WO2014098390A1 - Method for controlling bearer extension in heterogeneous network wireless communication system and apparatus for same - Google Patents

Method for controlling bearer extension in heterogeneous network wireless communication system and apparatus for same Download PDF

Info

Publication number
WO2014098390A1
WO2014098390A1 PCT/KR2013/011125 KR2013011125W WO2014098390A1 WO 2014098390 A1 WO2014098390 A1 WO 2014098390A1 KR 2013011125 W KR2013011125 W KR 2013011125W WO 2014098390 A1 WO2014098390 A1 WO 2014098390A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink transmission
eps bearer
base station
terminal
bearer
Prior art date
Application number
PCT/KR2013/011125
Other languages
French (fr)
Korean (ko)
Inventor
허강석
권기범
안재현
정명철
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2014098390A1 publication Critical patent/WO2014098390A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for controlling bearer expansion in a heterogeneous network wireless communication system.
  • a multiple component carrier system refers to a wireless communication system capable of supporting carrier aggregation.
  • Carrier aggregation is a technique for efficiently using fragmented small bands.
  • a base station uses a logically large band by grouping a plurality of physically continuous or non-continuous bands in the frequency domain. It is intended to produce the same effect.
  • the multi-component carrier system supports a plurality of component carriers (CCs) distinguished in the frequency domain.
  • the component carrier includes an uplink component carrier used for uplink and a downlink component carrier used in downlink.
  • One serving cell may be configured by combining the downlink component carrier and the uplink component carrier. Alternatively, one serving cell may be configured only with a downlink component carrier.
  • HetNet heterogeneous network
  • a macro cell In a heterogeneous network environment, a macro cell is a large coverage cell, and a small cell such as a femto cell and a pico cell is a small coverage cell. Coverage overlap occurs between multiple macro cells and small cells in a heterogeneous network environment.
  • a terminal connected to a network may communicate with any cell according to a channel environment or a mobile state, and may perform cell change.
  • a handover may be performed to solve a problem of call disconnection that occurs when moving to an adjacent cell.
  • Handover refers to a new call channel of an adjacent communication service area when the terminal moves out of the current communication service area (source cell) and moves to an adjacent communication service area (target cell). It is a function that automatically tunes to a traffic channel to maintain a call state continuously. That is, a terminal communicating with a specific base station is linked to another neighboring base station (target base station) when the signal strength of the specific base station (hereinafter referred to as a source base station) is weakened. .
  • the terminal may be disconnected from the macro cell and connected to another macro cell or pico cell due to a deterioration of the channel state while being connected to the macro cell.
  • the terminal may be disconnected from the macro cell and connected to another macro cell or pico cell.
  • the terminal may perform wireless communication through any one of base stations constituting at least one serving cell.
  • a terminal that is connected to one base station constituting a macro cell may be serviced by the other base station without a handover procedure even when the signal quality of the other base station constituting the small cell is excellent and the radio resource utilization is low. Is not provided.
  • the UE is connected to the base station constituting the small cell through a handover procedure, there is a problem that the handover occurs frequently as the UE moves because the coverage of the small cell is relatively small. This is also the case when the terminal supports the multi-component carrier. Accordingly, there is a need for a method for distributing an excessive load or a load requiring a specific QoS to a small cell without a handover procedure in a heterogeneous network environment and efficiently transmitting data.
  • An object of the present invention is to provide a method and apparatus for setting and operating a bearer extension in a wireless communication system.
  • An apparatus and method for replacing an extended EPS bearer of one small cell with an extended EPS bearer of another small cell is provided.
  • Another technical problem of the present invention is to provide a method for efficient transmission of data to a terminal without generating unnecessary load on a cell in a heterogeneous network environment.
  • Another technical problem of the present invention is to efficiently transmit data to a terminal through an extension of a radio bearer (RB).
  • RB radio bearer
  • Another technical problem of the present invention is to provide specific data through a small cell to the terminal connected to the macro cell.
  • Another technical problem of the present invention is to provide a service through a small cell suitable for service operation of a specific Quality of Service (QoS).
  • QoS Quality of Service
  • Another technical problem of the present invention is to prevent frequent handover of a terminal and provide data seamlessly.
  • a heterogeneous network system including a plurality of small base station (HeNB) provides a method for supporting the change of the extended EPS (Evolved Packet System) bearer by the terminal.
  • the method includes first uplink transmission start information indicating start of uplink transmission using an EPS bearer of a macro cell formed between the terminal and the macro base station, and a first extended EPS bearer formed between the terminal and the first small base station.
  • first uplink transmission reservation information indicating reservation for uplink transmission from the macro base station, a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and the second small base station;
  • Receiving a second uplink transmission reservation information from the macro base station indicating that the uplink transmission using the second extended EPS bearer is reserved, and the EPS bearer of the macro cell.
  • a third uplink transmission reservation information indicating that the uplink transmission is reserved and the second extended EPS bearer;
  • a terminal supporting a change of an extended EPS bearer in a heterogeneous network system including a plurality of small base stations includes first uplink transmission start information indicating start of uplink transmission using an EPS bearer of a macro cell formed between the terminal and the macro base station, and a first extended EPS bearer formed between the terminal and the first small base station.
  • First uplink transmission reservation information indicating reservation for uplink transmission of a parameter, a parameter for configuring a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and the second small base station, and the second extended EPS bearer Second uplink transmission reservation information indicating the reservation of uplink transmission using the third uplink transmission reservation information indicating the reservation of uplink transmission using the EPS bearer of the macro cell, and the second extended EPS Receive second uplink transmission start information indicating that uplink transmission is started using a bearer from the macro base station And performing uplink transmission to the macro base station based on the terminal receiver, and the first uplink transmission start information and the first uplink transmission reservation information, and performing the third uplink transmission reservation information and the second uplink.
  • a terminal processor configured to perform uplink transmission using the second extended EPS bearer based on link transmission start information.
  • a method for supporting a change of an extended Evolved Packet System (EPS) bearer by a macro base station in a heterogeneous network system including a plurality of small base stations includes first uplink transmission start information indicating that uplink transmission is started using an EPS bearer of a macro cell formed between the terminal and the macro base station, and a first extended EPS bearer formed between the terminal and the first small base station.
  • EPS Evolved Packet System
  • first uplink transmission reservation information indicating reservation for uplink transmission in a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and a second small base station; Transmitting to the terminal a parameter for configuring a signal and second uplink transmission reservation information indicating reservation for uplink transmission using the second extended EPS bearer, and uplink using the EPS bearer of the macro cell.
  • a second uplink transmission start information indicating a transmitting to the mobile station.
  • a macro base station supporting a change of an extended EPS bearer in a heterogeneous network system including a plurality of small base stations.
  • the macro base station includes first uplink transmission start information indicating start of uplink transmission using an EPS bearer of a macro cell formed between the terminal and the macro base station, and a first extended EPS bearer formed between the terminal and the first small base station.
  • the data of the user plane with a large amount of data is continuously transmitted and received through the small cell, thereby distributing the load of the macro cell.
  • the terminal since the terminal does not move to the handover between the small cells, it is possible to reduce the burden or overhead of the handover, it is possible to change the service between the small cells faster than the handover.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 shows a structure of a bearer service in a wireless communication system to which the present invention is applied.
  • FIG. 3 is a conceptual diagram illustrating a connection configuration between a macro base station and a small base station according to an example of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a connection configuration between a macro base station and a small base station according to another embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating signaling between a terminal, a macro base station, a first small base station, a second small base station, and a core network according to an embodiment of the present invention.
  • FIG. 6 is an operation flowchart of a terminal according to an example of the present invention.
  • FIG. 7 is a flowchart illustrating an operation of a macro base station according to an exemplary embodiment of the present invention.
  • FIG. 8 is an operation flowchart of a second small base station according to an example of the present invention.
  • FIG. 9 is a block diagram illustrating a terminal, a macro base station and a second small base station according to the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • E-UMTS Evolved-Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • LTE-A Advanced
  • Wireless communication systems are widely deployed to provide various communication services such as voice, packet data, and the like.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-TDMA
  • various multiple access schemes such as OFDM-CDMA may be used.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • the terminal 10 may be fixed or mobile and may be called by other terms such as mobile station (MS), advanced MS (AMS), user terminal (UT), subscriber station (SS), and wireless device (Wireless Device). .
  • the base station 20 generally refers to a station communicating with the terminal 10, and includes an evolved-NodeB (eNodeB), a Base Transceiver System (BTS), an Access Point, an femto-eNB, It may be called other terms such as a pico-eNB, a home eNB, and a relay.
  • the base station 20 may provide at least one cell to the terminal.
  • the cell may mean a geographic area where the base station 20 provides a communication service or may mean a specific frequency band.
  • the cell may mean a downlink frequency resource and an uplink frequency resource. Alternatively, the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • S1 interface exchanges OAM (Operation and Management) information for supporting the movement of the terminal 10 by exchanging signals with the MME.
  • OAM Operaation and Management
  • EPC 30 includes MME, S-GW and P-GW (Packet Data Network-Gateway).
  • the MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10.
  • the S-GW is a gateway having an E-UTRAN as an endpoint
  • the P-GW is a gateway having a PDN (Packet Data Network) as an endpoint.
  • Integrating the E-UTRAN and the EPC 30 may be referred to as an EPS (Evoled Packet System), and the traffic flows from the radio link that the terminal 10 accesses the base station 20 to the PDN connecting to the service entity are all IP. It works based on (Internet Protocol).
  • EPS Evoled Packet System
  • the radio interface between the terminal and the base station is called a Uu interface.
  • Layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • OSI Open System Interconnection
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network.
  • the RRC layer exchanges an RRC message between the terminal and the base station.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to the upper layer Medium Access Control (MAC) layer through a transport channel.
  • MAC Medium Access Control
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface. Data moves between the physical layers, that is, between the physical layers of the transmitter and the receiver.
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the physical downlink control channel informs the terminal of resource allocation of a paging channel (PCH) and downlink shared channel (DL-SCH) and hybrid automatic repeat request (HARQ) information related to the DL-SCH.
  • the PDCCH may carry an uplink scheduling grant informing the UE of resource allocation of uplink transmission.
  • the physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
  • PHICH physical Hybrid ARQ Indicator Channel
  • PHICH physical Hybrid ARQ Indicator Channel
  • Physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission.
  • Physical uplink shared channel carries an uplink shared channel (UL-SCH).
  • the functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode). Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the configuration of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB may be further classified into a signaling RB (SRB) and a data RB (DRB).
  • SRB is used as a path for transmitting RRC and NAS messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • the UE If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state. do.
  • a terminal In order for a terminal to transmit user data (eg, an IP packet) to an external internet network or to receive user data from an external internet network, the terminal exists between mobile communication network entities existing between the terminal and the external internet network. Resources must be allocated to different paths. Thus, a path in which resources are allocated between mobile communication network entities and data transmission and reception is possible is called a bearer.
  • a bearer a path in which resources are allocated between mobile communication network entities and data transmission and reception is possible.
  • FIG. 2 shows a structure of a bearer service in a wireless communication system to which the present invention is applied.
  • an end-to-end service is provided between a terminal and an internet network.
  • the end-to-end service refers to a service that requires a path between the terminal and the P-GW (EPS Bearer) and a P-GW and an external bearer for the Internet network and data service.
  • the external path is a bearer between the P-GW and the Internet network.
  • the terminal In order for the terminal to transmit data to the external internet network, the terminal first transmits data to the base station eNB through the RB on the radio. The base station then transmits data to the S-GW through the S1 bearer. S-GW transmits data to P-GW through S5 / S8 bearer, and finally through external bearer to destinations in P-GW and external internet network.
  • the data can be delivered to the terminal through each bearer in the reverse direction as described above.
  • each bearer is defined for each interface to ensure independence between the interfaces.
  • the bearer at each interface will be described in more detail as follows.
  • the bearers provided by the wireless communication system are collectively called an Evolved Packet System (EPS) bearer.
  • An EPS bearer is a delivery path established between a UE and a P-GW for transmitting IP traffic with a specific QoS.
  • the P-GW may receive IP flows from the Internet or send IP flows to the Internet.
  • Each EPS bearer is set with QoS decision parameters that indicate the nature of the delivery path.
  • One or more EPS bearers may be configured per UE, and one EPS bearer uniquely represents a concatenation of one E-RAB and one S5 / S8 bearer.
  • the S5 / S8 bearer is a bearer of the S5 / S8 interface. Both S5 and S8 are bearers present at the interface between the S-GW and the P-GW.
  • the S5 interface exists when the S-GW and the P-GW belong to the same operator, and the S8 interface belongs to the provider (Visited PLMN) roamed by the S-GW, and the P-GW has subscribed to the original service (Home). PLMN).
  • the E-RAB uniquely represents the concatenation of the S1 bearer and the corresponding RB.
  • one-to-one mapping is established between the E-RAB and one EPS bearer. That is, one EPS bearer corresponds to one RB, S1 bearer, and S5 / S8 bearer, respectively.
  • the S1 bearer is a bearer at the interface between the base station and the S-GW.
  • RB means two types of data RB (Data Radio Bearer (DRB)) and signaling RB (Signaling Radio Bearer (SRB)).
  • DRB Data Radio Bearer
  • SRB Signaling Radio Bearer
  • the expression RB without distinction refers to data RB provided in the Uu interface to support a service of a user. to be. Therefore, an RB expressed without distinction is distinguished from a signaling radio bearer (SRB).
  • the RB is a path through which data of the user plane is transmitted
  • the SRB is a path through which data of the control plane, such as the RRC layer and NAS control messages, are delivered.
  • One-to-one mapping is established between RB, E-RAB and EPS bearer.
  • EPS bearer types include a default bearer and a dedicated bearer.
  • an IP address is assigned and a default EPS bearer is created while creating a PDN connection. That is, a default bearer is first created when a new PDN connection is created.
  • a service for example, the Internet, etc.
  • VoD for example, VoD, etc.
  • a dedicated bearer is created. In this case, the dedicated bearer may be set to a different QoS from the bearer that is already set.
  • QoS decision parameters applied to the dedicated bearer are provided by a Policy and Charging Rule Function (PCRF).
  • PCRF Policy and Charging Rule Function
  • the PCRF may receive subscription information of a user from a Subscriber Profile Repository (SPR) to determine QoS determination parameters.
  • SPR Subscriber Profile Repository
  • Up to 15 dedicated bearers may be created, for example, and four of the 15 are not used in the LTE system. Therefore, up to 11 dedicated bearers can be created.
  • the EPS bearer includes a QoS Class Identifier (QCI) and Allocation and Retention Priority (ARP) as basic QoS determination parameters.
  • EPS bearers are classified into GBR (Guaranteed Bit Rate) bearers and non-GBR bearers according to QCI resource types.
  • the default bearer is always a non-GBR type bearer, and the dedicated bearer may be set as a GBR type or non-GBR type bearer.
  • the GBR bearer has GBR and MBR (Maximum Bit Rate) as QoS decision parameters in addition to QCI and ARP.
  • a small cell serves a smaller area than a macro cell, it is advantageous to a macro cell in terms of throughput that can be provided for a single terminal.
  • the terminal connected to the macro cell is located in the service area of the small cell, the terminal cannot receive the service from the small cell without performing the handover.
  • the handover may occur frequently because the small cell coverage is small, which is not preferable in terms of network efficiency.
  • embodiments of the present invention will be described in detail, and embodiments of the present invention can be applied to a heterogeneous network system including a macro cell and a small cell.
  • One embodiment includes a method of distributing a data service or a load through a first small cell to a second small cell while maintaining an EPS bearer including a wireless connection between a terminal and a macro cell in a heterogeneous network system.
  • the method may be applied when the terminal connected to the macro cell is located in an area over-laid with the service area of the macro cell, the service area of the first small cell and the second small cell.
  • This method is referred to as a procedure for configuring multiple wireless connections.
  • the method may be called an extended bearer establishment procedure or a bearer extension procedure.
  • the control plane (RRC layer, NAS) for the terminal is provided by the macro cell, and the user plane is provided by the EPS bearer of the small cell.
  • the UE disconnects the downlink signal from the first small cell or the second small cell without handover in a state of being connected to the macro cell. It can be received without, or the uplink signal can be transmitted without interruption.
  • the downlink signal includes data of the user plane transmitted through the downlink
  • the uplink signal includes data of the user plane transmitted through the uplink. Data in the control plane is transmitted and received through the macro cell.
  • FIG. 3 is a conceptual diagram illustrating a connection configuration between a macro base station and a small base station according to an example of the present invention.
  • data is transmitted from the packet data network 300 (eg, the Internet) to the P-GW 305, and the data is transmitted to the macro base station 320 via the S-GW 310.
  • QoS for the data may be set at a particular level.
  • the macro base station 320 and the terminal 340 are configured with an EPS bearer of the macro cell.
  • the macro base station 320 includes an RRC entity 321, a PDCP entity 322, an RLC entity 323, a MAC entity 324, and a PHY layer 325.
  • the small base station 330 includes a PDCP entity 332, an RLC entity 333, a MAC entity 334, and a PHY layer 335.
  • macro base station 320 receives the data at PDCP entity 322, processes the data based on control of RRC entity 321, and the like, and performs RLC entity ( 323, the MAC entity 324 and the PHY layer 325 to the terminal 340.
  • RLC entity 323, the MAC entity 324 and the PHY layer 325 to the terminal 340.
  • PDCP entity, RRC entity, RLC entity corresponding to PDCP entity 322, RRC entity 321, RLC entity 323, MAC entity 324, and PHY layer 325 of macro base station 320 respectively.
  • the MAC entity and the PHY layer exist on the terminal 340 side.
  • extended EPS bearers for the small base station 330 and the terminal 340 may be generated.
  • the creation of the extended EPS bearer is made by the above-described extended bearer setup procedure.
  • An operation mode of the small base station 330 and the terminal 340 after the extended EPS bearer is generated is called a bearer extended mode.
  • the S-GW 310 may forward the data to the PDCP entity 332 of the small base station 330 via the backhaul network.
  • the RLC entity 333 of the small base station 330 then transmits it to the terminal 340 via the MAC entity 334 and the PHY layer 335.
  • entities that form an extended EPS bearer are also created in the terminal 340. For example, PDCP entity, RRC entity, RLC entity, MAC entity and PHY layer corresponding to PDCP entity 332, RLC entity 333, MAC entity 334 and PHY layer 335 of small base station 330, respectively. This is present on the terminal 340 side.
  • the terminal 340 may receive the service through the EPS bearer of the small base station 330 that the service is provided through the EPS bearer of the macro base station 320.
  • the control plane (RRC layer, NAS) for the terminal is provided by the macro cell
  • the user plane is provided by the extended EPS bearer of the small cell.
  • the present embodiment includes an operation of maintaining the EPS bearer of the macro cell without deleting it. According to this, the following effects are obtained.
  • the user data exchanged between the terminal and the core network is transmitted to the base station or the core.
  • a large amount of user data must be exchanged through the interface between the macro cell and the small cell or buffered at the network side. This problem can be solved.
  • the radio configuration such as handover is frequently changed.
  • the EPS bearer of the macro cell may be released, and again when the UE returns to the macro cell within a short time, the EPS bearer of the macro cell may be generated again. .
  • this may cause signaling overhead between the terminal and the base station.
  • the terminal can easily reuse it at any time while maintaining the EPS bearer of the macro cell until the terminal is completely determined as a macro cell or a small cell, it is possible to stably provide a data transmission / reception service of the terminal. For example, if the extended EPS bearer is deleted because the terminal is out of the coverage of the small cell (or the use of the extended EPS bearer is stopped), it can be quickly reused without resetting the radio configuration corresponding to the EPS bearer of the macro cell. have.
  • the terminal does not need to perform a random access procedure accompanying the handover, and thus does not cause service interruption in the wireless section during random access.
  • FIG. 3 shows only data transmission in the downlink direction with an arrow, the technical content of FIG. 3 may be similarly applied to data transmission in the uplink direction.
  • FIG. 4 is a conceptual diagram illustrating a connection configuration between a macro base station and a small base station according to another embodiment of the present invention.
  • the transmission and reception of data in the control plane is provided by the macro base station 400 to the terminal 450 through the macro cell.
  • the macro base station 420 includes an RRC entity 421, a PDCP entity 422, an RLC entity 423, a MAC entity 424, and a PHY layer 425.
  • two extended EPS bearers are supported.
  • two small base stations 430 and 440 which provide data of a user plane are disposed.
  • the terminal 450 may use any one of two extended EPS bearers of two small cells for transmitting and receiving data of a user plane.
  • the first small base station 440 which provides the first extended EPS bearer to the terminal 450 through the small cell A, provides the PDCP entity 432, the RLC entity 433, the MAC entity 434, and the PHY layer 435. Include.
  • the second small base station 440 which provides the second extended EPS bearer to the terminal 450 through the small cell B, provides the PDCP entity 442, the RLC entity 443, the MAC entity 444, and the PHY layer 445. Include.
  • the terminal 450 uses the first extended EPS bearer of the small cell A, and changes the service to the second extended EPS bearer of the small cell B, which is of higher quality as it moves. Can be provided.
  • An example of a scenario in which the change of the extended EPS bearer occurs includes the case where the terminal 450 exists in the area of the small cell A and subsequently moves to the area of the small cell B adjacent thereto.
  • the S-GW 410 may forward data of the user plane to the PDCP entity 432 of the first small base station 430 through the backhaul network. Thereafter, the RLC entity 433 of the first small base station 430 transmits it to the terminal 450 through the MAC entity 434 and the PHY layer 435.
  • entities 450 forming the first extended EPS bearer together with the first small base station 430 are generated in the terminal 450.
  • an EPS bearer or a second extended EPS bearer of the macro cell may be used instead of the first extended EPS bearer. That is, replacement (or replacement) of the extended EPS bearer may occur.
  • the S-GW 410 may forward the data of the user plane to the PDCP entity 442 of the second small base station 440 via the backhaul network. .
  • the RLC entity 443 of the second small base station 440 then transmits it to the terminal 450 via the MAC entity 444 and the PHY layer 445.
  • entities 450 forming the second extended EPS bearer together with the second small base station 440 are generated in the terminal 450.
  • the terminal 450 does not move to the handover between the small cells, it is possible to reduce the burden or overhead of the handover, it is possible to change the service between the small cells faster than the handover. This is because there is no service interruption in the radio section that occurs during the execution of the random access procedure.
  • the overhead of handover includes a random access procedure required for handover and the exchange of a large amount of UE context information through the X2 interface between the base station and the base station.
  • FIG. 5 is a flowchart illustrating signaling between a terminal, a macro base station, a first small base station, a second small base station, and a core network according to an embodiment of the present invention.
  • small cell A is a small cell provided by a first small base station
  • small cell B is a small cell provided by a second small cell.
  • the terminal uses a first extended EPS bearer that provides data of a user plane by a first small base station.
  • the terminal measures the signal strength of the macro cell, small cell A, small cell B, and transmits a measurement report (measurement report) to the macro base station if the measured signal strength satisfies a specific criterion (S500). For example, if the measured signal strength satisfies a specific criterion, the signal strengths of the macro cell and the small cell B should be as small as the threshold while the signal strength of the macro cell is as large as the threshold. In addition to the above conditions, other conditions that may determine that the UE is located in the macro cell and move from the small cell A to the small cell B are possible.
  • the macro base station analyzes the signal strength according to the measurement report. If the signal strength of the macro cell is greater than the signal strengths of the small cell A and the small cell B and the signal strength of the small cell B is greater than the signal strength of the small cell A, the macro base station determines that the terminal is within the coverage of the small cell A. It can be determined from the small cell B to move from.
  • the macro base station determines to generate a second extended EPS bearer to use in place of the first extended EPS bearer in the small cell B.
  • the condition that the macro base station determines to generate the second extended EPS bearer is, for example, the signal of the small cell B is greater than a certain value greater than the signal of the small cell A, or the signal strength of the small cell B is greater than the specific threshold. It can be time.
  • the first base station If the macro base station decides to create and use a second extended EPS bearer without using the first extended EPS bearer anymore, the first base station indicates to start uplink transmission using the EPS bearer of the suspended macro cell.
  • the RRC connection reconfiguration message is transmitted to the terminal (S505).
  • the reason for using the EPS bearer of the macro cell which has been discontinued for data of the user plane, is to reuse the EPS bearer of the macro cell until the second extended EPS bearer is completed. This is because the UE needs the EPS bearer for uplink transmission until the generation of the second extended EPS bearer is completed in both the radio period and the core network period.
  • Step S505 is not signaling to directly generate a second extended EPS bearer, but is performed as a preliminary step.
  • the first RRC connection reconfiguration message may indicate an interruption of uplink transmission in the existing first extended EPS bearer.
  • the first RRC connection reconfiguration message may include UL Tx reservation information (ULTxStopInfo) indicating to stop uplink transmission using the first extended EPS bearer.
  • the first RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the first extended EPS bearer. This is because the creation of the second extended EPS bearer is not completed in all sections from the terminal to the core network.
  • the first RRC connection reconfiguration message may include UL TX start information (ULTxStartInfo) indicating that uplink transmission is started using the EPS bearer of the macro cell.
  • ULTxStartInfo UL TX start information
  • the first RRC connection reconfiguration message may include a UE identifier, an EPS bearer identifier of a macro cell, and a first extended EPS bearer identifier.
  • the terminal identifier is an identification number for identifying the terminal and may include a Cell-Radio Network Temporary Identifier (C-RNTI), an International Mobile Subscriber Identity (IMSI), a Globally Unique Temporary Identity (GUTI), and the like.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • IMSI International Mobile Subscriber Identity
  • GUI Globally Unique Temporary Identity
  • the first RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the second embodiment. It may include information according to a combination of an example and a third embodiment, or may include information according to a combination of the first to third embodiments.
  • This embodiment is not limited to the transmission of the UL Tx reservation information or the UL TX start information included in the first RRC connection reconfiguration message. That is, the UL Tx reservation information and the UL TX start information may be transmitted independently of the first RRC connection reconfiguration message.
  • the UE Upon receiving the first RRC connection reconfiguration message, the UE no longer uses the first extended EPS bearer when transmitting uplink data (ie, suspends uplink transmission using the first extended EPS bearer), and the macro cell of the macro cell.
  • EPS bearers can be used.
  • the macro base station transmits EPS bearer control information to the core network (MME, S-GW, P-GW) (S510).
  • the P-GW finally receives EPS bearer control information.
  • Downlink data of the user plane received from the UE is transmitted to the terminal using the EPS bearer of the macro cell instead of the first extended EPS bearer
  • the EPS bearer control information may be, for example, the terminal identifier, the EPS bearer identifier of the macro cell, and the first. It may include at least one of the extended EPS bearer identifier.
  • the terminal completes the radio configuration based on the first RRC connection reconfiguration message, and transmits the first RRC connection reconfiguration complete message to the macro base station (S515).
  • Step S515 may be performed before step S505.
  • the terminal may provide a smooth service to the terminal by reusing the EPS bearer of the macro cell based on the first RRC connection reconfiguration message and the EPS bearer control information. For example, even when the signal strength of the small cell A deteriorates rapidly in the process of generating the second extended EPS bearer, the terminal may receive a stable service through the EPS bearer of the macro cell.
  • the UE Apart from reusing the EPS bearer of the macro cell, the UE must create a second extended EPS bearer. This is a bearer extension procedure, and the macro base station transmits a bearer extension request message to the second small base station (S520).
  • the bearer extension request message may be transmitted from the macro base station to the second small base station through the X2 interface.
  • the second small base station interprets the second extended EPS bearer to be used in place of the first extended EPS bearer indicated by the extended EPS bearer identifier in the bearer extension request message to satisfy the given QoS information. do.
  • the bearer extension request message may include at least one information element (IE).
  • the information element may be a UE identifier or an EPS bearer identifier of a macro cell, a first extended EPS bearer identifier of a small cell A, or a QoS decision parameter.
  • the terminal identifier is an identification number for identifying the terminal and may include a Cell-Radio Network Temporary Identifier (C-RNTI), an International Mobile Subscriber Identity (IMSI), a Globally Unique Temporary Identity (GUTI), and the like.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • IMSI International Mobile Subscriber Identity
  • GUI Globally Unique Temporary Identity
  • the EPS bearer identifier of the macro cell is information for identifying the EPS bearer of the macro cell formed between the macro base station and the terminal.
  • the first extended EPS bearer identifier of the small cell A is information for identifying the EPS bearer of the small cell A formed between the small base station A and the terminal.
  • the QoS determination parameter is a parameter used to determine the QoS to be expected for the extended EPS bearer or the QoS applied to the EPS bearer of the macro cell.
  • QoS determination parameters include, for example, values that can characterize QoS, such as QoS Class Identifiers (QCI), Guaranteed Bit Rate (GBR) QoS information, and Maximum Bit Rate (MBR).
  • QCI QoS Class Identifiers
  • GRR Guaranteed Bit Rate
  • MRR Maximum Bit Rate
  • QCI is a scalar that is used as a reference to access node-specific parameters that control bearer level packet forwarding treatment, and the scalar value is assigned to an operator owning a base station.
  • the scalar may be preconfigured with any one of integer values 1 to 9.
  • the main purpose of ARP is to determine whether a bearer's establishment / modification request is accepted or needs to be rejected in case of resource limitations.
  • ARP may also be used to determine which bearer (s) to drop by the base station at exceptional resource limitations, for example at handover.
  • GBR means that fixed resources are allocated for each bearer (bandwidth guarantee).
  • non-GBR has an aggregated maximum bit rate (AMBR) as a QoS decision parameter in addition to QCI and ARP, and instead of not being allocated resources per bearer, it is allocated the maximum bandwidth that can be used like other non-GBR bearers. Means.
  • AMBR aggregated maximum bit rate
  • the second small base station Upon receiving the bearer extension request message, the second small base station extracts information elements included in the bearer extension request message. And the second small base station is configured to satisfy the QoS determination parameter by the terminal identified by the terminal identifier instead of the EPS bearer identified by the EPS bearer identifier of the macro cell or instead of the first extended EPS bearer of small cell A. 2 prepare a procedure for generating an extended EPS bearer with the core network side (S525).
  • the second small base station and the core network determine an identifier of the second extended EPS bearer and an E-RAB identifier associated with the second extended EPS bearer identifier. Then, a preparation operation necessary for using the newly created second extended EPS bearer and the E-RAB in place of the first extended EPS bearer is performed.
  • the second small base station transmits a bearer extension response message including radio configuration parameter values satisfying QoS of the second extended EPS bearer and the associated E-RAB to the macro base station (S530).
  • the bearer extension response message is a message informing the UE of the availability or activation of the second extended EPS bearer. This may include messages coming from the core network.
  • the X2 interface may be used for delivery of the bearer extension response message.
  • the radio configuration parameter values included in the bearer extension response message are parameters configuring an RB, and may include system information, PHY, and MAC layer information necessary to provide a service to a terminal on a small cell B. have.
  • the bearer extension response message includes a terminal identifier, system information of small cell B, physical layer information of small cell B, information of MAC layer of small cell B, EPS bearer identifier of macro cell, and second extended EPS bearer. It may include at least one of the identifier.
  • the bearer extension response message includes parameters for DRB configuration, for example, DRB identifier (drb-Identity), PDCH configuration information (pdcp-Config), RLC configuration information (rlc-Config), and second extension. It may further include at least one of the EPS bearer identifier.
  • the bearer extension response message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and The information according to the combination of the third embodiment may be included, or the information according to the combination of the first to third embodiments may be included.
  • the macro base station transmits to the terminal a second RRC connection reconfiguration message indicating the radio resource configuration of the terminal using the values received through the bearer extension response message (S535).
  • the second RRC connection reconfiguration message includes control information required between the second small base station and the terminal to complete the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include UL Tx reservation information (ULTxSuspendInfo) indicating suspending uplink transmission using the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the second extended EPS bearer. This is because when the creation of the second extended EPS bearer is not completed in the entire period from the terminal to the core network, when the second extended EPS bearer is used, the user data exchanged between the terminal and the core network is buffered at the macro base station or core network side. This may be a problem because a large amount of data must be exchanged through an interface between the macro base station and the second small base station.
  • the uplink transmission may not include transmission of PUCCH and HARQ ACK / NACK information. In other words, despite the UL Tx reservation information, the terminal may transmit the PUCCH and HARQ ACK / NACK information.
  • the second RRC connection reconfiguration message may include all radio configuration parameter values of the bearer extension response message and an identifier of the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
  • the second RRC connection reconfiguration message includes a dedicated NAS list (dedicatedInfoNASList) information element used for transferring UE specific NAS layer information between the core network and the terminal.
  • the dedicated NAS list information element may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
  • the second RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the first embodiment. It may include information according to a combination of an example and a fourth embodiment, may include information according to a combination of a second embodiment and a third embodiment, and may include information according to a combination of a second embodiment and a fourth embodiment. In addition, the information according to the combination of the third and fourth embodiments may be included, and the information according to the combination of the first to fourth embodiments may be included.
  • This embodiment is not limited to the transmission of the UL Tx reservation information (ULTxSuspendInfo) included in the second RRC connection reconfiguration message. That is, the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
  • the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
  • the terminal completes the radio configuration with the second small base station based on the second RRC connection reconfiguration message, and the macro base station receives a second RRC connection reconfiguration complete message indicating that the radio configuration corresponding to the second extended EPS bearer has been successfully completed. It transmits to (S540).
  • the terminal receiving the UL Tx reservation information may transmit and process uplink (UL) data through the EPS bearer of the macro cell since the second extended EPS bearer is not yet completed in the core network. That is, in the preparation preparation step of generating the second extended EPS bearer, the terminal performs uplink transmission using the EPS bearer of the macro cell remaining without being deleted. However, the UE may transmit PUCCH and HARQ ACK / NACK information using the second extended EPS bearer as an exception. The UE can receive and process downlink (DL) data through the EPS bearer of the macro cell.
  • DL downlink
  • the radio configuration is completed in the terminal (that is, the RB configuration is completed) and the second extended EPS bearer can be used
  • the reason why the uplink transmission is still performed through the EPS bearer of the macro cell is to ensure the reliability of the uplink transmission. to be. This is because the UE may move to the small cell B and then move to the area of the small cell A or the macro cell only.
  • the macro base station transmits an RB generation complete message indicating that generation of the RB is completed between the terminal and the second small base station to the second small base station (S545).
  • the RB creation complete message is a message transmitted through the X2 interface.
  • the second small base station may confirm that the configuration of the RB corresponding to the second extended EPS bearer is successfully completed. Finally, generation of the RB is completed between the terminal and the second small base station (S550).
  • the second small base station completes generation of the second extended EPS bearer for the core network (S555).
  • the P-GW starts to transmit user data coming from the PDN through the P-GW toward the terminal to the terminal using the second extended EPS bearer. do.
  • the second small base station transmits the user data flowing through the P-WG to the terminal using a second extended EPS bearer (S560). Since generation of the RB is completed between the second small base station and the terminal, the second small base station has no problem in transmitting the user data to the terminal through the second extended EPS bearer, and the terminal also transmits the user data through the second extended EPS bearer. There is no problem to receive.
  • the macro base station transmits a third RRC connection reconfiguration message to the UE indicating that the second extended EPS bearer starts uplink transmission (S565). ). Accordingly, the UE can perform uplink transmission using the second extended EPS bearer (S570).
  • the third RRC connection reconfiguration message indicates UL Tx reservation information (ULTxSuspendInfo) indicating that the uplink transmission is suspended in the EPS bearer of the macro cell and uplink transmission is started in the second extended EPS bearer.
  • UL Tx start information (ULTxStartInfo) is included.
  • the third RRC connection reconfiguration message may include UL Tx reservation information indicating that the uplink transmission is suspended in the EPS bearer of the macro cell, and UL indicating that the uplink transmission is started in the second extended EPS bearer. It may include Tx start information (ULTxStartInfo), an identifier of the EPS bearer of the macro cell, and an identifier of the second extended EPS bearer.
  • TxStartInfo Tx start information
  • an identifier of the EPS bearer of the macro cell an identifier of the second extended EPS bearer.
  • This embodiment is not limited to the UL Tx reservation information and the UL Tx start information (ULTxStartInfo) included in the third RRC connection reconfiguration message and transmitted. That is, the UL Tx reservation information and the UL Tx start information may be transmitted independently of the third RRC connection reconfiguration message.
  • the first small base station and the core network perform an operation for releasing the first long EPS bearer (S575).
  • step S565 another embodiment of the present invention instead of transmitting the third RRC connection reconfiguration message of step S565. May include transmission of the PDCCH. That is, the terminal may receive downlink assignment information (downlink assignment) from the small base station through the PDCCH, the terminal may determine that uplink transmission is also possible. Therefore, when uplink transmission is required, the UE may perform uplink transmission through the second extended EPS bearer.
  • step S565 another embodiment of the present invention instead of transmitting the third RRC connection reconfiguration message of step S565.
  • small cell A is a small cell provided by the first small base station
  • small cell B is a small cell provided by the second small cell. It is currently assumed that the terminal uses a first extended EPS bearer that provides data of a user plane by a first small base station.
  • the terminal measures signal strengths of the macro cell, the small cell A, and the small cell B, and transmits a measurement report to the macro base station when the measured signal strength satisfies a specific criterion (S600). For example, if the measured signal strength satisfies a specific criterion, the signal strengths of the macro cell and the small cell B should be as small as the threshold while the signal strength of the macro cell is as large as the threshold. In addition to the above conditions, other conditions that may determine that the UE is located in the macro cell and move from the small cell A to the small cell B are possible.
  • Step S605 is not signaling to directly generate a second extended EPS bearer, but is performed as a preliminary step.
  • the first RRC connection reconfiguration message may indicate an interruption of uplink transmission in the existing first extended EPS bearer.
  • the first RRC connection reconfiguration message may include UL Tx reservation information (ULTxSuspendInfo) indicating reservation for uplink transmission using the first extended EPS bearer.
  • the first RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the first extended EPS bearer. This is because the creation of the second extended EPS bearer is not completed in all sections from the terminal to the core network.
  • the first RRC connection reconfiguration message may include UL Tx start information (ULTxStartInfo) indicating that uplink transmission is started using the EPS bearer of the macro cell.
  • ULTxStartInfo UL Tx start information
  • the first RRC connection reconfiguration message may include a UE identifier, an EPS bearer identifier of a macro cell, and a first extended EPS bearer identifier.
  • the terminal identifier is an identification number for identifying the terminal and may include a Cell-Radio Network Temporary Identifier (C-RNTI), an International Mobile Subscriber Identity (IMSI), a Globally Unique Temporary Identity (GUTI), and the like.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • IMSI International Mobile Subscriber Identity
  • GUI Globally Unique Temporary Identity
  • the first RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the second embodiment. It may include information according to a combination of an example and a third embodiment, or may include information according to a combination of the first to third embodiments.
  • This embodiment is not limited to the transmission of the UL Tx reservation information or the UL TX start information included in the first RRC connection reconfiguration message. That is, the UL Tx reservation information and the UL TX start information may be received independently of the first RRC connection reconfiguration message.
  • the UE Upon receiving the first RRC connection reconfiguration message, the UE no longer uses the first extended EPS bearer when transmitting uplink data (ie, suspends uplink transmission using the first extended EPS bearer), and the macro cell of the macro cell.
  • EPS bearers can be used.
  • the terminal completes the radio configuration based on the first RRC connection reconfiguration message, and transmits the first RRC connection reconfiguration complete message to the macro base station (S610).
  • the terminal may provide a smooth service to the terminal by reusing the EPS bearer of the macro cell based on the first RRC connection reconfiguration message and the EPS bearer control information. For example, even when the signal strength of the small cell A deteriorates rapidly in the process of generating the second extended EPS bearer, the terminal may receive a stable service through the EPS bearer of the macro cell.
  • the terminal receives from the macro base station a second RRC connection reconfiguration message indicating the radio resource configuration of the terminal using the values received through the bearer extension response message (S615).
  • the second RRC connection reconfiguration message includes control information required between the second small base station and the terminal to complete the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include UL Tx reservation information (ULTxSuspendInfo) indicating suspending uplink transmission using the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the second extended EPS bearer. This is because when the creation of the second extended EPS bearer is not completed in the entire period from the terminal to the core network, when the second extended EPS bearer is used, the user data exchanged between the terminal and the core network is buffered at the macro base station or core network side. This may be a problem because a large amount of data must be exchanged through an interface between the macro base station and the second small base station.
  • the uplink transmission may not include transmission of PUCCH and HARQ ACK / NACK information. In other words, despite the UL Tx reservation information, the terminal may transmit the PUCCH and HARQ ACK / NACK information.
  • the second RRC connection reconfiguration message may include all radio configuration parameter values of the bearer extension response message and an identifier of the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
  • the second RRC connection reconfiguration message includes a dedicated NAS list (dedicatedInfoNASList) information element used for transferring UE specific NAS layer information between the core network and the terminal.
  • the dedicated NAS list information element may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
  • the second RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the first embodiment. It may include information according to a combination of an example and a fourth embodiment, may include information according to a combination of a second embodiment and a third embodiment, and may include information according to a combination of a second embodiment and a fourth embodiment. In addition, the information according to the combination of the third and fourth embodiments may be included, and the information according to the combination of the first to fourth embodiments may be included.
  • This embodiment is not limited to the transmission of the UL Tx reservation information (ULTxSuspendInfo) included in the second RRC connection reconfiguration message. That is, the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
  • the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
  • the terminal completes the radio configuration with the second small base station based on the second RRC connection reconfiguration message, and the macro base station receives a second RRC connection reconfiguration complete message indicating that the radio configuration corresponding to the second extended EPS bearer has been successfully completed. Transmit to (S620).
  • the terminal receiving the UL Tx reservation information may transmit and process uplink (UL) data through the EPS bearer of the macro cell since the second extended EPS bearer is not yet completed in the core network. That is, in the preparation preparation step of generating the second extended EPS bearer, the terminal performs uplink transmission using the EPS bearer of the macro cell remaining without being deleted. However, the UE may transmit PUCCH and HARQ ACK / NACK information using the second extended EPS bearer as an exception. The UE can receive and process downlink (DL) data through the EPS bearer of the macro cell.
  • DL downlink
  • the radio configuration is completed in the terminal (that is, the RB configuration is completed) and the second extended EPS bearer can be used
  • the reason why the uplink transmission is still performed through the EPS bearer of the macro cell is to ensure the reliability of the uplink transmission. to be. This is because the UE may move to the small cell B and then move to the area of the small cell A or the macro cell only.
  • the generation of the RB is completed between the terminal and the second small base station.
  • the terminal starts receiving the user data coming in through the P-GW from the PDN toward the terminal using the second extended EPS bearer (S625). Since generation of the RB is completed between the second small base station and the terminal, the second small base station has no problem in transmitting the user data to the terminal through the second extended EPS bearer, and the terminal also transmits the user data through the second extended EPS bearer. There is no problem to receive.
  • the terminal When generation of the second extended EPS bearer for the core network is completed, the terminal receives a third RRC connection reconfiguration message from the macro base station instructing the terminal to start uplink transmission in the second extended EPS bearer (S630). Accordingly, the UE may perform uplink transmission using the second extended EPS bearer (S635).
  • the third RRC connection reconfiguration message indicates UL Tx reservation information (ULTxSuspendInfo) indicating that the uplink transmission is suspended in the EPS bearer of the macro cell and uplink transmission is started in the second extended EPS bearer.
  • UL Tx start information (ULTxStartInfo) is included.
  • the third RRC connection reconfiguration message may include UL Tx reservation information indicating that the uplink transmission is reserved by the EPS bearer of the macro cell, and UL Tx start information indicating that the uplink transmission is started by the second extended EPS bearer.
  • (ULTxStartInfo) the identifier of the EPS bearer of the macro cell, and the identifier of the second extended EPS bearer.
  • This embodiment is not limited to the UL Tx reservation information and the UL Tx start information (ULTxStartInfo) included in the third RRC connection reconfiguration message and transmitted. That is, the UL Tx reservation information and the UL Tx start information may be transmitted independently of the third RRC connection reconfiguration message.
  • step S635 another embodiment of the present invention instead of receiving the third RRC connection reconfiguration message of step S635. May include the reception of a PDCCH. That is, the terminal may receive downlink assignment information (downlink assignment) from the small base station through the PDCCH, the terminal may determine that uplink transmission is also possible. Therefore, when uplink transmission is required, the UE may perform uplink transmission through the second extended EPS bearer.
  • downlink assignment information downlink assignment
  • FIG. 7 is a flowchart illustrating an operation of a macro base station according to an exemplary embodiment of the present invention.
  • the macro base station receives a measurement report from the terminal (S700). For example, if the measured signal strength satisfies a specific criterion, the signal strengths of the macro cell and the small cell B should be as small as the threshold while the signal strength of the macro cell is as large as the threshold. In addition to the above conditions, other conditions that may determine that the UE is located in the macro cell and move from the small cell A to the small cell B are possible.
  • the macro base station analyzes the signal strength according to the measurement report. If the signal strength of the macro cell is greater than the signal strengths of the small cell A and the small cell B and the signal strength of the small cell B is greater than the signal strength of the small cell A, the macro base station determines that the terminal is within the coverage of the small cell A. It can be determined from the small cell B to move from.
  • the macro base station determines to generate a second extended EPS bearer to use in place of the first extended EPS bearer in the small cell B.
  • the condition that the macro base station determines to generate the second extended EPS bearer is, for example, the signal of the small cell B is greater than a certain value greater than the signal of the small cell A, or the signal strength of the small cell B is greater than the specific threshold. It can be time.
  • the first base station If the macro base station decides to create and use a second extended EPS bearer without using the first extended EPS bearer anymore, the first base station indicates to start uplink transmission using the EPS bearer of the suspended macro cell.
  • the RRC connection reconfiguration message is transmitted to the terminal (S705).
  • the reason for using the EPS bearer of the macro cell which has been discontinued for data of the user plane, is to reuse the EPS bearer of the macro cell until the second extended EPS bearer is completed. This is because the terminal needs the EPS bearer for uplink transmission until the generation of the second extended EPS bearer is completed.
  • Step S505 is not signaling to directly generate a second extended EPS bearer, but is performed as a preliminary step.
  • the first RRC connection reconfiguration message may indicate an interruption of uplink transmission in the existing first extended EPS bearer.
  • the first RRC connection reconfiguration message may include UL Tx reservation information (ULTxStopInfo) indicating to stop uplink transmission using the first extended EPS bearer.
  • the first RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the first extended EPS bearer. This is because the creation of the second extended EPS bearer is not completed in all sections from the terminal to the core network.
  • the first RRC connection reconfiguration message may include UL TX start information (ULTxStartInfo) indicating that uplink transmission is started using the EPS bearer of the macro cell.
  • ULTxStartInfo UL TX start information
  • the first RRC connection reconfiguration message may include a UE identifier, an EPS bearer identifier of a macro cell, and a first extended EPS bearer identifier.
  • the terminal identifier is an identification number for identifying the terminal and may include a Cell-Radio Network Temporary Identifier (C-RNTI), an International Mobile Subscriber Identity (IMSI), a Globally Unique Temporary Identity (GUTI), and the like.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • IMSI International Mobile Subscriber Identity
  • GUI Globally Unique Temporary Identity
  • the first RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the second embodiment. It may include information according to a combination of an example and a third embodiment, or may include information according to a combination of the first to third embodiments.
  • This embodiment is not limited to the transmission of the UL Tx reservation information or the UL TX start information included in the first RRC connection reconfiguration message. That is, the UL Tx reservation information and the UL TX start information may be transmitted independently of the first RRC connection reconfiguration message.
  • the UE Upon receiving the first RRC connection reconfiguration message, the UE no longer uses the first extended EPS bearer when transmitting uplink data (ie, suspends uplink transmission using the first extended EPS bearer), and the macro cell of the macro cell.
  • EPS bearers can be used.
  • the macro base station transmits EPS bearer control information to the core network (MME, S-GW, P-GW) (S710).
  • the P-GW finally receives EPS bearer control information.
  • Downlink data of the user plane received from the UE is transmitted to the terminal using the EPS bearer of the macro cell instead of the first extended EPS bearer
  • the EPS bearer control information may be, for example, the terminal identifier, the EPS bearer identifier of the macro cell, and the first. It may include at least one of the extended EPS bearer identifier.
  • the macro base station receives a first RRC connection reconfiguration complete message from the terminal (S715).
  • Step S715 may be performed before step S705.
  • a second extended EPS bearer must be created. This is a bearer extension procedure, and the macro base station transmits a bearer extension request message to the second small base station (S720).
  • the bearer extension request message may be transmitted from the macro base station to the second small base station through the X2 interface.
  • the second small base station interprets the second extended EPS bearer to be used in place of the first extended EPS bearer indicated by the extended EPS bearer identifier in the bearer extension request message to satisfy the given QoS information. do.
  • the bearer extension request message may include at least one information element (IE).
  • the information element may be a UE identifier or an EPS bearer identifier of a macro cell, a first extended EPS bearer of a small cell A, or a QoS decision parameter.
  • the macro base station receives from the second small base station a bearer extended response message including radio configuration parameter values satisfying QoS of the second extended EPS bearer and the associated E-RAB (S725).
  • the bearer extension response message is a message informing the UE of the availability or activation of the second extended EPS bearer. This may include messages coming from the core network.
  • the X2 interface may be used for delivery of the bearer extension response message.
  • the radio configuration parameter values included in the bearer extension response message are parameters configuring an RB, and may include system information, PHY, and MAC layer information necessary to provide a service to a terminal on a small cell B. have.
  • the bearer extension response message includes a terminal identifier, system information of small cell B, physical layer information of small cell B, information of MAC layer of small cell B, EPS bearer identifier of macro cell, and second extended EPS bearer. It may include at least one of the identifier.
  • the bearer extension response message includes parameters for DRB configuration, for example, DRB identifier (drb-Identity), PDCH configuration information (pdcp-Config), RLC configuration information (rlc-Config), and second extension. It may further include at least one of the EPS bearer identifier.
  • the bearer extension response message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and The information according to the combination of the third embodiment may be included, or the information according to the combination of the first to third embodiments may be included.
  • the macro base station transmits to the terminal a second RRC connection reconfiguration message indicating the radio resource configuration of the terminal using the values received through the bearer extension response message (S730).
  • the second RRC connection reconfiguration message includes control information required between the second small base station and the terminal to complete the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include UL Tx reservation information (ULTxSuspendInfo) indicating suspending uplink transmission using the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the second extended EPS bearer. This is because when the creation of the second extended EPS bearer is not completed in the entire period from the terminal to the core network, when the second extended EPS bearer is used, the user data exchanged between the terminal and the core network is buffered at the macro base station or core network side. This may be a problem because a large amount of data must be exchanged through an interface between the macro base station and the second small base station.
  • the uplink transmission may not include transmission of PUCCH and HARQ ACK / NACK information. In other words, despite the UL Tx reservation information, the terminal may transmit the PUCCH and HARQ ACK / NACK information.
  • the second RRC connection reconfiguration message may include all radio configuration parameter values of the bearer extension response message and an identifier of the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
  • the second RRC connection reconfiguration message includes a dedicated NAS list (dedicatedInfoNASList) information element used for transferring UE specific NAS layer information between the core network and the terminal.
  • the dedicated NAS list information element may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
  • the second RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the first embodiment. It may include information according to a combination of an example and a fourth embodiment, may include information according to a combination of a second embodiment and a third embodiment, and may include information according to a combination of a second embodiment and a fourth embodiment. In addition, the information according to the combination of the third and fourth embodiments may be included, and the information according to the combination of the first to fourth embodiments may be included.
  • This embodiment is not limited to the transmission of the UL Tx reservation information (ULTxSuspendInfo) included in the second RRC connection reconfiguration message. That is, the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
  • the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
  • the macro base station receives a second RRC connection reconfiguration complete message from the terminal (S735).
  • the macro base station may receive and process uplink (UL) data from the terminal through the EPS bearer of the macro cell. That is, in the preparation for generating the second extended EPS bearer, the macro base station performs uplink reception using the EPS bearer of the macro cell which is not deleted.
  • UL uplink
  • the radio configuration is completed in the terminal (that is, the RB configuration is completed) and the second extended EPS bearer can be used
  • the reason why the uplink transmission is still performed through the EPS bearer of the macro cell is to ensure the reliability of the uplink transmission. to be. This is because the UE may move to the small cell B and then move to the area of the small cell A or the macro cell only.
  • the macro base station transmits, to the second small base station, an RB generation complete message indicating that generation of the RB is completed between the terminal and the second small base station (S740).
  • the RB creation complete message is a message transmitted through the X2 interface.
  • the second small base station may confirm that the configuration of the RB corresponding to the second extended EPS bearer is successfully completed. Finally, generation of the RB is completed between the terminal and the second small base station.
  • the macro base station transmits a third RRC connection reconfiguration message to the UE indicating that the second extended EPS bearer starts uplink transmission (S745). ). As a result, the UE may perform uplink transmission using the second extended EPS bearer.
  • the third RRC connection reconfiguration message indicates UL Tx reservation information (ULTxSuspendInfo) indicating that the uplink transmission is suspended in the EPS bearer of the macro cell and uplink transmission is started in the second extended EPS bearer.
  • UL Tx start information (ULTxStartInfo) is included.
  • the third RRC connection reconfiguration message may include UL Tx reservation information indicating that the uplink transmission is reserved by the EPS bearer of the macro cell, and UL Tx start information indicating that the uplink transmission is started by the second extended EPS bearer.
  • (ULTxStartInfo) the identifier of the EPS bearer of the macro cell, and the identifier of the second extended EPS bearer.
  • This embodiment is not limited to the UL Tx reservation information and the UL Tx start information (ULTxStartInfo) included in the third RRC connection reconfiguration message and transmitted. That is, the UL Tx reservation information and the UL Tx start information may be transmitted independently of the third RRC connection reconfiguration message.
  • FIG. 8 is an operation flowchart of a second small base station according to an example of the present invention.
  • the terminal should generate the second extended EPS bearer.
  • This is a bearer extension procedure, and the second small base station receives a bearer extension request message from the macro base station (S800).
  • the bearer extension request message may be transmitted from the macro base station to the second small base station through the X2 interface.
  • the second small base station interprets the second extended EPS bearer to be used in place of the first extended EPS bearer indicated by the extended EPS bearer identifier in the bearer extension request message to satisfy the given QoS information. do.
  • the bearer extension request message may include at least one information element (IE).
  • the information element may be a UE identifier or an EPS bearer identifier of a macro cell, a first extended EPS bearer identifier of a small cell A, or a QoS decision parameter.
  • the second small base station Upon receiving the bearer extension request message, the second small base station extracts information elements included in the bearer extension request message. And the second small base station generates, with the core network side, a second extended EPS bearer that satisfies the QoS determination parameter, instead of the EPS bearer whose terminal identified by the terminal identifier is identified by the EPS bearer identifier of the macro cell. Prepare a procedure to perform (S805).
  • the second small base station and the core network determine an identifier of the second extended EPS bearer and an E-RAB identifier associated with the second extended EPS bearer identifier. Then, a preparation operation necessary for using the newly created second extended EPS bearer and the E-RAB in place of the first extended EPS bearer is performed.
  • the second small base station transmits a bearer extension response message including radio configuration parameter values satisfying QoS of the second extended EPS bearer and the associated E-RAB to the macro base station (S810).
  • the bearer extension response message is a message informing the UE of the availability or activation of the second extended EPS bearer. This may include messages coming from the core network.
  • the X2 interface may be used for delivery of the bearer extension response message.
  • the radio configuration parameter values included in the bearer extension response message are parameters configuring an RB, and may include system information, PHY, and MAC layer information necessary to provide a service to a terminal on a small cell B. have.
  • the bearer extension response message includes a terminal identifier, system information of small cell B, physical layer information of small cell B, information of MAC layer of small cell B, EPS bearer identifier of macro cell, and second extended EPS bearer. It may include at least one of the identifier.
  • the bearer extension response message includes parameters for DRB configuration, for example, DRB identifier (drb-Identity), PDCH configuration information (pdcp-Config), RLC configuration information (rlc-Config), and second extension. It may further include at least one of the EPS bearer identifier.
  • the bearer extension response message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and The information according to the combination of the third embodiment may be included, or the information according to the combination of the first to third embodiments may be included.
  • An RB generation complete message indicating that generation of the RB is completed between the terminal and the second small base station is received from the macro base station (S815).
  • the RB creation complete message is a message transmitted through the X2 interface.
  • the second small base station can confirm that the configuration of the RB corresponding to the second extended EPS bearer was successfully completed.
  • generation of the RB is completed between the terminal and the second small base station (S820).
  • the second small base station completes generation of the second extended EPS bearer for the core network (S825).
  • the P-GW starts to transmit user data coming from the PDN through the P-GW toward the terminal to the terminal using the second extended EPS bearer. do.
  • the second small base station transmits the user data flowing through the P-WG to the terminal using a second extended EPS bearer (S830). Since generation of the RB is completed between the second small base station and the terminal, the second small base station has no problem in transmitting the user data to the terminal through the second extended EPS bearer, and the terminal also transmits the user data through the second extended EPS bearer. There is no problem to receive.
  • the macro base station transmits a third RRC connection reconfiguration message to the terminal indicating that the uplink transmission is started in the second extended EPS bearer. Accordingly, the UE may perform uplink transmission using the second extended EPS bearer (S835).
  • FIG. 9 is a block diagram illustrating a terminal, a macro base station and a second small base station according to the present invention.
  • the terminal 900 includes a terminal receiver 905, a terminal processor 910, and a terminal transmitter 915.
  • the macro base station 930 includes a macro transmitter 935, a macro receiver 940, and a macro processor 945.
  • the second small base station 960 includes a small transmitter 965, a small receiver 970, and a small processor 975.
  • the first small base station provides a small cell A
  • the second small base station 960 provides a small cell B.
  • the terminal 900 uses a first extended EPS bearer that provides data of a user plane by a first small base station.
  • the terminal processor 910 measures the signal strengths of the macro cell, the small cell A, and the small cell B, generates a measurement report when the measured signal strength satisfies a specific criterion, and the terminal transmitter 915 includes the macro base station ( 930) the measurement report. For example, if the measured signal strength satisfies a specific criterion, the signal strengths of the macro cell and the small cell B should be as small as the threshold while the signal strength of the macro cell is as large as the threshold. In addition to the above conditions, other conditions that may determine that the UE is located in the macro cell and move from the small cell A to the small cell B are possible.
  • the macro processor 945 analyzes the signal strength based on the measurement report. If the signal strength of the macro cell is greater than the signal strengths of the small cell A and the small cell B and the signal strength of the small cell B is greater than the signal strength of the small cell A, the macro processor 945 determines that the terminal 900 of the macro cell is the signal strength of the macro cell. It may be determined that the cell is moving from the small cell A within the coverage to the small cell B.
  • the macro processor 945 decides to generate a second extended EPS bearer to use in place of the first extended EPS bearer in the small cell B.
  • the condition that the macro processor 945 determines to generate the second extended EPS bearer may be, for example, that the signal of the small cell B is larger than the signal of the small cell A by a certain value or the signal strength of the small cell B is specific. May be greater than the threshold.
  • the macro processor 945 decides to generate and use the second extended EPS bearer without using the first extended EPS bearer anymore, it instructs to start uplink transmission using the EPS bearer of the suspended macro cell.
  • the first RRC connection reconfiguration message is generated, and the macro transmitter 935 transmits the first RRC connection reconfiguration message to the terminal 900.
  • the reason for using the EPS bearer of the macro cell which has been discontinued for the data of the user plane, is because there is a delay of negotiation with the core network for generating the second extended EPS bearer. 2 Until the extended EPS bearer is created, the EPS bearer of the macro cell is first reused. This is because the terminal 900 needs the EPS bearer for uplink transmission until the generation of the second extended EPS bearer is completed.
  • the EPS bearer of the macro cell is deleted while the generation of the second extended EPS bearer is not completed in the wireless section and the core network (not shown), the user data exchanged between the terminal 900 and the core network This is because there is a problem that a large amount of data must be exchanged through buffering at the macro base station or core network side or through an interface between the macro cell and the small cell.
  • the first RRC connection reconfiguration message may indicate an interruption of uplink transmission in the existing first extended EPS bearer.
  • the first RRC connection reconfiguration message may include UL Tx reservation information (ULTxSsuspendInfo) indicating that the uplink transmission using the first extended EPS bearer is suspended.
  • the first RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the first extended EPS bearer. This is because the generation of the second extended EPS bearer is not completed in the entire period from the terminal 900 to the core network.
  • the first RRC connection reconfiguration message may include UL TX start information (ULTxStartInfo) indicating that uplink transmission is started using the EPS bearer of the macro cell.
  • ULTxStartInfo UL TX start information
  • the first RRC connection reconfiguration message may include a UE identifier, an EPS bearer identifier of a macro cell, and a first extended EPS bearer identifier.
  • the terminal identifier is an identification number for identifying the terminal 900 and may include C-RNTI, IMSI, GUTI, and the like.
  • the first RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the second embodiment. It may include information according to a combination of an example and a third embodiment, or may include information according to a combination of the first to third embodiments.
  • This embodiment is not limited to the transmission of UL Tx interruption information or UL TX start information included in the first RRC connection reconfiguration message. That is, the UL Tx stop information or the UL TX start information may be transmitted independently of the first RRC connection reconfiguration message.
  • the terminal processor 910 When the terminal receiver 905 receives the first RRC connection reconfiguration message, the terminal processor 910 no longer uses the first extended EPS bearer when transmitting uplink data (that is, uplink using the first extended EPS bearer). Stop link transmission), and use the EPS bearer of the macro cell.
  • the macro processor 945 generates EPS bearer control information, and the macro transmitter 935 transmits EPS bearer control information to the core network (MME, S-GW, P-GW).
  • the P-GW is an EPS bearer.
  • the P-GW forwards downlink data of the user plane received from the PDN to the terminal 900 using the EPS bearer of the macro cell instead of the first extended EPS bearer.
  • the control information may include, for example, at least one of a terminal identifier, an EPS bearer identifier of a macro cell, and a first extended EPS bearer identifier.
  • the terminal processor 910 completes the radio configuration based on the first RRC connection reconfiguration message and generates a first RRC connection reconfiguration complete message.
  • the terminal transmitter 915 transmits the first RRC connection reconfiguration complete message to the macro base station 930.
  • the terminal 900 may provide a smooth service to the terminal by reusing the EPS bearer of the macro cell based on the first RRC connection reconfiguration message and the EPS bearer control information. For example, even when the signal strength of the small cell A deteriorates rapidly in the process of generating the second extended EPS bearer, the terminal 900 may receive a stable service through the EPS bearer of the macro cell.
  • the terminal 900 Apart from reusing the EPS bearer of the macro cell, the terminal 900 must create a second extended EPS bearer. This is a bearer extension procedure.
  • the macro processor 945 generates a bearer extension request message, and the macro transmitter 935 transmits a bearer extension request message to the second small base station 960.
  • the bearer extension request message may be transmitted from the macro base station 930 to the second small base station 960 through the X2 interface.
  • the small processor 975 receiving the bearer extension request message means to make a second extended EPS bearer to use in place of the first extended EPS bearer indicated by the extended EPS bearer identifier in the bearer extension request message to satisfy the given QoS information.
  • the bearer extension request message may include at least one information element.
  • the information element may be a terminal identifier or an EPS bearer identifier or QoS determination parameter of a macro cell.
  • the small processor 975 Upon receiving the bearer extension request message, the small processor 975 extracts information elements included in the bearer extension request message. In addition, the small processor 975 is configured to core the second extended EPS bearer that satisfies the QoS determination parameter instead of the EPS bearer whose terminal 900 is identified by the terminal identifier. Prepare the procedure to create with the side.
  • the small processor 975 determines the identifier of the second extended EPS bearer along with the core network and determines the E-RAB identifier associated with the second extended EPS bearer identifier. Then, a preparation operation necessary for using the newly created second extended EPS bearer and the E-RAB in place of the first extended EPS bearer is performed.
  • the small processor 975 generates a bearer extension response message that includes radio configuration parameter values that satisfy the QoS of the second extended EPS bearer and its associated E-RAB, and sends it to the macro base station 930. This may include messages coming from the core network.
  • the X2 interface may be used for delivery of the bearer extension response message.
  • the radio configuration parameter values included in the bearer extension response message are parameters for configuring an RB, and provide system information, PHY, and MAC layer information necessary for providing a service to a terminal 900 on a small cell B. It may include.
  • the bearer extension response message includes a terminal identifier, system information of small cell B, physical layer information of small cell B, information of MAC layer of small cell B, EPS bearer identifier of macro cell, and second extended EPS bearer. It may include at least one of the identifier.
  • the bearer extension response message includes parameters for DRB configuration, for example, DRB identifier (drb-Identity), PDCH configuration information (pdcp-Config), RLC configuration information (rlc-Config), and second extension. It may further include at least one of the EPS bearer identifier.
  • the bearer extension response message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and The information according to the combination of the third embodiment may be included, or the information according to the combination of the first to third embodiments may be included.
  • the macro processor 945 generates a second RRC connection reconfiguration message indicating a radio resource configuration of the terminal using the values received through the bearer extension response message, and the macro transmitter 935 generates a second RRC connection reconfiguration message. Transmit to the terminal 900.
  • the second RRC connection reconfiguration message includes control information required between the second small base station 960 and the terminal 900 to complete the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include UL Tx reservation information (ULTxSuspendInfo) indicating suspending uplink transmission using the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the second extended EPS bearer. This means that if the second extended EPS bearer is used while the generation of the second extended EPS bearer is not completed in the entire period from the terminal 900 to the core network, the user data exchanged between the terminal 900 and the core network is macro. This is because a problem may occur that a large amount of data is exchanged through the interface between the macro base station 930 and the second small base station 960 or buffered at the base station or the core network.
  • the uplink transmission may not include transmission of PUCCH and HARQ ACK / NACK information. In other words, despite the UL Tx reservation information, the terminal may transmit the PUCCH and HARQ ACK / NACK information.
  • the second RRC connection reconfiguration message may include all radio configuration parameter values of the bearer extension response message and an identifier of the second extended EPS bearer.
  • the second RRC connection reconfiguration message may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station 960 and the terminal 900. It may include.
  • the second RRC connection reconfiguration message includes a dedicated NAS list (dedicatedInfoNASList) information element used for transferring UE specific NAS layer information between the core network and the terminal 900.
  • the dedicated NAS list information element may include detailed information indicating availability or activation of the second extended EPS bearer formed between the second small base station 960 and the terminal 900.
  • the second RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the first embodiment. It may include information according to a combination of an example and a fourth embodiment, may include information according to a combination of a second embodiment and a third embodiment, and may include information according to a combination of a second embodiment and a fourth embodiment. In addition, the information according to the combination of the third and fourth embodiments may be included, and the information according to the combination of the first to fourth embodiments may be included.
  • This embodiment is not limited to the transmission of the UL Tx reservation information (ULTxSuspendInfo) included in the second RRC connection reconfiguration message. That is, the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
  • the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
  • the terminal processor 910 completes the radio configuration with the second small base station 960 based on the second RRC connection reconfiguration message, and the second extended EPS.
  • a second RRC connection reconfiguration complete message is generated indicating that the radio configuration corresponding to the bearer has been successfully completed.
  • the terminal transmitter 915 transmits a second RRC connection reconfiguration complete message to the macro base station 930.
  • the terminal 900 receiving the UL Tx reservation information may transmit and process uplink (UL) data through the EPS bearer of the macro cell since the second extended EPS bearer is not yet completed in the core network. That is, in the generation preparation step of generating the second extended EPS bearer, the terminal processor 910 performs uplink transmission using the EPS bearer of the macro cell which is not deleted. However, the UE processor 910 may transmit the PUCCH and HARQ ACK / NACK information using the second extended EPS bearer as an exception.
  • the terminal processor 910 is capable of receiving and processing downlink (DL) data through an EPS bearer of a macro cell.
  • the reason why the uplink transmission is still performed through the EPS bearer of the macro cell is that the reliability of the uplink transmission is reduced. To ensure. This is because the terminal 900 may move to the small cell B and then move to the area of the small cell A or the macro cell only.
  • the macro processor 945 generates an RB generation complete message indicating that generation of the RB has been completed between the terminal 900 and the second small base station 960, and the macro transmitter 935 generates a second small RB generation message. Transmit to base station 960.
  • the RB creation complete message is a message transmitted through the X2 interface.
  • the small processor 975 may confirm that the configuration of the RB corresponding to the second extended EPS bearer is completed successfully. At this time. Finally, generation of the RB is completed between the terminal 900 and the second small base station 960.
  • the small processor 975 completes the creation of the second extended EPS bearer for the core network.
  • the P-GW among the components of the core network uses the second extended EPS bearer for user data coming in through the P-GW from the PDN toward the terminal 900. 900).
  • the small transmitter 965 transmits the user data introduced through the P-WG to the terminal 900 using the second extended EPS bearer. Since the generation of the RB is completed between the second small base station 960 and the terminal 900, the small transmitter 965 has no problem in transmitting the user data to the terminal 900 through the second extended EPS bearer and the terminal ( 900 also has no problem receiving the user data via a second extended EPS bearer.
  • the macro processor 945 sends a third RRC connection reconfiguration message indicating to the terminal 900 that the uplink transmission starts from the second extended EPS bearer.
  • the macro transmitter 935 generates and transmits a third RRC connection reconfiguration message to the terminal 900.
  • the terminal 900 may perform uplink transmission using the second extended EPS bearer.
  • the third RRC connection reconfiguration message indicates UL Tx reservation information (ULTxSuspendInfo) indicating that the uplink transmission is suspended in the EPS bearer of the macro cell and uplink transmission is started in the second extended EPS bearer.
  • UL Tx start information (ULTxStartInfo) is included.
  • the third RRC connection reconfiguration message may include UL Tx reservation information indicating that the uplink transmission is reserved by the EPS bearer of the macro cell, and UL Tx start information indicating that the uplink transmission is started by the second extended EPS bearer.
  • (ULTxStartInfo) the identifier of the EPS bearer of the macro cell, and the identifier of the second extended EPS bearer.
  • This embodiment is not limited to the UL Tx reservation information and the UL Tx start information (ULTxStartInfo) included in the third RRC connection reconfiguration message and transmitted. That is, the UL Tx holding information and the UL Tx start information may be transmitted independently of the third RRC connection reconfiguration message.
  • the first small base station and the core network perform an operation for releasing the first extended EPS bearer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a method for controlling a bearer extension in a heterogeneous network wireless communication system and an apparatus for same. The present invention discloses a method for supporting a modification of an extended EPS bearer, comprising the steps of: receiving from a macro base station first uplink transmission starting information and first uplink transmission withholding information; receiving from the macro base station a parameter for configuring a radio bearer, which is mapped onto a second extended EPS bearer to be formed between user equipment and a second small base station, and second uplink transmission withholding information; and receiving from the macro base station third uplink transmission withholding information and second uplink transmission starting information.

