WO2014101062A1 - 用户面数据传输方法、移动管理网元、演进型基站及系统 - Google Patents

用户面数据传输方法、移动管理网元、演进型基站及系统 Download PDF

Info

Publication number
WO2014101062A1
WO2014101062A1 PCT/CN2012/087729 CN2012087729W WO2014101062A1 WO 2014101062 A1 WO2014101062 A1 WO 2014101062A1 CN 2012087729 W CN2012087729 W CN 2012087729W WO 2014101062 A1 WO2014101062 A1 WO 2014101062A1
Authority
WO
WIPO (PCT)
Prior art keywords
user plane
header
ipv6
identifier
plane data
Prior art date
Application number
PCT/CN2012/087729
Other languages
English (en)
French (fr)
Inventor
张文卓
张洵
邓修东
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280002549.3A priority Critical patent/CN104040987B/zh
Priority to PCT/CN2012/087729 priority patent/WO2014101062A1/zh
Priority to EP12890792.0A priority patent/EP2924940B1/en
Publication of WO2014101062A1 publication Critical patent/WO2014101062A1/zh
Priority to US14/744,646 priority patent/US10470028B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/167Adaptation for transition between two IP versions, e.g. between IPv4 and IPv6
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • H04W80/045Network layer protocols, e.g. mobile IP [Internet Protocol] involving different protocol versions, e.g. MIPv4 and MIPv6

