域载波节点器计数加1;
如果表项已存在,在表项的信号质量参数表按序插入信号质量参数,此有域载波节点响应信息计数加1;
⑤检查当前有域载波节点响应信息计数是否已达到指定次数:
如果达到指定次数,进入步骤⑥;
如果未达到指定次数,返回步骤(3);
⑥将临近集中器表和临近有域节点表的每一表项中的信号质量参数表中的信号质量参数的中值取出置入各表项的信号质量参数表的第一项;
⑦分别寻找临近集中器表和临近有域节点表中信号质量参数的中值的最小项;
⑧取出与最小项相对应的表项中的归属域标识,确认为归属域。
上述步骤(12)和步骤(13)中,收到表号注册信息或确认注册信息的载波节点都将中继此信息,对于处于探域状态或者主动上报状态中的载波节点,当收到表号注册信息或确认注册信息时:如果载波节点是无域状态,则执行时间避让算法,同时清空当前发送队列中待发送的信息;如果载波节点是有域状态,则仅执行时间避让算法。
上述时间避让算法采用基于物理层载波侦听多路访问CSMA技术的冲突避让算法。
上述注册活动静默定时器用于记录所在台区中没有探域和注册活动所持续的时间;注册命令采用通配域标识,其中数据域包含有域标识符,用于记录发送此注册命令的集中器的归属域标识。
当收到探域请求或表号注册信息时,又或者当广播可中继的注册命令达到指定次数,却仍未收到任何探域请求和表号注册信息时,集中器将自动停止广播注册命令;对于处于无域状态或主动上报状态中的载波节点,当收到探域请求时,不作任何响应。
有益效果
本发明由于采取以上技术方案,其具有以下优点:1、本发明以各台区集中器为中心,以已完成注册的有域节点为依托,分临近节点注册和非临近节点注册,以及临近及非临近节点补充注册等多个阶段波浪式地完成整个电网电表的注册过程,与现有技术相比,能使电表快速准确地向所属台区集中器注册表号,既适于耦合紧密的台区也适于耦合不紧密的台区,有效避免因人工注册而导致的高出错率。2、本发明借助电力线窄带载波信号跨台区传播时所携信号质量参数来衡量电网注册节点的临近度,通过归属域确认算法收集、计算并比较这些参数,从而准确地确定载波节点的归属台区,有效地解决了相邻台区因电力线窄带载波信号跨台区传播而同时“被”注册的问题。3、本发明采用基于物理层载波侦听多路访问CSMA技术的高效率冲突避让和多优先级载波包收发控制算法,处理冲突与排出消息的优先级,可使台区中各类通信节点同时竞争使用同一通信媒介,并能使台区内所有电表同时发起注册,有效节约注册时间。本发明可以用于多种类型的电网抄表网络电表注册,尤其适用于通信环境较复杂的电力载波远程抄表网络电表注册。
本发明的实施方式
下面结合附图和实施例对本发明进行详细的介绍。
首先对描述算法所涉及的概念进行介绍:
载波节点指能在电力线上发送和接收消息的节点,此处指采集器或载波表。
有域状态指载波节点已确定自己的归属域。
无域状态指载波节点没有确定自己的归属域。
临近节点指无需中继能直接通过电力线相互通信的载波节点。
非临近节点指需要中继方能通过电力线相互通信的载波节点。
本发明提供的低压配电网载波终端自动注册算法实质是客户端电表确定自己所属台区,并向所属台区集中器自动注册的过程。鉴于整个电网是由多个临近的台区组合构成的台区集合,载波消息可能会跨越台区传播,因此为实现整个电网电表的准确注册,本算法采用了阶段式的电表自动注册过程:
阶段一:集中器载波模块启动集中器临近节点注册;
阶段二:集中器载波模块启动集中器非临近节点注册;
阶段三:集中器载波模块启动集中器临近及非临近节点补充注册;
其中阶段一包括以下步骤:
1)集中器载波模块向载波节点广播可中继的用于启动集中器临近节点注册的注册命令,以指示集中器临近节点启动注册。
2)收到注册命令的集中器非临近节点(以下简称非临近节点)清除自己的归属域标识,进入初始无域状态。
3)收到注册命令的集中器临近节点(以下简称临近节点)执行以下载波节点注册流程:
3.1)清除自己的归属域标识,进入注册状态机初始状态,设置注册状态机定时器。此时整个台区集合中,只有集中器有归属域标识。
其中,设置注册状态机定时器是指设置注册状态机各个动作的时间间隔,每当定时器超时时,就执行注册状态机的下一个动作。
3.2)进入注册状态机初始状态的临近节点清空自己的临近有域节点表和临近集中器表,以及相关状态数据,进入注册状态机探域状态,设置注册状态机定时器;而其中是采集器的临近节点还接收集中器发送的搜表命令,启动内置的功能模块搜寻所管辖的非载波表。
所述临近有域节点表是临近节点用于记录能与自己直接通信的有域载波节点的表格,所述临近集中器表是临近节点用于记录能与自己直接通信的集中器的表格。