Description

이종 네트워크 무선 통신 시스템에서 베어러 확장 제어 방법 및 그 장치Bearer extension control method and apparatus therefor in heterogeneous network wireless communication system
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 이종 네트워크 무선 통신 시스템에서 베어러 확장을 제어하는 방법 및 그 장치에 관한 것이다.The present invention relates to wireless communications, and more particularly, to a method and apparatus for controlling bearer expansion in a heterogeneous network wireless communication system.
다중 요소 반송파 시스템(multiple component carrier system)은 반송파 집성(carrier aggregation)을 지원할 수 있는 무선통신 시스템을 의미한다. 반송파 집성이란 조각난 작은 대역을 효율적으로 사용하기 위한 기술로 하나의 기지국이 주파수 영역에서 물리적으로 연속적인(continuous) 또는 비연속적인(non-continuous) 다수 개의 밴드를 묶어 논리적으로 큰 대역의 밴드를 사용하는 것과 같은 효과를 내도록 하기 위한 것이다. 다중 요소 반송파 시스템은 주파수 영역에서 구별되는 다수의 요소 반송파(component carrier: CC)들을 지원한다. 요소 반송파는 상향링크에 사용되는 상향링크 요소 반송파와, 하향링크에서 사용되는 하향링크 요소 반송파를 포함한다. 하향링크 요소 반송파와 상향링크 요소 반송파가 합쳐져 하나의 서빙셀(serving cell)이 구성될 수 있다. 또는 하향링크 요소 반송파만으로 하나의 서빙셀이 구성될 수도 있다.A multiple component carrier system refers to a wireless communication system capable of supporting carrier aggregation. Carrier aggregation is a technique for efficiently using fragmented small bands. A base station uses a logically large band by grouping a plurality of physically continuous or non-continuous bands in the frequency domain. It is intended to produce the same effect. The multi-component carrier system supports a plurality of component carriers (CCs) distinguished in the frequency domain. The component carrier includes an uplink component carrier used for uplink and a downlink component carrier used in downlink. One serving cell may be configured by combining the downlink component carrier and the uplink component carrier. Alternatively, one serving cell may be configured only with a downlink component carrier.
셀 내부의 핫 스팟(hotspot)과 같은 특정 지역에서는 특별히 많은 통신 수요가 발생하고, 셀 경계(cell edge) 또는 커버리지 홀(coverage hole)과 같은 특정 지역에서는 전파의 수신 감도가 떨어질 수 있다. 무선 통신 기술이 발달함에 따라, 핫 스팟이나, 셀 경계, 커버리지 홀과 같은 지역에서 통신을 가능하게 하기 위한 목적으로 매크로 셀(Macro Cell)내에 스몰 셀(small cell)들, 예를 들어, 피코 셀(Pico Cell), 펨토 셀(Femto Cell), 마이크로 셀(Micro Cell), 원격 무선 헤드(remote radio head: RRH), 릴레이(relay), 중계기(repeater)등이 함께 설치된다. 이러한 네트워크를 이종 네트워크(Heterogeneous Network: HetNet)라 부른다. 이종 네트워크 환경에서는 상대적으로 매크로 셀은 커버리지(coverage)가 큰 셀(large cell)이고, 펨토 셀과 피코 셀과 같은 스몰 셀은 커버리지가 작은 셀이다. 이종 네트워크 환경에서 다수의 매크로 셀들 및 스몰 셀들 간에 커버리지 중첩이 발생한다.In particular areas, such as hot spots inside the cell, there is a great demand for communication, and in certain areas such as cell edges or coverage holes, the reception sensitivity of radio waves may be reduced. With the development of wireless communication technology, small cells, such as pico cells, within a macro cell for the purpose of enabling communication in areas such as hot spots, cell boundaries, and coverage holes. (Pico Cell), femto cell (Femto Cell), micro cell (Micro Cell), remote radio head (RRH), relay (relay), repeater (repeater) is installed together. Such a network is called a heterogeneous network (HetNet). In a heterogeneous network environment, a macro cell is a large coverage cell, and a small cell such as a femto cell and a pico cell is a small coverage cell. Coverage overlap occurs between multiple macro cells and small cells in a heterogeneous network environment.
네트워크에 접속한 단말은 채널환경 또는 이동상태에 따라 임의의 셀과 통신을 수행할 수 있고, 셀 변경(cell change)을 수행할 수도 있다. 셀 변경의 경우 인접셀로의 이동 시 발생하는 호단절의 문제점을 해결하기 위하여 핸드오버(handover)가 수행될 수 있다. 핸드오버란 단말이 이동함에 따라 현재의 통신 서비스 지역(이하 소스 셀(source cell))을 이탈하여 인접한 통신 서비스 지역(이하 타겟 셀(target cell))으로 이동할 때 인접한 통신 서비스 지역의 새로운 통화 채널(traffic channel)에 자동 동조(tuning)되어 지속적으로 통화 상태를 유지하게 하는 기능을 말한다. 즉, 특정 기지국과 통신하고 있는 단말은 그 특정 기지국(이하 소스 기지국(source base station))에서의 신호 세기가 약해질 경우 다른 인접 기지국(이하 타겟 기지국(target base station))에 링크(link)된다. 예를 들어, 단말은 매크로 셀과 접속한 상태에서 채널상태의 악화로 인해 매크로 셀과 접속을 끊고 다른 매크로 셀이나 피코셀에 접속할 수 있다. 또는, 단말이 매크로 셀과 접속한 상태에서 이동함에 따라 매크로 셀과 접속을 끊고 다른 매크로 셀이나 피코셀에 접속할 수 있다. A terminal connected to a network may communicate with any cell according to a channel environment or a mobile state, and may perform cell change. In the case of cell change, a handover may be performed to solve a problem of call disconnection that occurs when moving to an adjacent cell. Handover refers to a new call channel of an adjacent communication service area when the terminal moves out of the current communication service area (source cell) and moves to an adjacent communication service area (target cell). It is a function that automatically tunes to a traffic channel to maintain a call state continuously. That is, a terminal communicating with a specific base station is linked to another neighboring base station (target base station) when the signal strength of the specific base station (hereinafter referred to as a source base station) is weakened. . For example, the terminal may be disconnected from the macro cell and connected to another macro cell or pico cell due to a deterioration of the channel state while being connected to the macro cell. Alternatively, as the terminal moves in a state of being connected with the macro cell, the terminal may be disconnected from the macro cell and connected to another macro cell or pico cell.
단말은 적어도 하나의 서빙셀을 구성하는 기지국들 중 어느 하나의 기지국을 통하여 무선 통신을 수행할 수 있다. 이종 네트워크 환경에서 매크로 셀을 구성하는 어느 한 기지국과 연결이 설정된 단말은 스몰 셀을 구성하는 다른 기지국의 신호 품질이 우수하고, 무선 자원 사용률이 낮은 경우에도, 핸드오버 절차 없이는 상기 다른 기지국으로부터는 서비스를 제공받지 못한다. 또한 단말이 핸드오버 절차 등을 통하여 스몰셀을 구성하는 기지국에 연결되더라도, 스몰셀의 커버리지가 상대적으로 작기 때문에 단말의 이동에 따라 핸드오버가 자주 발생하게 되는 문제점이 있다. 이는 단말이 다중 요소 반송파를 지원하는 경우에도 마찬가지이다. 따라서, 이종 네트워크 환경에서 과도한 부하 또는 특정 QoS가 요구되는 부하(load)를 핸드오버 절차없이 스몰셀에 분산시키고 데이터를 효율적으로 전송하기 위한 방법이 요구된다. The terminal may perform wireless communication through any one of base stations constituting at least one serving cell. In a heterogeneous network environment, a terminal that is connected to one base station constituting a macro cell may be serviced by the other base station without a handover procedure even when the signal quality of the other base station constituting the small cell is excellent and the radio resource utilization is low. Is not provided. In addition, even if the UE is connected to the base station constituting the small cell through a handover procedure, there is a problem that the handover occurs frequently as the UE moves because the coverage of the small cell is relatively small. This is also the case when the terminal supports the multi-component carrier. Accordingly, there is a need for a method for distributing an excessive load or a load requiring a specific QoS to a small cell without a handover procedure in a heterogeneous network environment and efficiently transmitting data.
본 발명의 기술적 과제는 무선 통신 시스템에서 베어러 확장의 설정 및 운용 방법 및 그 장치를 제공함에 있다.An object of the present invention is to provide a method and apparatus for setting and operating a bearer extension in a wireless communication system.
하나의 스몰 셀의 확장 EPS 베어러를 또 다른 스몰 셀의 확장 EPS 베어러로 대체하는 장치 및 방법을 제공함에 있다. An apparatus and method for replacing an extended EPS bearer of one small cell with an extended EPS bearer of another small cell is provided.
본 발명의 다른 기술적 과제는 이종 네트워크 환경에서 셀에 불필요한 부하를 발생시키지 않으면서 단말에 데이터의 효율적인 전송을 위한 방법을 제공함에 있다.Another technical problem of the present invention is to provide a method for efficient transmission of data to a terminal without generating unnecessary load on a cell in a heterogeneous network environment.
본 발명의 또 다른 기술적 과제는 무선 베어러(RB: Radio Bearer)의 확장을 통하여 단말에 데이터를 효율적으로 전송함에 있다.Another technical problem of the present invention is to efficiently transmit data to a terminal through an extension of a radio bearer (RB).
본 발명의 또 다른 기술적 과제는 매크로셀에 접속된 단말에 스몰셀을 통하여 특정 데이터를 제공함에 있다.Another technical problem of the present invention is to provide specific data through a small cell to the terminal connected to the macro cell.
본 발명의 또 다른 기술적 과제는 특정 QoS(Quality of Service)의 서비스 운용에 적합한 스몰셀을 통하여 서비스를 제공함에 있다.Another technical problem of the present invention is to provide a service through a small cell suitable for service operation of a specific Quality of Service (QoS).
본 발명의 또 다른 기술적 과제는 단말의 빈번한 핸드오버를 막고, 데이터를 끊김없이(seamless) 제공함에 있다.Another technical problem of the present invention is to prevent frequent handover of a terminal and provide data seamlessly.
본 발명의 일 양태에 따르면, 다수의 스몰 기지국(small eNB)을 포함하는 이종 네트워크 시스템(Heterogeneous Network System)에서 단말에 의한 확장 EPS(Evolved Packet System) 베어러의 변경을 지원하는 방법을 제공한다. 상기 방법은 상기 단말과 매크로 기지국간에 형성된 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제1 상향링크 전송 시작정보와, 상기 단말과 제1 스몰 기지국간에 형성된 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 유보를 지시하는 제1 상향링크 전송 유보정보를 상기 매크로 기지국으로부터 수신하는 단계, 상기 단말과 제2 스몰 기지국간에 형성될 제2 확장 EPS 베어러에 맵핑되는 무선 베어러(radio bearer)를 구성하기 위한 파라미터와, 상기 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보함을 지시하는 제2 상향링크 전송 유보 정보를 상기 매크로 기지국으로부터 수신하는 단계, 및 상기 매크로 셀의 EPS 베어러를 사용한 상향링크 전송을 유보함을 지시하는 제3 상향링크 전송 유보 정보와, 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제2 상향링크 전송 시작정보를 상기 매크로 기지국으로부터 수신하는 단계를 포함한다. According to an aspect of the present invention, a heterogeneous network system (Heterogeneous Network System) including a plurality of small base station (HeNB) provides a method for supporting the change of the extended EPS (Evolved Packet System) bearer by the terminal. The method includes first uplink transmission start information indicating start of uplink transmission using an EPS bearer of a macro cell formed between the terminal and the macro base station, and a first extended EPS bearer formed between the terminal and the first small base station. Receiving first uplink transmission reservation information indicating reservation for uplink transmission from the macro base station, a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and the second small base station; Receiving a second uplink transmission reservation information from the macro base station, indicating that the uplink transmission using the second extended EPS bearer is reserved, and the EPS bearer of the macro cell. A third uplink transmission reservation information indicating that the uplink transmission is reserved and the second extended EPS bearer; And receiving, from the macro base station, second uplink transmission start information indicating that uplink transmission is started.
본 발명의 다른 양태에 따르면, 다수의 스몰 기지국을 포함하는 이종 네트워크 시스템에서 확장 EPS 베어러의 변경을 지원하는 단말을 제공한다. 상기 단말은 상기 단말과 매크로 기지국간에 형성된 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제1 상향링크 전송 시작정보, 상기 단말과 제1 스몰 기지국간에 형성된 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 유보를 지시하는 제1 상향링크 전송 유보정보, 상기 단말과 제2 스몰 기지국간에 형성될 제2 확장 EPS 베어러에 맵핑되는 무선 베어러를 구성하기 위한 파라미터, 상기 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보함을 지시하는 제2 상향링크 전송 유보 정보, 상기 매크로 셀의 EPS 베어러를 사용한 상향링크 전송을 유보함을 지시하는 제3 상향링크 전송 유보정보, 및 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제2 상향링크 전송 시작정보를 상기 매크로 기지국으로부터 수신하는 단말 수신부, 및 상기 제1 상향링크 전송 시작정보와 상기 제1 상향링크 전송 유보정보에 기반하여 상기 매크로 기지국에 대해 상향링크 전송을 수행하고, 상기 제3 상향링크 전송 유보정보와 상기 제2 상향링크 전송 시작정보에 기반하여 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 수행하는 단말 프로세서를 포함한다. According to another aspect of the present invention, a terminal supporting a change of an extended EPS bearer in a heterogeneous network system including a plurality of small base stations is provided. The terminal includes first uplink transmission start information indicating start of uplink transmission using an EPS bearer of a macro cell formed between the terminal and the macro base station, and a first extended EPS bearer formed between the terminal and the first small base station. First uplink transmission reservation information indicating reservation for uplink transmission of a parameter, a parameter for configuring a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and the second small base station, and the second extended EPS bearer Second uplink transmission reservation information indicating the reservation of uplink transmission using the third uplink transmission reservation information indicating the reservation of uplink transmission using the EPS bearer of the macro cell, and the second extended EPS Receive second uplink transmission start information indicating that uplink transmission is started using a bearer from the macro base station And performing uplink transmission to the macro base station based on the terminal receiver, and the first uplink transmission start information and the first uplink transmission reservation information, and performing the third uplink transmission reservation information and the second uplink. And a terminal processor configured to perform uplink transmission using the second extended EPS bearer based on link transmission start information.
본 발명의 또 다른 양태에 따르면, 다수의 스몰 기지국(small eNB)을 포함하는 이종 네트워크 시스템(Heterogeneous Network System)에서 매크로 기지국에 의한 확장 EPS(Evolved Packet System) 베어러의 변경을 지원하는 방법을 제공한다. 상기 방법은 단말과 상기 매크로 기지국간에 형성된 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제1 상향링크 전송 시작정보와, 상기 단말과 제1 스몰 기지국간에 형성된 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 유보를 지시하는 제1 상향링크 전송 유보정보를 상기 단말로 전송하는 단계, 상기 단말과 제2 스몰 기지국간에 형성될 제2 확장 EPS 베어러에 맵핑되는 무선 베어러(radio bearer)를 구성하기 위한 파라미터와, 상기 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보함을 지시하는 제2 상향링크 전송 유보 정보를 상기 단말로 전송하는 단계, 및 상기 매크로 셀의 EPS 베어러를 사용한 상향링크 전송을 유보함을 지시하는 제3 상향링크 전송 유보 정보와, 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제2 상향링크 전송 시작정보를 상기 단말로 전송하는 단계를 포함한다. According to another aspect of the present invention, there is provided a method for supporting a change of an extended Evolved Packet System (EPS) bearer by a macro base station in a heterogeneous network system including a plurality of small base stations. . The method includes first uplink transmission start information indicating that uplink transmission is started using an EPS bearer of a macro cell formed between the terminal and the macro base station, and a first extended EPS bearer formed between the terminal and the first small base station. Transmitting first uplink transmission reservation information indicating reservation for uplink transmission in a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and a second small base station; Transmitting to the terminal a parameter for configuring a signal and second uplink transmission reservation information indicating reservation for uplink transmission using the second extended EPS bearer, and uplink using the EPS bearer of the macro cell. Start uplink transmission using the third uplink transmission reservation information indicating that the transmission is reserved and the second extended EPS bearer. A second uplink transmission start information indicating a transmitting to the mobile station.
본 발명의 또 다른 양태에 따르면, 다수의 스몰 기지국을 포함하는 이종 네트워크 시스템에서 확장 EPS 베어러의 변경을 지원하는 매크로 기지국을 제공한다. 상기 매크로 기지국은 단말과 상기 매크로 기지국간에 형성된 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제1 상향링크 전송 시작정보, 상기 단말과 제1 스몰 기지국간에 형성된 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 유보를 지시하는 제1 상향링크 전송 유보정보, 상기 단말과 제2 스몰 기지국간에 형성될 제2 확장 EPS 베어러에 맵핑되는 무선 베어러를 구성하기 위한 파라미터, 상기 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보함을 지시하는 제2 상향링크 전송 유보 정보, 상기 매크로 셀의 EPS 베어러를 사용한 상향링크 전송을 유보함을 지시하는 제3 상향링크 전송 유보정보, 및 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제2 상향링크 전송 시작정보를 상기 단말로 전송하는 기지국 전송부, 및 상기 제1 상향링크 전송 시작정보와 상기 제1 상향링크 전송 유보정보에 기반하여 상향링크 수신을 수행하고, 상기 제3 상향링크 전송 유보정보와 상기 제2 상향링크 전송 시작정보에 기반하여 상기 제2 확장 EPS 베어러를 사용하여 상향링크 수신을 수행하는 기지국 프로세서를 포함한다. According to still another aspect of the present invention, there is provided a macro base station supporting a change of an extended EPS bearer in a heterogeneous network system including a plurality of small base stations. The macro base station includes first uplink transmission start information indicating start of uplink transmission using an EPS bearer of a macro cell formed between the terminal and the macro base station, and a first extended EPS bearer formed between the terminal and the first small base station. First uplink transmission reservation information indicating reservation for uplink transmission in S2, a parameter for configuring a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and the second small base station, and the second extended EPS Second uplink transmission reservation information indicating suspension of uplink transmission using a bearer, third uplink transmission reservation information indicating suspension of uplink transmission using an EPS bearer of the macro cell, and the second extension Transmitting second uplink transmission start information indicating that uplink transmission is started using an EPS bearer; And a base station transmitter, and performs uplink reception based on the first uplink transmission start information and the first uplink transmission reservation information, and performs the uplink reception reservation information and the second uplink transmission start information. And a base station processor configured to perform uplink reception using the second extended EPS bearer based thereon.
매크로 셀의 관점에서는 데이터 양이 많은 사용자 평면의 데이터가 계속해서 스몰셀을 통해 송수신되어 매크로 셀의 부하가 분산되는 효과가 있다. 또한 단말이 스몰셀들 간에 핸드오버로 이동하지 않음으로 인해, 핸드오버의 부담 또는 오버헤드를 줄일 수 있고, 핸드오버 보다 신속히 스몰셀 간의 서비스 변경이 가능해진다. From the viewpoint of the macro cell, the data of the user plane with a large amount of data is continuously transmitted and received through the small cell, thereby distributing the load of the macro cell. In addition, since the terminal does not move to the handover between the small cells, it is possible to reduce the burden or overhead of the handover, it is possible to change the service between the small cells faster than the handover.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다.1 shows a wireless communication system to which the present invention is applied.
도 2는 본 발명이 적용되는 무선통신 시스템에서 베어러 서비스의 구조를 나타낸다. 2 shows a structure of a bearer service in a wireless communication system to which the present invention is applied.
도 3은 본 발명의 일례에 따른 매크로 기지국과 스몰 기지국의 연결 구성을 나타내는 개념도이다. 3 is a conceptual diagram illustrating a connection configuration between a macro base station and a small base station according to an example of the present invention.
도 4는 본 발명의 다른 예에 따른 매크로 기지국과 스몰 기지국의 연결 구성을 나타내는 개념도이다. 4 is a conceptual diagram illustrating a connection configuration between a macro base station and a small base station according to another embodiment of the present invention.
도 5는 본 발명의 일 예에 따른 단말, 매크로 기지국, 제1 스몰 기지국, 제2 스몰 기지국 및 코어망 간의 시그널링을 나타내는 흐름도이다. 5 is a flowchart illustrating signaling between a terminal, a macro base station, a first small base station, a second small base station, and a core network according to an embodiment of the present invention.
도 6은 본 발명의 일례에 따른 단말의 동작 순서도이다. 6 is an operation flowchart of a terminal according to an example of the present invention.
도 7은 본 발명의 일례에 따른 매크로 기지국의 동작 순서도이다.7 is a flowchart illustrating an operation of a macro base station according to an exemplary embodiment of the present invention.
도 8은 본 발명의 일례에 따른 제2 스몰 기지국의 동작 순서도이다.8 is an operation flowchart of a second small base station according to an example of the present invention.
도 9는 본 발명에 따른 단말, 매크로 기지국 및 제2 스몰 기지국을 도시한 블록도이다. 9 is a block diagram illustrating a terminal, a macro base station and a second small base station according to the present invention.
이하, 본 명세서에서는 본 발명과 관련된 내용을 본 발명의 내용과 함께 예시적인 도면과 실시 예를 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings and examples, together with the contents of the present disclosure. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UMTS(Evolved- Universal Mobile Telecommunications System)의 망 구조일 수 있다. E-UMTS 시스템은 LTE(Long Term Evolution) 또는 LTE-A(advanced)시스템이라고 할 수도 있다. 무선 통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.1 shows a wireless communication system to which the present invention is applied. This may be a network structure of an Evolved-Universal Mobile Telecommunications System (E-UMTS). The E-UMTS system may be referred to as Long Term Evolution (LTE) or LTE-A (Advanced) system. Wireless communication systems are widely deployed to provide various communication services such as voice, packet data, and the like.
한편, 무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. On the other hand, there is no limitation on the multiple access scheme applied to the wireless communication system. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used.
여기서, 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.Here, the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies. .
도 1을 참조하면, E-UTRAN은 단말(10; User Equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), AMS(Advanced MS), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device) 등 다른 용어로 불릴 수 있다. Referring to FIG. 1, the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE). The user plane is a protocol stack for user data transmission, and the control plane is a protocol stack for control signal transmission. The terminal 10 may be fixed or mobile and may be called by other terms such as mobile station (MS), advanced MS (AMS), user terminal (UT), subscriber station (SS), and wireless device (Wireless Device). .
기지국(20)은 일반적으로 단말(10)과 통신하는 지점(station)을 말하며, eNodeB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(femto-eNB), 피코 기지국(pico-eNB), 홈기지국(Home eNB), 릴레이(relay) 등 다른 용어로 불릴 수 있다. 기지국(20)은 적어도 하나의 셀을 단말에 제공할 수 있다. 셀은 기지국(20)이 통신 서비스를 제공하는 지리적 영역을 의미할 수도 있고, 특정 주파수 대역을 의미할 수도 있다. 셀은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다.The base station 20 generally refers to a station communicating with the terminal 10, and includes an evolved-NodeB (eNodeB), a Base Transceiver System (BTS), an Access Point, an femto-eNB, It may be called other terms such as a pico-eNB, a home eNB, and a relay. The base station 20 may provide at least one cell to the terminal. The cell may mean a geographic area where the base station 20 provides a communication service or may mean a specific frequency band. The cell may mean a downlink frequency resource and an uplink frequency resource. Alternatively, the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW(Serving Gateway)와 연결된다. S1 인터페이스는 MME와 신호를 교환함으로써 단말(10)의 이동을 지원하기 위한 OAM(Operation and Management) 정보를 주고받는다. The base stations 20 may be connected to each other through an X2 interface. The base station 20 is connected to a Serving Gateway (S-GW) through an MME (Mobility Management Entity) and an S1-U through an Evolved Packet Core (EPC) 30, more specifically, an S1-MME through an S1 interface. The S1 interface exchanges OAM (Operation and Management) information for supporting the movement of the terminal 10 by exchanging signals with the MME.
EPC(30)는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)를 포함한다. MME는 단말(10)의 접속 정보나 단말(10)의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말(10)의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN(Packet Data Network)을 종단점으로 갖는 게이트웨이이다. EPC 30 includes MME, S-GW and P-GW (Packet Data Network-Gateway). The MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10. The S-GW is a gateway having an E-UTRAN as an endpoint, and the P-GW is a gateway having a PDN (Packet Data Network) as an endpoint.
E-UTRAN과 EPC(30)를 통합하여 EPS(Evoled Packet System)라 불릴 수 있으며, 단말(10)이 기지국(20)에 접속하는 무선링크로부터 서비스 엔터티로 연결해주는 PDN까지의 트래픽 흐름은 모두 IP(Internet Protocol) 기반으로 동작한다. Integrating the E-UTRAN and the EPC 30 may be referred to as an EPS (Evoled Packet System), and the traffic flows from the radio link that the terminal 10 accesses the base station 20 to the PDN connecting to the service entity are all IP. It works based on (Internet Protocol).
단말과 기지국간의 무선 인터페이스를 Uu 인터페이스라 한다. 단말과 네트워크 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준 모델의 하위 3개 계층을 바탕으로 L1(제1계층), L2(제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.The radio interface between the terminal and the base station is called a Uu interface. Layers of the radio interface protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems. L2 (second layer), L3 (third layer) can be divided into a physical layer belonging to the first layer of the information transfer service (Information Transfer Service) using a physical channel (Physical Channel), The RRC (Radio Resource Control) layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.
물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 매체접근제어(Medium Access Control: MAC) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고 서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있으며, 시간과 주파수를 무선자원으로 활용한다. 몇몇 물리 제어채널들이 있다. PDCCH(physical downlink control channel)는 단말에게 PCH(paging channel)와 DL-SCH(downlink shared channel)의 자원 할당 및 DL-SCH와 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 스케줄링 그랜트를 나를 수 있다. PCFICH(physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심벌의 수를 알려주고, 매 서브프레임마다 전송된다. PHICH(physical Hybrid ARQ Indicator Channel)는 상향링크 전송의 응답으로 HARQ ACK/NAK 신호를 나른다. PUCCH(Physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NAK, 스케줄링 요청 및 CQI와 같은 상향링크 제어 정보를 나른다. PUSCH(Physical uplink shared channel)은 UL-SCH(uplink shared channel)을 나른다. A physical layer (PHY) layer provides an information transfer service to a higher layer by using a physical channel. The physical layer is connected to the upper layer Medium Access Control (MAC) layer through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface. Data moves between the physical layers, that is, between the physical layers of the transmitter and the receiver. The physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources. There are several physical control channels. The physical downlink control channel (PDCCH) informs the terminal of resource allocation of a paging channel (PCH) and downlink shared channel (DL-SCH) and hybrid automatic repeat request (HARQ) information related to the DL-SCH. The PDCCH may carry an uplink scheduling grant informing the UE of resource allocation of uplink transmission. The physical control format indicator channel (PCFICH) informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe. PHICH (physical Hybrid ARQ Indicator Channel) carries a HARQ ACK / NAK signal in response to uplink transmission. Physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission. Physical uplink shared channel (PUSCH) carries an uplink shared channel (UL-SCH).
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다. 논리채널은 제어 영역 정보의 전달을 위한 제어채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 나눌 수 있다.The functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels. The MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel. The logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선 베어러(RB: Radio Bearer)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs. In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode). Three modes of operation (AM). AM RLC provides error correction through an automatic repeat request (ARQ).
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 제어 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다. Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering. The functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transfer of control plane data and encryption / integrity protection.
RRC 계층은 RB들의 구성(configuration), 재구성(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 구성된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB), DRB(Data RB)로 구분될 수 있다. SRB는 제어 평면에서 RRC 메시지 및 NAS 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.The RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs. RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network. The configuration of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method. The RB may be further classified into a signaling RB (SRB) and a data RB (DRB). SRB is used as a path for transmitting RRC and NAS messages in the control plane, and DRB is used as a path for transmitting user data in the user plane.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 있을 경우, 단말은 RRC 연결 상태(RRC connected state)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(RRC idle state)에 있게 된다.If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state. do.
단말이 외부 인터넷 망으로 사용자 데이터(user data: 예, IP 패킷)를 송신하거나 외부 인터넷 망으로부터 사용자 데이터를 수신하기 위해서는, 단말과 외부 인터넷 망 사이에 존재하는 이동통신 네트워크 엔티티(entity)들 간에 존재하는 여러 경로에 자원이 할당되어야 한다. 이렇게 이동통신 네트워크 엔티티들 사이에 자원이 할당되어 데이터 송수신이 가능해진 경로를 베어러(Bearer)라고 한다. In order for a terminal to transmit user data (eg, an IP packet) to an external internet network or to receive user data from an external internet network, the terminal exists between mobile communication network entities existing between the terminal and the external internet network. Resources must be allocated to different paths. Thus, a path in which resources are allocated between mobile communication network entities and data transmission and reception is possible is called a bearer.
도 2는 본 발명이 적용되는 무선통신 시스템에서 베어러 서비스의 구조를 나타낸다. 2 shows a structure of a bearer service in a wireless communication system to which the present invention is applied.
도 2를 참조하면, 단말과 인터넷 망 사이에 종단간 서비스(End-to-End service)가 제공되는 경로를 보여준다. 여기서, 종단간 서비스라 함은 단말이 인터넷 망과 데이터 서비스를 위해서 단말과 P-GW 간의 경로(EPS Bearer)와 P-GW와 외부까지의 경로(External Bearer)가 필요한 서비스를 의미한다. 여기서, 외부의 경로는 P-GW와 인터넷 망 사이의 베어러이다. Referring to FIG. 2, an end-to-end service is provided between a terminal and an internet network. Here, the end-to-end service refers to a service that requires a path between the terminal and the P-GW (EPS Bearer) and a P-GW and an external bearer for the Internet network and data service. Here, the external path is a bearer between the P-GW and the Internet network.
단말이 외부 인터넷 망으로 데이터를 전달하려면, 우선 단말은 무선상의 RB를 통해서 기지국(eNB)에게 데이터를 전달한다. 그리고 기지국은 데이터를 S1 베어러를 통해서 S-GW로 전달한다. S-GW는 S5/S8 베어러를 통해서 데이터를 P-GW로 전달하며, 최종적으로 P-GW와 외부 인터넷 망에 존재하는 목적지까지 외부 베어러(External Bearer)를 통해서 전달된다.In order for the terminal to transmit data to the external internet network, the terminal first transmits data to the base station eNB through the RB on the radio. The base station then transmits data to the S-GW through the S1 bearer. S-GW transmits data to P-GW through S5 / S8 bearer, and finally through external bearer to destinations in P-GW and external internet network.
마찬가지로, 외부 인터넷 망에서 단말로 데이터가 전달되려면 위의 설명과 역방향으로 각각의 베어러를 거쳐서 단말에 전달이 될 수 있다.Similarly, in order to transmit data from the external Internet network to the terminal, the data can be delivered to the terminal through each bearer in the reverse direction as described above.
이와 같이 무선통신 시스템에서는 각 인터페이스마다 각각의 베어러를 정의하여, 인터페이스들간의 독립성을 보장하고 있다. 각 인터페이스에서의 베어러를 좀더 상세히 설명하면 다음과 같다. As described above, in the wireless communication system, each bearer is defined for each interface to ensure independence between the interfaces. The bearer at each interface will be described in more detail as follows.
무선통신 시스템이 제공하는 베어러를 총칭하여 EPS(Evolved Packet System) 베어러라고 한다. EPS 베어러는 특정 QoS로 IP 트래픽을 전송하기 위하여 UE와 P-GW 간에 설정된 전달 경로이다. P-GW는 인터넷으로부터 IP 플로우를 수신 또는 인터넷으로 IP 플로우를 전송할 수 있다. 각 EPS 베어러는 전달 경로의 특성을 나타내는 QoS 결정 파라미터들로 설정된다. EPS 베어러는 단말당 하나 이상 구성될 수 있으며, 하나의 EPS 베어러는 하나의 E-RAB와 하나의 S5/S8 베어러의 연결된 값(concatenation)을 고유하게 표현한다. The bearers provided by the wireless communication system are collectively called an Evolved Packet System (EPS) bearer. An EPS bearer is a delivery path established between a UE and a P-GW for transmitting IP traffic with a specific QoS. The P-GW may receive IP flows from the Internet or send IP flows to the Internet. Each EPS bearer is set with QoS decision parameters that indicate the nature of the delivery path. One or more EPS bearers may be configured per UE, and one EPS bearer uniquely represents a concatenation of one E-RAB and one S5 / S8 bearer.
S5/S8 베어러는 S5/S8 인터페이스의 베어러이다. S5와 S8 모두 S-GW와 P-GW 사이의 인터페이스에 존재하는 베어러이다. S5 인터페이스는 S-GW와 P-GW가 동일한 사업자에 속해 있을 경우에 존재하며, S8 인터페이스는 S-GW가 로밍해 들어간 사업자(Visited PLMN)에 속하며 P-GW가 원래 서비스에 가입한 사업자(Home PLMN)에 속하는 경우에 존재한다. The S5 / S8 bearer is a bearer of the S5 / S8 interface. Both S5 and S8 are bearers present at the interface between the S-GW and the P-GW. The S5 interface exists when the S-GW and the P-GW belong to the same operator, and the S8 interface belongs to the provider (Visited PLMN) roamed by the S-GW, and the P-GW has subscribed to the original service (Home). PLMN).
E-RAB는 S1 베어러와 그에 상응하는 RB의 연결된 값(concatenation)을 고유하게 표현한다. 하나의 E-RAB가 존재할 때, 해당 E-RAB와 하나의 EPS 베어러 간에 1대1 매핑이 성립한다. 즉, 하나의 EPS 베어러는 각각 하나의 RB, S1 베어러, S5/S8 베어러에 대응된다. S1 베어러는 기지국과 S-GW 사이의 인터페이스에서의 베어러이다. The E-RAB uniquely represents the concatenation of the S1 bearer and the corresponding RB. When there is one E-RAB, one-to-one mapping is established between the E-RAB and one EPS bearer. That is, one EPS bearer corresponds to one RB, S1 bearer, and S5 / S8 bearer, respectively. The S1 bearer is a bearer at the interface between the base station and the S-GW.