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a user plane data transmission method, a mobility management network element, an evolved base station, and a system. Background technique
  • the user equipment (User Equipment, UE) passes through the radio access network (Radio
  • the Access Network accesses the core network, and the path between the RAN and the core network is called IP Backhaul.
  • user data is sent to the core network through the transmission network, and the evolved Node B (eNB) passes through the SI port and the mobility management gateway (Mobi Management Management Center, ⁇ E) / service gateway ( The Serving Gateway (SGW) is connected, and the base station eNB is connected to other base station eNBs through the X2 port.
  • the user data of the SI and X2 ports are carried by the GTP-U protocol in the IP transmission path.
  • the format of the user plane protocol stack is as shown in FIG. 1 , including the physical layer (L1 layer) and the data link layer (L2 layer). , network layer (IP layer), User Datagram Protocol (UDP), GPRS Tunneling Protocol-User (GTP-U) and user data (user data).
  • the system control plane assigns a Tunnel Endpoint Identifier (TEID) to the user.
  • TEID Tunnel Endpoint Identifier
  • the assigned TEID is carried in the TEID field in the GTP-U header. , used to uniquely identify a user tunnel in a wireless access system.
  • IPv6 Internet Protocol Version 4
  • IPv6 Internet Protocol Version 6
  • IPv6 will gradually replace IPv4
  • IPv6 network will serve as the base station.
  • IP backhaul network the transmission structure of wireless user data packets is as follows: LI L2 IPv6 UDP GTP-U User data It can be seen that compared with IPv4, the IPv6 transport message structure does not change in essence, but the IPv4 header is replaced by the IPv6 header.
  • the IPv6 backhaul network increases the network transmission overhead, and the user payload ratio decreases, which affects the average transmission efficiency of service data.
  • the object of the present invention is to provide a user plane data transmission method, a mobility management network element, an evolved base station, and a system, which can reduce the network transmission overhead and increase the user payload ratio. Reduce the complexity of user data processing equipment and improve the data transmission efficiency of wireless access.
  • the first aspect provides a user plane data transmission method, where the method includes:
  • the user plane protocol stack includes: a physical layer, a data link layer, and a network layer, where the network layer includes an IPv6 header, and the IPv6 header
  • the flow label carries the user plane tunnel endpoint identifier TEID; or the user plane protocol stack includes: a physical layer, a data link layer, a network layer, and a GPRS tunnel user plane protocol layer GTP-U, where the network layer includes an IPv6 header Or the IPv4 header, the protocol type of the next hop header or the IPv4 header of the IPv6 basic header carries the type identifier of the GTP-U header.
  • the establishing wireless access between the node and the radio access network node Bearer connection including:
  • the E-RAB setup request includes an interface flow label S1_FL, and the interface flow label carries the user plane of the E-RAB
  • the TEID assigns the first identifier; Receiving an E-RAB setup response returned by the radio access network node for the E-RAB setup request, and extracting, in the E-RAB setup response, the radio access network node as a user plane TE of the E-RAB
  • the second bearer identifier of the ID is allocated, and the mapping relationship between the first bearer identifier and the second bearer identifier is recorded.
  • the user plane data transmission with the radio access network node by using the user plane protocol stack includes:
  • the encapsulating the IPv6 header or the IPv4 header for the first user plane data includes:
  • the first user plane data encapsulates the I Pv6 header, and the flow label of the IPv6 header carries the second bearer identifier;
  • the IPv6 header is encapsulated for the first user plane data, and the next hop header of the IPv6 header carries the GTP-U header.
  • Type identifier
  • the protocol type of the IPv4 header carries the type identifier of the GTP-U header.
  • the second aspect provides a user plane data transmission method, where the method includes: establishing a radio access bearer connection with a core network node;
  • the user plane protocol stack includes: a physical layer, a data link layer, and a network layer, where the network layer package In the IPv6 header, the flow label of the IPv6 header carries a user plane tunnel endpoint identifier TEID; or the user plane protocol stack includes: a physical layer, a data link layer, a network layer, and a GPRS tunnel user plane protocol layer,
  • the network layer includes an IPv6 header or an IPv4 header, and the protocol type of the next hop header or the IPv4 header of the IPv6 basic header carries the type identifier of the GTP-U header.
  • the establishing the radio access between the radio access network node and the radio access network node Bearer connection including:
  • the user plane data stack and the radio access network node perform user plane data transmission, including:
  • the two user plane data is sent to the core network node.
  • the encapsulating the IPv6 header or the IPv4 header for the second user plane data includes:
  • the IPv6 header is encapsulated for the second user plane data, and the flow label of the IPv6 header carries the first bearer identifier;
  • the protocol type of the IPv4 header carries the type identifier of the GTP-U header.
  • a mobility management network element includes: a first communication connection module, configured to establish a radio access bearer connection with a radio access network node;
  • a first data transmission module configured to perform user plane data transmission with the radio access network node by using a user plane protocol stack
  • the user plane protocol stack includes: a physical layer, a data link layer, and a network layer, where the network layer includes an IPv6 header, and the flow label of the IPv6 header carries a user plane tunnel endpoint identifier TEID; or the user plane protocol
  • the stack includes: a physical layer, a data link layer, a network layer, and a GPRS tunnel user plane protocol layer, where the network layer includes an IPv6 header or an IPv4 header, and a protocol type carrying of the next hop header or the IPv4 header of the IPv6 basic header The type identifier of the GTP-U header.
  • the first communications connection module includes:
  • a request sending unit configured to: when the user plane protocol stack uses the flow label to carry the user plane TEID, establish and send a radio access bearer E-RAB setup request to the radio access network node, where the E-RAB establishment request An interface flow label S1_FL, where the interface flow label carries a first identifier for the user plane TEID of the E-RAB;
  • a first receiving unit configured to receive an E-RAB setup response returned by the radio access network node for the E-RAB setup request
  • the first data transmission module includes:
  • a second receiving unit configured to receive first user plane data of the service gateway SGW;
  • a second processing unit configured to encapsulate an IPv6 header or an IPv4 header for the first user plane data, and send the encapsulated first user plane data to the radio access network node;
  • the second receiving unit is configured to receive second user plane data sent by the radio access network node
  • the second processing unit is configured to decapsulate the IPv6 header or the IPv4 header of the second user plane data, and forward the decapsulated second user plane data to the SGW.
  • the second processing unit when the user plane protocol stack uses the flow label to carry the user plane TEID, the second processing unit is The first user plane data encapsulates an IPv6 header, and the flow label of the IPv6 header carries the first identifier;
  • the second processing unit encapsulates the IPv6 header for the first user plane data, and the next hop of the IPv6 header The first type of tag carrying the GTP-U header;
  • the second processing unit When the user plane protocol stack carries the type identifier of the GTP-U header by using the protocol type, the second processing unit encapsulates the IPv4 header for the first user plane data, and the protocol type of the IPv4 header carries the GTP- The type identifier of the U header.
  • a fourth aspect provides an evolved base station, where the evolved base station includes:
  • a second communication connection module configured to establish a radio access bearer connection with the core network node
  • a second data transmission module configured to perform user plane data transmission with the core network node by using a user plane protocol stack
  • the user plane protocol stack includes: a physical layer, a data link layer, and a network layer, where the network layer includes an IPv6 header, and the flow label of the IPv6 header carries a user plane tunnel endpoint identifier TEID; or the user plane protocol
  • the stack includes: physical layer, data link layer, network layer and GPRS tunnel
  • the user plane protocol layer, the network layer includes an IPv6 header or an IPv4 header, and the protocol type of the next hop header or the IPv4 header of the IPv6 basic header carries the type identifier of the GTP-U header.
  • the second communications connection module includes:
  • a third receiving unit configured to receive a radio access bearer E-RAB setup request sent by the core network node, where the E-RAB setup request includes an interface when the user plane protocol stack uses the flow label to carry the user plane TEID
  • the flow label S1_FL, the interface flow label carries a first identifier for the user plane TEID of the E-RAB;
  • a third processing unit configured to allocate a second identifier to the user plane TEID of the E-RAB, and record a mapping relationship between the first bearer identifier and the second bearer identifier, and construct the second bearer identifier by using the second bearer identifier And sending an E-RAB setup response to the core network node.
  • the second data transmission module includes:
  • a fourth receiving unit configured to receive first user plane data sent by the core network node, and a fourth processing unit, configured to decapsulate the IPv6 header or the IPv4 header of the first user plane data, and forward the decapsulation The first user plane data to the user terminal UE;
  • the fourth receiving unit is configured to receive the second user plane data of the user equipment UE, where the fourth processing unit is configured to encapsulate the IPv6 header or the IPv4 header for the second user plane data, and the encapsulated The second user plane data is sent to the core network node.
  • the fourth processing unit when the user plane protocol stack uses the flow label to carry the user plane TEID, the fourth processing unit is The second user plane data encapsulates an IPv6 header, and the flow label of the IPv6 header carries the second bearer identifier;
  • the fourth processing unit When the user plane protocol stack adopts the type identifier of the GTP-U header in the next hop header, the fourth processing unit encapsulates the IPv6 header for the second user plane data, and the next hop of the IPv6 header The first type of tag carrying the GTP-U header; When the user plane protocol stack carries the type identifier of the GTP-U header by using the protocol type, the fourth processing unit encapsulates the IPv4 header for the second user plane data, and the protocol type of the IPv4 header carries the GTP- The type identifier of the U header.
  • a network system is further provided, where the system includes: a mobility management network element and an evolved base station;
  • the user plane protocol stack is used for user plane data transmission
  • the user plane protocol stack includes: a physical layer, a data link layer, and a network layer, where the network layer includes an IPv6 header, and the flow label of the IPv6 header carries a user plane tunnel endpoint identifier TEID; or the user plane protocol
  • the stack includes: a physical layer, a data link layer, a network layer, and a GPRS tunnel user plane protocol layer, where the network layer includes an IPv6 header or an IPv4 header, and a protocol type carrying of the next hop header or the IPv4 header of the IPv6 basic header The type identifier of the GTP-U header.
  • the sixth aspect further provides a mobility management network element, where the mobility management network element includes: a wireless network interface;
  • An application physically stored in the memory including instructions operable to cause the processor and the network element to perform the following process:
  • the user plane protocol stack includes: a physical layer, a data link layer, and a network layer, where the network layer includes an IPv6 header, and the IPv6 header
  • the flow label carries the user plane tunnel endpoint identifier TEID; or the user plane protocol stack includes: a physical layer, a data link layer, a network layer, and a GPRS tunnel user plane protocol layer, where the network layer includes an IPv6 header or an IPv4 header.
  • the protocol type of the next hop header or the IPv4 header of the IPv6 basic header carries the type identifier of the GTP-U header.
  • an evolved base station includes: Wireless network interface;
  • An application physically stored in the memory including instructions operable to cause the processor and the base station to perform the following process:
  • the user plane protocol stack includes: a physical layer, a data link layer, and a network layer, where the network layer includes an IPv6 header, and the flow label of the IPv6 header carries a user plane tunnel endpoint identifier TEID; or the user plane protocol
  • the stack includes: a physical layer, a data link layer, a network layer, and a GPRS tunnel user plane protocol layer, where the network layer includes an IPv6 header or an IPv4 header, and a protocol type carrying of the next hop header or the IPv4 header of the IPv6 basic header The type identifier of the GTP-U header.
  • the user plane data transmission method, the mobility management network element, the evolved base station, and the system provided by the present invention use the flow label (FL) field of the basic header of the IPv6 to identify the tunnel identifier TEID information, thereby eliminating the wireless user data packet.
  • the user payload ratio saves the bandwidth of the user plane data service interface, improves the transmission efficiency of the wireless access service plane, reduces the complexity of the user data processing equipment, and improves the processing efficiency.
  • 1 is a schematic diagram of a format of a conventional user plane protocol stack
  • FIG. 2 is a flowchart of a user plane data transmission method according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a user plane protocol stack format according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of still another user plane data transmission method according to Embodiment 1 of the present invention
  • FIG. 5 is a signaling diagram of an E-RAB establishment process between an MME and an eNB according to Embodiment 1 of the present invention
  • FIG. 6 is a signaling diagram of user plane data transmission between an MME and an eNB according to Embodiment 1 of the present invention
  • FIG. 7 is a schematic diagram of a user plane protocol stack format according to Embodiment 2 of the present invention
  • FIG. 7b is a signaling data used when E-RAB is established between ⁇ E and an eNB according to Embodiment 2 of the present invention
  • FIG. 8 is a signaling diagram of user plane data transmission between an MME and an eNB according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of a radio access network system according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic diagram of a radio access network system according to Embodiment 4 of the present invention.
  • FIG. 11 is a schematic diagram of a mobility management network element according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic diagram of an evolved base station according to Embodiment 4 of the present invention. detailed description
  • the core network node in the System Architecture Evolution (SAE)/Long Term Evolution (LTE) is the Mobi Management Manager ( ⁇ E), and the RAN node is the evolved base station. B, eNB).
  • the Universal Networking System (UMTS) is attached to each of the core network nodes to serve the General Packet Radio Service (GPRS) Support Node (SGSN) or the Mobile Switching Center (Mobi).
  • GPRS General Packet Radio Service
  • SGSN General Packet Radio Service
  • Mobi Mobile Switching Center
  • MSC Radio Network Controller
  • RNC Radio Network Controller
  • the invention is applicable to a wireless communication network system, and is particularly suitable for using a GTP-U tunneling protocol.
  • the mobility management network element of the present invention may be a mobility management gateway MME, a serving GPRS support node SGSN, or a mobile switching center MSC.
  • the radio access network node may be an evolved base station eNB, a radio network controller RNC, or the like.
  • the mobility management network element and the radio access network node respectively take the mobile management gateway MME and the evolved base station eNB in SAE/LTE as an example, but are not limited to the SAE/LTE system.
  • the user equipment UE accesses the core network through the eNB, and the eNB is connected to the ⁇ E in the core network through the S1 port, and the ⁇ E is connected to the service gateway SGW.
  • FIG. 2 is a flowchart of a method for transmitting user plane data according to this embodiment. As shown in FIG. 2, the method includes:
  • Step S101 ⁇ E establishes a radio access bearer connection with the eNB.
  • E-UTRAN Evolved-Universal Terrestrial Radio Access Network
  • GTP GPRS Tunneling Protocol
  • E-RAB E-UTRAN Radio Access Bearer
  • Step S102 ⁇ E performs user plane data transmission with the eNB by using a user plane protocol stack.
  • FIG. 3 is a schematic diagram of a user plane protocol stack format provided by this embodiment.
  • the user plane protocol stack of E includes: a physical layer (L1 layer), a data link layer (L2 layer), and a network layer (IP). Layer) and transmitted user data (User Data).
  • L1 layer physical layer
  • L2 layer data link layer
  • IP network layer
  • Layer transmitted user data
  • User Data User Data
  • the network layer adopts the IPv6 protocol, which includes the IPv6 header information, and the flow label of the IPv6 header carries the user plane tunnel endpoint identifier TEID.
  • the Flow Label (FL) field of the IPv6 header has 20 bits and is used to identify packets belonging to the same service flow.
  • a traffic label and source and destination IP addresses can be used to uniquely identify a service flow.
  • Road The device does not modify the field in the message during the forwarding process, and can be used to deliver TEID-like information end-to-end.
  • the invention utilizes the flow label of the IPv6 header to identify the user plane TEID, and reduces the GTP-U header and the UDP header.
  • the network transmission overhead can be reduced, the user payload ratio is increased, and the complexity of the user data processing device is reduced. degree. The specific data transmission process will be described in detail in conjunction with Figure 6.
  • FIG. 4 is a flowchart of another user plane data transmission method according to an embodiment of the present invention. As shown in FIG. 4, the method includes:
  • Step S201 The eNB establishes a radio access bearer connection with the ⁇ E.
  • Step S202 The eNB performs user plane data transmission with the MME by using a user plane protocol stack.
  • the user plane protocol stack of the eNB includes: a physical layer (L1 layer), a data link layer (L2 layer), and a network layer (IP layer);
  • L1 layer physical layer
  • L2 layer data link layer
  • IP layer network layer
  • the IPv6 header information is included, and the flow label of the IPv6 header carries the user plane tunnel endpoint identifier TEID.
  • FIG. 5 is a signaling diagram of an E-RAB establishment process between an E and an eNB according to the present embodiment. As shown in FIG. 5, the establishment process includes:
  • Step S301 The MME establishes and sends a radio access E-RAB setup request to the eNB.
  • the E-RAB establishment request includes the interface flow label S1.FL, where the interface flow label carries the first bearer identifier of the user plane TEID of the E-RAB.
  • the MME allocates a unique first bearer identifier to each E-RAB, and uses the assigned first bearer identifier as the value of the interface flow label S1_FL in the S1 application protocol (S1AP).
  • S1AP S1 application protocol
  • the uplink tunnel table of the first bearer identifier 1355 is established in E.
  • the E-RAB setup request is constructed and sent to the eNB by using information such as the first bearer identifier, the Evolved Packet System Bearer Qos (EPS Bearer Qos), and the transport interface IP address.
  • FIG. 3b is a signaling data format used for E-RAB establishment between ⁇ E and eNB.
  • the E-RAB setup request and the E-RAB setup response all adopt the signaling data format. As shown in FIG.
  • SI application Protocol (S1AP)
  • S1-FL SI flow label
  • Mes sage Type user encapsulation type
  • UE identity on the SI interface in the MME ⁇ E UE SIAP ID
  • eNB UE SIAP ID UE identity on the SI interface in the eNB
  • the Sl-FL is used to transmit the first bearer identifier allocated by the MME for the E_RAB or the second bearer identifier allocated by the eNB for the E-RAB, and the user encapsulation type may include an E-RAB setup request (E-RAB setup reques t ), E-RAB setup response, E_RAB delete reques t, and E-RAB delete response.
  • the STP-FL is used to replace the GTP-TEID in the existing SIAP.
  • the S1-FL is 24 bits
  • the GTP-TEID is 32 bits, which can save network transmission overhead.
  • Step S302 The eNB receives the E-RAB establishment request sent by the E.
  • Step S303 The eNB allocates a second identifier to the user plane TEID of the E-RAB, and constructs and sends an E-RAB setup response to the MME.
  • the second identifier assigned by the eNB to the user plane TE I D of the E-RAB may be the same as or different from the first identifier assigned by the MME.
  • the first bearer identifier assigned by the MME to the E-RAB is 1355
  • the second bearer identifier assigned by the eNB to the E-RAB may be 1455. It should be noted that the first bearer identifier and the second bearer identifier are independent of each other, even if the first bearer identifier and the second bearer identifier with the same value are used, respectively, in specific operations of the MME and the eNB.
  • the eNB records a mapping relationship between the first bearer identifier and the second bearer identifier, and establishes the mapping relationship.
  • the downlink tunnel table of the E-RAB in the eNB if the eNB allocates the second 7-carrier identifier for the E-RAB to 1455, Then, a downlink tunnel table of the second bearer identifier 1455 is established in the eNB.