3.3)进入注册状态机探域状态的临近节点向集中器和其他载波节点广播不可中继的探域请求,以求获得临近的有域载波节点和集中器(可以是一台以上)的响应,从而掌握自己临近域的分布情况。同时,为将临近节点维持在探域状态,需将注册状态机定时器设置到一随机间隔时间,以便下次进入同一状态时再次发送探域请求。
3.4)收到探域请求的有域载波节点和集中器反向发送不可中继的响应信息到正在探域的临近节点,报告自己的归属域;此外,收到探域请求的集中器还同时更新其内置的注册活动静默定时器。
所述注册活动静默定时器用于记录所在台区中没有探域和注册活动所持续的时间,每当有探域和注册活动时,集中器都会重新更新该定时器。
3.5)正在探域的临近节点收到临近的有域载波节点和集中器返回的所有响应信息后,检查每一响应信息的信号质量,获取衡量节点临近度的信号质量参数,并将信号质量参数和响应信息中的归属域信息保存至自己的临近有域节点表和临近集中器表中的对应项中。
3.6)按设定的次数重复执行步骤3.3)~3.5),以收集响应信息的多个样本:当属同一归属域的响应次数达到给定阈值时,执行归属域确认算法(此算法将在后面详细介绍),根据收集的响应信息的信号质量参数确定自己的归属域,并停止发送探域消息。
3.7)确定归属域的临近节点向所在归属域的集中器注册:
如果临近节点是采集器,进入步骤3.8);
如果临近节点是载波表,进入步骤3.11)。
3.8)进入注册状态机注册数据请求状态,设置注册状态机定时器。
3.9)向功能模块发出注册数据请求命令,进入注册状态机等待数据状态,设置注册状态机定时器。
3.10)接收功能模块返回的响应信息:
如果功能模块返回的响应信息是所管辖的非载波表已全部注册,临近节点进入注册状态机注册完成状态,设置睡眠定时器,进入步骤3.14);
如果功能模块返回的响应信息是一非载波表的注册数据,则将其转换为表号注册信息,进入步骤3.11)。
3.11)进入注册状态机等待主动上报状态,将注册状态机定时器设置到一随机间隔时间,准备发送表号注册信息,然后在设定时间到后,发送可中继的表号注册信息到所在归属域的集中器,进入注册状态机主动上报状态,同时,由于每注册一个电表都须得到集中器的确认,否则无法进行下一个电表的注册工作,因此需将临近节点维持在主动上报状态,也即需将注册状态机定时器重新设置到一随机间隔时间,以便未收到确认注册信息时重发表号注册信息。
3.12)收到表号注册信息的集中器反向发送可中继的确认注册信息到正在注册的临近节点,同时更新注册活动静默定时器。
3.13)正在注册的临近节点收到集中器返回的确认注册信息:
如果临近节点是采集器,发送确认信息给功能模块,返回步骤3.9);
如果临近节点是载波表,进入注册状态机注册完成状态,设置睡眠定时器,进入步骤3.14)。
3.14)当所有收到注册命令的临近节点都进入注册状态机注册完成状态时,停止发送表号注册信息。
4)当集中器的注册活动静默定时器时间超时时,集中器结束本阶段的电表注册过程,可根据需要进入下一阶段的电表注册流程。此时,每一台区均形成一个以集中器为中心,由同一台区已完成注册的载波节点包围的岛区。
集中器进入阶段二进行电表注册的步骤与阶段一相似,只是该阶段中,集中器载波模块向载波节点广播的注册命令变为可中继的用于启动集中器非临近节点注册的注册命令,相应地,执行载波节点注册流程的主体变为集中器非临近节点。
集中器进入阶段三进行电表补充注册的步骤仍与阶段一相似,只是该阶段中,集中器载波模块向载波节点广播的注册命令变为可中继的用于启动集中器临近及非临近节点补充注册的注册命令,相应地,执行载波节点注册流程的主体变为尚未注册的集中器临近节点及非临近节点,从而查漏补遗。
上述三个阶段的注册过程在集中器与载波表构成的网络中形成一个以集中器为中心的波浪过程,处于无域状态的载波节点以已完成注册处于有域状态的载波节点为依托,逐步完成自己的注册过程,直至整个网络归于平静。
此外,为提高电表注册成功率,在临近节点注册和非临近节点注册,以及临近及非临近节点补充注册的基础上,还可以根据需要再执行一次或两次的临近及非临近节点补充注册,也就是说本发明整个注册过程可以根据需要扩展为多个阶段(多于三个阶段),此处不在赘叙。
上述流程中,集中器载波模块向载波节点广播的注册命令采用通配域标识,其中数据域包含有域标识符,用于记录发送此注册命令的集中器的归属域标识。
上述流程中,为避免各载波节点注册时物理信道相互冲突,需使载波节点发送命令或信息的时间间隔尽量不同,因此本发明根据需要将注册状态机定时器设置到随机间隔时间,使发送命令或信息的时间间隔=固定间隔时间+随机间隔时间+发送物理随机等待时间。
上述流程中,为避免各载波节点注册时物理信道相互冲突,本发明还采用基于物理层载波侦听多路访问CSMA技术的时间避让算法,根据载波节点所处的注册状态,以及载波节点发送包所处的发送等待时间,来决定是否对当前的接收包进行避让:
①对于处于探域状态中的载波节点,当收到其他非集中器节点发送来的探域请求或响应信息时:
如果发送等待时间仍在固定间隔时间内,则重新计算注册状态定时器时间;
如果发送等待时间进入了随机间隔时间,则不重新计算时间。
②对于处于探域状态中的载波节点,当收到集中器发送来的响应信息时,则重新计算注册状态定时器时间。
③对于处于主动上报状态中的载波节点,当收到其他节点发送来的探域请求或响应信息时:
如果载波节点发送等待时间仍在固定间隔时间内,则重新计算注册状态定时器时间;
如果发送等待时间进入随机间隔时间,则不重新计算时间。
上述流程中,系统采用多优先级载波包收发控制算法,处理冲突与排出消息的优先级。其中,表号注册信息和确认注册信息为优先包,收到表号注册信息或确认注册信息的载波节点都将中继此信息。对于处于探域状态或者主动上报状态中的载波节点,当收到其他节点发送来的表号注册信息或者集中器发送来的确认注册信息时:
如果载波节点是无域状态,则执行时间避让算法,同时清空当前发送队列中待发送的信息,为表号注册信息或确认注册信息让路;
如果载波节点是有域状态,则仅执行时间避让算法。
上述流程中,对于处于无域状态或主动上报状态中的载波节点,当收到探域请求时,不作任何响应。
上述流程中,当收到探域请求或表号注册信息时,又或者当广播可中继的注册命令达到指定次数,却仍未收到任何探域请求和表号注册信息时,集中器将自动停止广播注册命令。
上述步骤3.6)所采用的归属域确认算法中,每一载波节点借助自己的临近集中器表和临近有域节点表,记录能与自己直接通信的集中器和有域载波节点,以及它们通信信号质量,通过比较通信信号质量确定自己的归属域。所述临近集中器表的每一个表项中保存一集中器的归属域标识,此集中器每次响应信息的信号质量参数,以及响应信息计数。所述临近有域节点表的每一个表项中保存一个有域载波节点的节点标识,归属域标识,此节点每次响应信息的信号质量参数,以及响应信息计数。所述临近集中器表和临近有域节点表中信号质量参数按值的大小排序保存。归属域确认算法的具体步骤如下:
①载波节点对收到的响应信息查看信息信号源:
如果响应信息是由集中器发出,进入步骤②;
如果响应信息是由有域载波节点发出,进入步骤④;
②根据归属域标识,在临近集中器表中搜寻与此集中器对应的表项:
如果表项不存在,新建表项,填写归属域标识,保存信号质量参数,此集中器响应信息计数初始化为1,集中器计数加1;
如果表项已存在,在表项的信号质量参数表中按序插入信号质量参数,此集中器响应信息计数加1。
③检查当前集中器响应信息计数是否已达到指定次数:
如果达到指定次数,进入步骤⑥;
如果未达到指定次数,返回步骤3.3);
④根据归属域标识,在临近有域节点表中搜寻与此有域载波节点对应的表项:
如果表项不存在,新建表项,填写载波节点标识,归属域标识,保存信号质量参数,此有域载波节点响应信息计数初始化为1,有域载波节点器计数加1;
如果表项已存在,在表项的信号质量参数表按序插入信号质量参数,此有域载波节点响应信息计数加1。
⑤检查当前有域载波节点响应信息计数是否已达到指定次数:
如果达到指定次数,进入步骤⑥;
如果未达到指定次数,返回步骤3.3)。
⑥将临近集中器表和临近有域节点表的每一表项中的信号质量参数表中的信号质量参数的中值取出置入各表项的信号质量参数表的第一项。
⑦分别寻找临近集中器表和临近有域节点表中信号质量参数的中值的最小项。
⑧取出与最小项相对应的表项中的归属域标识,确认为归属域。
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (10)

  1. 一种低压配电网载波终端自动注册算法,其包括以下步骤:
    1)集中器载波模块启动集中器临近节点注册:
    1.1)集中器载波模块向载波节点广播可中继的用于启动集中器临近节点注册的注册命令;
    1.2)收到步骤1.1)注册命令的集中器非临近节点清除自己的归属域标识;
    1.3)收到步骤1.1)注册命令的集中器临近节点执行载波节点注册流程;
    1.4)当集中器内置的注册活动静默定时器超时时,进入步骤2);
    2)集中器载波模块启动集中器非临近节点注册:
    2.1)集中器载波模块向载波节点广播可中继的用于启动集中器非临近节点注册的注册命令;
    2.2)收到步骤2.1)注册命令的集中器非临近节点执行载波节点注册流程;
    2.3)当集中器内置的注册活动静默定时器超时时,进入步骤3);
    3)集中器载波模块启动集中器临近及非临近节点补充注册:
    3.1)集中器载波模块向载波节点广播可中继的用于启动集中器临近及非临近节点补充注册的注册命令;