RB는 데이터 RB(Data Radio Bearer: DRB)와 시그널링 RB (Signaling Radio Bearer: SRB) 두 가지를 의미하지만 본 발명에서 구분 없이 RB라 표현하는 것은 사용자의 서비스를 지원하기 위해 Uu 인터페이스에서 제공되는 데이터 RB이다. 따라서 따로 구분 없이 표현하는 RB는 시그널링 RB(Signaling Radio Bearer: SRB)와 구별된다. RB는 사용자 평면의 데이터가 전달되는 경로이며, SRB는 RRC 계층과 NAS 제어 메시지 등 제어 평면의 데이터가 전달되는 경로이다. RB와 E-RAB 그리고 EPS 베어러 간에는 1대1 매핑이 성립한다.RB means two types of data RB (Data Radio Bearer (DRB)) and signaling RB (Signaling Radio Bearer (SRB)). However, in the present invention, the expression RB without distinction refers to data RB provided in the Uu interface to support a service of a user. to be. Therefore, an RB expressed without distinction is distinguished from a signaling radio bearer (SRB). The RB is a path through which data of the user plane is transmitted, and the SRB is a path through which data of the control plane, such as the RRC layer and NAS control messages, are delivered. One-to-one mapping is established between RB, E-RAB and EPS bearer.
EPS 베어러 종류는 디폴트(default) 베어러와 전용(dedicated) 베어러가 있다. 단말이 무선 통신망에 접속하면 IP 주소를 할당받고 PDN 연결을 생성하면서 동시에 디폴트 EPS 베어러가 생성된다. 즉 디폴트 베어러는 새로운 PDN 연결이 생성될 때 처음 생성된다. 사용자가 디폴트 베어러를 통해 서비스(예를 들어, 인터넷 등)를 이용하다가 디폴트 베어러로는 QoS를 제대로 제공받을 수 없는 서비스(예를 들어 VoD 등)를 이용하게 되면 온-디맨드(on-demand)로 전용 베어러가 생성된다. 이 경우 전용 베어러는 이미 설정되어 있는 베어러와는 다른 QoS로 설정될 수 있다. 전용 베어러에 적용되는 QoS 결정 파라미터들은 PCRF(Policy and Charging Rule Function)에 의해 제공된다. 전용 베어러 생성시 PCRF는 SPR(Subscriber Profile Repository)로부터 사용자의 가입정보를 수신하여 QoS 결정 파라미터를 결정할 수 있다. 전용 베어러는 예를 들어, 최대 15개까지 생성될 수 있으며, LTE 시스템에서는 상기 15개 중 4개는 사용하지 않는다. 따라서 전용 베어러는 최대 11개까지 생성될 수 있다.EPS bearer types include a default bearer and a dedicated bearer. When the terminal accesses the wireless communication network, an IP address is assigned and a default EPS bearer is created while creating a PDN connection. That is, a default bearer is first created when a new PDN connection is created. When a user uses a service (for example, the Internet, etc.) through a default bearer, and uses a service (for example, VoD, etc.) that the default bearer cannot provide QoS properly, the user may be on-demand. A dedicated bearer is created. In this case, the dedicated bearer may be set to a different QoS from the bearer that is already set. QoS decision parameters applied to the dedicated bearer are provided by a Policy and Charging Rule Function (PCRF). Upon creation of a dedicated bearer, the PCRF may receive subscription information of a user from a Subscriber Profile Repository (SPR) to determine QoS determination parameters. Up to 15 dedicated bearers may be created, for example, and four of the 15 are not used in the LTE system. Therefore, up to 11 dedicated bearers can be created.
EPS 베어러는 기본 QoS 결정 파라미터로 QCI(QoS Class Identifier)와 ARP(Allocation and Retention Priority)를 포함한다. EPS 베어러는 QCI 자원 형태에 따라 GBR(Guaranteed Bit Rate)형 베어러와 non-GBR형 베어러로 구분된다. 디폴트 베어러는 항상 non-GBR형 베어러이고, 전용 베어러는 GBR형 또는 non-GBR형 베어러로 설정될 수 있다. GBR형 베어러는 QCI와 ARP 이외에 QoS 결정 파라미터로 GBR과 MBR(Maximum Bit Rate)를 가진다. 무선통신 시스템이 전체적으로 제공해야 하는 QoS가 EPS 베어러로 정의되고 나면, 각 인터페이스마다 각각의 QoS가 정해진다. 각 인터페이스는 자신이 제공해야 하는 QoS에 맞춰 베어러를 설정하는 것이다.The EPS bearer includes a QoS Class Identifier (QCI) and Allocation and Retention Priority (ARP) as basic QoS determination parameters. EPS bearers are classified into GBR (Guaranteed Bit Rate) bearers and non-GBR bearers according to QCI resource types. The default bearer is always a non-GBR type bearer, and the dedicated bearer may be set as a GBR type or non-GBR type bearer. The GBR bearer has GBR and MBR (Maximum Bit Rate) as QoS decision parameters in addition to QCI and ARP. After the QoS that the wireless communication system must provide as a whole is defined as an EPS bearer, each QoS is determined for each interface. Each interface establishes a bearer according to the QoS that it must provide.
일반적으로 스몰 셀은 매크로 셀에 비해 작은 지역에 대하여 서비스하기 때문에 단일 단말에 대하여 제공할 수 있는 수율(Throughput) 측면에서 매크로 셀에 비하여 유리하다. 그러나, 현재 무선 통신 시스템에서는 일단 매크로 셀에 접속된 단말은 스몰 셀의 서비스 지역에 위치하고 있더라도 핸드오버를 수행하지 않고서는 스몰 셀로부터 서비스를 받을 수 없다. 또한 단말이 이동중인 경우 비록 핸드오버 등을 통하여 스몰셀에 접속하더라도, 스몰셀의 커버리지가 작으므로 핸드오버가 빈번하게 발생할 수 있고, 이는 네트워크 효율면에서 바람직하지 않다.In general, since a small cell serves a smaller area than a macro cell, it is advantageous to a macro cell in terms of throughput that can be provided for a single terminal. However, in the current wireless communication system, even though the terminal connected to the macro cell is located in the service area of the small cell, the terminal cannot receive the service from the small cell without performing the handover. In addition, even if the UE is connected to the small cell through handover, the handover may occur frequently because the small cell coverage is small, which is not preferable in terms of network efficiency.
이하, 본 발명의 실시 예들에 관하여 상세히 개시되며, 본 발명의 실시 예들은 매크로 셀과 스몰 셀을 포함하는 이종 네트워크 시스템에 적용될 수 있다. Hereinafter, embodiments of the present invention will be described in detail, and embodiments of the present invention can be applied to a heterogeneous network system including a macro cell and a small cell.
일 실시 예는 이종 네트워크 시스템에서 단말과 매크로 셀간의 무선 연결을 포함하는 EPS 베어러를 유지한 채로, 제1 스몰 셀을 통한 데이터 서비스 또는 부하를 제2 스몰 셀로 분산시키는 방법을 포함한다. 예를 들어, 매크로 셀에 연결된 단말이 매크로 셀의 서비스 지역, 제1 스몰 셀 및 제2 스몰 셀의 서비스 지역과 중첩된(over-laid) 지역에 위치한 경우에 상기 방법이 적용될 수 있다. 상기 방법을 다중 무선 연결을 구성하는 절차라고 한다. 또는 상기 방법은 확장 베어러 설정 절차 또는 베어러 확장 절차라 불릴 수도 있다. One embodiment includes a method of distributing a data service or a load through a first small cell to a second small cell while maintaining an EPS bearer including a wireless connection between a terminal and a macro cell in a heterogeneous network system. For example, the method may be applied when the terminal connected to the macro cell is located in an area over-laid with the service area of the macro cell, the service area of the first small cell and the second small cell. This method is referred to as a procedure for configuring multiple wireless connections. Alternatively, the method may be called an extended bearer establishment procedure or a bearer extension procedure.
보다 구체적으로, 베어러 확장 모드에서, 단말에 대한 제어 평면(RRC 계층, NAS)은 매크로 셀에 의해 제공되고, 사용자 평면은 스몰셀의 EPS 베어러에 의해 제공된다. More specifically, in the bearer extension mode, the control plane (RRC layer, NAS) for the terminal is provided by the macro cell, and the user plane is provided by the EPS bearer of the small cell.
따라서, 제1 스몰셀과 중첩(overlaid)된 지역에 존재하는 제2 스몰셀 영역에서, 단말은 매크로셀에 접속한 상태에서 핸드오버없이 제1 스몰셀 또는 제2 스몰셀에서 하향링크 신호를 끊김없이 수신하거나, 상향링크 신호를 끊김없이 전송할 수 있다. 여기서, 하향링크 신호는 하향링크로 전송되는 사용자 평면의 데이터를 포함하고 상향링크 신호는 상향링크로 전송되는 사용자 평면의 데이터를 포함한다. 제어 평면의 데이터는 매크로 셀을 통해 송수신 된다. Accordingly, in the second small cell area existing in an area overlapped with the first small cell, the UE disconnects the downlink signal from the first small cell or the second small cell without handover in a state of being connected to the macro cell. It can be received without, or the uplink signal can be transmitted without interruption. Here, the downlink signal includes data of the user plane transmitted through the downlink, and the uplink signal includes data of the user plane transmitted through the uplink. Data in the control plane is transmitted and received through the macro cell.
도 3은 본 발명의 일례에 따른 매크로 기지국과 스몰 기지국의 연결 구성을 나타내는 개념도이다. 3 is a conceptual diagram illustrating a connection configuration between a macro base station and a small base station according to an example of the present invention.
도 3을 참조하면, 패킷 데이터 네트워크(300)(예, 인터넷)에서 P-GW(305)로 데이터가 전송되고, 상기 데이터는 S-GW(310)를 거쳐 매크로 기지국(320)으로 전송된다. 상기 데이터에 대한 QoS는 특정한 수준으로 설정될 수 있다. 매크로 기지국(320)과 단말(340)에는 매크로 셀의 EPS 베어러가 구성되어 있다. Referring to FIG. 3, data is transmitted from the packet data network 300 (eg, the Internet) to the P-GW 305, and the data is transmitted to the macro base station 320 via the S-GW 310. QoS for the data may be set at a particular level. The macro base station 320 and the terminal 340 are configured with an EPS bearer of the macro cell.
매크로 기지국(320)은 RRC 엔티티(321), PDCP 엔티티(322), RLC 엔티티(323), MAC 엔티티(324) 및 PHY 계층(325)를 포함한다. 스몰 기지국(330)은 PDCP 엔티티(332), RLC 엔티티(333), MAC 엔티티(334) 및 PHY 계층(335)을 포함한다. The macro base station 320 includes an RRC entity 321, a PDCP entity 322, an RLC entity 323, a MAC entity 324, and a PHY layer 325. The small base station 330 includes a PDCP entity 332, an RLC entity 333, a MAC entity 334, and a PHY layer 335.
베어러 확장이 없는 일반 모드(normal mode)에서, 매크로 기지국(320)은 상기 데이터를 PDCP 엔티티(322)에서 수신하고, RRC 엔티티(321) 등의 제어를 기반으로 상기 데이터를 처리하고, RLC 엔티티(323), MAC 엔티티(324) 및 PHY 계층(325)를 거쳐 단말(340)로 전송한다. 도면에 도시되지 않았으나 단말(340)에도 매크로 셀의 EPS 베어러를 형성하는 엔티티들이 존재한다. 예를 들어 매크로 기지국(320)의 PDCP 엔티티(322), RRC 엔티티(321), RLC 엔티티(323), MAC 엔티티(324) 및 PHY 계층(325)에 각각 대응하는 PDCP 엔티티, RRC 엔티티, RLC 엔티티, MAC 엔티티 및 PHY 계층이 단말(340) 측에 존재한다. In normal mode without bearer extension, macro base station 320 receives the data at PDCP entity 322, processes the data based on control of RRC entity 321, and the like, and performs RLC entity ( 323, the MAC entity 324 and the PHY layer 325 to the terminal 340. Although not shown in the figure, there are entities forming the EPS bearer of the macro cell in the terminal 340. For example, PDCP entity, RRC entity, RLC entity corresponding to PDCP entity 322, RRC entity 321, RLC entity 323, MAC entity 324, and PHY layer 325 of macro base station 320, respectively. The MAC entity and the PHY layer exist on the terminal 340 side.
한편, 단말(340)이 매크로 셀만의 영역에 존재하다가 중첩된 스몰 셀 영역으로 이동하는 경우에 있어서, 매크로 셀 내에 트래픽 양이 많거나 또는 단말이 좋은 품질(QoS)의 사용자 데이터를 서비스 받아야 하는 경우, 스몰 기지국(330)과 단말(340)에 대한 확장 EPS 베어러가 생성될 수 있다. 확장 EPS 베어러의 생성은 전술된 확장 베어러 설정 절차에 의해 이루어진다. 확장 EPS 베어러가 생성된 이후의 스몰 기지국(330)과 단말(340)의 동작 모드를 베어러 확장 모드라 한다. On the other hand, when the terminal 340 exists in the macro cell only area and moves to the overlapped small cell area, when there is a large amount of traffic in the macro cell or the terminal needs to receive user data of good quality (QoS) In addition, extended EPS bearers for the small base station 330 and the terminal 340 may be generated. The creation of the extended EPS bearer is made by the above-described extended bearer setup procedure. An operation mode of the small base station 330 and the terminal 340 after the extended EPS bearer is generated is called a bearer extended mode.
베어러 확장 모드에서, S-GW(310)는 상기 데이터를 백홀망을 통하여 스몰 기지국(330)의 PDCP 엔티티(332)로 포워딩(forwarding)할 수 있다. 이후 스몰 기지국(330)의 RLC 엔티티(333)는 이를 MAC 엔티티(334) 및 PHY 계층(335)을 거쳐 단말(340)로 전송한다. 도면에 도시되지 않았으나 단말(340)에도 확장 EPS 베어러를 형성하는 엔티티들이 생성된다. 예를 들어 스몰 기지국(330)의 PDCP 엔티티(332), RLC 엔티티(333), MAC 엔티티(334) 및 PHY 계층(335)에 각각 대응하는 PDCP 엔티티, RRC 엔티티, RLC 엔티티, MAC 엔티티 및 PHY 계층이 단말(340) 측에 존재한다. In bearer extension mode, the S-GW 310 may forward the data to the PDCP entity 332 of the small base station 330 via the backhaul network. The RLC entity 333 of the small base station 330 then transmits it to the terminal 340 via the MAC entity 334 and the PHY layer 335. Although not shown in the figure, entities that form an extended EPS bearer are also created in the terminal 340. For example, PDCP entity, RRC entity, RLC entity, MAC entity and PHY layer corresponding to PDCP entity 332, RLC entity 333, MAC entity 334 and PHY layer 335 of small base station 330, respectively. This is present on the terminal 340 side.
이 경우 단말(340)은 매크로 기지국(320)의 EPS 베어러를 통해 서비스를 제공 받던 것을 스몰 기지국(330)의 EPS 베어러를 통해서 서비스를 제공받을 수 있다. 여기서, 단말에 대한 제어 평면(RRC 계층, NAS)은 매크로 셀에 의해 제공되고, 사용자 평면은 스몰 셀의 확장 EPS 베어러에 의해 제공된다. In this case, the terminal 340 may receive the service through the EPS bearer of the small base station 330 that the service is provided through the EPS bearer of the macro base station 320. Here, the control plane (RRC layer, NAS) for the terminal is provided by the macro cell, the user plane is provided by the extended EPS bearer of the small cell.
이와 같이 확장 EPS 베어러를 생성함에 있어서, 본 실시예는 매크로 셀의 EPS 베어러를 삭제하지 않고 유지하는 동작을 포함한다. 이에 따르면, 다음의 효과가 있다. As described above, in generating the extended EPS bearer, the present embodiment includes an operation of maintaining the EPS bearer of the macro cell without deleting it. According to this, the following effects are obtained.
첫째, 확장 EPS 베어러의 생성 여부가 무선 구간과 코어망(Core Network) 구간에서 확실히 완성되지 않은 상태에서 매크로 셀의 EPS 베어러를 삭제하게 되면, 단말과 코어망 사이에서 주고 받는 사용자 데이터가 기지국이나 코어망 쪽에서 버퍼링이 되거나 또는 매크로 셀과 스몰 셀 사이의 인터페이스를 통해서 대량의 사용자 데이터가 교환되어야 하는 문제가 발생하는데, 이러한 문제가 해결될 수 있다. First, if the EPS bearer of the macro cell is deleted while the extended EPS bearer is not completely completed in the radio section and the core network section, the user data exchanged between the terminal and the core network is transmitted to the base station or the core. There is a problem that a large amount of user data must be exchanged through the interface between the macro cell and the small cell or buffered at the network side. This problem can be solved.
둘째, 핑퐁(ping-pong) 현상과 같이 단말이 매크로 셀과 스몰 셀의 경계 영역에서 매크로 셀과 스몰 셀을 짧은 시간 동안 자주 왔다갔다하는 경우, 핸드오버와 같은 무선 구성(radio configuration)을 자주 변경해 주어야 하는 문제가 있다. 예를 들어, 단말이 매크로 셀에서 상기 중첩된 영역으로 이동할 때 매크로 셀의 EPS 베어러를 해제하고(release), 또 다시 짧은 시간 안에 상기 매크로 셀로 되돌아 갈 때 매크로 셀의 EPS 베어러를 다시 생성할 수 있다. 그러나, 이는 단말과 기지국간의 시그널링 오버헤드를 유발할 수 있다. 그러나, 본 실시 예에 따르면 단말이 매크로 셀 또는 스몰 셀로 완전히 확정될 때까지 매크로 셀의 EPS 베어러를 계속 유지하면서 언제든 간편하게 다시 사용할 수 있기 때문에 단말의 데이터 송수신 서비스를 안정적으로 제공해 줄 수가 있다. 예를 들어, 단말이 스몰 셀의 커버리지를 벗어나서 확장 EPS 베어러가 삭제되는 경우(또는, 확장 EPS 베어러의 사용이 중단되는 경우) 매크로 셀의 EPS 베어러에 해당되는 무선 구성을 재설정하지 않고 빨리 재사용할 수 있다. Second, if the terminal frequently moves between the macro cell and the small cell for a short time in the boundary region of the macro cell and the small cell, such as a ping-pong phenomenon, the radio configuration such as handover is frequently changed. There is a problem that must be given. For example, when the UE moves from the macro cell to the overlapped region, the EPS bearer of the macro cell may be released, and again when the UE returns to the macro cell within a short time, the EPS bearer of the macro cell may be generated again. . However, this may cause signaling overhead between the terminal and the base station. However, according to the present embodiment, since the terminal can easily reuse it at any time while maintaining the EPS bearer of the macro cell until the terminal is completely determined as a macro cell or a small cell, it is possible to stably provide a data transmission / reception service of the terminal. For example, if the extended EPS bearer is deleted because the terminal is out of the coverage of the small cell (or the use of the extended EPS bearer is stopped), it can be quickly reused without resetting the radio configuration corresponding to the EPS bearer of the macro cell. have.
셋째, 단말은 핸드오버시에 수반되는 랜덤 액세스(random access) 절차를 수행하지 않아도 되고, 이로 인해 랜덤 액세스 수행 중 발생하는 무선 구간에서의 서비스 중단이 발생하지 않는다. 또한 핸드오버 수행을 위해 필요했던 기지국과 기지국간의 X2 인터페이스의 대용량 UE 컨텍스트(Context) 정보 교환도 불필요하다. Third, the terminal does not need to perform a random access procedure accompanying the handover, and thus does not cause service interruption in the wireless section during random access. In addition, there is no need to exchange a large amount of UE context information of the X2 interface between the base station and the base station, which was necessary for performing the handover.
넷째, 단말이 사용자 데이터를 매크로 셀이 아닌 스몰 셀을 통해서 수신하면, 더 좋은 품질의 서비스를 제공받으면서 매크로 셀의 부하를 줄일 수 있는 효과가 있다. 도 3은 하향링크 방향의 데이터 전송만을 화살표로 표시하고 있지만, 도 3의 기술적인 내용은 상향링크 방향의 데이터 전송도 마찬가지로 적용될 수 있다. Fourth, when the terminal receives the user data through the small cell rather than the macro cell, it is possible to reduce the load of the macro cell while providing a better quality of service. Although FIG. 3 shows only data transmission in the downlink direction with an arrow, the technical content of FIG. 3 may be similarly applied to data transmission in the uplink direction.
도 4는 본 발명의 다른 예에 따른 매크로 기지국과 스몰 기지국의 연결 구성을 나타내는 개념도이다. 4 is a conceptual diagram illustrating a connection configuration between a macro base station and a small base station according to another embodiment of the present invention.
도 4를 참조하면, 제어 평면의 데이터의 송수신은 매크로 기지국(400)이 매크로 셀을 통해 단말(450)에 제공한다. 매크로 기지국(420)은 RRC 엔티티(421), PDCP 엔티티(422), RLC 엔티티(423), MAC 엔티티(424) 및 PHY 계층(425)를 포함한다. 그리고 도 3과 달리 2개의 확장 EPS 베어러들이 지원된다. 이를 위해 사용자 평면의 데이터를 제공하는 스몰 기지국(430, 440)이 2개가 배치된다. 단말(450)은 2개의 스몰 셀들의 2개의 확장 EPS 베어러들 중 어느 하나를 사용자 평면의 데이터의 송수신을 위해 사용할 수 있다. Referring to FIG. 4, the transmission and reception of data in the control plane is provided by the macro base station 400 to the terminal 450 through the macro cell. The macro base station 420 includes an RRC entity 421, a PDCP entity 422, an RLC entity 423, a MAC entity 424, and a PHY layer 425. And unlike FIG. 3, two extended EPS bearers are supported. To this end, two small base stations 430 and 440 which provide data of a user plane are disposed. The terminal 450 may use any one of two extended EPS bearers of two small cells for transmitting and receiving data of a user plane.
스몰셀 A를 통해 제1 확장 EPS 베어러를 단말(450)에 제공하는 제1 스몰 기지국(440)은 PDCP 엔티티(432), RLC 엔티티(433), MAC 엔티티(434) 및 PHY 계층(435)을 포함한다. 스몰셀 B를 통해 제2 확장 EPS 베어러를 단말(450)에 제공하는 제2 스몰 기지국(440)은 PDCP 엔티티(442), RLC 엔티티(443), MAC 엔티티(444) 및 PHY 계층(445)을 포함한다. The first small base station 440, which provides the first extended EPS bearer to the terminal 450 through the small cell A, provides the PDCP entity 432, the RLC entity 433, the MAC entity 434, and the PHY layer 435. Include. The second small base station 440, which provides the second extended EPS bearer to the terminal 450 through the small cell B, provides the PDCP entity 442, the RLC entity 443, the MAC entity 444, and the PHY layer 445. Include.
사용자 평면의 데이터를 송신하거나 수신함에 있어서, 단말(450)은 스몰셀 A의 제1 확장 EPS 베어러를 사용하다가, 이동함에 따라 품질이 더 좋은 스몰셀 B의 제2 확장 EPS 베어러로 변경하여 서비스를 제공받을 수 있다. 이러한 확장 EPS 베어러의 변경이 발생하는 시나리오의 일례는, 단말(450)이 스몰셀 A의 영역에 존재하다가 연속하여 인접한 스몰셀 B의 영역으로 이동하는 경우를 포함한다. In transmitting or receiving data of the user plane, the terminal 450 uses the first extended EPS bearer of the small cell A, and changes the service to the second extended EPS bearer of the small cell B, which is of higher quality as it moves. Can be provided. An example of a scenario in which the change of the extended EPS bearer occurs includes the case where the terminal 450 exists in the area of the small cell A and subsequently moves to the area of the small cell B adjacent thereto.
이에 따르면, 제1 확장 EPS 베어러가 사용될 때, S-GW(410)는 사용자 평면의 데이터를 백홀망을 통하여 제1 스몰 기지국(430)의 PDCP 엔티티(432)로 포워딩(forwarding)할 수 있다. 이후 제1 스몰 기지국(430)의 RLC 엔티티(433)는 이를 MAC 엔티티(434) 및 PHY 계층(435)을 거쳐 단말(450)로 전송한다. 도면에 도시되지 않았으나 단말(450)에는 제1 스몰 기지국(430)과 함께 제1 확장 EPS 베어러를 형성하는 엔티티들이 생성된다. Accordingly, when the first extended EPS bearer is used, the S-GW 410 may forward data of the user plane to the PDCP entity 432 of the first small base station 430 through the backhaul network. Thereafter, the RLC entity 433 of the first small base station 430 transmits it to the terminal 450 through the MAC entity 434 and the PHY layer 435. Although not shown in the figure, entities 450 forming the first extended EPS bearer together with the first small base station 430 are generated in the terminal 450.
그리고 단말이 이동하여 스몰셀 B로 진입할 때, 제1 확장 EPS 베어러 대신 매크로 셀의 EPS 베어러 또는 제2 확장 EPS 베어러가 사용될 수 있다. 즉 확장 EPS 베어러의 교체(또는 대체)가 발생할 수 있다. 확장 EPS 베어러의 교체로 인해 제2 확장 EPS 베어러가 사용될 때, S-GW(410)는 사용자 평면의 데이터를 백홀망을 통하여 제2 스몰 기지국(440)의 PDCP 엔티티(442)로 포워딩할 수 있다. 이후 제2 스몰 기지국(440)의 RLC 엔티티(443)는 이를 MAC 엔티티(444) 및 PHY 계층(445)을 거쳐 단말(450)로 전송한다. 도면에 도시되지 않았으나 단말(450)에는 제2 스몰 기지국(440)과 함께 제2 확장 EPS 베어러를 형성하는 엔티티들이 생성된다. When the UE moves to the small cell B, an EPS bearer or a second extended EPS bearer of the macro cell may be used instead of the first extended EPS bearer. That is, replacement (or replacement) of the extended EPS bearer may occur. When the second extended EPS bearer is used due to the replacement of the extended EPS bearer, the S-GW 410 may forward the data of the user plane to the PDCP entity 442 of the second small base station 440 via the backhaul network. . The RLC entity 443 of the second small base station 440 then transmits it to the terminal 450 via the MAC entity 444 and the PHY layer 445. Although not shown in the figure, entities 450 forming the second extended EPS bearer together with the second small base station 440 are generated in the terminal 450.
이 경우, 매크로 셀의 관점에서는 데이터 양이 많은 사용자 평면의 데이터가 스몰셀 A의 제 1확장 EPS 베어러 사용에서 스몰셀 B의 제 2 확장 EPS 베어러 사용으로 변경이 완료될 때까지의 비교적 짧은 시간 동안에만 매크로 셀의 EPS 베어러를 사용하고 변경이 완성된 이후에는 계속해서 스몰셀을 통해 송수신되어 매크로 셀의 부하가 분산되는 효과가 있다. 또한 단말(450)이 스몰셀들 간에 핸드오버로 이동하지 않음으로 인해, 핸드오버의 부담 또는 오버헤드를 줄일 수 있고, 핸드오버 보다 신속히 스몰셀 간의 서비스 변경이 가능해진다. 이는 랜덤 액세스 절차의 수행 중 발생하는 무선구간에서의 서비스 중단이 없기 때문이다. 여기서, 핸드오버의 오버헤드는, 핸드오버를 위해 요구되는 랜덤 액세스 절차와 기지국과 기지국간의 X2 인터페이스를 통한 대용량의 단말 컨텍스트(UE Context) 정보의 교환을 포함한다. In this case, from a macro cell point of view, for a relatively short time from the data of the user plane with a large amount of data until the change is completed from the use of the first extended EPS bearer of small cell A to the use of the second extended EPS bearer of small cell B. After the EPS bearer of the macro cell is used and the change is completed, the macro cell load is distributed by continuously transmitting and receiving through the small cell. In addition, since the terminal 450 does not move to the handover between the small cells, it is possible to reduce the burden or overhead of the handover, it is possible to change the service between the small cells faster than the handover. This is because there is no service interruption in the radio section that occurs during the execution of the random access procedure. Here, the overhead of handover includes a random access procedure required for handover and the exchange of a large amount of UE context information through the X2 interface between the base station and the base station.
도 5는 본 발명의 일 예에 따른 단말, 매크로 기지국, 제1 스몰 기지국, 제2 스몰 기지국 및 코어망 간의 시그널링을 나타내는 흐름도이다. 5 is a flowchart illustrating signaling between a terminal, a macro base station, a first small base station, a second small base station, and a core network according to an embodiment of the present invention.
도 5를 참조하면, 스몰셀 A는 제1 스몰 기지국이 제공하는 스몰셀이고, 스몰셀 B는 제2 스몰셀이 제공하는 스몰셀이다. 현재 단말은 제1 스몰 기지국에 의해 사용자 평면의 데이터를 제공하는 제1 확장 EPS 베어러를 사용하고 있다. Referring to FIG. 5, small cell A is a small cell provided by a first small base station, and small cell B is a small cell provided by a second small cell. Currently, the terminal uses a first extended EPS bearer that provides data of a user plane by a first small base station.
단말은 매크로 셀, 스몰셀 A, 스몰셀 B의 신호 세기를 측정하고, 상기 측정된 신호 세기가 특정 기준을 만족할 경우 매크로 기지국으로 측정 보고(measurement report)를 전송한다(S500). 예를 들어 상기 측정된 신호 세기가 특정 기준을 만족하려면, 매크로 셀의 신호세기가 임계치 (threshold) 만큼 크면서 스몰셀 A 그리고 스몰셀 B의 신호 세기가 임계치 (threshold) 만큼 작아야 한다. 위의 조건뿐만이 아니라 단말이 매크로 셀 내에 위치하면서 스몰 셀 A에서 스몰 셀 B로 이동하고 있음을 판단할 수 있는 다른 조건들도 가능하다. The terminal measures the signal strength of the macro cell, small cell A, small cell B, and transmits a measurement report (measurement report) to the macro base station if the measured signal strength satisfies a specific criterion (S500). For example, if the measured signal strength satisfies a specific criterion, the signal strengths of the macro cell and the small cell B should be as small as the threshold while the signal strength of the macro cell is as large as the threshold. In addition to the above conditions, other conditions that may determine that the UE is located in the macro cell and move from the small cell A to the small cell B are possible.
매크로 기지국은 측정 보고에 따라 신호 세기를 분석한다. 만약 매크로 셀의 신호 세기가 스몰셀 A 및 스몰셀 B의 신호 세기보다 크고 스몰셀 B의 신호 세기가 스몰셀 A의 신호 세기보다 크다면, 매크로 기지국은 단말이 매크로 셀의 커버리지 내에 있는 스몰셀 A로부터 스몰셀 B로 이동 중이라고 판단할 수 있다.The macro base station analyzes the signal strength according to the measurement report. If the signal strength of the macro cell is greater than the signal strengths of the small cell A and the small cell B and the signal strength of the small cell B is greater than the signal strength of the small cell A, the macro base station determines that the terminal is within the coverage of the small cell A. It can be determined from the small cell B to move from.
이 경우, 매크로 기지국은 스몰셀 B에서 제1 확장 EPS 베어러 대신 사용할 제2 확장 EPS 베어러를 생성하기로 결정한다. 여기서, 매크로 기지국이 제2 확장 EPS 베어러를 생성하기로 결정하는 조건은 예를 들어 스몰셀 B의 신호가 스몰셀 A의 신호보다 특정 값 이상 크거나 또는 스몰셀 B의 신호 세기가 특정 임계치 보다 클 때일 수 있다. In this case, the macro base station determines to generate a second extended EPS bearer to use in place of the first extended EPS bearer in the small cell B. Here, the condition that the macro base station determines to generate the second extended EPS bearer is, for example, the signal of the small cell B is greater than a certain value greater than the signal of the small cell A, or the signal strength of the small cell B is greater than the specific threshold. It can be time.
매크로 기지국이 제1 확장 EPS 베어러를 더 이상 사용하지 않고 제2 확장 EPS 베어러를 생성하여 사용하기를 결정하면, 중단되어 있던 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 개시함을 지시하는 제1 RRC 연결 재구성 메시지를 단말로 전송한다(S505). 사용자 평면의 데이터에 대해 사용이 중단되었던 매크로 셀의 EPS 베어러를 다시 사용하는 이유는, 제2 확장 EPS 베어러가 생성 완료되기 전까지는 우선적으로 매크로 셀의 EPS 베어러를 재사용하는 것이다. 제2 확장 EPS 베어러의 생성이 무선 구간과 코어망 구간에서 모두 완료될 때까지 단말이 상향링크 전송을 위한 EPS 베어러가 필요하기 때문이다. 또한 제2 확장 EPS 베어러의 생성이 무선 구간과 코어망 구간에서 확실히 완성되지 않은 상태에서 스몰 셀 B의 제 2 확장 EPS 베어러를 사용하여 송수신하면, 단말과 코어망 사이에서 주고 받는 사용자 데이터가 매크로 기지국이나 코어망 쪽에서 버퍼링이 되거나 매크로 셀과 스몰셀 사이의 인터페이스를 통해서 대량의 데이터가 교환되어야 하는 문제가 있기 때문이다. 단계 S505는 직접적으로 제2 확장 EPS 베어러를 생성하는 시그널링은 아니지만, 그 예비 단계로서 수행되는 것이다. If the macro base station decides to create and use a second extended EPS bearer without using the first extended EPS bearer anymore, the first base station indicates to start uplink transmission using the EPS bearer of the suspended macro cell. The RRC connection reconfiguration message is transmitted to the terminal (S505). The reason for using the EPS bearer of the macro cell, which has been discontinued for data of the user plane, is to reuse the EPS bearer of the macro cell until the second extended EPS bearer is completed. This is because the UE needs the EPS bearer for uplink transmission until the generation of the second extended EPS bearer is completed in both the radio period and the core network period. In addition, when the generation of the second extended EPS bearer is not completely completed in the wireless section and the core network section, when transmitting and receiving using the second extended EPS bearer of the small cell B, the user data exchanged between the terminal and the core network is transmitted to the macro base station. This is because there is a problem that a large amount of data must be exchanged through buffering in the core network or through an interface between the macro cell and the small cell. Step S505 is not signaling to directly generate a second extended EPS bearer, but is performed as a preliminary step.
한편, 사용자 평면의 데이터가 매크로 셀의 EPS 베어러를 통해 송수신됨에 따라, 기존의 제1 확장 EPS 베어러에서의 상향링크 전송은 중단되어야 한다. 이러한 의미에서, 상기 제1 RRC 연결 재구성 메시지는 기존의 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 중단을 지시할 수도 있다. Meanwhile, as data of the user plane is transmitted and received through the EPS bearer of the macro cell, uplink transmission in the existing first extended EPS bearer should be stopped. In this sense, the first RRC connection reconfiguration message may indicate an interruption of uplink transmission in the existing first extended EPS bearer.
제1 실시예로서, 제1 RRC 연결 재구성 메시지는 제1 확장 EPS 베어러를 이용한 상향링크 전송을 중단함을 지시하는 UL Tx 유보 정보(ULTxStopInfo)를 포함할 수 있다. 다시 말하면, 제1 RRC 연결 재구성 메시지는 제1 확장 EPS 베어러를 사용하여 상향링크 전송을 하지 말라는 의미의 UL Tx 유보 정보를 포함할 수 있다. 이는 제2 확장 EPS 베어러의 생성이 단말부터 코어망까지의 전 구간에서 완성되지 않은 상태이기 때문이다. As a first embodiment, the first RRC connection reconfiguration message may include UL Tx reservation information (ULTxStopInfo) indicating to stop uplink transmission using the first extended EPS bearer. In other words, the first RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the first extended EPS bearer. This is because the creation of the second extended EPS bearer is not completed in all sections from the terminal to the core network.
제2 실시예로서, 제1 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 개시함을 지시하는 UL TX 시작 정보(ULTxStartInfo)를 포함할 수 있다. As a second embodiment, the first RRC connection reconfiguration message may include UL TX start information (ULTxStartInfo) indicating that uplink transmission is started using the EPS bearer of the macro cell.
제3 실시예로서, 제1 RRC 연결 재구성 메시지는 단말 식별자(UE Identity), 매크로 셀의 EPS 베어러 식별자 및 제1 확장 EPS 베어러 식별자를 포함할 수 있다. 단말 식별자는 단말을 식별할 수 있는 식별번호로서, C-RNTI(Cell-Radio Network Temporary Identifier), IMSI(International Mobile Subscriber Identity), GUTI(Globally Unique Temporary Identity) 등을 포함할 수 있다. As a third embodiment, the first RRC connection reconfiguration message may include a UE identifier, an EPS bearer identifier of a macro cell, and a first extended EPS bearer identifier. The terminal identifier is an identification number for identifying the terminal and may include a Cell-Radio Network Temporary Identifier (C-RNTI), an International Mobile Subscriber Identity (IMSI), a Globally Unique Temporary Identity (GUTI), and the like.
이외에도, 제1 RRC 연결 재구성 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 내지 제3 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the first RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the second embodiment. It may include information according to a combination of an example and a third embodiment, or may include information according to a combination of the first to third embodiments.
본 실시예는 UL Tx 유보 정보 또는 UL TX 시작 정보가 제1 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 유보 정보 와 UL TX 시작 정보는 제1 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다. This embodiment is not limited to the transmission of the UL Tx reservation information or the UL TX start information included in the first RRC connection reconfiguration message. That is, the UL Tx reservation information and the UL TX start information may be transmitted independently of the first RRC connection reconfiguration message.
제1 RRC 연결 재구성 메시지를 수신하면, 단말은 상향링크 데이터 송신 시에 더 이상 제1 확장 EPS 베어러를 사용하지 않고(즉, 제1 확장 EPS 베어러를 사용한 상향링크 전송을 중단하고), 매크로 셀의 EPS 베어러를 사용할 수 있다. Upon receiving the first RRC connection reconfiguration message, the UE no longer uses the first extended EPS bearer when transmitting uplink data (ie, suspends uplink transmission using the first extended EPS bearer), and the macro cell of the macro cell. EPS bearers can be used.
매크로 기지국은 EPS 베어러 제어 정보를 코어망((MME, S-GW, P-GW)으로 전송한다(S510). P-GW는 EPS 베어러 제어 정보를 최종적으로 수신한다. 이때부터 P-GW는 PDN으로부터 수신하는 사용자 평면의 하향링크 데이터를 제1 확장 EPS 베어러 대신에 매크로 셀의 EPS 베어러를 사용하여 단말로 전달한다. EPS 베어러 제어 정보는 예를 들어 단말 식별자, 매크로 셀의 EPS 베어러 식별자 및 제1 확장 EPS 베어러 식별자 중 적어도 하나를 포함할 수 있다. The macro base station transmits EPS bearer control information to the core network (MME, S-GW, P-GW) (S510). The P-GW finally receives EPS bearer control information. Downlink data of the user plane received from the UE is transmitted to the terminal using the EPS bearer of the macro cell instead of the first extended EPS bearer The EPS bearer control information may be, for example, the terminal identifier, the EPS bearer identifier of the macro cell, and the first. It may include at least one of the extended EPS bearer identifier.
단말은 제1 RRC 연결 재구성 메시지에 기반하여 무선 구성을 완료하고, 제1 RRC 연결 재구성 완료 메시지를 매크로 기지국으로 전송한다(S515). 단계 S515는 단계 S505보다 이전에 수행될 수도 있다. The terminal completes the radio configuration based on the first RRC connection reconfiguration message, and transmits the first RRC connection reconfiguration complete message to the macro base station (S515). Step S515 may be performed before step S505.
단말은 제1 RRC 연결 재구성 메시지와 EPS 베어러 제어정보에 기반하여 매크로 셀의 EPS 베어러를 재사용함으로써 원활한 서비스를 단말에 제공할 수 있다. 예를 들어 제2 확장 EPS 베어러를 생성하는 과정에서 스몰셀 A의 신호 세기가 급격히 나빠지더라도, 단말은 매크로 셀의 EPS 베어러를 통해 안정적인 서비스를 제공받을 수 있다.The terminal may provide a smooth service to the terminal by reusing the EPS bearer of the macro cell based on the first RRC connection reconfiguration message and the EPS bearer control information. For example, even when the signal strength of the small cell A deteriorates rapidly in the process of generating the second extended EPS bearer, the terminal may receive a stable service through the EPS bearer of the macro cell.
매크로 셀의 EPS 베어러의 재사용과는 별도로, 단말은 제2 확장 EPS 베어러를 생성해야 한다. 이는 베어러 확장 절차로서, 매크로 기지국은 베어러 확장 요청 메시지를 제2 스몰 기지국으로 전송한다(S520). 베어러 확장 요청 메시지는 X2 인터페이스를 통하여 매크로 기지국에서 제2 스몰 기지국으로 전송될 수 있다. 베어러 확장 요청 메시지를 수신한 제2 스몰 기지국은, 베어러 확장 요청 메시지 내의 확장 EPS 베어러 식별자가 가리키는 제1 확장 EPS 베어러를 대신하여 사용할 제2 확장 EPS 베어러를 주어진 QoS 정보를 만족하도록 만들라는 의미로 해석한다.Apart from reusing the EPS bearer of the macro cell, the UE must create a second extended EPS bearer. This is a bearer extension procedure, and the macro base station transmits a bearer extension request message to the second small base station (S520). The bearer extension request message may be transmitted from the macro base station to the second small base station through the X2 interface. Receiving the bearer extension request message, the second small base station interprets the second extended EPS bearer to be used in place of the first extended EPS bearer indicated by the extended EPS bearer identifier in the bearer extension request message to satisfy the given QoS information. do.
베어러 확장 요청 메시지는 적어도 하나의 정보요소(information element: IE)를 포함할 수 있다. 예를 들어, 정보요소는 단말 식별자(UE Identity) 또는 매크로 셀의 EPS 베어러 식별자, 스몰 셀 A의 제 1 확장 EPS 베어러 식별자 또는 QoS 결정 파라미터(QoS decision parameter)가 될 수 있다. The bearer extension request message may include at least one information element (IE). For example, the information element may be a UE identifier or an EPS bearer identifier of a macro cell, a first extended EPS bearer identifier of a small cell A, or a QoS decision parameter.
단말 식별자는 단말을 식별할 수 있는 식별번호로서, C-RNTI(Cell-Radio Network Temporary Identifier), IMSI(International Mobile Subscriber Identity), GUTI(Globally Unique Temporary Identity) 등을 포함할 수 있다. The terminal identifier is an identification number for identifying the terminal and may include a Cell-Radio Network Temporary Identifier (C-RNTI), an International Mobile Subscriber Identity (IMSI), a Globally Unique Temporary Identity (GUTI), and the like.
매크로 셀의 EPS 베어러 식별자는 매크로 기지국과 단말간에 형성된 매크로 셀의 EPS 베어러를 식별하는 정보이다.The EPS bearer identifier of the macro cell is information for identifying the EPS bearer of the macro cell formed between the macro base station and the terminal.
스몰 셀 A의 제 1 확장 EPS 베어러 식별자는 스몰 기지국 A와 단말간에 형성된 스몰 셀 A의 EPS 베어러를 식별하는 정보이다.The first extended EPS bearer identifier of the small cell A is information for identifying the EPS bearer of the small cell A formed between the small base station A and the terminal.
QoS 결정 파라미터는 매크로 셀의 EPS 베어러에 적용되는 QoS 또는 확장 EPS 베어러에 대해 기대하는 QoS를 결정하는데 사용되는 파라미터이다. QoS 결정 파라미터는 예를 들어 QCI(QoS Class Identifier), GBR(Guaranteed Bit Rate) QoS 정보, MBR(Maximum Bit Rate)과 같이 QoS를 특징지을 수 있는 값을 포함한다. The QoS determination parameter is a parameter used to determine the QoS to be expected for the extended EPS bearer or the QoS applied to the EPS bearer of the macro cell. QoS determination parameters include, for example, values that can characterize QoS, such as QoS Class Identifiers (QCI), Guaranteed Bit Rate (GBR) QoS information, and Maximum Bit Rate (MBR).
QCI는 베어러 레벨 패킷 포워딩 처리(treatment)를 제어하는 노드-특정(node-specific) 파라미터들에 접근하기 위한 기준으로 사용되는 스칼라(scalar)로서, 상기 스칼라 값은 기지국을 소유하는 오퍼레이터(operator)에 의하여 미리 구성(pre-configured)되어 있다. 예를 들어 상기 스칼라는 정수값 1 내지 9 중 어느 하나로 미리 구성될 수 있다. ARP의 주된 목적은 자원이 부족(resource limitation)한 경우 베어러의 설정(establishment)/수정(modification) 요청이 수락될지(accepted) 또는 거절이 필요한지(needed to be rejected)를 결정하는데 있다. 또한 ARP는 예외적인 자원 부족(exceptional resource limitations), 예를 들어 핸드오버시(at handover), 기지국에 의해 어떤(which) 베어러(들)을 드랍(drop)할지 결정하는데 사용될 수 있다. QCI is a scalar that is used as a reference to access node-specific parameters that control bearer level packet forwarding treatment, and the scalar value is assigned to an operator owning a base station. Pre-configured by For example, the scalar may be preconfigured with any one of integer values 1 to 9. The main purpose of ARP is to determine whether a bearer's establishment / modification request is accepted or needs to be rejected in case of resource limitations. ARP may also be used to determine which bearer (s) to drop by the base station at exceptional resource limitations, for example at handover.
GBR은 베어러별로 고정된 자원을 할당 받음(대역폭 보장)을 의미한다. 반면에 non-GBR은 QCI와 ARP 이외에 QoS 결정 파라미터로 AMBR(Aggregated Maximum Bit Rate)를 가지며 이는 자원을 베어러별로 할당 받지 못하는 대신에 다른 non-GBR형 베어러들과 같이 사용할 수 있는 최대 대역폭을 할당 받음을 의미한다.GBR means that fixed resources are allocated for each bearer (bandwidth guarantee). On the other hand, non-GBR has an aggregated maximum bit rate (AMBR) as a QoS decision parameter in addition to QCI and ARP, and instead of not being allocated resources per bearer, it is allocated the maximum bandwidth that can be used like other non-GBR bearers. Means.
베어러 확장 요청 메시지를 수신한 제2 스몰 기지국은 베어러 확장 요청 메시지 내에 포함된 정보요소들을 추출한다. 그리고 제2 스몰 기지국은 상기 단말 식별자에 의해 식별되는 단말이 상기 매크로 셀의 EPS 베어러 식별자에 의해 식별되는 EPS 베어러 대신 또는 스몰 셀 A의 제 1 확장 EPS 베어러 대신에, 상기 QoS 결정 파라미터에 만족하는 제2 확장 EPS 베어러를 코어망 측과 함께 생성하는 절차를 준비한다(S525). Upon receiving the bearer extension request message, the second small base station extracts information elements included in the bearer extension request message. And the second small base station is configured to satisfy the QoS determination parameter by the terminal identified by the terminal identifier instead of the EPS bearer identified by the EPS bearer identifier of the macro cell or instead of the first extended EPS bearer of small cell A. 2 prepare a procedure for generating an extended EPS bearer with the core network side (S525).
예를 들어, 제2 스몰 기지국과 코어망은 제2 확장 EPS 베어러의 식별자를 결정하고 상기 제2 확장 EPS 베어러 식별자와 연관된 E-RAB 식별자를 결정한다. 그리고 새롭게 생성된 제2 확장 EPS 베어러와 E-RAB를 제1 확장 EPS 베어러에 대신하여 사용하기 위해 필요한 준비 작업을 수행한다. For example, the second small base station and the core network determine an identifier of the second extended EPS bearer and an E-RAB identifier associated with the second extended EPS bearer identifier. Then, a preparation operation necessary for using the newly created second extended EPS bearer and the E-RAB in place of the first extended EPS bearer is performed.
제2 스몰 기지국은 제2 확장 EPS 베어러와 그와 연관된 E-RAB의 QoS를 만족하는 무선 구성 파라미터 값들을 포함하는 베어러 확장 응답 메시지를 매크로 기지국으로 전달한다(S530). 베어러 확장 응답 메시지는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 단말에 알려주는 메시지이다. 이것은 코어망으로부터 전달되어 오는 메시지를 포함할 수도 있다. 베어러 확장 응답 메시지의 전달을 위해 X2 인터페이스가 사용될 수 있다. The second small base station transmits a bearer extension response message including radio configuration parameter values satisfying QoS of the second extended EPS bearer and the associated E-RAB to the macro base station (S530). The bearer extension response message is a message informing the UE of the availability or activation of the second extended EPS bearer. This may include messages coming from the core network. The X2 interface may be used for delivery of the bearer extension response message.
제1 실시예로서, 베어러 확장 응답 메시지에 포함된 상기 무선 구성 파라미터 값들은 RB를 구성하는 파라미터들로써, 스몰셀 B 상에서 단말에 서비스를 제공하는데 필요한 시스템 정보와 PHY, MAC 계층의 정보를 포함할 수 있다. In a first embodiment, the radio configuration parameter values included in the bearer extension response message are parameters configuring an RB, and may include system information, PHY, and MAC layer information necessary to provide a service to a terminal on a small cell B. have.
제2 실시예로서, 베어러 확장 응답 메시지는 단말 식별자, 스몰 셀 B의 시스템 정보, 스몰 셀 B의 물리계층 정보, 스몰 셀 B의 MAC 계층의 정보, 매크로 셀의 EPS 베어러 식별자, 제2 확장 EPS 베어러 식별자 중 적어도 하나를 포함할 수 있다. As a second embodiment, the bearer extension response message includes a terminal identifier, system information of small cell B, physical layer information of small cell B, information of MAC layer of small cell B, EPS bearer identifier of macro cell, and second extended EPS bearer. It may include at least one of the identifier.
제3 실시예로서, 베어러 확장 응답 메시지는 DRB 구성을 위한 파라미터들, 예를 들어 DRB 식별자(drb-Identity), PDCH 구성정보(pdcp-Config), RLC 구성정보(rlc-Config), 제2 확장 EPS 베어러 식별자 중 적어도 하나를 더 포함할 수 있다. As a third embodiment, the bearer extension response message includes parameters for DRB configuration, for example, DRB identifier (drb-Identity), PDCH configuration information (pdcp-Config), RLC configuration information (rlc-Config), and second extension. It may further include at least one of the EPS bearer identifier.
이외에도, 베어러 확장 응답 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 내지 제3 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the bearer extension response message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and The information according to the combination of the third embodiment may be included, or the information according to the combination of the first to third embodiments may be included.
매크로 기지국은 베어러 확장 응답 메시지를 통해 수신받은 값들을 사용하여 단말의 무선자원 구성을 지시하는 제2 RRC 연결 재구성 메시지를 단말로 전송한다(S535). 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러의 완성을 위해 제2 스몰 기지국과 단말 사이에 필요한 제어정보를 포함한다. The macro base station transmits to the terminal a second RRC connection reconfiguration message indicating the radio resource configuration of the terminal using the values received through the bearer extension response message (S535). The second RRC connection reconfiguration message includes control information required between the second small base station and the terminal to complete the second extended EPS bearer.
제1 실시예로서, 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보(suspending)함을 지시하는 UL Tx 유보 정보(ULTxSuspendInfo)를 포함할 수 있다. 다시 말하면, 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 하지 말라는 의미의 UL Tx 유보 정보를 포함할 수 있다. 이는 제2 확장 EPS 베어러의 생성이 단말부터 코어망까지의 전 구간에서 완성되지 않은 상태에서 제2 확장 EPS 베어러가 사용되면, 단말과 코어망 사이에서 주고 받는 사용자 데이터가 매크로 기지국이나 코어망 쪽에서 버퍼링이 되거나 또는 매크로 기지국과 제2 스몰 기지국 사이의 인터페이스를 통해서 대량의 데이터가 교환되어야 하는 문제가 발생할 수 있기 때문이다. 단, 상기 상향링크 전송은 PUCCH와 HARQ ACK/NACK 정보의 전송은 포함하지 않을 수 있다. 다시 말하면, UL Tx 유보 정보에도 불구하고, 단말은 PUCCH와 HARQ ACK/NACK 정보를 전송할 수 있다. As a first embodiment, the second RRC connection reconfiguration message may include UL Tx reservation information (ULTxSuspendInfo) indicating suspending uplink transmission using the second extended EPS bearer. In other words, the second RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the second extended EPS bearer. This is because when the creation of the second extended EPS bearer is not completed in the entire period from the terminal to the core network, when the second extended EPS bearer is used, the user data exchanged between the terminal and the core network is buffered at the macro base station or core network side. This may be a problem because a large amount of data must be exchanged through an interface between the macro base station and the second small base station. However, the uplink transmission may not include transmission of PUCCH and HARQ ACK / NACK information. In other words, despite the UL Tx reservation information, the terminal may transmit the PUCCH and HARQ ACK / NACK information.
제2 실시예로서, 제2 RRC 연결 재구성 메시지는 상기 베어러 확장 응답 메시지의 모든 무선 구성 파라미터 값들 및 제2 확장 EPS 베어러의 식별자를 포함할 수 있다. As a second embodiment, the second RRC connection reconfiguration message may include all radio configuration parameter values of the bearer extension response message and an identifier of the second extended EPS bearer.
제3 실시예로서, 제2 RRC 연결 재구성 메시지는 제2 스몰 기지국과 단말간에 형성되는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 지시하는 세부정보를 포함할 수 있다. As a third embodiment, the second RRC connection reconfiguration message may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
제4 실시예로서, 제2 RRC 연결 재구성 메시지는 단말 특정한(UE specific) NAS 계층 정보를 코어망과 단말간에 전달하는데 사용되는 전용적 NAS 리스트(dedicatedInfoNASList) 정보요소를 포함한다. 그리고 상기 전용적 NAS 리스트 정보요소에 제2 스몰 기지국과 단말간에 형성되는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 지시하는 세부정보가 포함될 수 있다. As a fourth embodiment, the second RRC connection reconfiguration message includes a dedicated NAS list (dedicatedInfoNASList) information element used for transferring UE specific NAS layer information between the core network and the terminal. The dedicated NAS list information element may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
이외에도, 제2 RRC 연결 재구성 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제1 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있고, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있고, 제3 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제1 내지 제4 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the second RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the first embodiment. It may include information according to a combination of an example and a fourth embodiment, may include information according to a combination of a second embodiment and a third embodiment, and may include information according to a combination of a second embodiment and a fourth embodiment. In addition, the information according to the combination of the third and fourth embodiments may be included, and the information according to the combination of the first to fourth embodiments may be included.
본 실시예는 UL Tx 유보 정보(ULTxSuspendInfo)가 제2 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 유보 정보는 제2 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다. This embodiment is not limited to the transmission of the UL Tx reservation information (ULTxSuspendInfo) included in the second RRC connection reconfiguration message. That is, the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
단말은 제2 RRC 연결 재구성 메시지에 기반하여 제2 스몰 기지국과의 무선 구성을 완료하고, 제2 확장 EPS 베어러에 해당하는 무선 구성을 성공적으로 완료하였음을 나타내는 제2 RRC 연결 재구성 완료 메시지를 매크로 기지국으로 전송한다(S540). The terminal completes the radio configuration with the second small base station based on the second RRC connection reconfiguration message, and the macro base station receives a second RRC connection reconfiguration complete message indicating that the radio configuration corresponding to the second extended EPS bearer has been successfully completed. It transmits to (S540).
UL Tx 유보 정보를 수신한 단말은 아직 코어망에서 제2 확장 EPS 베어러가 완성되지 않은 상태이기 때문에 상향링크(UL) 데이터를 매크로 셀의 EPS 베어러를 통해 전송 및 처리할 수 있다. 즉, 제2 확장 EPS 베어러의 생성 준비 단계에서, 단말은 삭제되지 않고 남아 있는 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 수행한다. 다만, 단말은 PUCCH와 HARQ ACK/NACK 정보는 예외적으로 제2 확장 EPS 베어러를 사용하여 전송할 수도 있다. 단말은 하향링크(DL) 데이터 또한 매크로 셀의 EPS 베어러를 통해 수신 및 처리할 수 있는 상태이다.The terminal receiving the UL Tx reservation information may transmit and process uplink (UL) data through the EPS bearer of the macro cell since the second extended EPS bearer is not yet completed in the core network. That is, in the preparation preparation step of generating the second extended EPS bearer, the terminal performs uplink transmission using the EPS bearer of the macro cell remaining without being deleted. However, the UE may transmit PUCCH and HARQ ACK / NACK information using the second extended EPS bearer as an exception. The UE can receive and process downlink (DL) data through the EPS bearer of the macro cell.
이와 같이 단말에 무선 구성이 완료(즉, RB 구성 완료)되고 제2 확장 EPS 베어러를 사용할 수 있음에도 여전히 매크로 셀의 EPS 베어러를 통해 상향링크 전송을 수행하는 이유는 상향링크 전송의 신뢰성을 보장하기 위함이다. 단말이 스몰셀 B로 이동하다가 다시 스몰셀 A나 매크로 셀 만의 영역으로 이동할 수도 있기 때문이다. As such, although the radio configuration is completed in the terminal (that is, the RB configuration is completed) and the second extended EPS bearer can be used, the reason why the uplink transmission is still performed through the EPS bearer of the macro cell is to ensure the reliability of the uplink transmission. to be. This is because the UE may move to the small cell B and then move to the area of the small cell A or the macro cell only.
매크로 기지국은 단말과 제2 스몰 기지국간에 RB의 생성이 완료되었음을 지시하는 RB 생성 완료 메시지를 제2 스몰 기지국으로 전달한다(S545). RB 생성 완료 메시지는 X2 인터페이스를 통해 전달되는 메시지이다. RB 생성 완료 메시지를 수신하면, 제2 스몰 기지국은 제2 확장 EPS 베어러에 해당하는 RB의 구성이 성공적으로 완료되었음을 확인할 수 있다. 그리고 비로소 단말과 제2 스몰 기지국간에 RB의 생성이 완료된다(S550). The macro base station transmits an RB generation complete message indicating that generation of the RB is completed between the terminal and the second small base station to the second small base station (S545). The RB creation complete message is a message transmitted through the X2 interface. Upon receiving the RB generation complete message, the second small base station may confirm that the configuration of the RB corresponding to the second extended EPS bearer is successfully completed. Finally, generation of the RB is completed between the terminal and the second small base station (S550).
제2 스몰 기지국은 코어망에 대하여 제2 확장 EPS 베어러의 생성을 완료한다(S555). 코어망에서 제2 확장 EPS 베어러가 생성된 후, 코어망의 구성요소 중에서 P-GW는 단말을 향해 PDN으로부터 P-GW를 통해서 들어오는 사용자 데이터를 제2 확장 EPS 베어러를 사용하여 단말에게 전송하기 시작한다. 그리고, 제2 스몰 기지국은 P-WG를 통해 유입되는 상기 사용자 데이터를 제2 확장 EPS 베어러를 이용하여 단말로 전송한다(S560). 제2 스몰 기지국과 단말간에 RB의 생성이 완료되었으므로, 제2 스몰 기지국이 제2 확장 EPS 베어러를 통해 상기 사용자 데이터를 단말로 전송하는데 문제가 없고 단말도 제2 확장 EPS 베어러를 통해 상기 사용자 데이터를 수신하는데 문제가 없다. The second small base station completes generation of the second extended EPS bearer for the core network (S555). After the second extended EPS bearer is created in the core network, among the components of the core network, the P-GW starts to transmit user data coming from the PDN through the P-GW toward the terminal to the terminal using the second extended EPS bearer. do. Then, the second small base station transmits the user data flowing through the P-WG to the terminal using a second extended EPS bearer (S560). Since generation of the RB is completed between the second small base station and the terminal, the second small base station has no problem in transmitting the user data to the terminal through the second extended EPS bearer, and the terminal also transmits the user data through the second extended EPS bearer. There is no problem to receive.
코어망에 대한 제2 확장 EPS 베어러의 생성이 완료되었음을 확인하면, 매크로 기지국은 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 단말에 지시하는 제3 RRC 연결 재구성 메시지를 단말로 전송한다(S565). 이로써 단말은 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 수행할 수 있다(S570). If it is confirmed that generation of the second extended EPS bearer for the core network is completed, the macro base station transmits a third RRC connection reconfiguration message to the UE indicating that the second extended EPS bearer starts uplink transmission (S565). ). Accordingly, the UE can perform uplink transmission using the second extended EPS bearer (S570).
일례로서, 제3 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러에서 상향링크 전송을 유보(suspend)함을 지시하는 UL Tx 유보 정보(ULTxSuspendInfo) 및 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 지시하는 UL Tx 시작 정보(ULTxStartInfo)를 포함한다.As an example, the third RRC connection reconfiguration message indicates UL Tx reservation information (ULTxSuspendInfo) indicating that the uplink transmission is suspended in the EPS bearer of the macro cell and uplink transmission is started in the second extended EPS bearer. UL Tx start information (ULTxStartInfo) is included.
다른 예로서, 제3 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러에서 상향링크 전송을 유보 (suspend)함을 지시하는 UL Tx 유보 정보, 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 지시하는 UL Tx 시작 정보(ULTxStartInfo), 매크로 셀의 EPS 베어러의 식별자 및 제2 확장 EPS 베어러의 식별자를 포함할 수 있다. As another example, the third RRC connection reconfiguration message may include UL Tx reservation information indicating that the uplink transmission is suspended in the EPS bearer of the macro cell, and UL indicating that the uplink transmission is started in the second extended EPS bearer. It may include Tx start information (ULTxStartInfo), an identifier of the EPS bearer of the macro cell, and an identifier of the second extended EPS bearer.
본 실시예는 UL Tx 유보 정보와 UL Tx 시작 정보(ULTxStartInfo)가 제3 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 유보 정보와 UL Tx 시작 정보는 제3 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다.This embodiment is not limited to the UL Tx reservation information and the UL Tx start information (ULTxStartInfo) included in the third RRC connection reconfiguration message and transmitted. That is, the UL Tx reservation information and the UL Tx start information may be transmitted independently of the third RRC connection reconfiguration message.
제1 스몰 기지국과 코어망은 제1 활장 EPS 베어러의 해제를 위한 동작을 수행한다(S575).The first small base station and the core network perform an operation for releasing the first long EPS bearer (S575).
도 5의 실시예에 따른 단말, 매크로 기지국, 제1 및 제2 스몰 기지국 간의 시그널링은 단계 S565를 포함하는 것으로 설명하였으나, 본 발명의 다른 실시예는 단계 S565의 제3 RRC 연결 재구성 메시지의 전송 대신에 PDCCH의 전송을 포함할 수 있다. 즉, 단말은 PDCCH를 통해 스몰 기지국으로부터 하향링크 할당정보(downlink assignment)를 수신할 수 있는데, 이때 단말은 상향링크 전송도 가능한 것으로 판단할 수 있다. 따라서, 단말은 상향링크 전송이 필요하면 제2 확장 EPS 베어러를 통해 상향링크 전송을 수행할 수 있다. Although the signaling between the terminal, the macro base station, the first and the second small base station according to the embodiment of FIG. 5 has been described as including step S565, another embodiment of the present invention instead of transmitting the third RRC connection reconfiguration message of step S565. May include transmission of the PDCCH. That is, the terminal may receive downlink assignment information (downlink assignment) from the small base station through the PDCCH, the terminal may determine that uplink transmission is also possible. Therefore, when uplink transmission is required, the UE may perform uplink transmission through the second extended EPS bearer.
도 6은 본 발명의 일례에 따른 단말의 동작 순서도이다. 여기서, 스몰셀 A는 제1 스몰 기지국이 제공하는 스몰셀이고, 스몰셀 B는 제2 스몰셀이 제공하는 스몰셀이다. 현재 단말은 제1 스몰 기지국에 의해 사용자 평면의 데이터를 제공하는 제1 확장 EPS 베어러를 사용하고 있다고 가정한다. 6 is an operation flowchart of a terminal according to an example of the present invention. Here, small cell A is a small cell provided by the first small base station, and small cell B is a small cell provided by the second small cell. It is currently assumed that the terminal uses a first extended EPS bearer that provides data of a user plane by a first small base station.
도 6을 참조하면, 단말은 매크로 셀, 스몰셀 A, 스몰셀 B의 신호 세기를 측정하고, 상기 측정된 신호 세기가 특정 기준을 만족할 경우 매크로 기지국으로 측정 보고를 전송한다(S600). 예를 들어 상기 측정된 신호 세기가 특정 기준을 만족하려면, 매크로 셀의 신호세기가 임계치 (threshold) 만큼 크면서 스몰셀 A 그리고 스몰셀 B의 신호 세기가 임계치 (threshold) 만큼 작아야 한다. 위의 조건뿐만이 아니라 단말이 매크로 셀 내에 위치하면서 스몰 셀 A에서 스몰 셀 B로 이동하고 있음을 판단할 수 있는 다른 조건들도 가능하다.Referring to FIG. 6, the terminal measures signal strengths of the macro cell, the small cell A, and the small cell B, and transmits a measurement report to the macro base station when the measured signal strength satisfies a specific criterion (S600). For example, if the measured signal strength satisfies a specific criterion, the signal strengths of the macro cell and the small cell B should be as small as the threshold while the signal strength of the macro cell is as large as the threshold. In addition to the above conditions, other conditions that may determine that the UE is located in the macro cell and move from the small cell A to the small cell B are possible.
매크로 기지국이 제1 확장 EPS 베어러를 더 이상 사용하지 않고 제2 확장 EPS 베어러를 생성하여 사용하기를 결정하면, 단말은 중단되어 있던 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 개시함을 지시하는 제1 RRC 연결 재구성 메시지를 매크로 기지국으로부터 수신한다(S605). 단계 S605는 직접적으로 제2 확장 EPS 베어러를 생성하는 시그널링은 아니지만, 그 예비 단계로서 수행되는 것이다. If the macro base station decides to create and use the second extended EPS bearer without using the first extended EPS bearer anymore, the terminal indicates that the uplink transmission is started using the EPS bearer of the suspended macro cell. The first RRC connection reconfiguration message is received from the macro base station (S605). Step S605 is not signaling to directly generate a second extended EPS bearer, but is performed as a preliminary step.
한편, 사용자 평면의 데이터가 매크로 셀의 EPS 베어러를 통해 송수신됨에 따라, 기존의 제1 확장 EPS 베어러에서의 상향링크 전송은 중단되어야 한다. 이러한 의미에서, 상기 제1 RRC 연결 재구성 메시지는 기존의 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 중단을 지시할 수도 있다. Meanwhile, as data of the user plane is transmitted and received through the EPS bearer of the macro cell, uplink transmission in the existing first extended EPS bearer should be stopped. In this sense, the first RRC connection reconfiguration message may indicate an interruption of uplink transmission in the existing first extended EPS bearer.
제1 실시예로서, 제1 RRC 연결 재구성 메시지는 제1 확장 EPS 베어러를 이용한 상향링크 전송을 유보함을 지시하는 UL Tx 유보 정보(ULTxSuspendInfo)를 포함할 수 있다. 다시 말하면, 제1 RRC 연결 재구성 메시지는 제1 확장 EPS 베어러를 사용하여 상향링크 전송을 하지 말라는 의미의 UL Tx 유보 정보를 포함할 수 있다. 이는 제2 확장 EPS 베어러의 생성이 단말부터 코어망까지의 전 구간에서 완성되지 않은 상태이기 때문이다. As a first embodiment, the first RRC connection reconfiguration message may include UL Tx reservation information (ULTxSuspendInfo) indicating reservation for uplink transmission using the first extended EPS bearer. In other words, the first RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the first extended EPS bearer. This is because the creation of the second extended EPS bearer is not completed in all sections from the terminal to the core network.
제2 실시예로서, 제1 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 개시함을 지시하는 UL Tx 시작 정보(ULTxStartInfo)를 포함할 수 있다. As a second embodiment, the first RRC connection reconfiguration message may include UL Tx start information (ULTxStartInfo) indicating that uplink transmission is started using the EPS bearer of the macro cell.
제3 실시예로서, 제1 RRC 연결 재구성 메시지는 단말 식별자(UE Identity), 매크로 셀의 EPS 베어러 식별자 및 제1 확장 EPS 베어러 식별자를 포함할 수 있다. 단말 식별자는 단말을 식별할 수 있는 식별번호로서, C-RNTI(Cell-Radio Network Temporary Identifier), IMSI(International Mobile Subscriber Identity), GUTI(Globally Unique Temporary Identity) 등을 포함할 수 있다. As a third embodiment, the first RRC connection reconfiguration message may include a UE identifier, an EPS bearer identifier of a macro cell, and a first extended EPS bearer identifier. The terminal identifier is an identification number for identifying the terminal and may include a Cell-Radio Network Temporary Identifier (C-RNTI), an International Mobile Subscriber Identity (IMSI), a Globally Unique Temporary Identity (GUTI), and the like.
이외에도, 제1 RRC 연결 재구성 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 내지 제3 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the first RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the second embodiment. It may include information according to a combination of an example and a third embodiment, or may include information according to a combination of the first to third embodiments.
본 실시예는 UL Tx 유보 정보 또는 UL TX 시작 정보가 제1 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 유보 정보와 UL TX 시작 정보는 제1 RRC 연결 재구성 메시지와는 별개로 독자적으로 수신될 수도 있다. This embodiment is not limited to the transmission of the UL Tx reservation information or the UL TX start information included in the first RRC connection reconfiguration message. That is, the UL Tx reservation information and the UL TX start information may be received independently of the first RRC connection reconfiguration message.
제1 RRC 연결 재구성 메시지를 수신하면, 단말은 상향링크 데이터 송신 시에 더 이상 제1 확장 EPS 베어러를 사용하지 않고(즉, 제1 확장 EPS 베어러를 사용한 상향링크 전송을 중단하고), 매크로 셀의 EPS 베어러를 사용할 수 있다. Upon receiving the first RRC connection reconfiguration message, the UE no longer uses the first extended EPS bearer when transmitting uplink data (ie, suspends uplink transmission using the first extended EPS bearer), and the macro cell of the macro cell. EPS bearers can be used.
단말은 제1 RRC 연결 재구성 메시지에 기반하여 무선 구성을 완료하고, 제1 RRC 연결 재구성 완료 메시지를 매크로 기지국으로 전송한다(S610). The terminal completes the radio configuration based on the first RRC connection reconfiguration message, and transmits the first RRC connection reconfiguration complete message to the macro base station (S610).
단말은 제1 RRC 연결 재구성 메시지와 EPS 베어러 제어정보에 기반하여 매크로 셀의 EPS 베어러를 재사용함으로써 원활한 서비스를 단말에 제공할 수 있다. 예를 들어 제2 확장 EPS 베어러를 생성하는 과정에서 스몰셀 A의 신호 세기가 급격히 나빠지더라도, 단말은 매크로 셀의 EPS 베어러를 통해 안정적인 서비스를 제공받을 수 있다.The terminal may provide a smooth service to the terminal by reusing the EPS bearer of the macro cell based on the first RRC connection reconfiguration message and the EPS bearer control information. For example, even when the signal strength of the small cell A deteriorates rapidly in the process of generating the second extended EPS bearer, the terminal may receive a stable service through the EPS bearer of the macro cell.
단말은 베어러 확장 응답 메시지를 통해 수신받은 값들을 사용하여 단말의 무선자원 구성을 지시하는 제2 RRC 연결 재구성 메시지를 매크로 기지국으로부터 수신한다(S615). 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러의 완성을 위해 제2 스몰 기지국과 단말 사이에 필요한 제어정보를 포함한다. The terminal receives from the macro base station a second RRC connection reconfiguration message indicating the radio resource configuration of the terminal using the values received through the bearer extension response message (S615). The second RRC connection reconfiguration message includes control information required between the second small base station and the terminal to complete the second extended EPS bearer.
제1 실시예로서, 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보(suspending)함을 지시하는 UL Tx 유보 정보(ULTxSuspendInfo)를 포함할 수 있다. 다시 말하면, 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 하지 말라는 의미의 UL Tx 유보 정보를 포함할 수 있다. 이는 제2 확장 EPS 베어러의 생성이 단말부터 코어망까지의 전 구간에서 완성되지 않은 상태에서 제2 확장 EPS 베어러가 사용되면, 단말과 코어망 사이에서 주고 받는 사용자 데이터가 매크로 기지국이나 코어망 쪽에서 버퍼링이 되거나 또는 매크로 기지국과 제2 스몰 기지국 사이의 인터페이스를 통해서 대량의 데이터가 교환되어야 하는 문제가 발생할 수 있기 때문이다. 단, 상기 상향링크 전송은 PUCCH와 HARQ ACK/NACK 정보의 전송은 포함하지 않을 수 있다. 다시 말하면, UL Tx 유보 정보에도 불구하고, 단말은 PUCCH와 HARQ ACK/NACK 정보를 전송할 수 있다. As a first embodiment, the second RRC connection reconfiguration message may include UL Tx reservation information (ULTxSuspendInfo) indicating suspending uplink transmission using the second extended EPS bearer. In other words, the second RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the second extended EPS bearer. This is because when the creation of the second extended EPS bearer is not completed in the entire period from the terminal to the core network, when the second extended EPS bearer is used, the user data exchanged between the terminal and the core network is buffered at the macro base station or core network side. This may be a problem because a large amount of data must be exchanged through an interface between the macro base station and the second small base station. However, the uplink transmission may not include transmission of PUCCH and HARQ ACK / NACK information. In other words, despite the UL Tx reservation information, the terminal may transmit the PUCCH and HARQ ACK / NACK information.
제2 실시예로서, 제2 RRC 연결 재구성 메시지는 상기 베어러 확장 응답 메시지의 모든 무선 구성 파라미터 값들 및 제2 확장 EPS 베어러의 식별자를 포함할 수 있다. As a second embodiment, the second RRC connection reconfiguration message may include all radio configuration parameter values of the bearer extension response message and an identifier of the second extended EPS bearer.
제3 실시예로서, 제2 RRC 연결 재구성 메시지는 제2 스몰 기지국과 단말간에 형성되는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 지시하는 세부정보를 포함할 수 있다. As a third embodiment, the second RRC connection reconfiguration message may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
제4 실시예로서, 제2 RRC 연결 재구성 메시지는 단말 특정한(UE specific) NAS 계층 정보를 코어망과 단말간에 전달하는데 사용되는 전용적 NAS 리스트(dedicatedInfoNASList) 정보요소를 포함한다. 그리고 상기 전용적 NAS 리스트 정보요소에 제2 스몰 기지국과 단말간에 형성되는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 지시하는 세부정보가 포함될 수 있다. As a fourth embodiment, the second RRC connection reconfiguration message includes a dedicated NAS list (dedicatedInfoNASList) information element used for transferring UE specific NAS layer information between the core network and the terminal. The dedicated NAS list information element may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
이외에도, 제2 RRC 연결 재구성 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제1 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있고, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있고, 제3 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제1 내지 제4 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the second RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the first embodiment. It may include information according to a combination of an example and a fourth embodiment, may include information according to a combination of a second embodiment and a third embodiment, and may include information according to a combination of a second embodiment and a fourth embodiment. In addition, the information according to the combination of the third and fourth embodiments may be included, and the information according to the combination of the first to fourth embodiments may be included.
본 실시예는 UL Tx 유보 정보(ULTxSuspendInfo)가 제2 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 유보 정보는 제2 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다. This embodiment is not limited to the transmission of the UL Tx reservation information (ULTxSuspendInfo) included in the second RRC connection reconfiguration message. That is, the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
단말은 제2 RRC 연결 재구성 메시지에 기반하여 제2 스몰 기지국과의 무선 구성을 완료하고, 제2 확장 EPS 베어러에 해당하는 무선 구성을 성공적으로 완료하였음을 나타내는 제2 RRC 연결 재구성 완료 메시지를 매크로 기지국으로 전송한다(S620). The terminal completes the radio configuration with the second small base station based on the second RRC connection reconfiguration message, and the macro base station receives a second RRC connection reconfiguration complete message indicating that the radio configuration corresponding to the second extended EPS bearer has been successfully completed. Transmit to (S620).
UL Tx 유보 정보를 수신한 단말은 아직 코어망에서 제2 확장 EPS 베어러가 완성되지 않은 상태이기 때문에 상향링크(UL) 데이터를 매크로 셀의 EPS 베어러를 통해 전송 및 처리할 수 있다. 즉, 제2 확장 EPS 베어러의 생성 준비 단계에서, 단말은 삭제되지 않고 남아 있는 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 수행한다. 다만, 단말은 PUCCH와 HARQ ACK/NACK 정보는 예외적으로 제2 확장 EPS 베어러를 사용하여 전송할 수도 있다. 단말은 하향링크(DL) 데이터 또한 매크로 셀의 EPS 베어러를 통해 수신 및 처리할 수 있는 상태이다.The terminal receiving the UL Tx reservation information may transmit and process uplink (UL) data through the EPS bearer of the macro cell since the second extended EPS bearer is not yet completed in the core network. That is, in the preparation preparation step of generating the second extended EPS bearer, the terminal performs uplink transmission using the EPS bearer of the macro cell remaining without being deleted. However, the UE may transmit PUCCH and HARQ ACK / NACK information using the second extended EPS bearer as an exception. The UE can receive and process downlink (DL) data through the EPS bearer of the macro cell.
이와 같이 단말에 무선 구성이 완료(즉, RB 구성 완료)되고 제2 확장 EPS 베어러를 사용할 수 있음에도 여전히 매크로 셀의 EPS 베어러를 통해 상향링크 전송을 수행하는 이유는 상향링크 전송의 신뢰성을 보장하기 위함이다. 단말이 스몰셀 B로 이동하다가 다시 스몰셀 A나 매크로 셀 만의 영역으로 이동할 수도 있기 때문이다. As such, although the radio configuration is completed in the terminal (that is, the RB configuration is completed) and the second extended EPS bearer can be used, the reason why the uplink transmission is still performed through the EPS bearer of the macro cell is to ensure the reliability of the uplink transmission. to be. This is because the UE may move to the small cell B and then move to the area of the small cell A or the macro cell only.
제2 스몰 기지국이 제2 확장 EPS 베어러에 해당하는 RB의 구성이 성공적으로 완료되었음을 확인하면, 비로소 단말과 제2 스몰 기지국간에 RB의 생성이 완료된다. 코어망에서까지 제2 확장 EPS 베어러의 생성이 완료되면, 단말은 단말을 향해 PDN으로부터 P-GW를 통해서 들어오는 사용자 데이터를 제2 확장 EPS 베어러를 사용하여 수신하기 시작한다(S625). 제2 스몰 기지국과 단말간에 RB의 생성이 완료되었으므로, 제2 스몰 기지국이 제2 확장 EPS 베어러를 통해 상기 사용자 데이터를 단말로 전송하는데 문제가 없고 단말도 제2 확장 EPS 베어러를 통해 상기 사용자 데이터를 수신하는데 문제가 없다. When the second small base station confirms that the configuration of the RB corresponding to the second extended EPS bearer is successfully completed, the generation of the RB is completed between the terminal and the second small base station. When the generation of the second extended EPS bearer until the core network is completed, the terminal starts receiving the user data coming in through the P-GW from the PDN toward the terminal using the second extended EPS bearer (S625). Since generation of the RB is completed between the second small base station and the terminal, the second small base station has no problem in transmitting the user data to the terminal through the second extended EPS bearer, and the terminal also transmits the user data through the second extended EPS bearer. There is no problem to receive.
코어망에 대한 제2 확장 EPS 베어러의 생성이 완료되면, 단말은 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 단말에 지시하는 제3 RRC 연결 재구성 메시지를 매크로 기지국으로부터 수신한다(S630). 이로써 단말은 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 수행할 수 있다(S635). When generation of the second extended EPS bearer for the core network is completed, the terminal receives a third RRC connection reconfiguration message from the macro base station instructing the terminal to start uplink transmission in the second extended EPS bearer (S630). Accordingly, the UE may perform uplink transmission using the second extended EPS bearer (S635).
일례로서, 제3 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러에서 상향링크 전송을 유보(suspend)함을 지시하는 UL Tx 유보 정보(ULTxSuspendInfo) 및 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 지시하는 UL Tx 시작 정보(ULTxStartInfo)를 포함한다.As an example, the third RRC connection reconfiguration message indicates UL Tx reservation information (ULTxSuspendInfo) indicating that the uplink transmission is suspended in the EPS bearer of the macro cell and uplink transmission is started in the second extended EPS bearer. UL Tx start information (ULTxStartInfo) is included.
다른 예로서, 제3 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러에서 상향링크 전송을 유보함을 지시하는 UL Tx 유보 정보, 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 지시하는 UL Tx 시작 정보(ULTxStartInfo), 매크로 셀의 EPS 베어러의 식별자 및 제2 확장 EPS 베어러의 식별자를 포함할 수 있다. As another example, the third RRC connection reconfiguration message may include UL Tx reservation information indicating that the uplink transmission is reserved by the EPS bearer of the macro cell, and UL Tx start information indicating that the uplink transmission is started by the second extended EPS bearer. (ULTxStartInfo), the identifier of the EPS bearer of the macro cell, and the identifier of the second extended EPS bearer.
본 실시예는 UL Tx 유보 정보와 UL Tx 시작 정보(ULTxStartInfo)가 제3 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 유보 정보와 UL Tx 시작 정보는 제3 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다.This embodiment is not limited to the UL Tx reservation information and the UL Tx start information (ULTxStartInfo) included in the third RRC connection reconfiguration message and transmitted. That is, the UL Tx reservation information and the UL Tx start information may be transmitted independently of the third RRC connection reconfiguration message.
도 6의 실시예에 따른 단말, 매크로 기지국, 제1 및 제2 스몰 기지국 간의 시그널링은 단계 S635를 포함하는 것으로 설명하였으나, 본 발명의 다른 실시예는 단계 S635의 제3 RRC 연결 재구성 메시지의 수신 대신에 PDCCH의 수신을 포함할 수 있다. 즉, 단말은 PDCCH를 통해 스몰 기지국으로부터 하향링크 할당정보(downlink assignment)를 수신할 수 있는데, 이때 단말은 상향링크 전송도 가능한 것으로 판단할 수 있다. 따라서, 단말은 상향링크 전송이 필요하면 제2 확장 EPS 베어러를 통해 상향링크 전송을 수행할 수 있다. Although the signaling between the UE, the macro base station, and the first and second small base stations according to the embodiment of FIG. 6 has been described as including step S635, another embodiment of the present invention instead of receiving the third RRC connection reconfiguration message of step S635. May include the reception of a PDCCH. That is, the terminal may receive downlink assignment information (downlink assignment) from the small base station through the PDCCH, the terminal may determine that uplink transmission is also possible. Therefore, when uplink transmission is required, the UE may perform uplink transmission through the second extended EPS bearer.
도 7은 본 발명의 일례에 따른 매크로 기지국의 동작 순서도이다.7 is a flowchart illustrating an operation of a macro base station according to an exemplary embodiment of the present invention.
도 7을 참조하면, 매크로 기지국은 매크로 셀, 스몰셀 A, 스몰셀 B의 신호 세기가 특정 기준을 만족할 경우 단말로부터 측정 보고를 수신한다(S700). 예를 들어 상기 측정된 신호 세기가 특정 기준을 만족하려면, 매크로 셀의 신호세기가 임계치 (threshold) 만큼 크면서 스몰셀 A 그리고 스몰셀 B의 신호 세기가 임계치 (threshold) 만큼 작아야 한다. 위의 조건뿐만이 아니라 단말이 매크로 셀 내에 위치하면서 스몰 셀 A에서 스몰 셀 B로 이동하고 있음을 판단할 수 있는 다른 조건들도 가능하다. Referring to FIG. 7, when the signal strengths of the macro cell, the small cell A, and the small cell B satisfy a specific criterion, the macro base station receives a measurement report from the terminal (S700). For example, if the measured signal strength satisfies a specific criterion, the signal strengths of the macro cell and the small cell B should be as small as the threshold while the signal strength of the macro cell is as large as the threshold. In addition to the above conditions, other conditions that may determine that the UE is located in the macro cell and move from the small cell A to the small cell B are possible.
매크로 기지국은 측정 보고에 따라 신호 세기를 분석한다. 만약 매크로 셀의 신호 세기가 스몰셀 A 및 스몰셀 B의 신호 세기보다 크고 스몰셀 B의 신호 세기가 스몰셀 A의 신호 세기보다 크다면, 매크로 기지국은 단말이 매크로 셀의 커버리지 내에 있는 스몰셀 A로부터 스몰셀 B로 이동 중이라고 판단할 수 있다.The macro base station analyzes the signal strength according to the measurement report. If the signal strength of the macro cell is greater than the signal strengths of the small cell A and the small cell B and the signal strength of the small cell B is greater than the signal strength of the small cell A, the macro base station determines that the terminal is within the coverage of the small cell A. It can be determined from the small cell B to move from.
이 경우, 매크로 기지국은 스몰셀 B에서 제1 확장 EPS 베어러 대신 사용할 제2 확장 EPS 베어러를 생성하기로 결정한다. 여기서, 매크로 기지국이 제2 확장 EPS 베어러를 생성하기로 결정하는 조건은 예를 들어 스몰셀 B의 신호가 스몰셀 A의 신호보다 특정 값 이상 크거나 또는 스몰셀 B의 신호 세기가 특정 임계치 보다 클 때일 수 있다. In this case, the macro base station determines to generate a second extended EPS bearer to use in place of the first extended EPS bearer in the small cell B. Here, the condition that the macro base station determines to generate the second extended EPS bearer is, for example, the signal of the small cell B is greater than a certain value greater than the signal of the small cell A, or the signal strength of the small cell B is greater than the specific threshold. It can be time.
매크로 기지국이 제1 확장 EPS 베어러를 더 이상 사용하지 않고 제2 확장 EPS 베어러를 생성하여 사용하기를 결정하면, 중단되어 있던 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 개시함을 지시하는 제1 RRC 연결 재구성 메시지를 단말로 전송한다(S705). 사용자 평면의 데이터에 대해 사용이 중단되었던 매크로 셀의 EPS 베어러를 다시 사용하는 이유는, 제2 확장 EPS 베어러가 생성 완료되기 전까지는 우선적으로 매크로 셀의 EPS 베어러를 재사용하는 것이다. 제2 확장 EPS 베어러의 생성이 완료될 때까지 단말이 상향링크 전송을 위한 EPS 베어러가 필요하기 때문이다. 또한 제2 확장 EPS 베어러의 생성이 무선 구간과 코어망 구간에서 확실히 완성되지 않은 상태에서 매크로 셀의 EPS 베어러를 삭제하면, 단말과 코어망 사이에서 주고 받는 사용자 데이터가 매크로 기지국이나 코어망 쪽에서 버퍼링이 되거나 매크로 셀과 스몰셀 사이의 인터페이스를 통해서 대량의 데이터가 교환되어야 하는 문제가 있기 때문이다. 단계 S505는 직접적으로 제2 확장 EPS 베어러를 생성하는 시그널링은 아니지만, 그 예비 단계로서 수행되는 것이다. If the macro base station decides to create and use a second extended EPS bearer without using the first extended EPS bearer anymore, the first base station indicates to start uplink transmission using the EPS bearer of the suspended macro cell. The RRC connection reconfiguration message is transmitted to the terminal (S705). The reason for using the EPS bearer of the macro cell, which has been discontinued for data of the user plane, is to reuse the EPS bearer of the macro cell until the second extended EPS bearer is completed. This is because the terminal needs the EPS bearer for uplink transmission until the generation of the second extended EPS bearer is completed. Also, if the EPS bearer of the macro cell is deleted while the creation of the second extended EPS bearer is not completed in the wireless section and the core network section, the user data exchanged between the terminal and the core network is buffered at the macro base station or core network side. Or a large amount of data must be exchanged through an interface between the macro cell and the small cell. Step S505 is not signaling to directly generate a second extended EPS bearer, but is performed as a preliminary step.
한편, 사용자 평면의 데이터가 매크로 셀의 EPS 베어러를 통해 송수신됨에 따라, 기존의 제1 확장 EPS 베어러에서의 상향링크 전송은 중단되어야 한다. 이러한 의미에서, 상기 제1 RRC 연결 재구성 메시지는 기존의 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 중단을 지시할 수도 있다. Meanwhile, as data of the user plane is transmitted and received through the EPS bearer of the macro cell, uplink transmission in the existing first extended EPS bearer should be stopped. In this sense, the first RRC connection reconfiguration message may indicate an interruption of uplink transmission in the existing first extended EPS bearer.
제1 실시예로서, 제1 RRC 연결 재구성 메시지는 제1 확장 EPS 베어러를 이용한 상향링크 전송을 중단함을 지시하는 UL Tx 유보 정보(ULTxStopInfo)를 포함할 수 있다. 다시 말하면, 제1 RRC 연결 재구성 메시지는 제1 확장 EPS 베어러를 사용하여 상향링크 전송을 하지 말라는 의미의 UL Tx 유보 정보를 포함할 수 있다. 이는 제2 확장 EPS 베어러의 생성이 단말부터 코어망까지의 전 구간에서 완성되지 않은 상태이기 때문이다. As a first embodiment, the first RRC connection reconfiguration message may include UL Tx reservation information (ULTxStopInfo) indicating to stop uplink transmission using the first extended EPS bearer. In other words, the first RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the first extended EPS bearer. This is because the creation of the second extended EPS bearer is not completed in all sections from the terminal to the core network.
제2 실시예로서, 제1 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 개시함을 지시하는 UL TX 시작 정보(ULTxStartInfo)를 포함할 수 있다. As a second embodiment, the first RRC connection reconfiguration message may include UL TX start information (ULTxStartInfo) indicating that uplink transmission is started using the EPS bearer of the macro cell.
제3 실시예로서, 제1 RRC 연결 재구성 메시지는 단말 식별자(UE Identity), 매크로 셀의 EPS 베어러 식별자 및 제1 확장 EPS 베어러 식별자를 포함할 수 있다. 단말 식별자는 단말을 식별할 수 있는 식별번호로서, C-RNTI(Cell-Radio Network Temporary Identifier), IMSI(International Mobile Subscriber Identity), GUTI(Globally Unique Temporary Identity) 등을 포함할 수 있다. As a third embodiment, the first RRC connection reconfiguration message may include a UE identifier, an EPS bearer identifier of a macro cell, and a first extended EPS bearer identifier. The terminal identifier is an identification number for identifying the terminal and may include a Cell-Radio Network Temporary Identifier (C-RNTI), an International Mobile Subscriber Identity (IMSI), a Globally Unique Temporary Identity (GUTI), and the like.
이외에도, 제1 RRC 연결 재구성 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 내지 제3 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the first RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the second embodiment. It may include information according to a combination of an example and a third embodiment, or may include information according to a combination of the first to third embodiments.
본 실시예는 UL Tx 유보 정보 또는 UL TX 시작 정보가 제1 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 유보 정보와 UL TX 시작 정보는 제1 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다. This embodiment is not limited to the transmission of the UL Tx reservation information or the UL TX start information included in the first RRC connection reconfiguration message. That is, the UL Tx reservation information and the UL TX start information may be transmitted independently of the first RRC connection reconfiguration message.
제1 RRC 연결 재구성 메시지를 수신하면, 단말은 상향링크 데이터 송신 시에 더 이상 제1 확장 EPS 베어러를 사용하지 않고(즉, 제1 확장 EPS 베어러를 사용한 상향링크 전송을 중단하고), 매크로 셀의 EPS 베어러를 사용할 수 있다. Upon receiving the first RRC connection reconfiguration message, the UE no longer uses the first extended EPS bearer when transmitting uplink data (ie, suspends uplink transmission using the first extended EPS bearer), and the macro cell of the macro cell. EPS bearers can be used.
매크로 기지국은 EPS 베어러 제어 정보를 코어망((MME, S-GW, P-GW)으로 전송한다(S710). P-GW는 EPS 베어러 제어 정보를 최종적으로 수신한다. 이때부터 P-GW는 PDN으로부터 수신하는 사용자 평면의 하향링크 데이터를 제1 확장 EPS 베어러 대신에 매크로 셀의 EPS 베어러를 사용하여 단말로 전달한다. EPS 베어러 제어 정보는 예를 들어 단말 식별자, 매크로 셀의 EPS 베어러 식별자 및 제1 확장 EPS 베어러 식별자 중 적어도 하나를 포함할 수 있다. The macro base station transmits EPS bearer control information to the core network (MME, S-GW, P-GW) (S710). The P-GW finally receives EPS bearer control information. Downlink data of the user plane received from the UE is transmitted to the terminal using the EPS bearer of the macro cell instead of the first extended EPS bearer The EPS bearer control information may be, for example, the terminal identifier, the EPS bearer identifier of the macro cell, and the first. It may include at least one of the extended EPS bearer identifier.
매크로 기지국은 제1 RRC 연결 재구성 완료 메시지를 단말로부터 수신한다(S715). 단계 S715는 단계 S705보다 이전에 수행될 수도 있다. The macro base station receives a first RRC connection reconfiguration complete message from the terminal (S715). Step S715 may be performed before step S705.
매크로 셀의 EPS 베어러의 재사용과는 별도로, 제2 확장 EPS 베어러가 생성되어야 한다. 이는 베어러 확장 절차로서, 매크로 기지국은 베어러 확장 요청 메시지를 제2 스몰 기지국으로 전송한다(S720). 베어러 확장 요청 메시지는 X2 인터페이스를 통하여 매크로 기지국에서 제2 스몰 기지국으로 전송될 수 있다. 베어러 확장 요청 메시지를 수신한 제2 스몰 기지국은, 베어러 확장 요청 메시지 내의 확장 EPS 베어러 식별자가 가리키는 제1 확장 EPS 베어러를 대신하여 사용할 제2 확장 EPS 베어러를 주어진 QoS 정보를 만족하도록 만들라는 의미로 해석한다.Apart from reusing the EPS bearer of the macro cell, a second extended EPS bearer must be created. This is a bearer extension procedure, and the macro base station transmits a bearer extension request message to the second small base station (S720). The bearer extension request message may be transmitted from the macro base station to the second small base station through the X2 interface. Receiving the bearer extension request message, the second small base station interprets the second extended EPS bearer to be used in place of the first extended EPS bearer indicated by the extended EPS bearer identifier in the bearer extension request message to satisfy the given QoS information. do.
베어러 확장 요청 메시지는 적어도 하나의 정보요소(information element: IE)를 포함할 수 있다. 예를 들어, 정보요소는 단말 식별자(UE Identity) 또는 매크로 셀의 EPS 베어러 식별자, 스몰 셀 A의 제 1 확장 EPS 베어러 또는 QoS 결정 파라미터(QoS decision parameter)가 될 수 있다. The bearer extension request message may include at least one information element (IE). For example, the information element may be a UE identifier or an EPS bearer identifier of a macro cell, a first extended EPS bearer of a small cell A, or a QoS decision parameter.
매크로 기지국은 제2 확장 EPS 베어러와 그와 연관된 E-RAB의 QoS를 만족하는 무선 구성 파라미터 값들을 포함하는 베어러 확장 응답 메시지를 제2 스몰 기지국으로부터 수신한다(S725). 베어러 확장 응답 메시지는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 단말에 알려주는 메시지이다. 이것은 코어망으로부터 전달되어 오는 메시지를 포함할 수도 있다. 베어러 확장 응답 메시지의 전달을 위해 X2 인터페이스가 사용될 수 있다. The macro base station receives from the second small base station a bearer extended response message including radio configuration parameter values satisfying QoS of the second extended EPS bearer and the associated E-RAB (S725). The bearer extension response message is a message informing the UE of the availability or activation of the second extended EPS bearer. This may include messages coming from the core network. The X2 interface may be used for delivery of the bearer extension response message.
제1 실시예로서, 베어러 확장 응답 메시지에 포함된 상기 무선 구성 파라미터 값들은 RB를 구성하는 파라미터들로써, 스몰셀 B 상에서 단말에 서비스를 제공하는데 필요한 시스템 정보와 PHY, MAC 계층의 정보를 포함할 수 있다. In a first embodiment, the radio configuration parameter values included in the bearer extension response message are parameters configuring an RB, and may include system information, PHY, and MAC layer information necessary to provide a service to a terminal on a small cell B. have.
제2 실시예로서, 베어러 확장 응답 메시지는 단말 식별자, 스몰 셀 B의 시스템 정보, 스몰 셀 B의 물리계층 정보, 스몰 셀 B의 MAC 계층의 정보, 매크로 셀의 EPS 베어러 식별자, 제2 확장 EPS 베어러 식별자 중 적어도 하나를 포함할 수 있다. As a second embodiment, the bearer extension response message includes a terminal identifier, system information of small cell B, physical layer information of small cell B, information of MAC layer of small cell B, EPS bearer identifier of macro cell, and second extended EPS bearer. It may include at least one of the identifier.
제3 실시예로서, 베어러 확장 응답 메시지는 DRB 구성을 위한 파라미터들, 예를 들어 DRB 식별자(drb-Identity), PDCH 구성정보(pdcp-Config), RLC 구성정보(rlc-Config), 제2 확장 EPS 베어러 식별자 중 적어도 하나를 더 포함할 수 있다. As a third embodiment, the bearer extension response message includes parameters for DRB configuration, for example, DRB identifier (drb-Identity), PDCH configuration information (pdcp-Config), RLC configuration information (rlc-Config), and second extension. It may further include at least one of the EPS bearer identifier.
이외에도, 베어러 확장 응답 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 내지 제3 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the bearer extension response message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and The information according to the combination of the third embodiment may be included, or the information according to the combination of the first to third embodiments may be included.
매크로 기지국은 베어러 확장 응답 메시지를 통해 수신받은 값들을 사용하여 단말의 무선자원 구성을 지시하는 제2 RRC 연결 재구성 메시지를 단말로 전송한다(S730). 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러의 완성을 위해 제2 스몰 기지국과 단말 사이에 필요한 제어정보를 포함한다. The macro base station transmits to the terminal a second RRC connection reconfiguration message indicating the radio resource configuration of the terminal using the values received through the bearer extension response message (S730). The second RRC connection reconfiguration message includes control information required between the second small base station and the terminal to complete the second extended EPS bearer.
제1 실시예로서, 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보(suspending)함을 지시하는 UL Tx 유보 정보(ULTxSuspendInfo)를 포함할 수 있다. 다시 말하면, 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 하지 말라는 의미의 UL Tx 유보 정보를 포함할 수 있다. 이는 제2 확장 EPS 베어러의 생성이 단말부터 코어망까지의 전 구간에서 완성되지 않은 상태에서 제2 확장 EPS 베어러가 사용되면, 단말과 코어망 사이에서 주고 받는 사용자 데이터가 매크로 기지국이나 코어망 쪽에서 버퍼링이 되거나 또는 매크로 기지국과 제2 스몰 기지국 사이의 인터페이스를 통해서 대량의 데이터가 교환되어야 하는 문제가 발생할 수 있기 때문이다. 단, 상기 상향링크 전송은 PUCCH와 HARQ ACK/NACK 정보의 전송은 포함하지 않을 수 있다. 다시 말하면, UL Tx 유보 정보에도 불구하고, 단말은 PUCCH와 HARQ ACK/NACK 정보를 전송할 수 있다. As a first embodiment, the second RRC connection reconfiguration message may include UL Tx reservation information (ULTxSuspendInfo) indicating suspending uplink transmission using the second extended EPS bearer. In other words, the second RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the second extended EPS bearer. This is because when the creation of the second extended EPS bearer is not completed in the entire period from the terminal to the core network, when the second extended EPS bearer is used, the user data exchanged between the terminal and the core network is buffered at the macro base station or core network side. This may be a problem because a large amount of data must be exchanged through an interface between the macro base station and the second small base station. However, the uplink transmission may not include transmission of PUCCH and HARQ ACK / NACK information. In other words, despite the UL Tx reservation information, the terminal may transmit the PUCCH and HARQ ACK / NACK information.
제2 실시예로서, 제2 RRC 연결 재구성 메시지는 상기 베어러 확장 응답 메시지의 모든 무선 구성 파라미터 값들 및 제2 확장 EPS 베어러의 식별자를 포함할 수 있다. As a second embodiment, the second RRC connection reconfiguration message may include all radio configuration parameter values of the bearer extension response message and an identifier of the second extended EPS bearer.
제3 실시예로서, 제2 RRC 연결 재구성 메시지는 제2 스몰 기지국과 단말간에 형성되는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 지시하는 세부정보를 포함할 수 있다. As a third embodiment, the second RRC connection reconfiguration message may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
제4 실시예로서, 제2 RRC 연결 재구성 메시지는 단말 특정한(UE specific) NAS 계층 정보를 코어망과 단말간에 전달하는데 사용되는 전용적 NAS 리스트(dedicatedInfoNASList) 정보요소를 포함한다. 그리고 상기 전용적 NAS 리스트 정보요소에 제2 스몰 기지국과 단말간에 형성되는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 지시하는 세부정보가 포함될 수 있다. As a fourth embodiment, the second RRC connection reconfiguration message includes a dedicated NAS list (dedicatedInfoNASList) information element used for transferring UE specific NAS layer information between the core network and the terminal. The dedicated NAS list information element may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station and the terminal.
이외에도, 제2 RRC 연결 재구성 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제1 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있고, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있고, 제3 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제1 내지 제4 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the second RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the first embodiment. It may include information according to a combination of an example and a fourth embodiment, may include information according to a combination of a second embodiment and a third embodiment, and may include information according to a combination of a second embodiment and a fourth embodiment. In addition, the information according to the combination of the third and fourth embodiments may be included, and the information according to the combination of the first to fourth embodiments may be included.
본 실시예는 UL Tx 유보 정보(ULTxSuspendInfo)가 제2 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 유보 정보는 제2 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다. This embodiment is not limited to the transmission of the UL Tx reservation information (ULTxSuspendInfo) included in the second RRC connection reconfiguration message. That is, the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
매크로 기지국은 제2 RRC 연결 재구성 완료 메시지를 단말로부터 수신한다(S735). The macro base station receives a second RRC connection reconfiguration complete message from the terminal (S735).
아직 코어망에서 제2 확장 EPS 베어러가 완성되지 않은 상태이기 때문에 매크로 기지국은 매크로 셀의 EPS 베어러를 통해 상향링크(UL) 데이터를 단말로부터 수신 및 처리할 수 있다. 즉, 제2 확장 EPS 베어러의 생성 준비 단계에서, 매크로 기지국은 삭제되지 않고 남아 있는 매크로 셀의 EPS 베어러를 사용하여 상향링크 수신을 수행한다. Since the second extended EPS bearer is not yet completed in the core network, the macro base station may receive and process uplink (UL) data from the terminal through the EPS bearer of the macro cell. That is, in the preparation for generating the second extended EPS bearer, the macro base station performs uplink reception using the EPS bearer of the macro cell which is not deleted.
이와 같이 단말에 무선 구성이 완료(즉, RB 구성 완료)되고 제2 확장 EPS 베어러를 사용할 수 있음에도 여전히 매크로 셀의 EPS 베어러를 통해 상향링크 전송을 수행하는 이유는 상향링크 전송의 신뢰성을 보장하기 위함이다. 단말이 스몰셀 B로 이동하다가 다시 스몰셀 A나 매크로 셀 만의 영역으로 이동할 수도 있기 때문이다. As such, although the radio configuration is completed in the terminal (that is, the RB configuration is completed) and the second extended EPS bearer can be used, the reason why the uplink transmission is still performed through the EPS bearer of the macro cell is to ensure the reliability of the uplink transmission. to be. This is because the UE may move to the small cell B and then move to the area of the small cell A or the macro cell only.
매크로 기지국은 단말과 제2 스몰 기지국간에 RB의 생성이 완료되었음을 지시하는 RB 생성 완료 메시지를 제2 스몰 기지국으로 전송한다(S740). RB 생성 완료 메시지는 X2 인터페이스를 통해 전달되는 메시지이다. RB 생성 완료 메시지를 수신하면, 제2 스몰 기지국은 제2 확장 EPS 베어러에 해당하는 RB의 구성이 성공적으로 완료되었음을 확인할 수 있다. 그리고 비로소 단말과 제2 스몰 기지국간에 RB의 생성이 완료된다. The macro base station transmits, to the second small base station, an RB generation complete message indicating that generation of the RB is completed between the terminal and the second small base station (S740). The RB creation complete message is a message transmitted through the X2 interface. Upon receiving the RB generation complete message, the second small base station may confirm that the configuration of the RB corresponding to the second extended EPS bearer is successfully completed. Finally, generation of the RB is completed between the terminal and the second small base station.
코어망에 대한 제2 확장 EPS 베어러의 생성이 완료되었음을 확인하면, 매크로 기지국은 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 단말에 지시하는 제3 RRC 연결 재구성 메시지를 단말로 전송한다(S745). 이로써 단말은 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 수행할 수 있다. If it is confirmed that the generation of the second extended EPS bearer for the core network is completed, the macro base station transmits a third RRC connection reconfiguration message to the UE indicating that the second extended EPS bearer starts uplink transmission (S745). ). As a result, the UE may perform uplink transmission using the second extended EPS bearer.
일례로서, 제3 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러에서 상향링크 전송을 유보(suspend)함을 지시하는 UL Tx 유보 정보(ULTxSuspendInfo) 및 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 지시하는 UL Tx 시작 정보(ULTxStartInfo)를 포함한다.As an example, the third RRC connection reconfiguration message indicates UL Tx reservation information (ULTxSuspendInfo) indicating that the uplink transmission is suspended in the EPS bearer of the macro cell and uplink transmission is started in the second extended EPS bearer. UL Tx start information (ULTxStartInfo) is included.
다른 예로서, 제3 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러에서 상향링크 전송을 유보함을 지시하는 UL Tx 유보 정보, 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 지시하는 UL Tx 시작 정보(ULTxStartInfo), 매크로 셀의 EPS 베어러의 식별자 및 제2 확장 EPS 베어러의 식별자를 포함할 수 있다. As another example, the third RRC connection reconfiguration message may include UL Tx reservation information indicating that the uplink transmission is reserved by the EPS bearer of the macro cell, and UL Tx start information indicating that the uplink transmission is started by the second extended EPS bearer. (ULTxStartInfo), the identifier of the EPS bearer of the macro cell, and the identifier of the second extended EPS bearer.
본 실시예는 UL Tx 유보 정보와 UL Tx 시작 정보(ULTxStartInfo)가 제3 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 유보 정보와 UL Tx 시작 정보는 제3 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다.This embodiment is not limited to the UL Tx reservation information and the UL Tx start information (ULTxStartInfo) included in the third RRC connection reconfiguration message and transmitted. That is, the UL Tx reservation information and the UL Tx start information may be transmitted independently of the third RRC connection reconfiguration message.
도 8은 본 발명의 일례에 따른 제2 스몰 기지국의 동작 순서도이다.8 is an operation flowchart of a second small base station according to an example of the present invention.
도 8을 참조하면, 매크로 셀의 EPS 베어러의 재사용과는 별도로, 단말은 제2 확장 EPS 베어러를 생성해야 한다. 이는 베어러 확장 절차로서, 제2 스몰 기지국은 베어러 확장 요청 메시지를 매크로 기지국으부터 수신한다(S800). 베어러 확장 요청 메시지는 X2 인터페이스를 통하여 매크로 기지국에서 제2 스몰 기지국으로 전송될 수 있다. 베어러 확장 요청 메시지를 수신한 제2 스몰 기지국은, 베어러 확장 요청 메시지 내의 확장 EPS 베어러 식별자가 가리키는 제1 확장 EPS 베어러를 대신하여 사용할 제2 확장 EPS 베어러를 주어진 QoS 정보를 만족하도록 만들라는 의미로 해석한다.Referring to FIG. 8, apart from reusing the EPS bearer of the macro cell, the terminal should generate the second extended EPS bearer. This is a bearer extension procedure, and the second small base station receives a bearer extension request message from the macro base station (S800). The bearer extension request message may be transmitted from the macro base station to the second small base station through the X2 interface. Receiving the bearer extension request message, the second small base station interprets the second extended EPS bearer to be used in place of the first extended EPS bearer indicated by the extended EPS bearer identifier in the bearer extension request message to satisfy the given QoS information. do.
베어러 확장 요청 메시지는 적어도 하나의 정보요소(information element: IE)를 포함할 수 있다. 예를 들어, 정보요소는 단말 식별자(UE Identity) 또는 매크로 셀의 EPS 베어러 식별자, 스몰 셀 A의 제 1 확장 EPS 베어러 식별자 또는 QoS 결정 파라미터(QoS decision parameter)가 될 수 있다. The bearer extension request message may include at least one information element (IE). For example, the information element may be a UE identifier or an EPS bearer identifier of a macro cell, a first extended EPS bearer identifier of a small cell A, or a QoS decision parameter.
베어러 확장 요청 메시지를 수신한 제2 스몰 기지국은 베어러 확장 요청 메시지 내에 포함된 정보요소들을 추출한다. 그리고 제2 스몰 기지국은 상기 단말 식별자에 의해 식별되는 단말이 상기 매크로 셀의 EPS 베어러 식별자에 의해 식별되는 EPS 베어러 대신에, 상기 QoS 결정 파라미터에 만족하는 제2 확장 EPS 베어러를 코어망 측과 함께 생성하는 절차를 준비한다(S805). Upon receiving the bearer extension request message, the second small base station extracts information elements included in the bearer extension request message. And the second small base station generates, with the core network side, a second extended EPS bearer that satisfies the QoS determination parameter, instead of the EPS bearer whose terminal identified by the terminal identifier is identified by the EPS bearer identifier of the macro cell. Prepare a procedure to perform (S805).
예를 들어, 제2 스몰 기지국과 코어망은 제2 확장 EPS 베어러의 식별자를 결정하고 상기 제2 확장 EPS 베어러 식별자와 연관된 E-RAB 식별자를 결정한다. 그리고 새롭게 생성된 제2 확장 EPS 베어러와 E-RAB를 제1 확장 EPS 베어러에 대신하여 사용하기 위해 필요한 준비 작업을 수행한다. For example, the second small base station and the core network determine an identifier of the second extended EPS bearer and an E-RAB identifier associated with the second extended EPS bearer identifier. Then, a preparation operation necessary for using the newly created second extended EPS bearer and the E-RAB in place of the first extended EPS bearer is performed.
제2 스몰 기지국은 제2 확장 EPS 베어러와 그와 연관된 E-RAB의 QoS를 만족하는 무선 구성 파라미터 값들을 포함하는 베어러 확장 응답 메시지를 매크로 기지국으로 전송한다(S810). 베어러 확장 응답 메시지는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 단말에 알려주는 메시지이다. 이것은 코어망으로부터 전달되어 오는 메시지를 포함할 수도 있다. 베어러 확장 응답 메시지의 전달을 위해 X2 인터페이스가 사용될 수 있다. The second small base station transmits a bearer extension response message including radio configuration parameter values satisfying QoS of the second extended EPS bearer and the associated E-RAB to the macro base station (S810). The bearer extension response message is a message informing the UE of the availability or activation of the second extended EPS bearer. This may include messages coming from the core network. The X2 interface may be used for delivery of the bearer extension response message.
제1 실시예로서, 베어러 확장 응답 메시지에 포함된 상기 무선 구성 파라미터 값들은 RB를 구성하는 파라미터들로써, 스몰셀 B 상에서 단말에 서비스를 제공하는데 필요한 시스템 정보와 PHY, MAC 계층의 정보를 포함할 수 있다. In a first embodiment, the radio configuration parameter values included in the bearer extension response message are parameters configuring an RB, and may include system information, PHY, and MAC layer information necessary to provide a service to a terminal on a small cell B. have.
제2 실시예로서, 베어러 확장 응답 메시지는 단말 식별자, 스몰 셀 B의 시스템 정보, 스몰 셀 B의 물리계층 정보, 스몰 셀 B의 MAC 계층의 정보, 매크로 셀의 EPS 베어러 식별자, 제2 확장 EPS 베어러 식별자 중 적어도 하나를 포함할 수 있다. As a second embodiment, the bearer extension response message includes a terminal identifier, system information of small cell B, physical layer information of small cell B, information of MAC layer of small cell B, EPS bearer identifier of macro cell, and second extended EPS bearer. It may include at least one of the identifier.
제3 실시예로서, 베어러 확장 응답 메시지는 DRB 구성을 위한 파라미터들, 예를 들어 DRB 식별자(drb-Identity), PDCH 구성정보(pdcp-Config), RLC 구성정보(rlc-Config), 제2 확장 EPS 베어러 식별자 중 적어도 하나를 더 포함할 수 있다. As a third embodiment, the bearer extension response message includes parameters for DRB configuration, for example, DRB identifier (drb-Identity), PDCH configuration information (pdcp-Config), RLC configuration information (rlc-Config), and second extension. It may further include at least one of the EPS bearer identifier.
이외에도, 베어러 확장 응답 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 내지 제3 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the bearer extension response message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and The information according to the combination of the third embodiment may be included, or the information according to the combination of the first to third embodiments may be included.
단말과 제2 스몰 기지국간에 RB의 생성이 완료되었음을 지시하는 RB 생성 완료 메시지를 매크로 기지국으로부터 수신한다(S815). RB 생성 완료 메시지는 X2 인터페이스를 통해 전달되는 메시지이다. RB 생성 완료 메시지를 수신하면, 제2 스몰 기지국은 제2 확장 EPS 베어러에 해당하는 RB의 구성이 성공적으로 완료되었음을 확인할 수 있으므로. 비로소 단말과 제2 스몰 기지국간에 RB의 생성이 완료된다(S820). An RB generation complete message indicating that generation of the RB is completed between the terminal and the second small base station is received from the macro base station (S815). The RB creation complete message is a message transmitted through the X2 interface. When receiving the RB generation complete message, the second small base station can confirm that the configuration of the RB corresponding to the second extended EPS bearer was successfully completed. Finally, generation of the RB is completed between the terminal and the second small base station (S820).
제2 스몰 기지국은 코어망에 대하여 제2 확장 EPS 베어러의 생성을 완료한다(S825). 코어망에서 제2 확장 EPS 베어러가 생성된 후, 코어망의 구성요소 중에서 P-GW는 단말을 향해 PDN으로부터 P-GW를 통해서 들어오는 사용자 데이터를 제2 확장 EPS 베어러를 사용하여 단말에게 전송하기 시작한다. 그리고, 제2 스몰 기지국은 P-WG를 통해 유입되는 상기 사용자 데이터를 제2 확장 EPS 베어러를 이용하여 단말로 전송한다(S830). 제2 스몰 기지국과 단말간에 RB의 생성이 완료되었으므로, 제2 스몰 기지국이 제2 확장 EPS 베어러를 통해 상기 사용자 데이터를 단말로 전송하는데 문제가 없고 단말도 제2 확장 EPS 베어러를 통해 상기 사용자 데이터를 수신하는데 문제가 없다. The second small base station completes generation of the second extended EPS bearer for the core network (S825). After the second extended EPS bearer is created in the core network, among the components of the core network, the P-GW starts to transmit user data coming from the PDN through the P-GW toward the terminal to the terminal using the second extended EPS bearer. do. Then, the second small base station transmits the user data flowing through the P-WG to the terminal using a second extended EPS bearer (S830). Since generation of the RB is completed between the second small base station and the terminal, the second small base station has no problem in transmitting the user data to the terminal through the second extended EPS bearer, and the terminal also transmits the user data through the second extended EPS bearer. There is no problem to receive.
코어망에 대한 제2 확장 EPS 베어러의 생성이 완료되었음을 확인하면, 매크로 기지국은 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 단말에 지시하는 제3 RRC 연결 재구성 메시지를 단말로 전송한다. 이로써 단말은 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 수행할 수 있다(S835). If it is confirmed that the generation of the second extended EPS bearer for the core network is completed, the macro base station transmits a third RRC connection reconfiguration message to the terminal indicating that the uplink transmission is started in the second extended EPS bearer. Accordingly, the UE may perform uplink transmission using the second extended EPS bearer (S835).
도 9는 본 발명에 따른 단말, 매크로 기지국 및 제2 스몰 기지국을 도시한 블록도이다. 9 is a block diagram illustrating a terminal, a macro base station and a second small base station according to the present invention.
도 9를 참조하면, 단말(900)은 단말 수신부(905), 단말 프로세서(910) 및 단말 전송부(915)를 포함한다. 매크로 기지국(930)은 매크로 전송부(935), 매크로 수신부(940) 및 매크로 프로세서(945)를 포함한다. 제2 스몰 기지국(960)은 스몰 전송부(965), 스몰 수신부(970) 및 스몰 프로세서(975)를 포함한다. 9, the terminal 900 includes a terminal receiver 905, a terminal processor 910, and a terminal transmitter 915. The macro base station 930 includes a macro transmitter 935, a macro receiver 940, and a macro processor 945. The second small base station 960 includes a small transmitter 965, a small receiver 970, and a small processor 975.
도면에는 도시되지는 않았지만, 제1 스몰 기지국은 스몰셀 A를 제공하고, 제2 스몰 기지국(960)은 스몰셀 B를 제공한다. 현재 단말(900)은 제1 스몰 기지국에 의해 사용자 평면의 데이터를 제공하는 제1 확장 EPS 베어러를 사용하고 있다. Although not shown in the figure, the first small base station provides a small cell A, and the second small base station 960 provides a small cell B. Currently, the terminal 900 uses a first extended EPS bearer that provides data of a user plane by a first small base station.
단말 프로세서(910)는 매크로 셀, 스몰셀 A, 스몰셀 B의 신호 세기를 측정하고, 상기 측정된 신호 세기가 특정 기준을 만족할 경우 측정 보고를 생성하며, 단말 전송부(915)가 매크로 기지국(930)으로 측정 보고를 전송한다. 예를 들어 상기 측정된 신호 세기가 특정 기준을 만족하려면, 매크로 셀의 신호세기가 임계치 (threshold) 만큼 크면서 스몰셀 A 그리고 스몰셀 B의 신호 세기가 임계치 (threshold) 만큼 작아야 한다. 위의 조건뿐만이 아니라 단말이 매크로 셀 내에 위치하면서 스몰 셀 A에서 스몰 셀 B로 이동하고 있음을 판단할 수 있는 다른 조건들도 가능하다.The terminal processor 910 measures the signal strengths of the macro cell, the small cell A, and the small cell B, generates a measurement report when the measured signal strength satisfies a specific criterion, and the terminal transmitter 915 includes the macro base station ( 930) the measurement report. For example, if the measured signal strength satisfies a specific criterion, the signal strengths of the macro cell and the small cell B should be as small as the threshold while the signal strength of the macro cell is as large as the threshold. In addition to the above conditions, other conditions that may determine that the UE is located in the macro cell and move from the small cell A to the small cell B are possible.
매크로 수신부(940)가 측정 보고를 수신하면, 매크로 프로세서(945)는 측정 보고를 기반으로 신호 세기를 분석한다. 만약 매크로 셀의 신호 세기가 스몰셀 A 및 스몰셀 B의 신호 세기보다 크고 스몰셀 B의 신호 세기가 스몰셀 A의 신호 세기보다 크다면, 매크로 프로세서(945)는 단말(900)이 매크로 셀의 커버리지 내에 있는 스몰셀 A로부터 스몰셀 B로 이동 중이라고 판단할 수 있다.When the macro receiver 940 receives the measurement report, the macro processor 945 analyzes the signal strength based on the measurement report. If the signal strength of the macro cell is greater than the signal strengths of the small cell A and the small cell B and the signal strength of the small cell B is greater than the signal strength of the small cell A, the macro processor 945 determines that the terminal 900 of the macro cell is the signal strength of the macro cell. It may be determined that the cell is moving from the small cell A within the coverage to the small cell B.
이 경우, 매크로 프로세서(945)는 스몰셀 B에서 제1 확장 EPS 베어러 대신 사용할 제2 확장 EPS 베어러를 생성하기로 결정한다. 여기서, 매크로 프로세서(945)는 제2 확장 EPS 베어러를 생성하기로 결정하는 조건은 예를 들어 스몰셀 B의 신호가 스몰셀 A의 신호보다 특정 값 이상 크거나 또는 스몰셀 B의 신호 세기가 특정 임계치 보다 클 때일 수 있다. In this case, the macro processor 945 decides to generate a second extended EPS bearer to use in place of the first extended EPS bearer in the small cell B. Here, the condition that the macro processor 945 determines to generate the second extended EPS bearer may be, for example, that the signal of the small cell B is larger than the signal of the small cell A by a certain value or the signal strength of the small cell B is specific. May be greater than the threshold.
매크로 프로세서(945)는 제1 확장 EPS 베어러를 더 이상 사용하지 않고 제2 확장 EPS 베어러를 생성하여 사용하기를 결정하면, 중단되어 있던 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 개시함을 지시하는 제1 RRC 연결 재구성 메시지를 생성하고, 매크로 전송부(935)는 제1 RRC 연결 재구성 메시지를 단말(900)로 전송한다. 사용자 평면의 데이터에 대해 사용이 중단되었던 매크로 셀의 EPS 베어러를 다시 사용하는 이유는, 제2 확장 EPS 베어러의 생성을 위한 코어망과의 협상(negotiation)의 지연(delay)이 존재하기 때문에, 제2 확장 EPS 베어러가 생성 완료되기 전까지는 우선적으로 매크로 셀의 EPS 베어러를 재사용하는 것이다. 제2 확장 EPS 베어러의 생성이 완료될 때까지 단말(900)이 상향링크 전송을 위한 EPS 베어러가 필요하기 때문이다. 또한 제2 확장 EPS 베어러의 생성이 무선 구간과 코어망(도면에 미도시) 구간에서 확실히 완성되지 않은 상태에서 매크로 셀의 EPS 베어러를 삭제하면, 단말(900)과 코어망 사이에서 주고 받는 사용자 데이터가 매크로 기지국이나 코어망 쪽에서 버퍼링이 되거나 매크로 셀과 스몰셀 사이의 인터페이스를 통해서 대량의 데이터가 교환되어야 하는 문제가 있기 때문이다. If the macro processor 945 decides to generate and use the second extended EPS bearer without using the first extended EPS bearer anymore, it instructs to start uplink transmission using the EPS bearer of the suspended macro cell. The first RRC connection reconfiguration message is generated, and the macro transmitter 935 transmits the first RRC connection reconfiguration message to the terminal 900. The reason for using the EPS bearer of the macro cell, which has been discontinued for the data of the user plane, is because there is a delay of negotiation with the core network for generating the second extended EPS bearer. 2 Until the extended EPS bearer is created, the EPS bearer of the macro cell is first reused. This is because the terminal 900 needs the EPS bearer for uplink transmission until the generation of the second extended EPS bearer is completed. Also, if the EPS bearer of the macro cell is deleted while the generation of the second extended EPS bearer is not completed in the wireless section and the core network (not shown), the user data exchanged between the terminal 900 and the core network This is because there is a problem that a large amount of data must be exchanged through buffering at the macro base station or core network side or through an interface between the macro cell and the small cell.
한편, 사용자 평면의 데이터가 매크로 셀의 EPS 베어러를 통해 송수신됨에 따라, 기존의 제1 확장 EPS 베어러에서의 상향링크 전송은 중단되어야 한다. 이러한 의미에서, 상기 제1 RRC 연결 재구성 메시지는 기존의 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 중단을 지시할 수도 있다. Meanwhile, as data of the user plane is transmitted and received through the EPS bearer of the macro cell, uplink transmission in the existing first extended EPS bearer should be stopped. In this sense, the first RRC connection reconfiguration message may indicate an interruption of uplink transmission in the existing first extended EPS bearer.
제1 실시예로서, 제1 RRC 연결 재구성 메시지는 제1 확장 EPS 베어러를 이용한 상향링크 전송을 유보(suspend)함을 지시하는 UL Tx 유보 정보(ULTxSsuspendInfo)를 포함할 수 있다. 다시 말하면, 제1 RRC 연결 재구성 메시지는 제1 확장 EPS 베어러를 사용하여 상향링크 전송을 하지 말라는 의미의 UL Tx 유보 정보를 포함할 수 있다. 이는 제2 확장 EPS 베어러의 생성이 단말(900)부터 코어망까지의 전 구간에서 완성되지 않은 상태이기 때문이다. As a first embodiment, the first RRC connection reconfiguration message may include UL Tx reservation information (ULTxSsuspendInfo) indicating that the uplink transmission using the first extended EPS bearer is suspended. In other words, the first RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the first extended EPS bearer. This is because the generation of the second extended EPS bearer is not completed in the entire period from the terminal 900 to the core network.
제2 실시예로서, 제1 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 개시함을 지시하는 UL TX 시작 정보(ULTxStartInfo)를 포함할 수 있다. As a second embodiment, the first RRC connection reconfiguration message may include UL TX start information (ULTxStartInfo) indicating that uplink transmission is started using the EPS bearer of the macro cell.
제3 실시예로서, 제1 RRC 연결 재구성 메시지는 단말 식별자(UE Identity), 매크로 셀의 EPS 베어러 식별자 및 제1 확장 EPS 베어러 식별자를 포함할 수 있다. 단말 식별자는 단말(900)을 식별할 수 있는 식별번호로서, C-RNTI, IMSI, GUTI 등을 포함할 수 있다. As a third embodiment, the first RRC connection reconfiguration message may include a UE identifier, an EPS bearer identifier of a macro cell, and a first extended EPS bearer identifier. The terminal identifier is an identification number for identifying the terminal 900 and may include C-RNTI, IMSI, GUTI, and the like.
이외에도, 제1 RRC 연결 재구성 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 내지 제3 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the first RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the second embodiment. It may include information according to a combination of an example and a third embodiment, or may include information according to a combination of the first to third embodiments.
본 실시예는 UL Tx 중단 정보 또는 UL TX 시작 정보가 제1 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 중단 정보 또는 UL TX 시작 정보는 제1 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다. This embodiment is not limited to the transmission of UL Tx interruption information or UL TX start information included in the first RRC connection reconfiguration message. That is, the UL Tx stop information or the UL TX start information may be transmitted independently of the first RRC connection reconfiguration message.
단말 수신부(905)가 제1 RRC 연결 재구성 메시지를 수신하면, 단말 프로세서(910)는 상향링크 데이터 송신 시에 더 이상 제1 확장 EPS 베어러를 사용하지 않고(즉, 제1 확장 EPS 베어러를 사용한 상향링크 전송을 중단하고), 매크로 셀의 EPS 베어러를 사용할 수 있다. When the terminal receiver 905 receives the first RRC connection reconfiguration message, the terminal processor 910 no longer uses the first extended EPS bearer when transmitting uplink data (that is, uplink using the first extended EPS bearer). Stop link transmission), and use the EPS bearer of the macro cell.
매크로 프로세서(945)는 EPS 베어러 제어 정보를 생성하고, 매크로 전송부(935)는 EPS 베어러 제어 정보를 코어망((MME, S-GW, P-GW)으로 전송한다. P-GW는 EPS 베어러 제어 정보를 최종적으로 수신한다. 이때부터 P-GW는 PDN으로부터 수신하는 사용자 평면의 하향링크 데이터를 제1 확장 EPS 베어러 대신에 매크로 셀의 EPS 베어러를 사용하여 단말(900)로 전달한다. EPS 베어러 제어 정보는 예를 들어 단말 식별자, 매크로 셀의 EPS 베어러 식별자 및 제1 확장 EPS 베어러 식별자 중 적어도 하나를 포함할 수 있다. The macro processor 945 generates EPS bearer control information, and the macro transmitter 935 transmits EPS bearer control information to the core network (MME, S-GW, P-GW). The P-GW is an EPS bearer. Finally, the P-GW forwards downlink data of the user plane received from the PDN to the terminal 900 using the EPS bearer of the macro cell instead of the first extended EPS bearer. The control information may include, for example, at least one of a terminal identifier, an EPS bearer identifier of a macro cell, and a first extended EPS bearer identifier.
단말 프로세서(910)는 제1 RRC 연결 재구성 메시지에 기반하여 무선 구성을 완료하고, 제1 RRC 연결 재구성 완료 메시지를 생성한다. 그리고 단말 전송부(915)는 제1 RRC 연결 재구성 완료 메시지를 매크로 기지국(930)으로 전송한다. The terminal processor 910 completes the radio configuration based on the first RRC connection reconfiguration message and generates a first RRC connection reconfiguration complete message. The terminal transmitter 915 transmits the first RRC connection reconfiguration complete message to the macro base station 930.
단말(900)은 제1 RRC 연결 재구성 메시지와 EPS 베어러 제어정보에 기반하여 매크로 셀의 EPS 베어러를 재사용함으로써 원활한 서비스를 단말에 제공할 수 있다. 예를 들어 제2 확장 EPS 베어러를 생성하는 과정에서 스몰셀 A의 신호 세기가 급격히 나빠지더라도, 단말(900)은 매크로 셀의 EPS 베어러를 통해 단말은 안정적인 서비스를 제공받을 수 있다.The terminal 900 may provide a smooth service to the terminal by reusing the EPS bearer of the macro cell based on the first RRC connection reconfiguration message and the EPS bearer control information. For example, even when the signal strength of the small cell A deteriorates rapidly in the process of generating the second extended EPS bearer, the terminal 900 may receive a stable service through the EPS bearer of the macro cell.
매크로 셀의 EPS 베어러의 재사용과는 별도로, 단말(900)은 제2 확장 EPS 베어러를 생성해야 한다. 이는 베어러 확장 절차로서, 매크로 프로세서(945)는 베어러 확장 요청 메시지를 생성하고, 매크로 전송부(935)는 베어러 확장 요청 메시지를 제2 스몰 기지국(960)으로 전송한다. 베어러 확장 요청 메시지는 X2 인터페이스를 통하여 매크로 기지국(930)에서 제2 스몰 기지국(960)으로 전송될 수 있다. Apart from reusing the EPS bearer of the macro cell, the terminal 900 must create a second extended EPS bearer. This is a bearer extension procedure. The macro processor 945 generates a bearer extension request message, and the macro transmitter 935 transmits a bearer extension request message to the second small base station 960. The bearer extension request message may be transmitted from the macro base station 930 to the second small base station 960 through the X2 interface.
베어러 확장 요청 메시지를 수신한 스몰 프로세서(975)는, 베어러 확장 요청 메시지 내의 확장 EPS 베어러 식별자가 가리키는 제1 확장 EPS 베어러를 대신하여 사용할 제2 확장 EPS 베어러를 주어진 QoS 정보를 만족하도록 만들라는 의미로 해석한다. 베어러 확장 요청 메시지는 적어도 하나의 정보요소를 포함할 수 있다. 예를 들어, 정보요소는 단말 식별자 또는 매크로 셀의 EPS 베어러 식별자 또는 QoS 결정 파라미터가 될 수 있다. The small processor 975 receiving the bearer extension request message means to make a second extended EPS bearer to use in place of the first extended EPS bearer indicated by the extended EPS bearer identifier in the bearer extension request message to satisfy the given QoS information. Interpret The bearer extension request message may include at least one information element. For example, the information element may be a terminal identifier or an EPS bearer identifier or QoS determination parameter of a macro cell.
베어러 확장 요청 메시지를 수신한 스몰 프로세서(975)는, 베어러 확장 요청 메시지 내에 포함된 정보요소들을 추출한다. 그리고 스몰 프로세서(975)는 상기 단말 식별자에 의해 식별되는 단말(900)이 상기 매크로 셀의 EPS 베어러 식별자에 의해 식별되는 EPS 베어러 대신에, 상기 QoS 결정 파라미터에 만족하는 제2 확장 EPS 베어러를 코어망 측과 함께 생성하는 절차를 준비한다. Upon receiving the bearer extension request message, the small processor 975 extracts information elements included in the bearer extension request message. In addition, the small processor 975 is configured to core the second extended EPS bearer that satisfies the QoS determination parameter instead of the EPS bearer whose terminal 900 is identified by the terminal identifier. Prepare the procedure to create with the side.
예를 들어, 스몰 프로세서(975)는 코어망과 함께 제2 확장 EPS 베어러의 식별자를 결정하고 상기 제2 확장 EPS 베어러 식별자와 연관된 E-RAB 식별자를 결정한다. 그리고 새롭게 생성된 제2 확장 EPS 베어러와 E-RAB를 제1 확장 EPS 베어러에 대신하여 사용하기 위해 필요한 준비 작업을 수행한다. For example, the small processor 975 determines the identifier of the second extended EPS bearer along with the core network and determines the E-RAB identifier associated with the second extended EPS bearer identifier. Then, a preparation operation necessary for using the newly created second extended EPS bearer and the E-RAB in place of the first extended EPS bearer is performed.
스몰 프로세서(975)는 기지국은 제2 확장 EPS 베어러와 그와 연관된 E-RAB의 QoS를 만족하는 무선 구성 파라미터 값들을 포함하는 베어러 확장 응답 메시지를 생성하고, 이를 매크로 기지국(930)으로 전송한다. 이것은 코어망으로부터 전달되어 오는 메시지를 포함할 수도 있다. 베어러 확장 응답 메시지의 전달을 위해 X2 인터페이스가 사용될 수 있다. The small processor 975 generates a bearer extension response message that includes radio configuration parameter values that satisfy the QoS of the second extended EPS bearer and its associated E-RAB, and sends it to the macro base station 930. This may include messages coming from the core network. The X2 interface may be used for delivery of the bearer extension response message.
제1 실시예로서, 베어러 확장 응답 메시지에 포함된 상기 무선 구성 파라미터 값들은 RB를 구성하는 파라미터들로써, 스몰셀 B 상에서 단말(900)에 서비스를 제공하는데 필요한 시스템 정보와 PHY, MAC 계층의 정보를 포함할 수 있다. In a first embodiment, the radio configuration parameter values included in the bearer extension response message are parameters for configuring an RB, and provide system information, PHY, and MAC layer information necessary for providing a service to a terminal 900 on a small cell B. It may include.
제2 실시예로서, 베어러 확장 응답 메시지는 단말 식별자, 스몰 셀 B의 시스템 정보, 스몰 셀 B의 물리계층 정보, 스몰 셀 B의 MAC 계층의 정보, 매크로 셀의 EPS 베어러 식별자, 제2 확장 EPS 베어러 식별자 중 적어도 하나를 포함할 수 있다. As a second embodiment, the bearer extension response message includes a terminal identifier, system information of small cell B, physical layer information of small cell B, information of MAC layer of small cell B, EPS bearer identifier of macro cell, and second extended EPS bearer. It may include at least one of the identifier.
제3 실시예로서, 베어러 확장 응답 메시지는 DRB 구성을 위한 파라미터들, 예를 들어 DRB 식별자(drb-Identity), PDCH 구성정보(pdcp-Config), RLC 구성정보(rlc-Config), 제2 확장 EPS 베어러 식별자 중 적어도 하나를 더 포함할 수 있다. As a third embodiment, the bearer extension response message includes parameters for DRB configuration, for example, DRB identifier (drb-Identity), PDCH configuration information (pdcp-Config), RLC configuration information (rlc-Config), and second extension. It may further include at least one of the EPS bearer identifier.
이외에도, 베어러 확장 응답 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 내지 제3 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the bearer extension response message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and The information according to the combination of the third embodiment may be included, or the information according to the combination of the first to third embodiments may be included.
매크로 프로세서(945)는 베어러 확장 응답 메시지를 통해 수신받은 값들을 사용하여 단말의 무선자원 구성을 지시하는 제2 RRC 연결 재구성 메시지를 생성하고, 매크로 전송부(935)는 제2 RRC 연결 재구성 메시지를 단말(900)로 전송한다. 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러의 완성을 위해 제2 스몰 기지국(960)과 단말(900) 사이에 필요한 제어정보를 포함한다. The macro processor 945 generates a second RRC connection reconfiguration message indicating a radio resource configuration of the terminal using the values received through the bearer extension response message, and the macro transmitter 935 generates a second RRC connection reconfiguration message. Transmit to the terminal 900. The second RRC connection reconfiguration message includes control information required between the second small base station 960 and the terminal 900 to complete the second extended EPS bearer.
제1 실시예로서, 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보(suspending)함을 지시하는 UL Tx 유보 정보(ULTxSuspendInfo)를 포함할 수 있다. 다시 말하면, 제2 RRC 연결 재구성 메시지는 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 하지 말라는 의미의 UL Tx 유보 정보를 포함할 수 있다. 이는 제2 확장 EPS 베어러의 생성이 단말(900)부터 코어망까지의 전 구간에서 완성되지 않은 상태에서 제2 확장 EPS 베어러가 사용되면, 단말(900)과 코어망 사이에서 주고 받는 사용자 데이터가 매크로 기지국이나 코어망 쪽에서 버퍼링이 되거나 또는 매크로 기지국(930)과 제2 스몰 기지국(960) 사이의 인터페이스를 통해서 대량의 데이터가 교환되어야 하는 문제가 발생할 수 있기 때문이다. 단, 상기 상향링크 전송은 PUCCH와 HARQ ACK/NACK 정보의 전송은 포함하지 않을 수 있다. 다시 말하면, UL Tx 유보 정보에도 불구하고, 단말은 PUCCH와 HARQ ACK/NACK 정보를 전송할 수 있다. As a first embodiment, the second RRC connection reconfiguration message may include UL Tx reservation information (ULTxSuspendInfo) indicating suspending uplink transmission using the second extended EPS bearer. In other words, the second RRC connection reconfiguration message may include UL Tx reservation information meaning that no uplink transmission is performed using the second extended EPS bearer. This means that if the second extended EPS bearer is used while the generation of the second extended EPS bearer is not completed in the entire period from the terminal 900 to the core network, the user data exchanged between the terminal 900 and the core network is macro. This is because a problem may occur that a large amount of data is exchanged through the interface between the macro base station 930 and the second small base station 960 or buffered at the base station or the core network. However, the uplink transmission may not include transmission of PUCCH and HARQ ACK / NACK information. In other words, despite the UL Tx reservation information, the terminal may transmit the PUCCH and HARQ ACK / NACK information.
제2 실시예로서, 제2 RRC 연결 재구성 메시지는 상기 베어러 확장 응답 메시지의 모든 무선 구성 파라미터 값들 및 제2 확장 EPS 베어러의 식별자를 포함할 수 있다. As a second embodiment, the second RRC connection reconfiguration message may include all radio configuration parameter values of the bearer extension response message and an identifier of the second extended EPS bearer.
제3 실시예로서, 제2 RRC 연결 재구성 메시지는 제2 스몰 기지국(960)과 단말(900)간에 형성되는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 지시하는 세부정보를 포함할 수 있다. In a third embodiment, the second RRC connection reconfiguration message may include detailed information indicating availability or activation of a second extended EPS bearer formed between the second small base station 960 and the terminal 900. It may include.
제4 실시예로서, 제2 RRC 연결 재구성 메시지는 단말 특정한(UE specific) NAS 계층 정보를 코어망과 단말(900)간에 전달하는데 사용되는 전용적 NAS 리스트(dedicatedInfoNASList) 정보요소를 포함한다. 그리고 상기 전용적 NAS 리스트 정보요소에 제2 스몰 기지국(960)과 단말(900)간에 형성되는 제2 확장 EPS 베어러의 사용가능(availability) 또는 활성화(activation)를 지시하는 세부정보가 포함될 수 있다. As a fourth embodiment, the second RRC connection reconfiguration message includes a dedicated NAS list (dedicatedInfoNASList) information element used for transferring UE specific NAS layer information between the core network and the terminal 900. The dedicated NAS list information element may include detailed information indicating availability or activation of the second extended EPS bearer formed between the second small base station 960 and the terminal 900.
이외에도, 제2 RRC 연결 재구성 메시지는 제1 실시예와 제2 실시예의 조합에 따른 정보를 포함할 수도 있고, 제1 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제1 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있고, 제2 실시예와 제3 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제2 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있고, 제3 실시예와 제4 실시예의 조합에 따른 정보를 포함할 수도 있으며, 제1 내지 제4 실시예의 조합에 따른 정보를 포함할 수도 있다. In addition, the second RRC connection reconfiguration message may include information according to the combination of the first embodiment and the second embodiment, may include information according to the combination of the first embodiment and the third embodiment, and the first embodiment. It may include information according to a combination of an example and a fourth embodiment, may include information according to a combination of a second embodiment and a third embodiment, and may include information according to a combination of a second embodiment and a fourth embodiment. In addition, the information according to the combination of the third and fourth embodiments may be included, and the information according to the combination of the first to fourth embodiments may be included.
본 실시예는 UL Tx 유보 정보(ULTxSuspendInfo)가 제2 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 유보 정보는 제2 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다. This embodiment is not limited to the transmission of the UL Tx reservation information (ULTxSuspendInfo) included in the second RRC connection reconfiguration message. That is, the UL Tx reservation information may be transmitted independently of the second RRC connection reconfiguration message.
단말 수신부(905)가 제2 RRC 연결 재구성 메시지를 수신하면, 단말 프로세서(910)는 제2 RRC 연결 재구성 메시지에 기반하여 제2 스몰 기지국(960)과의 무선 구성을 완료하고, 제2 확장 EPS 베어러에 해당하는 무선 구성을 성공적으로 완료하였음을 나타내는 제2 RRC 연결 재구성 완료 메시지를 생성한다. 그리고 단말 전송부(915)는 제2 RRC 연결 재구성 완료 메시지를 매크로 기지국(930)으로 전송한다. When the terminal receiver 905 receives the second RRC connection reconfiguration message, the terminal processor 910 completes the radio configuration with the second small base station 960 based on the second RRC connection reconfiguration message, and the second extended EPS. A second RRC connection reconfiguration complete message is generated indicating that the radio configuration corresponding to the bearer has been successfully completed. The terminal transmitter 915 transmits a second RRC connection reconfiguration complete message to the macro base station 930.
UL Tx 유보 정보를 수신한 단말(900)은 아직 코어망에서 제2 확장 EPS 베어러가 완성되지 않은 상태이기 때문에 상향링크(UL) 데이터를 매크로 셀의 EPS 베어러를 통해 전송 및 처리할 수 있다. 즉, 제2 확장 EPS 베어러의 생성 준비 단계에서, 단말 프로세서(910)는 삭제되지 않고 남아 있는 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 수행한다. 다만, 단말 프로세서(910)는 PUCCH와 HARQ ACK/NACK 정보는 예외적으로 제2 확장 EPS 베어러를 사용하여 전송할 수도 있다. 단말 프로세서(910)는 하향링크(DL) 데이터 또한 매크로 셀의 EPS 베어러를 통해 수신 및 처리할 수 있는 상태이다.The terminal 900 receiving the UL Tx reservation information may transmit and process uplink (UL) data through the EPS bearer of the macro cell since the second extended EPS bearer is not yet completed in the core network. That is, in the generation preparation step of generating the second extended EPS bearer, the terminal processor 910 performs uplink transmission using the EPS bearer of the macro cell which is not deleted. However, the UE processor 910 may transmit the PUCCH and HARQ ACK / NACK information using the second extended EPS bearer as an exception. The terminal processor 910 is capable of receiving and processing downlink (DL) data through an EPS bearer of a macro cell.
이와 같이 단말(900)에 무선 구성이 완료(즉, RB 구성 완료)되고 제2 확장 EPS 베어러를 사용할 수 있음에도 여전히 매크로 셀의 EPS 베어러를 통해 상향링크 전송을 수행하는 이유는 상향링크 전송의 신뢰성을 보장하기 위함이다. 단말(900)이 스몰셀 B로 이동하다가 다시 스몰셀 A나 매크로 셀 만의 영역으로 이동할 수도 있기 때문이다. As such, although the radio configuration is completed in the terminal 900 (that is, the RB configuration is completed) and the second extended EPS bearer can be used, the reason why the uplink transmission is still performed through the EPS bearer of the macro cell is that the reliability of the uplink transmission is reduced. To ensure. This is because the terminal 900 may move to the small cell B and then move to the area of the small cell A or the macro cell only.
매크로 프로세서(945)는 단말(900)과 제2 스몰 기지국(960) 간에 RB의 생성이 완료되었음을 지시하는 RB 생성 완료 메시지를 생성하고, 매크로 전송부(935)는 RB 생성 완료 메시지를 제2 스몰 기지국(960)으로 전송한다. RB 생성 완료 메시지는 X2 인터페이스를 통해 전달되는 메시지이다. The macro processor 945 generates an RB generation complete message indicating that generation of the RB has been completed between the terminal 900 and the second small base station 960, and the macro transmitter 935 generates a second small RB generation message. Transmit to base station 960. The RB creation complete message is a message transmitted through the X2 interface.
스몰 수신부(970)가 RB 생성 완료 메시지를 수신하면, 스몰 프로세서(975)는 제2 확장 EPS 베어러에 해당하는 RB의 구성이 성공적으로 완료되었음을 확인할 수 있다. 이때. 비로소 단말(900)과 제2 스몰 기지국(960) 간에 RB의 생성이 완료된다. When the small receiver 970 receives the RB generation complete message, the small processor 975 may confirm that the configuration of the RB corresponding to the second extended EPS bearer is completed successfully. At this time. Finally, generation of the RB is completed between the terminal 900 and the second small base station 960.
스몰 프로세서(975)는 코어망에 대하여 제2 확장 EPS 베어러의 생성을 완료한다. 코어망에서 제2 확장 EPS 베어러가 생성된 후, 코어망의 구성요소 중에서 P-GW는 단말(900)을 향해 PDN으로부터 P-GW를 통해서 들어오는 사용자 데이터를 제2 확장 EPS 베어러를 사용하여 단말(900)에게 전송하기 시작한다. 그리고, 스몰 전송부(965)는 P-WG를 통해 유입되는 상기 사용자 데이터를 제2 확장 EPS 베어러를 이용하여 단말(900)로 전송한다. 제2 스몰 기지국(960)과 단말(900) 간에 RB의 생성이 완료되었으므로, 스몰 전송부(965)가 제2 확장 EPS 베어러를 통해 상기 사용자 데이터를 단말(900)로 전송하는데 문제가 없고 단말(900)도 제2 확장 EPS 베어러를 통해 상기 사용자 데이터를 수신하는데 문제가 없다. The small processor 975 completes the creation of the second extended EPS bearer for the core network. After the second extended EPS bearer is generated in the core network, the P-GW among the components of the core network uses the second extended EPS bearer for user data coming in through the P-GW from the PDN toward the terminal 900. 900). The small transmitter 965 transmits the user data introduced through the P-WG to the terminal 900 using the second extended EPS bearer. Since the generation of the RB is completed between the second small base station 960 and the terminal 900, the small transmitter 965 has no problem in transmitting the user data to the terminal 900 through the second extended EPS bearer and the terminal ( 900 also has no problem receiving the user data via a second extended EPS bearer.
코어망에 대한 제2 확장 EPS 베어러의 생성이 완료되었음을 확인하면, 매크로 프로세서(945)는 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 단말(900)에 지시하는 제3 RRC 연결 재구성 메시지를 생성하고, 매크로 전송부(935)는 제3 RRC 연결 재구성 메시지를 단말(900)로 전송한다. 이로써 단말(900)은 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 수행할 수 있다. When the generation of the second extended EPS bearer for the core network is completed, the macro processor 945 sends a third RRC connection reconfiguration message indicating to the terminal 900 that the uplink transmission starts from the second extended EPS bearer. The macro transmitter 935 generates and transmits a third RRC connection reconfiguration message to the terminal 900. As a result, the terminal 900 may perform uplink transmission using the second extended EPS bearer.
일례로서, 제3 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러에서 상향링크 전송을 유보(suspend)함을 지시하는 UL Tx 유보 정보(ULTxSuspendInfo) 및 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 지시하는 UL Tx 시작 정보(ULTxStartInfo)를 포함한다.As an example, the third RRC connection reconfiguration message indicates UL Tx reservation information (ULTxSuspendInfo) indicating that the uplink transmission is suspended in the EPS bearer of the macro cell and uplink transmission is started in the second extended EPS bearer. UL Tx start information (ULTxStartInfo) is included.
다른 예로서, 제3 RRC 연결 재구성 메시지는 매크로 셀의 EPS 베어러에서 상향링크 전송을 유보함을 지시하는 UL Tx 유보 정보, 제2 확장 EPS 베어러에서 상향링크 전송을 시작함을 지시하는 UL Tx 시작 정보(ULTxStartInfo), 매크로 셀의 EPS 베어러의 식별자 및 제2 확장 EPS 베어러의 식별자를 포함할 수 있다. As another example, the third RRC connection reconfiguration message may include UL Tx reservation information indicating that the uplink transmission is reserved by the EPS bearer of the macro cell, and UL Tx start information indicating that the uplink transmission is started by the second extended EPS bearer. (ULTxStartInfo), the identifier of the EPS bearer of the macro cell, and the identifier of the second extended EPS bearer.
본 실시예는 UL Tx 유보 정보와 UL Tx 시작 정보(ULTxStartInfo)가 제3 RRC 연결 재구성 메시지에 포함되어 전송되는 것에 한정하지 않는다. 즉, UL Tx 홀딩 정보와 UL Tx 시작 정보는 제3 RRC 연결 재구성 메시지와는 별개로 독자적으로 전송될 수도 있다. This embodiment is not limited to the UL Tx reservation information and the UL Tx start information (ULTxStartInfo) included in the third RRC connection reconfiguration message and transmitted. That is, the UL Tx holding information and the UL Tx start information may be transmitted independently of the third RRC connection reconfiguration message.
제1 스몰 기지국과 코어망은 제1 확장 EPS 베어러의 해제를 위한 동작을 수행한다.The first small base station and the core network perform an operation for releasing the first extended EPS bearer.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다. In the exemplary system described above, the methods are described based on a flowchart as a series of steps or blocks, but the invention is not limited to the order of steps, and certain steps may occur in a different order or concurrently with other steps than those described above. Can be. In addition, those skilled in the art will appreciate that the steps shown in the flowcharts are not exclusive and that other steps may be included or one or more steps in the flowcharts may be deleted without affecting the scope of the present invention.
상술한 실시예들은 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.The above-described embodiments include examples of various aspects. While not all possible combinations may be described to represent the various aspects, one of ordinary skill in the art will recognize that other combinations are possible. Accordingly, the invention is intended to embrace all other replacements, modifications and variations that fall within the scope of the following claims.

Claims (14)

  1. 다수의 스몰 기지국(small eNB)을 포함하는 이종 네트워크 시스템(Heterogeneous Network System)에서 단말에 의한 확장 EPS(Evolved Packet System) 베어러의 변경을 지원하는 방법으로서, A method for supporting a change of an extended EPS (Evolved Packet System) bearer by a UE in a heterogeneous network system including a plurality of small eNBs,
    상기 단말과 매크로 기지국간에 형성된 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제1 상향링크 전송 시작정보와, 상기 단말과 제1 스몰 기지국간에 형성된 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 유보를 지시하는 제1 상향링크 전송 유보정보를 상기 매크로 기지국으로부터 수신하는 단계;First uplink transmission start information indicating that uplink transmission is started using an EPS bearer of a macro cell formed between the terminal and the macro base station, and an uplink in the first extended EPS bearer formed between the terminal and the first small base station; Receiving first uplink transmission reservation information indicating reservation for link transmission from the macro base station;
    상기 단말과 제2 스몰 기지국간에 형성될 제2 확장 EPS 베어러에 맵핑되는 무선 베어러(radio bearer)를 구성하기 위한 파라미터와, 상기 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보함을 지시하는 제2 상향링크 전송 유보 정보를 상기 매크로 기지국으로부터 수신하는 단계; 및A parameter for configuring a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and the second small base station, and a second indicating that the uplink transmission using the second extended EPS bearer is reserved. Receiving uplink transmission reservation information from the macro base station; And
    상기 매크로 셀의 EPS 베어러를 사용한 상향링크 전송을 유보함을 지시하는 제3 상향링크 전송 유보 정보와, 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제2 상향링크 전송 시작정보를 상기 매크로 기지국으로부터 수신하는 단계를 포함함을 특징으로 하는, 확장 베어러의 변경을 지원하는 방법. Third uplink transmission reservation information indicating that the uplink transmission using the EPS bearer of the macro cell is reserved and second uplink transmission starting indicating the uplink transmission using the second extended EPS bearer is started. Receiving information from the macro base station.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제1 상향링크 전송 시작정보와 상기 제1 상향링크 전송 유보정보를 수신한 후, 상기 매크로 기지국에 대해 상향링크 전송을 수행하는 단계; 및Performing uplink transmission for the macro base station after receiving the first uplink transmission start information and the first uplink transmission reservation information; And
    상기 제2 상향링크 전송 유보정보와 상기 제2 상향링크 전송 시작정보를 수신한 후, 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 수행하는 단계를 더 포함함을 특징으로 하는, 확장 베어러의 변경을 지원하는 방법. And after receiving the second uplink transmission reservation information and the second uplink transmission start information, performing uplink transmission by using the second extended EPS bearer. How to support change.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 제1 상향링크 전송 시작정보, 상기 제1 상향링크 전송 유보정보, 상기 제2 상향링크 전송 유보정보, 상기 제3 상향링크 전송 유보정보 및 상기 제2 상향링크 전송 시작정보는 RRC 연결 재구성 메시지에 포함되어 수신됨을 특징으로 하는, 확장 베어러의 변경을 지원하는 방법. The first uplink transmission start information, the first uplink transmission reservation information, the second uplink transmission reservation information, the third uplink transmission reservation information and the second uplink transmission start information are included in an RRC connection reconfiguration message. Characterized in that it is included and received.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 파라미터에 기반하여 상기 제2 스몰 기지국과 상기 단말간에 무선 베어러의 생성이 완료되고, 상기 제2 스몰 기지국과 코어망 간에 상기 제2 확장 EPS 베어러의 생성이 완료되면, When generation of the radio bearer is completed between the second small base station and the terminal based on the parameter, and generation of the second extended EPS bearer between the second small base station and the core network is completed,
    상기 제2 확장 EPS 베어러를 사용하여 하향링크 수신을 수행을 시작하는 단계를 더 포함함을 특징으로 하는, 확장 베어러의 변경을 지원하는 방법. Starting to perform downlink reception using the second extended EPS bearer.
  5. 다수의 스몰 기지국을 포함하는 이종 네트워크 시스템에서 확장 EPS 베어러의 변경을 지원하는 단말로서, A terminal for supporting a change of an extended EPS bearer in a heterogeneous network system including a plurality of small base stations,
    상기 단말과 매크로 기지국간에 형성된 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제1 상향링크 전송 시작정보, 상기 단말과 제1 스몰 기지국간에 형성된 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 유보를 지시하는 제1 상향링크 전송 유보정보, 상기 단말과 제2 스몰 기지국간에 형성될 제2 확장 EPS 베어러에 맵핑되는 무선 베어러를 구성하기 위한 파라미터, 상기 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보함을 지시하는 제2 상향링크 전송 유보 정보, 상기 매크로 셀의 EPS 베어러를 사용한 상향링크 전송을 유보함을 지시하는 제3 상향링크 전송 유보정보, 및 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제2 상향링크 전송 시작정보를 상기 매크로 기지국으로부터 수신하는 단말 수신부; 및First uplink transmission start information indicating that uplink transmission is started using an EPS bearer of a macro cell formed between the terminal and the macro base station, and an uplink in a first extended EPS bearer formed between the terminal and the first small base station; First uplink transmission reservation information indicating reservation for transmission, a parameter for configuring a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and the second small base station, and an uplink using the second extended EPS bearer Using second uplink transmission reservation information indicating suspension of link transmission, third uplink transmission reservation information indicating suspension of uplink transmission using the EPS bearer of the macro cell, and using the second extended EPS bearer Number of UEs receiving second uplink transmission start information from the macro base station indicating that uplink transmission is started priest; And
    상기 제1 상향링크 전송 시작정보와 상기 제1 상향링크 전송 유보정보에 기반하여 상기 매크로 기지국에 대해 상향링크 전송을 수행하고, 상기 제3 상향링크 전송 유보정보와 상기 제2 상향링크 전송 시작정보에 기반하여 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 수행하는 단말 프로세서를 포함함을 특징으로 하는 단말. Perform uplink transmission to the macro base station based on the first uplink transmission start information and the first uplink transmission reservation information, and perform the uplink transmission on the third uplink transmission reservation information and the second uplink transmission start information. And a terminal processor configured to perform uplink transmission based on the second extended EPS bearer.
  6. 제 5 항에 있어서, 상기 단말 수신부는, The method of claim 5, wherein the terminal receiving unit,
    상기 제1 상향링크 전송 시작정보, 상기 제1 상향링크 전송 유보정보, 상기 제2 상향링크 전송 유보정보, 상기 제3 상향링크 전송 유보정보 및 상기 제2 상향링크 전송 시작정보를 RRC 연결 재구성 메시지를 통해 수신함을 특징으로 하는, 단말. The RRC connection reconfiguration message includes the first uplink transmission start information, the first uplink transmission reservation information, the second uplink transmission reservation information, the third uplink transmission reservation information, and the second uplink transmission start information. Receiving through, the terminal.
  7. 제 5 항에 있어서,The method of claim 5,
    상기 파라미터에 기반하여 상기 제2 스몰 기지국과 상기 단말간에 무선 베어러의 생성이 완료되고, 상기 제2 스몰 기지국과 코어망 간에 상기 제2 확장 EPS 베어러의 생성이 완료되면, When generation of the radio bearer is completed between the second small base station and the terminal based on the parameter, and generation of the second extended EPS bearer between the second small base station and the core network is completed,
    상기 단말 프로세서는 상기 제2 확장 EPS 베어러를 사용하여 하향링크 수신을 수행을 시작함을 특징으로 하는, 단말. And the terminal processor starts downlink reception using the second extended EPS bearer.
  8. 다수의 스몰 기지국(small eNB)을 포함하는 이종 네트워크 시스템(Heterogeneous Network System)에서 매크로 기지국에 의한 확장 EPS(Evolved Packet System) 베어러의 변경을 지원하는 방법으로서, A method of supporting a change of an extended Evolved Packet System (EPS) bearer by a macro base station in a heterogeneous network system including a plurality of small base stations,
    단말과 상기 매크로 기지국간에 형성된 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제1 상향링크 전송 시작정보와, 상기 단말과 제1 스몰 기지국간에 형성된 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 유보를 지시하는 제1 상향링크 전송 유보정보를 상기 단말로 전송하는 단계;First uplink transmission start information indicating that uplink transmission is started using an EPS bearer of a macro cell formed between the terminal and the macro base station, and an uplink in the first extended EPS bearer formed between the terminal and the first small base station; Transmitting first uplink transmission reservation information indicating reservation for link transmission to the terminal;
    상기 단말과 제2 스몰 기지국간에 형성될 제2 확장 EPS 베어러에 맵핑되는 무선 베어러(radio bearer)를 구성하기 위한 파라미터와, 상기 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보함을 지시하는 제2 상향링크 전송 유보 정보를 상기 단말로 전송하는 단계; 및A parameter for configuring a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and the second small base station, and a second indicating that the uplink transmission using the second extended EPS bearer is reserved. Transmitting uplink transmission reservation information to the terminal; And
    상기 매크로 셀의 EPS 베어러를 사용한 상향링크 전송을 유보함을 지시하는 제3 상향링크 전송 유보 정보와, 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제2 상향링크 전송 시작정보를 상기 단말로 전송하는 단계를 포함함을 특징으로 하는, 확장 베어러의 변경을 지원하는 방법. Third uplink transmission reservation information indicating that the uplink transmission using the EPS bearer of the macro cell is reserved and second uplink transmission starting indicating the uplink transmission using the second extended EPS bearer is started. And transmitting the information to the terminal.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 제1 상향링크 전송 시작정보와 상기 제1 상향링크 전송 유보정보를 전송한 후, 상향링크 수신을 수행하는 단계; 및Performing uplink reception after transmitting the first uplink transmission start information and the first uplink transmission reservation information; And
    상기 제2 상향링크 전송 유보정보와 상기 제2 상향링크 전송 시작정보를 전송한 후, 상기 제2 확장 EPS 베어러를 사용하여 상향링크 수신을 수행하는 단계를 더 포함함을 특징으로 하는, 확장 베어러의 변경을 지원하는 방법. And after transmitting the second uplink transmission reservation information and the second uplink transmission start information, performing uplink reception using the second extended EPS bearer. How to support change.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 제1 상향링크 전송 시작정보, 상기 제1 상향링크 전송 유보정보, 상기 제2 상향링크 전송 유보정보, 상기 제3 상향링크 전송 유보정보 및 상기 제2 상향링크 전송 시작정보는 RRC 연결 재구성 메시지에 포함되어 전송됨을 특징으로 하는, 확장 베어러의 변경을 지원하는 방법. The first uplink transmission start information, the first uplink transmission reservation information, the second uplink transmission reservation information, the third uplink transmission reservation information and the second uplink transmission start information are included in an RRC connection reconfiguration message. Method for supporting a change of an extended bearer, characterized in that the transmission is included.
  11. 제 8 항에 있어서,The method of claim 8,
    상기 파라미터에 기반하여 상기 제2 스몰 기지국과 상기 단말간에 무선 베어러의 생성이 완료되고, 상기 제2 스몰 기지국과 코어망 간에 상기 제2 확장 EPS 베어러의 생성이 완료되면, When generation of the radio bearer is completed between the second small base station and the terminal based on the parameter, and generation of the second extended EPS bearer between the second small base station and the core network is completed,
    상기 제2 확장 EPS 베어러를 사용하여 하향링크 전송을 수행을 시작하는 단계를 더 포함함을 특징으로 하는, 확장 베어러의 변경을 지원하는 방법. Starting to perform downlink transmission using the second extended EPS bearer.
  12. 다수의 스몰 기지국을 포함하는 이종 네트워크 시스템에서 확장 EPS 베어러의 변경을 지원하는 매크로 기지국으로서, A macro base station supporting a change of an extended EPS bearer in a heterogeneous network system including a plurality of small base stations,
    단말과 상기 매크로 기지국간에 형성된 매크로 셀의 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제1 상향링크 전송 시작정보, 상기 단말과 제1 스몰 기지국간에 형성된 제1 확장 EPS 베어러에서의 상향링크 전송에 대한 유보를 지시하는 제1 상향링크 전송 유보정보, 상기 단말과 제2 스몰 기지국간에 형성될 제2 확장 EPS 베어러에 맵핑되는 무선 베어러를 구성하기 위한 파라미터, 상기 제2 확장 EPS 베어러를 이용한 상향링크 전송을 유보함을 지시하는 제2 상향링크 전송 유보 정보, 상기 매크로 셀의 EPS 베어러를 사용한 상향링크 전송을 유보함을 지시하는 제3 상향링크 전송 유보정보, 및 상기 제2 확장 EPS 베어러를 사용하여 상향링크 전송을 시작함을 지시하는 제2 상향링크 전송 시작정보를 상기 단말로 전송하는 기지국 전송부; 및First uplink transmission start information indicating that uplink transmission is started using an EPS bearer of a macro cell formed between the terminal and the macro base station, and an uplink in a first extended EPS bearer formed between the terminal and the first small base station; First uplink transmission reservation information indicating reservation for transmission, a parameter for configuring a radio bearer mapped to a second extended EPS bearer to be formed between the terminal and the second small base station, and an uplink using the second extended EPS bearer Using second uplink transmission reservation information indicating suspension of link transmission, third uplink transmission reservation information indicating suspension of uplink transmission using the EPS bearer of the macro cell, and using the second extended EPS bearer A base station transmitter which transmits second uplink transmission start information indicating to start uplink transmission to the terminal; And
    상기 제1 상향링크 전송 시작정보와 상기 제1 상향링크 전송 유보정보에 기반하여 상향링크 수신을 수행하고, 상기 제3 상향링크 전송 유보정보와 상기 제2 상향링크 전송 시작정보에 기반하여 상기 제2 확장 EPS 베어러를 사용하여 상향링크 수신을 수행하는 기지국 프로세서를 포함함을 특징으로 하는 매크로 기지국. Uplink reception is performed based on the first uplink transmission start information and the first uplink transmission reservation information, and the second uplink is based on the third uplink transmission reservation information and the second uplink transmission start information. And a base station processor for performing uplink reception using an extended EPS bearer.
  13. 제 12 항에 있어서, 상기 기지국 전송부는, The method of claim 12, wherein the base station transmitter,
    상기 제1 상향링크 전송 시작정보, 상기 제1 상향링크 전송 유보정보, 상기 제2 상향링크 전송 유보정보, 상기 제3 상향링크 전송 유보정보 및 상기 제2 상향링크 전송 시작정보를 RRC 연결 재구성 메시지를 통해 전송함을 특징으로 하는, 매크로 기지국. The RRC connection reconfiguration message includes the first uplink transmission start information, the first uplink transmission reservation information, the second uplink transmission reservation information, the third uplink transmission reservation information, and the second uplink transmission start information. Macro base station, characterized in that through the transmission.
  14. 제 12 항에 있어서,The method of claim 12,
    상기 파라미터에 기반하여 상기 제2 스몰 기지국과 상기 단말간에 무선 베어러의 생성이 완료되고, 상기 제2 스몰 기지국과 코어망 간에 상기 제2 확장 EPS 베어러의 생성이 완료되면, When generation of the radio bearer is completed between the second small base station and the terminal based on the parameter, and generation of the second extended EPS bearer between the second small base station and the core network is completed,
    상기 기지국 프로세서는 상기 제2 확장 EPS 베어러를 사용하여 하향링크 전송을 수행을 시작함을 특징으로 하는, 매크로 기지국. And the base station processor starts performing downlink transmission using the second extended EPS bearer.
PCT/KR2013/011125 2012-12-20 2013-12-03 Method for controlling bearer extension in heterogeneous network wireless communication system and apparatus for same WO2014098390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0149904 2012-12-20
KR1020120149904A KR20140080278A (en) 2012-12-20 2012-12-20 Method and apparatus of controling bearer extension in heterogeneous network wireless communication system

Publications (1)

Publication Number Publication Date
WO2014098390A1 true WO2014098390A1 (en) 2014-06-26

Family

ID=50978656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011125 WO2014098390A1 (en) 2012-12-20 2013-12-03 Method for controlling bearer extension in heterogeneous network wireless communication system and apparatus for same

Country Status (2)

Country Link
KR (1) KR20140080278A (en)
WO (1) WO2014098390A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108370613A (en) * 2015-12-18 2018-08-03 华为技术有限公司 A kind of method and device of redirection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100120259A (en) * 2009-05-05 2010-11-15 엘지전자 주식회사 Server for control plane at mobile communication network and method for controlling establishment of connection thereof
WO2011129273A1 (en) * 2010-04-14 2011-10-20 シャープ株式会社 Location management device, packet gateway device, mobile communication system, mobile station device and mobile communication method
JP2012010300A (en) * 2010-06-28 2012-01-12 Kyocera Corp Radio base station and communication control method
WO2012025149A1 (en) * 2010-08-24 2012-03-01 Nokia Siemens Networks Oy Network devices and method for supporting downlink paging for lipa or sipto
US20120170552A1 (en) * 2010-12-30 2012-07-05 Motorola Solutions, Inc. Methods for managing resource utilization in a long term evolution communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100120259A (en) * 2009-05-05 2010-11-15 엘지전자 주식회사 Server for control plane at mobile communication network and method for controlling establishment of connection thereof
WO2011129273A1 (en) * 2010-04-14 2011-10-20 シャープ株式会社 Location management device, packet gateway device, mobile communication system, mobile station device and mobile communication method
JP2012010300A (en) * 2010-06-28 2012-01-12 Kyocera Corp Radio base station and communication control method
WO2012025149A1 (en) * 2010-08-24 2012-03-01 Nokia Siemens Networks Oy Network devices and method for supporting downlink paging for lipa or sipto
US20120170552A1 (en) * 2010-12-30 2012-07-05 Motorola Solutions, Inc. Methods for managing resource utilization in a long term evolution communication system

Also Published As

Publication number Publication date
KR20140080278A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
WO2019194486A1 (en) Method and apparatus for discarding buffered data while keeping connection in cp-up separation
WO2019160342A1 (en) Method and apparatus for supporting rach-less mobility with pre-allocated beams in wireless communication system
WO2018174627A1 (en) Method and device for indicating type of bearer used for next message in wireless communication system
WO2019098663A1 (en) Method and apparatus for deprioritizing duplicated packet transmission in wireless communication system
WO2014163288A1 (en) Method for performing a logical channel prioritization and communication device thereof
WO2018182254A1 (en) Method and device for transmitting scg failure information message in wireless communication system
WO2016047904A1 (en) Method for handling of data transmission and reception for senb related bearer release at a user equipment in a dual connectivity system and device therefor
WO2016117979A1 (en) Method and apparatus supporting local breakout in a dual-connectivity architecture
WO2015046976A1 (en) Method and apparatus for transmitting and receiving data using plurality of carriers in mobile communication system
WO2016108680A1 (en) Method for performing d2d operation in wireless communication system, and terminal using same
WO2013112021A1 (en) Method and apparatus for transmitting and receiving data by using plurality of carriers in mobile communication systems
WO2019160281A1 (en) Method and apparatus for performing dc based handover
WO2013168946A1 (en) Method and device for transmitting and receiving data by using multiple carriers in mobile communication system
WO2016153130A1 (en) Method and device for transmitting or receiving data by terminal in wireless communication system
WO2015170862A1 (en) Method for establishing plurality of pdn connections by means of csipto
WO2019004667A1 (en) Method and apparatus for reporting measurement result
WO2018070845A1 (en) Sidelink synchronization signal transmission method performed by terminal in wireless communication system and terminal using same
WO2017030343A1 (en) Method for rearranging gateway and method for generating dedicated bearer
WO2017196095A2 (en) Method for configuring dual-connectivity by terminal, and apparatus therefor
WO2016126029A1 (en) Method for applying a new pucch configuration in a carrier aggregation system and a device therefor
WO2016148357A1 (en) Data transmission/reception method and apparatus for terminal in wireless communication system
WO2015020493A1 (en) Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
WO2016140403A1 (en) Method and device for rrc connection of terminal in wireless communication system
WO2014098393A1 (en) Method for controlling bearer extension in heterogeneous network wireless communication system and apparatus for same
WO2017131495A1 (en) Method for operating terminal in accordance with semi-persistent scheduling in wireless communication system, and terminal device using method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866008

Country of ref document: EP

Kind code of ref document: A1