  • the E-RAB setup response is constructed and transmitted to the MME by using the allocated second bearer identifier, the QoS of the radio bearer, and the like.
  • Step S304 The MME receives an E-RAB setup response returned by the eNB.
  • the mapping relationship establishes the downlink tunnel table of the E-RAB in E. If the second bearer identifier assigned by the eNB to the E-RAB is 1455, the downlink tunnel table of the second bearer identifier 1455 is established in ⁇ E.
  • FIG. 6 is a signaling diagram of user plane data transmission between the MME and the eNB according to the embodiment.
  • the user plane data transmission process includes: a UE data upload process and a UE data download process.
  • the UE data uploading process includes:
  • Step S401 The eNB receives the data A uploaded by the UE.
  • Data A is transmitted in the format of the user plane protocol stack as shown in Figure 3a.
  • Step S402 The eNB encapsulates the IPv6 header for the data A.
  • the eNB searches the uplink tunnel table of the first identifier 1 355 in the eNB, and encapsulates the IPv6 header with the information of the uplink tunnel table of the first identifier, and carries the first bearer identifier 1 355 with the flow label of the IPv6 header. .
  • Step S403 The eNB sends the encapsulated data A to the MME.
  • the eNB sends the data A encapsulated by the first bearer identifier 1 355 to the MME.
  • Step S404 E receives the data A sent by the eNB, and decapsulates the IPv6 header of the data A.
  • E searches for the uplink tunnel table of the first bearer identifier 1 355 in E, performs decapsulation processing, and obtains data A sent by the UE.
  • Step S405 E forwards the decapsulated data A to the service gateway SGW.
  • the SGW can receive the data A sent by the UE.
  • the UE data download process includes:
  • Step S501 The MME receives the data B sent by the service gateway SGW.
  • Data B is also transmitted in the format of the user plane protocol stack as shown in Figure 3a.
  • Step S502 The MME encapsulates an IPv6 header for the data B.
  • E finds the downlink tunnel table of the second bearer identifier 1455 in E, and uses the second bearer identifier
  • the information of the downlink tunnel table of 1455 is data B encapsulates the IPv6 header, and the flow label of the IPv6 header carries the second bearer identifier 1455.
  • Step S503 The MME sends the encapsulated data B to the eNB.
  • the MME sends the data B encapsulated by the second bearer identifier 1455 to the eNB.
  • Step S504 The eNB receives the data B sent by the MME, and decapsulates the IPv6 header of the data B.
  • the eNB searches the downlink tunnel table of the second identifier 1455 in the eNB, performs decapsulation processing, and obtains data B sent by the SGW.
  • Step S505 The eNB forwards the decapsulated data B to the UE.
  • the UE can receive the data B sent by the SGW.
  • the user plane data transmission method uses the Flow Label field of the basic header of the IPv6 to identify the tunnel identifier TEID information, and the UDP header and the GTP-U header in the wireless user data packet are omitted, and the UDP layer and the GTP- are reduced.
  • the processing of the U tunneling protocol reduces the network transmission overhead, improves the user payload ratio, saves the user plane data service interface bandwidth, improves the transmission efficiency of the wireless access service plane, reduces the complexity of the user data processing equipment, and improves the processing efficiency.
  • FIG. 7a is a schematic diagram of a user plane protocol stack format provided by this embodiment.
  • the user plane protocol stack of the MME includes: a physical layer (L1 layer), a data link layer (L2 layer), and a network layer (IP). Layer), GPRS tunnel user plane protocol layer (GTP-U) and transmitted user data (User Data).
  • L1 layer physical layer
  • L2 layer data link layer
  • IP network layer
  • Layer GPRS tunnel user plane protocol layer
  • GTP-U transmitted user data
  • the network layer When the data transmission is performed by using the IPv6 protocol, the network layer includes an IPv6 header, and the next hop header of the IPv6 header carries the type identifier of the GTP-U header.
  • the network layer When the data transmission is performed by using the IPv4 protocol, the network layer includes an IPv4 header, and the protocol type of the IPv4 header carries the type identifier of the GTP-U header.
  • the type identifier of the GTP-U header is a preset value.
  • the value is 101, which is used to indicate the type identifier of the GTP-U header, that is, the next hop header of the IPv6 header or IPv4.
  • the value of the protocol type for the header is 101.
  • the user plane data transmission method in this embodiment includes: establishing a radio access bearer E-RAB connection between the MME and the eNB; and performing a user plane with the radio access network node by using a user plane protocol stack The steps of data transfer.
  • the procedure for establishing the E-RAB between the MME and the eNB is similar to the steps S301 to S304 in the first embodiment. The only difference is that the signaling data format used is different.
  • the signaling data format used in establishing the E-RAB connection is the same as the existing one, as shown in FIG. 7b, including the L1 layer and the L2.
  • the GTP-TEID is the user plane tunnel endpoint identifier TEID
  • the user plane TEID is used to establish the E-RAB 0.
  • FIG. 8 is a signaling diagram of user plane data transmission between the UE and the eNB according to the embodiment.
  • the user plane data transmission process includes: a UE data upload process and a UE data download process.
  • the UE data uploading process includes:
  • Step S 601 The eNB receives the data A uploaded by the UE.
  • Data A is transmitted in the format of the user plane protocol stack as shown in Figure 7a.
  • Step S602 The eNB encapsulates an IPv6 header or an IPv4 header for the data A.
  • the eNB looks up the upstream tunnel table of the first bearer 1355 in the eNB.
  • the information of the uplink tunnel table of the first bearer identifier is used to encapsulate the IPv6 header of the data A, in the IPv6 header.
  • the value of the next hop header is 101, and the GTP-U carries the first carrier identifier 1 355.
  • the information of the uplink tunnel table of the first bearer identifier is used to encapsulate the IPv4 header of the data A, and the value of the protocol type in the IPv4 header is 1 01.
  • the GTP-U carries the first bearer identifier 1 355.
  • Step S603 The eNB sends the encapsulated data A to the MME.
  • the eNB sends the data A encapsulated by the first bearer identifier 1 355 to the MME.
  • Step S604 receives the data A sent by the eNB, and decapsulates the IPv6 header or the IPv4 header of the data A.
  • E searches for the uplink tunnel table of the first bearer identifier 1 355 in E, performs decapsulation processing, and obtains data A sent by the UE.
  • Step S605 E forwards the decapsulated data A to the service gateway SGW.
  • the UE data download process includes:
  • Step S701 The MME receives the data B sent by the service gateway SGW.
  • Data B is also transmitted in the format of the user plane protocol stack as shown in Figure 7a.
  • Step S702 The MME encapsulates an IPv6 header or an IPv4 header for the data B.
  • ⁇ E finds the downstream tunnel table of the second bearer identity 1455 in ⁇ E.
  • the information of the downlink tunnel table of the second identifier 1455 is used to encapsulate the IPv6 header of the data B, and the next hop header of the IPv6 header The value is 101, and the GTP-U carries the second carrier identifier 1455.
  • the information of the downlink tunnel table of the second bearer identifier 1455 is used to encapsulate the IPv4 header of the data B, and the value of the protocol type in the IPv4 header is 101.
  • the GTP-U carries the second bearer identification 1455.
  • Step S703 The MME sends the encapsulated data B to the eNB.
  • the MME sends the data B encapsulated by the second bearer identifier 1455 to the eNB.
  • Step S704 The eNB receives the data B sent by the MME, and decapsulates the IPv6 header or the IPv4 header of the data B.
  • the eNB searches the downlink tunnel table of the second identifier 1455 in the eNB, performs decapsulation processing, and obtains data B sent by the SGW.
  • Step S705 The eNB forwards the decapsulated data B to the UE.
  • the method for transmitting user plane data uses the type of the next hop header of the IPv6 basic header or the protocol type of the IPv4 header to identify the type of the GTP-U, and the UDP header in the wireless user data packet is omitted, and the UDP layer is reduced. Processing, thereby reducing network transmission overhead and increasing user payload ratio.
  • FIG. 9 is a schematic diagram of a radio access network system according to the embodiment. As shown in FIG. 9, the system includes: a mobility management network element 10 and an evolved base station 20, configured to establish a user equipment UE 30 and a service gateway SGW 40. Wireless communication connection between.
  • a mobility management network element 10 and an evolved base station 20, configured to establish a user equipment UE 30 and a service gateway SGW 40. Wireless communication connection between.
  • the mobility management network element 10 and the evolved base station 20 After establishing the radio access bearer connection, the mobility management network element 10 and the evolved base station 20 perform user plane data transmission using the user plane protocol stack as shown in FIG. 3a or FIG. 7a.
  • the mobility management network element 10 includes a first communication connection module 101 and a first data transmission module 102.
  • the first communication connection module 101 is used to establish a radio access bearer connection with the evolved base station 20.
  • the first data transmission module 102 is configured to perform user plane data transmission with the evolved base station 20 by using a user plane protocol stack.
  • the evolved base station 20 includes a first communication connection module 201 and a first data transmission module 202.
  • the second communication connection module 201 is configured to establish a radio access bearer connection with the mobility management network element 10.
  • the second data transmission module 202 is configured to perform user plane data transmission with the mobility management network element 10 by using the user plane protocol stack.
  • the first communication connection module 101 includes a request transmitting unit 1011, a first receiving unit 1012, and a first processing unit 1023.
  • the second communication connection module 201 includes a third receiving unit 2011 and a third processing unit 2012.
  • the request sending unit 1011 is configured to establish and transmit a radio access bearer E-RAB setup request to the third receiving unit 201 1 of the evolved base station 20.
  • the E-RAB setup request includes an interface flow label S1_FL, and the interface flow label carries the first processing unit 1023 to allocate the user plane TEID of the E-RAB.
  • a ⁇ logo If the user plane protocol stack shown in FIG. 7a is used, the E-RAB setup request includes a GTP-TEID, which is used to identify the user plane tunnel endpoint identifier TE I D of the E-RAB.
  • the third receiving unit 2011 is configured to receive an E-RAB establishment request sent by the request transmitting unit 1011.
  • the third processing unit 2012 is configured to allocate a second identifier to the user plane TEID of the E-RAB, and record a mapping relationship between the first bearer identifier and the second bearer identifier, and construct the second bearer identifier by using the second bearer identifier. And sending an E-RAB setup response to the first receiving unit 1012.
  • the first receiving unit 1012 is configured to receive an E-RAB setup response returned by the third processing unit 2012 for the E-RAB setup request.
  • the first processing unit 101 is configured to: according to the E-RAB setup response, extract a second identifier that is allocated by the third processing unit 2012 for the user plane TEID of the E-RAB, and record the first identifier and the first identifier The mapping relationship between the two 7-digit identifiers.
  • the first data transmission module 102 includes a second receiving unit 1021 and a second processing unit 1022.
  • the second data transmission module 202 includes a fourth receiving unit 2021 and a fourth processing unit 2022.
  • the second receiving unit 1021 is configured to receive the first user plane data of the service gateway SGW.
  • the second processing unit 1022 is configured to encapsulate the IPv6 header or the IPv4 header for the first user plane data, and send the encapsulated first user plane data to the second receiving unit 1021 of the evolved base station 20.
  • the second processing unit 1022 When the user plane protocol stack carries the user plane TEID by using the flow label, the second processing unit 1022 encapsulates the IPv6 header for the first user plane data, and the flow label of the IPv6 header carries the first bearer identifier.
  • the second processing unit 1022 When the user plane protocol stack adopts the type identifier of the GTP-U header in the next hop header, the second processing unit 1022 encapsulates the IPv6 header for the first user plane data, and the next hop header of the IPv6 header. The type identifier carrying the GTP-U header.
  • the second processing unit 1022 encapsulates the IPv4 header for the first user plane data, and the protocol type of the IPv4 header carries the type identifier of the GTP-U header.
  • the fourth receiving unit 2021 is configured to receive the first user plane data sent by the second processing unit 1021.
  • the fourth processing unit 2022 is configured to decapsulate the IPv6 header or the IPv4 header of the first user plane data, and forward the decapsulated first user plane data to the user terminal UE.
  • the fourth receiving unit 2022 is configured to receive the second user plane data of the user terminal UE.
  • the fourth processing unit 2022 is configured to encapsulate the IPv6 header or the IPv4 header for the second user plane data, and send the encapsulated second user plane data to the second receiving unit 1021.
  • the fourth processing unit 2022 encapsulates the IPv6 header for the second user plane data, and the flow label of the IPv6 header carries the second identifier.
  • the fourth processing unit 2022 encapsulates the IPv6 header for the second user plane data, and the next hop header of the IPv6 header The type identifier carrying the GTP-U header.
  • the fourth processing unit 2022 encapsulates the IPv4 header for the second user plane data, and the protocol type of the IPv4 header carries the GTP-U The type identifier of the header.
  • the second receiving unit 1021 is configured to receive the second user plane data sent by the fourth processing unit 2022.
  • the second processing unit 1023 is configured to decapsulate the IPv6 header or the IPv4 header of the second user plane data, and forward the decapsulated second user plane data to the service gateway 40.
  • FIG. 10 is a schematic diagram of a radio access network system according to the embodiment. As shown in FIG. 10, the system includes: a mobility management network element 50 and an evolved base station 60, configured to establish a user equipment UE 30 and a service gateway SGW 40. A wireless communication connection between.
  • FIG. 11 is a schematic diagram of a mobility management network element according to the embodiment.
  • the mobile management network element includes a wireless network interface 51, a processor 52, and a memory 53.
  • the system bus 54 is used to connect the wireless network interface 51, the processor 52, and the memory 53.
  • the wireless network interface 51 is for communicating with the evolved base station 60 and the service gateway 40.
  • the memory 53 can be a persistent storage such as a hard disk drive and a flash memory having a software module and a device driver.
  • the software modules are capable of executing the various functional modules of the above described method of the present invention; the device drivers can be network and interface drivers.
  • the user plane protocol stack includes: a physical layer (L1 layer), a data link layer (L2 layer), and a network layer (IP layer),
  • the network layer includes an IPv6 header, and the flow label of the IPv6 header carries a user plane tunnel endpoint identifier TEID;
  • the user plane protocol stack includes: a physical layer, a data link layer, a network layer, and a GPRS tunnel user plane protocol layer (GTP-U), where the network layer includes an IPv6 header or an IPv4 header, where the IPv6 basic header
  • GTP-U GPRS tunnel user plane protocol layer
  • the mobility management network element in this embodiment uses the flow label field or the next hop header in the IPv6 basic header to identify the user ID, reduces the GTP-U header and/or UDP header of the user data transmission, reduces network transmission overhead, and improves the user.
  • the payload ratio reduces the complexity of the user data processing device.
  • the processor accesses the software component of the memory 53, the instruction of the following process is executed:
  • the E-RAB setup request includes an interface flow label S1_FL, and the interface flow label carries the user plane of the E-RAB
  • the TEID assigns the first identifier
  • the second bearer identifier allocated by the radio access network node to the user plane TEID of the E-RAB in the E-RAB setup response is recorded, and the first bearer identifier and the second bearer identifier are recorded between the first bearer identifier and the second bearer identifier. Mapping relations.
  • the above-mentioned instruction process is a process of establishing an E-RAB connection between the mobility management network element and the evolved base station, and identifying the user plane TEID of the E-RAB through the interface flow label S1_FL in the signaling data, thereby using the user plane TEID to move Establish an uplink/downlink tunnel table in the management NE.
  • the above instruction process is a process of packet forwarding between the mobility management network element and the evolved base station, and data transmission or forwarding is performed by using the user plane protocol stack shown in FIG. 3a or FIG. 7a.
  • the IPv6 header is encapsulated for the first user plane data, and the flow label of the IPv6 header carries the second bearer identifier;
  • the IPv6 header is encapsulated for the first user plane data, and the next hop header of the IPv6 header carries the GTP-U header.
  • Type identifier
  • the protocol type of the IPv4 header carries the type identifier of the GTP-U header.
  • the above instruction process is for different user plane protocol stack formats, and different encapsulation processes are performed accordingly.
  • FIG. 12 is a schematic diagram of an evolved base station according to the embodiment.
  • the evolved base station includes: a wireless network interface 61, a processor 62, and a memory 63.
  • the system bus 64 is used to connect the wireless network interface 61, the processor 62, and the memory 63.
  • the wireless network interface 61 is for communicating with the mobility management network element 50, the user equipment 30.
  • the memory 63 may be a persistent storage such as a hard disk drive and a flash memory having a software module and a device driver.
  • the software modules are capable of executing the various functional modules of the above described method of the present invention; the device drivers can be network and interface drivers.
  • the user plane protocol stack includes: a physical layer (L1 layer), a data link layer (L2 layer), and a network layer (IP layer), where the network layer includes an IPv6 header, and the flow label of the IPv6 header carries a user plane.
  • the tunnel endpoint identifies the TEID;
  • the user plane protocol stack includes: a physical layer, a data link layer, a network layer, and a GPRS tunnel user plane protocol layer (GTP-U), where the network layer includes an IPv6 header or an IPv4 header, where the IPv6 basic header
  • GTP-U GPRS tunnel user plane protocol layer
  • the evolved base station in this embodiment uses the flow label field or the next hop header in the IPv6 basic header to identify the user ID, thereby reducing the GTP-U header and/or UDP header of the user data transmission, thereby reducing network transmission overhead and improving user effectiveness. Load ratio, reducing the complexity of user data processing equipment.
  • the processor accesses the software component of the memory 63, the instructions of the following process are executed:
  • the setup request includes an interface flow label S1_FL, and the interface flow label carries a first identifier for the user plane TEID of the E-RAB;
  • the above-mentioned instruction procedure is a process of establishing an E-RAB connection between the mobility management network element and the evolved base station, and identifying the user plane TEID of the E-RAB through the interface flow label S1_FL in the signaling data, thereby utilizing the user plane TEID in the evolution.
  • An uplink/downlink tunnel table is established in the type base station.
  • the two user plane data is sent to the core network node.
  • the above instruction process is a process of packet forwarding between the mobility management network element and the evolved base station, and data transmission or forwarding is performed by using the user plane protocol stack shown in FIG. 3a or FIG. 7a.
  • the IPv6 header is encapsulated for the second user plane data, and the flow label of the IPv6 header carries the first bearer identifier;
  • the IPv6 header is encapsulated for the second user plane data, and the next hop header of the IPv6 header carries the GTP-U header.
  • Type identifier
  • the protocol type of the IPv4 header carrying a type identifier of a GTP-U header.
  • the above instruction process is for different user plane protocol stack formats, and different packaging processes are performed accordingly.
  • the user plane data transmission method, the mobility management network element, the evolved base station, and the system provided by the present invention reduce the GTP-U header of the user data transmission by using the flow label field or the next hop header in the IPv6 basic header to identify the user ID.
  • the / or UDP header reduces network transmission overhead, increases user payload ratio, and reduces the complexity of user data processing equipment.
  • the average service efficiency of the interface is increased by more than 5.33%.
  • the average transmission efficiency of typical services is increased by more than 8%.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium may include RAM, ROM, EEPROM, A CD-ROM or other optical disc storage, magnetic storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and that can be accessed by a computer. Also. Any connection may suitably be a computer readable medium.
  • a disk and a disc include a compact disc (CD), a laser disc, a disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种用户面数据传输方法、移动管理网元、演进型基站及系统,所述方法包括:建立与无线接入网节点之间的无线接入承载连接;利用用户面协议栈与所述无线接入网节点进行用户面数据传输;所述用户面协议栈包括:物理层、数据链路层和网络层;所述网络层包括IPv6首部,所述IPv6首部的流标签携带有用户面隧道端点标识TEID;或者,所述网络层携带有GTP-U首部的类型标识。本发明简化了无线接入的网络层次,能够减少网络传输开销,提升用户有效负载比例,降低用户数据处理设备的复杂度,提升无线接入的数据传输效率。