    3.2)收到步骤3.1)注册命令且尚未注册的集中器临近节点及非临近节点执行载波节点注册流程;
    3.3)当集中器内置的注册活动静默定时器超时时,结束。
  2. 如权利要求1所述的一种低压配电网载波终端自动注册算法,其特征在于,所述步骤1)~3)中的载波节点注册流程包括以下步骤:
    (1)收到注册命令的载波节点清除自己的归属域标识,进入注册状态机初始状态,设置注册状态机定时器;
    (2)进入注册状态机初始状态的载波节点清空自己的临近有域节点表和临近集中器表,进入注册状态机探域状态,设置注册状态机定时器,而其中是采集器的载波节点还接收集中器发送的搜表命令,启动内置的功能模块搜寻所管辖的非载波表;
    (3)进入注册状态机探域状态的载波节点向集中器和其他载波节点广播不可中继的探域请求,并将注册状态机定时器设置到一随机间隔时间;
    (4)收到探域请求的有域载波节点和集中器反向发送不可中继的响应信息到正在探域的临近节点,收到探域请求的集中器还同时更新其内置的注册活动静默定时器;
    (5)正在探域的载波节点收到临近的有域载波节点和集中器返回的所有响应信息后,检查每一响应信息的信号质量,获取衡量节点临近度的信号质量参数,并将信号质量参数和响应信息中的归属域信息保存至自己的临近有域节点表和临近集中器表中的对应项中;
    (6)按设定的次数重复执行步骤(3)~(5):
    当属同一归属域的响应的次数达到给定阈值时,执行归属域确认算法确定自己的归属域,并停止探域请求消息;
    (7)确定归属域的载波节点向所在归属域的集中器注册:
    如果载波节点是采集器,进入步骤(8);
    如果载波节点是载波表,进入步骤(11);
    (8)进入注册状态机注册数据请求状态,设置注册状态机定时器;
    (9)向功能模块发出注册数据请求命令,进入注册状态机等待数据状态,设置注册状态机定时器;
    (10)接收功能模块返回的响应信息:
    如果功能模块返回的响应信息是所管辖的非载波表已全部注册,载波节点进入注册状态机注册完成状态,设置睡眠定时器,进入步骤(14);
    如果功能模块返回的响应信息是一非载波表的注册数据,则将其转换为表号注册信息,进入步骤(11);
    (11)进入注册状态机等待主动上报状态,将注册状态机定时器设置到一随机间隔时间,准备发送表号注册信息;在设定时间到后,发送可中继的表号注册信息到所在归属域的集中器,进入注册状态机主动上报状态,并将注册状态机定时器重新设置到一随机间隔时间;
    (12)收到表号注册信息的集中器反向发送可中继的确认注册信息到正在注册的载波节点,同时更新注册活动静默定时器;
    (13)正在注册的载波节点收到集中器返回的确认注册信息:
    如果载波节点是采集器,发送确认信息给功能模块,返回步骤(9);
    如果载波节点是载波表,进入注册状态机注册完成状态,设置睡眠定时器,进入步骤(14);
    (14)当所有收到注册命令的载波节点都进入注册状态机注册完成状态时,停止发送表号注册信息。
  3. 如权利要求2所述的一种低压配电网载波终端自动注册算法,其特征在于:所述步骤(6)采用的归属域确认算法包括以下步骤:
    ①载波节点对收到的响应信息查看信息信号源:
    如果响应信息是由集中器发出,进入步骤②;
    如果响应信息是由有域载波节点发出,进入步骤④;
    ②根据归属域标识,在临近集中器表中搜寻与此集中器对应的表项:
    如果表项不存在,新建表项,填写归属域标识,保存信号质量参数,此集中器响应信息计数初始化为1,集中器计数加1;
    如果表项已存在,在表项的信号质量参数表中按序插入信号质量参数,此集中器响应信息计数加1;
    ③检查当前集中器响应信息计数是否已达到指定次数:
    如果达到指定次数,执行步骤⑥;
    如果未达到指定次数,返回步骤(3);
    ④根据归属域标识,在临近有域节点表中搜寻与此有域载波节点对应的表项:
    如果表项不存在,新建表项,填写载波节点标识,归属域标识,保存信号质量参数,此有域载波节点响应信息计数初始化为1,有域载波节点器计数加1;
    如果表项已存在,在表项的信号质量参数表按序插入信号质量参数,此有域载波节点响应信息计数加1;
    ⑤检查当前有域载波节点响应信息计数是否已达到指定次数:
    如果达到指定次数,进入步骤⑥;
    如果未达到指定次数,返回步骤(3);
    ⑥将临近集中器表和临近有域节点表的每一表项中的信号质量参数表中的信号质量参数的中值取出置入各表项的信号质量参数表的第一项;
    ⑦分别寻找临近集中器表和临近有域节点表中信号质量参数的中值的最小项;
