WO2014098526A1 - Quantification method for sulphur-containing organic compound - Google Patents

Quantification method for sulphur-containing organic compound Download PDF

Info

Publication number
WO2014098526A1
WO2014098526A1 PCT/KR2013/011971 KR2013011971W WO2014098526A1 WO 2014098526 A1 WO2014098526 A1 WO 2014098526A1 KR 2013011971 W KR2013011971 W KR 2013011971W WO 2014098526 A1 WO2014098526 A1 WO 2014098526A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
isotope
solution
sample
ratio
Prior art date
Application number
PCT/KR2013/011971
Other languages
French (fr)
Korean (ko)
Inventor
임용현
이현석
김숙현
이경석
정지선
김숙경
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to US14/653,798 priority Critical patent/US20150346221A1/en
Priority claimed from KR1020130159867A external-priority patent/KR101534578B1/en
Publication of WO2014098526A1 publication Critical patent/WO2014098526A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6812Assays for specific amino acids
    • G01N33/6815Assays for specific amino acids containing sulfur, e.g. cysteine, cystine, methionine, homocysteine

Definitions

  • the present invention relates to a method for quantifying sulfur-containing organic compounds.
  • the present invention relates to a method for quantifying sulfur-containing organic compounds.
  • the accuracy and traceability of quantitative analysis is very important as a measure of the reliability of experimental results and the possibility of mutual comparison between experiments.
  • the reliability of the measurement can be seriously affected when the acquisition of high purity standards with traceability in the quantitative analysis of organic compounds and biomaterials is not preceded.
  • Quantitative values of high-purity standards or solutions are prepared by gravimetric methods and based on corrected purity, based on the results of various purity analyses for the material.
  • the present invention provides a method for quantifying sulfur containing organic compounds. More specifically, the present invention provides a method for quantifying a biological material selected from a sulfur-containing organic compound, methionine, cysteine or both, or a peptide or protein including sulfur and DNA, RNA or PNA modified to include sulfur.
  • a biological material selected from a sulfur-containing organic compound, methionine, cysteine or both, or a peptide or protein including sulfur and DNA, RNA or PNA modified to include sulfur.
  • the organic compound or the biomaterial is present in the form of a hydrate or hygroscopic, it is effective to solve the problem that the reliability of the manufactured value manufactured by weight method from the high purity organic compound or standard material whose purity is confirmed by the conventional method is effective.
  • Provide means when the organic compound or the biomaterial is present in the form of a hydrate or hygroscopic, it is effective to solve the problem that the reliability of the manufactured value manufactured by weight method from the high purity organic compound or standard material whose purity is
  • the present invention relates to a method for quantifying sulfur-containing organic compounds using a sulfur isotope ratio. More specifically, the present invention relates to a method for quantifying sulfur-containing organic compounds including the following steps (1) to (4).
  • a sample solution containing sulfur-containing organic compounds is diluted with an internal standard solution in which any one isotope selected from 33 S, 34 S and 36 S is concentrated. Preparing a sample mixture solution such that a theoretical isotope ratio with 32 S) is between 0.2 and 5;
  • step (1) A mixed solution prepared in step (1) by mixing a theoretical standard isotope ratio by mixing the internal standard solution having any one isotope selected from 33 S, 34 S and 36 S with a sulfur standard solution having a natural presence ratio Preparing a correction solution to be equal to the value;
  • the sulfur-containing organic compound is not only an organic compound such as methionine, cysteine, but also a protein or peptide including methionine, cysteine or both.
  • step (3) it is preferable to decompose the sulfur oxide in the form of an inorganic substance by simultaneously treating the sample mixture solution containing sulfur-containing organic compounds with electromagnetic radiation and acid decomposition.
  • Treatment of the electromagnetic wave irradiation and acid decomposition at the same time includes the acid decomposition while maintaining at 100 to 300 °C for 10 minutes to 240 minutes in an electromagnetic oven, and further repeat the electromagnetic oven treatment.
  • Simultaneous treatment of microwave irradiation and acid decomposition can effectively decompose sulfur into inorganic elements, but not limited thereto, and sulfur may be decomposed into inorganic materials under various conditions.
  • oxidizing agent In order to decompose the acid, it is necessary to add enough oxidizing agent to convert all the elements of the organic compound into the inorganic element form.
  • the total moles of carbon, hydrogen, nitrogen, and sulfur atoms constituting the organic compound containing sulfur are based on 1, it is preferable to use the molar ratio of the oxidizing agent at least 10 times or more.
  • the oxidizing agent is characterized by using an oxidizing agent other than sulfuric acid, a preferred example is nitric acid, perchloric acid, hydrogen peroxide or a mixture thereof.
  • the acid decomposition may not occur sufficiently, and if exceeded, there is no big problem, but the acid concentration of the final assay solution does not exceed 10% by weight in the ICP / MS analysis. Suitable.
  • R x Sulfur isotope ratio present in sample solution (x) (any isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
  • R y Sulfur isotope ratio present in 34 S concentrated internal standard solution (y) (any isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
  • R xi I-isotope ratio of sulfur in sample solution (x) ( 32 S / 32 S, 33 S / 32 S, 34 S / 32 S, 36 S / 32 S)
  • R zi i-isotopic ratio of sulfur present in the calibration sulfur standard solution (z) ( 32 S / 32 S, 33 S / 32 S, 34 S / 32 S or 36 S / 32 S)
  • R b Sulfur isotope ratio of the sample mixture solution (any one isotope selected from 34 S, 33 S and 36 S / 32 S isotope)
  • R b ' Sulfur isotope ratio of the correction solution (any one isotopically selected from 33 S, 34 S and 36 S / 32 S isotope)
  • the present invention relates to a method for quantifying sulfur-containing organic compounds.
  • a sample mixture solution is prepared by adding a sulfur solution in the form of an inorganic substance in which one of sulfur isotopes (of 33 S, 34 S and 36 S) is concentrated to the organic compound to be quantified as an internal standard.
  • the present invention relates to a method for quantifying organic compounds by preparing a calibration solution containing the same internal standard and then comparing and measuring the isotope ratios of the sample mixture solution and the calibration solution.
  • the present invention can be very useful for the determination of macromolecules, particularly peptides or proteins containing methionine or cysteine, and also very useful for the determination of hygroscopic or hydrate-type organic compounds that are difficult to accurately quantify. Quantitative method.
  • the quantitative method of the present invention can provide highly reliable and consistent quantitative results for high-purity primary standards such as organic compounds or proteins / peptides, and thus can be utilized for characterization and establishment of measurement standards for high-purity standard solutions.
  • the standard solution thus prepared can be used as a standard solution for calibration for quantitative analysis of various organic compounds and biomolecules, and can be utilized to secure reliability of quantitative results.
  • FIG. 1 is a schematic diagram showing a sample mixture solution (b) consisting of a sample solution (x) having a natural abundance ratio of sulfur ( 34 S / 32 S) and a 34 S high concentration internal standard solution (y),
  • ( b) is a schematic view showing a calibration solution (b ') consisting of a sulfur element standard solution (z) and S 34 highly concentrated internal standard solution (y).
  • ICP / MS isotope dilution inductively coupled plasma mass spectrometry
  • Figure 3 is a graph showing the relationship between the isotope ratio and the error magnification factor (EMF) of the sample mixture solution and the correction solution when the sulfur isotope dilution.
  • R is the sulfur isotope ratio ( 34 S / 32 S).
  • Figure 4 shows the quantitative results of the phosphorus growth hormone based sulfur isotope measurement.
  • (A) is the quantification result of phosphorus growth hormone prepared in the first batch
  • (B) is a comparison of sulfur isotope based quantification and amino acid based quantification results
  • I, F, P, V is the protein level at the amino acid level, respectively After hydrolysis, isoleucine, phenylalanine, proline and valine were quantified to calculate the protein content.
  • 5 is a SEC-UV chromatogram of phosphorus growth hormone.
  • the main peak of 3.3 minutes is the peak of phosphorus growth hormone and the small peak of 4.1 minutes corresponds to the small molecule.
  • FIG. 6 shows the results of monitoring only m / z 32 and 34 corresponding to elemental sulfur by connecting SEC separated components to ICP / MS for the analysis of the small amount of sulfur-containing impurities contained in the solvent. There is no peak due to small sulfur-containing impurities after the peak corresponding to the 3.3 minute phosphorus growth hormone molecule.
  • 11 is a sulfur isotope based quantification result of the NIST SRM 2389a sample according to the sample pretreatment method.
  • Figure 13 is a sulfur isotope-based authentication result and amino acid or peptide-based quantification results of the phosphorus growth hormone prepared in the second batch.
  • the present invention relates to a method for quantifying sulfur-containing organic compounds using a sulfur isotope ratio. More specifically, the present invention relates to a quantitative method of measuring a sulfur isotope ratio contained in an organic compound and calculating an amount of sulfur-containing organic compound from the measured sulfur isotope ratio.
  • the method for measuring the sulfur isotope ratio contained in the organic compound is preferably, but not limited to, using an inductively coupled plasma mass spectrometer.
  • isotopes of sulfur there are four known isotopes of sulfur in nature: 32 S, 33 S, 34 S, and 36 S. Among them, 32 S, the most isotope, is 95.02% and 34 S is 4.21%.
  • the present invention is characterized by using the ratio of any one isotope selected from the sulfur isotopes 33 S, 34 S and 36 S and 32 S contained in the organic compound in the sample solution (x), and more specifically, the sample solution.
  • any one of the isotopes is a into the concentrated internal standard solution (y) was diluted sample mixed solution (b) of 33 S, 34 S and 36 S any one of isotopes selected from the group consisting of selected from the group consisting of to use an element / 32 S isotope ratio (R b) and a sulfur standard solution (z) with the same correction consisting of an internal standard solution (y) solution (b ') the isotopic ratio (R b') of the .
  • a preferred embodiment of the method for quantifying sulfur-containing organic compounds using the sulfur isotope ratio of the present invention (any one isotope selected from 33 S, 34 S and 36 S / 32 S isotope) is
  • a sample solution (x) comprising a containing organic compound of sulfur 33 S, 34 S and 36 S is diluted with any one of the internal standard solution, the isotope concentration (y) selected from the theoretical isotope ratio (33 Preparing a sample mixture solution (b) such that any one isotope selected from S, 34 S and 36 S / 32 S isotope is 1;
  • step (1) sulfur standard solution (z) having a sulfur isotope ratio in nature and internal standard solution (y) in which any one isotope selected from 33 S, 34 S and 36 S is concentrated
  • a correction solution (b ') by mixing the theoretical isotope ratios (any one isotope selected from 33 S, 34 S, and 36 S / 32 S isotope) to a value of 0.2 to 5;
  • sulfur-containing organic compounds can be quantified without limitation, but hygroscopic or hydrate forms that have a high possibility of deflection in quantification using conventional chemical balances, mass spectrometers, or other analytical equipment It is preferable to quantify organic compounds or biomaterials.
  • the preferred biomaterials include, but are not limited to, DNA, RNA or PNA modified to include peptides, proteins or sulfur.
  • the peptide and protein are peptides or proteins comprising methionine, cysteine or both.
  • the protein consists mainly of carbon, hydrogen and oxygen, and contains a low percentage of sulfur. In addition, it may contain a heteroatom (heteroatom), such as phosphorus, but it appears only in a modified form of a specific protein.
  • a method of decomposing sulfur in an organic compound containing sulfur into sulfur oxide (sulfate), which is an inorganic substance is performed by simultaneously treating the sample mixture solution (b) with electromagnetic wave irradiation and acid decomposition.
  • the sulfur in the compound is decomposed into sulfur oxide (sulfate) in an elemental form.
  • the acid-treated sample mixture solution (b) is placed in an electromagnetic oven and maintained at 100 to 300 ° C. for 10 to 240 minutes. Decomposing and further repeating the electromagnetic oven treatment.
  • Simultaneous treatment of electromagnetic radiation and acid decomposition can be used to effectively decompose sulfur into inorganic elements, but not limited thereto, and sulfur may be decomposed into inorganic materials under various conditions.
  • the acid that can be used in the acid decomposition is preferably nitric acid except per sulfuric acid, perchloric acid, but not limited thereto, and may be subjected to acid decomposition under conditions further including hydrogen peroxide (H 2 O 2 ) to increase the oxidizing power.
  • H 2 O 2 hydrogen peroxide
  • the molar ratio of the oxidizing agent is at least 10 times or more. If an oxidizing agent of less than 10 molar ratio is added, the acid decomposition may not occur sufficiently, and if it exceeds, there is no big problem, but it is recommended that the acid concentration of the final assay solution is not more than 10% suitable for ICP / MS analysis. good.
  • R x and R z may be directly measured using a natural existence ratio of 0.042 / 0.9501 ( 34 S / 32 S) given sulfur in IUPAC or using a mass spectrometer for isotope ratio measurement.
  • R x Sulfur isotope ratio present in sample solution (x) (any one isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
  • R y Sulfur isotope ratio present in 34 S concentrated internal standard solution (y) (any isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
  • R xi i-isotopic ratio of sulfur present in the sample or sample solution (x) ( 32 S / 32 S, 33 S / 32 S, 34 S / 32 S, 36 S / 32 S)
  • R zi i-isotopic ratio of sulfur present in the calibration sulfur standard solution (z) ( 32 S / 32 S, 33 S / 32 S, 34 S / 32 S or 36 S / 32 S)
  • R b Sulfur isotope ratio of the sample mixture solution (any one isotope selected from 34 S, 33 S and 36 S / 32 S isotope)
  • R b ' Sulfur isotope ratio of the correction solution (any one isotopically selected from 33 S, 34 S and 36 S / 32 S isotope)
  • Sulfur in the form of impurities may be present in reagents, solvents and containers added during sample pretreatment. Prepare a blank sample to obtain a C blank (sulfur concentration of the base sample) and subtract C blank from the sulfur concentration measured in the sample. The concentration of sulfur in pure samples can be determined.
  • the solvent used in the present invention is preferably deionized water, a dilute acid solution or buffer solution made of deionized water, and the amount of sulfur contained in them is preferably 0.02 mg / kg or less, more preferably 10 ng / kg or less. It contains sulfur.
  • the sulfur content in the sample determined as described above may be used to calculate the content of the organic compound using the molecular formula of the organic compound. However, since the sulfur content in the sample obtained as described above may include other impurities containing sulfur in addition to the analyte, sulfur-containing impurities should be quantified and subtracted from the total sulfur content to determine traceability in SI units. Can be equipped.
  • the method for measuring sulfur-containing impurities is preferably, but not limited to, CE-ICP / MS or SEC-ICP / MS for proteins.
  • impurities were quantified by UV and ICP / MS using a BioSep SEC-3000 column (300 x 4.6 mm) and 50 mM ammonium bicarbonate as an eluent at a flow rate of 1 ml / min.
  • Example 1 Quantitative (primary) determination of phosphorus growth hormone protein based on elemental sulfur.
  • Phosphorus growth hormone has three methionine and four cysteines with an average molecular weight of 22,125 Da and contains seven sulfur atoms per molecule. Thus, one mole of hGH corresponds to seven moles of sulfur.
  • hGH Phosphorus Growth Hormone
  • Teflon-based vessel was sealed and placed in an electromagnetic oven, heated to 200 ° C. for 15 minutes, and maintained at 200 ° C. for 20 minutes to perform electromagnetic-assisted acid decomposition.
  • optimal isotope ratio is the goal of the so closer to 1 the isotope ratio (34 S / 32 S) measured deflection is minimized (see Fig. 3), the isotope ratio (34 S / 32 S) 1 isotope dilution Isotope ratio ( 34 S / 32 S). Therefore, the first embodiment in the US National Institute of Standards and Technology as described above (National Institute of Standards and Tchnology; NIST) prepared by diluting the sulfur standard solution (SRM 3154) (z), available working solution and in the 34 S concentration internal standard The solution (y) was mixed to prepare a calibration solution (b ') such that the isotope ratio ( 34 S / 32 S) was 1 (see FIGS. 1 and 2).
  • Thermo's high resolution ICP / MS was optimized for high resolution (R> 10,000). (Medium resolution is sufficient to eliminate ionic interference from acids, solvents, organics and ICP gases, but the device sensitivity is improved with high resolution to minimize the effects of high background signals of deionized water and sulfur in the used acid and apparatus. Lower measurement): The prepared sample blend (b) and calibration blend (b ') showed signal strengths of about 600,000-700,000 cps for 32 S and 34 S.
  • the measurement uncertainty was calculated using the measured isotope ratio, and the uncertainty of the estimation of each factor affecting the measurement was synthesized to estimate the measurement uncertainty.
  • the hGH primary batch had a manufacturer-supplied concentration of 303 ⁇ mol / kg and was determined to be 290 ⁇ mol / kg (65 mg / kg sulfur content) based on amino acid based quantification.
  • the small peak eluting after 4 minutes in SEC-UV is the small molecule peak, and the ion chromatogram is obtained by fixing MS to m / z 32 and 34 corresponding to sulfur ions in SEC-ICP / MS. It was confirmed that there was no detectable peak at this retention time.
  • the results showed that the effect of sulfur-comprising small molecular impurities on the determination of total sulfur content was less than 0.5%. Therefore, it was determined that the element-based protein quantitative results were not likely to be overestimated by the sulfur-containing impurities in Example 1 of the present invention.
  • Example 2 Quantitative (secondary batch) determination of phosphorus growth hormone protein based on elemental sulfur.
  • Phosphorus growth hormone protein was quantified for the newly prepared hGH secondary batch in the same manner as in Example 1. Since the concentration of the sample was prepared about one-third lower than that of the first batch, the analytical sample volume was increased from 0.5 g to 1.0 g and the concentration of the concentrated isotope solution was adjusted accordingly. We made it as close to 1 as before. One aliquot was taken from two or more vials because the amount of sample per vial of the second prepared hGH was less than the sample volume. The analysis results of the secondary batch are shown in FIG. 7 and Table 2.
  • T2 of hGH which seems to be easier to hydrolyze, to examine the possibility that amino acid-based quantitative results were affected by the efficiency and side reactions of hydrolysis.
  • a T11 peptide standard solution was prepared to compare the results of amino acid based quantification and elemental sulfur based quantification.
  • T2 peptide the second tryptic peptide from the N terminus of the phosphorus growth hormone, has the sequence of LFDNA M LR, so that there is one methionine including sulfur, so it has one sulfur atom per peptide, and thus sulfur element-based quantification is possible.
  • T11 peptide Since the T11 peptide has the same sequence as DLEEGIQTL M GR and also contains one methionine, one equivalent of the peptide contains one equivalent of sulfur atom.
  • concentration of T2 was prepared at 1 mmol / kg and the purity provided by the manufacturer was 99.1%, the concentration of T11 was made at 1 mmol / kg and the purity provided by the manufacturer was 99%.
  • the expected content of elemental sulfur is 32 mg / kg.
  • the elemental sulfur based peptide quantification as described in FIG. 8 and Table 3 can determine the T2 peptide content to a level of 3.1% expansion uncertainty.
  • the elemental sulfur based quantification results for the T2 peptide show a 10% measurement bias as compared to amino acid based quantification as well as protein quantification.
  • the T11 peptide could be quantified with an expansion uncertainty of 0.84% but showed a similar measurement bias as the T2 peptide (see FIG. 9 and Table 3).
  • the impairment of hydrolysis and the loss due to secondary reaction of acid degradation still exist or that the observed measurement bias is due to other factors.
  • the concentration of the prepared methionine standard solution was 1 mmol / kg and the purity provided by the manufacturer was 99.5% or more. This corresponds to a sulfur content of 32 mg / kg. Sulfur element-based quantitative results of the methionine standard solution are shown in FIG. 10 and Table 5, and quantitative results within 1% of the expansion uncertainty were obtained.
  • the methionine standard solution thus prepared can be used for future amino acid-based quantification of hGH as well as proteins including T2, T11 peptide and methionine of hGH.
  • Sulfur in organic compounds is completely decomposed in the form of an inorganic substance, and electromagnetic radiation and acid decomposition are simultaneously processed for sufficient chemical equilibrium with concentrated isotopes added as an internal standard solution.
  • the method of acid decomposition through the electromagnetic irradiation used in the experiments of Examples 1 to 4 was taken in a 100 mL sealed Teflon vessel and placed in an electromagnetic oven and heated to 200 ° C. for 15 minutes, and 20 It is to carry out electromagnetic-assisted acid decomposition by keeping 200 degreeC for minutes.
  • the effectiveness of the sample pretreatment method used was intended by comparing the sulfur content in the NIST SRM 2389a (amino acid mixture certified standard material certified by general organic compound purity analysis) with the certified value.
  • NIST SRM2 389a sample is an amino acid standard solution containing mg / kg of methionine (0.3733 ⁇ 0.0108) and mg / kg of cysteine (0.2954 ⁇ 0.0133).
  • the NIST SRM 2389a sample contains (158.4 ⁇ 4.2) mg / kg.
  • the sulfur content measurement results of the NIST SRM 2389a sample are shown in Table 6 and FIG. 11. It can be seen that the sulfur content measured in both the acid-decomposed sample and the small amount of sample decomposed by the sample pretreatment method used in Examples 1 to 4 is consistent with the certification value of NIST SRM 2389a within the uncertainty range. .
  • Phosphorus growth hormone protein certification was performed on freshly prepared hGH secondary batches.
  • an isotope 34 S concentrated standard solution (Oak Ridge National Lab.) was prepared by diluting to a calculated concentration of 3.99 mg / kg. 1 g of each of 11 teflon vessels (sample blend solution) and 4 LDPE bottles (calibration blend solution) were added. When the concentrated isotope solution was added, it was first added to two calibration solution bottles, and then added to 11 sample mixture solution vessels, and finally to the remaining two calibration solution bottles. At this time, 34 S concentrated standard solution (Oak Ridge National Lab.) was added to prepare a sample blend having an expected isotope ratio ( 34 S / 32 S) of 1.
  • the sulfur standard solution (NIST SRM 3154) to be used in the calibration solution was prepared by diluting to 4.12 mg / kg, and then mixed into 1 g of 4 LDPE bottles prepared in 1 containing 1 g of 34 S concentrated standard solution. This was diluted to 30 g with 5% nitric acid to prepare four calibration solutions for the expected isotope ratio 1.
  • the vessel was cooled to some extent, and then the sample blend solution was recovered and diluted to 30 g.
  • the collected sample was added with 20 mL of 5% nitric acid (diluted 17 times) to measure the isotope ratio. (Signal intensity is about 250,000 counts for 32 S and 34 S, respectively.)
  • the isotopic ratio of the known isotope ratio standard sample is measured together with the mass bias correction and bracketing correction of the drift. Corrected.
  • the second batch of hGH had a manufacturer-supplied concentration of 2 mg / mL and an amino acid based quantitative value of 1.8 mg / mL corresponding to 18.2 mg / kg sulfur content.
  • the reference value of the measurement of sulfur content of the second batch of hGH is the average value of the measurement results of samples taken from 11 vials, and the homogeneity is estimated from the standard deviation of the measurement values for each of 11 samples.
  • the uncertainty of measurement is the combined standard uncertainty and the degree of freedom from the pooled standard deviation value, which mainly includes the standard deviation of the mean value from 11 samples and the uncertainty due to systematic effects in the sample measurement. Freedom was calculated, and the coverage factor and expanded uncertainty were calculated.
  • the standard deviation of the measured values for each bottle is 0.98% of the mean value, as shown in Table 7 and FIG. It can be seen that the homogeneity is suitable for use in the certified standard material within.
  • the certified S content and expansion uncertainty in the secondary batch hGH is mg / kg (18.88 ⁇ 0.75) as indicated in Table 7. Comparing the amino acid and peptide-based quantitative results, it can be confirmed that the authentication values are well matched within the uncertainty range. (See FIG. 13)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention relates to a quantification method for a sulphur-containing organic compound. Sulphur containing compounds can be quantified by means of the quantification method of the present invention without limitation, but, preferably, the present invention is relatively effective in quantifying organic compounds that are difficult to quantify such as those which are hygroscopic or take the form of hydrides, or else macromolecules such as biological materials. Further, among biological materials, the quantification method of the present invention can highly effectively quantify peptides or peptide high-purity standard substances.