Description

用户面数据传输方法、 移动管理网元、 演进型基站及系统 技术领域
本发明涉及无线通信技术领域, 尤其涉及一种用户面数据传输方法、 移 动管理网元、 演进型基站及系统。 背景技术
无线通信技术中,用户设备(User Equipment , UE )通过无线接入网( Radio
Access Network, RAN)接入到核心网, RAN与核心网之间的通路称为 IP回传 网络(IP Backhaul)。
在无线通信过程中, 用户数据 ( user data )通过传输网络发送到核心网, 基站( evolved Node B, eNB)通过 SI口与移动管理网关( Mobi 1 i ty Management Entity, 匪 E ) /业务网关(Serving Gateway, SGW )相连, 基站 eNB通过 X2 口与其他基站 eNB相连。 SI和 X2口用户数据在 IP传输通路中用 GTP-U协议 承载, 用户面( User plane )协议栈的格式如图 1所示, 包括物理层( L1层)、 数据链路层(L2层) 、 网络层(IP层) 、 用户数据报协议(User Datagram Protocol, UDP ) 、 GPRS隧道用户面协议 (GPRS Tunneling Protocol -User, GTP-U )和用户数据 (user data) 。 在无线信令交互过程中, 系统控制面会 为用户分配一个隧道端点标识( Tunnel Endpoint Identifier, TEID ) , 在 用户数据报文转发过程中, 这个分配的 TEID携带于 GTP-U头部中的 TEID字 段, 用作在无线接入系统中唯一标识用户隧道。
随着互联网协议第四版 ( Internet Protocol Version 4, IPv4 )地址的 枯竭, 在无线接入网中, 互联网协议第六版( Internet Protocol Version 6, IPv6)将逐步替代 IPv4, 以 IPv6网络作为基站的 IP回传网络的节点将越来 越多。 在 IPv6回传网络中, 无线用户数据报文的传输结构如下: LI L2 IPv6 UDP GTP-U User data 可以看出, 与 IPv4相比, IPv6的传输报文结构并没有本质变化, 只是以 IPv6头部替换 IPv4头部。
然而, 与 IPv4回传网络相比, 采用 IPv6回传网络, 增加了网络传输开 销, 用户有效负载比例下降, 影响业务数据的平均传输效率。 发明内容
有鉴于此, 本发明的目的是提供一种用户面数据传输方法、 移动管理网 元、演进型基站及系统,筒化无线接入的网络层次,能够减少网络传输开销, 提升用户有效负载比例, 降低用户数据处理设备的复杂度, 提升无线接入 的数据传输效率。
第一方面, 提供了一种用户面数据传输方法, 所述方法包括:
建立与无线接入网节点之间的无线接入承载连接;
利用用户面协议栈与所述无线接入网节点进行用户面数据传输; 所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层 GTP-U, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6 基本首部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型 标识。
结合第一方面, 在第一方面的第一种可能的实现方式中, 当所述用户面 协议栈采用流标签携带用户面 TEID时, 所述建立与无线接入网节点之间的无 线接入承载连接, 包括:
建立并发送无线接入 载 E-RAB建立请求至所述无线接入网节点, 所述 E-RAB建立请求包括接口流标签 S1 _FL, 所述接口流标签携带为所述 E-RAB的 用户面 TEID分配第一^载标识; 接收所述无线接入网节点针对所述 E-RAB建立请求返回的 E-RAB建立响 应, 提取所述 E-RAB建立响应中所述无线接入网节点为所述 E-RAB的用户面 TE I D分配的第二承载标识, 记录所述第一承载标识与第二承载标识之间的映 射关系。
结合第一方面, 在第一方面的第二种可能的实现方式中, 所述利用用户 面协议栈与所述无线接入网节点进行用户面数据传输, 包括:
接收业务网关 SGW的第一用户面数据, 为所述第一用户面数据封装 IPv6 首部或 IPv4首部, 将封装后的所述第一用户面数据发送给所述无线接入网节 点;
或者, 接收所述无线接入网节点发送的第二用户面数据, 对所述第二用 户面数据的 IPv6首部或 I Pv4首部进行解封装, 并转发解封装后的所述第二 用户面数据至所述 SGW。
结合第一方面的第二种可能的实现方式, 在第一方面的第三种可能的实 现方式中, 所述为第一用户面数据封装 IPv6首部或 IPv4首部, 包括:
当所述用户面协议栈采用流标签携带用户面 TE I D时, 为所述第一用户面 数据封装 I Pv6首部, 所述 IPv6首部的流标签携带所述第二承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 为所述第一用户面数据封装 IPv6 首部, 所述 IPv6 首部的下一跳首部携带 GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 为所述第一用户面数据封装 IPv4首部,所述 IPv4首部的协议类型携带 GTP-U 首部的类型标识。
第二方面, 还提供了一种用户面数据传输方法, 所述方法包括: 建立与核心网节点之间的无线接入承载连接;
利用用户面协议栈与所述核心网节点进行用户面数据传输;
所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6基本首 部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型标识。
结合第二方面, 在第二方面的第一种可能的实现方式中, 当所述用户面 协议栈采用流标签携带用户面 TEID时, 所述建立与无线接入网节点之间的无 线接入承载连接, 包括:
接收所述核心网节点发送的无线接入承载 E-RAB建立请求, 所述 E-RAB 建立请求包括接口流标签 S1 _FL,所述接口流标签携带为所述 E-RAB的用户面 TEID分配第一承载标识;
为所述 E-RAB的用户面 TEID分配第二^载标识,记录所述第一 载标识 与第二承载标识之间的映射关系, 利用所述第二承载标识构建并发送 E-RAB 建立响应给所述核心网节点。
结合第二方面, 在第二方面的第二种可能的实现方式中, 所述利用用户 面协议栈与所述无线接入网节点进行用户面数据传输, 包括:
接收所述核心网节点发送的第一用户面数据, 对所述第一用户面数据的 IPv6首部或 IPv4首部进行解封装,并转发解封装后的所述第一用户面数据至 用户终端 UE;
或者, 接收用户终端 UE的第二用户面数据, 为所述第二用户面数据封装 IPv6首部或 IPv4首部, 所述 IPv6首部的流标签携带所述第二 载标识, 将 封装后的所述第二用户面数据发送给所述核心网节点。
结合第二方面的第二种可能的实现方式, 在第二方面的第三种可能的实 现方式中, 所述为第二用户面数据封装 IPv6首部或 IPv4首部, 包括:
当所述用户面协议栈采用流标签携带用户面 TEID时, 为所述第二用户面 数据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第一承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 为所述第二用户面数据封装 IPv6 首部, 所述 IPv6 首部的下一跳首部携带
GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 为所述第二用户面数据封装 IPv4首部,所述 IPv4首部的协议类型携带 GTP-U 首部的类型标识。
第三方面, 还提供了一种移动管理网元, 所述移动管理网元包括: 第一通信连接模块, 用于建立与无线接入网节点之间的无线接入承载连 接;
第一数据传输模块, 用于利用用户面协议栈与所述无线接入网节点进行 用户面数据传输;
所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6基本首 部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型标识。
结合第三方面, 在第三方面的第一种可能的实现方式中, 第一通信连接 模块包括:
请求发送单元,用于当所述用户面协议栈采用流标签携带用户面 TEID时, 建立并发送无线接入承载 E-RAB建立请求至所述无线接入网节点,所述 E-RAB 建立请求包括接口流标签 S1 _FL,所述接口流标签携带为所述 E-RAB的用户面 TEID分配第一^载标识;
第一接收单元, 用于接收所述无线接入网节点针对所述 E-RAB建立请求 返回的 E-RAB建立响应;
第一处理单元, 用于根据所述 E-RAB建立响应, 提取所述无线接入网节 点为所述 E-RAB的用户面 TEID分配的第二^载标识, 记录所述第一 载标识 与第二承载标识之间的映射关系。 结合第三方面, 在第三方面的第二种可能的实现方式中, 所述第一数据 传输模块包括:
第二接收单元, 用于接收业务网关 SGW的第一用户面数据;
第二处理单元,用于为所述第一用户面数据封装 IPv6首部或 IPv4首部, 将封装后的所述第一用户面数据发送给所述无线接入网节点;
或者, 所述第二接收单元用于接收所述无线接入网节点发送的第二用户 面数据;
所述第二处理单元用于对所述第二用户面数据的 IPv6首部或 IPv4首部 进行解封装, 并转发解封装后的所述第二用户面数据至所述 SGW。
结合第三方面的第二种可能的实现方式, 在第三方面的第三种可能的实 现方式中, 当所述用户面协议栈采用流标签携带用户面 TEID时, 所述第二处 理单元为所述第一用户面数据封装 IPv6首部, 所述 IPv6首部的流标签携带 所述第一^载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 所述第二处理单元为所述第一用户面数据封装 IPv6首部, 所述 IPv6首部的 下一跳首部携带 GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 所述第二处理单元为所述第一用户面数据封装 IPv4首部, 所述 IPv4首部的 协议类型携带 GTP-U首部的类型标识。
第四方面, 提供了一种演进型基站, 所述演进型基站包括:
第二通信连接模块, 用于建立与核心网节点之间的无线接入承载连接; 第二数据传输模块, 用于利用用户面协议栈与所述核心网节点进行用户 面数据传输;
所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6基本首 部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型标识。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述第二通信 连接模块包括:
第三接收单元, 用于接收所述核心网节点发送的无线接入承载 E-RAB建 立请求, 当所述用户面协议栈采用流标签携带用户面 TEID时, 所述 E-RAB建 立请求包括接口流标签 S1 _FL, 所述接口流标签携带为所述 E-RAB 的用户面 TEID分配第一^载标识;
第三处理单元, 用于为所述 E-RAB的用户面 TEID分配第二^载标识, 记 录所述第一承载标识与第二承载标识之间的映射关系, 利用所述第二承载标 识构建并发送 E-RAB建立响应给所述核心网节点。
结合第四方面, 在第四方面的第二种可能的实现方式中, 所述第二数据 传输模块包括:
第四接收单元, 用于接收所述核心网节点发送的第一用户面数据; 第四处理单元, 用于对所述第一用户面数据的 IPv6首部或 IPv4首部进 行解封装, 并转发解封装后的所述第一用户面数据至用户终端 UE;
或者, 所述第四接收单元用于接收用户终端 UE的第二用户面数据; 所述第四处理单元用于为所述第二用户面数据封装 IPv6首部或 IPv4首 部, 将封装后的所述第二用户面数据发送给所述核心网节点。
结合第四方面的第二种可能的实现方式, 在第四方面的第三种可能的实 现方式中, 当所述用户面协议栈采用流标签携带用户面 TEID时, 所述第四处 理单元为所述第二用户面数据封装 IPv6首部, 所述 IPv6首部的流标签携带 所述第二承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 所述第四处理单元为所述第二用户面数据封装 IPv6首部, 所述 IPv6首部的 下一跳首部携带 GTP-U首部的类型标识; 当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 所述第四处理单元为所述第二用户面数据封装 IPv4首部, 所述 IPv4首部的 协议类型携带 GTP-U首部的类型标识。
第五方面, 还提供了一种网络系统, 所述系统包括: 移动管理网元和演 进型基站;
所述移动管理网元与演进型基站在建立无线接入承载连接后, 采用用户 面协议栈进行用户面数据传输;
所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6基本首 部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型标识。
第六方面, 还提供了一种移动管理网元, 所述移动管理网元包括: 无线网络接口;
处理器;
存储器;
物理存储在所述存储器中的应用程序, 所述应用程序包括可用于使所述 处理器和所述网元执行以下过程的指令:
建立与无线接入网节点之间的无线接入承载连接;
利用用户面协议栈与所述无线接入网节点进行用户面数据传输; 所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6基本首 部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型标识。
第七方面, 提供了一种演进型基站, 所述演进型基站包括: 无线网络接口;
处理器;
存储器;
物理存储在所述存储器中的应用程序, 所述应用程序包括可用于使所述 处理器和所述基站执行以下过程的指令:
建立与核心网节点之间的无线接入承载连接;
利用用户面协议栈与所述核心网节点进行用户面数据传输;
所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6基本首 部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型标识。
本发明提供的用户面数据传输方法、 移动管理网元、 演进型基站及系统, 利用 IPv6基本首部的流标签(Flow Label , FL )字段标识隧道标识 TEID信 息, 省去无线用户数据报文中的 UDP首部和 GTP-U首部, 或者在 IPv6基本首 部的下一跳首部增加新的类型标识 GTP-U首部, 减少了 UDP层和 /或 GTP-U隧 道协议的处理, 从而减少网络传输开销, 提升用户有效负载比例, 节省用户 面数据业务接口带宽, 提升无线接入的业务面传输效率, 降低用户数据处理 设备的复杂度, 提升处理效率。 附图说明
图 1为现有的用户面协议栈格式的示意图;
图 2为本发明实施例一提供的一种用户面数据传输方法流程图; 图 3a为本发明实施例一提供的一种用户面协议栈格式的示意图; 图 3b为本发明实施例一提供的在匪 E与 eNB之间进行 E-RAB建立时采用 的一种信令数据格式; 图 4为本发明实施例一提供的又一种用户面数据传输方法流程图; 图 5为本发明实施例一提供的 MME与 eNB之间的 E-RAB建立过程的信令 图;
图 6为本发明实施例一提供的 MME与 eNB之间进行用户面数据传输的信 令图;
图 7a为本发明实施例二提供的一种用户面协议栈格式的示意图; 图 7b为本发明实施例二提供的在匪 E与 eNB之间进行 E-RAB建立时采用 的一种信令数据格式;
图 8为本发明实施例二提供的 MME与 eNB之间进行用户面数据传输的信 令图;
图 9为本发明实施例三提供的无线接入网络系统的示意图;
图 10为本发明实施例四提供的无线接入网络系统的示意图;
图 11为本发明实施例四提供的移动管理网元的示意图;
图 12为本发明实施例四提供的演进型基站的示意图。 具体实施方式
下面通过附图和实施例, 对本发明的技术方案做进一步的详细描述。 系统架构演进 ( System Architecture Evolution, SAE ) /长期演进 ( Long Term Evolution, LTE )中的核心网节点为移动管理网关( Mobi 1 i ty Management Entity, 匪 E ) , RAN节点为演进型基站 ( evolved Node B, eNB) 。 通用移动 通信系统 ( Universal Mobi le Telecommunications System, UMTS ) 附各中 的核心网节点为服务通用分组无线服务(General Packet Radio Service, GPRS)支持节点(Serving GPRS Support Node, SGSN )或移动交换中心( Mobi le Switching Center, MSC ) , RAN 节点为无线网络控制器 ( Radio Network Controller, RNC )或无线基站 NodeB。
