WO2014098401A1 - Terminal, method whereby terminal receives information, base station, and method whereby base station transmits information - Google Patents

Terminal, method whereby terminal receives information, base station, and method whereby base station transmits information Download PDF

Info

Publication number
WO2014098401A1
WO2014098401A1 PCT/KR2013/011436 KR2013011436W WO2014098401A1 WO 2014098401 A1 WO2014098401 A1 WO 2014098401A1 KR 2013011436 W KR2013011436 W KR 2013011436W WO 2014098401 A1 WO2014098401 A1 WO 2014098401A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch
subframe
dmrs
index
reference signal
Prior art date
Application number
PCT/KR2013/011436
Other languages
French (fr)
Korean (ko)
Inventor
박동현
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2014098401A1 publication Critical patent/WO2014098401A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • H04L27/2078Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the phase change per symbol period is constrained
    • H04L27/2082Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the phase change per symbol period is constrained for offset or staggered quadrature phase shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present invention relates to an apparatus and method for transmitting and receiving MIB (Master Information Block information) based on DMRS.
  • MIB Master Information Block information
  • NCT new carrier type
  • NCT is a non-primary CC among component carriers (CC) hereinafter merged through a carrier aggregation (CA) technique.
  • the CC refers to a secondary CC that reduces overhead to increase payload size in CC, that is, a component carrier that does not include a control region.
  • S-NCT standalone NCT
  • NS-NCT non-standalone NCT
  • It is divided into NCT, and control signals such as Physical Downlink Control Channel (PDCCH), Physical HARQ Indicator Channel (PHICH), Physical Control Format Indicator Channel (PCFICH), and Cell-specific Reference Signal (CRS) will not be transmitted in NCT. to be.
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical HARQ Indicator Channel
  • PCFICH Physical Control Format Indicator Channel
  • CRS Cell-specific Reference Signal
  • the terminal transmits a master information block (MIB), which is system information, through a PBCH (Physical Broadcast Channel) among control signals after the cell discovery process, and after the system information is received and decoded, the terminal performs a random access process You can access the cell via MIB (Master Information block)
  • MIB master information block
  • PBCH Physical Broadcast Channel
  • an information receiving method of a terminal to provide a terminal, an information receiving method of a terminal, a base station and a base station information transmission method for providing a MIB which is system information based on DMRS in NCT.
  • one physical broadcast channel (PBCH) transport bit block including a number of bits corresponding to the number of encoded bits M bits to be transmitted on a physical broadcast channel (PBCH) is provided.
  • PBCH physical broadcast channel
  • QPSK quadrature phase-shift keying
  • radio frame index n f is There is at least one radio frame that satisfies, and for four consecutive radio frames including the radio frame, a complex symbol block y (p) (0), ..., y (p) at each antenna port Frequency index k in ascending order in a specific slot of subframe 0 or subframe 0 of the 4 radio frames for (k, l) resource elements not allocated for reference signal transmission among (M symb- 1).
  • mapping each bit of the precoded PBCH transmission bit block by increasing the OFDM symbol index l and increasing the index n f of the radio frame.
  • one physical broadcast channel transport bit block including a number of bits corresponding to the number of encoded bits (M bits ) to be transmitted on a physical broadcast channel (Physical Broadcast CHannel, PBCH)
  • PBCH Physical Broadcast CHannel
  • QPSK quadrature phase-shift keying
  • a radio frame exists, and in four consecutive radio frames, including the corresponding radio frame, of each of the complex symbol blocks y (p) (0), ..., y (p) (M symb -1) at each antenna port.
  • a controller for mapping the pre-coding performed the PBCH for each bit of the transmission bit block characterized in that it comprises; and a transmitter for transmitting a MIB (Master Information Block) via the mapping of PBCH Channel Provide a base station.
  • MIB Master Information Block
  • a physical broadcast channel is searched based on a demodulation reference signal (DMRS) and a master information block (MIB) transmitted through the PBCH.
  • DMRS demodulation reference signal
  • MIB master information block
  • Extracting at least one radio frame in which the radio frame index n f satisfies n f mod4 0, and includes four consecutive radio frames while including the corresponding radio frame.
  • a physical broadcast channel is searched based on a demodulation reference signal (DMRS) and a master information block (MIB) transmitted through the PBCH.
  • DMRS demodulation reference signal
  • MIB master information block
  • a receiving unit for extracting a); wherein the receiving unit includes at least one radio frame in which the radio frame index n f satisfies n f mod 4 0 and includes the corresponding radio frame in the PBCH search.
  • one of the complex symbol blocks y (p) (0), ..., y (p) (M symb -1) at each antenna port is not allocated for reference signal transmission (k, l )
  • the frequency index k is increased in ascending order in the specific slot of subframe 0 or subframe 0 of the 4 radio frames
  • the OFDM symbol index l is increased
  • the index n f of the radio frame is Increase To provide a terminal, it characterized in that to search for the respective bits of the PBCH transmission bit block.
  • channel estimation performance of PBCH can be improved based on DMRS while preventing collision between PSS / SSS and demodulation reference signal (DMRS) for NCT that does not include a control region in a CA environment.
  • DMRS demodulation reference signal
  • PBCH can be adaptively allocated according to various DMRS patterns to avoid collision with PSS / SSS, thereby reducing PBCH channel estimation error and effectively providing system information, thereby enabling fast and accurate cell access.
  • FIG. 1 is a diagram illustrating a communication system to which embodiments of the present invention are applied.
  • FIG. 2 is a diagram illustrating a PBCH transport channel processing procedure.
  • 3 is a view for explaining an RS and PBCH allocation scheme.
  • FIG. 4 is a diagram for explaining a cell access procedure to which the present invention is applied.
  • 5 and 6 illustrate examples for explaining a PBCH mapping scheme according to an embodiment of the present invention.
  • FIG. 7 is another example for explaining a PBCH mapping scheme according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating another example for explaining a PBCH mapping scheme according to an embodiment of the present invention.
  • FIG. 9 and 10 illustrate another example for explaining a PBCH mapping scheme according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating another example for describing a PBCH mapping scheme according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating another example for describing a PBCH mapping scheme according to an embodiment of the present invention.
  • FIG. 12 is a diagram for explaining a DMRS pattern according to another embodiment of the present invention.
  • FIG. 13 and 14 illustrate examples for explaining a PBCH mapping scheme according to another embodiment of the present invention.
  • 15 and 16 illustrate examples for explaining a PBCH mapping scheme according to another embodiment of the present invention.
  • 17 and 18 are diagrams illustrating other examples for describing a PBCH mapping scheme according to another embodiment of the present invention.
  • 19 is a diagram for explaining a DMRS pattern according to another embodiment of the present invention.
  • 20 and 21 are diagrams for describing examples of the PBCH mapping scheme according to another embodiment of the present invention.
  • FIG. 22 is a diagram for explaining an example of the PBCH mapping scheme according to another embodiment of the present invention.
  • FIG. 23 is a diagram illustrating an information transmission apparatus for performing embodiments according to the present invention.
  • FIG. 24 is a diagram for explaining an information transmission method performed by the apparatus of FIG. 23 according to the present invention.
  • 25 is a diagram illustrating an information receiving apparatus for performing embodiments according to the present invention.
  • FIG. 1 is a diagram illustrating a communication system to which embodiments of the present invention are applied.
  • Communication systems are widely deployed to provide various communication services such as voice, packet data, and the like.
  • a communication system includes a user equipment (UE) 10 and a transmission point 20 that performs uplink and downlink communication with the terminal 10.
  • UE user equipment
  • transmission point 20 that performs uplink and downlink communication with the terminal 10.
  • a terminal 10 or a user equipment (UE), a receiving end is a comprehensive concept of a user terminal in wireless communication, and a mobile station (MS) in GSM as well as a UE in WCDMA and LTE, HSPA, etc. It should be interpreted as a concept that includes a user terminal (UT), a subscriber station (SS), a wireless device, and the like.
  • the transmitting end 20 or cell generally refers to a station communicating with the terminal 10, and includes a base station, a node-B, an evolved node-B, and a base transceiver. Other terms may be referred to as a system, an access point, a relay node, and a radio unit (RU).
  • RU radio unit
  • the transmission terminal 20 or a cell should be interpreted in a comprehensive sense indicating a part of a region covered by a base station controller (BSC) in a CDMA, a NodeB of a WCDMA, etc., and a radio remote connected to a base station. All types of communication with one terminal such as head, relay node, sector of macro cell, site, other femtocell, picocell, micro cell such as RU (Radio Unit) Used as a generic concept to mean a device.
  • BSC base station controller
  • one terminal 10 and one transmission terminal 20 are shown in FIG. 1, the present invention is not limited thereto. It is possible for one transmission terminal 20 to communicate with the plurality of terminals 10, and one terminal 10 may communicate with the plurality of transmission terminals 20.
  • CDMA code division multiple access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • OFDM OFDM
  • the present invention is a combination of the TDD (Time Division Duplex) method is transmitted using a different time, uplink transmission and downlink transmission, FDD (Frequency Division Duplex) method is transmitted using a different frequency, combining the TDD and FDD Applicable to hybrid duplexing method.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • embodiments of the present invention are applicable to asynchronous wireless communication that evolves into Long Term Evolution (LTE) and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication that evolves into CDMA, CDMA-2000, and UMB.
  • LTE Long Term Evolution
  • WCDMA Long Term Evolution-advanced through GSM
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High Speed Packet Access
  • CDMA Code Division Multiple Access
  • CDMA-2000 Code Division Multiple Access-2000
  • UMB Universal Mobile Broadband
  • the transmitting end 20 performs downlink transmission to the terminal 10.
  • the transmitter 20 may transmit a physical downlink shared channel (PDSCH), which is a main physical channel for unicast transmission in a legacy carrier type (LCT).
  • PDSCH physical downlink shared channel
  • the transmitting end 20 grants scheduling control for transmission on downlink control information such as scheduling required for reception of the PDSCH and uplink data channel (for example, a physical uplink shared channel (PUSCH)).
  • Physical Downlink Control Channel (PDCCH) for transmitting information
  • Physical Control Format Indicator Channel (PCFICH) for transmitting an indicator for distinguishing regions of PDSCH and PDCCH
  • uplink transmission A control channel such as a physical HARQ indicator channel (PHICH) for transmitting a HARQ (Hybrid Automatic Repeat reQuest) confirmation may be transmitted.
  • PHICH physical HARQ indicator channel
  • HARQ Hybrid Automatic Repeat reQuest
  • the transmitter 20 may transmit a physical downlink control channel (PDCCH), a physical control format indicator channel for transmitting an indicator for distinguishing the PDSCH and PDCCH regions in a new carrier type (NCT).
  • a control channel such as a physical HARQ indicator channel (PHICH) for transmitting an indicator channel (PCFICH) and a hybrid automatic repeat request (HARQ) confirmation for uplink transmission will not be transmitted.
  • PHICH physical HARQ indicator channel
  • PCFICH hybrid automatic repeat request
  • HARQ hybrid automatic repeat request
  • the transmitter 20 transmits a Cell-Specific Reference Signal (CRS), an MBSFN Reference Signal (MBSFN-RS), a UE-Specific Reference Signal in the downlink of the LCT.
  • CRS Cell-Specific Reference Signal
  • MBSFN-RS MBSFN Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • CRS a cell-specific RS
  • DM-RS is a unicast transmission for each UE.
  • a UE-specific reference signal is defined in a band in which a physical downlink shared channel (PDSCH), which is a main physical channel, is transmitted.
  • PDSCH physical downlink shared channel
  • the cell specific reference signal means that the shape of a reference signal (for example, CRS) transmitted to each terminal in the same cell may be the same regardless of the terminal.
  • the UE-specific reference signal (UE specific reference signal) means that the shape of the reference signal (for example, DM-RS) transmitted to each terminal may be different for each terminal.
  • the UE-specific reference signal is a UE in an environment using a precoding scheme in which the transmitter 20 precodes a complex symbol using a precoding matrix before transmitting the complex symbol.
  • DM-RS is a reference signal transmitted for the purpose of supporting the receiving end 10 to learn information about a virtual channel modified by precoding.
  • the DM-RS which is a UE-specific reference signal, is transmitted for a band where each terminal receives a PDSCH, and each terminal receives channel or virtual channel information necessary for PDSCH decoding through the DM-RS reception.
  • one radio frame (radioframe) consists of 10 subframes, and one subframe consists of two slots.
  • the radio frame has a length of 10 ms and the subframe has a length of 1.0 ms.
  • the basic unit of data transmission is a subframe unit, and downlink or uplink scheduling is performed on a subframe basis.
  • One slot may have a plurality of OFDM symbols in the time domain and include at least one subcarrier in the frequency domain.
  • one slot contains seven OFDM symbols in the time domain (for Normal Cyclic Prefix or Normal CP) or six (for Extended Cyclic Prefix for Extended CP) and in the frequency domain It may include 12 subcarriers.
  • the time-frequency domain defined as one slot may be referred to as a resource block (RB), but is not limited thereto.
  • the resource element (RE) may consist of one OFDM symbol on the time axis and one subcarrier on the frequency axis.
  • one resource block may include 7 ⁇ 12 resource elements (in case of normal CP) or 6 ⁇ 12 resource elements (in case of extended CP).
  • the transmitter 20 transmits a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for synchronization with the base station and cell identification.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • an SSS is allocated to at least one specific resource block (RB) in at least one subframe of one radio frame.
  • the transmitter 20 may avoid side effects such as interference with LTE user equipment (UE) and setting of DM-RS (Demodulation Reference Signal) as described below.
  • UE user equipment
  • DM-RS Demodulation Reference Signal
  • the position of the PSS / SSS for the asynchronous NCT which is one of the CCs not including the control region, can be changed on the time (symbol) axis.
  • the transmitter 20 will not transmit a cell-specific reference signal (CRS) in the downlink of the NCT. Instead, the transmitter 20 may transmit a tracking reference signal (TRS).
  • TRS is a kind of reduced CRS transmitted in 5ms period based on the antenna port 0 and Rel.8 sequence of the conventional CRS.
  • the transmitter 20 may transmit a UE-Specific Reference Signal (DM-RS) and a Channel State Information Reference Signal (CSI-RS) in the NCT.
  • DM-RS UE-Specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • Figure 3 is a view for explaining the RS and PBCH transmission scheme.
  • one BCH transport block corresponding to the MIB is transmitted once every 40 ms.
  • a 16-bit Cyclic Redundancy Check (CRC) is inserted for one BCH transport block, 1 / 3-bit rate tail biting convolutional coding is performed as channel coding, and coding bits are repeated.
  • CRC Cyclic Redundancy Check
  • QPSK modulation is performed on the BCH transport block scrambled bit by bit.
  • Antenna mapping is then performed for the modulated BCH transport block, demultiplexed and mapped to the first subframe of each frame in four consecutive frames.
  • the PBCH is transmitted on the center 6PRB of the second slot of subframe 0 of each radio frame.
  • CRS a cell-specific RS
  • DM-RS is a unicast transmission for each UE.
  • a UE-specific reference signal is defined in a band in which a physical downlink shared channel (PDSCH), which is a main physical channel, is transmitted.
  • PDSCH physical downlink shared channel
  • the cell specific reference signal means that the shape of a reference signal (for example, CRS) transmitted to each terminal in the same cell may be the same regardless of the terminal.
  • the UE-specific reference signal (UE specific reference signal) means that the shape of the reference signal (for example, DM-RS) transmitted to each terminal may be different for each terminal.
  • the UE-specific reference signal is a UE in an environment using a precoding scheme in which the transmitter 20 precodes a complex symbol using a precoding matrix before transmitting the complex symbol.
  • DM-RS is a reference signal transmitted for the purpose of supporting the receiving end 10 to learn information about a virtual channel modified by precoding.
  • the DM-RS which is a UE-specific reference signal, is transmitted for a band where each terminal receives a PDSCH, and each terminal receives channel or virtual channel information necessary for PDSCH decoding through the DM-RS reception.
  • FIG. 4 is a diagram illustrating a cell access procedure to which an embodiment of the present invention is applied.
  • the UE is not only connected to the system for the first time, but also a plurality of elements merged through a handover for supporting cell reselection and mobility, and carrier aggregation (CA).
  • CA carrier aggregation
  • the cell access procedure is also performed to find synchronization for carriers (Component Carrier (CC), hereinafter referred to as 'CC').
  • CC Component Carrier
  • the cell search process includes PSS detection (S401) and SSS detection (S403) for acquiring frequency and symbol synchronization for a cell, thereby acquiring frame / slot synchronization of the cell and determining a cell ID.
  • this process may be performed in parallel with the PSS / SSS or through another signal (S402).
  • a step (S405) of checking whether the corresponding cell is an NCT or an LCT is performed and the TRS is checked (S407). Accordingly, the RRM measurement (S409) or the PBCH channel demodulation (S411) is performed. Is performed. As described above, when the CRS is not transmitted, PBCH channel demodulation is performed based on the DMRS.
  • PSS / SSS detection and PBCH detection are the basis in the cell access process according to the cell search.
  • the position of the PSS / SSS may be moved on the time axis or DMRS puncturing may be performed.
  • PBCH PBCH estimating a channel based on the DMRS when the DMRS is punctured
  • this may cause a channel estimation error.
  • a channel estimation error may be serious for a terminal moving at a high speed.
  • One way to solve this channel estimation error may be a method of changing the PBCH channel mapping position on the time axis.
  • PBCH transmission patterns according to whether or not to move to another OFDM symbol position and DMRS puncturing and other DMRS patterns in order to avoid collision with DMRS when PSS / SSS is present in the NCT will be described in detail.
  • subframe # 0 the pattern forms in subframe # 0 may appear the same in subframe # 5.
  • 5 and 6 illustrate examples for explaining a PBCH mapping scheme according to an embodiment of the present invention.
  • a DMRS antenna port group (eg, a DMRS antenna port group that uses the same physical resource but distinguishes each other by a code) while maintaining 1920 bits , which is an existing number of encoded bits transmitted on a PBCH (M bit ), remains as it is.
  • the DMRS resource element may be transmitted using only the DMRS antenna port group # 1 (7, 8, 11, 13) and the group # 2 (9, 10, 12, 14).
  • the left subframe of the figure is an example of the PBCH mapping method when the DMRS resource element is transmitted using only the antenna port 7/8, and the right subframe of the figure transmits the DMRS resource element using only the antenna port 9/10.
  • This is an example of a PBCH mapping scheme.
  • DMRS resource elements may be used due to the use of a limited number of DMRS antenna port groups.
  • the position of the PBCH is shifted to another OFDM symbol on the time axis, and is the number of existing coded bits (M bits ) transmitted on the PBCH.
  • M bits existing coded bits
  • the left subframe of the figure is an example of the PBCH mapping method when only the antenna port 7/8 is used for DMRS resource element transmission
  • the right subframe of the figure is the PBCH when only the antenna port 9/10 is used for DMRS resource element transmission. This is an example of a mapping method.
  • DMRS resource elements may be used due to the use of a limited number of DMRS antenna port groups.
  • FIG. 7 is another example for explaining a PBCH mapping scheme according to an embodiment of the present invention.
  • PBCH In a situation where the position of PSS / SSS is not changed in a general CP of FDD, the position of PBCH is shifted to another OFDM symbol on a time axis, and according to the PBCH mapping scheme shown in the left subframe of the figure, PBCH
  • M bits coded bits
  • DMRS resource elements can be transmitted using two DMRS antenna port groups (DMRS antenna ports 7,8,9,10).
  • DMRS antenna ports 7, 8, 9, 10 More DMRS resource elements may be available, which may benefit from channel estimation performance.
  • the number of existing coded bits (M bits ) transmitted on the PBCH is reduced from 1920bit to 1728bit, but can be transmitted on the PBCH by not transmitting the TRS in the subframe in which the PBCH is transmitted.
  • the number of coding bits can be increased. Accordingly, coding performance gain can be obtained on the PBCH channel.
  • 8 is a diagram illustrating another example for explaining a PBCH mapping scheme according to an embodiment of the present invention. 8 shows examples of a case where the position of the PSS / SSS is not changed in the extended CP of the FDD and the position of the PBCH is moved to another OFDM symbol on the time axis.
  • the number of encoded bits transmitted on the PBCH may be increased to 1824 bits through rate matching processing with respect to the existing 1728 bits, thereby optimizing PRSCH mapping based on DMRS.
  • the number of encoded bits transmitted on the PBCH may be increased from the existing 1728 bit to 1920 bits. Therefore, coding performance gain can be obtained on the PBCH channel.
  • FIGS. 9 and 10 correspond to the examples described with reference to FIGS. 5 through 8, in the case of the general CP in the TDD, the location of the PSS / SSS is the existing Rel. 8 is a diagram for describing a method of mapping PBCH in a situation of maintaining the same position as 8.
  • DMRS is punctured as shown in FIG. 9.
  • An example of a PBCH mapping scheme that can be shown.
  • the left subframe of the figure uses all of the DMRS antenna ports, and the number of coding bits can be reduced from the existing 1920 bits to 1536 bits.
  • the number of encoded bits may be reduced from the existing 1920 bits to 1824 bits.
  • the resource element directly below the frequency axis of the resource element used for DMRS transmission in the right subframe of the drawing is a resource element for transmitting DMRS (Rel-10 DMRS ports 9 and 10).
  • the PBCH may be mapped similarly to the right side of the drawing.
  • the left subframe of the figure is an example of a PBCH mapping method in which two antenna port groups are used for DMRS resource element transmission.
  • the number of bits transmitted on the PBCH is reduced from 1920 bits , which is an existing coded bit, to 1728 bits . Since the TRS is not transmitted to the subframe in which the PBCH is transmitted, the number of coding bits that can be transmitted on the PBCH can be increased as compared with the example described with reference to the left subframe of FIG. 9.
  • the right subframe of the figure is an example of a PBCH mapping method in which only antenna ports 7/8 are used for DMRS resource element transmission.
  • the number of bits transmitted on the PBCH is increased from 1920 bits , which is the existing number of encoded bits (M bits ), to 2016 bits . Can be.
  • PRSCH is used for resource element except for resource element through which the corresponding DMRS antenna port 9/10 is used.
  • the PBCH is mapped.
  • FIG. 11 is a diagram illustrating another example for describing a PBCH mapping scheme according to an embodiment of the present invention.
  • FIG. FIG. 11 corresponds to the description of the extended CP of the FDD of FIG. 8, and is an example in which the position of the PSS / SSS is not changed in the TDD.
  • the number of coded bits transmitted on the PBCH can be maintained to be the same through rate matching processing for the existing 1728 bits, thereby optimizing PRSCH mapping based on DMRS.
  • FIG. 12 is a diagram for explaining a DMRS pattern according to another embodiment of the present invention.
  • a DMRS pattern as shown in FIG. 12 may be considered to avoid collision between the PSS / SSS and the DMRS on the NCT in the center 6PRB of subframe 0 in which the PBCH is transmitted in FDD.
  • examples of general and extended CPs are shown.
  • the left subframe of the figure is for a normal CP (each slot is composed of seven symbols), and DMRS is assigned to the third and fourth OFDM symbols of the first and second slots of subframes # 0 and # 5 within each radio frame.
  • An example of transmitting a DMRS resource element using two DMRS antenna port groups is shown.
  • each slot consists of six symbols
  • a DMRS is allocated to the second and third symbols of the first and second slots of subframe # 0 in each radio frame, and one DMRS is assigned.
  • An example of transmitting a DMRS resource element using only an antenna port group is shown.
  • FIG. 13 and 14 illustrate examples for explaining a PBCH mapping scheme according to another embodiment of the present invention.
  • the examples illustrate the general CP of FDD.
  • the position on the time axis of the DMRS may be changed, and accordingly, the position on the time axis of the PBCH may be changed.
  • examples of transmitting DMRS resource elements using only two DMRS antenna port groups are shown.
  • PBCHs are included in the second through fifth symbols of the second slot as the DMRSs are located in the third and fourth symbols of the first and second slots.
  • An example of mapping is shown, and an example in which a PBCH is mapped to second to fifth symbols of a first slot is illustrated in a right subframe of FIG. 13.
  • the number of coding bits that can be transmitted on the PBCH is reduced from the existing 1920bits to 1632bits, while more DMRS resource elements transmitted using two antenna groups can be used, which may have a gain in channel estimation performance.
  • the same as the left and right sub-frames DMRS pattern and its left and right sub-frames in FIG. 13 PBCH mapping position are each in accordance with the, and the number of encoded bits transmitted on the PBCH (M bit) is
  • M bit the number of encoded bits transmitted on the PBCH
  • the number of coding bits that can be transmitted on the PBCH can be increased by reducing the conventional 1920 bits to 1728 bits but not transmitting the TRS in the subframe in which the PBCH is transmitted. Accordingly, coding performance gain can be obtained on the PBCH channel.
  • 15 and 16 illustrate examples for explaining a PBCH mapping scheme according to another embodiment of the present invention. These examples describe the extended CP of FDD.
  • the position on the time axis of the DMRS may be changed, and accordingly, the position on the time axis of the PBCH may be changed.
  • the DMRS resource element may be transmitted using only one DMRS antenna port group.
  • the number of coding bits that can be transmitted on the PBCH is reduced from the existing 1920 bits to 1728 bits.
  • the PBCH mapping scheme of FIG. 16 is a method applicable when the DMRS pattern is changed as shown in the right subframe of FIG. 12.
  • the DMRS PBCH channels may be mapped to neighboring symbols on the left and right sides of an OFDM symbol to which DMRSs are allocated for both the first and second slots to which Ms are allocated.
  • the number of encoded bits M bits transmitted on the PBCH can be maintained at 1920 bits .
  • 17 and 18 are diagrams illustrating other examples for explaining a PBCH mapping scheme according to another embodiment of the present invention and correspond to a case of an extended CP in FDD.
  • DMRS is transmitted in the same pattern as the example described with reference to FIG. 15, and the PBCH mapping scheme is the same, but the TRS may not be transmitted on the subframe in which the PBCH is transmitted. Accordingly, the number of encoded bits that can be transmitted on the PBCH may be maintained at the existing 1920 bits and may increase as compared with 1728 bits according to FIG. 15.
  • FIG. 18 may be configured such that DMRS is transmitted in the same pattern as the example described in FIG. 16 and the PBCH mapping scheme is the same, but TRS is not transmitted on the subframe in which the PBCH is transmitted. Accordingly, the number of coded bits that can be transmitted on the PBCH may increase from 2,920 bits to 2304 bits, and thus, more coding bits than 1728 bits according to FIG. 16 may be transmitted on the PBCH, thereby obtaining additional coding performance gains.
  • the PBCH mapping method according to the examples described with reference to FIGS. 12 to 18 may be similarly applied.
  • 19 is a diagram for explaining a DMRS pattern according to another embodiment of the present invention.
  • a DMRS pattern may be considered.
  • An example of a general CP is illustrated in the left subframe of the figure, but an example of an extended CP is illustrated in the right subframe, but is not limited thereto.
  • the left subframe of the figure shows an example in which DMRS is allocated to the first and second OFDM symbols of the first and second slots of the subframe and transmits a DMRS resource element using two DMRS antenna port groups.
  • the right subframe of the figure shows an example of allocating DMRS to the second and third symbols of the first and second slots of the subframe and transmitting the DMRS resource element using only one antenna group.
  • 20 and 21 are diagrams for describing examples of the PBCH mapping scheme according to another embodiment of the present invention.
  • the examples describe the general CP of the FDD, the extended CP can be similarly applied to the examples described with reference to FIGS. 15 to 18.
  • the position on the time axis of the DMRS may be changed, thereby changing the position on the time axis of the PBCH.
  • examples of transmitting DMRS resource elements using only two antenna groups are shown.
  • the left subframe of FIG. 20 shows an example in which the PBCH is mapped to the first to fourth symbols of the first slot as DMRSs are located in the first and second symbols of the first and second slots.
  • An example in which a PBCH is mapped to first to fourth symbols of a second slot in a frame is shown.
  • the number of coding bits that can be transmitted on the PBCH is reduced from the existing 1920 bits to 1632 bits, while more DMRS resource elements transmitted using two antenna groups can be used, which may have a gain in channel estimation performance.
  • the pattern shown in the right subframe may be efficient for interference cancellation (ICIC) with the control region of the LCT in the adjacent base station.
  • ICIC interference cancellation
  • the same as the left and right sub-frames DMRS pattern and its left and right sub-frames in FIG. 20 PBCH mapping position are each in accordance with the, and the number of encoded bits transmitted on the PBCH (M bit) is
  • M bit the number of encoded bits transmitted on the PBCH
  • the number of coding bits that can be transmitted on the PBCH can be increased by reducing the conventional 1920 bits to 1728 bits but not transmitting the TRS in the subframe in which the PBCH is transmitted. Accordingly, coding performance gain can be obtained on the PBCH channel.
  • the PBCH channel mapping scheme described with reference to FIGS. 13 to 18 may be similarly applied.
  • FIG. 22 is a diagram illustrating still another example of PBCH mapping according to another embodiment of the present invention, in which a position of a PSS / SSS is not changed with respect to a general CP of TDD, and a DMRS resource element is used using two antenna port groups. Examples of transmitting.
  • the number of encoded bits transmitted on the PBCH is reduced from the existing 1920 bits to 1632 bits.
  • the number of encoded bits transmitted on the PBCH may be increased from the existing 1920 bits to 2016 bits. Therefore, coding performance gain can be obtained on the PBCH channel.
  • the PBCH mapping method described with reference to FIGS. 15 to 18 may be similarly applied.
  • FIG. 23 is a diagram illustrating a base station as an apparatus for performing embodiments according to the present invention.
  • the base station 500 includes a receiver 510, a controller 520, and a transmitter 530.
  • the controller 520 controls the overall operation of the base station to perform the operations required to perform the embodiments of the present invention described above with reference to FIGS. 5 to 21.
  • the transmitter 530 and the receiver 510 transmit and receive signals, messages, or data necessary for performing the above-described embodiments of the present invention with the terminal 10.
  • the base station 500 described with reference to FIG. 23 performs a process to be described later through the receiver 510, the controller 520, and the transmitter 530 to allocate DMRS according to embodiments of the present invention, and to map PBCH accordingly.
  • One downlink transmission signal is transmitted to the terminal.
  • FIG. 24 is a diagram for explaining a PBCH transmission method performed by the apparatus of FIG. 23 according to the present invention.
  • the base station 500 scrambles one input BCH transport block (S610).
  • the bits of one BCH transmission bit block b (0),..., B (M bit- 1) determined according to the M bit value are transmitted as input bits to scramble.
  • the number of coding bits (M bits ) transmitted on the PBCH is determined according to the PBCH mapping method described above in the embodiments of the present invention.
  • the determined value is equal to the value E of the final number of bits according to rate matching processing.
  • the base station performs QPSK modulation on the scrambled value (S620). Accordingly, the symbols d (0),..., D (M symb ⁇ 1) are output.
  • y (p) (i) represents the signal for antenna port p
  • the number of antenna ports is 1, one of all possible or some DMRS antenna ports, e.g. 7, 8, 9, or 10 Antenna ports may be used.
  • the number of antenna ports is 2, two antenna ports of all or some possible DMRS antenna ports, for example, 7 and 8, 9 and 10, 7 and 9, etc. may be used.
  • the base station 500 maps resource elements (S640).
  • There is a radio frame which is transmitted over four consecutive radio frame intervals including the radio frame, starting from y (0) and mapped to (k, l) resource elements in order.
  • the PBCH resource element is mapped only to (k, l) resource elements that are not allocated for reference signal transmission, and ascends to index k first in slot X of subframe 0 or subframe 0 for 4 radio frames. It can be mapped in increasing order, then in ascending order for index l, and finally increasing the number of frames.
  • the index k is shown in Equation 2 below.
  • k is the frequency index
  • l is the OFDM symbol index on which the PBCH is transmitted
  • n is the first OFDM symbol index on which the PBCH is transmitted in the subframe in which the PBCH is transmitted or in one slot in the subframe, and is allocated for the reference signal. Resource elements are excluded.
  • the resource element index when the PBCH mapping is not continuous is expressed by Equation 3 below.
  • k is the frequency index
  • l is the OFDM symbol index for the PBCH
  • n is the first OFDM symbol index on which the PBCH is transmitted in a subframe or one slot in the subframe, and the resource element allocated for the reference signal is excluded. do.
  • 25 is a diagram illustrating a terminal as an apparatus for performing embodiments according to the present invention.
  • the terminal 700 includes a receiver 710, a controller 720, and a transmitter 730.
  • the controller 720 controls the overall operation of the terminal 700 to perform an operation necessary to perform the embodiments of the present invention described above with reference to FIGS. 5 to 21.
  • the transmitter 730 and the receiver 710 transmit and receive signals, messages or data necessary for performing the above-described embodiments of the present invention with the base station 20 or 500.
  • the receiver 710 receives a downlink transmission signal from the base station 20 or 500 under the control of the controller 720 to detect the PSS / SSS, and detects a demodulation reference signal (DMRS) based thereon.
  • DMRS demodulation reference signal
  • a physical broadcast channel (PBCH) may be searched for a blind search.
  • the controller 720 may extract a master information block (MIB) through the searched PBCH.
  • MIB master information block
  • Such a computer program may be stored in a computer readable storage medium and read and executed by a computer, thereby implementing embodiments of the present invention.
  • the storage medium of the computer program may include a magnetic recording medium, an optical recording medium, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to information transmission by a base station comprising the steps of: scrambling and performing quadrature phase-shift keying (QPSK) modulation, layer mapping, and precoding on one physical broadcast channel (PBCH) transmission bit block comprising bits the number of which corresponds to the number (Mbit) of coded bits to be transmitted in a PBCH; and, with there being at least one radio frame having the radio frame index n f wherein n f mod4 = 0 and four consecutive radio frames including said radio frame, mapping each bit of the precoded PBCH transmission bit block by increasing the frequency index k, OFDM symbol index, and radio frame index n f in ascending order from subframe #0 or a predetermined slot in subframe #0 of the four radio frames, with respect to resource elements (k, l), which have not been allocated for reference signal transmission, among complex symbol blocks (y (P) (0),..., and y (P) (M symb -1)) in respective antenna ports.