    ⑧取出与最小项相对应的表项中的归属域标识,确认为归属域。
  4. 如权利要求2或3所述的一种低压配电网载波终端自动注册算法,其特征在于:所述步骤(12)和步骤(13)中,收到表号注册信息或确认注册信息的载波节点都将中继此信息,对于处于探域状态或者主动上报状态中的载波节点,当收到表号注册信息或确认注册信息时:
    如果载波节点是无域状态,则执行时间避让算法,同时清空当前发送队列中待发送的信息;
    如果载波节点是有域状态,则仅执行时间避让算法。
  5. 如权利要求4所述的一种低压配电网载波终端自动注册算法,其特征在于:所述时间避让算法采用基于物理层载波侦听多路访问CSMA技术的冲突避让算法。
  6. 如权利要求1或2或3或5所述的一种低压配电网载波终端自动注册算法,其特征在于:所述注册活动静默定时器用于记录所在台区中没有探域和注册活动所持续的时间;所述注册命令采用通配域标识,其中数据域包含有域标识符,用于记录发送此注册命令的集中器的归属域标识。
  7. 如权利要求4所述的一种低压配电网载波终端自动注册算法,其特征在于:所述注册活动静默定时器用于记录所在台区中没有探域和注册活动所持续的时间;所述注册命令采用通配域标识,其中数据域包含有域标识符,用于记录发送此注册命令的集中器的归属域标识。
  8. 如权利要求1或2或3或5或7所述的一种低压配电网载波终端自动注册算法,其特征在于:当收到探域请求或表号注册信息时,又或者当广播可中继的注册命令达到指定次数,却仍未收到任何探域请求和表号注册信息时,集中器将自动停止广播注册命令;对于处于无域状态或主动上报状态中的载波节点,当收到探域请求时,不作任何响应。
  9. 如权利要求4所述的一种低压配电网载波终端自动注册算法,其特征在于:当收到探域请求或表号注册信息时,又或者当广播可中继的注册命令达到指定次数,却仍未收到任何探域请求和表号注册信息时,集中器将自动停止广播注册命令;对于处于无域状态或主动上报状态中的载波节点,当收到探域请求时,不作任何响应。
  10. 如权利要求6所述的一种低压配电网载波终端自动注册算法,其特征在于:当收到探域请求或表号注册信息时,又或者当广播可中继的注册命令达到指定次数,却仍未收到任何探域请求和表号注册信息时,集中器将自动停止广播注册命令;对于处于无域状态或主动上报状态中的载波节点,当收到探域请求时,不作任何响应。
PCT/CN2013/090799 2012-12-31 2013-12-28 一种低压配电网载波终端自动注册算法 WO2014101850A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SG11201500446VA SG11201500446VA (en) 2012-12-31 2013-12-28 Automatic registration algorithm for low-voltage distribution network carrier terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210591678.2 2012-12-31
CN201210591678.2A CN103078935B (zh) 2012-12-31 2012-12-31 一种低压配电网载波终端自动注册算法

Publications (1)

Publication Number Publication Date
WO2014101850A1 true WO2014101850A1 (zh) 2014-07-03

Family

ID=48155337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090799 WO2014101850A1 (zh) 2012-12-31 2013-12-28 一种低压配电网载波终端自动注册算法

Country Status (3)

Country Link
CN (1) CN103078935B (zh)
SG (1) SG11201500446VA (zh)
WO (1) WO2014101850A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391474A (zh) * 2015-10-30 2016-03-09 厦门中天微电子科技有限公司 一种电力线载波集抄系统节点归属自动确认方法
CN110198249A (zh) * 2018-02-27 2019-09-03 中国电力科学研究院有限公司 一种配电自动化系统测试方法及系统