本发明适用于无线通信网络系统, 尤其适用于采用 GTP-U隧道协议进行 数据传输的通信网络系统, 用于 GPRS隧道协议 GTP的用户面数据传输。 本发 明的移动管理网元可以是移动管理网关 MME、服务 GPRS支持节点 SGSN或移动 交换中心 MSC等。 无线接入网节点可以演进型基站 eNB、 无线网络控制器 RNC 等。
下面的实施例中移动管理网元和无线接入网节点分别以 SAE/ LTE中的移 动管理网关 MME和演进型基站 eNB为例, 但不限于 SAE/LTE系统。 用户设备 UE通过 eNB接入到核心网, eNB通过 S1 口与核心网中的匪 E相连, 匪 E与业 务网关 SGW相连。
实施例一
图 2是本实施例提供的一种用户面数据传输方法流程图, 如图 2所示, 所述方法包括:
步骤 S 101、 匪 E建立与 eNB之间的无线接入承载连接。
在 SAE/LTE 架构中, SGW 与演进型通用地面无线接入网 ( Evolved- Universal Terrestrial Radio Access Network, E-UTRAN )之间、 SGSN 与 SGW之间等网元节点和接口使用的用户面协议都使用 GPRS 隧道协议(GPRS Tunnelling Protocol, GTP) 。 在进行无线数据传输之前, 在 MME与 eNB之 间需要建立无线接入 7 载 (E-UTRAN Radio Access Bearer, E-RAB )连接。 具体的建立过程将在后续篇幅中结合图 5进行详细说明。
步骤 S102、 匪 E利用用户面协议栈与 eNB进行用户面数据传输。
图 3是本实施例提供的用户面协议栈格式的示意图, 如图 3a所示, E 的用户面协议栈包括: 物理层(L1层) 、 数据链路层(L2层) 、 网络层(IP 层)和传输的用户数据 (User Data) 。
所述网络层采用 IPv6协议, 其中包括 IPv6首部信息, 所述 IPv6首部的 流标签携带有用户面隧道端点标识 TEID。
IPv6首部的流标签(Flow Label, FL)字段有 20位, 用于标识属于同一 业务流的包。 利用流标签和源、 目的 IP地址, 可以唯一标识一个业务流。 路 由器设备在转发过程中不会修改报文中的该字段, 可以用来端到端地传递类 似 TEID的信息。
本发明利用 IPv6首部的流标签标识用户面 TEID,减少 GTP-U头部和 UDP 头部, 在用户面数据传输时, 可以减少网络传输开销, 提升用户有效负载比 例, 降低用户数据处理设备的复杂度。 具体的数据传输过程将结合图 6 进行 详细说明。
图 4是本发明实施例提供的另一种用户面数据传输方法流程图, 如图 4 所示, 所述方法包括:
步骤 S201、 eNB建立与匪 E之间的无线接入承载连接。
具体的建立过程将在后续篇幅中结合图 5进行详细说明。
步骤 S202、 eNB利用用户面协议栈与 MME进行用户面数据传输。
与 MME的用户面协议栈相同, 如图 3a所示, eNB的用户面协议栈包括: 物理层( L1层) 、 数据链路层( L2层)和网络层( IP层); 所述网络层包括 IPv6首部信息, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID。
图 5是本实施提供的 E与 eNB之间的 E-RAB建立过程的信令图,如图 5 所示, 该建立过程包括:
步骤 S301、 MME建立并发送无线接入 载 E-RAB建立请求至 eNB。
匪 E与 eNB之间通过接口 S1连接, 所述 E-RAB建立请求包括接口流标签 S1.FL, 其中, 接口流标签中携带 E为所述 E-RAB的用户面 TEID分配第一 承载标识。 MME为每一个 E-RAB分配一个唯一的第一承载标识, 将该分配的第 一承载标识作为 S1应用协议( S1AP ) 中接口流标签 S1 _FL的值。 匪 E记录为 所述 TEID分配的第一 7 载标识与 TEID的对应关系, 并建立该 E-RAB在 MME 中的上行隧道表。 例如, MME为该 E-RAB分配的第一^载标识为 1355 , 则在 E中建立第一承载标识 1355的上行隧道表。 该利用第一承载标识、 演进分 组系统承载服务质量 ( Evolved Packet Sys tem Bearer Qos , EPS Bearer Qos ) 、 传输接口 IP地址等信息构建 E-RAB建立请求并发送给 eNB。 图 3b为在匪 E与 eNB之间进行 E-RAB建立时采用的一种信令数据格式, E-RAB建立请求和 E-RAB建立响应都采用该信令数据格式。 如图 3b所示, 包 括 L1层、 L2层、 IPv6层、 流控制传输协议层 ( Stream Contro l Transmi s s ion Protocol , SCTP )和 SI 应用协议(SI App l icat ion Protocol , S1AP ) , 其 中 S1AP中包括 SI流标签(Sl—FL )、 用户封装类型( Mes sage Type )、 在 MME 内 SI接口上的 UE标识(匪 E UE SIAP ID )和在 eNB内 SI接口上的 UE标识 ( eNB UE SIAP ID )等。 其中, Sl— FL用以传递 MME为该 E_RAB分配的第一承 载标识或 eNB为该 E-RAB分配的第二^载标识,用户封装类型可以包括 E-RAB 建立请求 ( E-RAB setup reques t )、 E-RAB建立响应 ( E-RAB setup response )、 E_RAB删除请求 ( E-RAB delete reques t )和 E-RAB删除响应 ( E-RAB delete response )等。 采用 Sl—FL替代现有 SIAP中的 GTP- TEID, 通常 Sl—FL为 24 位, 而 GTP-TEID为 32位, 可以节省网络传输开销。
步骤 S302、 eNB接收匪 E发送的 E-RAB建立请求。
从 E-RAB建立请求中提取接口流标签 S1 _FL等信息, 获得 MME 为所述 E-RAB的用户面 TEID分配第一^载标识,利用所述第一 载标识建立该 E-RAB 在 eNB中的上行隧道表。 如果 MME为该 E-RAB分配的第一 7 载标识为 1355 , 则在 eNB中建立第一承载标识 1355的上行隧道表。
步骤 S303、 eNB为所述 E-RAB的用户面 TEID分配第二 载标识, 构建并 发送 E-RAB建立响应给 MME。
eNB为所述述 E-RAB的用户面 TE I D分配的第二 载标识可以与 MME分配 的第一 载标识相同, 也可以不同。 例如, MME为该 E-RAB分配的第一^载标 识为 1355 , eNB为 E-RAB分配的第二承载标识可以为 1455。 该需要说明的是, 第一承载标识和第二承载标识相互独立, 即使是采用数值相同的第一承载标 识和第二承载标识, 也是分别在 MME和 eNB的具体操作中。
eNB 记录所述第一承载标识与第二承载标识之间的映射关系, 建立该
E-RAB在 eNB中的下行隧道表,如果 eNB为 E-RAB分配的第二 7 载标识为 1455 , 则在 eNB中建立第二承载标识 1455的下行隧道表。利用分配的第二承载标识、 无线承载的 Qos等信息构建 E-RAB建立响应并发送给 MME。
步骤 S 304、 MME接收 eNB返回的 E-RAB建立响应。
才艮据所述 E-RAB建立响应, 提取所述无线接入网节点为所述 E-RAB的用 户面 TEID分配的第二承载标识, 记录所述第一承载标识与第二承载标识之间 的映射关系, 建立该 E-RAB在 E中的下行隧道表。 如果 eNB为 E-RAB分配 的第二承载标识为 1455 , 则在匪 E中建立第二承载标识 1455的下行隧道表。
这样, 即完成了在 eNB与 MME之间所述 E-RAB的建立过程。
图 6是本实施例提供的 MME与 eNB之间进行用户面数据传输的信令图, 如图 6所示, 所述用户面数据传输过程包括: UE数据上传过程和 UE数据下载 过程。
其中, UE数据上传过程包括:
步骤 S 401、 eNB接收 UE上传的数据 A。
数据 A采用如图 3a所示的用户面协议栈的格式进行传输。
步骤 S402、 eNB为数据 A封装 IPv6首部。
eNB查找在 eNB中第一 载标识 1 355的上行隧道表, 利用第一^载标识 的上行隧道表的信息为数据 A封装 IPv6首部, 在 IPv6首部的流标签携带所 述第一承载标识 1 355。
步骤 S403、 eNB将封装后的数据 A发送给 MME。
eNB发送第一承载标识 1 355封装的数据 A给 MME。
步骤 S404、 E接收 eNB发送的数据 A, 对数据 A的 IPv6首部进行解封 装。
E查找在 E中第一承载标识 1 355的上行隧道表, 进行解封装处理, 得到 UE发送的数据 A。
步骤 S405、 E转发解封装后的数据 A至业务网关 SGW。
SGW则可以收到 UE发送的数据 A。 UE数据下载过程包括:
步骤 S501、 MME接收业务网关 SGW发送的数据 B。
数据 B也同样采用如图 3a所示的用户面协议栈的格式进行传输。
步骤 S502、 MME为数据 B封装 IPv6首部。
E查找在 E中第二承载标识 1455的下行隧道表, 利用第二承载标识
1455的下行隧道表的信息为数据 B封装 IPv6首部, 在 IPv6首部的流标签携 带所述第二承载标识 1455。
步骤 S503、 MME将封装后的数据 B发送给 eNB。
MME发送第二承载标识 1455封装的数据 B给 eNB。
步骤 S504、 eNB接收 MME发送的数据 B, 对数据 B的 IPv6首部进行解封 装。
eNB查找在 eNB中第二 载标识 1455的下行隧道表, 进行解封装处理, 得到 SGW发送的数据 B。
步骤 S505、 eNB转发解封装后的数据 B至 UE。
UE则可以收到 SGW发送的数据 B。
本发明实施例提供的用户面数据传输方法, 利用 IPv6基本首部的 Flow Label字段标识隧道标识 TEID信息, 省去无线用户数据报文中的 UDP首部和 GTP-U首部,减少了 UDP层和 GTP-U隧道协议的处理,从而减少网络传输开销, 提升用户有效负载比例, 节省用户面数据业务接口带宽, 提升无线接入的业 务面传输效率, 降低用户数据处理设备的复杂度, 提升处理效率。
实施例二
图 7a是本实施例提供的用户面协议栈格式的示意图, 如图 7a所示, MME 的用户面协议栈包括: 物理层(L1层) 、 数据链路层(L2层) 、 网络层(IP 层) 、 GPRS隧道用户面协议层(GTP-U )和传输的用户数据 ( User Data ) 。
当采用 IPv6协议进行数据传输时, 网络层包括 IPv6首部, 所述 IPv6首 部的下一跳首部携带所述 GTP-U首部的类型标识。 当采用 IPv4协议进行数据传输时, 网络层包括 IPv4首部, 所述 IPv4首 部的协议类型携带所述 GTP-U首部的类型标识。
GTP-U 首部的类型标识是预设给定的数值, 在本发明实施例中, 取值为 101 , 用来表示 GTP-U首部的类型标识, 即所述 IPv6首部的下一跳首部或者 IPv4首部的协议类型的值为 101。
与实施例一相似,本实施例的用户面数据传输方法包括: 建立 MME与 eNB 之间的无线接入承载 E-RAB连接; 以及利用用户面协议栈与所述无线接入网 节点进行用户面数据传输的步骤。
本实施提供的 MME 与 eNB 之间的 E-RAB 建立过程与实施例一中步骤 S301 ~ S304相似, 区别仅在于, 采用的信令数据格式不同。
在本实施例中, 由于用户面协议栈包括 GTP-U信息, 因而在建立 E-RAB 连接时, 采用的信令数据格式与现有的方式相同, 如图 7b所示, 包括 L1层、 L2层、 IPv6层、 流控制传输协议层(SCTP )和 S1应用协议(S1AP ) , 其中 S1AP中包括 GTP- TEID、 Mes sage Type , MME UE SIAP ID和 eNB UE S IAP ID 等。 其中, GTP-TEID为用户面隧道端点标识 TEID, 采用该用户面 TEID建立 E-RAB0
图 8是本实施例提供的匪 E与 eNB之间进行用户面数据传输的信令图, 如图 8所示, 所述用户面数据传输过程包括: UE数据上传过程和 UE数据下载 过程。
其中, UE数据上传过程包括:
步骤 S 601、 eNB接收 UE上传的数据 A。
数据 A采用如图 7a所示的用户面协议栈的格式进行传输。
步骤 S602、 eNB为数据 A封装 IPv6首部或 IPv4首部。
eNB查找在 eNB中第一 载标识 1355的上行隧道表。
当用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 利 用第一承载标识的上行隧道表的信息为数据 A封装 IPv6首部, 在 IPv6首部 的下一跳首部的值为 101 , GTP-U携带所述第一 载标识 1 355。
当用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 利用 第一承载标识的上行隧道表的信息为数据 A封装 IPv4首部, 在 IPv4首部的 协议类型的值为 1 01 , GTP-U携带所述第一承载标识 1 355。
步骤 S603、 eNB将封装后的数据 A发送给 MME。
eNB发送第一承载标识 1 355封装的数据 A给 MME。
步骤 S604、 匪 E接收 eNB发送的数据 A, 对数据 A的 IPv6首部或 IPv4 首部进行解封装。
E查找在 E中第一承载标识 1 355的上行隧道表, 进行解封装处理, 得到 UE发送的数据 A。
步骤 S605、 E转发解封装后的数据 A至业务网关 SGW。
UE数据下载过程包括:
步骤 S701、 MME接收业务网关 SGW发送的数据 B。
数据 B也同样采用如图 7a所示的用户面协议栈的格式进行传输。
步骤 S702、 MME为数据 B封装 IPv6首部或 IPv4首部。
匪 E查找在匪 E中第二承载标识 1455的下行隧道表。
当用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 利 用第二 载标识 1455的下行隧道表的信息为数据 B封装 IPv6首部, 在 IPv6 首部的下一跳首部的值为 101 , GTP-U携带所述第二 载标识 1455。
当用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 利用 第二承载标识 1455的下行隧道表的信息为数据 B封装 IPv4首部, 在 IPv4首 部的协议类型的值为 101 , GTP-U携带所述第二承载标识 1455。
步骤 S703、 MME将封装后的数据 B发送给 eNB。
MME发送第二承载标识 1455封装的数据 B给 eNB。
步骤 S704、 eNB接收 MME发送的数据 B, 对数据 B的 IPv6首部或 IPv4 首部进行解封装。 eNB查找在 eNB中第二 载标识 1455的下行隧道表, 进行解封装处理, 得到 SGW发送的数据 B。
步骤 S705、 eNB转发解封装后的数据 B至 UE。
本发明实施例提供的用户面数据传输方法,利用 IPv6基本首部的下一跳 首部或 IPv4首部的协议类型标识 GTP-U的类型, 省去无线用户数据报文中的 UDP首部, 减少了 UDP层的处理, 从而减少网络传输开销, 提升用户有效负载 比例。
以上是对本发明所提供的用户面数据传输方法进行的详细描述, 下面对 本发明提供的移动管理网元、 演进型基站及系统进行详细描述。
实施例三
图 9是本实施例提供的无线接入网络系统的示意图, 如图 9所示, 该系 统包括: 移动管理网元 10和演进型基站 20 , 用于建立用户设备 UE 30和业务 网关 SGW 40之间的无线通信连接。
移动管理网元 10与演进型基站 20在建立无线接入承载连接后, 采用如 图 3a或图 7a所示的用户面协议栈进行用户面数据传输。
移动管理网元 10包括第一通信连接模块 101和第一数据传输模块 102。 第一通信连接模块 1 01用于建立与演进型基站 20之间的无线接入承载连 接。 第一数据传输模块 102用于利用用户面协议栈与演进型基站 20进行用户 面数据传输。
演进型基站 20包括第一通信连接模块 201和第一数据传输模块 202。 第二通信连接模块 201用于建立与移动管理网元 10之间的无线接入承载 连接。 第二数据传输模块 202用于利用用户面协议栈与移动管理网元 10进行 用户面数据传输。
第一通信连接模块 101包括请求发送单元 1011、第一接收单元 1012和第 一处理单元 1023。第二通信连接模块 201包括第三接收单元 2011和第三处理 单元 2012。 请求发送单元 1011用于建立并发送无线接入承载 E-RAB建立请求至演进 型基站 20的第三接收单元 201 1。
如果采用图 3a所示的用户面协议栈时,所述 E-RAB建立请求包括接口流 标签 S1 _FL , 所述接口流标签携带第一处理单元 1023为所述 E-RAB的用户面 TEID分配第一^载标识。 如果采用图 7a所示的用户面协议栈时, 所述 E-RAB 建立请求包括 GTP-TEID, 用以标识该 E-RAB的用户面隧道端点标识 TE I D。