Description

단말, 단말의 정보 수신 방법, 기지국, 및 기지국의 정보 전송 방법A terminal, a method of receiving information of a terminal, a base station, and a method of transmitting information of a base station
본 발명은 DMRS를 기반으로 하여 MIB(Master Information Block 정보를 송수신하는 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for transmitting and receiving MIB (Master Information Block information) based on DMRS.
3GPP LTE-Advanced 표준화 동향에 따르면 캐리어에 관한 다양한 논의가 진행되고 있으며, 그 중 한 아이템으로 새로운 타입 캐리어 타입(New Carrier Type (NCT), 이하 'NCT'라 함)가 있다.According to the 3GPP LTE-Advanced standardization trend, various discussions on carriers are underway, and one item is a new carrier type (NCT), hereinafter referred to as 'NCT'.
NCT는 캐리어 집적화(Carrier aggregation(CA), 이하 'CA'라 함) 기법을 통해 병합되는 요소반송파(Component Carrier(CC), 이하 'CC'라 함)들 중 주 CC (primary CC)가 아닌 부 CC (secondary CC)에서의 페이로드 크기(payload size)를 늘리기 위해 오버헤드(overhead)를 줄인 부 CC, 즉 제어영역을 포함하지 않는 요소반송파를 말한다. 이러한 NCT는 자립형 타입(Standalone NCT, 이하 S-NCT)과 비 자립형(Non-standalone NCT: NS-NCT) 타입으로 구분되고 비 자립형 타입의 경우 동기 캐리어(Synchronized Carrier) NCT와 비동기 캐리어(Unsynchronized Carrier) NCT로 다시 구분되며, NCT에서는 PDCCH(Physical Downlink Control Channel), PHICH(Physical HARQ Indicator Channel), PCFICH(Physical Control Format Indicator Channel), CRS(Cell-specific Reference Signal) 등의 제어 신호들이 전송되지 않을 예정이다. NCT is a non-primary CC among component carriers (CC) hereinafter merged through a carrier aggregation (CA) technique. The CC refers to a secondary CC that reduces overhead to increase payload size in CC, that is, a component carrier that does not include a control region. These NCTs are classified into standalone NCT (S-NCT) and non-standalone NCT (NS-NCT) types. It is divided into NCT, and control signals such as Physical Downlink Control Channel (PDCCH), Physical HARQ Indicator Channel (PHICH), Physical Control Format Indicator Channel (PCFICH), and Cell-specific Reference Signal (CRS) will not be transmitted in NCT. to be.
그러나 단말은 셀 탐색 과정 이후 제어 신호 중 PBCH(Physical Broadcast Channel)를 통해 시스템 정보인 MIB(Master Information Block)를 전송하며, 시스템 정보가 수신 및 복호되어야 이후 단말이 랜덤 액세스(random-access) 과정을 통해 셀에 접속할 수 있다. However, the terminal transmits a master information block (MIB), which is system information, through a PBCH (Physical Broadcast Channel) among control signals after the cell discovery process, and after the system information is received and decoded, the terminal performs a random access process You can access the cell via
그러나 NCT에서는 CRS가 전송되지 않음에 따라, CRS를 기반으로 하던 종래의 PBCH 등의 제어 채널의 수신 및 복조에 문제가 발생할 수 있다. However, since the CRS is not transmitted in the NCT, a problem may occur in reception and demodulation of a control channel such as a conventional PBCH based on the CRS.
본 발명에서는, NCT에 있어서 DMRS를 기반으로 하여 시스템 정보인 MIB를 제공하기 위한 단말, 단말의 정보 수신 방법, 기지국 및 기지국의 정보 전송 방법을 제공하고자 한다.In the present invention, to provide a terminal, an information receiving method of a terminal, a base station and a base station information transmission method for providing a MIB which is system information based on DMRS in NCT.
본 발명의 일 실시예는, 물리 방송 채널((Physical Broadcast CHannel, PBCH) 상에서 전송될 부호화 비트의 개수( Mbit ) 에 대응하는 수의 비트를 포함하는 하나의 PBCH(Physical Broadcast Channel) 전송 비트 블록에 대해 스크램블을 수행하고, QPSK(Quadrature phase-shift keying) 변조 및 레이어 매핑(Layer mapping)과 프리코딩(precoding)을 수행하는 단계; 및 무선 프레임 인덱스 nf
Figure PCTKR2013011436-appb-I000001
를 만족하는 적어도 하나의 무선 프레임이 존재하고, 해당 무선 프레임을 포함하면서 4개의 연속하는 무선 프레임에 대해, 각 안테나 포트에서 복소 심볼 블록 y(p)(0),...,y(p)(Msymb-1) 중 참조 신호 전송을 위해 할당되지 않은 (k, l) 자원요소들에 대해 상기 4개의 무선 프레임의 서브프레임 0번 또는 서브프레임 0번의 특정 슬롯에서 오름순으로 주파수 인덱스 k 를 증가시키고, OFDM 심볼 인덱스 l 을 증가시키고, 상기 무선 프레임의 인덱스 nf를 증가시켜 상기 프리코딩 수행된 PBCH 전송 비트 블록의 각 비트를 매핑하는 단계;를 포함하는 것을 특징으로 하는 기지국의 정보 전송 방법을 제공한다.
According to an embodiment of the present invention, one physical broadcast channel (PBCH) transport bit block including a number of bits corresponding to the number of encoded bits M bits to be transmitted on a physical broadcast channel (PBCH) is provided. Performing scrambling on the DMA, performing quadrature phase-shift keying (QPSK) modulation, layer mapping, and precoding; and radio frame index n f is
Figure PCTKR2013011436-appb-I000001
There is at least one radio frame that satisfies, and for four consecutive radio frames including the radio frame, a complex symbol block y (p) (0), ..., y (p) at each antenna port Frequency index k in ascending order in a specific slot of subframe 0 or subframe 0 of the 4 radio frames for (k, l) resource elements not allocated for reference signal transmission among (M symb- 1). And mapping each bit of the precoded PBCH transmission bit block by increasing the OFDM symbol index l and increasing the index n f of the radio frame. To provide.
본 발명의 다른 실시예는, 물리 방송 채널((Physical Broadcast CHannel, PBCH) 상에서 전송될 부호화 비트의 개수( Mbit )에 대응하는 수의 비트를 포함하는 하나의 PBCH(Physical Broadcast Channel) 전송 비트 블록에 대해 스크램블을 수행하고, QPSK(Quadrature phase-shift keying) 변조 및 레이어 매핑(Layer mapping)과 프리코딩(precoding)을 수행하고, 무선 프레임 인덱스 nf가 nf mod4=0 를 만족하는 적어도 하나의 무선 프레임이 존재하고, 해당 무선 프레임을 포함하면서 4개의 연속하는 무선 프레임에서, 각 안테나 포트에서 복소 심볼 블록 y(p)(0),...,y(p)(Msymb-1) 중 참조 신호 전송을 위해 할당되지 않은 (k, l) 자원요소들에 대해 서브프레임 0번 또는 서브프레임 0번의 특정 슬롯에서 오름순으로 주파수 인덱스 k 를 증가시키고, OFDM 심볼 인덱스 l 을 증가시키고, 상기 무선 프레임의 인덱스 nf를 증가시켜, 상기 프리코딩 수행된 PBCH 전송 비트 블록의 각 비트를 매핑하는 제어부; 및 상기 매핑된 PBCH 채널을 통해 MIB(Master Information Block)를 전송하는 송신부;를 포함하는 것을 특징으로 하는 기지국을 제공한다. According to another embodiment of the present invention, one physical broadcast channel (PBCH) transport bit block including a number of bits corresponding to the number of encoded bits (M bits ) to be transmitted on a physical broadcast channel (Physical Broadcast CHannel, PBCH) Performs scrambling on the device, performs quadrature phase-shift keying (QPSK) modulation, layer mapping and precoding, and at least one radio frame index n f satisfies n f mod4 = 0. A radio frame exists, and in four consecutive radio frames, including the corresponding radio frame, of each of the complex symbol blocks y (p) (0), ..., y (p) (M symb -1) at each antenna port. Increase the frequency index k in ascending order in the specific slot of subframe 0 or subframe 0 for (k, l) resource elements not allocated for reference signal transmission, increase the OFDM symbol index l, and Phosphorus frame 'S increases the n f, a controller for mapping the pre-coding performed the PBCH for each bit of the transmission bit block, characterized in that it comprises; and a transmitter for transmitting a MIB (Master Information Block) via the mapping of PBCH Channel Provide a base station.
본 발명의 다른 실시예는, 복조 기준 신호(DeModulation Reference Signal, DMRS)에 기반하여 물리 방송 채널(Physical Broadcast CHannel, PBCH)을 검색하고, 상기 PBCH를 통해 전송되는 주 정보 블록(Master Information Block, MIB)을 추출하는 단계;를 포함하고, 상기 PBCH 검색에 있어서, 무선 프레임 인덱스 nf가 nf mod4=0 를 만족하는 적어도 하나의 무선 프레임이 존재하고, 해당 무선 프레임을 포함하면서 4개의 연속하는 무선 프레임에 대해, 각 안테나 포트에서 복소 심볼 블록 y(p)(0),...,y(p)(Msymb-1) 중 참조 신호 전송을 위해 할당되지 않은 (k, l) 자원요소들에 대해 상기 4개의 무선 프레임의 서브프레임 0번 또는 서브프레임 0번의 특정 슬롯에서 오름순으로 주파수 인덱스 k 를 증가시키고, OFDM 심볼 인덱스 l 을 증가시키고, 상기 무선 프레임의 인덱스 nf를 증가시켜 상기 PBCH 전송 비트 블록의 각 비트를 검색하는 것을 특징으로 하는 단말기의 정보 수신 방법을 제공한다. According to another embodiment of the present invention, a physical broadcast channel (PBCH) is searched based on a demodulation reference signal (DMRS) and a master information block (MIB) transmitted through the PBCH. Extracting at least one radio frame in which the radio frame index n f satisfies n f mod4 = 0, and includes four consecutive radio frames while including the corresponding radio frame. For a frame, (k, l) unallocated (k, l) resource elements for the reference signal transmission in the complex symbol blocks y (p) (0), ..., y (p) (M symb -1) at each antenna port. For the PBCH by increasing the frequency index k, increasing the OFDM symbol index l, and increasing the index n f of the radio frame in ascending order in a specific slot of subframe 0 or subframe 0 of the four radio frames for I'm It provides a method for receiving information of a terminal, characterized in that for searching each bit of the song bit block.
본 발명의 다른 실시예는, 복조 기준 신호(DeModulation Reference Signal, DMRS)에 기반하여 물리 방송 채널(Physical Broadcast CHannel, PBCH)을 검색하고, 상기 PBCH를 통해 전송되는 주 정보 블록(Master Information Block, MIB)을 추출하는 수신부;를 포함하고, 상기 수신부는, 상기 PBCH 검색에 있어서, 무선 프레임 인덱스 nf가 nf mod4=0 를 만족하는 적어도 하나의 무선 프레임이 존재하고, 해당 무선 프레임을 포함하면서 4개의 연속하는 무선 프레임에 대해, 각 안테나 포트에서 복소 심볼 블록 y(p)(0),...,y(p)(Msymb-1) 중 참조 신호 전송을 위해 할당되지 않은 (k, l) 자원요소들에 대해 상기 4개의 무선 프레임의 서브프레임 0번 또는 서브프레임 0번의 특정 슬롯에서 오름순으로 주파수 인덱스 k 를 증가시키고, OFDM 심볼 인덱스 l 을 증가시키고, 상기 무선 프레임의 인덱스 nf를 증가시켜 상기 PBCH 전송 비트 블록의 각 비트를 검색하는 것을 특징으로 하는 단말기를 제공한다. According to another embodiment of the present invention, a physical broadcast channel (PBCH) is searched based on a demodulation reference signal (DMRS) and a master information block (MIB) transmitted through the PBCH. And a receiving unit for extracting a); wherein the receiving unit includes at least one radio frame in which the radio frame index n f satisfies n f mod 4 = 0 and includes the corresponding radio frame in the PBCH search. For each consecutive radio frame, one of the complex symbol blocks y (p) (0), ..., y (p) (M symb -1) at each antenna port is not allocated for reference signal transmission (k, l ) For the resource elements, the frequency index k is increased in ascending order in the specific slot of subframe 0 or subframe 0 of the 4 radio frames, the OFDM symbol index l is increased, and the index n f of the radio frame is Increase To provide a terminal, it characterized in that to search for the respective bits of the PBCH transmission bit block.
본 발명에 따르면, CA 환경에 있어서 제어영역을 포함하지 않는 NCT에 대해 PSS/SSS와 DMRS(Demodulation reference signal)의 충돌을 방지하면서 DMRS를 기반으로 PBCH의 채널 추정 성능을 향상시킬 수 있다. According to the present invention, channel estimation performance of PBCH can be improved based on DMRS while preventing collision between PSS / SSS and demodulation reference signal (DMRS) for NCT that does not include a control region in a CA environment.
또한 PSS/SSS와의 충돌을 피하기 위한 다양한 DMRS 패턴에 따라 적응적으로 PBCH를 할당하고 이에 따라 PBCH 채널 추정 오류를 줄이고 효과적으로 시스템 정보를 제공하여 신속하고 정확한 셀 액세스를 도모할 수 있다. In addition, PBCH can be adaptively allocated according to various DMRS patterns to avoid collision with PSS / SSS, thereby reducing PBCH channel estimation error and effectively providing system information, thereby enabling fast and accurate cell access.
도 1은 본 발명의 실시예들이 적용되는 통신 시스템을 나타내는 도면이다.1 is a diagram illustrating a communication system to which embodiments of the present invention are applied.
도 2는 PBCH 전송채널 프로세싱 과정을 설명하기 위한 도면이다. 2 is a diagram illustrating a PBCH transport channel processing procedure.
도 3은 RS 및 PBCH 할당 방식을 설명하기 위한 도면이다. 3 is a view for explaining an RS and PBCH allocation scheme.
도 4는 본 발명이 적용되는 셀 엑세스 절차를 설명하기 위한 도면이다. 4 is a diagram for explaining a cell access procedure to which the present invention is applied.
도 5 및 도 6은 본 발명의 일 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 일 예들을 나타낸 도면이다.5 and 6 illustrate examples for explaining a PBCH mapping scheme according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 다른 예이다. 7 is another example for explaining a PBCH mapping scheme according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 또 다른 예를 나타낸 도면이다.8 is a diagram illustrating another example for explaining a PBCH mapping scheme according to an embodiment of the present invention.
도 9 및 도 10은 본 발명의 일 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 또 다른 예를 나타낸 도면이다.9 and 10 illustrate another example for explaining a PBCH mapping scheme according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 또 다른 예를 나타낸 도면이다. FIG. 11 is a diagram illustrating another example for describing a PBCH mapping scheme according to an embodiment of the present invention. FIG.
도 12는 본 발명의 다른 실시예에 따른 DMRS 패턴을 설명하기 위한 도면이다.12 is a diagram for explaining a DMRS pattern according to another embodiment of the present invention.
도 13 및 도 14는 본 발명의 다른 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 일 예들을 나타낸 도면이다.13 and 14 illustrate examples for explaining a PBCH mapping scheme according to another embodiment of the present invention.
도 15 및 도 16은 본 발명의 다른 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 예들을 나타낸 도면이다.15 and 16 illustrate examples for explaining a PBCH mapping scheme according to another embodiment of the present invention.
도 17 및 도 18은 본 발명의 다른 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 다른 예들을 나타낸 도면이다.17 and 18 are diagrams illustrating other examples for describing a PBCH mapping scheme according to another embodiment of the present invention.
도 19는 본 발명의 또 다른 실시예에 따른 DMRS 패턴을 설명하기 위한 도면이다.19 is a diagram for explaining a DMRS pattern according to another embodiment of the present invention.
도 20 및 도 21은 본 발명의 또 다른 실시예에 따른 PBCH 매핑 방식의 예들을 설명하기 위한 도면이다.20 and 21 are diagrams for describing examples of the PBCH mapping scheme according to another embodiment of the present invention.
도 22는 본 발명의 또 다른 실시예에 따른 PBCH 매핑 방식의 예를 설명하기 위한 도면이다. 22 is a diagram for explaining an example of the PBCH mapping scheme according to another embodiment of the present invention.
도 23은 본 발명에 따른 실시예들을 수행하는 정보 전송 장치를 나타내는 도면이다. 23 is a diagram illustrating an information transmission apparatus for performing embodiments according to the present invention.
도 24는 본 발명에 따른 도 23의 장치에 의해 수행되는 정보 전송 방법을 설명하기 위한 도면이다. 24 is a diagram for explaining an information transmission method performed by the apparatus of FIG. 23 according to the present invention.
도 25는 본 발명에 따른 실시예들을 수행하는 정보 수신 장치를 나타내는 도면이다.25 is a diagram illustrating an information receiving apparatus for performing embodiments according to the present invention.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the component of this invention, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to that other component, but there may be another configuration between each component. It is to be understood that the elements may be "connected", "coupled" or "connected".
도 1은 본 발명의 실시예들이 적용되는 통신 시스템을 나타내는 도면이다.1 is a diagram illustrating a communication system to which embodiments of the present invention are applied.
통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.Communication systems are widely deployed to provide various communication services such as voice, packet data, and the like.
도 1을 참조하면, 통신 시스템은 단말(10; User Equipment, UE) 및 단말(10)과 상향 링크 및 하향 링크 통신을 수행하는 전송단(20; Transmission Point)을 포함한다.Referring to FIG. 1, a communication system includes a user equipment (UE) 10 and a transmission point 20 that performs uplink and downlink communication with the terminal 10.
본 명세서에서의 단말(10) 또는 UE(User Equipment), 수신단은 무선 통신에서의 사용자 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.In the present specification, a terminal 10 or a user equipment (UE), a receiving end is a comprehensive concept of a user terminal in wireless communication, and a mobile station (MS) in GSM as well as a UE in WCDMA and LTE, HSPA, etc. It should be interpreted as a concept that includes a user terminal (UT), a subscriber station (SS), a wireless device, and the like.