CN110769487A (zh) * 2018-07-27 2020-02-07 珠海格力电器股份有限公司 接入终端设备的方法、管理器及电力调峰系统
CN111352028A (zh) * 2020-04-14 2020-06-30 山东德源电力科技股份有限公司 一种塑壳断路器及线损分析方法
CN111598374A (zh) * 2019-05-23 2020-08-28 青岛鼎信通讯股份有限公司 低压交流市电台区智能识别方法
CN111650431A (zh) * 2020-05-26 2020-09-11 珠海中慧微电子有限公司 一种电表台区识别方法
CN112114192A (zh) * 2020-07-29 2020-12-22 宁波三星医疗电气股份有限公司 电力采集终端搜表方法、电子设备及搜表系统
CN113162239A (zh) * 2021-05-11 2021-07-23 南方电网电力科技股份有限公司 一种低压配电网台区拓扑结构及部署方法
CN114124160A (zh) * 2021-10-29 2022-03-01 宁波三星智能电气有限公司 适用于plc载波安全的一表一psk适配方法
CN114500512A (zh) * 2022-01-29 2022-05-13 昆明易云电力技术有限公司 基于区块链人工智能的台区应用技术
CN114915560A (zh) * 2021-02-07 2022-08-16 国网浙江省电力有限公司营销服务中心 基于电流指纹的低压配电网拓扑识别方法、装置及系统
CN114996192A (zh) * 2022-07-04 2022-09-02 宁波三星医疗电气股份有限公司 搜表方法、介质、电子设备及搜表系统
CN117177101A (zh) * 2023-11-03 2023-12-05 深圳讯智物联科技有限公司 一种基于电表抄表系统的cco状态处理方法及系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103078935B (zh) * 2012-12-31 2015-07-01 瑞斯康微电子(深圳)有限公司 一种低压配电网载波终端自动注册算法
CN103500496B (zh) * 2013-10-10 2017-03-22 华立科技股份有限公司 一种电力数据多路通讯系统及多路集中抄表系统
CN103873362B (zh) * 2014-03-28 2017-03-08 深圳市阳光智电科技有限公司 一种低压电力载波通信的路由配置方法及系统
CN104065167B (zh) * 2014-06-26 2016-05-25 国家电网公司 一种智能配电终端自动注册的实现方法
CN106935008B (zh) * 2015-12-29 2020-08-07 深圳长城开发科技股份有限公司 抄表系统自组网的方法
CN105844892B (zh) * 2016-03-31 2019-08-16 华为技术有限公司 识别电力系统台区中的电表的装置及方法
CN106603308A (zh) * 2017-01-03 2017-04-26 国网浙江省电力公司宁波供电公司 一种用于户表动态注册和台区识别的方法及系统
CN108566674A (zh) * 2018-08-03 2018-09-21 苏州银河龙芯科技有限公司 基于lora通信技术的自动入网注册方法
CN112672418B (zh) * 2020-12-03 2024-03-12 江苏林洋能源股份有限公司 一种电表和主站之间通过载波集中器自注册的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231670A (zh) * 2011-06-27 2011-11-02 深圳市科陆电子科技股份有限公司 电力集抄系统自动寻找存在的电表的方法
CN102307200A (zh) * 2011-09-06 2012-01-04 杭州开鼎科技有限公司 一种在以太网帧中封装376.1协议/645协议的方法
CN102468986A (zh) * 2010-11-04 2012-05-23 北京市电力公司 用电信息采集系统的测试方法和系统、主站
CN103078935A (zh) * 2012-12-31 2013-05-01 瑞斯康微电子(深圳)有限公司 一种低压配电网载波终端自动注册算法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101563944A (zh) * 2006-12-21 2009-10-21 艾利森电话股份有限公司 Imsi处理系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468986A (zh) * 2010-11-04 2012-05-23 北京市电力公司 用电信息采集系统的测试方法和系统、主站