第三接收单元 2011用于接收请求发送单元 1011发送的 E-RAB建立请求。 第三处理单元 2012用于为所述 E-RAB的用户面 TEID分配第二^载标识, 记录所述第一承载标识与第二承载标识之间的映射关系, 利用所述第二承载 标识构建并发送 E-RAB建立响应给第一接收单元 1012。
第一接收单元 1012用于接收第三处理单元 2012针对所述 E-RAB建立请 求返回的 E-RAB建立响应。
第一处理单元 101 3用于根据所述 E-RAB建立响应, 提取第三处理单元 2012为所述 E-RAB的用户面 TEID分配的第二^载标识,记录所述第一 载标 识与第二 7 载标识之间的映射关系。
第一数据传输模块 102包括第二接收单元 1021和第二处理单元 1022。第 二数据传输模块 202包括第四接收单元 2021和第四处理单元 2022。
如果用户面数据从业务网关 40至用户设备 30进行传输, 第二接收单元 1021用于接收业务网关 SGW的第一用户面数据。第二处理单元 1022用于为所 述第一用户面数据封装 IPv6首部或 IPv4首部, 将封装后的所述第一用户面 数据发送给演进型基站 20的第二接收单元 1021。
当用户面协议栈采用流标签携带用户面 TEID时, 第二处理单元 1022为 所述第一用户面数据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第一 承载标识。 当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型 标识时,第二处理单元 1022为所述第一用户面数据封装 IPv6首部,所述 IPv6 首部的下一跳首部携带 GTP-U首部的类型标识。 当所述用户面协议栈采用协 议类型携带所述 GTP-U首部的类型标识时, 第二处理单元 1022为所述第一用 户面数据封装 IPv4首部, 所述 IPv4首部的协议类型携带 GTP-U首部的类型 标识。
第四接收单元 2021用于接收第二处理单元 1021发送的第一用户面数据。 第四处理单元 2022用于对所述第一用户面数据的 IPv6首部或 IPv4首部进行 解封装, 并转发解封装后的所述第一用户面数据至用户终端 UE。
如果用户面数据从用户设备 30至业务网关 40进行传输, 第四接收单元 2022用于接收用户终端 UE的第二用户面数据。 第四处理单元 2022用于为所 述第二用户面数据封装 IPv6首部或 IPv4首部, 将封装后的所述第二用户面 数据发送给第二接收单元 1021。
当所述用户面协议栈采用流标签携带用户面 TEID时,第四处理单元 2022 为所述第二用户面数据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第 二^^载标识。 当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类 型标识时, 第四处理单元 2022为所述第二用户面数据封装 IPv6首部, 所述 IPv6首部的下一跳首部携带 GTP-U首部的类型标识。 当所述用户面协议栈采 用协议类型携带所述 GTP-U首部的类型标识时, 第四处理单元 2022为所述第 二用户面数据封装 IPv4首部, 所述 IPv4首部的协议类型携带 GTP-U首部的 类型标识。
第二接收单元 1021用于接收第四处理单元 2022发送的第二用户面数据。 第二处理单元 1023用于对所述第二用户面数据的 IPv6首部或 IPv4首部进行 解封装, 并转发解封装后的第二用户面数据至业务网关 40。
实施例四
图 10是本实施例提供的无线接入网络系统的示意图, 如图 10所示, 所 述系统包括: 移动管理网元 50和演进型基站 60 , 用于建立用户设备 UE 30和 业务网关 SGW 40之间的无线通信连接。
图 11为本实施例提供的移动管理网元的示意图, 如图 11所示, 所述移 动管理网元包括无线网络接口 51、 处理器 52和存储器 53。 系统总线 54用于 连接无线网络接口 51、 处理器 52和存储器 53。
无线网络接口 51用于与演进型基站 60、 业务网关 40通信。
存储器 53可以是永久存储器, 例如硬盘驱动器和闪存, 存储器 53中具 有软件模块和设备驱动程序。 软件模块能够执行本发明上述方法的各种功能 模块; 设备驱动程序可以是网络和接口驱动程序。
在启动时, 这些软件组件被加载到存储器 53中, 然后被处理器 52访问 并执行如下指令:
建立与无线接入网节点之间的无线接入承载连接;
利用用户面协议栈与所述无线接入网节点进行用户面数据传输; 所述用户面协议栈包括: 物理层( L1层) 、 数据链路层( L2层)和网络 层(IP层) , 所述网络层包括 IPv6首部, 所述 IPv6首部的流标签携带有用 户面隧道端点标识 TEID;
或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层(GTP-U ) ,所述网络层包括 IPv6首部或 IPv4首部,所述 IPv6 基本首部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型 标识。
本实施例的移动管理网元利用 IPv6基本首部中的流标签域或者下一跳首 部标识用户 ID, 减少用户数据传输的 GTP-U首部和 /或 UDP头部, 减少了网络 传输开销, 提升用户有效负载比例, 降低用户数据处理设备的复杂度。
进一步的, 当所述用户面协议栈采用流标签携带用户面 TEID时, 所述处 理器访问存储器 53的软件组件后, 执行以下过程的指令:
建立并发送无线接入 载 E-RAB建立请求至所述无线接入网节点, 所述 E-RAB建立请求包括接口流标签 S1 _FL, 所述接口流标签携带为所述 E-RAB的 用户面 TEID分配第一^载标识;
接收所述无线接入网节点针对所述 E-RAB建立请求返回的 E-RAB建立响 应, 提取所述 E-RAB建立响应中所述无线接入网节点为所述 E-RAB的用户面 TEID分配的第二承载标识, 记录所述第一承载标识与第二承载标识之间的映 射关系。
上述指令过程就是应用在移动管理网元与演进型基站建立 E-RAB连接的 过程, 在信令数据中通过接口流标签 S1 _FL标识 E-RAB的用户面 TEID, 从而 利用该用户面 TEID在移动管理网元中建立上行 /下行隧道表。
进一步的, 所述处理器访问存储器 53的软件组件后, 执行以下过程的指 令:
接收业务网关 SGW的第一用户面数据, 为所述第一用户面数据封装 IPv6 首部或 IPv4首部, 将封装后的所述第一用户面数据发送给所述无线接入网节 点;
或者, 接收所述无线接入网节点发送的第二用户面数据, 对所述第二用 户面数据的 IPv6首部或 IPv4首部进行解封装, 并转发解封装后的所述第二 用户面数据至所述 SGW。
上述指令过程就是在移动管理网元与演进型基站进行报文转发的过程, 通过利用图 3a或图 7a所示的用户面协议栈进行数据传输或转发。
进一步的, 所述处理器访问存储器 53的软件组件后, 执行以下过程的指 令:
当所述用户面协议栈采用流标签携带用户面 TEID时, 为所述第一用户面 数据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第二承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 为所述第一用户面数据封装 IPv6 首部, 所述 IPv6 首部的下一跳首部携带 GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 为所述第一用户面数据封装 IPv4首部,所述 IPv4首部的协议类型携带 GTP-U 首部的类型标识。 上述指令过程就是针对不同的用户面协议栈格式, 相应地进行不同的封 装处理过程。
图 12为本实施例提供的演进型基站的示意图, 如图 12所示, 所述演进 型基站包括: 无线网络接口 61、 处理器 62和存储器 63。 系统总线 64用于连 接无线网络接口 61、 处理器 62和存储器 63。
无线网络接口 61用于与移动管理网元 50、 用户设备 30通信。
存储器 63可以是永久存储器, 例如硬盘驱动器和闪存, 存储器 63中具 有软件模块和设备驱动程序。 软件模块能够执行本发明上述方法的各种功能 模块; 设备驱动程序可以是网络和接口驱动程序。
在启动时, 这些软件组件被加载到存储器 63中, 然后被处理器 62访问 并执行如下指令:
建立与核心网节点之间的无线接入承载连接;
利用用户面协议栈与所述核心网节点进行用户面数据传输;
所述用户面协议栈包括: 物理层( L1层) 、 数据链路层( L2层)和网络 层( IP层) , 所述网络层包括 IPv6首部, 所述 IPv6首部的流标签携带有用 户面隧道端点标识 TEID;
或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层(GTP-U ) ,所述网络层包括 IPv6首部或 IPv4首部,所述 IPv6 基本首部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型 标识。
本实施例的演进型基站利用 IPv6基本首部中的流标签域或者下一跳首部 标识用户 ID, 减少用户数据传输的 GTP-U首部和 /或 UDP头部, 减少了网络传 输开销, 提升用户有效负载比例, 降低用户数据处理设备的复杂度。
进一步的, 当所述用户面协议栈采用流标签携带用户面 TEID时, 所述处 理器访问存储器 63的软件组件后, 执行以下过程的指令:
接收所述核心网节点发送的无线接入承载 E-RAB建立请求, 所述 E-RAB 建立请求包括接口流标签 S1 _FL,所述接口流标签携带为所述 E-RAB的用户面 TEID分配第一^载标识;
为所述 E-RAB的用户面 TEID分配第二^载标识,记录所述第一 载标识 与第二承载标识之间的映射关系, 利用所述第二承载标识构建并发送 E-RAB 建立响应给所述核心网节点。
上述指令过程就是应用在移动管理网元与演进型基站建立 E-RAB连接的 过程, 在信令数据中通过接口流标签 S1 _FL标识 E-RAB的用户面 TEID, 从而 利用该用户面 TEID在演进型基站中建立上行 /下行隧道表。
进一步的, 所述处理器访问存储器 63的软件组件后, 执行以下过程的指 令:
接收所述核心网节点发送的第一用户面数据, 对所述第一用户面数据的
IPv6首部或 IPv4首部进行解封装,并转发解封装后的所述第一用户面数据至 用户终端 UE;
或者, 接收用户终端 UE的第二用户面数据, 为所述第二用户面数据封装 IPv6首部或 IPv4首部, 所述 IPv6首部的流标签携带所述第二 载标识, 将 封装后的所述第二用户面数据发送给所述核心网节点。
上述指令过程就是在移动管理网元与演进型基站进行报文转发的过程, 通过利用图 3a或图 7a所示的用户面协议栈进行数据传输或转发。
进一步的, 所述处理器访问存储器 53的软件组件后, 执行以下过程的指 令:
当所述用户面协议栈采用流标签携带用户面 TEID时, 为所述第二用户面 数据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第一承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 为所述第二用户面数据封装 IPv6 首部, 所述 IPv6 首部的下一跳首部携带 GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 为所述第二用户面数据封装 IPv4首部,所述 IPv4首部的协议类型携带 GTP-U 首部的类型标识。
上述指令过程就是针对不同的用户面协议栈格式, 相应地进行不同的封 装处理过程。
本发明提供的用户面数据传输方法、 移动管理网元、 演进型基站及系统, 通过利用 IPv6基本首部中的流标签域或者下一跳首部标识用户 ID,减少用户 数据传输的 GTP-U首部和 /或 UDP头部, 减少了网络传输开销, 提升用户有效 负载比例, 降低用户数据处理设备的复杂度。
实验证明, 本发明利用 IPv6 基本首部中的流标识 Flow Label域标识用 户 ID, 能够提升无线接入的业务面传输效率 (数据面占据无线接入总带宽的 90 %以上) , 节省用户面数据业务接口带宽, 在 LTE 场景下, 典型业务平均 提升 0. 53 %以上, 在 UMTS场景下, 典型业务平均传输效率提升 8 %以上。
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到 本发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用 软件实现时, 可以将上述功能存储在计算机可读介质中或作为计算机可读 介质上的一个或多个指令或代码进行传输。 计算机可读介质包括计算机存 储介质和通信介质, 其中通信介质包括便于从一个地方向另一个地方传送 计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。 以此为例但不限于: 计算机可读介质可以包括 RAM, ROM, EEPROM、 CD-ROM或其他光盘存储、 磁盘存储介质或者其他磁存储设备、 或者能够 用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算 机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。 例如, 如果软件是使用同轴电缆、 光纤光缆、 双绞线、 数字用户线(DSL ) 或者诸如红外线、 无线电和微波之类的无线技术从网站、 服务器或者其他 远程源传输的, 那么同轴电缆、 光纤光缆、 双绞线、 DSL或者诸如红外线、 无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的, 盘 (Disk ) 和碟(disc ) 包括压缩光碟(CD ) 、 激光碟、 光碟、 数字通用 光碟(DVD ) 、 软盘和蓝光光碟, 其中盘通常磁性的复制数据, 而碟则用 激光来光学的复制数据。 上面的组合也应当包括在计算机可读介质的保护 范围之内。
总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限 定本发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种用户面数据传输方法, 其特征在于, 所述方法包括:
建立与无线接入网节点之间的无线接入承载连接;
利用用户面协议栈与所述无线接入网节点进行用户面数据传输; 所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层 GTP-U, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6 基本首部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型 标识。
2、 根据权利要求 1所述的用户面数据传输方法, 其特征在于, 当所述用 户面协议栈采用流标签携带用户面 TEID时, 所述建立与无线接入网节点之间 的无线接入承载连接, 包括:
建立并发送无线接入承载 E-RAB建立请求至所述无线接入网节点, 所述
E-RAB建立请求包括接口流标签 S1 _FL, 所述接口流标签携带为所述 E-RAB的 用户面 TEID分配第一^载标识;
接收所述无线接入网节点针对所述 E-RAB建立请求返回的 E-RAB建立响 应, 提取所述 E-RAB建立响应中所述无线接入网节点为所述 E-RAB的用户面 TEID分配的第二承载标识, 记录所述第一承载标识与第二承载标识之间的映 射关系。
3、 根据权利要求 1所述的用户面数据传输方法, 其特征在于, 所述利用 用户面协议栈与所述无线接入网节点进行用户面数据传输, 包括:
接收业务网关 SGW的第一用户面数据, 为所述第一用户面数据封装 IPv6 首部或 IPv4首部, 将封装后的所述第一用户面数据发送给所述无线接入网节 点;
或者, 接收所述无线接入网节点发送的第二用户面数据, 对所述第二用 户面数据的 IPv6首部或 IPv4首部进行解封装, 并转发解封装后的所述第二 用户面数据至所述 SGW。
4、 根据权利要求 3所述的用户面数据传输方法, 其特征在于, 所述为第 一用户面数据封装 IPv6首部或 IPv4首部, 包括:
当所述用户面协议栈采用流标签携带用户面 TEI D时, 为所述第一用户面 数据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第二承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 为所述第一用户面数据封装 IPv6 首部, 所述 IPv6 首部的下一跳首部携带 GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 为所述第一用户面数据封装 IPv4首部,所述 IPv4首部的协议类型携带 GTP-U 首部的类型标识。
5、 一种用户面数据传输方法, 其特征在于, 所述方法包括:
建立与核心网节点之间的无线接入承载连接;