전송단(20) 또는 셀(cell)은 일반적으로 단말(10)과 통신하는 지점(station)을 말하며, 기지국, 노드-B(Node-B), eNB(evolved Node-B), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RU(Radio Unit) 등 다른 용어로 불릴 수 있다.The transmitting end 20 or cell generally refers to a station communicating with the terminal 10, and includes a base station, a node-B, an evolved node-B, and a base transceiver. Other terms may be referred to as a system, an access point, a relay node, and a radio unit (RU).
본 명세서에서 전송단(20) 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB 등이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 기지국과 연결된 RRH(Radio Remote Head), 릴레이 노드(relay node), 매크로 셀의 섹터(sector), 사이트(site), 기타 펨토셀, 피코셀, RU(Radio Unit) 등과 같은 마이크로 셀 등 하나의 단말과 통신할 수 있는 모든 형태의 장치를 의미하는 포괄적인 개념으로 사용된다. In the present specification, the transmission terminal 20 or a cell should be interpreted in a comprehensive sense indicating a part of a region covered by a base station controller (BSC) in a CDMA, a NodeB of a WCDMA, etc., and a radio remote connected to a base station. All types of communication with one terminal such as head, relay node, sector of macro cell, site, other femtocell, picocell, micro cell such as RU (Radio Unit) Used as a generic concept to mean a device.
도 1에서 하나의 단말(10)과 하나의 전송단(20)이 도시되었지만 본 발명은 이에 제한되지 않는다. 하나의 전송단(20)이 복수의 단말(10)과 통신하는 것이 가능하고, 또한 하나의 단말(10)이 복수의 전송단(20)과 통신하는 것이 가능하다.Although one terminal 10 and one transmission terminal 20 are shown in FIG. 1, the present invention is not limited thereto. It is possible for one transmission terminal 20 to communicate with the plurality of terminals 10, and one terminal 10 may communicate with the plurality of transmission terminals 20.
통신 시스템에 적용되는 다중 접속 기법에는 제한이 없으며, 본 발명은 CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법에 적용 가능하다.There are no limitations to the multiple access scheme applied to a communication system, and the present invention provides the code division multiple access (CDMA), time division multiple access (TDMA), frequency division multiple access (FDMA), orthogonal frequency division multiple access (OFDMA), and OFDM. Applicable to various multiple access schemes such as FDMA, OFDM-TDMA, and OFDM-CDMA.
또한, 본 발명은 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식, 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식, TDD와 FDD를 결합한 하이브리드 듀플렉싱(Hybrid Duplexing) 방식에 적용 가능하다.In addition, the present invention is a combination of the TDD (Time Division Duplex) method is transmitted using a different time, uplink transmission and downlink transmission, FDD (Frequency Division Duplex) method is transmitted using a different frequency, combining the TDD and FDD Applicable to hybrid duplexing method.
구체적으로, 본 발명의 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE(Long Term Evolution) 및 LTE-advanced로 진화하는 비동기 무선 통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등에 적용될 수 있다. 이러한 본 발명은 특정한 무선 통신 분야에 한정되거나 제한되어 해석되어서는 아니되고, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.Specifically, embodiments of the present invention are applicable to asynchronous wireless communication that evolves into Long Term Evolution (LTE) and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication that evolves into CDMA, CDMA-2000, and UMB. Can be. The present invention should not be construed as being limited or limited to a specific wireless communication field, but should be interpreted as including all technical fields to which the spirit of the present invention can be applied.
전송단(20)은 단말(10)로 하향링크 전송을 수행한다. 전송단(20)은 LCT(legacy carrier type)에서 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH)을 전송할 수 있다. 또한, 전송단(20)은 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH), PDSCH와 PDCCH의 영역을 구분하는 지시자를 전송하기 위한 물리 제어 포맷 지시자 채널(Physical Control Format Indicator Channel, PCFICH), 상향 링크 전송에 대한 HARQ(Hybrid Automatic Repeat reQuest) 확인의 전송을 위한 물리 HARQ 지시자 채널(Physical HARQ Indicator Channel, PHICH) 등의 제어채널을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.The transmitting end 20 performs downlink transmission to the terminal 10. The transmitter 20 may transmit a physical downlink shared channel (PDSCH), which is a main physical channel for unicast transmission in a legacy carrier type (LCT). In addition, the transmitting end 20 grants scheduling control for transmission on downlink control information such as scheduling required for reception of the PDSCH and uplink data channel (for example, a physical uplink shared channel (PUSCH)). Physical Downlink Control Channel (PDCCH) for transmitting information, Physical Control Format Indicator Channel (PCFICH) for transmitting an indicator for distinguishing regions of PDSCH and PDCCH, uplink transmission A control channel such as a physical HARQ indicator channel (PHICH) for transmitting a HARQ (Hybrid Automatic Repeat reQuest) confirmation may be transmitted. Hereinafter, the transmission and reception of signals through each channel will be described in the form of transmission and reception of the corresponding channel.
그러나 전송단(20)은 NCT(new carrier type)에서는 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH), PDSCH와 PDCCH의 영역을 구분하는 지시자를 전송하기 위한 물리 제어 포맷 지시자 채널(Physical Control Format Indicator Channel, PCFICH), 상향 링크 전송에 대한 HARQ(Hybrid Automatic Repeat reQuest) 확인의 전송을 위한 물리 HARQ 지시자 채널(Physical HARQ Indicator Channel, PHICH) 등의 제어채널을 전송하지 않을 예정이다.   However, the transmitter 20 may transmit a physical downlink control channel (PDCCH), a physical control format indicator channel for transmitting an indicator for distinguishing the PDSCH and PDCCH regions in a new carrier type (NCT). A control channel such as a physical HARQ indicator channel (PHICH) for transmitting an indicator channel (PCFICH) and a hybrid automatic repeat request (HARQ) confirmation for uplink transmission will not be transmitted.
전송단(20)은 LCT의 하향 링크에서 셀-특정 참조신호(Cell-Specific Reference Signal, CRS), MBSFN 참조신호(Multicast/Broadcast over Single Frequency Network Reference Signal, MBSFN-RS), 단말-특정 참조신호(UE-Specific Reference Signal, DMRS), 위치 참조신호(Positioning Reference Signal, PRS), 및 CSI 참조신호(Channel State Information Reference Signal, CSI-RS)를 전송할 수 있다.The transmitter 20 transmits a Cell-Specific Reference Signal (CRS), an MBSFN Reference Signal (MBSFN-RS), a UE-Specific Reference Signal in the downlink of the LCT. The UE-Specific Reference Signal (DMRS), Positioning Reference Signal (PRS), and Channel State Information Reference Signal (CSI-RS) may be transmitted.
셀-특정 참조신호(Cell-specific RS)인 CRS는 전 대역에 거쳐 전송되는 셀 특정 참조신호(cell specific-reference signal)이며, DM-RS는 각 단말에 대한 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH)이 전송되는 대역에서 정의되는 단말-특정 참조신호(UE specific-reference signal)이다. 셀 특정 참조신호(cell specific-reference signal)는 동일한 셀 내 각 단말에 전송되는 참조신호(예를 들어 CRS)의 형태가 단말과 무관하게 동일할 수 있음을 의미한다. 단말-특정 참조신호(UE specific reference signal)는 각 단말에 전송되는 참조신호(예를 들어 DM-RS)의 형태가 각 단말마다 다를 수 있음을 의미한다. CRS, a cell-specific RS, is a cell-specific reference signal transmitted over the entire band, and DM-RS is a unicast transmission for each UE. A UE-specific reference signal is defined in a band in which a physical downlink shared channel (PDSCH), which is a main physical channel, is transmitted. The cell specific reference signal means that the shape of a reference signal (for example, CRS) transmitted to each terminal in the same cell may be the same regardless of the terminal. The UE-specific reference signal (UE specific reference signal) means that the shape of the reference signal (for example, DM-RS) transmitted to each terminal may be different for each terminal.
단말-특정 참조신호(UE specific-reference signal)인 DM-RS는 전송단(20)이 복소심볼을 전송하기 전에 복소심볼을 프리코딩 행렬을 이용하여 프리코딩하는 프리코딩 기법을 사용하는 환경에서 단말 또는 수신단(10)이 프리코딩에 의해 변형된 가상 채널(virtual channel)에 대한 정보를 습득할 수 있도록 지원하는 것을 목적으로 전송되는 참조신호(reference signal)이다. The UE-specific reference signal (DM-RS) is a UE in an environment using a precoding scheme in which the transmitter 20 precodes a complex symbol using a precoding matrix before transmitting the complex symbol. Alternatively, it is a reference signal transmitted for the purpose of supporting the receiving end 10 to learn information about a virtual channel modified by precoding.
단말-특정 참조신호(UE specific-reference signal)인 DM-RS는 각 단말이 PDSCH를 수신하는 대역에 대하여 전송되며, 각 단말은 이 DM-RS 수신을 통해 PDSCH 복호에 필요한 채널 또는 가상 채널정보를 습득한다.The DM-RS, which is a UE-specific reference signal, is transmitted for a band where each terminal receives a PDSCH, and each terminal receives channel or virtual channel information necessary for PDSCH decoding through the DM-RS reception. Acquire
무선 통신에서, 하나의 무선 프레임(라디오프레임, radioframe)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯으로 구성된다. 무선 프레임은 10ms의 길이를 갖고, 서브프레임은 1.0ms의 길이를 갖는다. 일반적으로, 데이터 송신의 기본 단위는 서브프레임 단위가 되고, 서브프레임 단위로 하향링크 또는 상향링크의 스케줄링이 이루어진다.In wireless communication, one radio frame (radioframe) consists of 10 subframes, and one subframe consists of two slots. The radio frame has a length of 10 ms and the subframe has a length of 1.0 ms. In general, the basic unit of data transmission is a subframe unit, and downlink or uplink scheduling is performed on a subframe basis.
하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 갖고 주파수 영역에서 적어도 하나의 부반송파(subcarrier)를 포함할 수 있다. 예를 들면, 하나의 슬롯은 시간 영역에서 7개(Normal Cyclic Prefix(일반 CP 또는 노멀 CP)인 경우) 또는 6개(Extended Cyclic Prefix(확장 CP)인 경우)의 OFDM 심볼을 포함하고 주파수 영역에서 12개의 부반송파를 포함할 수 있다. 이렇게 하나의 슬롯으로 정의되는 시간-주파수 영역을 자원블록(Resource Block, RB)로 부를 수 있으나, 이에 한정되는 것은 아니다. One slot may have a plurality of OFDM symbols in the time domain and include at least one subcarrier in the frequency domain. For example, one slot contains seven OFDM symbols in the time domain (for Normal Cyclic Prefix or Normal CP) or six (for Extended Cyclic Prefix for Extended CP) and in the frequency domain It may include 12 subcarriers. The time-frequency domain defined as one slot may be referred to as a resource block (RB), but is not limited thereto.
자원 요소(Resource Element, RE)는 시간 축으로는 하나의 OFDM 심볼, 그리고 주파수 축으로는 하나의 부반송파로 구성될 수 있다. 따라서, 하나의 자원 블록은 7X12개(노멀 CP의 경우) 또는 6X12개(확장 CP의 경우)의 자원 요소를 포함할 수 있다.The resource element (RE) may consist of one OFDM symbol on the time axis and one subcarrier on the frequency axis. Thus, one resource block may include 7 × 12 resource elements (in case of normal CP) or 6 × 12 resource elements (in case of extended CP).
전송단(20)은 기지국과의 동기화 및 해당 기지국 셀 확인 (cell identification)를 위해 주 동기신호(Primary Synchronization Signal(PSS), 이하 'PSS'라 함)와 부 동기신호(Secondary Synchronization Signal(SSS), 이하 'SSS'라 함)을 하나의 무선프레임의 적어도 하나의 서브프레임에 적어도 하나의 특정 RB(Resource Block)에 할당한다. 이때 전송단(20)은 LTE 사용자 단말(user equipment(UE))과의 간섭제거(ICIC), DM-RS(Demodulation Reference Signal)의 설정과의 충돌 등의 부작용이 발생하지 않도록 아래에서 설명한 바와 같이 제어영역을 포함하지 않는 CC 중 하나인 비동기 NCT에 대한 PSS/SSS의 위치를 시간(심볼)축상으로 변경할 수 있다. The transmitter 20 transmits a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for synchronization with the base station and cell identification. In the following description, an SSS is allocated to at least one specific resource block (RB) in at least one subframe of one radio frame. In this case, the transmitter 20 may avoid side effects such as interference with LTE user equipment (UE) and setting of DM-RS (Demodulation Reference Signal) as described below. The position of the PSS / SSS for the asynchronous NCT, which is one of the CCs not including the control region, can be changed on the time (symbol) axis.
한편, 전송단(20)은 NCT의 하향 링크에서 셀-특정 참조신호(Cell-Specific Reference Signal, CRS)를 전송하지 않을 예정이다. 대신에 전송단(20)은 트래킹 참조신호(Tracking Reference Signal, TRS)를 전송할 수 있다. TRS는 기존의 CRS의 안테나 포트 0와 Rel.8 시퀀스를 기반으로 5ms 주기로 전송되는 일종의 Reduced CRS라고 볼 수 있다. 전송단(20)은 NCT에서도 단말-특정 참조신호(UE-Specific Reference Signal, DM-RS) 및 CSI 참조신호(Channel State Information Reference Signal, CSI-RS)는 전송할 수 있다. On the other hand, the transmitter 20 will not transmit a cell-specific reference signal (CRS) in the downlink of the NCT. Instead, the transmitter 20 may transmit a tracking reference signal (TRS). TRS is a kind of reduced CRS transmitted in 5ms period based on the antenna port 0 and Rel.8 sequence of the conventional CRS. The transmitter 20 may transmit a UE-Specific Reference Signal (DM-RS) and a Channel State Information Reference Signal (CSI-RS) in the NCT.
따라서, CRS가 전송되지 않음에 따라, 기본적인 복조는 DMRS를 기반으로 수행될 수 있어 PSS/SSS와 DMRS의 충돌 문제를 해결하기 위해 PSS/SSS의 위치를 다른 OFDM 심볼로 이동시킬 수 있다. 또한 DMRS를 기반으로 하는 PBCH 전송 패턴에 대해 이하 상세히 설명한다. Therefore, as the CRS is not transmitted, basic demodulation may be performed based on the DMRS, and thus the position of the PSS / SSS may be moved to another OFDM symbol to solve the collision problem between the PSS / SSS and the DMRS. In addition, the PBCH transmission pattern based on DMRS will be described in detail below.
도 2는 PBCH 전송 채널 프로세싱 과정을 설명하기 위한 도면이며, 도 3은 RS 및 PBCH 전송 방식을 설명하기 위한 도면이다. 2 is a view for explaining a PBCH transport channel processing process, Figure 3 is a view for explaining the RS and PBCH transmission scheme.
도 2 및 3을 참조하면 MIB에 해당하는 하나의 BCH 전송블록은 매 40ms마다 한번씩 전송된다. 하나의 BCH 전송블록에 대해 16비트 CRC(Cyclic Redundancy Check)가 삽입되며, 채널 코딩으로서 1/3 부호화율 테일 바이팅(tail-biting) 콘볼루셔널(convolutional) 코딩이 수행되고, 부호화 비트가 반복되는 레이트 매칭(rate matching)이 수행된 후, 비트 단위로 스크램블링된 BCH 전송블록에 대해 QPSK 변조가 수행된다. 이어서 변조된 BCH 전송블록에 대해 안테나 매핑이 이루어지고 역다중화(demultiplexing)되어 네 개의 연속된 프레임에서 각 프레임의 첫번째 서브프레임에 매핑된다. 2 and 3, one BCH transport block corresponding to the MIB is transmitted once every 40 ms. A 16-bit Cyclic Redundancy Check (CRC) is inserted for one BCH transport block, 1 / 3-bit rate tail biting convolutional coding is performed as channel coding, and coding bits are repeated. After rate matching is performed, QPSK modulation is performed on the BCH transport block scrambled bit by bit. Antenna mapping is then performed for the modulated BCH transport block, demultiplexed and mapped to the first subframe of each frame in four consecutive frames.
즉, 일반 CP(Normal Cyclic Prefix)의 경우에는 중심 6PRB 상에 1920 비트를 4개의 서브프레임에 동일하게 나누어 전송하며, 확장 CP(Extended Cyclic Prefix)의 경우에는 중심 6PRB 상에 1728비트를 4개의 서브프레임에 동일하게 나누어 전송한다. That is, in the case of a normal CP (Normal Cyclic Prefix), 1920 bits are divided and transmitted in four subframes on the center 6PRB, and in the case of an extended CP (Extended Cyclic Prefix), 1728 bits are transmitted on the center 6PRB. Transmit equally in frames.
한편 PBCH는 각 무선 프레임(radio frame)의 서브프레임 0번의 두 번째 슬롯의 중심 6PRB 상에서 전송된다. Meanwhile, the PBCH is transmitted on the center 6PRB of the second slot of subframe 0 of each radio frame.