CN102231670A (zh) * 2011-06-27 2011-11-02 深圳市科陆电子科技股份有限公司 电力集抄系统自动寻找存在的电表的方法
CN102307200A (zh) * 2011-09-06 2012-01-04 杭州开鼎科技有限公司 一种在以太网帧中封装376.1协议/645协议的方法
CN103078935A (zh) * 2012-12-31 2013-05-01 瑞斯康微电子(深圳)有限公司 一种低压配电网载波终端自动注册算法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391474B (zh) * 2015-10-30 2017-12-19 厦门中天微电子科技有限公司 一种电力线载波集抄系统节点归属自动确认方法
CN105391474A (zh) * 2015-10-30 2016-03-09 厦门中天微电子科技有限公司 一种电力线载波集抄系统节点归属自动确认方法
CN110198249A (zh) * 2018-02-27 2019-09-03 中国电力科学研究院有限公司 一种配电自动化系统测试方法及系统
CN110198249B (zh) * 2018-02-27 2022-10-04 中国电力科学研究院有限公司 一种配电自动化系统测试方法及系统
CN110769487B (zh) * 2018-07-27 2020-09-08 珠海格力电器股份有限公司 接入终端设备的方法、管理器及电力调峰系统
CN110769487A (zh) * 2018-07-27 2020-02-07 珠海格力电器股份有限公司 接入终端设备的方法、管理器及电力调峰系统
CN111598374A (zh) * 2019-05-23 2020-08-28 青岛鼎信通讯股份有限公司 低压交流市电台区智能识别方法
CN111598374B (zh) * 2019-05-23 2024-03-19 青岛鼎信通讯股份有限公司 低压交流市电台区智能识别方法
CN111352028A (zh) * 2020-04-14 2020-06-30 山东德源电力科技股份有限公司 一种塑壳断路器及线损分析方法
CN111650431A (zh) * 2020-05-26 2020-09-11 珠海中慧微电子有限公司 一种电表台区识别方法
CN111650431B (zh) * 2020-05-26 2022-06-14 珠海中慧微电子有限公司 一种电表台区识别方法
CN112114192A (zh) * 2020-07-29 2020-12-22 宁波三星医疗电气股份有限公司 电力采集终端搜表方法、电子设备及搜表系统
CN112114192B (zh) * 2020-07-29 2022-11-04 宁波三星医疗电气股份有限公司 电力采集终端搜表方法、电子设备及搜表系统
CN114915560A (zh) * 2021-02-07 2022-08-16 国网浙江省电力有限公司营销服务中心 基于电流指纹的低压配电网拓扑识别方法、装置及系统
CN114915560B (zh) * 2021-02-07 2023-05-30 国网浙江省电力有限公司营销服务中心 基于电流指纹的低压配电网拓扑识别方法、装置及系统
CN113162239A (zh) * 2021-05-11 2021-07-23 南方电网电力科技股份有限公司 一种低压配电网台区拓扑结构及部署方法
CN114124160A (zh) * 2021-10-29 2022-03-01 宁波三星智能电气有限公司 适用于plc载波安全的一表一psk适配方法
CN114500512A (zh) * 2022-01-29 2022-05-13 昆明易云电力技术有限公司 基于区块链人工智能的台区应用技术
CN114996192A (zh) * 2022-07-04 2022-09-02 宁波三星医疗电气股份有限公司 搜表方法、介质、电子设备及搜表系统
CN114996192B (zh) * 2022-07-04 2024-02-27 宁波三星医疗电气股份有限公司 搜表方法、介质、电子设备及搜表系统
CN117177101A (zh) * 2023-11-03 2023-12-05 深圳讯智物联科技有限公司 一种基于电表抄表系统的cco状态处理方法及系统
CN117177101B (zh) * 2023-11-03 2024-02-02 深圳讯智物联科技有限公司 一种基于电表抄表系统的cco状态处理方法及系统

Also Published As

Publication number Publication date
CN103078935B (zh) 2015-07-01
CN103078935A (zh) 2013-05-01
SG11201500446VA (en) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2014101850A1 (zh) 一种低压配电网载波终端自动注册算法
US7869836B2 (en) Power saving devices and power saving methods for mobile access point, and wireless network systems
WO2014178605A1 (ko) 스마트 가전 장치 및 네트워크 관리 시스템
US8570999B1 (en) System and method for communications in a network
WO2015139296A1 (zh) 基站、网络控制器以及前向切换的方法
WO2012157971A2 (en) Power transmitting and receiving apparatus and method for performing a wireless multi-power transmission
WO2017020608A1 (zh) WiFi热点的共享方法和电子设备
GB0022632D0 (en) Method of, and signalling system for, transferring data
CN111031491B (zh) 一种停电实时上报方法及系统
WO2010147400A2 (ko) 기지국의 관리 장치, 관리 방법 및 단말
CN107069681A (zh) 一种多端线路差动保护方法及系统
WO2018230769A1 (ko) 중계통신방식의 ami 통신망에서 위상 검출 및 동기화를 수행하는 ami 시스템 및 그 방법
WO2012093915A2 (en) Apparatus and method for supporting time-controlled service in machine-to-machine communication system
GB0329229D0 (en) Method and system for auto discovery of IP-based network elements
US20030169774A1 (en) Internal signaling method to support clock synchronization of nodes connected via a wireless local area network
WO2011144066A2 (zh) 时钟同步的方法及装置
WO2012177029A2 (ko) M2m 환경을 지원하는 무선접속시스템에서 비정상 정전 상황을 보고하기 위한 임의접속과정 수행방법
EP1486016B1 (en) Internal signaling method to support clock synchronization of nodes connected via a wireless local area network
CN106600006A (zh) 10kv网络拓扑结构的停电监测系统及停电确定方法
CN114157325B (zh) 一种基于hplc载波网络的多头端通信转换尾端装置与系统
CN209088631U (zh) 智能变电站的二次继电保护芯片
CN109348314A (zh) 一种基于LoRa无线通信的电能表数据采集方法和设备
WO2022097761A1 (ko) 원격 검침 시스템 및 원격 검침 시스템의 제어 방법
CN106487714B (zh) 一种变电站共网共口网络的延时抖动控制方法及系统
TW200507536A (en) System and method for the design and description of networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09-11-2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13869298

Country of ref document: EP

Kind code of ref document: A1