利用用户面协议栈与所述核心网节点进行用户面数据传输;
所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6基本首 部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型标识。
6、 根据权利要求 5所述的用户面数据传输方法, 其特征在于, 当所述用 户面协议栈采用流标签携带用户面 TEID时, 所述建立与无线接入网节点之间 的无线接入承载连接, 包括:
接收所述核心网节点发送的无线接入承载 E-RAB建立请求, 所述 E-RAB 建立请求包括接口流标签 S 1 _FL ,所述接口流标签携带为所述 E-RAB的用户面 TEID分配第一^载标识; 为所述 E-RAB的用户面 TE ID分配第二^载标识, 记录所述第一 载标识 与第二承载标识之间的映射关系, 利用所述第二承载标识构建并发送 E-RAB 建立响应给所述核心网节点。
7、 根据权利要求 5所述的用户面数据传输方法, 其特征在于, 所述利用 用户面协议栈与所述无线接入网节点进行用户面数据传输, 包括:
接收所述核心网节点发送的第一用户面数据, 对所述第一用户面数据的 IPv6首部或 IPv4首部进行解封装,并转发解封装后的所述第一用户面数据至 用户终端 UE;
或者, 接收用户终端 UE的第二用户面数据, 为所述第二用户面数据封装 IPv6首部或 IPv4首部, 所述 IPv6首部的流标签携带所述第二 载标识, 将 封装后的所述第二用户面数据发送给所述核心网节点。
8、 根据权利要求 7所述的用户面数据传输方法, 其特征在于, 所述为第 二用户面数据封装 IPv6首部或 IPv4首部, 包括:
当所述用户面协议栈采用流标签携带用户面 TEI D时, 为所述第二用户面 数据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第一承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 为所述第二用户面数据封装 IPv6 首部, 所述 IPv6 首部的下一跳首部携带 GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 为所述第二用户面数据封装 IPv4首部,所述 IPv4首部的协议类型携带 GTP-U 首部的类型标识。
9、 一种移动管理网元, 其特征在于, 所述移动管理网元包括:
第一通信连接模块, 用于建立与无线接入网节点之间的无线接入承载连 接;
第一数据传输模块, 用于利用用户面协议栈与所述无线接入网节点进行 用户面数据传输; 所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6基本首 部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型标识。
10、 根据权利要求 9 所述的移动管理网元, 其特征在于, 当所述用户面 协议栈采用流标签携带用户面 TEID时, 第一通信连接模块包括:
请求发送单元,用于当所述用户面协议栈采用流标签携带用户面 TE ID时, 建立并发送无线接入承载 E-RAB建立请求至所述无线接入网节点,所述 E-RAB 建立请求包括接口流标签 S 1 _FL ,所述接口流标签携带为所述 E-RAB的用户面 TEID分配第一^载标识;
第一接收单元, 用于接收所述无线接入网节点针对所述 E-RAB建立请求 返回的 E-RAB建立响应;
第一处理单元, 用于根据所述 E-RAB建立响应, 提取所述无线接入网节 点为所述 E-RAB的用户面 TEID分配的第二^载标识, 记录所述第一 载标识 与第二承载标识之间的映射关系。
11、 根据权利要求 9 所述的移动管理网元, 其特征在于, 所述第一数据 传输模块包括:
第二接收单元, 用于接收业务网关 SGW的第一用户面数据;
第二处理单元, 用于为所述第一用户面数据封装 IPv6首部或 IPv4首部, 将封装后的所述第一用户面数据发送给所述无线接入网节点;
或者, 所述第二接收单元用于接收所述无线接入网节点发送的第二用户 面数据;
所述第二处理单元用于对所述第二用户面数据的 IPv6首部或 IPv4首部 进行解封装, 并转发解封装后的所述第二用户面数据至所述 SGW。
12、 根据权利要求 1 1所述的移动管理网元, 其特征在于, 当所述用户面 协议栈采用流标签携带用户面 TEID时, 所述第二处理单元为所述第一用户面 数据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第一承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 所述第二处理单元为所述第一用户面数据封装 IPv6首部, 所述 IPv6首部的 下一跳首部携带 GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 所述第二处理单元为所述第一用户面数据封装 IPv4首部, 所述 IPv4首部的 协议类型携带 GTP-U首部的类型标识。
1 3、 一种演进型基站, 其特征在于, 所述演进型基站包括:
第二通信连接模块, 用于建立与核心网节点之间的无线接入承载连接; 第二数据传输模块, 用于利用用户面协议栈与所述核心网节点进行用户 面数据传输;
所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层 GTP-U, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6 基本首部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型 标识。
14、 根据权利要求 1 3所述的演进型基站, 其特征在于, 所述第二通信连 接模块包括:
第三接收单元, 用于接收所述核心网节点发送的无线接入承载 E-RAB建 立请求, 当所述用户面协议栈采用流标签携带用户面 TEID时, 所述 E-RAB建 立请求包括接口流标签 S1 _FL , 所述接口流标签携带为所述 E-RAB 的用户面 TEID分配第一^载标识;
第三处理单元, 用于为所述 E-RAB的用户面 TEID分配第二^载标识, 记 录所述第一承载标识与第二承载标识之间的映射关系, 利用所述第二承载标 识构建并发送 E-RAB建立响应给所述核心网节点。
15、 根据权利要求 13所述的演进型基站, 其特征在于, 所述第二数据传 输模块包括:
第四接收单元, 用于接收所述核心网节点发送的第一用户面数据; 第四处理单元, 用于对所述第一用户面数据的 IPv6首部或 IPv4首部进 行解封装, 并转发解封装后的所述第一用户面数据至用户终端 UE;
或者, 所述第四接收单元用于接收用户终端 UE的第二用户面数据; 所述第四处理单元用于为所述第二用户面数据封装 IPv6首部或 IPv4首 部, 将封装后的所述第二用户面数据发送给所述核心网节点。
16、 根据权利要求 15所述的演进型基站, 其特征在于, 当所述用户面协 议栈采用流标签携带用户面 TEID时, 所述第四处理单元为所述第二用户面数 据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第二承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 所述第四处理单元为所述第二用户面数据封装 IPv6首部, 所述 IPv6首部的 下一跳首部携带 GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 所述第四处理单元为所述第二用户面数据封装 IPv4首部, 所述 IPv4首部的 协议类型携带 GTP-U首部的类型标识。
17、 一种无线接入网络系统, 其特征在于, 所述系统包括:
如权利要求 9-12任一权项所述的移动管理网元, 如权利要求 13-16任一 权项所述的演进型基站, 所述移动管理网元与演进型基站在建立无线接入承 载连接后, 采用用户面协议栈进行用户面数据传输;
所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层 GTP-U, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6 基本首部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型 标识。
18、 一种移动管理网元, 其特征在于, 所述移动管理网元包括: 无线网络接口;
处理器;
存储器;
物理存储在所述存储器中的应用程序, 所述应用程序包括可用于使所述 处理器和所述网元执行以下过程的指令:
建立与无线接入网节点之间的无线接入承载连接;
利用用户面协议栈与所述无线接入网节点进行用户面数据传输; 所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID;
或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层 GTP-U, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6 基本首部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型 标识。
19、 根据权利要求 18所述的移动管理网元, 其特征在于, 所述应用程序 可用于使所述处理器和所述网元执行建立与无线接入网节点之间的无线接入 承载连接过程的指令为:
当所述用户面协议栈采用流标签携带用户面 TEI D时, 建立并发送无线接 入承载 E-RAB建立请求至所述无线接入网节点, 所述 E-RAB建立请求包括接 口流标签 S 1 _ FL , 所述接口流标签携带为所述 E-RAB的用户面 TE I D分配第一 承载标识;
接收所述无线接入网节点针对所述 E-RAB建立请求返回的 E-RAB建立响 应, 提取所述 E-RAB建立响应中所述无线接入网节点为所述 E-RAB的用户面 TEID分配的第二承载标识, 记录所述第一承载标识与第二承载标识之间的映 射关系。
20、 根据权利要求 18所述的移动管理网元, 其特征在于, 所述应用程序 可用于使所述处理器和所述网元执行利用用户面协议栈与所述无线接入网节 点进行用户面数据传输过程的指令:
接收业务网关 SGW的第一用户面数据, 为所述第一用户面数据封装 IPv6 首部或 IPv4首部, 将封装后的所述第一用户面数据发送给所述无线接入网节 点;
或者, 接收所述无线接入网节点发送的第二用户面数据, 对所述第二用 户面数据的 IPv6首部或 IPv4首部进行解封装, 并转发解封装后的所述第二 用户面数据至所述 SGW。
21、 根据权利要求 20所述的移动管理网元, 其特征在于, 所述应用程序 可用于使所述处理器和所述网元执行为第一用户面数据封装 IPv6首部或 IPv4 首部过程的指令:
当所述用户面协议栈采用流标签携带用户面 TEID时, 为所述第一用户面 数据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第二承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 为所述第一用户面数据封装 IPv6 首部, 所述 IPv6 首部的下一跳首部携带 GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 为所述第一用户面数据封装 IPv4首部,所述 IPv4首部的协议类型携带 GTP-U 首部的类型标识。
22、 一种演进型基站, 其特征在于, 所述演进型基站包括:
无线网络接口;
处理器;
存储器;
物理存储在所述存储器中的应用程序, 所述应用程序包括可用于使所述 处理器和所述基站执行以下过程的指令:
建立与核心网节点之间的无线接入承载连接;
利用用户面协议栈与所述核心网节点进行用户面数据传输;
所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层 GTP-U, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6 基本首部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型 标识。
23、 根据权利要求 22所述的演进型基站, 其特征在于, 所述应用程序可 用于使所述处理器和所述基站执行建立与无线接入网节点之间的无线接入承 载连接过程的指令:
接收所述核心网节点发送的无线接入承载 E-RAB建立请求, 当所述用户 面协议栈采用流标签携带用户面 TEID时, 所述 E-RAB建立请求包括接口流标 签 S1 _FL, 所述接口流标签携带为所述 E-RAB的用户面 TEID分配第一^载标 识;
为所述 E-RAB的用户面 TEID分配第二^载标识, 记录所述第一 载标识 与第二承载标识之间的映射关系, 利用所述第二承载标识构建并发送 E-RAB 建立响应给所述核心网节点。
24、 根据权利要求 22所述的演进型基站, 其特征在于, 所述应用程序可 用于使所述处理器和所述基站执行利用用户面协议栈与所述无线接入网节点 进行用户面数据传输过程的指令:
接收所述核心网节点发送的第一用户面数据, 对所述第一用户面数据的 IPv6首部或 IPv4首部进行解封装,并转发解封装后的所述第一用户面数据至 用户终端 UE;
或者, 接收用户终端 UE的第二用户面数据, 为所述第二用户面数据封装 IPv6首部或 IPv4首部, 所述 IPv6首部的流标签携带所述第二 载标识, 将 封装后的所述第二用户面数据发送给所述核心网节点。
25、 根据权利要求 24所述的演进型基站, 其特征在于, 所述应用程序可 用于使所述处理器和所述基站执行为第二用户面数据封装 IPv6 首部或 IPv4 首部过程的指令:
当所述用户面协议栈采用流标签携带用户面 TEID时, 为所述第二用户面 数据封装 IPv6首部, 所述 IPv6首部的流标签携带所述第一承载标识;
当所述用户面协议栈采用下一跳首部携带所述 GTP-U首部的类型标识时, 为所述第二用户面数据封装 IPv6 首部, 所述 IPv6 首部的下一跳首部携带 GTP-U首部的类型标识;
当所述用户面协议栈采用协议类型携带所述 GTP-U首部的类型标识时, 为所述第二用户面数据封装 IPv4首部,所述 IPv4首部的协议类型携带 GTP-U 首部的类型标识。
26、 一种无线接入网络系统, 其特征在于, 所述系统包括:
如权利要求 18-21任一权项所述的移动管理网元, 如权利要求 22-25任 一权项所述的演进型基站, 所述移动管理网元与演进型基站在建立无线接入 承载连接后, 采用用户面协议栈进行用户面数据传输;
所述用户面协议栈包括: 物理层、 数据链路层和网络层, 所述网络层包 括 IPv6首部, 所述 IPv6首部的流标签携带有用户面隧道端点标识 TEID; 或者, 所述用户面协议栈包括: 物理层、 数据链路层、 网络层和 GPRS隧 道用户面协议层 GTP-U, 所述网络层包括 IPv6首部或 IPv4首部, 所述 IPv6 基本首部的下一跳首部或者 IPv4首部的协议类型携带所述 GTP-U首部的类型 标识。
PCT/CN2012/087729 2012-12-27 2012-12-27 用户面数据传输方法、移动管理网元、演进型基站及系统 WO2014101062A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280002549.3A CN104040987B (zh) 2012-12-27 2012-12-27 用户面数据传输方法、移动管理网元、演进型基站及系统
PCT/CN2012/087729 WO2014101062A1 (zh) 2012-12-27 2012-12-27 用户面数据传输方法、移动管理网元、演进型基站及系统
EP12890792.0A EP2924940B1 (en) 2012-12-27 2012-12-27 User plane data transmission methods, mobility management network element and evolved node b
US14/744,646 US10470028B2 (en) 2012-12-27 2015-06-19 User plane data transmission method, mobility management entity, evolved NodeB, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087729 WO2014101062A1 (zh) 2012-12-27 2012-12-27 用户面数据传输方法、移动管理网元、演进型基站及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/744,646 Continuation US10470028B2 (en) 2012-12-27 2015-06-19 User plane data transmission method, mobility management entity, evolved NodeB, and system