Description

황이 함유된 유기화합물의 정량방법Determination of Sulfur-Containing Organic Compounds
본 발명은 황이 함유된 유기화합물의 정량방법에 관한 것이다.The present invention relates to a method for quantifying sulfur-containing organic compounds.
본 발명은 황이 함유된 유기화합물의 정량방법에 관한 것이다. 일반적으로, 정량분석의 정확성과 소급성(traceability)은 실험결과들에 대한 신뢰도 및 실험간 상호비교 가능성을 결정하는 척도로서 매우 중요한 의미를 갖는다. 특히, 유기화합물 및 생체물질의 정량분석에서 측정 소급성(traceability)을 갖는 고순도 표준물질의 확보가 선행되지 않을 때 측정의 신뢰성이 심각하게 영향을 받을 수 있다. 고순도 표준물질 또는 표준용액의 정량값은 해당물질에 대한 다양한 순도분석 결과를 바탕으로 무게 법에 의해 제조하고 순도가 보정된 제조 값을 사용한다. 또 다른 방법으로 생체분자와 같이 복잡한 물질의 경우에는 생체분자의 기본단위인 핵산 단량체/아미노산 등 유기화합물 수준의 고순도 표준물질을 위와 같은 방법으로 확보하고 이를 기준으로 사용하여 고순도 생체물질의 특성값 또는 정량 값을 얻는 방법이 사용되고 있다. 예를 들어 단백질 표준물질/표준용액 정량의 경우 단백질을 펩티드 단위로 효소 분해하여 펩티드를 정량하는 방법도 많이 사용되고 있으나 이를 위해서는 정확한 함량이 주어진 펩티드 표준물질이 필요하다. 펩티드나 단백질 고순도 표준물질의 경우 각각을 가수분해하여 생성되는 아미노산의 정량을 통해 펩티드나 단백질의 함량을 결정하는 방법도 널리 활용되고 있다(J. Chromatography A, 1218, 6596-6602 (2011)). 그러나 이 방법을 사용하기 위해서는 정량에 사용되는 아미노산의 표준물질이 확보되어 있어야 하며 단백질/펩티드가 아미노산으로 가수분해되는 과정에서의 효율이 100 %에 근접함이 보장되도록 가수분해 조건이 확립되어야 한다. 상기 생체물질의 정량방법을 확립하기 위한 기술의 일례로서, DNA를 정량하기 위하여, 효소를 사용하여 핵산 단량체로 잘라내고 이들을 동위원소 희석 HPLC-MS로 정량하는 법을 시도한 바 있다. (O'Connor, G., et. al..,Anal.Chem., 74, 3670-3676 (2002)) 또한, 단백질의 경우, UV 흡광도 측정방법, Biuret 방법, BCA 방법, Lowry 방법 또는 Bradford 방법 등을 주로 활용하여 단백질을 정량하고 있으나, 감도 및 역동범위(dynamic range)의 문제를 해결하지 못한 실정이다. 또한, 흡습성이 강하거나 수화물 형태의 유기화합물은 시료 내에 포함된 물 분자의 수에 따라 질량이 달라지므로 정확한 질량을 측정하는 것은 매우 어려운 일이다. The present invention relates to a method for quantifying sulfur-containing organic compounds. In general, the accuracy and traceability of quantitative analysis is very important as a measure of the reliability of experimental results and the possibility of mutual comparison between experiments. In particular, the reliability of the measurement can be seriously affected when the acquisition of high purity standards with traceability in the quantitative analysis of organic compounds and biomaterials is not preceded. Quantitative values of high-purity standards or solutions are prepared by gravimetric methods and based on corrected purity, based on the results of various purity analyses for the material. Alternatively, in the case of complex substances such as biomolecules, high purity standards of organic compounds such as nucleic acid monomers / amino acids, which are the basic units of biomolecules, are secured in the same manner as above and used as a reference to characterize high purity biomaterials The method of obtaining a quantitative value is used. For example, in the case of protein standard / standard solution quantification, a method of quantitating peptides by enzymatic digesting of proteins in peptide units is also widely used, but for this, a peptide standard having an accurate content is required. In the case of peptide or protein high purity standards, the method of determining the content of peptide or protein by quantifying the amino acid generated by hydrolysis of each is widely used ( J. Chromatography A , 1218 , 6596-6602 (2011)). However, in order to use this method, a standard of amino acid used for quantification must be secured and hydrolysis conditions must be established to ensure that the efficiency of the protein / peptide hydrolysis to amino acids is close to 100%. As an example of a technique for establishing a method for quantifying the biological material, in order to quantify DNA, an attempt has been made to cut an nucleic acid monomer using an enzyme and quantify them by isotope dilution HPLC-MS. (O'Connor, G., et. Al., Anal. Chem. , 74 , 3670-3676 (2002)) Also, for proteins, UV absorbance measurement method, Biuret method, BCA method, Lowry method or Bradford method Protein is quantified mainly using the back light, but the situation of sensitivity and dynamic range (dynamic range) has not been solved. In addition, since the mass of the organic compound having high hygroscopicity or a hydrate form varies depending on the number of water molecules included in the sample, it is very difficult to accurately measure the mass.
본 발명의 목적은 황을 함유하는 유기화합물의 정량 방법을 제공하는 것이다. 보다 상세하게는 황을 함유하는 유기화합물, 메티오닌, 시스테인 또는 둘 다를 포함하는 펩티드나 단백질 및 황이 포함되도록 변형된 DNA, RNA 또는 PNA 중에서 선택된 생체물질의 정량 방법을 제공하는 것이다. 특히 상기 유기화합물 또는 생체물질이 수화물 형태로 존재하거나 흡습성이 있는 경우, 기존의 방법으로는 순도가 확인된 고순도 유기화합물 또는 표준물질로부터 무게법으로 제조한 제조값의 신뢰성이 떨어지는 문제점을 해결하는 효과적인 수단을 제공한다. It is an object of the present invention to provide a method for quantifying sulfur containing organic compounds. More specifically, the present invention provides a method for quantifying a biological material selected from a sulfur-containing organic compound, methionine, cysteine or both, or a peptide or protein including sulfur and DNA, RNA or PNA modified to include sulfur. In particular, when the organic compound or the biomaterial is present in the form of a hydrate or hygroscopic, it is effective to solve the problem that the reliability of the manufactured value manufactured by weight method from the high purity organic compound or standard material whose purity is confirmed by the conventional method is effective. Provide means.
본 발명은 황 동위원소 비를 이용한 황이 함유된 유기화합물의 정량방법에 관한 것이다. 보다 상세하게는 하기 단계 (1) 내지 (4)를 포함하는 황이 함유된 유기화합물의 정량방법에 관한 것이다.The present invention relates to a method for quantifying sulfur-containing organic compounds using a sulfur isotope ratio. More specifically, the present invention relates to a method for quantifying sulfur-containing organic compounds including the following steps (1) to (4).
(1) 황이 함유된 유기화합물을 포함하는 시료용액을 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액으로 희석하여 시료용액에서 자연존재비가 가장 큰 기준 동위원소(32S)와의 이론적 동위원소 비가 0.2 내지 5 사이의 값이 되도록 시료혼합용액을 제조하는 단계;(1) A sample solution containing sulfur-containing organic compounds is diluted with an internal standard solution in which any one isotope selected from 33 S, 34 S and 36 S is concentrated. Preparing a sample mixture solution such that a theoretical isotope ratio with 32 S) is between 0.2 and 5;
(2) 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 상기 내부표준용액과 자연존재비를 갖는 황 표준용액을 혼합하여 이론적 동위원소 비가 상기 단계 (1)에서 제조된 혼합용액과 동일한 값이 되도록 보정용액을 제조하는 단계;(2) A mixed solution prepared in step (1) by mixing a theoretical standard isotope ratio by mixing the internal standard solution having any one isotope selected from 33 S, 34 S and 36 S with a sulfur standard solution having a natural presence ratio Preparing a correction solution to be equal to the value;
(3) 상기 단계 (1)에서 제조된 혼합용액에서 황이 함유된 유기화합물을 분해하여 무기물 형태의 황산화물(sulfate)을 회수하는 단계; 및 (3) recovering the sulfur oxide (sulfate) in inorganic form by decomposing the organic compound containing sulfur in the mixed solution prepared in step (1); And
(4) 상기 단계 (3)에서 회수된 황산화물의 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소와 32S의 동위원소 비를 측정하고, 상기 단계 (2)에서 제조된 보정용액의 해당 동위원소 비를 측정하는 단계.(4) measuring the isotope ratio of any one isotope and 32 S selected from 33 S, 34 S and 36 S of the sulfur oxide recovered in step (3), Measuring the corresponding isotope ratio of the calibration solution prepared in step (2).
상기 황이 함유된 유기화합물은 메티오닌, 시스테인 등의 유기화합물 뿐 만 아니라 메티오닌, 시스테인 또는 둘 다를 포함하는 단백질 또는 펩티드인 것이다. The sulfur-containing organic compound is not only an organic compound such as methionine, cysteine, but also a protein or peptide including methionine, cysteine or both.
상기 단계 (3)에서, 황이 함유된 유기화합물을 포함하는 시료혼합용액에 전자파 조사와 산분해를 동시에 처리하여 무기물 형태의 황산화물로 분해하는 것이 바람직하지만 이에 한정하지 않는다. 상기 전자파 조사와 산분해를 동시에 처리하는 것은 전자파 오븐에 넣어 10분 내지 240 분 동안 100 내지 300℃ 에서 유지하면서 산분해 하고, 추가로 반복하여 전자파 오븐 처리를 하는 것을 포함한다. 전자파조사와 산분해를 동시에 처리하는 것은 효과적으로 황을 무기원소 형태로 분해 할 수 있는 방법이지만, 이에 한정하지 않고 다양한 조건으로 황을 무기물 형태로 분해해도 무방하다. 산분해를 위해서는 유기화합물의 구성원소를 모두 무기원소 형태로 전환시키기에 충분한 산화제를 넣어주어야 한다. 상기 황이 함유된 유기화합물을 구성하는 탄소, 수소, 질소 및 황 원자의 총 몰수를 1로 기준하였을 때, 산화제의 몰 비가 적어도 10배 이상 되도록 사용하는 것이 바람직하다. 상기 산화제는 황산을 제외한 산화제를 사용하는 것이 특징이며, 바람직한 일례로는 질산, 과염소산, 과산화수소수 또는 이들의 혼합물이 있다.In the above step (3), it is preferable to decompose the sulfur oxide in the form of an inorganic substance by simultaneously treating the sample mixture solution containing sulfur-containing organic compounds with electromagnetic radiation and acid decomposition. Treatment of the electromagnetic wave irradiation and acid decomposition at the same time includes the acid decomposition while maintaining at 100 to 300 ℃ for 10 minutes to 240 minutes in an electromagnetic oven, and further repeat the electromagnetic oven treatment. Simultaneous treatment of microwave irradiation and acid decomposition can effectively decompose sulfur into inorganic elements, but not limited thereto, and sulfur may be decomposed into inorganic materials under various conditions. In order to decompose the acid, it is necessary to add enough oxidizing agent to convert all the elements of the organic compound into the inorganic element form. When the total moles of carbon, hydrogen, nitrogen, and sulfur atoms constituting the organic compound containing sulfur are based on 1, it is preferable to use the molar ratio of the oxidizing agent at least 10 times or more. The oxidizing agent is characterized by using an oxidizing agent other than sulfuric acid, a preferred example is nitric acid, perchloric acid, hydrogen peroxide or a mixture thereof.
10배 미만 몰 비의 산화제를 첨가하는 경우, 산분해가 충분하게 일어나지 않을 수 있으며, 초과하는 경우에는 큰 문제는 없으나, 최종 분석 용액의 산농도가 10 중량%를 넘지 않는 것이 ICP/MS 분석에 적합하다. If an oxidizing agent of less than 10 times molar ratio is added, the acid decomposition may not occur sufficiently, and if exceeded, there is no big problem, but the acid concentration of the final assay solution does not exceed 10% by weight in the ICP / MS analysis. Suitable.
상기 단계(4)에서 획득된 시료혼합용액의 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소와 32S의 동위원소 비와 보정용액의 해당 동위원소 비를 하기 <식 1>에 적용하여 측정하고자 하는 시료용액의 농도를 획득하는 것이 특징이다. Isotope ratio of any one isotope and 32 S selected from 33 S, 34 S and 36 S of the sample mixture solution obtained in step (4) and It is characterized by obtaining the concentration of the sample solution to be measured by applying the corresponding isotope ratio of the correction solution to <Equation 1>.
<식 1><Equation 1>
Figure PCTKR2013011971-appb-I000001
Figure PCTKR2013011971-appb-I000001
Cx: 측정하고자 하는 시료용액(x)의 농도, C x : concentration of the sample solution (x) to be measured,
mx: 저울을 이용하여 측정된 시료용액(x)의 질량,m x : mass of the sample solution (x) measured using a balance,
my: 시료용액(x)에 첨가된 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액(y)의 질량m y : Mass of the internal standard solution (y) in which any one isotope selected from 33 S, 34 S and 36 S added to the sample solution (x) is concentrated
my': 보정용 황 표준용액(z)에 첨가된 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액(y)의 질량m y ': Mass of the internal standard solution (y) in which any one isotope selected from 33 S, 34 S and 36 S is added to the calibration sulfur standard solution (z)
Cz: 보정용 황 표준용액(z)의 농도C z : Concentration of calibration sulfur standard solution (z)
Rx: 시료용액(x)에 존재하는 황의 동위원소 비율 (33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R x : Sulfur isotope ratio present in sample solution (x) (any isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
Ry: 34S 농축 내부표준용액(y)에 존재하는 황의 동위원소 비율 (33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R y : Sulfur isotope ratio present in 34 S concentrated internal standard solution (y) (any isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
Rz: 황 표준용액(z)에 존재하는 황의 동위원소 비율 (34S, 33S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R z : Isotope ratio of sulfur in sulfur standard solution (z) (any isotope selected from 34 S, 33 S and 36 S / 32 S isotope)
Rxi: 시료용액(x)에 존재하는 황의 i번째 동위원소 비율 (32S/32S, 33S/32S, 34S/32S, 36S/32S )R xi : I-isotope ratio of sulfur in sample solution (x) ( 32 S / 32 S, 33 S / 32 S, 34 S / 32 S, 36 S / 32 S)
Rzi: 보정용 황 표준용액(z)에 존재하는 황의 i번째 동위원소 비율 (32S/32S, 33S/32S, 34S/32S 또는 36S/32S )R zi : i-isotopic ratio of sulfur present in the calibration sulfur standard solution (z) ( 32 S / 32 S, 33 S / 32 S, 34 S / 32 S or 36 S / 32 S)
Rb: 시료혼합용액의 황 동위원소 비율(34S, 33S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R b : Sulfur isotope ratio of the sample mixture solution (any one isotope selected from 34 S, 33 S and 36 S / 32 S isotope)
Rb': 보정용액의 황 동위원소 비율(33S, 34S 및 36S 중 중에서 선택된 어느 하나의 동위원소/32S 동위원소) R b ' : Sulfur isotope ratio of the correction solution (any one isotopically selected from 33 S, 34 S and 36 S / 32 S isotope)
w: 건조질량 보정인자w: dry mass correction factor
Cblank: 바탕시료의 농도C blank : concentration of blank sample
본 발명은 황이 함유된 유기화합물의 정량 방법에 관한 것이다. 보다 상세하게는 정량하고자 하는 유기화합물에 황의 동위원소 중 한가지(33S, 34S 및 36S 중)가 농축된 무기물 형태의 황 용액을 내부표준물질로 첨가하여 시료혼합용액을 만들고 황 원소 표준용액에도 같은 내부표준물질을 첨가한 보정용액을 만든 다음 시료혼합용액과 보정용액의 황 동위원소 비를 비교 측정함으로써 유기화합물을 정량하는 방법에 관한 것이다. 본 발명은 거대분자인 생체물질, 특히 메티오닌이나 시스테인을 포함하는 펩티드 또는 단백질의 정량에서 매우 유용하게 사용될 수 있으며, 또한 정확한 정량이 어려운 흡습성이 강하거나 수화물 형태의 유기화합물을 정량 시 매우 유용하게 사용될 수 있는 정량 방법이다. The present invention relates to a method for quantifying sulfur-containing organic compounds. In more detail, a sample mixture solution is prepared by adding a sulfur solution in the form of an inorganic substance in which one of sulfur isotopes (of 33 S, 34 S and 36 S) is concentrated to the organic compound to be quantified as an internal standard. In addition, the present invention relates to a method for quantifying organic compounds by preparing a calibration solution containing the same internal standard and then comparing and measuring the isotope ratios of the sample mixture solution and the calibration solution. The present invention can be very useful for the determination of macromolecules, particularly peptides or proteins containing methionine or cysteine, and also very useful for the determination of hygroscopic or hydrate-type organic compounds that are difficult to accurately quantify. Quantitative method.
본 발명의 정량방법은 특히 유기화합물이나 단백질/펩티드 등의 고순도 일차표준물질에 대한 신뢰성이 높고 일관성 있는 정량 결과를 제공할 수 있어 고순도 표준용액의 특성 분석과 측정표준 확립에 활용될 수 있다. 이렇게 만들어진 표준용액은 다양한 유기화합물과 생체분자의 정량분석을 위한 보정용 표준용액으로 사용되어 정량 결과의 신뢰성을 확보하는데 활용될 수 있다. The quantitative method of the present invention can provide highly reliable and consistent quantitative results for high-purity primary standards such as organic compounds or proteins / peptides, and thus can be utilized for characterization and establishment of measurement standards for high-purity standard solutions. The standard solution thus prepared can be used as a standard solution for calibration for quantitative analysis of various organic compounds and biomolecules, and can be utilized to secure reliability of quantitative results.
도 1의 (A)는 황 동위원소 자연 존재비(34S/32S)를 갖는 시료용액(x)과 34S 고농축 내부표준용액(y)으로 이루어진 시료혼합용액(b)을 나타낸 모식도이고, (B)는 황 원소 표준용액(z)과 34S 고농축 내부표준용액(y)으로 이루어진 보정용액(b')을 나타낸 모식도이다.Figure 1 (A) is a schematic diagram showing a sample mixture solution (b) consisting of a sample solution (x) having a natural abundance ratio of sulfur ( 34 S / 32 S) and a 34 S high concentration internal standard solution (y), ( b) is a schematic view showing a calibration solution (b ') consisting of a sulfur element standard solution (z) and S 34 highly concentrated internal standard solution (y).
도 2는 동위원소 희석 유도결합 플라스마 질량분석법(ICP/MS)을 이용한 황이 함유된 유기화합물의 정량방법에 대한 개념도이다.2 is a conceptual diagram of a method for quantifying sulfur-containing organic compounds using isotope dilution inductively coupled plasma mass spectrometry (ICP / MS).
도 3은 황 동위원소 희석시 시료혼합용액과 보정용액의 동위원소 비율과 error magnification factor(EMF)의 관계를 나타내는 그래프이다. R은 황 동위원소 비(34S/32S)이다.Figure 3 is a graph showing the relationship between the isotope ratio and the error magnification factor (EMF) of the sample mixture solution and the correction solution when the sulfur isotope dilution. R is the sulfur isotope ratio ( 34 S / 32 S).
도 4는 황 동위원소 측정 기반 인성장호르몬의 정량결과를 나타낸 것이다.Figure 4 shows the quantitative results of the phosphorus growth hormone based sulfur isotope measurement.
(A)는 1차 배치에서 제조된 인성장호르몬의 정량결과이고, (B)는 황 동위원소 기반 정량과 아미노산 기반 정량 결과를 비교한 것으로 I, F, P, V는 각각 단백질을 아미노산 수준으로 가수분해한 후 isoleucine, phenylalanine, proline, valine을 정량하여 단백질의 함량을 산출한 결과이다.(A) is the quantification result of phosphorus growth hormone prepared in the first batch, (B) is a comparison of sulfur isotope based quantification and amino acid based quantification results, I, F, P, V is the protein level at the amino acid level, respectively After hydrolysis, isoleucine, phenylalanine, proline and valine were quantified to calculate the protein content.
도 5는 인성장호르몬의 SEC-UV 크로마토그램이다. 3.3분의 주 피크는 인성장호르몬의 피크이고 4.1분의 작은 피크는 작은분자에 해당한다.5 is a SEC-UV chromatogram of phosphorus growth hormone. The main peak of 3.3 minutes is the peak of phosphorus growth hormone and the small peak of 4.1 minutes corresponds to the small molecule.
도 6은 용매 내에 포함된 적은양의 황 포함 불순물 분석을 위해 SEC으로 분리한 성분들을 ICP/MS에 연결하여 황 원소에 해당하는 m/z 32와 34만을 모니터한 결과이다. 3.3분의 인성장호르몬 분자에 해당하는 피크 이후의 작은 황 포함 불순물에 의한 피크는 보이지 않는다. FIG. 6 shows the results of monitoring only m / z 32 and 34 corresponding to elemental sulfur by connecting SEC separated components to ICP / MS for the analysis of the small amount of sulfur-containing impurities contained in the solvent. There is no peak due to small sulfur-containing impurities after the peak corresponding to the 3.3 minute phosphorus growth hormone molecule.
도 7은 2차 배치에서 제조된 인성장호르몬의 황 동위원소 기반 정량결과 및 아미노산 기반 정량결과이다.7 is a sulfur isotope-based quantitative result and amino acid-based quantitative result of the phosphorus growth hormone prepared in the second batch.
도 8은 인성장호르몬 T2 펩티드의 황 동위원소 기반 정량결과 및 아미노산 기반 정량결과이다.8 is a sulfur isotope-based quantification results and amino acid-based quantification results of the phosphorus growth hormone T2 peptide.
도 9는 인성장호르몬 T11 펩티드의 황 동위원소 기반 정량결과 및 아미노산 기반 정량결과이다.9 is a sulfur isotope-based quantitative result and amino acid-based quantitative result of the phosphorus growth hormone T11 peptide.
도 10은 메티오닌의 황 동위원소 기반 정량 결과이다. 10 is a sulfur isotope based quantification result of methionine.
도 11은 시료 전처리법에 따른 NIST SRM 2389a시료의 황 동위원소 기반 정량 결과이다.11 is a sulfur isotope based quantification result of the NIST SRM 2389a sample according to the sample pretreatment method.
도 12는 2차 배치에서 제조된 인성장호르몬의 균질도 평가 결과이다.12 is a result of homogeneity evaluation of phosphorus growth hormone prepared in the secondary batch.
도 13은 2차 배치에서 제조된 인성장호르몬의 황 동위원소 기반 인증결과 및 아미노산 혹은 펩타이드 기반 정량 결과이다.Figure 13 is a sulfur isotope-based authentication result and amino acid or peptide-based quantification results of the phosphorus growth hormone prepared in the second batch.
본 발명은 황 동위원소 비를 이용한 황이 함유된 유기화합물의 정량방법에 관한 것이다. 보다 상세하게는 유기화합물에 함유된 황 동위원소 비를 측정하고, 측정된 황 동위원소 비로부터 황이 함유된 유기 화합물을 양을 계산하는 정량방법에 관한 것이다. 상기 유기화합물에 함유된 황 동위원소 비를 측정하는 방법은 유도결합 플라스마 질량분석기를 이용하는 것이 바람직하지만 이에 한정하지 않는다.The present invention relates to a method for quantifying sulfur-containing organic compounds using a sulfur isotope ratio. More specifically, the present invention relates to a quantitative method of measuring a sulfur isotope ratio contained in an organic compound and calculating an amount of sulfur-containing organic compound from the measured sulfur isotope ratio. The method for measuring the sulfur isotope ratio contained in the organic compound is preferably, but not limited to, using an inductively coupled plasma mass spectrometer.
자연계에 존재하는 황은 32S, 33S, 34S, 36S의 4 종류의 동위원소가 알려져 있고, 그 중에서 대부분을 차지하는 동위원소인 32S는 95.02%, 34S는 4.21%를 차지하고 있다. 본 발명은 시료용액(x)에서 유기화합물 내에 함유된 황 동위원소 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소와 32S의 비를 이용하는 것이 특징이며, 보다 상세하게는 상기 시료용액에 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액(y)을 넣어 희석한 시료혼합용액(b)의 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소 비(Rb)와, 황 표준용액(z)과 상기와 동일한 내부표준용액(y)으로 이루어진 보정용액(b')의 해당 동위원소 비(Rb')를 이용하는 것이다. There are four known isotopes of sulfur in nature: 32 S, 33 S, 34 S, and 36 S. Among them, 32 S, the most isotope, is 95.02% and 34 S is 4.21%. The present invention is characterized by using the ratio of any one isotope selected from the sulfur isotopes 33 S, 34 S and 36 S and 32 S contained in the organic compound in the sample solution (x), and more specifically, the sample solution. to 33 S, 34 S and 36 S any one of the isotopes is a into the concentrated internal standard solution (y) was diluted sample mixed solution (b) of 33 S, 34 S and 36 S any one of isotopes selected from the group consisting of selected from the group consisting of to use an element / 32 S isotope ratio (R b) and a sulfur standard solution (z) with the same correction consisting of an internal standard solution (y) solution (b ') the isotopic ratio (R b') of the .
본 발명의 황 동위원소 비(33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)를 이용한 황이 함유된 유기화합물의 정량방법의 바람직한 일 실시예는A preferred embodiment of the method for quantifying sulfur-containing organic compounds using the sulfur isotope ratio of the present invention (any one isotope selected from 33 S, 34 S and 36 S / 32 S isotope) is
(1) 황이 함유된 유기화합물을 포함하는 시료용액(x)을 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액(y)으로 희석하여 이론적 동위원소 비(33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)가 1이 되도록 시료혼합용액(b)을 제조하는 단계;(1) a sample solution (x) comprising a containing organic compound of sulfur 33 S, 34 S and 36 S is diluted with any one of the internal standard solution, the isotope concentration (y) selected from the theoretical isotope ratio (33 Preparing a sample mixture solution (b) such that any one isotope selected from S, 34 S and 36 S / 32 S isotope is 1;
(2) 상기 단계(1)과 동시에, 황 동위원소 비가 자연존재 비인 황 표준용액(z)과 상기 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액(y)을 이론적 동위원소 비(33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)가 0.2 내지 5의 값이 되도록 혼합하여 보정용액(b')을 제조하는 단계;(2) Simultaneously with step (1), sulfur standard solution (z) having a sulfur isotope ratio in nature and internal standard solution (y) in which any one isotope selected from 33 S, 34 S and 36 S is concentrated Preparing a correction solution (b ') by mixing the theoretical isotope ratios (any one isotope selected from 33 S, 34 S, and 36 S / 32 S isotope) to a value of 0.2 to 5;
(3) 상기(1)의 황이 함유된 유기화합물 내의 황을 무기물 형태인 황산화물(sulfate)로 분해 및 회수하는 단계; 및 (3) decomposing and recovering sulfur in the sulfur-containing organic compound of (1) to sulfur oxide (sulfate) in inorganic form; And
(4) 상기 단계(3)에서 회수된 시료혼합용액의 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소 비와 상기 단계 (2)에서 제조된 보정용액의 해당 동위원소 비를 측정하는 단계;를 포함하는 황이 함유된 유기화합물의 정량방법이다. (4) any one isotope / 32 S isotope ratio selected from 33 S, 34 S and 36 S of the sample mixture solution recovered in step (3); Measuring the isotope ratio of the calibration solution prepared in step (2).
본 발명의 정량방법은 황이 함유된 유기화합물은 제한 없이 정량하는 것이 가능하지만, 통상적인 화학저울, 질량분석기, 또는 다른 분석 장비를 이용하여 정량을 하는데 있어 편향의 가능성이 높은 흡습성이 강하거나 수화물 형태의 유기화합물 또는 생체물질들을 정량하는데 바람직하다. 상기 바람직한 생체물질은 펩티드, 단백질 또는 황이 포함되도록 변형된 DNA, RNA 또는 PNA 등이 있으나 이에 한정하지 않는다. 상기 펩티드와 단백질은 메티오닌, 시스테인 또는 둘 다를 포함하는 펩티드 또는 단백질인 것이다. 상기 단백질은 주로 탄소, 수소, 산소로 이루어져 있고, 낮은 비율의 황도 포함하고 있다. 이외에도 인과 같은 헤테로원자(heteroatom)를 포함하는 경우도 있으나 이는 특정 단백질에만 변형된 형태로 나타날 뿐이다. 상기 탄소, 수소 및 산소는 단백질의 조성 중 상대적 존재비가 높은 원소이지만, 공기나 측정에 사용하는 용매에도 존재하는 경우가 많아 바탕 신호의 제어가 어려울 수 있다. 따라서 존재비는 작으나 대부분의 단백질에 시스테인이나 메티오닌 형태로 존재하는 황 측정에 기반을 둔 단백질의 절대정량법이 바람직하다.In the quantitative method of the present invention, sulfur-containing organic compounds can be quantified without limitation, but hygroscopic or hydrate forms that have a high possibility of deflection in quantification using conventional chemical balances, mass spectrometers, or other analytical equipment It is preferable to quantify organic compounds or biomaterials. The preferred biomaterials include, but are not limited to, DNA, RNA or PNA modified to include peptides, proteins or sulfur. The peptide and protein are peptides or proteins comprising methionine, cysteine or both. The protein consists mainly of carbon, hydrogen and oxygen, and contains a low percentage of sulfur. In addition, it may contain a heteroatom (heteroatom), such as phosphorus, but it appears only in a modified form of a specific protein. Although carbon, hydrogen, and oxygen are elements having a high relative abundance in the composition of protein, it is often present in air or a solvent used for measurement, and thus it may be difficult to control the background signal. Therefore, absolute quantitation of proteins based on sulfur measurement, which is small in abundance but is present in the form of cysteine or methionine in most proteins, is desirable.
상기 단계(3)에서, 황이 함유된 유기화합물 내의 황을 무기물 형태인 황산화물(sulfate)로 분해하는 방법은 상기 시료혼합용액(b)에 전자파 조사와 산분해를 동시에 처리하여 상기 황이 함유된 유기화합물 내의 황을 원소 형태인 황산화물(sulfate)로 분해 하는 것으로, 보다 상세하게는 산 처리한 된 시료혼합용액(b)을 전자파 오븐에 넣어 10분 내지 240 분 동안 100 내지 300℃에서 유지하면서 산분해 하고, 추가로 반복하여 전자파 오븐 처리를 하는 것을 포함할 수 있다. 전자파조사와 산분해를 동시에 처리하는 것은 효과적으로 황을 무기원소 형태로 분해 할 수 있는 방법이지만, 이에 한정하지 않고 다양한 조건으로 황을 무기물 형태로 분해해도 무방하다. 또한, 상기 산분해에서 사용될 수 있는 산은 황산을 제외한 질산, 과염소산이 바람직하지만 이에 한정하지 않고, 산화력을 높이기 위해 과산화수소(H2O2)를 더 포함하는 조건으로 산분해를 실시할 수 있다. In the step (3), a method of decomposing sulfur in an organic compound containing sulfur into sulfur oxide (sulfate), which is an inorganic substance, is performed by simultaneously treating the sample mixture solution (b) with electromagnetic wave irradiation and acid decomposition. The sulfur in the compound is decomposed into sulfur oxide (sulfate) in an elemental form. More specifically, the acid-treated sample mixture solution (b) is placed in an electromagnetic oven and maintained at 100 to 300 ° C. for 10 to 240 minutes. Decomposing and further repeating the electromagnetic oven treatment. Simultaneous treatment of electromagnetic radiation and acid decomposition can be used to effectively decompose sulfur into inorganic elements, but not limited thereto, and sulfur may be decomposed into inorganic materials under various conditions. In addition, the acid that can be used in the acid decomposition is preferably nitric acid except per sulfuric acid, perchloric acid, but not limited thereto, and may be subjected to acid decomposition under conditions further including hydrogen peroxide (H 2 O 2 ) to increase the oxidizing power.
분해하고자 하는 유기화합물의 탄소, 수소, 질소 및 황 원자의 총 몰수를 1로 기준하였을 때, 산화제의 몰 비가 적어도 10배 이상 되도록 사용하는 것이 바람직하다. 10배 미만 몰 비의 산화제를 첨가하는 경우, 산분해가 충분하게 일어나지 않을 수 있으며, 초과하는 경우에는 큰 문제는 없으나 최종 분석 용액의 산농도가 ICP/MS 분석에 적합한 10%를 넘지 않도록 하는 것이 좋다. Based on the total moles of carbon, hydrogen, nitrogen and sulfur atoms of the organic compound to be decomposed to 1, it is preferable to use the molar ratio of the oxidizing agent at least 10 times or more. If an oxidizing agent of less than 10 molar ratio is added, the acid decomposition may not occur sufficiently, and if it exceeds, there is no big problem, but it is recommended that the acid concentration of the final assay solution is not more than 10% suitable for ICP / MS analysis. good.
상기 단계(4)에서 획득된 시료혼합용액의 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소 비와 보정용액의 해당 동위원소 비를 얻으면 황 함량으로 환산한 단백질 함량은 하기 <식 1>에 의해 계산될 수 있다. Isotope ratio / 32 S isotope ratio selected from 33 S, 34 S and 36 S of the sample mixture solution obtained in step (4) Once the corresponding isotope ratio of the calibration solution is obtained, the protein content in terms of sulfur content can be calculated by the following <Equation 1>.
하기 <식 1>에서 Rx와 Rz는 IUPAC에서 주어진 황의 자연존재비 0.042/0.9501(34S/32S)를 사용하거나 동위원소 비 측정용 질량분석기를 이용하여 직접 측정한 값을 이용할 수 있다. In Equation 1, R x and R z may be directly measured using a natural existence ratio of 0.042 / 0.9501 ( 34 S / 32 S) given sulfur in IUPAC or using a mass spectrometer for isotope ratio measurement.
<식 1><Equation 1>
Figure PCTKR2013011971-appb-I000002
Figure PCTKR2013011971-appb-I000002
Cx: 측정하고자 하는 시료용액(x)의 농도, C x : concentration of the sample solution (x) to be measured,
mx: 저울을 이용하여 채취한 시료 또는 시료용액(x)의 질량,m x : mass of sample or sample solution (x)
my: 시료용액(x)에 첨가된 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액(y)의 질량m y : Mass of the internal standard solution (y) in which any one isotope selected from 33 S, 34 S and 36 S added to the sample solution (x) is concentrated
my': 보정용 황 표준용액(z)에 첨가된 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액(y)의 질량m y ': Mass of the internal standard solution (y) in which any one isotope selected from 33 S, 34 S and 36 S is added to the calibration sulfur standard solution (z)
Cz: 보정용 황 표준용액(z)의 농도C z : Concentration of calibration sulfur standard solution (z)
Rx: 시료용액(x)에 존재하는 황의 동위원소 비율(33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R x : Sulfur isotope ratio present in sample solution (x) (any one isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
Ry: 34S 농축 내부표준용액(y)에 존재하는 황의 동위원소 비율(33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R y : Sulfur isotope ratio present in 34 S concentrated internal standard solution (y) (any isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
Rz: 황 표준용액(z)에 존재하는 황의 동위원소 비율(34S, 33S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R z : Isotope ratio of sulfur in sulfur standard solution (z) (any isotope selected from 34 S, 33 S and 36 S / 32 S isotope)
Rxi: 시료 또는 시료용액(x)에 존재하는 황의 i번째 동위원소 비율 (32S/32S, 33S/32S, 34S/32S, 36S/32S )R xi : i-isotopic ratio of sulfur present in the sample or sample solution (x) ( 32 S / 32 S, 33 S / 32 S, 34 S / 32 S, 36 S / 32 S)
Rzi: 보정용 황 표준용액(z)에 존재하는 황의 i번째 동위원소 비율 (32S/32S, 33S/32S, 34S/32S 또는 36S/32S )R zi : i-isotopic ratio of sulfur present in the calibration sulfur standard solution (z) ( 32 S / 32 S, 33 S / 32 S, 34 S / 32 S or 36 S / 32 S)
Rb: 시료혼합용액의 황 동위원소 비율(34S, 33S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R b : Sulfur isotope ratio of the sample mixture solution (any one isotope selected from 34 S, 33 S and 36 S / 32 S isotope)
Rb': 보정용액의 황 동위원소 비율(33S, 34S 및 36S 중 중에서 선택된 어느 하나의 동위원소/32S 동위원소) R b ' : Sulfur isotope ratio of the correction solution (any one isotopically selected from 33 S, 34 S and 36 S / 32 S isotope)
w: 건조질량 보정인자w: dry mass correction factor
Cblank: 바탕시료의 농도C blank : concentration of blank sample
시료 전처리 과정에서 첨가해 주는 시약, 용매 및 용기 내에 불순물 형태의 황이 존재 할 수 있으므로, 바탕시료를 준비하여 Cblank(바탕시료의 황 농도값)를 구하고 시료에서 측정한 황 농도로부터 Cblank를 빼 주어야 순수한 시료 중 황 농도를 구할 수 있다. Sulfur in the form of impurities may be present in reagents, solvents and containers added during sample pretreatment. Prepare a blank sample to obtain a C blank (sulfur concentration of the base sample) and subtract C blank from the sulfur concentration measured in the sample. The concentration of sulfur in pure samples can be determined.
본 발명에서 사용되는 용매는 탈이온수, 탈이온수로 만든 묽은 산 용액 또는 완충용액이 바람직하며, 이들 내에 포함된 황의 양이 0.02 mg/kg이하 인 것이 바람직하고, 더욱 바람직하게는 10 ng/kg 이하의 황을 포함하는 것이다. 상기와 같이 결정된 시료 중 황 함량은 유기화합물의 분자식을 이용하여 유기화합물의 함량을 산출하는데 사용될 수 있다. 그러나, 상기와 같이 구한 시료 중 황 함량에는 분석대상 외에 황을 함유한 다른 불순물도 포함되어 있을 수 있기 때문에 황 함유 불순물을 정량하여 총 황 함량에서 빼 주어야 SI 단위계로의 측정 소급성(traceability)을 갖출 수 있다. 상기 황 함유 불순물의 측정방법은 단백질의 경우 CE-ICP/MS 또는 SEC-ICP/MS를 사용하는 것이 바람직하지만 이에 한정하지 않는다. 아래 실시 예에서는 BioSep SEC-3000 칼럼(300 ×4.6mm)을 사용하고 50 mM 중탄산 암모늄(ammonium bicarbonate)을 용리액으로 1 ㎖/min 유속으로 흘려 UV 및 ICP/MS로 불순물을 정량하였다.The solvent used in the present invention is preferably deionized water, a dilute acid solution or buffer solution made of deionized water, and the amount of sulfur contained in them is preferably 0.02 mg / kg or less, more preferably 10 ng / kg or less. It contains sulfur. The sulfur content in the sample determined as described above may be used to calculate the content of the organic compound using the molecular formula of the organic compound. However, since the sulfur content in the sample obtained as described above may include other impurities containing sulfur in addition to the analyte, sulfur-containing impurities should be quantified and subtracted from the total sulfur content to determine traceability in SI units. Can be equipped. The method for measuring sulfur-containing impurities is preferably, but not limited to, CE-ICP / MS or SEC-ICP / MS for proteins. In the following examples, impurities were quantified by UV and ICP / MS using a BioSep SEC-3000 column (300 x 4.6 mm) and 50 mM ammonium bicarbonate as an eluent at a flow rate of 1 ml / min.
이하, 실시 예 및 비교 예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시 예에 의해 제한되지 않는다는 것은 당해 기술 분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다. Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. These examples are only for illustrating the present invention in more detail, it is obvious to those skilled in the art that the scope of the present invention is not limited by these examples.
실시예 1: 황 원소 기반의 인성장호르몬 단백질의 정량(1차) 실시.Example 1: Quantitative (primary) determination of phosphorus growth hormone protein based on elemental sulfur.
유기화합물 내의 황을 무기물 형태로 완전 분해하여 황 함량을 측정하고 SEC-ICP/MS를 통해 황 함유 불순물을 평가하고, SI 소급성을 갖춘 황 함량 측정 기반 유기화합물 정량방법을 실시하였다. 인성장호르몬은 평균분자량 22,125 Da으로 3개의 메티오닌과 4개의 시스테인을 갖고 있어 분자 당 7개의 황 원자를 함유하고 있다. 따라서 1몰(mole)의 hGH은 7 mole의 황 원자에 해당한다. Sulfur content in organic compounds was completely decomposed into inorganic form to measure sulfur content, sulfur-containing impurities were evaluated through SEC-ICP / MS, and sulfur content measurement based organic compound quantification method with SI traceability was performed. Phosphorus growth hormone has three methionine and four cysteines with an average molecular weight of 22,125 Da and contains seven sulfur atoms per molecule. Thus, one mole of hGH corresponds to seven moles of sulfur.
(1) 혼합용액 및 보정용액의 제조(도 1 및 도 2 참조)(1) Preparation of Mixed Solution and Calibration Solution (See FIG. 1 and FIG. 2)
① 인성장호르몬(hGH) 표준용액(1차 배치의 경우 황 함량으로 약 65 mg/kg 농도) 0.5g씩 5개 용기(vial)로부터 각각 5개의 테플론 계열 용기(TFM vessel)에 채취하였다. ① Phosphorus Growth Hormone (hGH) standard solution (concentration of about 65 mg / kg in sulfur content in the first batch) of 0.5 g from each of five vessels (vial) were collected in each of the five Teflon-based vessels (TFM vessel).
② 채취한 시료에 32.5 mg/kg의 34S 농축 표준용액(Oak Ridge National Lab.)을 1 mL를 첨가하여 예상 동위원소 비(34S/32S)가 1의 시료혼합용액(sample blend)이 되도록 준비 (5개 sample blend)하였다.② Add 1 mL of 32.5 mg / kg 34 S concentrated standard solution (Oak Ridge National Lab.) To the sample, and the expected isotope ratio ( 34 S / 32 S) is 1 (5 sample blends) were prepared.
③ 32.5 mg/kg의 sulfur 표준용액 1 mL와 위 34S 농축 표준용액 1 mL를 섞어주고 10 %(희석비) HNO3로 30g으로 희석하여 역시 동위원소 비 1의 보정용액(calibration blend) 5개를 준비하였다.Mix 1 mL of 32.5 mg / kg sulfur standard solution with 1 mL of the above 34 S concentrated standard solution, dilute to 30 g with 10% (dilution ratio) HNO 3 , and give 5 calibration blends of isotope ratio 1. Was prepared.
④ Sample blend가 들어있는 테플론 계열 용기(TFM vessel)에 3 mL 질산, 3 mL 탈이온수, 2 mL의 과산화수소수를 첨가하였다. ④ 3 mL nitric acid, 3 mL deionized water, and 2 mL hydrogen peroxide water were added to a Teflon-based vessel containing a sample blend.
⑤ 테플론 계열 용기(TFM vessel)를 밀봉하고 전자파 오븐에 넣어 15분간 200℃ 까지 가열하고, 20분간 200℃ 를 유지하여 전자파-보조된 산분해를 실시하였다. ⑤ The Teflon-based vessel was sealed and placed in an electromagnetic oven, heated to 200 ° C. for 15 minutes, and maintained at 200 ° C. for 20 minutes to perform electromagnetic-assisted acid decomposition.
⑥ 테플론 계열 용기(TFM vessel)가 어느 정도 냉각된 후 용기를 충분히 흔들어주어 용기 내부 용액을 균질화 하였다. ⑥ After the Teflon vessel was cooled to some extent, the vessel was shaken sufficiently to homogenize the solution inside the vessel.
⑦ TFM 압력 용기를 해체하여 sample blend 용액을 회수하고 탈이온수를 사용하여 30 g으로 희석하였다. ⑦ Disassemble the TFM pressure vessel to recover the sample blend solution and dilute to 30 g with deionized water.
한편, 최적 동위원소 비는 동위원소 비(34S/32S)가 1에 가까울수록 측정 편향이 최소화되므로(도 3 참조), 동위원소 비(34S/32S) 1을 동위원소희석의 목표 동위원소 비(34S/32S)로 하였다. 따라서 본 실시예 1에서는 상기와 같이 미국국립표준기술연구소(National Institute of Standards and Tchnology;NIST)에서 제조하여 시판하는 황 표준용액(SRM 3154)(z)을 희석한 작업용액과 34S 농축 내부표준용액(y)을 혼합하여 동위원소 비(34S/32S)가 1이 되도록 보정용액(b') 을 제조하였다.(도 1 및 도 2 참조). On the other hand, optimal isotope ratio is the goal of the so closer to 1 the isotope ratio (34 S / 32 S) measured deflection is minimized (see Fig. 3), the isotope ratio (34 S / 32 S) 1 isotope dilution Isotope ratio ( 34 S / 32 S). Therefore, the first embodiment in the US National Institute of Standards and Technology as described above (National Institute of Standards and Tchnology; NIST) prepared by diluting the sulfur standard solution (SRM 3154) (z), available working solution and in the 34 S concentration internal standard The solution (y) was mixed to prepare a calibration solution (b ') such that the isotope ratio ( 34 S / 32 S) was 1 (see FIGS. 1 and 2).
(2) ICP/MS 측정(2) ICP / MS measurement
① Thermo사의 고분해능 ICP/MS를 고분해능(R>10,000)으로 최적화 하였다. (medium resolution도 산, 용매, 유기물 및 ICP 가스로부터 생성되는 이온 간섭을 제거하기에 충분하나 탈이온수와 사용한 산 및 기구에 존재하는 sulfur의 높은 바탕신호에 의한 영향을 최소화하기 위해 고분해능으로 기기 감도를 낮추어 측정): 준비된 시료혼합용액(sample blend; b)과 보정용액(Calibration blend, b')는 32S와 34S에 대해 약 60만-70만 cps의 신호세기를 나타내었다.① Thermo's high resolution ICP / MS was optimized for high resolution (R> 10,000). (Medium resolution is sufficient to eliminate ionic interference from acids, solvents, organics and ICP gases, but the device sensitivity is improved with high resolution to minimize the effects of high background signals of deionized water and sulfur in the used acid and apparatus. Lower measurement): The prepared sample blend (b) and calibration blend (b ') showed signal strengths of about 600,000-700,000 cps for 32 S and 34 S.
32S와 34S를 빠른 속도로 sweeping하면서 동위원소 비 측정하였으며, ID-ICP/MS에 의한 동위원소 비 측정시 주기적으로 동위원소 비가 알려진 동위원소 비 표준시료의 동위원소 비를 같이 측정하여 mass bias correction 및 drift를 bracketing correction으로 보정하였다.② Isotopically measured isotopes while sweeping 32 S and 34 S at high speeds, and isotopic ratios of known isotope ratio standard samples were periodically measured together with ID-ICP / MS. The bias correction and drift were corrected by bracketing correction.
③ 측정된 동위원소 비를 이용하여 측정값을 산출하고 측정에 영향을 주는 각 인자에 대한 불확도 평가결과를 합성하여 측정 불확도를 추정하였다. ③ The measurement uncertainty was calculated using the measured isotope ratio, and the uncertainty of the estimation of each factor affecting the measurement was synthesized to estimate the measurement uncertainty.
(3) ID-ICP/MS에 의한 hGH 1차 배치 황 함량 측정 결과(3) Result of measurement of hGH primary batch sulfur content by ID-ICP / MS
hGH 1차 배치는 제조사 제공 농도가 303 μmol/kg 이었으며, 아미노산 기반 정량을 통해 290 μmol/kg(황 함량으로 65 mg/kg) 임이 확인되었다. The hGH primary batch had a manufacturer-supplied concentration of 303 μmol / kg and was determined to be 290 μmol / kg (65 mg / kg sulfur content) based on amino acid based quantification.
① hGH 1차 배치의 황 함량 측정 결과는 표 1 및 도 4A에 기재하였다. 종래 방법인 아미노산 기반 정량 결과와 비교하면 5 % 정도 황 기반 정량 결과가 높게 측정되었다.(도 4B 참조)  ① The sulfur content measurement results of the hGH primary batch are shown in Table 1 and FIG. 4A. Compared to the amino acid based quantitative result of the conventional method, the sulfur based quantitative result was about 5% higher.
표 1. 인성장호르몬 표준용액 1차 배치의 황(sulfur) 측정결과.Table 1. Sulfur measurement results of the first batch of phosphorus growth hormone standard solution.
Figure PCTKR2013011971-appb-I000003
Figure PCTKR2013011971-appb-I000003
② 본 발명의 황 원소 기반 단백질 정량 결과가 종래의 아미노산 기반 결과에 비해 정량 값이 높은 이유를 확인하기 위하여, 우선 시료 중 황 원소를 포함한 작은 분자의 불순물이 존재하여 총 황 함량에 기여했을 가능성을 크기배제 크로마토그래피(SEC)-UV와 SEC-ICP/MS로 확인하였다.(도 5 및 도 6 참조)  ② In order to confirm why the sulfur element-based protein quantitative result of the present invention has a higher quantitative value than the conventional amino acid-based result, first, it is possible that small molecules including elemental sulfur in the sample existed and contributed to the total sulfur content. Size Exclusion Chromatography (SEC) -UV and SEC-ICP / MS confirmed (see Figures 5 and 6).
SEC-UV에서 4분 이후에 용출되는 작은 피크가 작은 분자에 해당하는 피크이며, SEC-ICP/MS에서 MS를 황 이온에 해당하는 m/z 32 및 34에 고정시켜두고 이온크로마토그램을 획득하여 해당 머무름 시간에 검출 가능한 피크가 없음을 확인하였다. 상기 결과는 황 포함 작은 분자 불순물이 총 황 함량 측정에 주는 영향이 0.5 % 미만이었다. 따라서 본 발명의 실시예 1에서의 황 포함 불순물에 의해 원소기반 단백질 정량 결과가 과대평가되었을 가능성은 없는 것으로 판단되었다. The small peak eluting after 4 minutes in SEC-UV is the small molecule peak, and the ion chromatogram is obtained by fixing MS to m / z 32 and 34 corresponding to sulfur ions in SEC-ICP / MS. It was confirmed that there was no detectable peak at this retention time. The results showed that the effect of sulfur-comprising small molecular impurities on the determination of total sulfur content was less than 0.5%. Therefore, it was determined that the element-based protein quantitative results were not likely to be overestimated by the sulfur-containing impurities in Example 1 of the present invention.
실시예 2: 황 원소 기반의 인성장호르몬 단백질의 정량(2차 배치) 실시.Example 2: Quantitative (secondary batch) determination of phosphorus growth hormone protein based on elemental sulfur.
상기 실시예 1에서 실시한 동일한 방법으로 새로 제조된 hGH 2차 배치에 대해서 인성장호르몬 단백질의 정량을 실시하였다. 시료의 농도가 1차 배치에 비해 1/3 정도로 낮게 제조되었기 때문에 분석용 시료 채취량을 0.5 g에서 1.0 g으로 늘리고 이에 맞추어 농축동위원소 용액의 농도를 조절하여 시료혼합용액과 보정용액의 동위원소 비를 기존과 마찬가지로 1에 가깝게 만들었다. 2차 제조된 hGH의 용기(vial)당 시료의 양이 1회 시료 채취량에 모자랐기 때문에 두 개 이상의 용기(vial)l에서 한 개의 분취시료를 채취하였다. 2차 배치의 분석결과는 도 7과 표 2에 기재하였다.Phosphorus growth hormone protein was quantified for the newly prepared hGH secondary batch in the same manner as in Example 1. Since the concentration of the sample was prepared about one-third lower than that of the first batch, the analytical sample volume was increased from 0.5 g to 1.0 g and the concentration of the concentrated isotope solution was adjusted accordingly. We made it as close to 1 as before. One aliquot was taken from two or more vials because the amount of sample per vial of the second prepared hGH was less than the sample volume. The analysis results of the secondary batch are shown in FIG. 7 and Table 2.
표 2. 인성장호르몬 표준용액 2차 배치의 황(sulfur) 측정결과.Table 2. Sulfur measurement results of the second batch of phosphorus growth hormone standard solution.
Figure PCTKR2013011971-appb-I000004
Figure PCTKR2013011971-appb-I000004
실시예 3. hGH T2, T11 펩티드에 대한 원소기반 절대정량 실시.Example 3 Element-Based Absolute Quantitation of hGH T2, T11 Peptides
황 원소기반 hGH 정량에서 이차에 걸쳐 동일한 측정 편향이 관찰됨에 따라 아미노산 기반 정량 결과가 가수분해의 효율 및 부반응에 의해 영향을 받았을 가능성을 검토해 보기 위해 가수분해가 좀 더 용이할 것으로 보이는 hGH의 T2 및 T11 펩티드 표준용액을 준비하여 아미노산 기반 정량 및 황 원소 기반 정량 결과를 비교해 보기로 하였다. As the same measurement bias was observed across the secondary in the determination of elemental hGH based on sulfur, T2 of hGH, which seems to be easier to hydrolyze, to examine the possibility that amino acid-based quantitative results were affected by the efficiency and side reactions of hydrolysis. A T11 peptide standard solution was prepared to compare the results of amino acid based quantification and elemental sulfur based quantification.
인성장호르몬의 N말단으로부터 두 번째 tryptic 펩티드인 T2 펩티드는 LFDNAMLR의 서열을 갖고 있어 황을 포함한 메티오닌이 한 개 존재하므로 펩티드 하나 당 황 원자 하나를 갖고 있어 황 원소 기반 정량이 가능하다. T2 peptide, the second tryptic peptide from the N terminus of the phosphorus growth hormone, has the sequence of LFDNA M LR, so that there is one methionine including sulfur, so it has one sulfur atom per peptide, and thus sulfur element-based quantification is possible.
T11 펩티드도 DLEEGIQTLMGR와 같은 서열을 가져 역시 메티오닌이 한 개 포함되어 있으므로 펩티드 1 당량에 황 원자 1 당량이 함유되어 있다. T2의 농도는 1 mmol/kg 로 제조하였으며 제조사 제공 순도는 99.1 %이고, T11의 농도는 1 mmol/kg으로 만들었고 제조사 제공 순도는 99 %이다. 따라서 각각의 황 원소 예상 함량은 32 mg/kg이다. Since the T11 peptide has the same sequence as DLEEGIQTL M GR and also contains one methionine, one equivalent of the peptide contains one equivalent of sulfur atom. The concentration of T2 was prepared at 1 mmol / kg and the purity provided by the manufacturer was 99.1%, the concentration of T11 was made at 1 mmol / kg and the purity provided by the manufacturer was 99%. Thus, the expected content of elemental sulfur is 32 mg / kg.
도 8 및 표 3으로 기재된 바와 같이 황 원소 기반 펩티드 정량을 통해 T2 펩티드 함량을 확장 불확도 3.1 % 수준으로 측정할 수 있다. 그러나 T2 펩티드에 대한 황 원소 기반 정량결과도 단백질 정량과 마찬가지로 아미노산 기반 정량과 비교하여 10 % 수준의 측정 편향을 보여주고 있다. T11 펩티드는 함량을 0.84 %의 확장불확도로 정량할 수 있었으나 T2 펩티드와 유사한 측정 편향을 보이고 있다 (도 9 및 표 3참조). 따라서 아미노산 기반 정량을 위한 펩티드의 가수분해 시에도 가수분해의 불완전성 및 산분해의 이차반응에 의한 손실이 여전히 존재하거나 관찰된 측정 편향이 다른 요인에 의한 것일 가능성도 완전히 배재할 수는 없다. The elemental sulfur based peptide quantification as described in FIG. 8 and Table 3 can determine the T2 peptide content to a level of 3.1% expansion uncertainty. However, the elemental sulfur based quantification results for the T2 peptide show a 10% measurement bias as compared to amino acid based quantification as well as protein quantification. The T11 peptide could be quantified with an expansion uncertainty of 0.84% but showed a similar measurement bias as the T2 peptide (see FIG. 9 and Table 3). Thus, even in the hydrolysis of peptides for amino acid based quantification, there is still no possibility that the impairment of hydrolysis and the loss due to secondary reaction of acid degradation still exist or that the observed measurement bias is due to other factors.
표 3. 인성장호르몬 T2 펩티드 표준용액의 황(sulfur) 측정결과.Table 3. Sulfur measurement results of phosphorus growth hormone T2 peptide standard solution.
Figure PCTKR2013011971-appb-I000005
Figure PCTKR2013011971-appb-I000005
표 4. 인성장호르몬 T11 펩티드 표준용액의 황(sulfur) 측정결과.Table 4. Sulfur measurement results of phosphorus growth hormone T11 peptide standard solution.
Figure PCTKR2013011971-appb-I000006
Figure PCTKR2013011971-appb-I000006
실시예 4. 메티오닌에 대한 원소기반 절대정량 실시.Example 4 Element-Based Absolute Quantitation of Methionine
단백질에 비해 작은 펩티드 표준용액에 대한 황 원소 기반 정량에서도 단백질 표준용액과 동일한 측정 편향이 관찰됨에 따라 황을 포함한 아미노산 표준용액 (Met 및 Cys)을 제조하여 황 원소 기반 정량법으로 순도분석을 대체하고 아미노산 표준용액을 인증하고 활용하기로 하였다. 이렇게 제조 인증된 아미노산 표준용액은 LC-MS/MS를 이용하여 단백질 및 펩티드를 아미노산 기반으로 정량하는데 활용될 수 있다. 시스테인은 산화반응에 의해 이황화결합 형태로 쉽게 변할 수 있으므로 분석의 복잡성을 피하기 위해 먼저 메티오닌의 표준용액을 준비하고 이에 대한 원소기반 절대정량을 시도하였다. 메티오닌을 이용하여 아미노산 기반 정량 시 메티오닌도 산화 등이 쉽게 일어나므로 LC-MS/MS 분석 시 원형그대로의 메티오닌 뿐 아니라 산화된 메티오닌도 함께 분석할 필요가 있다. Sulfur element-based quantification of small peptide standard solutions compared to proteins resulted in the same measurement bias as protein standard solutions, and amino acid standard solutions (Met and Cys) containing sulfur were prepared to replace purity analysis with sulfur element-based quantification and amino acids. The standard solution was certified and utilized. Thus prepared and certified amino acid standard solution can be utilized to quantify proteins and peptides on an amino acid basis using LC-MS / MS. Since cysteine can be easily changed into disulfide form by oxidation reaction, first, standard solution of methionine was prepared and elemental absolute absolute was tried to avoid the complexity of analysis. Since methionine is easily oxidized based on amino acid-based quantification, it is necessary to analyze oxidized methionine as well as primitive methionine in LC-MS / MS analysis.
제조된 메티오닌 표준용액의 농도는 1 mmol/kg이고 제조사 제공 순도는 99.5 % 이상이었다. 이는 황 함량 32 mg/kg에 해당한다. 메티오닌 표준용액의 황 원소기반 정량 결과는 도 10 및 표 5와 같으며 확장불확도 1 % 이내의 정량 결과를 얻을 수 있었다. 이렇게 제조된 메티오닌 표준용액은 향후 hGH은 물론 hGH의 T2, T11 펩티드와 메티오닌을 포함한 단백질의 아미노산 기반 정량에 활용할 수 있다.The concentration of the prepared methionine standard solution was 1 mmol / kg and the purity provided by the manufacturer was 99.5% or more. This corresponds to a sulfur content of 32 mg / kg. Sulfur element-based quantitative results of the methionine standard solution are shown in FIG. 10 and Table 5, and quantitative results within 1% of the expansion uncertainty were obtained. The methionine standard solution thus prepared can be used for future amino acid-based quantification of hGH as well as proteins including T2, T11 peptide and methionine of hGH.
표 5. 메티오닌 표준용액의 황 원소 기반 정량분석 결과.Table 5. Elemental sulfur based quantitative analysis of methionine standard solution.
실시예 5. 기존 시료 전처리 (전자파조사를 통한 산분해) 방법 및 소량 시료 전처리 방법의 유효성 검토.Example 5 Validation of Existing Sample Pretreatment Methods (Acid Degradation by Electromagnetic Irradiation) and Small Sample Pretreatment Methods
유기화합물 내의 황을 무기물 형태로 완전 분해하여 내부표준용액으로 첨가한 농축동위원소와 충분한 화학적 평형을 위하여 전자파조사와 산분해를 동시에 처리한다. 실시예 1부터 4까지의 실험에 사용된 전자파조사를 통한 산분해 방법은 시료를 100 mL 용량의 밀폐된 테플론 계열 용기 (Teflon vessel)에 채취하여 전자파 오븐에 넣어 15분간 200℃ 까지 가열하고, 20분간 200℃ 를 유지하여 전자파-보조된 산분해를 실시하는 것이다. 사용된 시료 전처리 방법의 유효성 검토를 NIST SRM 2389a (일반적 유기화합물 순도분석에 의해 인증된 아미노산 혼합물 인증표준물질) 시료 내의 황 함량을 측정하여 인증값과 비교함으로서 하고자 하였다. 시료 0.2 g을 테플론 계열 용기에 취하고 농축동위원소 34S(ORNL)을 미리 계산된 농도로 희석하여 vessel에 첨가한 후, 65 % 질산 3mL, 탈이온수 3 mL, 30 % 과산화수소수 2 mL를 첨가하고 산분해를 수행하였다. 또한 소량 시료 산분해를 위한 전처리 방법에 대해서도 NIST SRM 2389a 시료를 분석함으로서 유효성 검토를 실시하였다. 시료 0.2 g을 소량 시료 전용 테플론 용기에 취하고 농축동위원소 34S(ORNL)을 미리 계산된 농도로 희석하여 vessel에 첨가한 후, 65 % 질산 3 mL를 첨가하고 전자파 오븐에 넣어 8분 동안 120 ℃까지 올린 다음, 7분 동안 220 ℃까지 올린 후 220℃에서 20분간 유지하여 전자파-보조된 산분해를 수행하였다. NIST SRM2 389a시료는 아미노산 표준용액으로 메티오닌이 (0.3733 ±0.0108) mg/kg, 시스테인이 (0.2954 ±0.0133) mg/kg 함유되어 있다. 메티오닌은 황 원자 하나를 시스테인은 황 원자 2개를 가지고 있으므로 NIST SRM 2389a 시료가 함유하고 있는 황 함량은 (158.4 ±4.2) mg/kg이다. NIST SRM 2389a시료의 황 함량 측정 결과는 표 6 및 도 11에 기재하였다. 실시예 1부터 4에 사용된 시료 전처리 방법으로 산분해한 시료와 소량 시료 전처리 방법으로 산분해한 시료 모두 측정한 황 함량값이 NIST SRM 2389a의 인증값과 불확도 범위내에서 일치함을 확인할 수 있다.Sulfur in organic compounds is completely decomposed in the form of an inorganic substance, and electromagnetic radiation and acid decomposition are simultaneously processed for sufficient chemical equilibrium with concentrated isotopes added as an internal standard solution. The method of acid decomposition through the electromagnetic irradiation used in the experiments of Examples 1 to 4 was taken in a 100 mL sealed Teflon vessel and placed in an electromagnetic oven and heated to 200 ° C. for 15 minutes, and 20 It is to carry out electromagnetic-assisted acid decomposition by keeping 200 degreeC for minutes. The effectiveness of the sample pretreatment method used was intended by comparing the sulfur content in the NIST SRM 2389a (amino acid mixture certified standard material certified by general organic compound purity analysis) with the certified value. 0.2 g of the sample was taken in a Teflon-based container, and the concentrated isotope 34 S (ORNL) was diluted to a pre-calculated concentration and added to the vessel, followed by 3 mL of 65% nitric acid, 3 mL of deionized water, and 2 mL of 30% hydrogen peroxide solution. Acid decomposition was performed. Also, the pretreatment method for acid decomposition of small samples was analyzed for effectiveness by analyzing NIST SRM 2389a samples. 0.2 g of the sample was taken in a small sample-only Teflon container and the concentrated isotope 34 S (ORNL) was added to the vessel after diluting to a pre-calculated concentration, 3 mL of 65% nitric acid was added and placed in an electromagnetic oven for 120 minutes for 8 minutes. Raised up to, and then raised to 220 ℃ for 7 minutes and maintained at 220 ℃ 20 minutes to perform electromagnetic-assisted acid decomposition. NIST SRM2 389a sample is an amino acid standard solution containing mg / kg of methionine (0.3733 ± 0.0108) and mg / kg of cysteine (0.2954 ± 0.0133). Since methionine has one sulfur atom and cysteine has two sulfur atoms, the NIST SRM 2389a sample contains (158.4 ± 4.2) mg / kg. The sulfur content measurement results of the NIST SRM 2389a sample are shown in Table 6 and FIG. 11. It can be seen that the sulfur content measured in both the acid-decomposed sample and the small amount of sample decomposed by the sample pretreatment method used in Examples 1 to 4 is consistent with the certification value of NIST SRM 2389a within the uncertainty range. .
표 6. 아미노산 표준용액 NIST SRM2389a의 황 측정결과.Table 6. Sulfur measurement results of NIST SRM2389a standard amino acid solution.
Figure PCTKR2013011971-appb-I000008
Figure PCTKR2013011971-appb-I000008
실시예 6. 황 원소 기반의 인성장호르몬 단백질의 인증 (2차 배치) 실시.Example 6 Certification (Secondary Batch) of Sulfur Element-Based Phosphorus Growth Hormone Protein
새로 제조된 hGH 2차 배치에 대해서 인성장호르몬 단백질 인증을 실시하였다. Phosphorus growth hormone protein certification was performed on freshly prepared hGH secondary batches.
(1) 혼합용액 및 보정용액의 제조(1) Preparation of Mixed Solution and Calibration Solution
① 동위원소희석 질량분석법의 적용을 위해 농축동위원소 34S 농축 표준용액(Oak Ridge National Lab.)을 계산된 농도 3.99 mg/kg로 희석하여 준비하였다. 이를 11개의 teflon vessel(시료혼합용액: sample blend solution)과 LDPE bottle 4개(보정용혼합용액: calibration blend solution)에 1 g씩 첨가하였다. 농축동위원소용액 첨가 시 먼저 2개의 보정용혼합용액용 bottle에 첨가하고 11개의 시료혼합용액용 vessel에 첨가한 다음 마지막으로 남은 2개의 보정용혼합용액 bottle에 첨가하였다. 이때 34S 농축 표준용액(Oak Ridge National Lab.)을 첨가하여 측정 예상 동위원소비(34S/32S)가 1의 sample blend가 되도록 준비하였다. ① For the application of isotope dilution mass spectrometry, an isotope 34 S concentrated standard solution (Oak Ridge National Lab.) Was prepared by diluting to a calculated concentration of 3.99 mg / kg. 1 g of each of 11 teflon vessels (sample blend solution) and 4 LDPE bottles (calibration blend solution) were added. When the concentrated isotope solution was added, it was first added to two calibration solution bottles, and then added to 11 sample mixture solution vessels, and finally to the remaining two calibration solution bottles. At this time, 34 S concentrated standard solution (Oak Ridge National Lab.) Was added to prepare a sample blend having an expected isotope ratio ( 34 S / 32 S) of 1.
② hGH 표준용액 11개의 vial로부터 각각 0.2 g 씩 농축동위원소용액이 첨가되어 있는 microwave digestion teflon vessel 11개에 각각 채취하였다. (11개 sample blend) ② The samples were collected in 11 microwave digestion teflon vessels each containing 0.2 g each from 11 vials of hGH standard solution. (11 sample blends)
③ 보정용혼합용액에 사용할 황 표준용액 (NIST SRM 3154)을 4.12 mg/kg로 희석하여 준비한 후 34S 농축 표준용액 1 g이 들어있는 ①에서 제조한 LDPE bottle 4개에 1 g 씩 넣어 섞어주었다. 이를 5% 질산을 이용해 30 g으로 희석하여 예상 동위원소비 1이 되게 보정용혼합용액 4개를 준비하였다.③ The sulfur standard solution (NIST SRM 3154) to be used in the calibration solution was prepared by diluting to 4.12 mg / kg, and then mixed into 1 g of 4 LDPE bottles prepared in ① containing 1 g of 34 S concentrated standard solution. This was diluted to 30 g with 5% nitric acid to prepare four calibration solutions for the expected isotope ratio 1.
④ Sample blend가 들어있는 vessel에 65 % sub-boiled 질산 3 mL를 첨가한다. ④ Add 3 mL of 65% sub-boiled nitric acid to the vessel containing the sample blend.
⑤ TFM vessel의 뚜껑을 닫고 Milestone사의 UltraWAVE Microwave Digestion System에서 8분 동안 120 °C까지 가열하여 올린 다음, 7분 동안 220 °C까지 올린 후 220 °C에서 20분간 유지하여 MW-assisted 산분해를 수행하였다. ⑤ Close the lid of the TFM vessel, heat it up to 120 ° C for 8 minutes in Milestone's UltraWAVE Microwave Digestion System, raise it to 220 ° C for 7 minutes, and hold at 220 ° C for 20 minutes to perform MW-assisted acid decomposition. It was.
⑥ 산분해 후 vessel이 어느 정도 냉각된 후 sample blend 용액을 회수하고 30 g으로 희석하였다. ⑥ After acid decomposition, the vessel was cooled to some extent, and then the sample blend solution was recovered and diluted to 30 g.
(2) ICP/MS 측정(2) ICP / MS measurement
① Agilent사의 8800 ICP-Triple Quad (ICP-QQQ)를 O2 mode로 최적화하였다. (32S와 34S에 대해서 quadrupole 1에서 m/z=32, 34를 filtering하고 O2 gas와 reaction 후 quadrupole 2에서 32S16O+34S16O+인 m/z = 48, 50을 filtering하여 detection함.) Agilent's 8800 ICP-Triple Quad (ICP-QQQ) was optimized for O 2 mode. (Filtering m / z = 32, 34 at quadrupole 1 for 32 S and 34 S and reacting with O 2 gas, m / z = 48, 50 with 32 S 16 O + and 34 S 16 O + in quadrupole 2 after reaction with O 2 gas. detection by filtering.)
② 회수한 시료에 20 mL의 5 %질산을 첨가하여(17배 희석함) 동위원소비를 측정하였다. (32S와 34S에 대해서 각각 약 25만 count정도 signal intensity보임) 동위원소 비 측정시 주기적으로 동위원소 비가 알려진 동위원소 비 표준시료의 동위원소 비를 같이 측정하여 mass bias correction 및 drift를 bracketing correction으로 보정하였다.② The collected sample was added with 20 mL of 5% nitric acid (diluted 17 times) to measure the isotope ratio. (Signal intensity is about 250,000 counts for 32 S and 34 S, respectively.) When measuring the isotope ratio, the isotopic ratio of the known isotope ratio standard sample is measured together with the mass bias correction and bracketing correction of the drift. Corrected.
③ 시료는 각각 3회 반복 측정하였으며, 측정된 동위원소비를 이용하여 측정값을 산출하고 측정에 영향을 주는 각 인자에 대한 불확도 평가결과를 합성하여 측정 불확도를 추정하였다.  ③ Each sample was measured three times, and the measured uncertainty was calculated using the measured isotope ratio, and the uncertainty was estimated by combining the uncertainty evaluation results for each factor affecting the measurement.
(3) ID-ICP/MS에 의한 hGH 2차 배치 황 함량 인증 결과(3) Result of hGH secondary batch sulfur content certification by ID-ICP / MS
hGH 2차 배치는 제조사 제공 농도가 2 mg/mL 이었으며, 아미노산 기반 정량값은 1.8 mg/mL로 황 함량으로 18.2 mg/kg에 해당한다. The second batch of hGH had a manufacturer-supplied concentration of 2 mg / mL and an amino acid based quantitative value of 1.8 mg / mL corresponding to 18.2 mg / kg sulfur content.
① hGH 2차 배치의 황 함량 측정 결과의 기준값은 11개 vial에서 채취한 시료의 측정결과의 평균값이며 균질도는 11개 시료의 각각에 대한 측정값의 표준편차로부터 추정하였다. 측정불확도는 11개 시료로부터 구한 평균값의 표준편차와 시료 측정시 계통효과에 의한 불확도를 주로 포함하는 합동표준편차(pooled standard deviation) 값으로부터 합성표준불확도(combined standard uncertainty)와 유효자유도(degree of freedom)을 계산하였으며, 이로부터 포함인자(coverage factor)를 구하고 확장불확도(expanded uncertainty)를 구하였다. 각 병에 대한 측정값의 표준편차는 표 7 및 도 12에 도시된 바와 같이 평균값의 0.98 %로 병간 균질도가 매우 좋음을 알 수 있다. 이내로 인증표준물질에 사용하기 적합한 균질성을 보임을 알 수 있다. 2차 배치 hGH 중 S 함량 인증값과 확장 불확도는 표 7에 표시된 바와 같이 (18.88 ±0.75) mg/kg 이다. 아미노산 및 펩타이드 기반 정량 결과와 비교하면 불확도 범위내에서 인증값이 잘 일치함을 확인할 수 있다. (도 13 참조) ① The reference value of the measurement of sulfur content of the second batch of hGH is the average value of the measurement results of samples taken from 11 vials, and the homogeneity is estimated from the standard deviation of the measurement values for each of 11 samples. The uncertainty of measurement is the combined standard uncertainty and the degree of freedom from the pooled standard deviation value, which mainly includes the standard deviation of the mean value from 11 samples and the uncertainty due to systematic effects in the sample measurement. freedom was calculated, and the coverage factor and expanded uncertainty were calculated. The standard deviation of the measured values for each bottle is 0.98% of the mean value, as shown in Table 7 and FIG. It can be seen that the homogeneity is suitable for use in the certified standard material within. The certified S content and expansion uncertainty in the secondary batch hGH is mg / kg (18.88 ± 0.75) as indicated in Table 7. Comparing the amino acid and peptide-based quantitative results, it can be confirmed that the authentication values are well matched within the uncertainty range. (See FIG. 13)
표 7. 인성장호르몬 표준용액 2차 배치의 황(sulfur) 측정기반 인증결과.Table 7. Sulfur measurement-based certification results for the second batch of phosphorus growth hormone standard solution.
Figure PCTKR2013011971-appb-I000009
Figure PCTKR2013011971-appb-I000009

Claims (7)

  1. 황 동위원소 비를 이용한 황이 함유된 유기화합물의 정량방법.Method for quantifying sulfur-containing organic compounds using sulfur isotope ratio.
  2. 제1항에 있어서,The method of claim 1,
    하기 단계 (1) 내지 (4)를 포함하는 황이 함유된 유기화합물의 정량방법.A method for quantifying an organic compound containing sulfur, comprising the following steps (1) to (4).
    (1) 황이 함유된 유기화합물을 포함하는 시료용액을 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액으로 희석하여 자연존재비가 가장 큰 기준 동위원소(32S)와의 이론적 동위원소 비가 0.2 내지 5의 값이 되도록 시료혼합용액을 제조하는 단계;(1) A sample solution containing an organic compound containing sulfur is diluted with an internal standard solution in which any one isotope selected from 33 S, 34 S and 36 S is concentrated, and the reference isotope having the greatest natural abundance ratio ( 32 S) Preparing a sample mixture solution such that a theoretical isotope ratio with is a value of 0.2 to 5;
    (2) 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 상기 내부표준용액과 자연존재비를 갖는 황 표준용액을 혼합하여 이론적 동위원소 비가 상기 단계 (1)에서 제조된 시료혼합용액과 유사한 값이 되도록 보정용액을 제조하는 단계;(2) mixing the sample prepared in step (1) by mixing the internal standard solution in which one isotope selected from 33 S, 34 S and 36 S is concentrated with the sulfur standard solution having a natural existence ratio Preparing a calibration solution to be similar to the solution;
    (3) 상기 단계 (1)에서 제조된 혼합용액에서 황이 함유된 유기화합물을 분해하여 무기물 형태의 황산화물(sulfate)을 회수하는 단계; 및 (3) recovering sulfur oxides in inorganic form by decomposing organic compounds containing sulfur in the mixed solution prepared in step (1); And
    (4) 상기 단계 (3)에서 회수된 황산화물의 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소와 32S의 동위원소 비를 측정하고, 상기 단계 (2)에서 제조된 보정용액의 해당 동위원소 비를 측정하는 단계.(4) measuring the isotope ratio of any one isotope and 32 S selected from 33 S, 34 S and 36 S of the sulfur oxide recovered in step (3), Measuring the corresponding isotope ratio of the calibration solution prepared in step (2).
  3. 제1항에 있어서,The method of claim 1,
    상기 황이 함유된 유기화합물은 메티오닌, 시스테인 또는 둘 다를 포함하는 단백질 또는 펩티드인 것을 특징으로 하는 황이 함유된 유기화합물의 정량방법.The sulfur-containing organic compound is a method for quantifying sulfur-containing organic compounds, characterized in that the protein or peptide containing methionine, cysteine or both.
  4. 제1항에 있어서,The method of claim 1,
    상기 단계 (3)에서, 황이 함유된 유기화합물을 포함하는 혼합용액에 전자파 조사와 산분해를 동시에 처리하여 무기물 형태의 황산화물로 분해하는 것을 특징으로 하는 황이 함유된 유기화합물의 정량방법. In the step (3), the sulfur-containing organic compound quantitative method characterized in that the simultaneous treatment of electromagnetic radiation and acid decomposition in the mixed solution containing sulfur-containing organic compounds to decompose into sulfur oxides of the inorganic form.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 전자파 조사 및 산분해를 동시에 처리하는 것은 황이 함유된 유기화합물에 산화제를 첨가한 후, 100 내지 300℃ 온도 조건에서 전자파를 조사하면서 산분해하는 것을 특징으로 하는 황이 함유된 유기화합물의 정량방법. Simultaneous treatment of the electromagnetic wave irradiation and acid decomposition is a method of quantifying sulfur-containing organic compounds, characterized in that the acid-decomposed while irradiating electromagnetic waves at 100 to 300 ℃ temperature conditions after adding an oxidizing agent to the sulfur-containing organic compound.
  6. 제5항에 있어서,The method of claim 5,
    상기 산화제는 질산, 과염소산, 과산화수소수 또는 이들의 혼합물인 것을 특징으로 하는 황이 함유된 유기화합물의 정량방법. Wherein the oxidizing agent is nitric acid, perchloric acid, hydrogen peroxide or a mixture thereof, characterized in that the method of quantitative sulfur containing organic compounds.
  7. 제1항에 있어서,The method of claim 1,
    상기 단계(4)에서 획득된 혼합용액의 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소 비 및 보정용액의 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소 비를 하기 <식 1>에 적용하는 것을 특징으로 하는 황이 함유된 유기화합물의 정량방법.Any one of the isotope / 32 S isotope ratio and the calibration solution with a 33 S, 34 S and 36 S any one of isotopes selected from the group consisting of selected from the 33 S, 34 S and 36 S for the mixed solution obtained in the above step (4) A method for quantifying an organic compound containing sulfur, characterized in that the element / 32 S isotope ratio is applied to <Formula 1>.
    <식 1><Equation 1>
    Figure PCTKR2013011971-appb-I000010
    Figure PCTKR2013011971-appb-I000010
    Cx: 측정하고자 하는 시료용액(x)의 농도, C x : concentration of the sample solution (x) to be measured,
    mx: 저울을 이용하여 측정된 시료용액(x)의 질량,m x : mass of the sample solution (x) measured using a balance,
    my: 시료용액(x)에 첨가된 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액(y)의 질량m y : Mass of the internal standard solution (y) in which any one isotope selected from 33 S, 34 S and 36 S added to the sample solution (x) is concentrated
    my': 보정용 황 표준용액(z)에 첨가된 33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소가 농축된 내부표준용액(y)의 질량m y ': Mass of the internal standard solution (y) in which any one isotope selected from 33 S, 34 S and 36 S is added to the calibration sulfur standard solution (z)
    Cz: 보정용 황 표준용액(z)의 농도C z : Concentration of calibration sulfur standard solution (z)
    Rx: 시료용액(x)에 존재하는 황의 동위원소 비율(33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R x : Sulfur isotope ratio present in sample solution (x) (any one isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
    Ry: 33S, 34S 및 36S 중에선 선택된 동위원소 농축 내부표준용액(y)에 존재하는 황의 동위원소 비율(33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R y: 33 S, 34 S and 36 S jungeseon selected isotope concentration of internal standard solution (y) the presence of sulfur isotope ratio for the (33 S, 34 S and 36 S any one of the isotope / 32 S isotope selected from )
    Rz: 황 표준용액(z)에 존재하는 황의 동위원소 비율(33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R z : Isotope ratio of sulfur in sulfur standard solution (z) (any isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
    Rxi: 시료용액(x)에 존재하는 황의 i번째 동위원소 비율 (32S/32S, 33S/32S, 34S/32S, 36S/32S )R xi : I-isotope ratio of sulfur in sample solution (x) ( 32 S / 32 S, 33 S / 32 S, 34 S / 32 S, 36 S / 32 S)
    Rzi: 보정용 황 표준용액(z)에 존재하는 황의 i번째 동위원소 비율 (32S/32S, 33S/32S, 34S/32S 또는 36S/32S )R zi : i-isotopic ratio of sulfur present in the calibration sulfur standard solution (z) ( 32 S / 32 S, 33 S / 32 S, 34 S / 32 S or 36 S / 32 S)
    Rb: 시료혼합용액의 황 동위원소 비율(33S, 34S 및 36S 중에서 선택된 어느 하나의 동위원소/32S 동위원소)R b : Sulfur isotope ratio of the sample mixture solution (any one isotope selected from 33 S, 34 S and 36 S / 32 S isotope)
    Rb': 보정용액의 황 동위원소 비율(33S, 34S 및 36S 중 중에서 선택된 어느 하나의 동위원소/32S 동위원소) R b ' : Sulfur isotope ratio of the correction solution (any one isotopically selected from 33 S, 34 S and 36 S / 32 S isotope)
    w: 건조질량 보정인자w: dry mass correction factor
    Cblank: 바탕시료의 농도C blank : concentration of blank sample
PCT/KR2013/011971 2012-12-20 2013-12-20 Quantification method for sulphur-containing organic compound WO2014098526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/653,798 US20150346221A1 (en) 2012-12-20 2013-12-20 Quantification method for sulfur-containing organic compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0150109 2012-12-20
KR20120150109 2012-12-20
KR1020130159867A KR101534578B1 (en) 2012-12-20 2013-12-20 Quantification method for organic compound including sulfur
KR10-2013-0159867 2013-12-20

Publications (1)

Publication Number Publication Date
WO2014098526A1 true WO2014098526A1 (en) 2014-06-26

Family

ID=50978750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011971 WO2014098526A1 (en) 2012-12-20 2013-12-20 Quantification method for sulphur-containing organic compound

Country Status (1)

Country Link
WO (1) WO2014098526A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JANA SEIFERT ET AL.: "PROTEIN-BASED STABLE ISOTOPE PROBING (PROTEIN-SIP) IN FUNCTIONAL METAPROTEOMICS", MASS SPECTROMETRY REVIEWS, vol. 31, 15 March 2012 (2012-03-15), pages 683 - 697 *
M. H. SCHROTH ET AL.: "In situ assessment of microbial sulfate reduction in a petroleum- contaminated aquifer using push-pull tests and stable sulfur isotope analyses", JOURNAL OF CONTAMINANT HYDROLOGY, vol. 51, 31 October 2001 (2001-10-31), pages 179 - 195 *
NICO JEHMLICH ET AL.: "Sulfur-36S stable isotope labeling of amino acids for quantification (SULAQ", PROTEOMICS, vol. 12, 16 December 2011 (2011-12-16), pages 37 - 42 *
T. BARRELET ET AL.: "Quantification of sulphur in Picea abies by LA-ICPMS", PROCEEDINGS OF THE DENDROSYMPOSIUM, vol. 53, 24 April 2004 (2004-04-24), pages 130 - 137 *

Similar Documents

Publication Publication Date Title
Perdivara et al. Mass spectrometric identification of oxidative modifications of tryptophan residues in proteins: chemical artifact or post-translational modification?
JP2002514302A (en) A continuous isotope monitoring system that tracks fluorine-based chemical reactions
Jiao et al. Hydrazinonicotinic acid as a novel matrix for highly sensitive and selective MALDI-MS analysis of oligosaccharides
Welz et al. Accuracy of the selenium determination in human body fluids using atomic absorption spectrometry
WO2014098526A1 (en) Quantification method for sulphur-containing organic compound
Konkle et al. Chemical modification of the Rieske protein from Thermus thermophilus using diethyl pyrocarbonate modifies ligating histidine 154 and reduces the [2FE-2S] cluster
Cui et al. Disulfide linkage assignment based on reducing electrochemistry and mass spectrometry using a lead electrode
Moerman et al. A new chemical approach to differentiate carboxy terminal peptide fragments in cyanogen bromide digests of proteins
Goshe et al. Hydroxyl radical-induced hydrogen/deuterium exchange in amino acid carbon-hydrogen bonds
US20090137052A1 (en) Phosphopeptide analysis method
EP3155438B1 (en) Quantitative peptide or protein assay
Tsugita et al. Approaches for submicrosequencing
Lan et al. Microwave digestion of fish tissue for selenium determination by differential pulse polarography
KR101534578B1 (en) Quantification method for organic compound including sulfur
JP4609370B2 (en) Methods for treating sulfur-containing peptides and methods for analyzing sulfur-containing peptides
Smillie et al. Amino acid analyses of proteins and peptides: an overview
TWI694253B (en) Method for absolute quantification of target molecule having an amine group
Amini et al. Quantitative analysis of polypeptide pharmaceuticals by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
CN114577943B (en) Method for indirectly measuring aspartic acid and glutamic acid in infant formula milk powder and prepared milk powder
Harada et al. Simultaneous determination of major constituents and impurities in high-purity mullite using pressure acid decomposition
CA2377446C (en) Increased sensitivity of peptide detection with matrix-assisted laser desorption/ionization mass spectrometry by in vacuo methylation of amino groups
US20060167233A1 (en) One-step reduction and alkylation of proteins
CN109632672B (en) Quantitative detection method of polypropylene beta-crystal nucleating agent
WO2017155363A1 (en) Mass spectrometry method
EP3542166B9 (en) Methods and systems for determining plasma angiotensin i levels.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866432

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14653798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866432

Country of ref document: EP

Kind code of ref document: A1