셀-특정 참조신호(Cell-specific RS)인 CRS는 전 대역에 거쳐 전송되는 셀 특정 참조신호(cell specific-reference signal)이며, DM-RS는 각 단말에 대한 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH)이 전송되는 대역에서 정의되는 단말-특정 참조신호(UE specific-reference signal)이다. 셀 특정 참조신호(cell specific-reference signal)는 동일한 셀 내 각 단말에 전송되는 참조신호(예를 들어 CRS)의 형태가 단말과 무관하게 동일할 수 있음을 의미한다. 단말-특정 참조신호(UE specific reference signal)는 각 단말에 전송되는 참조신호(예를 들어 DM-RS)의 형태가 각 단말마다 다를 수 있음을 의미한다. CRS, a cell-specific RS, is a cell-specific reference signal transmitted over the entire band, and DM-RS is a unicast transmission for each UE. A UE-specific reference signal is defined in a band in which a physical downlink shared channel (PDSCH), which is a main physical channel, is transmitted. The cell specific reference signal means that the shape of a reference signal (for example, CRS) transmitted to each terminal in the same cell may be the same regardless of the terminal. The UE-specific reference signal (UE specific reference signal) means that the shape of the reference signal (for example, DM-RS) transmitted to each terminal may be different for each terminal.
단말-특정 참조신호(UE specific-reference signal)인 DM-RS는 전송단(20)이 복소심볼을 전송하기 전에 복소심볼을 프리코딩 행렬을 이용하여 프리코딩하는 프리코딩 기법을 사용하는 환경에서 단말 또는 수신단(10)이 프리코딩에 의해 변형된 가상 채널(virtual channel)에 대한 정보를 습득할 수 있도록 지원하는 것을 목적으로 전송되는 참조신호(reference signal)이다. The UE-specific reference signal (DM-RS) is a UE in an environment using a precoding scheme in which the transmitter 20 precodes a complex symbol using a precoding matrix before transmitting the complex symbol. Alternatively, it is a reference signal transmitted for the purpose of supporting the receiving end 10 to learn information about a virtual channel modified by precoding.
단말-특정 참조신호(UE specific-reference signal)인 DM-RS는 각 단말이 PDSCH를 수신하는 대역에 대하여 전송되며, 각 단말은 이 DM-RS 수신을 통해 PDSCH 복호에 필요한 채널 또는 가상 채널정보를 습득한다. The DM-RS, which is a UE-specific reference signal, is transmitted for a band where each terminal receives a PDSCH, and each terminal receives channel or virtual channel information necessary for PDSCH decoding through the DM-RS reception. Acquire
도 4는 본 발명의 실시예가 적용되는 셀 액세스 절차를 설명하기 위한 도면이다. 4 is a diagram illustrating a cell access procedure to which an embodiment of the present invention is applied.
단말은 최초로 시스템에 접속할 때뿐만 아니라 셀 재선택(cell reselection) 및 이동성을 지원하기 위한 핸드오버, 그리고 캐리어 집적화(Carrier aggregation(CA), 이하 'CA'라 함) 기법을 통해 병합되는 복수의 요소반송파(Component Carrier(CC), 이하 'CC'라 함)들에 대한 동기를 찾을 때도 셀 액세스 절차를 수행한다.The UE is not only connected to the system for the first time, but also a plurality of elements merged through a handover for supporting cell reselection and mobility, and carrier aggregation (CA). The cell access procedure is also performed to find synchronization for carriers (Component Carrier (CC), hereinafter referred to as 'CC').
셀 탐색 과정은 셀에 대한 주파수 및 심볼 동기를 획득하기 위한 PSS 검출(S401) 및 SSS 검출(S403) 단계로 이루어지며 이에 따라 셀의 프레임/슬롯 동기를 획득하고 셀 ID를 결정하게 된다. 한편 NCT에서는 PSS/SSS와 병행하여 또는 다른 신호를 통해(S402) 이 과정을 수행할 수도 있다.The cell search process includes PSS detection (S401) and SSS detection (S403) for acquiring frequency and symbol synchronization for a cell, thereby acquiring frame / slot synchronization of the cell and determining a cell ID. In the NCT, this process may be performed in parallel with the PSS / SSS or through another signal (S402).
셀 동기를 획득하고 셀 ID를 결정하면 해당 셀이 NCT인지 LCT인지에 대한 확인 단계(S405)가 수행되고 TRS를 확인하며(S407), 이에 따라 RRM measurement(S409) 또는 PBCH 채널 복조(S411)가 수행된다. 전술한 바와 같이 CRS가 전송되지 않는 경우에는 DMRS를 기반으로 PBCH 채널 복조가 수행된다.After acquiring the cell synchronization and determining the cell ID, a step (S405) of checking whether the corresponding cell is an NCT or an LCT is performed and the TRS is checked (S407). Accordingly, the RRM measurement (S409) or the PBCH channel demodulation (S411) is performed. Is performed. As described above, when the CRS is not transmitted, PBCH channel demodulation is performed based on the DMRS.
따라서 PSS/SSS 검출과 PBCH 검출은 셀 탐색에 따른 셀 액세스 과정에서 기초가 된다. Therefore, PSS / SSS detection and PBCH detection are the basis in the cell access process according to the cell search.
PSS/SSS와 DMRS의 충돌을 회피하기 위해 PSS/SSS의 위치를 시간 축 상에서 이동시키거나 DMRS 펑쳐링(puncturing)을 수행할 수 있다. In order to avoid collision between the PSS / SSS and the DMRS, the position of the PSS / SSS may be moved on the time axis or DMRS puncturing may be performed.
그런데 DMRS가 펑처링되면 DMRS를 기반으로 채널을 추정하는 PBCH의 경우, 이로 인해 채널 추정 오류가 발생할 수 있으며 특히 고속으로 이동하는 단말에게 이러한 채널 추정 오류는 심각할 수 있다. 이러한 채널 추정 오류를 해결하기 위한 하나의 방안으로 PBCH 채널 매핑 위치를 시간 축 상에서 변경하는 방식이 있을 수 있다.However, in the case of PBCH estimating a channel based on the DMRS when the DMRS is punctured, this may cause a channel estimation error. In particular, such a channel estimation error may be serious for a terminal moving at a high speed. One way to solve this channel estimation error may be a method of changing the PBCH channel mapping position on the time axis.
이하 NCT에 PSS/SSS가 존재하는 경우 DMRS와의 충돌을 회피하기 위해 다른 OFDM 심볼 위치로의 이동 여부 및 DMRS 펑처링 그리고 기존과 다른 DMRS 패턴에 따른 PBCH 전송 패턴의 예들에 대해 상세히 설명한다. Hereinafter, examples of PBCH transmission patterns according to whether or not to move to another OFDM symbol position and DMRS puncturing and other DMRS patterns in order to avoid collision with DMRS when PSS / SSS is present in the NCT will be described in detail.
후술하는 도면들에서, 도면에는 도시되어 있지 않지만 서브프레임#0에서의 패턴 형태들은 서브프레임 #5에도 동일하게 나타날 수 있다.In the following drawings, although not shown in the drawings, the pattern forms in subframe # 0 may appear the same in subframe # 5.
도 5 및 도 6은 본 발명의 일 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 일 예들을 나타낸 도면이다.5 and 6 illustrate examples for explaining a PBCH mapping scheme according to an embodiment of the present invention.
도 5를 참조하면, FDD의 일반 CP에서 PSS/SSS의 위치는 변경되지 않은 상황에서 DMRS 펑처링에 따른 채널 추정 오류를 완화하기 위해 시간 축 상에서 PBCH의 위치를 다른 OFDM 심볼로 이동시키고, PBCH 채널 매핑에 있어서 PBCH 상에서 전송되는 기존의 부호화 비트 수( Mbit )인 1920bit는 그대로 유지하되 한 개의 DMRS 안테나 포트 그룹(즉, 같은 physical resource를 사용하지만 코드로 서로를 구분하는 DMRS 안테나 포트 그룹, 예를 들면, DMRS 안테나 포트 그룹#1 (7,8,11,13)과 그룹#2 (9,10,12,14))만을 사용하여 DMRS 자원요소를 전송할 수 있다.Referring to FIG. 5, in order to alleviate a channel estimation error due to DMRS puncturing in a situation where the position of the PSS / SSS is not changed in the general CP of the FDD, the position of the PBCH is moved to another OFDM symbol on the time axis, and the PBCH channel In the mapping, a DMRS antenna port group (eg, a DMRS antenna port group that uses the same physical resource but distinguishes each other by a code) while maintaining 1920 bits , which is an existing number of encoded bits transmitted on a PBCH (M bit ), remains as it is. For example, the DMRS resource element may be transmitted using only the DMRS antenna port group # 1 (7, 8, 11, 13) and the group # 2 (9, 10, 12, 14).
즉 도면의 좌측 서브프레임은 DMRS 자원요소를 안테나 포트 7/8 만을 사용하여 전송하는 경우의 PBCH 매핑 방식의 예이며, 도면의 우측 서브프레임은 DMRS 자원요소를 안테나 포트 9/10 만을 사용하여 전송하는 경우의 PBCH 매핑 방식의 예이다. That is, the left subframe of the figure is an example of the PBCH mapping method when the DMRS resource element is transmitted using only the antenna port 7/8, and the right subframe of the figure transmits the DMRS resource element using only the antenna port 9/10. This is an example of a PBCH mapping scheme.
이 경우 제한된 수의 DMRS 안테나 포트 그룹 사용으로 인해 다소 제한된 수의 DMRS 자원요소들이 이용될 수 있다. In this case, a somewhat limited number of DMRS resource elements may be used due to the use of a limited number of DMRS antenna port groups.
도 6을 참조하면, FDD의 일반 CP에서 PSS/SSS의 위치는 변경되지 않은 상황에서 PBCH의 위치는 시간 축 상에서 다른 OFDM 심볼로 이동시키며, PBCH 상에서 전송되는 기존의 부호화 비트수( Mbit )인 1920bit를 2016bit로 증가시키되, TRS 전송은 가정하지 않고 한 개의 DMRS 안테나 포트 그룹만을 사용하여 DMRS 자원요소를 전송할 수 있다. Referring to FIG. 6, in the situation where the position of the PSS / SSS is not changed in the general CP of FDD, the position of the PBCH is shifted to another OFDM symbol on the time axis, and is the number of existing coded bits (M bits ) transmitted on the PBCH. Although 1920bit is increased to 2016bit, DMRS resource elements can be transmitted using only one DMRS antenna port group without assuming TRS transmission.
도면의 좌측 서브프레임은 DMRS 자원요소 전송을 위해 안테나 포트 7/8만을 사용한 경우의 PBCH 매핑 방식의 예이며, 도면의 우측 서브프레임은 DMRS 자원요소 전송에 안테나 포트 9/10만을 사용하는 경우의 PBCH 매핑 방식의 예이다. The left subframe of the figure is an example of the PBCH mapping method when only the antenna port 7/8 is used for DMRS resource element transmission, and the right subframe of the figure is the PBCH when only the antenna port 9/10 is used for DMRS resource element transmission. This is an example of a mapping method.
이 경우 제한된 수의 DMRS 안테나 포트 그룹 사용으로 인해 다소 제한된 수의 DMRS 자원요소들이 이용될 수 있다. In this case, a somewhat limited number of DMRS resource elements may be used due to the use of a limited number of DMRS antenna port groups.
도 7은 본 발명의 일 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 다른 예이다. 7 is another example for explaining a PBCH mapping scheme according to an embodiment of the present invention.
도 7을 참조하면, FDD의 일반 CP에서 PSS/SSS의 위치는 변경되지 않은 상황에서 PBCH의 위치는 시간 축 상에서 다른 OFDM 심볼로 이동시키며, 도면의 좌측 서브프레임에 도시된 PBCH 매핑 방식에 따르면 PBCH 상에서 전송되는 기존의 부호화 비트수( Mbit )를 1920bit에서 1632bit로 줄이되 2개의 DMRS 안테나 포트 그룹(DMRS 안테나포트 7,8,9,10)을 사용하여 DMRS 자원요소를 전송할 수 있다. Referring to FIG. 7, in a situation where the position of PSS / SSS is not changed in a general CP of FDD, the position of PBCH is shifted to another OFDM symbol on a time axis, and according to the PBCH mapping scheme shown in the left subframe of the figure, PBCH The existing number of coded bits (M bits ) transmitted over a 1920 bit to 1632 bits is reduced, but DMRS resource elements can be transmitted using two DMRS antenna port groups ( DMRS antenna ports 7,8,9,10).
도면의 좌측 서브프레임에 도시된 PBCH 매핑 방식에 따르면, PBCH 채널 상에서 다소 작은 수의 부호화 비트수가 전송되는 반면, 2개의 DMRS 안테나 포트 그룹(DMRS 안테나포트 7,8,9,10)을 사용하여 전송되는 보다 많은 DMRS 자원요소를 이용할 수 있어 채널 추정 성능에서 이득이 있을 수 있다. According to the PBCH mapping scheme shown in the left subframe of the figure, a somewhat smaller number of coded bits are transmitted on the PBCH channel, while using two DMRS antenna port groups ( DMRS antenna ports 7, 8, 9, 10). More DMRS resource elements may be available, which may benefit from channel estimation performance.
도면의 우측 서브프레임의 PBCH 매핑 방식에 따르면, PBCH 상에서 전송되는 기존의 부호화 비트수( Mbit )를 1920bit에서 1728bit로 줄이되, PBCH가 전송되는 서브프레임에는 TRS를 전송하지 않음으로써 PBCH 상에서 전송할 수 있는 부호화 비트 수를 증가시킬 수 있다. 이에 따라 PBCH 채널 상에서 코딩 성능 이득을 얻을 수 있다. According to the PBCH mapping scheme of the right subframe of the figure, the number of existing coded bits (M bits ) transmitted on the PBCH is reduced from 1920bit to 1728bit, but can be transmitted on the PBCH by not transmitting the TRS in the subframe in which the PBCH is transmitted. The number of coding bits can be increased. Accordingly, coding performance gain can be obtained on the PBCH channel.
도 8은 본 발명의 일 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 또 다른 예를 나타낸 도면이다. 도 8은 FDD의 확장 CP에서 PSS/SSS의 위치는 변경되지 않고 PBCH의 위치는 시간 축 상에서 다른 OFDM 심볼로 이동시킨 경우의 예들이다. 8 is a diagram illustrating another example for explaining a PBCH mapping scheme according to an embodiment of the present invention. 8 shows examples of a case where the position of the PSS / SSS is not changed in the extended CP of the FDD and the position of the PBCH is moved to another OFDM symbol on the time axis.
도면의 좌측 서브프레임에 따르면 PBCH 상에서 전송되는 부호화 비트 수를 기존의 1728bit에 대해 레이트 매칭 프로세싱(rate matching processing)을 통해 1824bit로 증가 시킬 수 있으며 이에 따라 DMRS 기반의 PBCH 매핑을 최적화 시킬 수 있다. According to the left subframe of the figure, the number of encoded bits transmitted on the PBCH may be increased to 1824 bits through rate matching processing with respect to the existing 1728 bits, thereby optimizing PRSCH mapping based on DMRS.
도면의 우측 서브프레임에 따르면, PBCH가 전송되는 서브프레임에는 TRS를 전송하지 않는 경우 PBCH 상에서 전송되는 부호화 비트 수가 기존 1728bit에서 1920bit로 증가될 수 있다. 따라서 PBCH 채널 상에서 코딩 성능 이득을 얻을 수 있다. According to the right subframe of the figure, when the TRS is not transmitted in the subframe in which the PBCH is transmitted, the number of encoded bits transmitted on the PBCH may be increased from the existing 1728 bit to 1920 bits. Therefore, coding performance gain can be obtained on the PBCH channel.
도 9 및 도 10은, 도 5 내지 도 8을 참조하여 설명한 예들에 대응하여, TDD에서 일반 CP인 경우 PSS/SSS의 위치는 기존 Rel. 8에서의 위치와 동일하게 유지하는 상황에서 PBCH를 매핑하는 방식을 설명하기 위한 도면이다. 9 and 10 correspond to the examples described with reference to FIGS. 5 through 8, in the case of the general CP in the TDD, the location of the PSS / SSS is the existing Rel. 8 is a diagram for describing a method of mapping PBCH in a situation of maintaining the same position as 8.
도 9를 참조하면, TDD에 있어서 PBCH가 전송되는 서브프레임 0번의 중심 6PRB내에서 NCT 상의 PSS/SSS와 DMRS의 충돌을 피하기 위해 도시된 바와 같이 DMRS가 펑처링된 경우의 DMRS 패턴에 대해 적용할 수 있는 PBCH 매핑 방식의 예를 나타낸다.Referring to FIG. 9, in order to avoid collision of PSS / SSS and DMRS in the center 6PRB of subframe 0 in which PBCH is transmitted in TDD, DMRS is punctured as shown in FIG. An example of a PBCH mapping scheme that can be shown.
도면의 좌측 서브프레임은 DMRS 안테나 포트를 모두 사용하는 경우로서 부호화 비트 수는 기존의 1920 비트에서 1536 비트로 감소할 수 있으며, 도면의 우측은 DMRS 안테나 포트가 7, 8로 제한되는 경우의 PBCH 매핑 방식의 예로서 부호화 비트 수는 기존의 1920 비트에서 1824 비트로 감소할 수 있다. The left subframe of the figure uses all of the DMRS antenna ports, and the number of coding bits can be reduced from the existing 1920 bits to 1536 bits. On the right side of the diagram, the PBCH mapping method when the DMRS antenna ports are limited to 7, 8 As an example, the number of encoded bits may be reduced from the existing 1920 bits to 1824 bits.
한편 DMRS 안테나 포트 9, 10이 사용되는 경우에는 도면 우측 서브프레임에서 DMRS 전송에 사용된 자원요소의 주파수축으로 바로 밑의 자원요소가 DMRS 전송(Rel-10 DMRS port 9, 10이 전송되는 자원요소(Resource Element))에 사용되며 이에 따라 DMRS 전송에 사용되는 자원요소를 제외한 자원요소에 PBCH를 위한 자원요소가 할당됨에 따라 도면 우측과 유사하게 PBCH가 매핑될 수 있다.On the other hand, when DMRS antenna ports 9 and 10 are used, the resource element directly below the frequency axis of the resource element used for DMRS transmission in the right subframe of the drawing is a resource element for transmitting DMRS (Rel-10 DMRS ports 9 and 10). As a resource element for PBCH is allocated to a resource element other than the resource element used for DMRS transmission, the PBCH may be mapped similarly to the right side of the drawing.
도 10을 참조하면, TDD의 일반 CP에서 PSS/SSS의 위치는 변경되지 않은 상황에서, TRS 전송을 가정하지 않을 때 2개 또는 1개의 DMRS 안테나 포트 그룹을 사용하여 DMRS 자원요소를 전송할 경우에 PBCH의 매핑 예들을 나타낸다. Referring to FIG. 10, in the situation where the position of the PSS / SSS is not changed in the general CP of the TDD, when the DMRS resource element is transmitted using two or one DMRS antenna port group without assuming TRS transmission, the PBCH Examples of mappings are shown.
도면의 좌측 서브프레임은 DMRS 자원요소 전송을 위해 2개의 안테나 포트 그룹을 사용한 경우의 PBCH 매핑 방식의 예로서 PBCH 상에서 전송되는 비트수는 기존의 부호화 비트수( Mbit )인 1920bit에서 1728bit로 감소시키되, PBCH가 전송되는 서브프레임에는 TRS를 전송하지 않음으로써, 도 9의 좌측 서브프레임을 참조해 설명한 예에 비해서는 PBCH 상에서 전송할 수 있는 부호화 비트 수를 증가시킬 수 있다. The left subframe of the figure is an example of a PBCH mapping method in which two antenna port groups are used for DMRS resource element transmission. The number of bits transmitted on the PBCH is reduced from 1920 bits , which is an existing coded bit, to 1728 bits . Since the TRS is not transmitted to the subframe in which the PBCH is transmitted, the number of coding bits that can be transmitted on the PBCH can be increased as compared with the example described with reference to the left subframe of FIG. 9.
도면의 우측 서브프레임은 DMRS 자원요소 전송에 안테나 포트 7/8만을 사용하는 경우의 PBCH 매핑 방식의 예로서, PBCH 상에서 전송되는 비트 수가 기존의 부호화 비트수( Mbit )인 1920bit에서 2016bit로 증가 시킬 수 있다. The right subframe of the figure is an example of a PBCH mapping method in which only antenna ports 7/8 are used for DMRS resource element transmission. The number of bits transmitted on the PBCH is increased from 1920 bits , which is the existing number of encoded bits (M bits ), to 2016 bits . Can be.
한편 도면의 우측 서브프레임에서 DMRS 자원요소 전송에 안테나 포트 9/10만이 사용되었을 경우에는 해당 DMRS 안테나 포트 9/10이 전송되는 자원요소를 제외한 자원요소에 PBCH를 DMRS 안테나 포트 7/8을 사용할 경우와 유사하게 (즉, 도 10 우측서브프레임에서 PBCH를 전송하기 위해서 사용되는 OFDM 심볼 인덱스를 이용) PBCH를 매핑한다.On the other hand, when only antenna port 9/10 is used for DMRS resource element transmission in the right subframe of the figure, PRSCH is used for resource element except for resource element through which the corresponding DMRS antenna port 9/10 is used. Similarly (ie, using the OFDM symbol index used to transmit the PBCH in the right subframe of FIG. 10), the PBCH is mapped.
도 11은 본 발명의 일 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 또 다른 예를 나타낸 도면이다. 도 11은, 도 8의 FDD의 확장 CP에 대한 설명에 대응하며, TDD에서 PSS/SSS의 위치는 변경되지 않는 경우의 예이다. FIG. 11 is a diagram illustrating another example for describing a PBCH mapping scheme according to an embodiment of the present invention. FIG. FIG. 11 corresponds to the description of the extended CP of the FDD of FIG. 8, and is an example in which the position of the PSS / SSS is not changed in the TDD.
도면의 좌측 서브프레임에 따르면 PBCH 상에서 전송되는 부호화 비트 수를 기존의 1728bit에 대해 레이트 매칭 프로세싱(rate matching processing)을 통해 동일하게 유지시킬 수 있으며 이에 따라 DMRS 기반의 PBCH 매핑을 최적화 시킬 수 있다. According to the left subframe of the figure, the number of coded bits transmitted on the PBCH can be maintained to be the same through rate matching processing for the existing 1728 bits, thereby optimizing PRSCH mapping based on DMRS.
도면의 우측 서브프레임에 따르면, PBCH가 전송되는 서브프레임에는 TRS를 전송하지 않는 경우 PBCH 상에서 전송되는 부호화 비트 수가 기존 1728bit에서 1920bit로 증가될 수 있다. 따라서 PBCH 채널 상에서 코딩 성능 이득을 얻을 수 있다. 도 12는 본 발명의 다른 실시예에 따른 DMRS 패턴을 설명하기 위한 도면이다.According to the right subframe of the figure, when the TRS is not transmitted in the subframe in which the PBCH is transmitted, the number of encoded bits transmitted on the PBCH may be increased from the existing 1728 bit to 1920 bits. Therefore, coding performance gain can be obtained on the PBCH channel. 12 is a diagram for explaining a DMRS pattern according to another embodiment of the present invention.
도 12를 참조하면, FDD에 있어서 PBCH가 전송되는 서브프레임 0번의 중심 6PRB내에서 NCT상의 PSS/SSS와 DMRS의 충돌을 피하기 위해 도시된 바와 같은 DMRS 패턴을 고려할 수 있다. 도면에는 일반 및 확장 CP에 대한 예를 도시하였다.Referring to FIG. 12, a DMRS pattern as shown in FIG. 12 may be considered to avoid collision between the PSS / SSS and the DMRS on the NCT in the center 6PRB of subframe 0 in which the PBCH is transmitted in FDD. In the drawings, examples of general and extended CPs are shown.
도면을 참조하면, 시간 축 상에서 DMRS가 전송되는 OFDM 심볼의 위치를 변경할 수 있다. 도면의 좌측 서브프레임은 일반 CP(각 슬롯은 7개의 심볼로 구성됨)에 대한 것으로 DMRS는 각 라디오프레임 내의 서브프레임#0과 #5의 첫 번째와 두 번째 슬롯의 세 번째와 네 번째 OFDM 심볼에 할당되며 2개의 DMRS 안테나 포트 그룹을 사용하여 DMRS 자원요소를 전송하는 예를 나타낸다. Referring to the figure, it is possible to change the position of the OFDM symbol in which the DMRS is transmitted on the time axis. The left subframe of the figure is for a normal CP (each slot is composed of seven symbols), and DMRS is assigned to the third and fourth OFDM symbols of the first and second slots of subframes # 0 and # 5 within each radio frame. An example of transmitting a DMRS resource element using two DMRS antenna port groups is shown.
또한 도면의 우측은 확장 CP(각 슬롯은 6개의 심볼로 구성됨)에 대한 것으로 각 라디오프레임 내 서브프레임#0의 첫 번째와 두 번째 슬롯의 두 번째와 세 번째 심볼에 DMRS를 할당하고 한 개의 DMRS 안테나 포트 그룹만을 사용하여 DMRS 자원요소를 전송하는 예를 나타낸다.In addition, the right side of the drawing is for an extended CP (each slot consists of six symbols), in which a DMRS is allocated to the second and third symbols of the first and second slots of subframe # 0 in each radio frame, and one DMRS is assigned. An example of transmitting a DMRS resource element using only an antenna port group is shown.
이와 같은 새로운 DMRS 패턴이 NCT 상에 적용되면 이에 따라 DMRS를 기반으로 하는 다양한 PBCH 매핑 방식을 적용할 수 있다. 도 13 및 도 14는 본 발명의 다른 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 일 예들을 나타낸 도면이다. 본 예들은 FDD의 일반 CP에 대해 설명하고 있다.When such a new DMRS pattern is applied on the NCT, various PBCH mapping schemes based on DMRS can be applied accordingly. 13 and 14 illustrate examples for explaining a PBCH mapping scheme according to another embodiment of the present invention. The examples illustrate the general CP of FDD.
도 12의 좌측 서브프레임을 참조하여 설명한 본 발명의 다른 실시예에 따른 새로운 DMRS 패턴에 따르면, DMRS의 시간 축 상에서의 위치가 변경될 수 있으며 이에 따라 PBCH의 시간 축 상에서의 위치를 변경시킬 수 있으며, 여기서는 2개의 DMRS 안테나 포트 그룹만을 사용하여 DMRS 자원요소를 전송하는 예들을 나타낸다.According to the new DMRS pattern according to another embodiment of the present invention described with reference to the left subframe of FIG. 12, the position on the time axis of the DMRS may be changed, and accordingly, the position on the time axis of the PBCH may be changed. Here, examples of transmitting DMRS resource elements using only two DMRS antenna port groups are shown.
따라서 도 13의 좌측 서브프레임(즉 서브프레임#0, #5)에는 DMRS가 첫 번째와 두 번째 슬롯의 3번째 및 4번째 심볼에 위치함에 따라 두 번째 슬롯의 2번째 내지 5번째 심볼에 PBCH가 매핑되는 예를 나타내며, 도 13의 우측 서브프레임에는 첫 번째 슬롯의 2번째 내지 5번째 심볼에 PBCH가 매핑되는 예를 나타낸다. Accordingly, in the left subframe of FIG. 13 (that is, subframes # 0 and # 5), PBCHs are included in the second through fifth symbols of the second slot as the DMRSs are located in the third and fourth symbols of the first and second slots. An example of mapping is shown, and an example in which a PBCH is mapped to second to fifth symbols of a first slot is illustrated in a right subframe of FIG. 13.
이 경우 PBCH 상에서 전송할 수 있는 부호화 비트 수는 기존의 1920bits에서 1632bits로 줄어드는 반면 2개의 안테나 그룹을 사용하여 전송되는 보다 많은 DMRS 자원요소를 이용할 수 있어 채널 추정 성능에서 이득이 있을 수 있다. In this case, the number of coding bits that can be transmitted on the PBCH is reduced from the existing 1920bits to 1632bits, while more DMRS resource elements transmitted using two antenna groups can be used, which may have a gain in channel estimation performance.
도 14의 PBCH 매핑 방식에 따르면, 좌측 및 우측 서브프레임의 DMRS의 패턴과 이에 따른 PBCH 매핑 위치는 각각 도 13의 좌측 및 우측 서브프레임과 동일하며, PBCH 상에서 전송되는 부호화 비트수( Mbit )는 기존의 1920bits에서 1728bits로 줄이되 PBCH가 전송되는 서브프레임에는 TRS를 전송하지 않음으로써 PBCH 상에서 전송할 수 있는 부호화 비트 수를 증가시킬 수 있다. 이에 따라 PBCH 채널 상에서 코딩 성능 이득을 얻을 수 있다. According to the PBCH mapping method of Figure 14, the same as the left and right sub-frames DMRS pattern and its left and right sub-frames in FIG. 13 PBCH mapping position are each in accordance with the, and the number of encoded bits transmitted on the PBCH (M bit) is The number of coding bits that can be transmitted on the PBCH can be increased by reducing the conventional 1920 bits to 1728 bits but not transmitting the TRS in the subframe in which the PBCH is transmitted. Accordingly, coding performance gain can be obtained on the PBCH channel.
도 15 및 도 16은 본 발명의 다른 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 예들을 나타낸 도면이다. 본 예들은 FDD의 확장 CP에 대해 설명하고 있다.15 and 16 illustrate examples for explaining a PBCH mapping scheme according to another embodiment of the present invention. These examples describe the extended CP of FDD.
도 12의 우측 서브프레임을 참조하여 설명한 본 발명의 다른 실시예에 따른 새로운 DMRS 패턴에 따르면, DMRS의 시간 축 상에서의 위치가 변경될 수 있으며 이에 따라 PBCH의 시간 축 상에서의 위치를 변경시킬 수 있고, 한 개의 DMRS 안테나 포트 그룹만을 사용하여 DMRS 자원요소를 전송할 수 있다.According to the new DMRS pattern according to another embodiment of the present invention described with reference to the right subframe of FIG. 12, the position on the time axis of the DMRS may be changed, and accordingly, the position on the time axis of the PBCH may be changed. In addition, the DMRS resource element may be transmitted using only one DMRS antenna port group.
도 15의 좌측 서브프레임에서는 DMRS가 첫 번째와 두 번째 슬롯의 2번째 및 3번째 심볼에 위치함에 따라, 두 번째 슬롯의 첫 번째 내지 4번째 심볼에 PBCH가 매핑되는 예를 나타내며, 도 15의 우측 서브프레임에서는 첫 번째 슬롯의 첫번째 내지 4번째 심볼에 PBCH가 매핑되는 예를 나타낸다. In the left subframe of FIG. 15, an example in which PBCH is mapped to the first to fourth symbols of the second slot is shown as DMRS is located in the second and third symbols of the first and second slots. In the subframe, an example in which the PBCH is mapped to the first to fourth symbols of the first slot is shown.
이 경우 PBCH 상에서 전송할 수 있는 부호화 비트 수는 기존의 1920bit에서 1728bit로 줄어든다. In this case, the number of coding bits that can be transmitted on the PBCH is reduced from the existing 1920 bits to 1728 bits.
도 16의 PBCH 매핑 방식은 DMRS 패턴이 도 12의 우측 서브프레임에 나타낸 바와 같이 변경된 경우에 적용할 수 있는 방식으로서, DMRS가 첫 번째와 두 번째 슬롯의 2번째 및 3번째 심볼에 위치함에 따라 DMRS가 할당되는 첫 번째와 두 번째 슬롯 모두에 대해 각각 DMRS가 할당되는 OFDM 심볼의 좌측 및 우측의 이웃하는 심볼에 PBCH 채널을 매핑할 수 있다. The PBCH mapping scheme of FIG. 16 is a method applicable when the DMRS pattern is changed as shown in the right subframe of FIG. 12. As the DMRS is located in the second and third symbols of the first and second slots, the DMRS PBCH channels may be mapped to neighboring symbols on the left and right sides of an OFDM symbol to which DMRSs are allocated for both the first and second slots to which Ms are allocated.
이에 따라 PBCH 상에서 전송되는 부호화 비트수( Mbit )를 기존의 1920bits로 유지할 수 있다. Accordingly, the number of encoded bits M bits transmitted on the PBCH can be maintained at 1920 bits .
도 17 및 도 18은 본 발명의 다른 실시예에 따른 PBCH 매핑 방식을 설명하기 위한 다른 예들을 나타낸 도면으로서 FDD에서 확장 CP의 경우에 해당한다.17 and 18 are diagrams illustrating other examples for explaining a PBCH mapping scheme according to another embodiment of the present invention and correspond to a case of an extended CP in FDD.
도 17은 도 15에서 설명한 예와 동일한 패턴으로 DMRS가 전송되며 이에 따른 PBCH 매핑 방식도 동일하나 PBCH가 전송되는 서브프레임 상에는 TRS가 전송되지 않도록 설정할 수 있다. 따라서 PBCH 상에서 전송될 수 있는 부호화 비트 수가 기존의 1920bits으로 유지되어 도 15에 따른 1728bits에 비해 증가할 수 있다. In FIG. 17, DMRS is transmitted in the same pattern as the example described with reference to FIG. 15, and the PBCH mapping scheme is the same, but the TRS may not be transmitted on the subframe in which the PBCH is transmitted. Accordingly, the number of encoded bits that can be transmitted on the PBCH may be maintained at the existing 1920 bits and may increase as compared with 1728 bits according to FIG. 15.
도 18는 도 16에서 설명한 예와 동일한 패턴으로 DMRS가 전송되며 이에 따른 PBCH 매핑 방식도 동일하나 PBCH가 전송되는 서브프레임 상에는 TRS가 전송되지 않도록 설정할 수 있다. 따라서 PBCH 상에서 전송될 수 있는 부호화 비트 수가 기존의 1920bits에서 2304bits로 증가할 수 있어, PBCH 상에서 도 16에 따른 1728bit보다 더 많은 부호화 비트를 전송할 수 있어 추가적인 코딩 성능 이득을 얻을 수 있다. FIG. 18 may be configured such that DMRS is transmitted in the same pattern as the example described in FIG. 16 and the PBCH mapping scheme is the same, but TRS is not transmitted on the subframe in which the PBCH is transmitted. Accordingly, the number of coded bits that can be transmitted on the PBCH may increase from 2,920 bits to 2304 bits, and thus, more coding bits than 1728 bits according to FIG. 16 may be transmitted on the PBCH, thereby obtaining additional coding performance gains.
본 발명에 따른 실시 예들에서 설명한 예들을 참조하면, TDD에서 일반 CP 또는 확장 CP인 경우 도 12 내지 도 18을 참조하여 설명한 예들에 따른 PBCH 매핑 방법을 유사하게 적용할 수 있다. Referring to the examples described in the embodiments of the present invention, in the case of a general CP or an extended CP in TDD, the PBCH mapping method according to the examples described with reference to FIGS. 12 to 18 may be similarly applied.
도 19는 본 발명의 또 다른 실시예에 따른 DMRS 패턴을 설명하기 위한 도면이다. 19 is a diagram for explaining a DMRS pattern according to another embodiment of the present invention.
도면을 참조하면 FDD에 있어서 PBCH가 전송되는 서브프레임 0번의 중심 6PRB내에서 NCT상의 PSS/SSS와 DMRS의 충돌을 피하기 위해 도시된 바와 같은 DMRS 패턴을 고려할 수 있다. 도면의 좌측 서브프레임에는 일반 CP에 대한 예를 도시하였으며 우측 서브프레임에는 확장 CP에 대한 예를 도시하였으나 이에 한정되지 않는다.Referring to the drawings, in order to avoid collision between the PSS / SSS and the DMRS on the NCT in the center 6PRB of subframe 0 in which the PBCH is transmitted in FDD, a DMRS pattern may be considered. An example of a general CP is illustrated in the left subframe of the figure, but an example of an extended CP is illustrated in the right subframe, but is not limited thereto.
도면을 참조하면, 시간 축 상에서 DMRS가 전송되는 OFDM 심볼의 위치를 변경할 수 있다. 도면의 좌측 서브프레임은 DMRS가 서브프레임의 첫 번째와 두 번째 슬롯의 첫 번째와 2번째 OFDM 심볼에 할당되며 2개의 DMRS 안테나 포트 그룹을 사용하여 DMRS 자원요소를 전송하는 예를 나타낸다. 또한 도면의 우측 서브프레임은 서브프레임의 첫 번째와 두 번째 슬롯의 두 번째와 세 번째 심볼에 DMRS를 할당하고 한 개의 안테나 그룹만을 사용하여 DMRS 자원요소를 전송하는 예를 나타낸다. Referring to the figure, it is possible to change the position of the OFDM symbol in which the DMRS is transmitted on the time axis. The left subframe of the figure shows an example in which DMRS is allocated to the first and second OFDM symbols of the first and second slots of the subframe and transmits a DMRS resource element using two DMRS antenna port groups. In addition, the right subframe of the figure shows an example of allocating DMRS to the second and third symbols of the first and second slots of the subframe and transmitting the DMRS resource element using only one antenna group.
이와 같은 새로운 DMRS 패턴이 NCT 상에 적용되면 이에 따라 DMRS를 기반으로 하는 다양한 PBCH 매핑 방식을 적용할 수 있다. When such a new DMRS pattern is applied on the NCT, various PBCH mapping schemes based on DMRS can be applied accordingly.
도 20 및 도 21은 본 발명의 또 다른 실시예에 따른 PBCH 매핑 방식의 예들을 설명하기 위한 도면이다. 본 예들은 FDD의 일반 CP에 대해 설명하고 있으나 확장 CP에 대해서도 도 15 내지 도 18을 참조하여 설명한 예들과 유사하게 적용할 수 있다.20 and 21 are diagrams for describing examples of the PBCH mapping scheme according to another embodiment of the present invention. Although the examples describe the general CP of the FDD, the extended CP can be similarly applied to the examples described with reference to FIGS. 15 to 18.
도 19의 좌측 서브프레임을 참조하여 설명한 본 발명의 또 다른 실시예에 따른 새로운 DMRS 패턴에 따르면, DMRS의 시간 축 상에서의 위치가 변경될 수 있으며 이에 따라 PBCH의 시간 축 상에서의 위치를 변경시킬 수 있으며, 여기서는 2개의 안테나 그룹만을 사용하여 DMRS 자원요소를 전송하는 예들을 나타낸다.According to a new DMRS pattern according to another embodiment of the present invention described with reference to the left subframe of FIG. 19, the position on the time axis of the DMRS may be changed, thereby changing the position on the time axis of the PBCH. Here, examples of transmitting DMRS resource elements using only two antenna groups are shown.
따라서 도 20의 좌측 서브프레임에는 DMRS가 첫 번째와 두 번째 슬롯의 첫번째 및 2번째 심볼에 위치함에 따라 첫 번째 슬롯의 첫 번째 내지 4번째 심볼에 PBCH가 매핑되는 예를 나타내며, 도 20의 우측 서브프레임에는 2번째 슬롯의 첫 번째 내지 4번째 심볼에 PBCH가 매핑되는 예를 나타낸다. Accordingly, the left subframe of FIG. 20 shows an example in which the PBCH is mapped to the first to fourth symbols of the first slot as DMRSs are located in the first and second symbols of the first and second slots. An example in which a PBCH is mapped to first to fourth symbols of a second slot in a frame is shown.
이 경우 PBCH 상에서 전송할 수 있는 부호화 비트 수는 기존의 1920bit에서 1632bit로 줄어드는 반면 2개의 안테나 그룹을 사용하여 전송되는 보다 많은 DMRS 자원요소를 이용할 수 있어 채널 추정 성능에서 이득이 있을 수 있다. In this case, the number of coding bits that can be transmitted on the PBCH is reduced from the existing 1920 bits to 1632 bits, while more DMRS resource elements transmitted using two antenna groups can be used, which may have a gain in channel estimation performance.
한편 우측 서브프레임에 나타낸 패턴의 경우 인접 기지국에서의 LCT의 제어 영역과의 간섭 제거(ICIC)에 효율적일 수 있다. On the other hand, the pattern shown in the right subframe may be efficient for interference cancellation (ICIC) with the control region of the LCT in the adjacent base station.
도 21의 PBCH 매핑 방식에 따르면, 좌측 및 우측 서브프레임의 DMRS의 패턴과 이에 따른 PBCH 매핑 위치는 각각 도 20의 좌측 및 우측 서브프레임과 동일하며, PBCH 상에서 전송되는 부호화 비트수( Mbit )는 기존의 1920bits에서 1728bits로 줄이되 PBCH가 전송되는 서브프레임에는 TRS를 전송하지 않음으로써 PBCH 상에서 전송할 수 있는 부호화 비트 수를 증가시킬 수 있다. 이에 따라 PBCH 채널 상에서 코딩 성능 이득을 얻을 수 있다. According to the PBCH mapping method of Figure 21, the same as the left and right sub-frames DMRS pattern and its left and right sub-frames in FIG. 20 PBCH mapping position are each in accordance with the, and the number of encoded bits transmitted on the PBCH (M bit) is The number of coding bits that can be transmitted on the PBCH can be increased by reducing the conventional 1920 bits to 1728 bits but not transmitting the TRS in the subframe in which the PBCH is transmitted. Accordingly, coding performance gain can be obtained on the PBCH channel.
한편, FDD의 확장 CP의 경우 도 13 내지 도 18를 참조하여 설명한 PBCH 채널 매핑 방식을 유사하게 적용할 수 있다.Meanwhile, in case of the extended CP of FDD, the PBCH channel mapping scheme described with reference to FIGS. 13 to 18 may be similarly applied.
도 22는 본 발명의 또 다른 실시예에 따른 PBCH 매핑의 또 다른 예들을 나타낸 도면으로서, TDD의 일반 CP에 대해 PSS/SSS의 위치는 변경되지 않으며 2개의 안테나 포트 그룹을 사용하여 DMRS 자원요소를 전송하는 예들이다. FIG. 22 is a diagram illustrating still another example of PBCH mapping according to another embodiment of the present invention, in which a position of a PSS / SSS is not changed with respect to a general CP of TDD, and a DMRS resource element is used using two antenna port groups. Examples of transmitting.
도면의 좌측 서브프레임에 따르면 PBCH 상에서 전송되는 부호화 비트 수를 기존의 1920bits에서 1632bits로 감소시킨다. According to the left subframe of the figure, the number of encoded bits transmitted on the PBCH is reduced from the existing 1920 bits to 1632 bits.
도면의 우측 서브프레임에 따르면, PBCH가 전송되는 서브프레임에는 TRS를 전송하지 않는 경우 PBCH 상에서 전송되는 부호화 비트 수가 기존 1920bits에서 2016bits로 증가시킬 수 있다. 따라서 PBCH 채널 상에서 코딩 성능 이득을 얻을 수 있다.According to the right subframe of the figure, when the TRS is not transmitted in the subframe in which the PBCH is transmitted, the number of encoded bits transmitted on the PBCH may be increased from the existing 1920 bits to 2016 bits. Therefore, coding performance gain can be obtained on the PBCH channel.
한편, TDD의 확장 CP의 경우 도 15 내지 도 18를 참조하여 설명한 PBCH 매핑 방법을 유사하게 적용할 수 있다.Meanwhile, in case of an extended CP of TDD, the PBCH mapping method described with reference to FIGS. 15 to 18 may be similarly applied.
도 23은 본 발명에 따른 실시예들을 수행하는 장치로서 기지국을 나타내는 도면이다. 23 is a diagram illustrating a base station as an apparatus for performing embodiments according to the present invention.
기지국(500)은 수신부(510), 제어부(520) 및 송신부(530)를 포함한다.The base station 500 includes a receiver 510, a controller 520, and a transmitter 530.
제어부(520)는 도 5 내지 도 21를 참조하여 상술한 본 발명의 실시 예들을 수행하기에 필요한 동작을 수행하기 위해 전반적인 기지국의 동작을 제어한다. The controller 520 controls the overall operation of the base station to perform the operations required to perform the embodiments of the present invention described above with reference to FIGS. 5 to 21.
송신부(530)와 수신부(510)는 상술한 본 발명의 실시 예들을 수행하기 위해 필요한 신호, 메시지 또는 데이터를 단말(10)과 송수신한다. The transmitter 530 and the receiver 510 transmit and receive signals, messages, or data necessary for performing the above-described embodiments of the present invention with the terminal 10.
도 23를 참조하여 설명하는 기지국(500)은 수신부(510), 제어부(520) 및 송신부(530)를 통해 후술하는 프로세스를 수행하여 본 발명의 실시 예들에 따라 DMRS를 할당하고 이에 따라 PBCH를 매핑한 하향링크 전송 신호를 단말에 전송한다. The base station 500 described with reference to FIG. 23 performs a process to be described later through the receiver 510, the controller 520, and the transmitter 530 to allocate DMRS according to embodiments of the present invention, and to map PBCH accordingly. One downlink transmission signal is transmitted to the terminal.
도 24는 본 발명에 따른 도 23의 장치에 의해 수행되는 PBCH 전송 방법을 설명하기 위한 도면이다. 24 is a diagram for explaining a PBCH transmission method performed by the apparatus of FIG. 23 according to the present invention.
기지국(500)은 입력되는 하나의 BCH 전송 블록에 대해 스크램블을 수행한다(S610)The base station 500 scrambles one input BCH transport block (S610).
즉, Mbit 값에 따라 결정되는 하나의 BCH 전송 비트 블록 b(0),...,b(Mbit-1) 의 비트들이 스크램블을 수행할 입력 비트로 전송된다. 여기서 PBCH 상에서 전송되는 부호화 비트( Mbit )의 개수는 본 발명의 실시예들에서 상술된 PBCH 매핑 방법에 따라 결정된다. 결정된 값은 레이트 매칭 프로세스(rate matching processing)에 따른 최종 비트 수의 값(E)과 동일하다.That is, the bits of one BCH transmission bit block b (0),..., B (M bit- 1) determined according to the M bit value are transmitted as input bits to scramble. Here, the number of coding bits (M bits ) transmitted on the PBCH is determined according to the PBCH mapping method described above in the embodiments of the present invention. The determined value is equal to the value E of the final number of bits according to rate matching processing.
[수학식 1][Equation 1]
Figure PCTKR2013011436-appb-I000002
Figure PCTKR2013011436-appb-I000002
여기서 스크램블 시퀀스 c(i) 는 nf mod4=0 를 만족하는 각 무선 프레임에서
Figure PCTKR2013011436-appb-I000003
으로 초기화된다.
Where the scramble sequence c (i) is in each radio frame that satisfies n f mod4 = 0
Figure PCTKR2013011436-appb-I000003
Is initialized to
이어서 기지국은 스크램블된 값에 대해 QPSK 변조를 수행하며(S620), 이에 따라 d(0),...,d(Msymb-1) 의 심볼이 출력된다. Subsequently, the base station performs QPSK modulation on the scrambled value (S620). Accordingly, the symbols d (0),..., D (M symb −1) are output.
그리고 레이어 매핑(Layer mapping)과 프리코딩(precoding)이 수행된다(S630). 즉, 변조된 심볼 블록 d(0),...,d(Msymb-1) 는 DMRS 포트
Figure PCTKR2013011436-appb-I000004
을 적용하여 각 레이어에 매핑되며, DMRS 포트
Figure PCTKR2013011436-appb-I000005
를 적용하여 프리코딩되어 벡터 블록
Figure PCTKR2013011436-appb-I000006
, i=0,...,Msymb-1 이 출력된다.
Layer mapping and precoding are performed (S630). That is, the modulated symbol blocks d (0), ..., d (M symb -1) are DMRS ports.
Figure PCTKR2013011436-appb-I000004
Are mapped to each layer by applying the DMRS port
Figure PCTKR2013011436-appb-I000005
Precoded vector block by applying
Figure PCTKR2013011436-appb-I000006
, i = 0, ..., M symb -1 is printed.
여기서 y(p)(i) 는 안테나 포트 p 를 위한 신호를 나타내며, 안테나 포트의 개수가 1일 때는, 예를 들면 7, 8, 9, 또는 10 등의 가능한 전체 또는 일부 DMRS 안테나 포트들 중 하나의 안테나 포트가 사용될 수 있다. 또한 안테나 포트의 개수가 2일 때는 예를 들면 7과 8, 9와 10, 7과 9 등의 가능한 전체 또는 일부 DMRS 안테나 포트들 중 2개의 안테나 포트들이 사용될 수 있다. 그리고 안테나 포트의 개수가 4일 때는 예를 들면 p=7,8,9 and 10 또는 p=7,8,11 and 13 또는 p=9,10,12 and 14 과 같이 가능한 전체 또는 일부 DMRS 안테나 포트들 중 4개의 안테나 포트들이 사용될 수 있다. Where y (p) (i) represents the signal for antenna port p, and when the number of antenna ports is 1, one of all possible or some DMRS antenna ports, e.g. 7, 8, 9, or 10 Antenna ports may be used. In addition, when the number of antenna ports is 2, two antenna ports of all or some possible DMRS antenna ports, for example, 7 and 8, 9 and 10, 7 and 9, etc. may be used. And when the number of antenna ports is 4, all or some DMRS antenna ports possible, for example p = 7,8,9 and 10 or p = 7,8,11 and 13 or p = 9,10,12 and 14 Four antenna ports can be used.
이어서 기지국(500)은 자원요소를 매핑한다(S640). Subsequently, the base station 500 maps resource elements (S640).
자원요소 매핑의 일 예에 따르면, 각 안테나 포트에서 복소 심볼 블록 y(p)(0),...,y(p)(Msymb-1) 이 nf mod4=0 를 만족하는 적어도 하나의 무선 프레임이 있고, 해당 무선 프레임을 포함하면서 4개의 연속하는 무선 프레임 구간을 통해 전송되며, y(0) 에서 시작하여 (k, l) 자원요소들에 순서대로 매핑된다. According to one example of resource element mapping, at each antenna port, at least one complex symbol block y (p) (0), ..., y (p) (M symb -1) satisfies n f mod4 = 0 There is a radio frame, which is transmitted over four consecutive radio frame intervals including the radio frame, starting from y (0) and mapped to (k, l) resource elements in order.
이때 PBCH 자원요소는 참조 신호 전송을 위해 할당되지 않은 (k, l) 자원요소들에 대해서만 매핑되며, 4개의 무선 프레임에 대해 서브프레임 0 또는 서브프레임 0의 슬롯 X 에서, 인덱스 k 에 대해 먼저 오름순으로 증가시키고 이어서 인덱스 l 에 대해 오름순으로 증가시키고 마지막으로 프레임 수를 증가시켜 매핑시킬 수 있다. 인덱스 k는 다음의 수학식 2와 같다.In this case, the PBCH resource element is mapped only to (k, l) resource elements that are not allocated for reference signal transmission, and ascends to index k first in slot X of subframe 0 or subframe 0 for 4 radio frames. It can be mapped in increasing order, then in ascending order for index l, and finally increasing the number of frames. The index k is shown in Equation 2 below.
[수학식 2][Equation 2]
Figure PCTKR2013011436-appb-I000007
Figure PCTKR2013011436-appb-I000007
여기서 k는 주파수 인덱스, l은 PBCH가 전송되는 OFDM 심볼 인덱스, n은 PBCH가 전송되는 서브프레임 내 또는 서브프레임 내의 하나의 슬랏 내에서 PBCH가 전송되는 첫 번째 OFDM 심볼 인덱스를 나타내며 참조신호를 위해 할당된 자원요소는 배제된다. Where k is the frequency index, l is the OFDM symbol index on which the PBCH is transmitted, n is the first OFDM symbol index on which the PBCH is transmitted in the subframe in which the PBCH is transmitted or in one slot in the subframe, and is allocated for the reference signal. Resource elements are excluded.
매핑 동작은 실제 구현과 무관하게 안테나 포트 7-Y(=8, 10 or 14)의 단말 특정 참조신호가 존재하는 것으로 가정 하에 수행된다. The mapping operation is performed under the assumption that there is a terminal specific reference signal of antenna port 7-Y (= 8, 10 or 14) regardless of the actual implementation.
자원요소 매핑의 다른 예에 따르면, PBCH 매핑이 연속적이지 않을 때의 자원요소 인덱스는 다음의 수학식 3과 같다.According to another example of resource element mapping, the resource element index when the PBCH mapping is not continuous is expressed by Equation 3 below.
즉 참조 신호 전송을 위해 할당되지 않은 (k, l) 자원요소들에 대해 4개의 무선 프레임의 서브프레임 0의 슬롯 0 및 1에서 인덱스 k 에 대해 먼저 오름순으로 증가시키고 이어서 인덱스 l 에 대해 오름순으로 증가시키고 마지막으로 프레임 수를 증가시켜 매핑시킬 수 있다. 자원요소 인덱스는 다음의 수학식 2와 같다.That is, in ascending order for index k in slots 0 and 1 of subframe 0 of 4 radio frames for (k, l) resource elements not allocated for reference signal transmission, ascending order for index l You can map this by increasing the number of frames and finally increasing the number of frames. The resource element index is shown in Equation 2 below.
[수학식 3][Equation 3]
Figure PCTKR2013011436-appb-I000008
Figure PCTKR2013011436-appb-I000008
여기서 k는 주파수 인덱스, l은 PBCH를 위한 OFDM 심볼 인덱스, n은 서브프레임 또는 서브프레임 내의 하나의 슬롯 내에서 PBCH가 전송되는 첫 번째 OFDM 심볼 인덱스를 나타내며, 참조신호를 위해 할당된 자원요소는 배제된다. Where k is the frequency index, l is the OFDM symbol index for the PBCH, n is the first OFDM symbol index on which the PBCH is transmitted in a subframe or one slot in the subframe, and the resource element allocated for the reference signal is excluded. do.
매핑 동작은 실제 구현에 무관하게 안테나 포트 7-Y(=8, 10 or 14)의 단말 특정 참조신호가 존재하는 것으로 가정하에 수행된다. The mapping operation is performed under the assumption that there is a terminal specific reference signal of antenna port 7-Y (= 8, 10 or 14) regardless of the actual implementation.
도 25는 본 발명에 따른 실시예들을 수행하는 장치로서 단말을 나타내는 도면이다. 25 is a diagram illustrating a terminal as an apparatus for performing embodiments according to the present invention.
단말(700)은 수신부(710), 제어부(720) 및 송신부(730)를 포함한다.The terminal 700 includes a receiver 710, a controller 720, and a transmitter 730.
제어부(720)는 도 5 내지 도 21를 참조하여 상술한 본 발명의 실시 예들을 수행하기에 필요한 동작을 수행하기 위해 전반적인 단말(700)의 동작을 제어한다. The controller 720 controls the overall operation of the terminal 700 to perform an operation necessary to perform the embodiments of the present invention described above with reference to FIGS. 5 to 21.
송신부(730)와 수신부(710)는 상술한 본 발명의 실시 예들을 수행하기 위해 필요한 신호, 메시지 또는 데이터를 기지국(20 또는 500)과 송수신한다. 특히 수신부(710)는 제어부(720)의 제어 하에 기지국(20 또는 500)으로부터 하향링크 전송 신호를 수신하여 PSS/SSS를 검출하고, 복조 기준 신호(DeModulation Reference Signal, DMRS)를 검출하여 이에 기반하여 물리 방송 채널(Physical Broadcast CHannel, PBCH)을 검색(blind search)할 수 있다. 이에 따라 제어부(720)는 검색된 PBCH를 통해 주 정보 블록(Master Information Block, MIB)을 추출할 수 있다. 이상 도면을 참조하여 실시예들을 설명하였으나 본 발명은 이에 제한되지 않는다.The transmitter 730 and the receiver 710 transmit and receive signals, messages or data necessary for performing the above-described embodiments of the present invention with the base station 20 or 500. In particular, the receiver 710 receives a downlink transmission signal from the base station 20 or 500 under the control of the controller 720 to detect the PSS / SSS, and detects a demodulation reference signal (DMRS) based thereon. A physical broadcast channel (PBCH) may be searched for a blind search. Accordingly, the controller 720 may extract a master information block (MIB) through the searched PBCH. Embodiments have been described above with reference to the drawings, but the present invention is not limited thereto.
이상에서는 첨부된 도면들에 도시된 단계에 따라 본 발명의 실시 예들의 방법을 설명하였으나, 이는 설명의 편의를 위한 것일 뿐, 본 발명의 본질적인 개념을 벗어나지 않는 범위 내에서, 구현 방식에 따라 각 단계의 수행 절차가 바뀌거나 둘 이상의 단계가 통합되거나 하나의 단계가 둘 이상의 단계로 분리되어 수행될 수도 있다.In the above described the method of the embodiments of the present invention according to the steps shown in the accompanying drawings, this is for convenience of description only, each step according to the implementation manner within the scope not departing from the essential concept of the invention The procedure of performing may be changed, two or more steps may be integrated, or one step may be performed separately in two or more steps.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성 요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 그 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 본 발명의 기술 분야의 당업자에 의해 용이하게 추론될 수 있을 것이다.In the above description, all elements constituting the embodiments of the present invention are described as being combined or operating in combination, but the present invention is not necessarily limited to the embodiments. In other words, within the scope of the present invention, all of the components may be selectively operated in combination with one or more. In addition, although all of the components may be implemented in one independent hardware, each or all of the components may be selectively combined to perform some or all functions combined in one or a plurality of hardware. It may be implemented as a computer program having a. Codes and code segments constituting the computer program may be easily inferred by those skilled in the art.
이러한 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 저장매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시예를 구현할 수 있다. 컴퓨터 프로그램의 저장매체로서는 자기 기록매체, 광 기록매체, 등이 포함될 수 있다.Such a computer program may be stored in a computer readable storage medium and read and executed by a computer, thereby implementing embodiments of the present invention. The storage medium of the computer program may include a magnetic recording medium, an optical recording medium, and the like.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, the terms "comprise", "comprise" or "having" described above mean that the corresponding component may be included, unless otherwise stated, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meanings as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms commonly used, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be construed in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2012년 12월 20일 한국에 출원한 특허출원번호 제 10-2012-0149945 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application claims priority pursuant to United States Patent Act Section 119 (a) (35 USC § 119 (a)) of Patent Application No. 10-2012-0149945, filed with Korea on 20 December 2012. All content is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (16)

  1. 물리 방송 채널((Physical Broadcast CHannel, PBCH) 상에서 전송될 부호화 비트의 개수( Mbit )에 대응하는 수의 비트를 포함하는 하나의 PBCH(Physical Broadcast Channel) 전송 비트 블록에 대해 스크램블을 수행하고, QPSK(Quadrature phase-shift keying) 변조 및 레이어 매핑(Layer mapping)과 프리코딩(precoding)을 수행하는 단계; 및 Scramble is performed for one PBCH transmission bit block including the number of bits corresponding to the number of coding bits M bits to be transmitted on a physical broadcast channel (PBCH), and QPSK Performing quadrature phase-shift keying modulation and layer mapping and precoding; and
    무선 프레임 인덱스 nf가 nf mod4=0 를 만족하는 적어도 하나의 무선 프레임이 존재하고, 해당 무선 프레임을 포함하면서 4개의 연속하는 무선 프레임에 대해, 각 안테나 포트에서 복소 심볼 블록 y(p)(0),...,y(p)(Msymb-1) 중 참조 신호 전송을 위해 할당되지 않은 (k, l) 자원요소들에 대해 상기 4개의 무선 프레임의 서브프레임 0번 또는 서브프레임 0번의 특정 슬롯에서 오름순으로 주파수 인덱스 k 를 증가시키고, OFDM 심볼 인덱스 l 을 증가시키고, 상기 무선 프레임의 인덱스 nf를 증가시켜 상기 프리코딩 수행된 PBCH 전송 비트 블록의 각 비트를 매핑하는 단계;를 포함하는 것을 특징으로 하는 기지국의 정보 전송 방법. There is at least one radio frame in which radio frame index n f satisfies n f mod4 = 0, and for four consecutive radio frames including the radio frame, a complex symbol block y (p) ( 0), ..., y (p) subframe 0 or subframe 0 of the four radio frames for (k, l) resource elements not allocated for reference signal transmission among (M symb- 1) Mapping each bit of the precoded PBCH transmission bit block by increasing frequency index k, increasing OFDM symbol index l, and increasing index n f of the radio frame, in ascending order in a specific slot; Information transmission method of a base station comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 인덱스 k 및 l은 다음의 수학식을 만족하며, The indexes k and l satisfy the following equation,
    Figure PCTKR2013011436-appb-I000009
    Figure PCTKR2013011436-appb-I000009
    여기서 n은 상기 서브프레임 내에서 상기 PBCH 전송 비트 블록의 첫 번째 OFDM 심볼인덱스,
    Figure PCTKR2013011436-appb-I000010
    는 하향링크 대역폭,
    Figure PCTKR2013011436-appb-I000011
    는 주파수 도메인에서 자원 블록 크기를 나타내는 것을 특징으로 하는 기지국의 정보 전송 방법.
    Where n is the first OFDM symbol index of the PBCH transmission bit block within the subframe,
    Figure PCTKR2013011436-appb-I000010
    Is the downlink bandwidth,
    Figure PCTKR2013011436-appb-I000011
    The information transmission method of the base station characterized in that the resource block size in the frequency domain.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 인덱스 k 및 l은 다음의 수학식을 만족하며,The indexes k and l satisfy the following equation,
    Figure PCTKR2013011436-appb-I000012
    Figure PCTKR2013011436-appb-I000012
    여기서 n은 상기 서브프레임 내에서 상기 PBCH 전송 비트 블록의 첫 번째 OFDM 심볼 인덱스,
    Figure PCTKR2013011436-appb-I000013
    는 하향링크 대역폭,
    Figure PCTKR2013011436-appb-I000014
    는 주파수 도메인에서 자원 블록 크기를 나타내는 것을 특징으로 하는 기지국의 정보 전송 방법.
    Where n is the first OFDM symbol index of the PBCH transmission bit block in the subframe,
    Figure PCTKR2013011436-appb-I000013
    Is the downlink bandwidth,
    Figure PCTKR2013011436-appb-I000014
    The information transmission method of the base station characterized in that the resource block size in the frequency domain.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 참조 신호는 DMRS(Demodulation reference signal)이며, 상기 DMRS는 안테나 포트 1개, 2개 또는 4개 중 하나를 통해 전송되는 것을 특징으로 하는 기지국의 정보 전송 방법. The reference signal is a demodulation reference signal (DMRS), and the DMRS is transmitted through one of the antenna port, one or two or four information transmission method of the base station.
  5. 물리 방송 채널((Physical Broadcast CHannel, PBCH) 상에서 전송될 부호화 비트의 개수( Mbit )에 대응하는 수의 비트를 포함하는 하나의 PBCH(Physical Broadcast Channel) 전송 비트 블록에 대해 스크램블을 수행하고, QPSK(Quadrature phase-shift keying) 변조 및 레이어 매핑(Layer mapping)과 프리코딩(precoding)을 수행하고, 무선 프레임 인덱스 nf가 nf mod4=0 를 만족하는 적어도 하나의 무선 프레임이 존재하고, 해당 무선 프레임을 포함하면서 4개의 연속하는 무선 프레임에서, 각 안테나 포트에서 복소 심볼 블록 y(p)(0),...,y(p)(Msymb-1) 중 참조 신호 전송을 위해 할당되지 않은 (k, l) 자원요소들에 대해 서브프레임 0번 또는 서브프레임 0번의 특정 슬롯에서 오름순으로 주파수 인덱스 k 를 증가시키고, OFDM 심볼 인덱스 l 을 증가시키고, 상기 무선 프레임의 인덱스 nf를 증가시켜, 상기 프리코딩 수행된 PBCH 전송 비트 블록의 각 비트를 매핑하는 제어부; 및 Scramble is performed for one PBCH transmission bit block including the number of bits corresponding to the number of coding bits M bits to be transmitted on a physical broadcast channel (PBCH), and QPSK (Quadrature phase-shift keying) modulation and layer mapping and precoding, at least one radio frame in which the radio frame index n f satisfies n f mod4 = 0, and the radio In four consecutive radio frames, including frames, one of the complex symbol blocks y (p) (0), ..., y (p) (M symb -1) at each antenna port is not allocated for reference signal transmission. By increasing the frequency index k, increasing the OFDM symbol index l, increasing the index n f of the radio frame in ascending order in a specific slot of subframe 0 or subframe 0 for the (k, l) resource elements , remind A controller for mapping each bit of the pre-coded PBCH transmission bit block; and
    상기 매핑된 PBCH 채널을 통해 MIB(Master Information Block)를 전송하는 송신부;를 포함하는 것을 특징으로 하는 기지국. And a transmitter for transmitting a master information block (MIB) through the mapped PBCH channel.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 인덱스 k 및 l은 다음의 수학식을 만족하며, The indexes k and l satisfy the following equation,
    Figure PCTKR2013011436-appb-I000015
    Figure PCTKR2013011436-appb-I000015
    여기서 n은 상기 서브프레임 내에서 상기 PBCH 전송 비트 블록의 첫 번째 OFDM 심볼 인덱스,
    Figure PCTKR2013011436-appb-I000016
    는 하향링크 대역폭,
    Figure PCTKR2013011436-appb-I000017
    는 주파수 도메인에서 자원 블록 크기를 나타내는 것을 특징으로 하는 기지국.
    Where n is the first OFDM symbol index of the PBCH transmission bit block in the subframe,
    Figure PCTKR2013011436-appb-I000016
    Is the downlink bandwidth,
    Figure PCTKR2013011436-appb-I000017
    Is a base station, characterized in that the resource block size in the frequency domain.
  7. 제 5 항에 있어서,The method of claim 5,
    상기 인덱스 k 및 l은 다음의 수학식을 만족하며,The indexes k and l satisfy the following equation,
    Figure PCTKR2013011436-appb-I000018
    Figure PCTKR2013011436-appb-I000018
    여기서 n은 상기 서브프레임 내에서 상기 PBCH 전송 비트 블록의 첫 번째 OFDM 심볼 인덱스,
    Figure PCTKR2013011436-appb-I000019
    는 하향링크 대역폭,
    Figure PCTKR2013011436-appb-I000020
    는 주파수 도메인에서 자원 블록 크기를 나타내는 것을 특징으로 하는 기지국.
    Where n is the first OFDM symbol index of the PBCH transmission bit block in the subframe,
    Figure PCTKR2013011436-appb-I000019
    Is the downlink bandwidth,
    Figure PCTKR2013011436-appb-I000020
    Is a base station, characterized in that the resource block size in the frequency domain.
  8. 제 5 항에 있어서,The method of claim 5,
    상기 참조 신호는 DMRS(Demodulation reference signal)이며, 상기 DMRS는 안테나 포트 1개, 2개 또는 4개 중 하나를 통해 전송하는 것을 특징으로 하는 기지국. The reference signal is a demodulation reference signal (DMRS), the DMRS is characterized in that the base station transmits through one of one, two or four antenna ports.
  9. 복조 기준 신호(DeModulation Reference Signal, DMRS)에 기반하여 물리 방송 채널(Physical Broadcast CHannel, PBCH)을 검색하고, 상기 PBCH를 통해 전송되는 주 정보 블록(Master Information Block, MIB)을 추출하는 단계;를 포함하고, Searching for a physical broadcast channel (PBCH) based on a demodulation reference signal (DMRS) and extracting a master information block (MIB) transmitted through the PBCH; and,
    상기 PBCH 검색에 있어서, 무선 프레임 인덱스 nf가 nf mod4=0 를 만족하는 적어도 하나의 무선 프레임이 존재하고, 해당 무선 프레임을 포함하면서 4개의 연속하는 무선 프레임에 대해, 각 안테나 포트에서 복소 심볼 블록 y(p)(0),...,y(p)(Msymb-1) 중 참조 신호 전송을 위해 할당되지 않은 (k, l) 자원요소들에 대해 상기 4개의 무선 프레임의 서브프레임 0번 또는 서브프레임 0번의 특정 슬롯에서 오름순으로 주파수 인덱스 k 를 증가시키고, OFDM 심볼 인덱스 l 을 증가시키고, 상기 무선 프레임의 인덱스 nf를 증가시켜 상기 PBCH 전송 비트 블록의 각 비트를 검색하는 것을 특징으로 하는 단말기의 정보 수신 방법. In the PBCH search, there is at least one radio frame whose radio frame index n f satisfies n f mod4 = 0, and for each of four consecutive radio frames including the radio frame, a complex symbol at each antenna port Subframes of the four radio frames for (k, l) resource elements not allocated for reference signal transmission among blocks y (p) (0), ..., y (p) (M symb -1) Retrieving each bit of the PBCH transmission bit block by increasing the frequency index k, increasing the OFDM symbol index l, and increasing the index n f of the radio frame, in ascending order in a particular slot of subframe 0 or subframe 0; Information receiving method of the terminal characterized in that.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 인덱스 k 및 l은 다음의 수학식을 만족하며, The indexes k and l satisfy the following equation,
    Figure PCTKR2013011436-appb-I000021
    Figure PCTKR2013011436-appb-I000021
    여기서 n은 상기 서브프레임 내에서 상기 PBCH 전송 비트 블록의 첫 번째 OFDM 심볼인덱스,
    Figure PCTKR2013011436-appb-I000022
    는 하향링크 대역폭,
    Figure PCTKR2013011436-appb-I000023
    는 주파수 도메인에서 자원 블록 크기를 나타내는 것을 특징으로 하는 단말기의 정보 수신 방법.
    Where n is the first OFDM symbol index of the PBCH transmission bit block within the subframe,
    Figure PCTKR2013011436-appb-I000022
    Is the downlink bandwidth,
    Figure PCTKR2013011436-appb-I000023
    The information receiving method of the terminal, characterized in that the resource block size in the frequency domain.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 인덱스 k 및 l은 다음의 수학식을 만족하며,The indexes k and l satisfy the following equation,
    Figure PCTKR2013011436-appb-I000024
    Figure PCTKR2013011436-appb-I000024
    여기서 n은 상기 서브프레임 내에서 상기 PBCH 전송 비트 블록의 첫 번째 OFDM 심볼 인덱스,
    Figure PCTKR2013011436-appb-I000025
    는 하향링크 대역폭,
    Figure PCTKR2013011436-appb-I000026
    는 주파수 도메인에서 자원 블록 크기를 나타내는 것을 특징으로 하는 단말기의 정보 수신 방법.
    Where n is the first OFDM symbol index of the PBCH transmission bit block in the subframe,
    Figure PCTKR2013011436-appb-I000025
    Is the downlink bandwidth,
    Figure PCTKR2013011436-appb-I000026
    The information receiving method of the terminal, characterized in that the resource block size in the frequency domain.
  12. 제 9 항에 있어서,The method of claim 9,
    상기 참조신호는 DMRS(Demodulation reference signal)이며, 상기 DMRS는 안테나 포트 1개, 2개 또는 4개 중 하나를 통해 전송되는 것을 특징으로 하는 단말기의 정보 수신 방법.The reference signal is a demodulation reference signal (DMRS), and the DMRS is a method of receiving information, characterized in that transmitted through one of one, two or four antenna ports.
  13. 복조 기준 신호(DeModulation Reference Signal, DMRS)에 기반하여 물리 방송 채널(Physical Broadcast CHannel, PBCH)을 검색하고, 상기 PBCH를 통해 전송되는 주 정보 블록(Master Information Block, MIB)을 추출하는 수신부;를 포함하고, A receiving unit searching for a physical broadcast channel (PBCH) based on a demodulation reference signal (DMRS) and extracting a master information block (MIB) transmitted through the PBCH; and,
    상기 수신부는, 상기 PBCH 검색에 있어서, 무선 프레임 인덱스 nf
    Figure PCTKR2013011436-appb-I000027
    를 만족하는 적어도 하나의 무선 프레임이 존재하고, 해당 무선 프레임을 포함하면서 4개의 연속하는 무선 프레임에 대해, 각 안테나 포트에서 복소 심볼 블록 y(p)(0),...,y(p)(Msymb-1) 중 참조 신호 전송을 위해 할당되지 않은 (k, l) 자원요소들에 대해 상기 4개의 무선 프레임의 서브프레임 0번 또는 서브프레임 0번의 특정 슬롯에서 오름순으로 주파수 인덱스 k 를 증가시키고, OFDM 심볼 인덱스 l 을 증가시키고, 상기 무선 프레임의 인덱스 nf를 증가시켜 상기 PBCH 전송 비트 블록의 각 비트를 검색하는 것을 특징으로 하는 단말기.
    The receiving unit, in the PBCH search, has a radio frame index n f
    Figure PCTKR2013011436-appb-I000027
    There is at least one radio frame that satisfies, and for four consecutive radio frames including the radio frame, a complex symbol block y (p) (0), ..., y (p) at each antenna port Frequency index k in ascending order in a specific slot of subframe 0 or subframe 0 of the 4 radio frames for (k, l) resource elements not allocated for reference signal transmission among (M symb- 1). And search each bit of the PBCH transmission bit block by increasing the OFDM symbol index l and increasing the index n f of the radio frame.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 인덱스 k 및 l은 다음의 수학식을 만족하며, The indexes k and l satisfy the following equation,
    Figure PCTKR2013011436-appb-I000028
    Figure PCTKR2013011436-appb-I000028
    여기서 n은 상기 서브프레임 내에서 상기 PBCH 전송 비트 블록의 첫 번째 OFDM 심볼인덱스,
    Figure PCTKR2013011436-appb-I000029
    는 하향링크 대역폭,
    Figure PCTKR2013011436-appb-I000030
    는 주파수 도메인에서 자원 블록 크기를 나타내는 것을 특징으로 하는 단말기.
    Where n is the first OFDM symbol index of the PBCH transmission bit block within the subframe,
    Figure PCTKR2013011436-appb-I000029
    Is the downlink bandwidth,
    Figure PCTKR2013011436-appb-I000030
    Is a resource block size in a frequency domain.
  15. 제 13 항에 있어서,The method of claim 13,
    상기 k 및 l은 다음의 수학식을 만족하며,K and l satisfy the following equation,
    Figure PCTKR2013011436-appb-I000031
    Figure PCTKR2013011436-appb-I000031
    여기서 n은 상기 서브프레임 내에서 상기 PBCH 전송 비트 블록의 첫 번째 OFDM 심볼 인덱스,
    Figure PCTKR2013011436-appb-I000032
    는 하향링크 대역폭,
    Figure PCTKR2013011436-appb-I000033
    는 주파수 도메인에서 자원 블록 크기를 나타내는 것을 특징으로 하는 단말기.
    Where n is the first OFDM symbol index of the PBCH transmission bit block in the subframe,
    Figure PCTKR2013011436-appb-I000032
    Is the downlink bandwidth,
    Figure PCTKR2013011436-appb-I000033
    Is a resource block size in a frequency domain.
  16. 제 13 항에 있어서,The method of claim 13,
    상기 참조신호는 DMRS(Demodulation reference signal)이며, 상기 DMRS는 안테나 포트 1개, 2개 또는 4개 중 하나를 통해 전송되는 것을 특징으로 하는 단말기.The reference signal is a demodulation reference signal (DMRS), the terminal characterized in that the DMRS is transmitted through one of one, two or four antenna ports.
PCT/KR2013/011436 2012-12-20 2013-12-11 Terminal, method whereby terminal receives information, base station, and method whereby base station transmits information WO2014098401A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0149945 2012-12-20
KR1020120149945A KR20140080296A (en) 2012-12-20 2012-12-20 User Equipment, Information Receiving Method Thereof, Base Station, and Information Transmitting Method Thereof

Publications (1)

Publication Number Publication Date
WO2014098401A1 true WO2014098401A1 (en) 2014-06-26

Family

ID=50978666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011436 WO2014098401A1 (en) 2012-12-20 2013-12-11 Terminal, method whereby terminal receives information, base station, and method whereby base station transmits information

Country Status (2)

Country Link
KR (1) KR20140080296A (en)
WO (1) WO2014098401A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018053364A1 (en) * 2016-09-15 2018-03-22 Intel IP Corporation Downlink physical broadcast channel design for beamforming systems
WO2018145531A1 (en) * 2017-02-10 2018-08-16 维沃移动通信有限公司 Method for sending synchronous access signal group, method for receiving same, related device and system
CN108476485A (en) * 2017-05-05 2018-08-31 北京小米移动软件有限公司 Method for transmitting signals, device, electronic equipment and computer readable storage medium
CN108933647A (en) * 2017-05-26 2018-12-04 华为技术有限公司 A kind of method and device of bit map
WO2019047203A1 (en) * 2017-09-11 2019-03-14 海能达通信股份有限公司 Data frame, data sending method and device
CN109478943A (en) * 2017-02-06 2019-03-15 Lg 电子株式会社 The method and apparatus sent and received signal between the user equipment and the base station in wireless communication system
CN109588062A (en) * 2017-07-28 2019-04-05 Lg电子株式会社 Send and receive the method and device thereof of broadcast channel
WO2019075690A1 (en) * 2017-10-19 2019-04-25 北京小米移动软件有限公司 Method and apparatus for processing physical broadcast channel (pbch) bandwidth, and base station
CN110463314A (en) * 2017-02-07 2019-11-15 创新技术实验室株式会社 Broadcast channel configuration and broadcast channel transmission and received method and apparatus for communication system
CN110495147A (en) * 2017-04-14 2019-11-22 高通股份有限公司 Synchronization signal block for wireless communication designs
CN110574326A (en) * 2017-04-26 2019-12-13 三星电子株式会社 Method and apparatus for configuring demodulation reference signal location in wireless cellular communication system
CN113364557A (en) * 2017-08-11 2021-09-07 瑞典爱立信有限公司 Method and apparatus for synchronization
CN114286436A (en) * 2016-06-23 2022-04-05 中兴通讯股份有限公司 Sending method and receiving method of synchronization signal, and communication node

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10523354B2 (en) * 2017-02-24 2019-12-31 Samsung Electronics Co., Ltd. Method and apparatus for design of NR-SS burst set
JP7030818B2 (en) * 2017-05-05 2022-03-07 エルジー エレクトロニクス インコーポレイティド How to receive a sync signal and the equipment for it
WO2019097638A1 (en) * 2017-11-16 2019-05-23 株式会社Nttドコモ User terminal and wireless communication method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090149207A1 (en) * 2007-12-07 2009-06-11 Samsung Electronics Co., Ltd. Physical broadcast channel (PBCH) transmission for reliable detection of antenna configuration
WO2011084009A2 (en) * 2010-01-08 2011-07-14 Samsung Electronics Co., Ltd. Method and apparatus for mapping/demapping resource in wireless communication system
US20110317780A1 (en) * 2010-06-28 2011-12-29 Ji Won Kang Method and apparatus for transmitting synchronization signal in multi-node system
US20120039256A1 (en) * 2009-04-13 2012-02-16 Yeong Hyun Kwon Method and apparatus for transmitting system information from a base station supporting an improved system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090149207A1 (en) * 2007-12-07 2009-06-11 Samsung Electronics Co., Ltd. Physical broadcast channel (PBCH) transmission for reliable detection of antenna configuration
US20120039256A1 (en) * 2009-04-13 2012-02-16 Yeong Hyun Kwon Method and apparatus for transmitting system information from a base station supporting an improved system
WO2011084009A2 (en) * 2010-01-08 2011-07-14 Samsung Electronics Co., Ltd. Method and apparatus for mapping/demapping resource in wireless communication system
US20110317780A1 (en) * 2010-06-28 2011-12-29 Ji Won Kang Method and apparatus for transmitting synchronization signal in multi-node system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3GPP; TSGRAN; E-UTRA; Physical Channels and Modulation (Release 11", 3GPP TS 36.211 V11.0.0, September 2012 (2012-09-01), Retrieved from the Internet <URL:http://www.3gpp.org/DynaReport/36211.htm> *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114286436A (en) * 2016-06-23 2022-04-05 中兴通讯股份有限公司 Sending method and receiving method of synchronization signal, and communication node
CN114286436B (en) * 2016-06-23 2023-06-23 中兴通讯股份有限公司 Synchronous signal transmitting method, synchronous signal receiving method and communication node
WO2018053364A1 (en) * 2016-09-15 2018-03-22 Intel IP Corporation Downlink physical broadcast channel design for beamforming systems
US11902921B2 (en) 2017-02-06 2024-02-13 Lg Electronics Inc. Method and device for transmitting and receiving signal between user equipment and base station in wireless communication system
CN109478943A (en) * 2017-02-06 2019-03-15 Lg 电子株式会社 The method and apparatus sent and received signal between the user equipment and the base station in wireless communication system
US11483783B2 (en) 2017-02-06 2022-10-25 Lg Electronics Inc. Method and device for transmitting and receiving signal between user equipment and base station in wireless communication system
US10757666B2 (en) 2017-02-06 2020-08-25 Lg Electronics Inc. Method and device for transmitting and receiving signal between user equipment and base station in wireless communication system
CN110463314B (en) * 2017-02-07 2023-04-18 创新技术实验室株式会社 Method and apparatus for broadcast channel configuration and broadcast channel transmission and reception for a communication system
CN110463314A (en) * 2017-02-07 2019-11-15 创新技术实验室株式会社 Broadcast channel configuration and broadcast channel transmission and received method and apparatus for communication system
WO2018145531A1 (en) * 2017-02-10 2018-08-16 维沃移动通信有限公司 Method for sending synchronous access signal group, method for receiving same, related device and system
CN110495147B (en) * 2017-04-14 2022-06-21 高通股份有限公司 Method, scheduling entity and UE for communication of synchronization signal blocks for wireless communication
CN110495147A (en) * 2017-04-14 2019-11-22 高通股份有限公司 Synchronization signal block for wireless communication designs
CN110574326A (en) * 2017-04-26 2019-12-13 三星电子株式会社 Method and apparatus for configuring demodulation reference signal location in wireless cellular communication system
US11838158B2 (en) 2017-04-26 2023-12-05 Samsung Electronics Co., Ltd. Method and apparatus for configuring demodulation reference signal position in wireless cellular communication system
CN110574326B (en) * 2017-04-26 2022-08-12 三星电子株式会社 Method and apparatus for configuring demodulation reference signal location in wireless cellular communication system
CN108476485B (en) * 2017-05-05 2020-12-04 北京小米移动软件有限公司 Signal transmission method, signal transmission device, electronic equipment and computer readable storage medium
US11184878B2 (en) 2017-05-05 2021-11-23 Beijing Xiaomi Mobile Software Co., Ltd. Signal transmission method, signal transmission apparatus, electronic device and computer-readable storage medium
US11832279B2 (en) 2017-05-05 2023-11-28 Beijing Xiaomi Mobile Software Co., Ltd. Signal transmission method, signal transmission apparatus, electronic device and computer-readable storage medium
CN108476485A (en) * 2017-05-05 2018-08-31 北京小米移动软件有限公司 Method for transmitting signals, device, electronic equipment and computer readable storage medium
CN108933647B (en) * 2017-05-26 2023-09-12 华为技术有限公司 Bit mapping method and device
CN108933647A (en) * 2017-05-26 2018-12-04 华为技术有限公司 A kind of method and device of bit map
CN109588062B (en) * 2017-07-28 2021-10-22 Lg电子株式会社 Method for transmitting and receiving broadcast channel and apparatus therefor
US11665712B2 (en) 2017-07-28 2023-05-30 Lg Electronics Inc. Method of transmitting and receiving broadcasting channel and device therefor
CN109588062A (en) * 2017-07-28 2019-04-05 Lg电子株式会社 Send and receive the method and device thereof of broadcast channel
CN113364557A (en) * 2017-08-11 2021-09-07 瑞典爱立信有限公司 Method and apparatus for synchronization
CN113364557B (en) * 2017-08-11 2024-05-14 瑞典爱立信有限公司 Method and device for synchronization
US11483788B2 (en) 2017-09-11 2022-10-25 Hytera Communications Corporation Limited Data frame, data sending method and device
WO2019047203A1 (en) * 2017-09-11 2019-03-14 海能达通信股份有限公司 Data frame, data sending method and device
US11223458B2 (en) 2017-10-19 2022-01-11 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for processing physical broadcast channel (PBCH) bandwidth, and base station
WO2019075690A1 (en) * 2017-10-19 2019-04-25 北京小米移动软件有限公司 Method and apparatus for processing physical broadcast channel (pbch) bandwidth, and base station

Also Published As

Publication number Publication date
KR20140080296A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
WO2014098401A1 (en) Terminal, method whereby terminal receives information, base station, and method whereby base station transmits information
WO2014042452A1 (en) Reception and configuration of downlink control channel
WO2012141513A2 (en) Method and apparatus for transmitting control information in a wireless communication system
WO2011046334A2 (en) Apparatus and method for transmitting and receiving control information in wireless communication system
WO2012148207A2 (en) Method and apparatus for transmitting/receiving reference signal in wireless communication system
WO2014123378A1 (en) Method for transreceiving signal and apparatus for same
WO2013055193A2 (en) Method and device for receiving control information in wireless communication system
WO2013162321A2 (en) Signal-transceiving method, and apparatus therefor
WO2013077677A1 (en) Method and wireless device for monitoring control channel
WO2011053009A2 (en) Relay node device for receiving control information from a base station and method therefor
WO2013141654A1 (en) Method and apparatus for receiving control information in wireless communication system
WO2016182294A1 (en) Method and device for transmitting and receiving discovery signal of device-to-device communication terminal in wireless communication system
WO2016032202A2 (en) Method for transmitting and receiving synchronization signal in wireless communication system and device for performing same
WO2017034265A1 (en) Method and device for transmitting/receiving signal of v2x terminal in wireless communication system
WO2019209085A1 (en) Method for transmitting and receiving reference signal and device therefor
WO2014119939A1 (en) Method and apparatus for receiving downlink signal in wireless communication system
WO2013169003A1 (en) Control signal transceiving method and apparatus for same
WO2018021591A1 (en) Otfs basis allocation method in wireless communication system using otfs transmission system
WO2013005970A2 (en) Method and apparatus for transmitting and processing control information in time division duplex system using multi-component carrier
WO2013133678A1 (en) Method for transreceiving signals and apparatus for same
WO2013062374A1 (en) Method of monitoring control channel and wireless device using same
WO2011129632A2 (en) Method for controlling the aperiodic transmission of a control signal, and method and apparatus for transceiving the control signal using the same
WO2017171327A2 (en) Method for transmitting/receiving control information in wireless communication system and apparatus for same
WO2013109048A1 (en) Method and apparatus for monitoring control channel
WO2014123352A1 (en) Method and device for transmitting uplink signal in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866134

Country of ref document: EP

Kind code of ref document: A1