Publications (1)

Publication Number Publication Date
WO2014101062A1 true WO2014101062A1 (zh) 2014-07-03

Family

ID=51019709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087729 WO2014101062A1 (zh) 2012-12-27 2012-12-27 用户面数据传输方法、移动管理网元、演进型基站及系统

Country Status (4)

Country Link
US (1) US10470028B2 (zh)
EP (1) EP2924940B1 (zh)
CN (1) CN104040987B (zh)
WO (1) WO2014101062A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715495A (zh) * 2015-02-04 2015-06-17 浙江工商大学 基于用户指定误差精度的三维模型传输方法
CN106937267A (zh) * 2015-12-31 2017-07-07 中国移动通信集团公司 一种用户连接的建立方法及装置
WO2017198132A1 (zh) * 2016-05-17 2017-11-23 中兴通讯股份有限公司 数据发送方法及装置
WO2018082070A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种数据报文处理方法及控制面网元、用户面网元
WO2018205949A1 (zh) * 2017-05-09 2018-11-15 中兴通讯股份有限公司 信息传输方法和装置
CN112039944A (zh) * 2018-01-12 2020-12-04 华为技术有限公司 一种数据传输方法及装置
WO2021204260A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 一种基于网际协议版本IPv6的无线网络通信方法和通信设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931548B (zh) * 2009-06-24 2012-09-19 华为技术有限公司 一种接入网络标签管理方法、装置和系统
EP3525537B1 (en) * 2016-10-07 2022-01-05 Ntt Docomo, Inc. Radio communication system, network device, and radio communication method
US11051213B2 (en) * 2017-05-23 2021-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Core network node and method therein for obtaining a decision of a CN/RAN endpoint pair for user plane session in a radio communications network
CN109699049B (zh) * 2017-10-24 2022-03-08 成都鼎桥通信技术有限公司 用户面协议栈类型的确定方法和装置
US10848420B2 (en) * 2018-02-12 2020-11-24 Cisco Technology, Inc. Dynamic forwarding features in network elements
US11496441B2 (en) * 2018-08-11 2022-11-08 Parallel Wireless, Inc. Network address translation with TEID
CN111107046B (zh) * 2018-10-29 2021-03-12 大唐移动通信设备有限公司 一种数据流的传输方法及装置
EP3991366B1 (en) * 2019-07-31 2024-10-02 Huawei Technologies Co., Ltd. Transporting a multi-transport network context-identifier (mtnc-id) across multiple domains
CN112351506B (zh) * 2020-11-11 2023-03-14 上海共进信息技术有限公司 一种teid的分配方法及gtp-u数据传输方法
CN113193907A (zh) * 2021-04-30 2021-07-30 广州爱浦路网络技术有限公司 天地一体化融合网络、空间基站和核心网

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069519A1 (en) * 2001-02-23 2002-09-06 Nokia Inc. System and method for fast gprs for ipv6 communications
CN101019450A (zh) * 2004-07-30 2007-08-15 奥林奇股份有限公司 经由分组无线网络传送因特网分组数据的系统和方法
CN101369977A (zh) * 2008-09-18 2009-02-18 华为技术有限公司 数据传输的方法、装置和系统
CN102244688A (zh) * 2010-05-11 2011-11-16 华为技术有限公司 一种报文转发的方法、装置及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089232A2 (de) * 2000-05-16 2001-11-22 Siemens Aktiengesellschaft Verfahren zum umlegen eines tunnels zwischen knoten eines gprs-systems
US20020169236A1 (en) * 2001-02-22 2002-11-14 Halterman David G. Decorative solid surfacing materials filled with ceramic microspheres
EP1770915A1 (en) * 2005-09-29 2007-04-04 Matsushita Electric Industrial Co., Ltd. Policy control in the evolved system architecture
KR101176383B1 (ko) * 2005-10-21 2012-08-23 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 아이피 터널링 경로 상의 터널 시그널링을 수행하는 방법및 장치
US9674311B2 (en) * 2009-08-14 2017-06-06 Qualcomm Incorporated Robust header compression for relay nodes
CN101998511B (zh) * 2009-08-26 2013-04-24 华为技术有限公司 网络中继场景下的头压缩方法及装置
US8649339B2 (en) * 2010-10-22 2014-02-11 Motorola Solutions, Inc. Method and apparatus for distributing video packets over multiple bearers for providing unequal packet loss protection
CN102316521B (zh) * 2011-09-15 2014-04-16 电信科学技术研究院 数据传输方法、系统和设备
US8982842B2 (en) * 2012-11-16 2015-03-17 Tektronix, Inc. Monitoring 3G/4G handovers in telecommunication networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069519A1 (en) * 2001-02-23 2002-09-06 Nokia Inc. System and method for fast gprs for ipv6 communications
CN101019450A (zh) * 2004-07-30 2007-08-15 奥林奇股份有限公司 经由分组无线网络传送因特网分组数据的系统和方法
CN101369977A (zh) * 2008-09-18 2009-02-18 华为技术有限公司 数据传输的方法、装置和系统
CN102244688A (zh) * 2010-05-11 2011-11-16 华为技术有限公司 一种报文转发的方法、装置及系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104715495A (zh) * 2015-02-04 2015-06-17 浙江工商大学 基于用户指定误差精度的三维模型传输方法
CN106937267A (zh) * 2015-12-31 2017-07-07 中国移动通信集团公司 一种用户连接的建立方法及装置
WO2017198132A1 (zh) * 2016-05-17 2017-11-23 中兴通讯股份有限公司 数据发送方法及装置
WO2018082070A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种数据报文处理方法及控制面网元、用户面网元
JP2020501410A (ja) * 2016-11-04 2020-01-16 華為技術有限公司Huawei Technologies Co.,Ltd. データパケット処理方法、制御プレーンネットワーク要素、及びユーザプレーンネットワーク要素
WO2018205949A1 (zh) * 2017-05-09 2018-11-15 中兴通讯股份有限公司 信息传输方法和装置
US11405830B2 (en) 2017-05-09 2022-08-02 Zte Corporation Information transmission method and apparatus
CN112039944A (zh) * 2018-01-12 2020-12-04 华为技术有限公司 一种数据传输方法及装置
US11463937B2 (en) 2018-01-12 2022-10-04 Huawei Technologies Co., Ltd. Data transmission method and apparatus
WO2021204260A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 一种基于网际协议版本IPv6的无线网络通信方法和通信设备

Also Published As

Publication number Publication date
CN104040987B (zh) 2017-05-24
EP2924940A4 (en) 2016-03-02
EP2924940B1 (en) 2019-12-04
US20150289303A1 (en) 2015-10-08
EP2924940A1 (en) 2015-09-30
CN104040987A (zh) 2014-09-10
US10470028B2 (en) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2014101062A1 (zh) 用户面数据传输方法、移动管理网元、演进型基站及系统
US11510131B2 (en) Configuration method, data transmission method, and apparatus
WO2021000827A1 (zh) 数据传输链路建立方法、装置以及计算机可读存储介质
EP4138363B1 (en) Packet transmission method and system
JP5479571B2 (ja) 高度lteにおけるセルフバックホール処理及びリレー処理用の無線ベアラ識別
KR101694082B1 (ko) 소프트웨어-정의된 네트워크 오버레이
US9307442B2 (en) Header size reduction of data packets
US8792410B2 (en) Relay method of transport bearer, apparatus and communication system
US9674870B1 (en) Mobile gateway having reduced forwarding state for anchoring mobile subscribers
JP5230799B2 (ja) フロー容量を等化する方法、装置、及びシステム
US9313049B2 (en) Communication system, network apparatus, gateway apparatus, computer program, data transmission method and data transfer method
WO2020164175A1 (zh) 标识管理的方法和装置
US9693218B2 (en) Mobility management system, mobility management method, access GW apparatus, mobility management control apparatus, and computer-readable medium
WO2011032481A1 (zh) 通信方法、通信过程中的数据报文转发方法及通信节点
WO2011032479A1 (zh) 基于身份标识和位置分离架构的网络及其骨干网和网元
US20180219981A1 (en) Communication of non-ip data over packet data networks
CN118804411A (zh) 用于用户面处理的系统和方法
US9591550B2 (en) Method and apparatus for enhancing voice service performance in communication system
EP3454588B1 (en) Method and device for transmitting messages
WO2015168923A1 (en) Method and network node for routing ip packets
US20240333637A1 (en) Apparatus and method for performing session management in mobile communication system
KR20240145862A (ko) 이동 통신 시스템에서 세션 관리를 수행하는 방법 및 장치
CN116528398A (zh) 一种隧道信息发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890792

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012890792

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE