WO2014098386A1 - Method and apparatus for determining cell selection quality value in wireless communication system - Google Patents

Method and apparatus for determining cell selection quality value in wireless communication system Download PDF

Info

Publication number
WO2014098386A1
WO2014098386A1 PCT/KR2013/010848 KR2013010848W WO2014098386A1 WO 2014098386 A1 WO2014098386 A1 WO 2014098386A1 KR 2013010848 W KR2013010848 W KR 2013010848W WO 2014098386 A1 WO2014098386 A1 WO 2014098386A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
rsrq
squal
terminal
wideband
Prior art date
Application number
PCT/KR2013/010848
Other languages
French (fr)
Korean (ko)
Inventor
정명철
권기범
안재현
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2014098386A1 publication Critical patent/WO2014098386A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for determining a cell selection quality value in a wireless communication system.
  • a user equipment (UE) and an evolved universal terrestrial radio access network (E-UTRAN) are in an idle mode and a connected mode.
  • Various kinds of measurements may be performed to support the operation in the mode.
  • the higher layer initializes and controls the measurement of the first layer L1, that is, the physical layer.
  • the physical layer provides measurement capability of the terminal and the network. Measurements can be made with different measurements, such as intra-frequency, inter-frequency, inter-system, traffic volume, quality, and internal measurements. It can be divided into types. In addition, the measurement may be divided into a measurement performed by the terminal and a measurement performed by the network.
  • the network transmits a radio resource control (RRC) connection reconfiguration message to the terminal to initialize a specific measurement.
  • the RRC connection reconfiguration message may include a measurement identifier (ID), a measurement type, a command (set, change, release, etc.), a measurement object, a measurement amount, a report amount, a report criterion (periodic / event trigger), and the like. If the reporting criteria is met, the terminal transmits a measurement report message to the network.
  • the measurement report message may include a measurement ID and a measurement result. In idle mode, measurement information elements (IE) may be broadcast via system information.
  • IE measurement information elements
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • RSRP is defined as a linear average of the power contributions of resource elements (RE) carrying a cell-specific reference signal (CRS) within a measurement frequency bandwidth.
  • CRS cell-specific reference signal
  • the reference point of the RSRP is an antenna connector of the terminal. When the terminal uses receiver diversity, the value reported to the network may not be smaller than the RSRP corresponding to any individual diversity.
  • RSRQ is defined as N * RSRP / (E-UTRA carrier RSSI (received signal strength indicator).
  • N is the number of resource blocks (RBs) of the E-UTRA carrier RSSI measurement bandwidth.
  • the measurements in the numerator and denominator are then carried out over the same set of RBs.
  • the E-UTRA carrier RSSI includes a linear average of the total received power observed only in orthogonal frequency division multiplexing (OFDM) symbols containing reference symbols for antenna port 0 over N RBs within the measurement bandwidth.
  • OFDM orthogonal frequency division multiplexing
  • the total received power is a signal transmitted from all sources, that is, a signal transmitted from a serving cell and a neighboring cell of a co-channel and an adjacent channel interference.
  • OFDM orthogonal frequency division multiplexing
  • the RSSI may be measured across all OFDM symbols within the indicated subframe.
  • the reference point of the RSRQ is the antenna connection of the terminal.
  • the measurement of RSRQ may be performed on cells within frequency or between cells in idle mode.
  • the RSRQ may be measured for the entire system bandwidth.
  • the RSRQ may be measured for 6 RBs. This may be referred to as a narrowband RSRQ measurement method.
  • the base station may inform the terminal of the maximum allowed bandwidth for measurement through the AllowedMeasBandwidth field transmitted through the upper layer.
  • the narrowband RSRQ measurement method is not a problem when the serving cells and neighbor cells of the same channel are configured with the same bandwidth.
  • the bandwidths of the serving cell and the neighboring cell are different from each other, there may be a gap in which the bandwidths of the serving cell and the neighboring cell do not overlap each other.
  • the bandwidth of the serving cell is 10 MHz or more, the gap size is 6 It may be RB or higher.
  • the RSRQ is measured in this gap, less interference from neighboring cells is reflected, and thus a better RSRQ can be measured. In other words, an incorrect RSRQ may be measured differently from the actual RSRQ.
  • the UE performs cell selection or cell reselection by comparing a cell selection quality value calculated based on the measured RSRQ with a reference quality value received from the base station. Due to the RSRQ, a problem may occur when performing cell selection or cell reselection.
  • An object of the present invention is to provide a method and apparatus for determining a cell selection quality value in a wireless communication system.
  • the present invention provides a method for a UE to determine a cell selection quality value by measuring a reference signal received quality (RSRQ) in an idle mode.
  • the present invention provides a method for determining cell selection quality values by measuring wideband RSRQ.
  • the present invention provides a method of measuring a narrowband RSRQ and determining a cell selection quality value based on an offset.
  • the present invention proposes a method for performing cell selection or cell reselection based on the determined cell selection quality value.
  • a cell selection quality value by a terminal in a wireless communication system having a system bandwidth of 10 MHz or more or a maximum allowable bandwidth for measurement of 50 resource blocks (RB) or more
  • a method for determining Squal receives a wideband RSRQ measurement indicator and a bandwidth gap offset indicating whether the terminal can measure a wideband reference signal received quality (RSRQ) from a base station, and receives an RSRQ based on the wideband RSRQ measurement indicator. Measuring, and determining the cell selection quality value based on the measured RSRQ.
  • RSRQ wideband reference signal received quality
  • a terminal in a wireless communication system having a system bandwidth of 10 MHz or more or a maximum allowable bandwidth for measurement of 50 resource blocks (RB) or more.
  • the terminal includes a radio frequency (RF) unit for transmitting or receiving a radio signal, and a processor connected to the RF unit, wherein the processor measures a wideband reference signal received quality (RSRQ) by the terminal from a base station.
  • RF radio frequency
  • RSSQ wideband reference signal received quality
  • the cell selection quality value can be determined more accurately.
  • FIG. 1 shows a wireless communication system to which the present invention is applied.
  • FIG. 2 is an exemplary diagram illustrating a cell selection process of a UE in an RRC idle state according to an embodiment of the present invention.
  • FIG. 5 illustrates an embodiment of a system information transmission method according to an embodiment of the present invention.
  • FIG. 6 illustrates an example of a method for determining a cell selection quality value according to an embodiment of the present invention.
  • FIG. 7 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • E-UTRAN evolved-UMTS terrestrial radio access network
  • LTE long term evolution
  • LTE-A advanced system
  • an E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • the terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and a wireless device.
  • the base station 20 refers to a station communicating with the terminal 10, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to the serving gateway (S-GW) through the mobility management entity (MME) and the S1-U through the evolved packet core (EPC) 30, more specifically, through the S1 interface.
  • S-GW serving gateway
  • MME mobility management entity
  • EPC evolved packet core
  • the S1 interface exchanges signals with the MME to exchange OAM (operation and management) information for supporting the movement of the terminal 10.
  • the EPC 30 is composed of MME, S-GW and P-GW (packet data network gateway).
  • the MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • the layers of the radio interface protocol between the terminal 10 and the network are based on the lower three layers of the open system interconnection (OSI) reference model, which is well known in a communication system. Layer), L2 (second layer), and L3 (third layer).
  • OSI open system interconnection
  • a physical layer (PHY) belonging to the first layer may include an information transmission service using a physical channel ( An information transfer service (RRC) layer and a radio resource control (RRC) layer located in a third layer play a role of controlling radio resources between the terminal 10 and the network.
  • RRC radio resource control
  • the RRC layer exchanges an RRC message between the terminal 10 and the base station.
  • the physical layer provides an information transmission service to a higher layer using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer belonging to a second layer through a transport channel.
  • MAC medium access control
  • Data travels between the MAC and physical layers over the transport channel.
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • the physical channel is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • Functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels.
  • the MAC layer provides a service to a radio link control (RLC) layer through a logical channel.
  • RLC radio link control
  • Functions of the RLC layer belonging to the second layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer may be configured in transparent mode (TM), unacknowledged mode (UM) and acknowledgment mode (AM). Three modes of operation are provided: acknowledged mode.
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • Functions of the packet data convergence protocol (PDCP) layer in the user plane include delivery of user data, header compression and ciphering. Functions of the PDCP layer in the user plane include the transfer of control plane data and encryption / integrity protection.
  • PDCP packet data convergence protocol
  • the RRC layer belonging to the third layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels and physical channels in connection with the configuration, re-configuration and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal 10 and the network.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB can be further divided into a signaling RB (SRB) and a data RB (DRB).
  • SRB signaling RB
  • DRB data RB
  • the terminal 10 If there is an RRC connection between the RRC layer of the terminal 10 and the RRC layer of the E-UTRAN, the terminal 10 is in an RRC CONNECTED state, otherwise the RRC idle ) State.
  • the downlink transmission channel for transmitting data from the network to the terminal 10 includes a broadcast channel (BCH) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages. Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, the uplink transmission channel for transmitting data from the terminal 10 to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • SCH uplink shared channel
  • logical channels mapped to the transport channels include a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and multicast traffic (MTCH). channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast traffic
  • the physical channel is composed of several symbols in the time domain and several subcarriers in the frequency domain.
  • One subframe consists of a plurality of symbols in the time domain.
  • One subframe includes a plurality of resource blocks (RBs), and one resource block includes a plurality of symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific symbols (eg, the first symbol) of the corresponding subframe for a physical downlink control channel (PDCCH), that is, an L1 / L2 control channel.
  • PDCCH physical downlink control channel
  • a transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE of the RRC idle state is not identified by the E-UTRAN and is managed by the core network in units of a tracking area (TA), which is a larger area unit than the cell. That is, the presence of the terminal in the RRC idle state is only detected in a large area unit, and in order to receive a normal mobile communication service such as voice or data, it must move to the RRC connected state.
  • TA tracking area
  • PLMN public land mobile network
  • the specific PLMN connected can be selected automatically or manually.
  • PLMN refers to a wireless communication system for use by a user on the ground in a vehicle or on foot.
  • the PLMN may indicate all mobile wireless networks using land-based base stations other than satellites.
  • a home PLMN is a mobile that is contained within an international mobile subscriber identity (IMSI), a unique 15-digit code used for identification of individual users in a global system for mobile communication (GSM) network.
  • IMSI international mobile subscriber identity
  • GSM global system for mobile communication
  • MCN mobile network code
  • Equivalent HPLMN (EHPLMN) list is a PLMN code list that replaces HPLMN codes extracted from IMSI to allow provision of multiple HPLMN codes.
  • the EHPLMN list is stored in a universal subscriber identity module (USIM).
  • the EHPLMN list may include HPLMN codes extracted from IMSI. If the HPLMN code extracted from IMSI is not included in the EHPLMN list, the HPLMN should be treated as a visited PLMN (VPLMN) when selecting a PLMN.
  • VPLMN is a PLMN different from HPLMN and EHPLMN (if present).
  • a registered PLMN (RPLMN) is a PLMN where certain location registration (LR) results occur.
  • an RPLMN is a PLMN defined by PLMN identification of a core network operator that allows LR.
  • the UE searches for the appropriate cell of the selected PLMN and stays in the RRC idle state in the cell.
  • the UE in the RRC idle state selects a cell capable of providing possible services and adjusts it to a control channel of the selected cell. This process is called "camping on a cell.”
  • a terminal camping on a cell may read system information, etc. from the cell, and in most cases, may receive paging information.
  • the terminal may register its presence in the registration area of the selected cell. This is called location registration (LR).
  • the terminal registers its presence in the registration area regularly or when entering a new tracking area.
  • the registration area refers to any area where the terminal may roam without a location registration procedure.
  • the terminal If the terminal leaves the service area of the cell or finds a more suitable cell, the terminal reselects and camps the most suitable cell in the PLMN. If the new cell is included in another registration area, a location registration request is performed. If the terminal leaves the service area of the PLMN, a new PLMN may be automatically selected or a new PLMN may be manually selected by the user.
  • the terminal initially accesses the network through the control channel of the camped cell after initiating a call.
  • PLMN When the PLMN receives a call for the terminal, the PLMN knows the registration area of the cell where the terminal is camped on. Therefore, the PLMN may send a paging message for the terminal through the control channel of all cells in the registration area. Since the terminal is already adjusted for the control channel of the camp-on cell, it may receive a paging message.
  • Cells camped on by an idle terminal may be classified into several types according to service types.
  • the service type defines the content of the service that the terminal proceeds in the idle state.
  • the cell type is different for each service type provided by the cell.
  • Service types include limited service, normal service, and operator service.
  • Restricted services are services that can be used in emergencies such as emergency calls, earthquake and tsunami warning systems (ETWS), or commercial mobile alert systems (CMAS).
  • EWS earthquake and tsunami warning systems
  • CMAS commercial mobile alert systems
  • a general service is a service corresponding to a public or normal call and can support a suitable cell.
  • a suitable cell is a cell when the terminal belongs to a specific PLMN.
  • the specific PLMN may be any one of a selected PLMN, a registered PLMN, and a PLMN of the equivalent PLMN list.
  • the specific PLMN When the terminal manually or automatically selects a specific PLMN, the specific PLMN is called a selected PLMN. If the terminal belongs to the selected PLMN, the terminal selects a cell in the selected PLMN.
  • the registered PLMN is a PLMN that the network notifies the terminal through a location registration process.
  • the terminal In relation to a suitable cell, if a suitable cell is found through cell selection or cell reselection, the terminal is generally changed to a "camped normally" state. Or, if the terminal does not find a suitable cell through cell selection or cell reselection, the terminal is changed to an "any cell selection” state.
  • the random cell selection state is a state of attempting to find an allowable cell for all PLMNs corresponding to all radio access technologies (RATs) provided by the terminal. If the UE does not find a suitable cell through cell selection or cell reselection, the UE finds an allowable cell in any PLMN in addition to the PLMN corresponding to any suitable cell for all supported RATs.
  • RATs radio access technologies
  • the operator service is a service that is allowed only to a specific terminal by the operator, it can support a reserved cell (reserved cell).
  • the UE in the RRC idle state When the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through the RRC connection process and transitions to the RRC connected state.
  • RRC connection process There are several cases in which a UE in an RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or when a paging message is received from the E-UTRAN, a response message may be transmitted.
  • FIG. 2 is an exemplary diagram illustrating a cell selection process of a UE in an RRC idle state according to an embodiment of the present invention.
  • the terminal selects a PLMN and a RAT to be serviced (S210).
  • the PLMN and the RAT may be selected by the user of the terminal or may be stored in the USIM.
  • the terminal selects a cell having the largest value as an initial cell among the cells having the measured base station and the signal whose strength or quality is greater than a specific value (S220).
  • the base station periodically receives system information.
  • the specific value refers to a value defined in the system to ensure the quality of the physical signal in data transmission and reception. Therefore, the value may vary depending on the RAT applied.
  • the terminal registers its information (eg, IMSI) in order to receive a service (eg, paging) from the network (S230, S240).
  • the terminal does not register in the network to which the terminal is connected every time the cell is selected. For example, if the system information of the network to be registered (for example, a tracking area identity (TAI) and the information of the network known by the user is different), the network is registered with the network.
  • TAI tracking area identity
  • the terminal selects another cell that provides better signal characteristics than the cell of the base station to which the terminal is connected if the value of the strength or quality of the signal measured from the base station being served is lower than the value measured from the base station of the adjacent cell. S250).
  • This process is called cell reselection by distinguishing it from the cell selection process such as initial cell selection in step S220.
  • a time constraint may be set in order to prevent the cell from being frequently reselected according to the change of the signal characteristic.
  • the terminal selects / reselects a cell of appropriate quality and performs procedures for receiving service.
  • the UE in the RRC idle state should always be prepared to select a cell of appropriate quality and to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to enter a service standby state such as an RRC idle state is called cell selection.
  • cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if the cell is not a cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
  • this process is used by the terminal when the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels in the EUTRAN band only in a range where the capability of the terminal is allowed to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell satisfying the cell selection criteria.
  • the second cell selection process is a cell selection process using stored information.
  • the UE selects a cell by using information stored in the UE for a wireless channel or by using information broadcast from the cell. Therefore, the cell selection may be faster than the initial cell selection process.
  • the UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
  • the terminal When the terminal selects a cell that satisfies the cell selection criteria, the terminal receives information necessary for the RRC idle state operation of the terminal in the cell from the system information of the cell. After the UE receives all the information necessary for the RRC idle state operation, it waits in the idle mode to request a service (eg, originating call) to the network or to receive a service (eg, terminating call) from the network.
  • a service eg, originating call
  • a service eg, terminating call
  • the third cell selection process is a cell selection process due to leaving of the RRC connection state. This process is as follows.
  • the terminal is changed from the RRC connected state to the idle state, (a) if the redirectedCarrierInfo is included in the RRC connection release message, the terminal selects a suitable cell according to the redirectedCarrierInfo and attempts to camp on.
  • the UE may camp on by searching for any suitable cell according to the designated RAT.
  • the UE searches for a suitable cell in the EUTRA carrier.
  • the terminal starts the selected information cell selection to perform a cell selection process in order to find a suitable cell.
  • the UE may enter the allowable cell according to the redirectedCarrierInfo. Try to camp on.
  • the terminal may camp on by searching for any allowable cell according to the designated RAT.
  • the UE searches for an allowable cell in the EUTRA carrier.
  • the UE performs a search to find an acceptable cell in any PLMN in any cell selection state.
  • the terminal After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to the mobility of the terminal or a change in the wireless environment. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection.
  • the cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal. That is, cells searched by cell reselection are cells that satisfy cell reselection criteria. If a cell of good quality is found, the terminal reselects the cell of good quality. Changing the cell may mean changing the RAT.
  • Cell reselection may be performed depending on the network, in addition to the above-described quality of the radio signal.
  • the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
  • Information about absolute priority for different EUTRAN frequencies or inter-RAT frequencies may be transmitted by system information and an RRC disconnection message.
  • the system information may optionally include the priority information.
  • the RRC connection release message may include a dedicated priority.
  • the information about the absolute priority may be received from the other RAT when the UE reselects the inter-RAT cell. This follows the specifications specified in the existing RAT.
  • the terminal If the terminal is provided priority through dedicated signaling, the priority provided through system information is ignored. In other words, upon receiving the priority through the RRC connection release message from the base station, the terminal ignores the priority received from the system information.
  • the terminal When the terminal is camped in an arbitrary cell, the terminal should apply only the priority received through the system information. Therefore, the priority received through dedicated signaling is reserved only unless otherwise specified.
  • the terminal determines whether the terminal generally sets a band other than the currently connected frequency band as a dedicated priority while camping on. If the terminal generally sets a band other than the currently connected frequency band as a dedicated priority while camping on, the terminal regards the current frequency band as the lowest priority.
  • a power level that may be a reference for cell selection or cell reselection may be expressed as Srxlev.
  • a quality level that may be a criterion for cell selection or cell reselection may be expressed as Squal.
  • Equation 1 The cell selection criterion used by the UE in cell selection or cell reselection is shown in Equation 1 below.
  • Srxlev Q rxlevmeas- (Q rxlevmin + Q rxlevminoffset )-Pcompensation.
  • Squal Q qualmeas- (Q qualmin + Q qualminoffset ). Description of each parameter is shown in Table 1.
  • Table 1 Srxlev Cell Select Receive Level Value (dB) Squal Cell selection quality value (dB) Q rxlevmeas Measured Cell Receive Level (RSRP) Q qualmeas Measured Cell Quality (RSRQ) Q rxlevmin Minimum Required Receive Level in Cell (dBm) Q qualmin Minimum Required Quality Level in Cells (dBm) Q rxlevminoffset Offset for Q rxlevmin in Srxlev as a result of the periodic search for higher priority PLMNs during normal camp-on to VPLMN.
  • Pcompensation max P EMAX -P PowerClass , 0)
  • (dB) P EMAX Maximum transmit power level (dBm) that UE can use when transmitting on uplink from cell
  • a cell selection criterion may be satisfied when both Srxlev and Squal are greater than zero. That is, the terminal may determine that the cell has a basic possibility for cell selection when both the RSRP and the RSRQ of the measured cell are above a certain level.
  • Squal is a parameter corresponding to RSRQ.
  • Squal is not simply a value related to the magnitude of power measured in a cell, but is calculated in relation to the quality of power.
  • the cell selection criterion may be satisfied in terms of the quality of the cell.
  • the measured RSRQ is equal to or greater than the sum of Q qualmin and Q qualminoffset to satisfy the cell selection criterion for RSRQ.
  • Q qualmin may have the following meaning.
  • FIG. 3 it is assumed that points having the same RSRQ are represented in a circle, but this is for convenience of description. In actual RSRQ measurement, a point having the same RSRQ may not be circular.
  • the terminal may satisfy the cell selection criteria only when measuring the quality corresponding to the larger RSRQ. Therefore, the range in which the UE can perform cell selection can be narrowed. If the Q qualmin is set too large for the base station provider or operator, the size of the cell is reduced. In addition, if the Q qualmin is made too small, there is a possibility that cell selection or cell reselection is performed in an area that is too wide compared to the actual quality. Accordingly, the quality of service may be degraded because actual camp on or connection is not properly performed. Therefore, it is important to set the appropriate Q qualmin to inform the terminal.
  • the cell selection criterion of Equation 1 is a value that is mainly used when the terminal selects a cell, and the reference value may be regarded as zero.
  • the UE may select a corresponding cell when Srxlev and Squal are greater than 0 which is a reference value.
  • the reference value may be a value other than 0 when reselecting or measuring a cell.
  • the UE may reselect a corresponding cell when Srxlev and Squal are greater than a non-zero reference value.
  • These values may be received from the base station through system information such as SIB3 or SIB5. A comparison method for cell reselection will be described later.
  • the terminal may receive various parameters used in Equation 1 and Table 1 through system information such as system information block (SIB) 3 and SIB 5.
  • SIB system information block
  • the UE may perform cell selection or cell reselection by using a reference value or a threshold associated with the Squal received through the Squal calculated based on the Q qualmin and the system information.
  • the UE may perform cell selection or cell reselection in consideration of priorities among cells satisfying the cell selection condition.
  • the bandwidth of the serving cell E-UTRAN is 10 MHz and the bandwidth of the neighbor cell E-UTRAN is 5 MHz.
  • the first bandwidth and the second bandwidth of 5 MHz used by the neighbor cell are included in the 10 MHz bandwidth of the serving cell.
  • the first bandwidth and the second bandwidth that can be actually used may be reduced to about 4.5 MHz, respectively.
  • the bandwidth of the serving cell E-UTRAN is 10 MHz and the bandwidth of the neighbor cell UTRAN is 3.84 MHz.
  • the first bandwidth and the second bandwidth of 3.84 MHz used by neighboring cells are included in the 10 MHz bandwidth of the serving cell.
  • the narrowband RSRQ is measured at 6 RB according to the conventional method, interference from the neighbor cell may not be correctly received in the bandwidth gap. That is, when the size of the bandwidth gap is 6 RB or more, it is determined that the amount of interference from the neighboring cell is smaller than the actual amount of interference, and thus RSSI can be calculated less than the actual amount. As a result, the RSRQ can be calculated larger than the actual amount. have.
  • the UE in the idle mode performs cell selection or cell reselection using the calculated RSRQ, a problem may occur in cell selection or cell reselection. In other words, the cell reselection may occur later than necessary due to an incorrectly measured RSRQ.
  • the cell selection quality value determined based on the narrowband RSRQ is performed.
  • a method of determining a cell selection quality value based on a wideband RSRQ will be described. In the following description, an embodiment of the present invention may be applied when the bandwidth is 10 MHz or more, or when the AllowedMeasBandwidth indicates 50 RB or more.
  • the narrowband RSRQ may be less than the actual value.
  • RSRQ is defined as N * RSRP / (E-UTRA carrier RSSI).
  • the RSSI corresponds to the sum of all signals measured by the UE, and also includes interference signals from neighboring cells.
  • the RSSI is measured based on 6 RB when the system bandwidth is 10 MHz or more, the amount of the interference signal from the neighboring cell is determined to be smaller than the actual amount, thereby decreasing the RSSI. Therefore, RSRQ can be calculated to be larger than actual. Therefore, a cell selection quality value can be determined by adding a value capable of correcting this. Equation 2 shows an example of an equation for determining a cell selection quality value according to an embodiment of the present invention.
  • Q qualmingapoffset which is an offset considering a bandwidth gap
  • the cell selection quality value may be determined smaller than when the cell selection quality value is determined based only on the RSRQ by the offset Q qualmingapoffset . If allowedMeasBandwidth indicates 50 RB or more, if the cell selection quality value is determined by considering only the RSRQ without considering the Q qualmingapoffset , the cell selection quality value does not reflect the measurement error that may occur due to the bandwidth gap. Will be calculated.
  • Q qualmingapoffset corresponding to a certain portion of the applied value may be additionally used. This is to solve the problem that occurs when the existing narrowband RSRQ is measured even though allowedMeasBandwidth indicates 50 RB or more.
  • the UE can determine the cell selection quality value by measuring the wideband RSRQ.
  • the wideband RSRQ can be measured.
  • the Squal can be determined by a conventional method. Equation 3 shows another example of the equation for determining the cell selection quality value according to an embodiment of the present invention.
  • Equation 3 can be used to measure the wideband RSRQ. That is, the equation for determining the existing cell selection quality value may be used as it is, and the cell selection quality value may be determined by applying the same to the broadband.
  • Equation 4 shows another example of the equation for determining the cell selection quality value according to an embodiment of the present invention.
  • Equation 4 the wideband RSRQ can be measured.
  • Q qualmingapoffset 0.
  • FIG. 5 illustrates an embodiment of a system information transmission method according to an embodiment of the present invention.
  • step S100 the base station transmits a wideband RSRQ measurement indicator to the terminal.
  • step S110 the UE measures the wideband RSRQ based on the wideband RSRQ measurement indicator.
  • the base station may transmit a wideband RSRQ measurement indicator to inform the terminal whether wideband RSRQ measurement is possible and / or Q qualmingapoffset .
  • the wideband RSRQ measurement indicator may be broadcast through system information.
  • Table 2 shows an example of SIB 1 including a wideband RSRQ measurement indicator according to an embodiment of the present invention.
  • the widebandRSRQmeas field indicates a wideband RSRQ measurement indicator.
  • the widebandRSRQmeas field may indicate whether wideband RSRQ measurement is possible. That is, if the terminal is capable of measuring the wideband RSRQ when the value of the widebandRSRQmeas field is set to enable, the terminal measures the wideband RSRQ.
  • the widebandRSRQmeas field may exist only when allowedMeasBandwidth indicates 50 RB or more.
  • the q-QualminGapOffset field may be transmitted in addition to the widebandRSRQmeas field.
  • the q-QualminGapOffset field indicates an offset for compensating for the difference in RSRQ measurement when the allowedMeasBandwidth indicates 50 RB or more and the UE measures narrowband RSRQ.
  • the terminal allowed to perform the wideband RSRQ measurement in the existing connection mode may be determined to perform the wideband RSRQ measurement even in the idle mode.
  • the terminal can grasp not only the corresponding cell but also the situation of the cell used by the terminal. That is, the terminal may store information about the cell connected in the connected mode when the change from the connected mode to the idle mode.
  • the UE may determine whether the cell has previously allowed wideband RSRQ measurement in the process of reselection of a specific cell. Therefore, in a cell that allows the wideband RSRQ measurement in the connected mode, the UE may be determined to perform the wideband RSRQ measurement in the idle mode for cell reselection.
  • Table 3 shows an example of SIB 3 including a wideband RSRQ measurement indicator according to an embodiment of the present invention.
  • the widebandRSRQmeas field indicates a wideband RSRQ measurement indicator.
  • the widebandRSRQmeas field may indicate whether wideband RSRQ measurement is possible. That is, if the terminal is capable of measuring the wideband RSRQ when the value of the widebandRSRQmeas field is set to enable, the terminal measures the wideband RSRQ.
  • the widebandRSRQmeas field may exist only when allowedMeasBandwidth indicates 50 RB or more.
  • the q-QualminGapOffset field may be transmitted in addition to the widebandRSRQmeas field.
  • the q-QualminGapOffset field indicates an offset for compensating for the difference in RSRQ measurement when the allowedMeasBandwidth indicates 50 RB or more and the UE measures narrowband RSRQ.
  • Table 4 shows an example of SIB 5 including a wideband RSRQ measurement indicator according to an embodiment of the present invention.
  • the widebandRSRQmeas field indicates a wideband RSRQ measurement indicator.
  • the widebandRSRQmeas field may indicate whether wideband RSRQ measurement is possible. That is, if the terminal is capable of measuring the wideband RSRQ when the value of the widebandRSRQmeas field is set to enable, the terminal measures the wideband RSRQ.
  • the widebandRSRQmeas field may exist only when allowedMeasBandwidth indicates 50 RB or more.
  • the q-QualminGapOffset field may be transmitted in addition to the widebandRSRQmeas field.
  • the q-QualminGapOffset field indicates an offset for compensating for the difference in RSRQ measurement when the allowedMeasBandwidth indicates 50 RB or more and the UE measures narrowband RSRQ.
  • the terminal may evaluate the neighbor cells using Srxlev and Squal for cell reselection, and the terminal may set the following additional conditions to prevent unnecessary measurement from being performed.
  • the UE performs the measurement when the priority of the neighboring cell is higher than the priority of the serving cell for E-UTRAN inter-frequency or inter-RAT.
  • the UE when the priority of the neighboring cell is equal to or lower than the priority of the serving cell between the E-UTRAN frequencies or between the RATs, the UE is between E-UTRAN frequencies or when Srxlev> S nonIntraSearchP and Squal> S nonIntraSearchQ in the serving cell. No measurements are made between RATs, otherwise measurements are taken between E-UTRAN frequencies or between RATs.
  • S IntraSearchQ and S nonIntraSearchQ may be used as a triggering threshold for the Squal determined by the UE. That is, S IntraSearchQ indicates a Squal threshold for intra-frequency measurements. S nonIntraSearchQ indicates a Squal threshold for measurement between E-UTRAN frequencies or measurement between RATs. S IntraSearchQ and S nonIntraSearchQ may be transmitted through system information such as SIB3. If the system bandwidth is 10 MHz or more, when performing narrowband measurement as before, the Squal may be distorted and calculated, and thus there is a possibility that the cell reselection may not be performed normally.
  • cell reselection criteria between E-UTRAN frequencies and between RATs may be set.
  • Cell reselection criteria between E-UTRAN frequencies and inter-RATs may be changed by Thresh Serving, LowQ indicating a minimum squal threshold of a serving cell when the UE performs cell reselection at a lower priority frequency or RAT. have. That is, Thresh Serving, LowQ means a threshold value of Squal that can allow cell reselection to be performed at a frequency or RAT having a low priority. Thresh Serving, LowQ can be transmitted via SIB 3.
  • Thresh Serving, LowQ the UE satisfies the cell reselection criterion, and if it is more than 1 second after camping on the current serving cell, the UE has a higher priority than the priority of the serving frequency. Reselection can be performed.
  • a cell having a higher priority E-UTRAN or UTRAN FDD RAT / frequency
  • Thresh X HighQ during the time interval Treselection RAT
  • has a higher priority cell UTRAN TDD RAT / GENRA / CDMA2000.
  • the cell reselection criterion may be satisfied when Srxlev> Thresh X, highP is satisfied during the time interval Treselection RAT .
  • Thresh X, HighQ indicates a Squal threshold of the corresponding cell when cell reselection is performed with a frequency or RAT having a higher priority than the current serving frequency. That is, Thresh X, HighQ means a threshold value of a frequency or a Squal of the RAT having a high priority compared to the current serving cell.
  • Cell reselection may be performed when Thresh X, HighQ is exceeded for a predetermined time.
  • Thresh X, HighQ may be transmitted over SIB 5.
  • Treselection RAT is the minimum time that the UE must evaluate each cell for cell reselection.
  • the UE If Thresh Serving, LowQ does not exist, the UE satisfies the cell reselection criterion and passes to the E-UTRAN frequency or the RAT frequency having a higher priority than the serving frequency after 1 second after camping in the current serving cell. Cell reselection may be performed. In this case, the cell reselection criterion may be satisfied when a frequency or RAT having a higher priority satisfies Srxlev> Thresh X, highP during the time period Treselection RAT .
  • cell reselection for an E-UTRAN frequency having the same priority may be performed in the same manner as setting an intra-frequency ranking.
  • the UE when Thresh Serving, LowQ is present, the UE satisfies the cell reselection criterion and when the camper is present in the current serving cell for at least 1 second, the UE may return to the E-UTRAN frequency or the RAT frequency having a lower priority than the serving frequency. Cell reselection may be performed.
  • the serving cell satisfies Squal ⁇ Thresh Serving, LowQ and the low priority E-UTRAN or UTRAN FDD RAT / frequency satisfies Squal> Thresh X, lowQ during the time interval Treselection RAT , or the serving cell during the time interval Treselection RAT
  • the cell reselection criterion may be satisfied when the cell satisfies Squal ⁇ Thresh Serving, LowQ and the E-UTRAN or UTRAN FDD RAT / frequency having a low priority satisfies Srxlev> Thresh X, lowP .
  • Thresh X, lowQ indicates a Squal threshold of the corresponding cell when cell reselection is performed with a frequency or RAT having a lower priority than the current serving frequency. That is, Thresh X, lowQ means a threshold value of a frequency or a Squal of the RAT having a lower priority compared to the current serving cell.
  • Cell reselection may be performed when Thresh X, lowQ is exceeded for a predetermined time.
  • Thresh X, lowQ may be transmitted over SIB 5.
  • the UE If Thresh Serving, LowQ is not present, the UE satisfies the cell reselection criterion and passes to the E-UTRAN frequency or the RAT frequency having a priority lower than the priority of the serving frequency after 1 second of camping in the current serving cell. Cell reselection may be performed.
  • the time interval Treselection RAT serving cell for the Srxlev ⁇ Thresh Serving satisfy LowP and low priority E-UTRAN or UTRAN FDD RAT / frequency having a rank Srxlev> Thresh X, be the case satisfied lowP the cell reselection criteria are met for Can be.
  • Thresh Serving, LowQ , Thresh X, HighQ, and Thresh X, LowQ are similar values to S IntraSearchQ and S nonIntraSearchQ described above , and are compared with the Squal calculated by the UE, and the triggering threshold for the Squal determined by the UE Can be used as If the system bandwidth is 10 MHz or more, when performing narrowband measurement as before, the Squal may be distorted and calculated, and thus there is a possibility that the cell reselection may not be performed normally.
  • a method of applying an offset to each of the threshold parameters described above when the system bandwidth is 10 MHz or more, or a method of newly defining new threshold parameters corresponding to a broadband system may be proposed.
  • Table 5 shows an example of SIB 3 including an offset of a wideband RSRQ measurement indicator and at least one threshold parameter according to an embodiment of the present invention.
  • Table 5 -ASN1STARTSystemInformationBlockType3 :: SEQUENCE ⁇ ... intraFreqCellReselectionInfo SEQUENCE ⁇ q-RxLevMin Q-RxLevMin, p-Max P-Max OPTIONAL,-Need OPs-IntraSearch ReselectionThreshold OPTIONAL,-Need OPallowedMeasBandwidth AllowedMeasBandwidth OPTIONAL,-Need OPpresenceAntennaPort1 PresenceAeighennaConfigPort1, NeighborSelectPort N, t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL widebandRSRQMeas-r11 ENUMERATED ⁇ enabled ⁇ OPTIONAL-Cond WB-RSRQ -Need OP ⁇ , ..., lateNonCriticalExtension OCTET STRING OPTIONAL,-Need OP [[s-IntraSearch-v920 SE
  • Table 5 includes the s-IntraSearchQoffset field, the s-nonIntraSearchQoffset field, and the threshServingLowQOffset field in addition to SIB 3 described in Table 3.
  • the s-IntraSearchQOffset field indicates an offset applied to S IntraSearchQ , which is a Squal threshold for intra-frequency measurement. That is, the s-IntraSearchQOffset field is an offset in consideration of a squal error that may occur for s IntraSearchQ when the system bandwidth is 10 MHz or more.
  • the s-IntraSearchQOffset field may be applied when the system bandwidth is 10 MHz, and the terminal measuring the wideband RSRQ may not use it.
  • the s-nonIntraSearchQOffset field indicates an offset applied to S nonIntraSearchQ which is a Squal threshold for inter-E-UTRAN frequency measurement or inter-RAT measurement. That is, the s-nonIntraSearchQOffset field is an offset considering a squal error that may occur for s nonIntraSearchQ when the system bandwidth is 10 MHz or more.
  • the s-nonIntraSearchQOffset field may be applied when the system bandwidth is 10 MHz, and the terminal measuring the wideband RSRQ may not use it.
  • the threshServingLowQOffset field indicates an offset applied to Thresh Serving, LowQ indicating a minimum squal threshold of a serving cell when the UE performs cell reselection at a lower priority frequency or RAT. That is, the threshServingLowQOffset field is an offset considering a squal error that may occur for Thresh Serving, LowQ when the system bandwidth is 10 MHz or more.
  • the threshServingLowQOffset field may be applied when the system bandwidth is 10 MHz, and the UE measuring the wideband RSRQ may not use it. As such, an offset applied to a threshold parameter for a serving cell or a neighbor cell may be indicated.
  • Table 6 shows an example of SIB 5 including an offset of a wideband RSRQ measurement indicator and at least one threshold parameter according to an embodiment of the present invention.
  • Table 6 is a form including the threshX-HighQOffset field and the threshX-LowQOffset field in addition to SIB 5 described in Table 4.
  • the threshX-HighQOffset field indicates an offset applied to Thresh X, HighQ , which is a Squal threshold of a corresponding cell when cell reselection is performed with a frequency or RAT having a higher priority than the current serving frequency. That is, the threshX-HighQOffset field is an offset considering a squal error that may occur for Thresh X and HighQ when the system bandwidth is 10 MHz or more.
  • the threshX-HighQOffset field may be applied when the system bandwidth is 10 MHz, and the terminal measuring the wideband RSRQ may not use it.
  • the threshX-LowQOffset field indicates an offset applied to Thresh X, LowQ , which is a Squal threshold of a corresponding cell when cell reselection is performed at a frequency or RAT having a lower priority than a current serving frequency. That is, the threshX-LowQOffset field is an offset considering Squal errors that may occur for Thresh X and LowQ when the system bandwidth is 10 MHz or more.
  • the threshX-LowQOffset field may be applied when the system bandwidth is 10 MHz, and the terminal measuring the wideband RSRQ may not use it. As such, an offset applied to a threshold parameter for a serving cell or a neighbor cell may be indicated.
  • Table 7 shows an example of SIB 3 including a wideband RSRQ measurement indicator and at least one threshold parameter corresponding to a wideband system according to an embodiment of the present invention.
  • Table 7 shows that in SIB 3 described in Table 5, the s-IntraSearchQoffset field, the s-nonIntraSearchQoffset field, and the threshServingLowQOffset field are replaced with the s-IntraSearchQwb field, the s-nonIntraSearchQwb field, and the threshServingLowQwb field, respectively.
  • the s-IntraSearchQwb field indicates a Squal threshold for intra-frequency measurement when the system bandwidth is 10 MHz or more. That is, the s-IntraSearchQwb field may replace S IntraSearchQ for a terminal performing wideband RSRQ measurement.
  • the s-nonIntraSearchQwb field indicates a Squal threshold for measuring between E-UTRAN frequencies or measuring between RATs when the system bandwidth is 10 MHz or more. That is, the s-nonIntraSearchQwb field may replace S nonIntraSearchQ for a terminal performing wideband RSRQ measurement.
  • the threshServingLowQwb field indicates the minimum Squal threshold of the serving cell when the UE performs cell reselection at a lower priority frequency or RAT when the system bandwidth is 10 MHz or more. That is, the threshServingLowQwb field may replace Thresh Serving, LowQ for a UE performing wideband RSRQ measurement.
  • the threshold parameters corresponding to the broadband system and newly defined serving cells or neighbor cells may be indicated.
  • Table 8 shows an example of SIB 5 including a wideband RSRQ measurement indicator and at least one threshold parameter corresponding to a wideband system according to an embodiment of the present invention.
  • Table 8 shows that the threshX-HighQOffset field and threshX-LowQOffset field are replaced with the threshX-HighQwb field and threshX-LowQwb field, respectively, in SIB 5 described in Table 6.
  • the threshX-HighQOffset field indicates the Squal threshold of the corresponding cell when cell reselection is performed at a frequency or RAT having a higher priority than the current serving frequency when the system bandwidth is 10 MHz or more. That is, the threshX-HighQOffset field may replace Thresh X and HighQ for the UE that performs wideband RSRQ measurement.
  • the threshX-LowQOffset field indicates a Squal threshold of the corresponding cell when cell reselection is performed at a frequency or RAT having a lower priority than the current serving frequency when the system bandwidth is 10 MHz or more. That is, the threshX-LowQOffset field may replace Thresh X, LowQ for a UE performing wideband RSRQ measurement. As such, the threshold parameters corresponding to the broadband system and newly defined serving cells or neighbor cells may be indicated.
  • FIG. 6 illustrates an example of a method for determining a cell selection quality value according to an embodiment of the present invention.
  • step S400 the terminal receives a wideband RSRQ measurement indicator from the base station.
  • step S410 the terminal receives from the base station at least one threshold parameter corresponding to the at least one offset or broadband system applied to the threshold parameters.
  • step S420 the UE measures the RSRQ based on the wideband RSRQ measurement indicator.
  • step S430 the UE determines a cell selection quality value based on the measured RSRQ and the at least one offset or the at least one threshold parameter.
  • FIG. 7 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 800 includes a processor 810, a memory 820, and an RF unit 830.
  • Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810.
  • the memory 820 is connected to the processor 810 and stores various information for driving the processor 810.
  • the RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
  • the terminal 900 includes a processor 910, a memory 920, and an RF unit 930.
  • the processor 910 implements functions, processes and / or methods in accordance with an embodiment of the present invention. Layers of the air interface protocol may be implemented by the processor 910.
  • the memory 920 is connected to the processor 910 and stores various information for driving the processor 910.
  • the RF unit 930 is connected to the processor 910 to transmit and / or receive a radio signal.
  • Processors 810 and 910 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory 820, 920 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 830 and 930 may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 820, 920 and executed by the processor 810, 910.
  • the memories 820 and 920 may be inside or outside the processors 810 and 910, and may be connected to the processors 810 and 910 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided are a method and an apparatus for determining a cell selection quality value (Squal) in a wireless communication system of which a system bandwidth is higher than or equal to 10 MHz or a maximum allowed bandwidth for measurement more than or equal to 50 resource blocks. User equipment receives from a base station a bandwidth gap offset and a wideband reference signal received quality (RSRQ) measurement indicator which indicates whether the user equipment can measure the wideband RSRQ, measures the RSRQ based on the wideband RSRQ measurement indicator, and determines the cell selection quality value based on the measured RSRQ.

Description

무선 통신 시스템에서 셀 선택 품질 값을 결정하는 방법 및 장치Method and apparatus for determining cell selection quality value in wireless communication system
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 무선 통신 시스템에서 셀 선택 품질 값을 결정하는 방법 및 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a method and apparatus for determining a cell selection quality value in a wireless communication system.
3GPP(3rd generation partnership project) LTE-A(long term evolution advanced)에서 단말(UE; user equipment)과 네트워크(E-UTRAN; evolved universal terrestrial radio access network)는 아이들 모드(idle mode) 및 연결 모드(connected mode)에서의 동작을 지원하기 위하여 다양한 종류의 측정(measurement)을 수행할 수 있다. 상위 계층(higher layer)은 제1 계층(L1), 즉 물리 계층(physical layer)의 측정을 초기화하고 제어한다. 물리 계층은 단말 및 네트워크의 측정 능력(measurement capability)을 제공한다. 측정은 주파수 내(intra-frequency), 주파수 간(inter-frequency), 시스템 간(inter-system), 트래픽 볼륨(traffic volume), 품질(quality) 및 단말 내부 측정(internal measurements) 등의 서로 다른 측정 타입으로 구분될 수 있다. 또한, 측정은 단말이 수행하는 측정과 네트워크가 수행하는 측정으로 구분될 수 있다.In a 3rd generation partnership project (3GPP) long term evolution advanced (LTE-A), a user equipment (UE) and an evolved universal terrestrial radio access network (E-UTRAN) are in an idle mode and a connected mode. Various kinds of measurements may be performed to support the operation in the mode. The higher layer initializes and controls the measurement of the first layer L1, that is, the physical layer. The physical layer provides measurement capability of the terminal and the network. Measurements can be made with different measurements, such as intra-frequency, inter-frequency, inter-system, traffic volume, quality, and internal measurements. It can be divided into types. In addition, the measurement may be divided into a measurement performed by the terminal and a measurement performed by the network.
네트워크는 특정 측정을 초기화하기 위하여 RRC(radio resource control) 연결 재구성(connection reconfiguration) 메시지를 단말로 전송한다. RRC 연결 재구성 메시지는 측정 식별자(ID; identifier), 측정 타입, 명령(설정, 변경, 해제 등), 측정 대상, 측정 양, 보고 양 및 보고 기준(주기적/이벤트 트리거) 등을 포함할 수 있다. 보고 기준이 충족되는 경우, 단말은 측정 보고 메시지를 네트워크로 전송한다. 측정 보고 메시지는 측정 ID 및 측정 결과를 포함할 수 있다. 아이들 모드에서, 측정 정보 요소(IE; information element)들은 시스템 정보를 통해 브로드캐스트 될 수 있다.The network transmits a radio resource control (RRC) connection reconfiguration message to the terminal to initialize a specific measurement. The RRC connection reconfiguration message may include a measurement identifier (ID), a measurement type, a command (set, change, release, etc.), a measurement object, a measurement amount, a report amount, a report criterion (periodic / event trigger), and the like. If the reporting criteria is met, the terminal transmits a measurement report message to the network. The measurement report message may include a measurement ID and a measurement result. In idle mode, measurement information elements (IE) may be broadcast via system information.
단말의 측정 능력 중 참조 신호 수신 파워(RSRP; reference signal received power) 및 참조 신호 수신 품질(RSRQ; reference signal received quality)가 있다. RSRP는 측정 주파수 대역폭 내에서 셀 특정 참조 신호(CRS; cell-specific reference signal)를 나르는 자원 요소(RE; resource element)들의 전력 기여(power contribution)의 선형 평균(linear average)로 정의된다. RSRP를 측정하기 위하여 CRS 중 안테나 포트 0을 통해 전송되는 CRS가 사용된다. 또한, 단말이 안테나 포트 1을 통해 전송되는 CRS를 신뢰성 있게 검출할 수 있는 경우, 안테나 포트 1을 통해 전송되는 CRS도 RSRP를 측정하는 데에 사용될 수 있다. RSRP의 기준점(reference point)은 단말의 안테나 연결부(antenna connector)이다. 단말이 수신기 다이버시티(receiver diversity)를 사용하는 경우, 네트워크로 보고되는 값은 어떤 개별적인 다이버시티에 대응되는 RSRP보다 작을 수 없다.There are reference signal received power (RSRP) and reference signal received quality (RSRQ) among the measurement capabilities of the UE. RSRP is defined as a linear average of the power contributions of resource elements (RE) carrying a cell-specific reference signal (CRS) within a measurement frequency bandwidth. In order to measure RSRP, CRS transmitted through antenna port 0 is used. In addition, when the UE can reliably detect the CRS transmitted through the antenna port 1, the CRS transmitted through the antenna port 1 may also be used to measure the RSRP. The reference point of the RSRP is an antenna connector of the terminal. When the terminal uses receiver diversity, the value reported to the network may not be smaller than the RSRP corresponding to any individual diversity.
RSRQ는 N*RSRP/(E-UTRA 반송파 RSSI(received signal strength indicator))로 정의된다. N은 E-UTRA 반송파 RSSI 측정 대역폭의 자원 블록(RB; resource block)의 개수이다. 이때 분자와 분모에서의 측정은 동일한 RB 집합에 걸쳐 수행된다. E-UTRA 반송파 RSSI는 측정 대역폭 내에서 N개의 RB에 걸쳐 안테나 포트 0을 위한 참조 심벌을 포함하는 OFDM(orthogonal frequency division multiplexing) 심벌에서만 관측된 총 수신 파워의 선형 평균을 포함한다. 이때 총 수신 파워는 모든 소스(source)로부터 전송되는 신호, 즉 동일 채널(co-channel)의 서빙 셀(serving cell) 및 이웃 셀(neighboring cell)로부터 전송되는 신호, 인접한 채널의 간섭(adjacent channel interference) 및 열잡음(thermal noise) 등에 대한 수신 파워를 나타낸다. 상위 계층에 의해 RSRQ 측정을 수행하기 위한 특정 서브프레임이 지시되는 경우, RSSI는 지시된 서브프레임 내에서 모든 OFDM 심벌들에 걸쳐 측정될 수 있다. RSRQ의 기준점은 단말의 안테나 연결부이다. 단말이 수신기 다이버시티를 사용하는 경우, 네트워크로 보고되는 값은 어떤 개별적인 다이버시티에 대응되는 RSRP보다 작을 수 없다. 또한, RSRQ의 측정은 아이들 모드에서 주파수 내의 셀 또는 주파수 간의 셀 상에서 수행될 수 있다.RSRQ is defined as N * RSRP / (E-UTRA carrier RSSI (received signal strength indicator). N is the number of resource blocks (RBs) of the E-UTRA carrier RSSI measurement bandwidth. The measurements in the numerator and denominator are then carried out over the same set of RBs. The E-UTRA carrier RSSI includes a linear average of the total received power observed only in orthogonal frequency division multiplexing (OFDM) symbols containing reference symbols for antenna port 0 over N RBs within the measurement bandwidth. In this case, the total received power is a signal transmitted from all sources, that is, a signal transmitted from a serving cell and a neighboring cell of a co-channel and an adjacent channel interference. ) And power reception for thermal noise and the like. If a specific subframe for performing RSRQ measurement is indicated by a higher layer, the RSSI may be measured across all OFDM symbols within the indicated subframe. The reference point of the RSRQ is the antenna connection of the terminal. When the terminal uses receiver diversity, the value reported to the network may not be smaller than the RSRP corresponding to any individual diversity. In addition, the measurement of RSRQ may be performed on cells within frequency or between cells in idle mode.
일반적으로 측정 주파수 반송파(measurement frequency carrier)에서 최소 중심(center) 6개 이상의 RB에 대하여 RSRQ를 측정하는 것이 요구된다. CRS는 전체 시스템 대역폭에 걸쳐 존재하므로 전체 시스템 대역폭에 대하여 RSRQ를 측정할 수도 있으나, 단말의 전력 소모 또는 효율 등을 고려하면 6 RB에 대해서 RSRQ를 측정하는 것이 바람직하다. 이는 협대역(narrowband) RSRQ 측정 방식이라 할 수 있다. 기지국은 상위 계층을 통해 전송되는 AllowedMeasBandwidth 필드를 통하여 측정을 위한 최대 허용 대역폭에 대한 정보를 단말로 알려줄 수 있다.In general, it is required to measure the RSRQ for at least six RBs in the center of a measurement frequency carrier. Since the CRS is present over the entire system bandwidth, the RSRQ may be measured for the entire system bandwidth. However, in consideration of power consumption or efficiency of the UE, it is preferable to measure the RSRQ for 6 RBs. This may be referred to as a narrowband RSRQ measurement method. The base station may inform the terminal of the maximum allowed bandwidth for measurement through the AllowedMeasBandwidth field transmitted through the upper layer.
협대역 RSRQ 측정 방식은 동일 채널의 서빙 셀과 이웃 셀이 동일한 대역폭으로 구성되는 경우에는 큰 문제가 없다. 그러나, 서빙 셀과 이웃 셀의 대역폭이 서로 다른 경우에는 서빙 셀과 이웃 셀의 대역폭이 서로 겹치지 않는 갭(gap)이 생길 수 있으며, 특히 서빙 셀의 대역폭이 10 MHz 이상인 경우에는 갭의 크기가 6 RB 또는 그 이상이 될 수도 있다. 이러한 갭에서 RSRQ가 측정되는 경우에는 이웃 셀로부터의 간섭이 적게 반영되어 상대적으로 더 좋은 RSRQ가 측정될 수 있다. 즉, 실제의 RSRQ와 다르게 부정확한 RSRQ가 측정될 수 있다. 아이들 모드에서 단말은 측정된 RSRQ를 기반으로 계산되는 셀 선택 품질 값을 기지국으로부터 수신되는 기준 품질 값과 비교하여 셀 선택(cell selection) 또는 셀 재선택(cell reselection)을 수행하는데, 부정확하게 측정된 RSRQ로 인하여 셀 선택 또는 셀 재선택 수행시 문제가 발생할 수 있다.The narrowband RSRQ measurement method is not a problem when the serving cells and neighbor cells of the same channel are configured with the same bandwidth. However, when the bandwidths of the serving cell and the neighboring cell are different from each other, there may be a gap in which the bandwidths of the serving cell and the neighboring cell do not overlap each other. Especially, when the bandwidth of the serving cell is 10 MHz or more, the gap size is 6 It may be RB or higher. When the RSRQ is measured in this gap, less interference from neighboring cells is reflected, and thus a better RSRQ can be measured. In other words, an incorrect RSRQ may be measured differently from the actual RSRQ. In the idle mode, the UE performs cell selection or cell reselection by comparing a cell selection quality value calculated based on the measured RSRQ with a reference quality value received from the base station. Due to the RSRQ, a problem may occur when performing cell selection or cell reselection.
따라서, 아이들 모드에서 RSRQ를 정확하게 측정하기 위한 방법이 요구될 수 있다.Therefore, a method for accurately measuring RSRQ in idle mode may be required.
본 발명의 기술적 과제는 무선 통신 시스템에서 셀 선태 품질 값을 결정하는 방법 및 장치를 제공하는 데에 있다. 본 발명은 단말이 아이들 모드(idle mode)에서 RSRQ(reference signal received quality)를 측정하여 셀 선택 품질 값을 결정하는 방법을 제공한다. 본 발명은 광대역(wideband) RSRQ를 측정하여 셀 선택 품질 값을 결정하는 방법을 제공한다. 또는, 본 발명은 협대역(narrowband) RSRQ를 측정하고 오프셋(offset)을 기반으로 셀 선택 품질 값을 결정하는 방법을 제공한다. 본 발명은 결정된 셀 선택 품질 값을 기반으로 셀 선택(cell selection) 또는 셀 재선택(cell reselection)을 수행하는 방법을 제안한다.An object of the present invention is to provide a method and apparatus for determining a cell selection quality value in a wireless communication system. The present invention provides a method for a UE to determine a cell selection quality value by measuring a reference signal received quality (RSRQ) in an idle mode. The present invention provides a method for determining cell selection quality values by measuring wideband RSRQ. Alternatively, the present invention provides a method of measuring a narrowband RSRQ and determining a cell selection quality value based on an offset. The present invention proposes a method for performing cell selection or cell reselection based on the determined cell selection quality value.
일 양태에 있어서, 시스템 대역폭(system bandwidth)이 10 MHz 이상이거나 측정을 위한 최대 허용 대역폭이 50 자원 블록(RB; resource block) 이상인 무선 통신 시스템에서 단말에 의한 셀 선택 품질 값(cell selection quality value, Squal)을 결정하는 방법이 제공된다. 상기 방법은 기지국으로부터 상기 단말이 광대역(wideband) RSRQ(reference signal received quality)를 측정할 수 있는지 여부를 지시하는 광대역 RSRQ 측정 지시자 및 대역폭 갭 오프셋을 수신하고, 상기 광대역 RSRQ 측정 지시자를 기반으로 RSRQ를 측정하고, 상기 측정된 RSRQ를 기반으로 상기 셀 선택 품질 값을 결정하는 것을 포함한다.In one aspect, a cell selection quality value by a terminal in a wireless communication system having a system bandwidth of 10 MHz or more or a maximum allowable bandwidth for measurement of 50 resource blocks (RB) or more A method for determining Squal is provided. The method receives a wideband RSRQ measurement indicator and a bandwidth gap offset indicating whether the terminal can measure a wideband reference signal received quality (RSRQ) from a base station, and receives an RSRQ based on the wideband RSRQ measurement indicator. Measuring, and determining the cell selection quality value based on the measured RSRQ.
다른 양태에 있어서, 시스템 대역폭(system bandwidth)이 10 MHz 이상이거나 측정을 위한 최대 허용 대역폭이 50 자원 블록(RB; resource block) 이상인 무선 통신 시스템에서 단말이 제공된다. 상기 단말은 무선 신호를 전송 또는 수신하는 RF(radio frequency)부, 및 상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는 기지국으로부터 상기 단말이 광대역(wideband) RSRQ(reference signal received quality)를 측정할 수 있는지 여부를 지시하는 광대역 RSRQ 측정 지시자 및 대역폭 갭 오프셋을 수신하고, 상기 광대역 RSRQ 측정 지시자를 기반으로 RSRQ를 측정하고, 상기 측정된 RSRQ를 기반으로 셀 선택 품질 값(cell selection quality value)을 결정하도록 구성된다.In another aspect, a terminal is provided in a wireless communication system having a system bandwidth of 10 MHz or more or a maximum allowable bandwidth for measurement of 50 resource blocks (RB) or more. The terminal includes a radio frequency (RF) unit for transmitting or receiving a radio signal, and a processor connected to the RF unit, wherein the processor measures a wideband reference signal received quality (RSRQ) by the terminal from a base station. Receive a broadband RSRQ measurement indicator and a bandwidth gap offset indicating whether or not it is possible, measure an RSRQ based on the wideband RSRQ measurement indicator, and determine a cell selection quality value based on the measured RSRQ; Configured to determine.
셀 선택 품질 값을 보다 정확하게 결정할 수 있다.The cell selection quality value can be determined more accurately.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 1 shows a wireless communication system to which the present invention is applied.
도 2는 본 발명의 일 실시예에 따른 RRC 아이들 상태인 단말의 셀 선택 과정을 나타내는 예시도이다.2 is an exemplary diagram illustrating a cell selection process of a UE in an RRC idle state according to an embodiment of the present invention.
도 3은 Qqualmin에 따라 셀 선택 범위가 변화하는 것을 나타낸다.3 shows that the cell selection range changes according to Q qualmin .
도 4는 동일 채널의 서빙 셀과 이웃 셀의 대역폭이 서로 다른 경우를 나타낸다.4 illustrates a case where bandwidths of a serving cell and a neighbor cell of the same channel are different from each other.
도 5는 본 발명의 일 실시예에 따른 시스템 정보 전송 방법의 일 실시예를 나타낸다.5 illustrates an embodiment of a system information transmission method according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 제안된 셀 선택 품질 값 결정 방법의 일 예를 나타낸다.6 illustrates an example of a method for determining a cell selection quality value according to an embodiment of the present invention.
도 7은 본 발명의 실시예가 구현되는 무선 통신 시스템의 블록도이다.7 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
이하, 본 명세서에서는 본 발명과 관련된 내용을 본 발명의 내용과 함께 예시적인 도면과 실시 예를 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings and examples, together with the contents of the present disclosure. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that the detailed description of the related well-known configuration or function may obscure the subject matter of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다. In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
도 1은 본 발명이 적용되는 무선통신 시스템을 나타낸다. 이는 E-UTRAN(evolved-UMTS terrestrial radio access network), 또는 LTE(long term evolution)/LTE-A(advanced) 시스템이라고도 불릴 수 있다.1 shows a wireless communication system to which the present invention is applied. This may also be called an evolved-UMTS terrestrial radio access network (E-UTRAN), or a long term evolution (LTE) / LTE-A (advanced) system.
도 1을 참조하면, E-UTRAN은 단말(10; user equipment, UE)에게 제어 평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; base station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 단말(10)과 통신하는 지점(station)을 말하며, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(access point) 등 다른 용어로 불릴 수 있다.Referring to FIG. 1, an E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE). The terminal 10 may be fixed or mobile and may be called by other terms such as a mobile station (MS), a user terminal (UT), a subscriber station (SS), a mobile terminal (MT), and a wireless device. . The base station 20 refers to a station communicating with the terminal 10, and may be referred to in other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20)은 S1 인터페이스를 통해 EPC(evolved packet core, 30), 보다 상세하게는 S1-MME를 통해 MME(mobility management entity)와 S1-U를 통해 S-GW(serving gateway)와 연결된다. S1 인터페이스는 MME와 신호를 교환함으로써 단말(10)의 이동을 지원하기 위한 OAM(operation and management) 정보를 주고받는다. The base stations 20 may be connected to each other through an X2 interface. The base station 20 is connected to the serving gateway (S-GW) through the mobility management entity (MME) and the S1-U through the evolved packet core (EPC) 30, more specifically, through the S1 interface. The S1 interface exchanges signals with the MME to exchange OAM (operation and management) information for supporting the movement of the terminal 10.
EPC(30)는 MME, S-GW 및 P-GW(packet data network gateway)로 구성된다. MME는 단말(10)의 접속 정보나 단말(10)의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말(10)의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.The EPC 30 is composed of MME, S-GW and P-GW (packet data network gateway). The MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10. S-GW is a gateway having an E-UTRAN as an endpoint, and P-GW is a gateway having a PDN as an endpoint.
단말(10)과 네트워크 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호 접속 (OSI; open system interconnection)기준모델의 하위 3개 계층을 바탕으로 L1(제1 계층), L2(제2 계층), L3(제3 계층)로 구분될 수 있는데, 이중에서 제1 계층에 속하는 물리 계층(physical layer; PHY)은 물리 채널(physical channel)을 이용한 정보 전송 서비스(information transfer service)를 제공하며, 제3 계층에 위치하는 RRC(radio resource control) 계층은 단말(10)과 망 간에 무선 자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말(10)과 기지국간 RRC 메시지를 교환한다.The layers of the radio interface protocol between the terminal 10 and the network are based on the lower three layers of the open system interconnection (OSI) reference model, which is well known in a communication system. Layer), L2 (second layer), and L3 (third layer). Among them, a physical layer (PHY) belonging to the first layer may include an information transmission service using a physical channel ( An information transfer service (RRC) layer and a radio resource control (RRC) layer located in a third layer play a role of controlling radio resources between the terminal 10 and the network. To this end, the RRC layer exchanges an RRC message between the terminal 10 and the base station.
물리 계층은 물리 채널을 이용하여 상위 계층에게 정보 전송 서비스를 제공한다. 물리 계층은 제2 계층에 속하는 MAC(medium access control) 계층과 전송채널(transport channel)을 통해 연결되어 있다. 전송 채널을 통해 MAC 계층과 물리 계층 사이로 데이터가 이동한다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. The physical layer provides an information transmission service to a higher layer using a physical channel. The physical layer is connected to a medium access control (MAC) layer belonging to a second layer through a transport channel. Data travels between the MAC and physical layers over the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
서로 다른 물리 계층 사이, 즉 송신기와 수신기의 물리 계층 사이는 물리 채널을 통해 데이터가 이동한다. 상기 물리 채널은 OFDM(orthogonal frequency division multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.Data travels through physical channels between different physical layers, that is, between physical layers of a transmitter and a receiver. The physical channel is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
MAC 계층의 기능은 논리 채널과 전송 채널간의 맵핑 및 논리 채널에 속하는 MAC SDU(service data unit)의 전송 채널 상으로 물리 채널로 제공되는 전송 블록(transport block)으로의 다중화/역다중화를 포함한다. MAC 계층은 논리 채널을 통해 RLC(radio link control) 계층에게 서비스를 제공한다. Functions of the MAC layer include mapping between logical channels and transport channels and multiplexing / demultiplexing into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels. The MAC layer provides a service to a radio link control (RLC) layer through a logical channel.
제2 계층에 속하는 RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)를 포함한다. 무선 베어러(RB; radio bearer)가 요구하는 다양한 QoS(quality of service)를 보장하기 위해, RLC 계층은 투명 모드(TM; transparent mode), 비확인 모드(UM; unacknowledged mode) 및 확인 모드(AM; acknowledged mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. Functions of the RLC layer belonging to the second layer include concatenation, segmentation, and reassembly of RLC SDUs. In order to guarantee various quality of service (QoS) required by a radio bearer (RB), the RLC layer may be configured in transparent mode (TM), unacknowledged mode (UM) and acknowledgment mode (AM). Three modes of operation are provided: acknowledged mode. AM RLC provides error correction through an automatic repeat request (ARQ).
사용자 평면에서의 PDCP(packet data convergence protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)를 포함한다. 사용자 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)를 포함한다.Functions of the packet data convergence protocol (PDCP) layer in the user plane include delivery of user data, header compression and ciphering. Functions of the PDCP layer in the user plane include the transfer of control plane data and encryption / integrity protection.
제3 계층에 속하는 RRC 계층은 제어 평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. RB는 단말(10)과 네트워크 간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 다시 SRB(signaling RB)와 DRB(data RB) 두 가지로 나누어 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.The RRC layer belonging to the third layer is defined only in the control plane. The RRC layer is responsible for the control of logical channels, transport channels and physical channels in connection with the configuration, re-configuration and release of radio bearers. RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal 10 and the network. The establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method. The RB can be further divided into a signaling RB (SRB) and a data RB (DRB). The SRB is used as a path for transmitting RRC messages in the control plane, and the DRB is used as a path for transmitting user data in the user plane.
단말(10)의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말(10)은 RRC 연결(RRC CONNECTED) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC IDLE) 상태에 있게 된다.If there is an RRC connection between the RRC layer of the terminal 10 and the RRC layer of the E-UTRAN, the terminal 10 is in an RRC CONNECTED state, otherwise the RRC idle ) State.
네트워크에서 단말(10)로 데이터를 전송하는 하향링크 전송 채널로는 시스템정보를 전송하는 BCH(broadcast channel)과 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 하향링크 SCH(shared channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어 메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(multicast channel)을 통해 전송될 수도 있다. 한편, 단말(10)에서 네트워크로 데이터를 전송하는 상향링크 전송 채널로는 초기 제어 메시지를 전송하는 RACH(random access channel)와 그 이외에 사용자 트래픽이나 제어 메시지를 전송하는 상향링크 SCH(shared channel)가 있다.The downlink transmission channel for transmitting data from the network to the terminal 10 includes a broadcast channel (BCH) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages. Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, the uplink transmission channel for transmitting data from the terminal 10 to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages. have.
전송 채널 상위에 있으며, 전송 채널에 매핑되는 논리채널(logical channel)로는 BCCH(broadcast control channel), PCCH(paging control channel), CCCH(common control channel), MCCH(multicast control channel), MTCH(multicast traffic channel) 등이 있다.Above logical channels, logical channels mapped to the transport channels include a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and multicast traffic (MTCH). channel).
물리 채널은 시간 영역에서 여러 개의 심벌과 주파수 영역에서 여러 개의 부반송파(subcarrier)로 구성된다. 하나의 서브프레임(subframe)은 시간 영역에서 복수의 심벌들로 구성된다. 하나의 서브프레임은 복수의 자원 블록(RB; resource block)들로 구성되며, 하나의 자원 블록은 복수의 심벌들과 복수의 부반송파들로 구성된다. 또한 각 서브프레임은 PDCCH(physical downlink control channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 심벌들(가령, 첫 번째 심벌)의 특정 부반송파들을 이용할 수 있다. 데이터가 전송되는 단위시간인 TTI(transmission time interval)는 1개의 서브프레임에 해당하는 1ms이다.The physical channel is composed of several symbols in the time domain and several subcarriers in the frequency domain. One subframe consists of a plurality of symbols in the time domain. One subframe includes a plurality of resource blocks (RBs), and one resource block includes a plurality of symbols and a plurality of subcarriers. In addition, each subframe may use specific subcarriers of specific symbols (eg, the first symbol) of the corresponding subframe for a physical downlink control channel (PDCCH), that is, an L1 / L2 control channel. A transmission time interval (TTI), which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 상술한다. Hereinafter, the RRC state and the RRC connection method of the UE will be described in detail.
RRC 상태란 단말의 RRC 계층이 E-UTRAN의 RRC 계층과 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태, 연결되어 있지 않은 경우는 RRC 아이들 상태라고 부른다. RRC 연결 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC 아이들 상태의 단말은 E-UTRAN에 의해 파악되지 않으며, 셀보다 더 큰 지역 단위인 트래킹 영역(TA; tracking area) 단위로 핵심망에 의해 관리된다. 즉, RRC 아이들 상태의 단말의 존재 여부는 큰 지역 단위로만 파악되며, 음성이나 데이터와 같은 통상의 이동 통신 서비스를 받기 위해서는 RRC 연결 상태로 이동해야 한다.The RRC state refers to whether or not the RRC layer of the UE is in a logical connection with the RRC layer of the E-UTRAN. If connected, the RRC connection state is called. Since the UE in the RRC connected state has an RRC connection, the E-UTRAN can grasp the existence of the corresponding UE in a cell unit, and thus can effectively control the UE. On the other hand, the UE of the RRC idle state is not identified by the E-UTRAN and is managed by the core network in units of a tracking area (TA), which is a larger area unit than the cell. That is, the presence of the terminal in the RRC idle state is only detected in a large area unit, and in order to receive a normal mobile communication service such as voice or data, it must move to the RRC connected state.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 PLMN(public land mobile network)과의 접속을 만들려는 시도를 한다. 접속된 특정 PLMN은 자동적으로 또는 수동적으로 선택될 수 있다. 여기서, PLMN은 차량 내 또는 도보로 이동 중인 지상의 사용자에 의해 사용되기 위한 무선 통신 시스템을 의미한다. 또는 PLMN은 위성 이외의 지상 기반의 기지국을 사용하는 모든 이동 무선 네트워크를 지시할 수도 있다. 홈 PLMN(HPLMN; home PLMN)은 GSM(global system for mobile communication) 네트워크의 개별 사용자에 대한 확인을 위해 사용되는 유일한(unique) 15-digit 코드인 IMSI(international mobile subscriber identity) 내에 포함된 MCC(mobile country code)와 MNC(mobile network code)이 동일한 PLMN이다. When the user first turns on the terminal, the terminal attempts to make a connection with the public land mobile network (PLMN). The specific PLMN connected can be selected automatically or manually. Here, PLMN refers to a wireless communication system for use by a user on the ground in a vehicle or on foot. Alternatively, the PLMN may indicate all mobile wireless networks using land-based base stations other than satellites. A home PLMN (HPLMN) is a mobile that is contained within an international mobile subscriber identity (IMSI), a unique 15-digit code used for identification of individual users in a global system for mobile communication (GSM) network. The country code (MCN) and the mobile network code (MNC) are the same PLMN.
*동등한(equivalent) HPLMN(EHPLMN) 리스트는 다중 HPLMN 코드의 제공을 허용하기 위해 IMSI로부터 추출되는 HPLMN 코드를 대신하는 PLMN 코드 리스트를 말한다. EHPLMN 리스트는 USIM(universal subscriber identity module)에 저장된다. EHPLMN 리스트는 IMSI로부터 추출되는 HPLMN 코드를 포함할 수도 있다. 만일 IMSI로부터 추출되는 HPLMN 코드가 EHPLMN 리스트에 포함되어 있지 않다면, HPLMN은 PLMN 선택시 방문 PLMN(VPLMN; visited PLMN)으로 취급되어야 한다. VPLMN은 HPLMN 및 EHPLMN(존재하는 경우)과 다른 PLMN이다. 등록된(registered) PLMN(RPLMN)는 어떤 위치 등록(LR; location registration) 결과들이 발생하는 PLMN이다. 일반적으로 공유 네트워크에서 RPLMN은 LR을 허용한 코어 네트워크 사업자(core network operator)의 PLMN 확인에 의해 정의되는 PLMN이다. * Equivalent HPLMN (EHPLMN) list is a PLMN code list that replaces HPLMN codes extracted from IMSI to allow provision of multiple HPLMN codes. The EHPLMN list is stored in a universal subscriber identity module (USIM). The EHPLMN list may include HPLMN codes extracted from IMSI. If the HPLMN code extracted from IMSI is not included in the EHPLMN list, the HPLMN should be treated as a visited PLMN (VPLMN) when selecting a PLMN. VPLMN is a PLMN different from HPLMN and EHPLMN (if present). A registered PLMN (RPLMN) is a PLMN where certain location registration (LR) results occur. In general, in a shared network, an RPLMN is a PLMN defined by PLMN identification of a core network operator that allows LR.
단말은 선택된 PLMN의 적절한 셀을 탐색한 후 해당 셀에서 RRC 아이들 상태에 머무른다. RRC 아이들 상태의 단말은 가능한 서비스들을 제공할 수 있는 셀을 선택(cell selection)하고, 선택된 셀의 제어 채널에 맞게 조정한다. 이러한 과정을 "셀에 캠프온 한다(camp on a cell)"라고 한다. 셀에 캠프온(camp on a cell) 한 단말은 해당 셀로부터 시스템 정보 등을 읽을 수 있으며, 대부분 경우 페이징(paging) 정보를 수신할 수 있다. 캠핑이 완료되면 단말은 선택된 셀의 등록영역(registration area)에 자신의 존재를 등록할 수 있다. 이를 위치 등록(LR; location registration)이라 한다. 단말은 등록 영역 내의 자신의 존재를 정규적으로 등록하거나 새로운 트래킹 영역에 진입했을 때 등록한다. 등록 영역은 단말이 위치 등록 절차 없이 로밍(roaming)할 수도 있는 임의의 영역을 말한다. The UE searches for the appropriate cell of the selected PLMN and stays in the RRC idle state in the cell. The UE in the RRC idle state selects a cell capable of providing possible services and adjusts it to a control channel of the selected cell. This process is called "camping on a cell." A terminal camping on a cell may read system information, etc. from the cell, and in most cases, may receive paging information. When camping is completed, the terminal may register its presence in the registration area of the selected cell. This is called location registration (LR). The terminal registers its presence in the registration area regularly or when entering a new tracking area. The registration area refers to any area where the terminal may roam without a location registration procedure.
만일 단말이 셀의 서비스 영역을 벗어나거나 또는 좀더 적당한 셀을 찾은 경우, 단말은 PLMN 내의 가장 적당한 셀을 재선택하고 캠핑한다. 만일 새로운 셀이 다른 등록 영역에 포함되어 있는 경우, 위치 등록 요청이 수행된다. 만일 단말이 PLMN의 서비스 영역을 벗어나게 된 경우, 자동적으로 새로운 PLMN이 선택되거나 사용자에 의해 수동적으로 새로운 PLMN이 선택될 수 있다.If the terminal leaves the service area of the cell or finds a more suitable cell, the terminal reselects and camps the most suitable cell in the PLMN. If the new cell is included in another registration area, a location registration request is performed. If the terminal leaves the service area of the PLMN, a new PLMN may be automatically selected or a new PLMN may be manually selected by the user.
RRC 아이들 상태의 단말이 캠프온을 진행하는 목적은 다음과 같다.The purpose of proceeding camp on the terminal of the RRC idle state is as follows.
1) 단말이 PLMN으로부터 시스템 정보를 수신 1) UE receives system information from PLMN
2) 단말이 호(call)를 초기화한 이후 캠프온 된 셀의 제어채널을 통하여 네트워크에 처음에 접속2) The terminal initially accesses the network through the control channel of the camped cell after initiating a call.
3) 페이징 메시지 수신: PLMN이 단말에 대한 호를 수신한 경우, PLMN은 단말이 캠프온 된 셀의 등록 영역을 알고 있다. 따라서 PLMN은 등록 영역에 있는 모든 셀의 제어 채널을 통하여 단말을 위한 페이징 메시지를 보낼 수 있다. 단말은 이미 캠프온 한 셀의 제어 채널에 맞게 조정해 놓은 상태이므로 페이징 메시지를 수신할 수 있다.3) Paging message reception: When the PLMN receives a call for the terminal, the PLMN knows the registration area of the cell where the terminal is camped on. Therefore, the PLMN may send a paging message for the terminal through the control channel of all cells in the registration area. Since the terminal is already adjusted for the control channel of the camp-on cell, it may receive a paging message.
4) 셀의 브로드캐스팅 메시지를 수신4) receive the cell's broadcasting message
아이들 상태의 단말이 캠프온 하는 셀은 서비스 타입(service type)에 따라 몇 가지로 분류될 수 있다. 여기서, 서비스 타입은 단말이 아이들 상태에서 진행하는 서비스의 내용을 정의한다. 셀의 타입은 해당 셀에서 제공하는 서비스 타입마다 다르다. 서비스 타입에는 제한된 서비스(limited service), 일반 서비스(normal service), 그리고 사업자 서비스(operator service)가 있다.Cells camped on by an idle terminal may be classified into several types according to service types. Here, the service type defines the content of the service that the terminal proceeds in the idle state. The cell type is different for each service type provided by the cell. Service types include limited service, normal service, and operator service.
제한된 서비스는 주로 긴급 콜(emergency call), ETWS(earthquake and tsunami warning system) 또는 CMAS(commercial mobile alert system) 등 응급, 재난 상황 등 비상시에 가능한 서비스이다. 만일 단말이 캠프온 하기 적당한 셀을 찾을 수 없거나 SIM 카드가 삽입되지 않은 경우 또는 위치 등록 요청에 대한 특정 응답을 수신한 경우(예를 들어 불법 단말기), 단말은 PLMN에 상관없이 캠프온을 시도하고 "제한된 서비스" 상태로 진입한다. 제한된 서비스는 허용가능 셀(acceptable cell)에 지원 가능한 서비스 타입이다. 단말이 셀 선택 또는 셀 재선택을 통해 허용 가능 셀을 발견하면, 단말은 임의 셀에 캠프온 한("camped on any cell") 상태로 변경된다. 임의 셀에 캠프온 한 상태는 단말이 아이들 상태에 있으며 셀 선택 또는 셀 재선택 과정을 완료하였으며, PLMN 식별자(identity)에 관계없이 셀을 선택한 상태이다.Restricted services are services that can be used in emergencies such as emergency calls, earthquake and tsunami warning systems (ETWS), or commercial mobile alert systems (CMAS). If the terminal cannot find a suitable cell to camp on or if no SIM card is inserted or receives a specific response to the location registration request (eg illegal terminal), the terminal attempts to camp on regardless of the PLMN. Enter the "limited service" state. The restricted service is a service type that can be supported for an acceptable cell. When the terminal finds an allowable cell through cell selection or cell reselection, the terminal is changed to a state "camped on any cell". In the state of camping in an arbitrary cell, the terminal is in an idle state, and the cell selection or cell reselection process is completed, and the cell is selected regardless of the PLMN identity.
일반 서비스는 공공(public) 또는 일반적인(normal) 호(call)에 해당하는 서비스로서, 적합한 셀(suitable cell)에 지원 가능하다. 적합한 셀은 단말이 특정 PLMN 내에 소속되어 있는 경우의 셀이다. 예를 들어, 상기 특정 PLMN은 선택된 PLMN(selected PLMN), 등록된 PLMN(registered PLMN), 동등한 PLMN 리스트의 PLMN(a PLMN of the equivalent PLMN list)에서 어느 하나일 수 있다. A general service is a service corresponding to a public or normal call and can support a suitable cell. A suitable cell is a cell when the terminal belongs to a specific PLMN. For example, the specific PLMN may be any one of a selected PLMN, a registered PLMN, and a PLMN of the equivalent PLMN list.
단말이 특정 PLMN을 수동적(manually) 혹은 자동적으로(automatically) 선택하는 경우, 상기 특정 PLMN을 선택된 PLMN이라 한다. 단말이 선택된 PLMN에 소속된 경우, 단말은 선택된 PLMN 내에서 셀을 선택한다. 등록된 PLMN은 위치 등록 과정을 통해 네트워크가 단말에게 알려주는 PLMN이다. When the terminal manually or automatically selects a specific PLMN, the specific PLMN is called a selected PLMN. If the terminal belongs to the selected PLMN, the terminal selects a cell in the selected PLMN. The registered PLMN is a PLMN that the network notifies the terminal through a location registration process.
적합한 셀과 관련하여, 셀 선택 또는 셀 재선택을 통하여 적합한 셀을 발견하면 단말은 일반적으로 캠프온한("camped normally") 상태로 변경된다. 또는 단말이 셀 선택 또는 셀 재선택을 통하여 적합한 셀을 발견하지 못하면, 단말은 임의 셀 선택("any cell selection") 상태로 변경된다. 임의 셀 선택 상태는 단말이 제공하는 모든 무선 접속 기술(RAT; radio access technology)에 해당하는 모든 PLMN에 대하여 허용 가능 셀을 찾기 위하여 시도하는 상태이다. 단말이 셀 선택 또는 셀 재선택을 통하여 적합한 셀을 발견하지 못하면, 단말이 지원 가능한 모든 RAT을 대상으로 어느 적합한 셀에 해당하는 PLMN 이외에 어느 PLMN 에서라도 허용 가능 셀을 찾는다. In relation to a suitable cell, if a suitable cell is found through cell selection or cell reselection, the terminal is generally changed to a "camped normally" state. Or, if the terminal does not find a suitable cell through cell selection or cell reselection, the terminal is changed to an "any cell selection" state. The random cell selection state is a state of attempting to find an allowable cell for all PLMNs corresponding to all radio access technologies (RATs) provided by the terminal. If the UE does not find a suitable cell through cell selection or cell reselection, the UE finds an allowable cell in any PLMN in addition to the PLMN corresponding to any suitable cell for all supported RATs.
한편, 사업자 서비스는 사업자에 의해 특정한 단말에게만 허용되는 서비스로서, 예비된 셀(reserved cell)에 지원 가능하다.On the other hand, the operator service is a service that is allowed only to a specific terminal by the operator, it can support a reserved cell (reserved cell).
RRC 아이들 상태의 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정을 통해 E-UTRAN과 RRC 연결을 확립하고, RRC 연결 상태로 천이한다. RRC 아이들 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있다. 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등의 경우를 들 수 있다. When the UE in the RRC idle state needs to establish an RRC connection, it establishes an RRC connection with the E-UTRAN through the RRC connection process and transitions to the RRC connected state. There are several cases in which a UE in an RRC idle state needs to establish an RRC connection. For example, an uplink data transmission is necessary due to a user's call attempt, or when a paging message is received from the E-UTRAN, a response message may be transmitted.
도 2는 본 발명의 일 실시예에 따른 RRC 아이들 상태인 단말의 셀 선택 과정을 나타내는 예시도이다.2 is an exemplary diagram illustrating a cell selection process of a UE in an RRC idle state according to an embodiment of the present invention.
도 2를 참조하면, 단말은 서비스 받고자 하는 PLMN과 RAT을 선택한다(S210). PLMN과 RAT는 단말의 사용자가 선택을 할 수도 있으며, USIM에 저장되어 있는 것을 사용할 수도 있다.Referring to FIG. 2, the terminal selects a PLMN and a RAT to be serviced (S210). The PLMN and the RAT may be selected by the user of the terminal or may be stored in the USIM.
단말은 측정한 기지국과 신호의 세기나 품질이 특정한 값보다 큰 셀 중에서, 가장 큰 값을 가지는 셀을 초기 셀로 선택한다(S220). 그리고, 기지국이 주기적으로 보내는 시스템 정보를 수신한다. 특정한 값은 데이터 송수신에서의 물리적 신호에 대한 품질을 보장받기 위하여 시스템에서 정의된 값을 말한다. 따라서, 적용되는 RAT에 따라 그 값은 다를 수 있다.The terminal selects a cell having the largest value as an initial cell among the cells having the measured base station and the signal whose strength or quality is greater than a specific value (S220). The base station periodically receives system information. The specific value refers to a value defined in the system to ensure the quality of the physical signal in data transmission and reception. Therefore, the value may vary depending on the RAT applied.
단말은 네트워크 등록이 필요하면, 네트워크로부터 서비스(예: 페이징)를 받기 위하여 자신의 정보(예를 들어, IMSI)를 등록한다(S230, S240). 단말은 셀을 선택할 때마다 접속하는 네트워크에 등록을 하는 것은 아니다. 예를 들어, 등록할 네트워크의 시스템 정보(예를 들어, 트래킹 영역 식별자(TAI; tracking area identity)와 자신이 알고 있는 네트워크의 정보가 다른 경우에 네트워크에 등록을 한다.If the network needs to register, the terminal registers its information (eg, IMSI) in order to receive a service (eg, paging) from the network (S230, S240). The terminal does not register in the network to which the terminal is connected every time the cell is selected. For example, if the system information of the network to be registered (for example, a tracking area identity (TAI) and the information of the network known by the user is different), the network is registered with the network.
단말은 서비스 받고 있는 기지국으로부터 측정한 신호의 세기나 품질의 값이 인접한 셀의 기지국으로부터 측정한 값보다 낮다면, 단말이 접속한 기지국의 셀보다 더 좋은 신호 특성을 제공하는 다른 셀을 선택한다(S250). 이 과정을 상기 단계 S220의 초기 셀 선택 등의 셀 선택 과정과 구분하여 셀 재선택이라 한다. 이때, 신호 특성의 변화에 따라 빈번히 셀이 재선택되는 것을 방지하기 위하여 시간적인 제약 조건을 둘 수도 있다.The terminal selects another cell that provides better signal characteristics than the cell of the base station to which the terminal is connected if the value of the strength or quality of the signal measured from the base station being served is lower than the value measured from the base station of the adjacent cell. S250). This process is called cell reselection by distinguishing it from the cell selection process such as initial cell selection in step S220. In this case, a time constraint may be set in order to prevent the cell from being frequently reselected according to the change of the signal characteristic.
다음은 단말이 셀을 선택하는 절차에 대해서 자세히 설명한다. Next, a procedure of selecting a cell by the terminal will be described in detail.
전원이 켜지거나 셀에 머물러 있을 때, 단말은 적절한 품질의 셀을 선택/재선택하여 서비스를 받기 위한 절차들을 수행한다.When the power is turned on or staying in the cell, the terminal selects / reselects a cell of appropriate quality and performs procedures for receiving service.
RRC 아이들 상태의 단말은 항상 적절한 품질의 셀을 선택하여 이 셀을 통해 서비스를 제공 받기 위한 준비를 하고 있어야 한다. 예를 들어, 전원이 막 켜진 단말은 네트워크에 등록을 하기 위해 적절한 품질의 셀을 선택해야 한다. RRC 연결 상태에 있던 단말이 RRC 아이들 상태에 진입하면, 단말은 RRC 아이들 상태에서 머무를 셀을 선택해야 한다. 이와 같이, 단말이 RRC 아이들 상태와 같은 서비스 대기 상태로 진입하기 위해서 어떤 조건을 만족하는 셀을 고르는 과정을 셀 선택이라고 한다. 중요한 점은, 셀 선택은 단말이 RRC 아이들 상태로 머물러 있을 셀을 현재 결정하지 못한 상태에서 수행하는 것이므로, 가능한 신속하게 셀을 선택하는 것이 무엇보다 중요하다. 따라서 일정 기준 이상의 무선 신호 품질을 제공하는 셀이라면, 비록 이 셀이 단말에게 가장 좋은 무선 신호 품질을 제공하는 셀이 아니라도, 단말의 셀 선택 과정에서 선택될 수 있다.The UE in the RRC idle state should always be prepared to select a cell of appropriate quality and to receive service through this cell. For example, a terminal that has just been powered on must select a cell of appropriate quality to register with the network. When the terminal in the RRC connected state enters the RRC idle state, the terminal should select a cell to stay in the RRC idle state. As such, the process of selecting a cell satisfying a certain condition in order for the terminal to enter a service standby state such as an RRC idle state is called cell selection. Importantly, since cell selection is performed in a state in which the UE does not currently determine a cell to stay in the RRC idle state, it is most important to select the cell as soon as possible. Therefore, if the cell provides a radio signal quality of a predetermined criterion or more, even if the cell is not a cell providing the best radio signal quality to the terminal, it may be selected during the cell selection process of the terminal.
셀 선택 과정은 크게 3 가지로 나뉜다. There are three main cell selection processes.
먼저 초기 셀 선택 과정으로, 이 과정은 단말이 무선 채널에 대한 사전 정보가 없는 경우에 단말이 사용하는 방식이다. 따라서 단말은 적절한 셀을 찾기 위해, 단말의 성능(capability)이 허용되는 범위에 한해 EUTRAN 대역의 모든 무선 채널을 검색한다. 각 채널에서 단말은 가장 강한 셀을 찾는다. 이후, 단말이 셀 선택 기준을 만족하는 적합한 셀을 찾기만 하면 해당 셀을 선택한다. First, as an initial cell selection process, this process is used by the terminal when the terminal does not have prior information on the radio channel. Accordingly, the terminal searches all radio channels in the EUTRAN band only in a range where the capability of the terminal is allowed to find an appropriate cell. In each channel, the terminal finds the strongest cell. Thereafter, the terminal selects a corresponding cell if it finds a suitable cell satisfying the cell selection criteria.
두 번째 셀 선택 과정은 저장된 정보를 활용하는 셀 선택 과정으로, 이 과정에서 단말은 무선 채널에 대해 단말에 저장되어 있는 정보를 활용하거나, 셀에서 브로드캐스트 되는 정보를 활용하여 셀 선택을 한다. 따라서 초기 셀 선택 과정에 비해 셀 선택이 신속할 수 있다. 단말이 셀 선택 기준을 만족하는 셀을 찾기만 하면 해당 셀을 선택한다. 만약 이 과정을 통해 셀 선택 기준을 만족하는 적합한 셀을 찾지 못하면, 단말은 초기 셀 선택 과정을 수행한다.The second cell selection process is a cell selection process using stored information. In this process, the UE selects a cell by using information stored in the UE for a wireless channel or by using information broadcast from the cell. Therefore, the cell selection may be faster than the initial cell selection process. The UE selects a corresponding cell if it finds a cell that satisfies a cell selection criterion. If a suitable cell that satisfies the cell selection criteria is not found through this process, the UE performs an initial cell selection process.
단말이 셀 선택 기준을 만족하는 셀을 선택하면, 단말은 해당 셀의 시스템 정보로부터 해당 셀에서 상기 단말의 RRC 아이들 상태 동작에 필요한 정보를 수신한다. 단말이 RRC 아이들 상태 동작에 필요한 모든 정보를 수신한 후, 네트워크로 서비스를 요청(예를 들어, originating call)하거나 네트워크로부터 서비스(예를 들어, terminating call)를 받기 위해 아이들 모드에서 대기한다.When the terminal selects a cell that satisfies the cell selection criteria, the terminal receives information necessary for the RRC idle state operation of the terminal in the cell from the system information of the cell. After the UE receives all the information necessary for the RRC idle state operation, it waits in the idle mode to request a service (eg, originating call) to the network or to receive a service (eg, terminating call) from the network.
세 번째 셀 선택 과정은 RRC 연결 상태의 탈피(leaving)로 인한 셀 선택 과정이다. 이 과정은 다음과 같다. 단말이 RRC 연결 상태에서 아이들 상태로 변경되는 경우에 있어서, (a) 만약, RRC 연결 해제 메시지에 redirectedCarrierInfo가 포함되어 있다면, 단말은 redirectedCarrierInfo에 따라서 적합한 셀을 선택하고 캠프온을 시도한다. 여기서, 단말이 적합한 셀을 찾지 못하였다면, 단말은 지정된 RAT에 따라서 임의의 적합한 셀을 검색하여 캠프온할 수 있다. The third cell selection process is a cell selection process due to leaving of the RRC connection state. This process is as follows. When the terminal is changed from the RRC connected state to the idle state, (a) if the redirectedCarrierInfo is included in the RRC connection release message, the terminal selects a suitable cell according to the redirectedCarrierInfo and attempts to camp on. Here, if the UE does not find a suitable cell, the UE may camp on by searching for any suitable cell according to the designated RAT.
다시 (a)에서 만약, RRC 연결 해제 메시지에 redirectedCarrierInfo가 포함되어 있지 않다면, 단말은 EUTRA 반송파에서 적합한 셀을 검색한다. 여기서, 만약 단말이 적합한 셀을 찾지 못하였다면, 단말은 적합한 셀을 찾기 위하여 저장된 정보 셀 선택을 시작하여 셀 선택 과정을 수행한다. In (a) again, if the redirectedCarrierInfo is not included in the RRC connection release message, the UE searches for a suitable cell in the EUTRA carrier. Here, if the terminal does not find a suitable cell, the terminal starts the selected information cell selection to perform a cell selection process in order to find a suitable cell.
임의의 셀에 캠프온 한 상태에 있는 단말이 RRC 연결 상태에서 RRC 아이들 상태로 변경될 경우에, (b) 만약, RRC 연결 해제 메시지에 redirecteCarrierInfo가 포함되어 있다면, 단말은 redirectedCarrierInfo에 따라서 허용 가능 셀에 캠프온을 시도한다. 여기서, 단말이 허용 가능 셀을 찾지 못하였다면, 단말은 지정된 RAT에 따라서 임의의 허용 가능 셀을 검색하여 캠프온 할 수 있다. When a UE camping in an arbitrary cell is changed from an RRC connected state to an RRC idle state, (b) if the RRC disconnection message includes a redirecteCarrierInfo, the UE may enter the allowable cell according to the redirectedCarrierInfo. Try to camp on. Here, if the terminal has not found an allowable cell, the terminal may camp on by searching for any allowable cell according to the designated RAT.
다시 (b)에서 만약, RRC 연결 해제 메시지에 redirectedCarrierInfo가 포함되어 있지 않다면, 단말은 EUTRA 반송파에서 허용 가능 셀을 검색하도록 한다. 여기서, 단말이 허용 가능 셀을 찾지 못하였다면, 단말은 임의의 셀 선택 상태에서 어떠한 PLMN에서든 허용 가능 셀을 찾기 위하여 검색을 진행한다. In (b) again, if the redirectedCarrierInfo is not included in the RRC connection release message, the UE searches for an allowable cell in the EUTRA carrier. Here, if the UE has not found an acceptable cell, the UE performs a search to find an acceptable cell in any PLMN in any cell selection state.
단말이 일단 셀 선택 과정을 통해 어떤 셀을 선택한 이후, 단말의 이동성 또는 무선 환경의 변화 등으로 단말과 기지국 간의 신호의 세기나 품질이 바뀔 수 있다. 따라서 만약 선택한 셀의 품질이 저하되는 경우, 단말은 더 좋은 품질을 제공하는 다른 셀을 선택할 수 있다. 이렇게 셀을 다시 선택하는 경우, 일반적으로 현재 선택된 셀보다 더 좋은 신호 품질을 제공하는 셀을 선택한다. 이런 과정을 셀 재선택이라고 한다. 셀 재선택 과정은, 무선 신호의 품질 관점에서, 일반적으로 단말에게 가장 좋은 품질을 제공하는 셀을 선택하는 데 기본적인 목적이 있다. 즉, 셀 재선택에 의해 탐색되는 셀들은 셀 재선택 기준(cell reselection criteria)을 만족시키는 셀이다. 양질의 셀이 발견되면 단말은 상기 양질의 셀을 재선택한다. 셀의 변경은 RAT의 변경을 의미할 수도 있다.After the terminal selects a cell through a cell selection process, the strength or quality of a signal between the terminal and the base station may change due to the mobility of the terminal or a change in the wireless environment. Therefore, if the quality of the selected cell is degraded, the terminal may select another cell that provides better quality. When reselecting a cell in this way, a cell that generally provides better signal quality than the currently selected cell is selected. This process is called cell reselection. The cell reselection process has a basic purpose in selecting a cell that generally provides the best quality to a terminal in view of the quality of a radio signal. That is, cells searched by cell reselection are cells that satisfy cell reselection criteria. If a cell of good quality is found, the terminal reselects the cell of good quality. Changing the cell may mean changing the RAT.
셀 재선택은 상기와 같은 무선 신호의 품질 관점 이외에도, 네트워크에 의존적으로 수행될 수 있다. 이에 따르면, 네트워크는 주파수 별로 우선 순위를 결정하여 단말에게 알릴 수 있다. 이러한 우선 순위를 수신한 단말은, 셀 재선택 과정에서 이 우선 순위를 무선 신호 품질 기준보다 우선적으로 고려한다. Cell reselection may be performed depending on the network, in addition to the above-described quality of the radio signal. According to this, the network may determine the priority for each frequency and notify the terminal. Upon receiving this priority, the UE considers this priority prior to the radio signal quality criteria in the cell reselection process.
서로 다른 EUTRAN 주파수 또는 inter-RAT 주파수에 대한 절대 우선 순위(absolute priority)에 대한 정보는 시스템 정보, RRC 연결 해제 메시지에 의해 전송될 수 있다. 상기 시스템 정보는 선택적으로(optionally) 상기 우선 순위 정보를 포함할 수 있다. 상기 RRC 연결 해제 메시지는 전용적 우선 순위(dedicated priority)를 포함할 수 있다. 또는, 절대 우선 순위에 대한 정보는 단말이 inter-RAT 셀 재선택시 다른 RAT로부터 받을(inherit) 수 있다. 이는 기존의 RAT에서 지정된 사항을 따른다. Information about absolute priority for different EUTRAN frequencies or inter-RAT frequencies may be transmitted by system information and an RRC disconnection message. The system information may optionally include the priority information. The RRC connection release message may include a dedicated priority. Or, the information about the absolute priority may be received from the other RAT when the UE reselects the inter-RAT cell. This follows the specifications specified in the existing RAT.
단말이 전용 시그널링(dedicated signaling)을 통하여 우선 순위를 제공 받으면 시스템 정보를 통하여 제공받은 우선 순위는 무시한다. 다시 말해, 기지국으로부터 RRC 연결 해제 메시지를 통하여 우선 순위를 수신하면, 단말은 시스템 정보로부터 수신한 우선 순위는 무시한다. If the terminal is provided priority through dedicated signaling, the priority provided through system information is ignored. In other words, upon receiving the priority through the RRC connection release message from the base station, the terminal ignores the priority received from the system information.
단말이 임의 셀에 캠프온 한 상태인 경우, 단말은 시스템 정보를 통하여 수신한 우선 순위만을 적용하여야 한다. 따라서, 전용 시그널링을 통하여 수신한 우선 순위는 따로 명시하지 않는 이상 보관(preserve)만 한다. When the terminal is camped in an arbitrary cell, the terminal should apply only the priority received through the system information. Therefore, the priority received through dedicated signaling is reserved only unless otherwise specified.
단말이 일반적으로 캠프온 한 상태에서 현재 접속된 주파수 대역을 제외한 다른 대역을 전용적 우선 순위로 설정하였다면 단말은 현재 주파수 대역을 최저 우선 순위로 여긴다. If the terminal generally sets a band other than the currently connected frequency band as a dedicated priority while camping on, the terminal regards the current frequency band as the lowest priority.
단말이 아이들 모드에서 초기에 특정한 셀에 캠프 온 하기 위하여 셀 선택을 수행하거나 현재의 셀보다 더 나은 성능을 가지는 셀에 대하여 셀 재선택을 수행하기 위해서는, 단말이 특정한 셀에 대하여 측정한 전력과 품질이 일정 수준 이상이어야 한다. 이때 셀 선택 또는 셀 재선택의 기준이 될 수 있는 전력 레벨은 Srxlev로 표현될 수 있다. 셀 선택 또는 셀 재선택의 기준이 될 수 있는 품질 레벨은 Squal로 표현될 수 있다. In order to perform cell selection in order to initially camp on a specific cell in idle mode or to perform cell reselection for a cell having better performance than the current cell, the power and quality measured by the UE for a specific cell It must be above a certain level. In this case, a power level that may be a reference for cell selection or cell reselection may be expressed as Srxlev. A quality level that may be a criterion for cell selection or cell reselection may be expressed as Squal.
셀 선택 또는 셀 재선택에서 단말이 사용하는 셀 선택 기준(criterion)은 수학식 1과 같다. The cell selection criterion used by the UE in cell selection or cell reselection is shown in Equation 1 below.
<수학식 1><Equation 1>
Srxlev>0 and Squal>0Srxlev> 0 and Squal> 0
여기서, Srxlev = Qrxlevmeas - (Qrxlevmin + Qrxlevminoffset) - Pcompensation이다. Squal = Qqualmeas - (Qqualmin + Qqualminoffset)이다. 각 파라미터에 대한 설명은 표 1과 같다.Here, Srxlev = Q rxlevmeas- (Q rxlevmin + Q rxlevminoffset )-Pcompensation. Squal = Q qualmeas- (Q qualmin + Q qualminoffset ). Description of each parameter is shown in Table 1.
표 1
Srxlev 셀 선택 수신 레벨 값 (dB)
Squal 셀 선택 품질 값 (dB)
Qrxlevmeas 측정된 셀 수신 레벨 (RSRP)
Qqualmeas 측정된 셀 품질 (RSRQ)
Qrxlevmin 셀에서의 최소 필요 수신 레벨 (dBm)
Qqualmin 셀에서의 최소 필요 품질 레벨 (dBm)
Qrxlevminoffset VPLMN에 일반적으로 캠프온 되는 동안 높은 우선 순위의 PLMN을 위한 주기적 탐색의 결과로, Srxlev에서 Qrxlevmin에 대한 오프셋
Qqualminoffset VPLMN에 일반적으로 캠프온 되는 동안 높은 우선 순위의 PLMN을 위한 주기적 탐색의 결과로, Squal에서 Qqualmin에 대한 오프셋
Pcompensation max(PEMAX - PPowerClass, 0) (dB)
PEMAX 단말이 셀에서 상향링크 상으로 전송할 때 사용할 수 있는 최대 전송 전력 레벨 (dBm)
PPowerClass 단말의 파워 클래스(power class)에 따른 최대 RF 출력 전력 (dBm)
Table 1
Srxlev Cell Select Receive Level Value (dB)
Squal Cell selection quality value (dB)
Q rxlevmeas Measured Cell Receive Level (RSRP)
Q qualmeas Measured Cell Quality (RSRQ)
Q rxlevmin Minimum Required Receive Level in Cell (dBm)
Q qualmin Minimum Required Quality Level in Cells (dBm)
Q rxlevminoffset Offset for Q rxlevmin in Srxlev as a result of the periodic search for higher priority PLMNs during normal camp-on to VPLMN.
Q qualminoffset Offset for Q qualmin from Squal, as a result of a periodic search for higher priority PLMNs while typically camped on VPLMN.
Pcompensation max (P EMAX -P PowerClass , 0) (dB)
P EMAX Maximum transmit power level (dBm) that UE can use when transmitting on uplink from cell
P PowerClass Maximum RF output power according to the power class of the terminal (dBm)
수학식 1 및 표 1을 참조하면, Srxlev와 Squal이 모두 0보다 클 경우에 셀 선택 기준을 만족할 수 있다. 즉, 단말은 측정한 셀의 RSRP와 RSRQ가 모두 일정 수준 이상일 경우에 셀 선택을 위한 기본적인 가능성이 있는 셀로 판단할 수 있다. 특히 Squal은 RSRQ에 대응되는 파라미터이다. 즉, Squal은 단순히 셀에서 측정된 파워의 크기와 관련된 값이 아닌 파워의 품질과 관련되어 계산된 값이다. Squal>0인 경우에 셀의 품질 측면에서 셀 선택 기준을 만족할 수 있다. 측정된 RSRQ가 Qqualmin과 Qqualminoffset을 합한 정도 이상이어야 RSRQ에 대한 셀 선택 기준을 만족할 수 있다. Referring to Equation 1 and Table 1, a cell selection criterion may be satisfied when both Srxlev and Squal are greater than zero. That is, the terminal may determine that the cell has a basic possibility for cell selection when both the RSRP and the RSRQ of the measured cell are above a certain level. In particular, Squal is a parameter corresponding to RSRQ. In other words, Squal is not simply a value related to the magnitude of power measured in a cell, but is calculated in relation to the quality of power. When Squal> 0, the cell selection criterion may be satisfied in terms of the quality of the cell. The measured RSRQ is equal to or greater than the sum of Q qualmin and Q qualminoffset to satisfy the cell selection criterion for RSRQ.
한편, 표 1에서 Qqualmin은 다음과 같은 의미를 가질 수 있다.Meanwhile, in Table 1, Q qualmin may have the following meaning.
도 3은 Qqualmin에 따라 셀 선택 범위가 변화하는 것을 나타낸다.3 shows that the cell selection range changes according to Q qualmin .
도 3을 참조하면, 동일한 RSRQ를 가지는 지점이 원형으로 표현되는 것을 가정하나 이는 설명의 편의를 위한 것이다. 실제 RSRQ 측정시 동일한 RSRQ를 가지는 지점은 원형이 아닐 수도 있다. 도 3에서 Qqualmin=A인 지점과 Qqualmin=B인 지점이 표시되며, A>B이다. Qqualmin을 B와 같이 상대적으로 작은 값으로 설정하면, 단말이 보다 작은 RSRQ에 대응되는 품질을 측정하였더라도 셀 선택 기준을 만족할 수 있다. 따라서 단말이 셀 선택을 수행할 수 있는 범위가 넓어질 수 있다. 반면, Qqualmin을 A와 같이 상대적으로 큰 값으로 설정하면, 단말이 보다 큰 RSRQ에 대응되는 품질을 측정할 때 비로소 셀 선택 기준을 만족할 수 있다. 따라서 단말이 셀 선택을 수행할 수 있는 범위가 좁아질 수 있다. 기지국 공급자나 사업자의 입장에서 Qqualmin을 너무 크게 설정하면 셀의 크기가 줄어드는 효과가 있다. 또한, Qqualmin을 너무 작게 하면 실제 품질에 비해서 너무 넓은 영역에서 셀 선택 또는 셀 재선택을 수행할 가능성이 있고, 이에 따라 실제 캠프 온 또는 연결이 제대로 수행되지 않아 서비스의 질이 저하될 수 있다. 따라서 적절한 Qqualmin을 설정하여 이를 단말에 알려주는 것이 중요하다.Referring to FIG. 3, it is assumed that points having the same RSRQ are represented in a circle, but this is for convenience of description. In actual RSRQ measurement, a point having the same RSRQ may not be circular. In FIG. 3, a point at Q qualmin = A and a point at Q qualmin = B are indicated, where A> B. If Q qualmin is set to a relatively small value, such as B, even if the UE measures quality corresponding to a smaller RSRQ, the cell selection criterion may be satisfied. Therefore, the range in which the UE can perform cell selection can be widened. On the other hand, if Q qualmin is set to a relatively large value such as A, the terminal may satisfy the cell selection criteria only when measuring the quality corresponding to the larger RSRQ. Therefore, the range in which the UE can perform cell selection can be narrowed. If the Q qualmin is set too large for the base station provider or operator, the size of the cell is reduced. In addition, if the Q qualmin is made too small, there is a possibility that cell selection or cell reselection is performed in an area that is too wide compared to the actual quality. Accordingly, the quality of service may be degraded because actual camp on or connection is not properly performed. Therefore, it is important to set the appropriate Q qualmin to inform the terminal.
수학식 1의 셀 선택 기준은 주로 단말이 셀을 선택하는 경우에 사용하는 기준이 되는 값으로, 기준값은 0으로 볼 수 있다. 단말은 Srxlev 및 Squal이 기준값인 0보다 큰 경우에 해당 셀을 선택할 수 있다. 또는, 셀 재선택 혹은 측정 시에는 기준값이 0이 아닌 다른 값이 될 수도 있다. 단말은 Srxlev 및 Squal이 0이 아닌 기준값보다 큰 경우에 해당 셀을 재선택할 수 있다. 이러한 값들을 SIB3 또는 SIB5 등의 시스템 정보를 통해 기지국으로부터 수신될 수 있다. 셀 재선택을 위한 비교 방식 등은 후술하기로 한다.The cell selection criterion of Equation 1 is a value that is mainly used when the terminal selects a cell, and the reference value may be regarded as zero. The UE may select a corresponding cell when Srxlev and Squal are greater than 0 which is a reference value. Alternatively, the reference value may be a value other than 0 when reselecting or measuring a cell. The UE may reselect a corresponding cell when Srxlev and Squal are greater than a non-zero reference value. These values may be received from the base station through system information such as SIB3 or SIB5. A comparison method for cell reselection will be described later.
한편, 단말은 수학식 1 및 표 1에서 사용되는 각종 파라미터들을 SIB(system information block) 3, SIB 5 등의 시스템 정보를 통해 수신할 수 있다. 단말은 Qqualmin을 기반으로 계산한 Squal 및 시스템 정보를 통해 수신된 Squal과 관련된 기준값 또는 임계값(threshold) 등을 이용하여 셀 선택 또는 셀 재선택을 수행할 수 있다. 단말은 셀 선택 조건을 만족하는 셀 중에서 우선 순위 등을 고려하여 셀 선택 또는 셀 재선택을 수행할 수 있다.Meanwhile, the terminal may receive various parameters used in Equation 1 and Table 1 through system information such as system information block (SIB) 3 and SIB 5. The UE may perform cell selection or cell reselection by using a reference value or a threshold associated with the Squal received through the Squal calculated based on the Q qualmin and the system information. The UE may perform cell selection or cell reselection in consideration of priorities among cells satisfying the cell selection condition.
도 4는 동일 채널의 서빙 셀과 이웃 셀의 대역폭이 서로 다른 경우를 나타낸다.4 illustrates a case where bandwidths of a serving cell and a neighbor cell of the same channel are different from each other.
도 4의 (a)를 참조하면, 서빙 셀 E-UTRAN의 대역폭은 10 MHz, 이웃 셀 E-UTRAN의 대역폭은 5 MHz이다. 이웃 셀이 사용하는 5 MHz의 제1 대역폭과 제2 대역폭은 서빙 셀의 대역폭 10 MHz에 포함된다. 이웃 셀의 대역폭 5 MHz 중 양쪽 사이드에 사용하지 못하는 대역을 고려하면 실제로 사용할 수 있는 제1 대역폭 및 제2 대역폭은 각각 대략 4.5 MHz 정도로 줄어들 수 있다. 이때 이웃 셀의 제1 대역폭과 제2 대역폭 사이에 생기는 대역폭 갭은 5-(4.5+4.5)/2=0.5 MHz으로 계산될 수 있다. 만약, 서빙 셀 E-UTRAN의 대역폭이 20 MHz, 이웃 셀 E-UTRAN의 대역폭이 10 MHz인 경우, 이웃 셀의 제1 대역폭과 제2 대역폭 사이에 생기는 대역폭 갭은 10-(9+9)/2=2 MHz으로 계산될 수 있다. 이는 RSRQ 측정의 기준이 되는 6 RB(=1.08 MHz)보다 훨씬 큰 값이다.Referring to FIG. 4A, the bandwidth of the serving cell E-UTRAN is 10 MHz and the bandwidth of the neighbor cell E-UTRAN is 5 MHz. The first bandwidth and the second bandwidth of 5 MHz used by the neighbor cell are included in the 10 MHz bandwidth of the serving cell. Considering a band that is not available to both sides of the bandwidth of the neighboring cell 5 MHz, the first bandwidth and the second bandwidth that can be actually used may be reduced to about 4.5 MHz, respectively. In this case, the bandwidth gap occurring between the first bandwidth and the second bandwidth of the neighbor cell may be calculated as 5- (4.5 + 4.5) /2=0.5 MHz. If the bandwidth of the serving cell E-UTRAN is 20 MHz and the bandwidth of the neighbor cell E-UTRAN is 10 MHz, the bandwidth gap that occurs between the first bandwidth and the second bandwidth of the neighbor cell is 10- (9 + 9) / It can be calculated as 2 = 2 MHz. This is much larger than 6 RB (= 1.08 MHz), which is the basis of RSRQ measurement.
도 4의 (b)를 참조하면, 서빙 셀 E-UTRAN의 대역폭은 10 MHz, 이웃 셀 UTRAN의 대역폭은 3.84 MHz이다. 이웃 셀이 사용하는 3.84 MHz의 제1 대역폭과 제2 대역폭은 서빙 셀의 대역폭 10 MHz에 포함된다. 이때 이웃 셀의 제1 대역폭과 제2 대역폭 사이에 생기는 대역폭 갭은 5-(3.84+3.84)/2=1.16 MHz으로 계산될 수 있다. 이 또한 6 RB보다 큰 값이다.Referring to FIG. 4B, the bandwidth of the serving cell E-UTRAN is 10 MHz and the bandwidth of the neighbor cell UTRAN is 3.84 MHz. The first bandwidth and the second bandwidth of 3.84 MHz used by neighboring cells are included in the 10 MHz bandwidth of the serving cell. In this case, the bandwidth gap occurring between the first bandwidth and the second bandwidth of the neighbor cell may be calculated as 5- (3.84 + 3.84) /2=1.16 MHz. This is also a value greater than 6 RB.
이와 같이 동일 채널의 서빙 셀과 이웃 셀의 대역폭이 서로 다른 경우 기존의 방법대로 6 RB에서 협대역 RSRQ를 측정하게 되면, 대역폭 갭에서 이웃 셀로부터의 간섭이 정확하게 수신되지 못한다. 즉, 대역폭 갭의 크기가 6 RB 이상인 경우 이웃 셀로부터의 간섭량이 실제 간섭량보다 적다고 판단하여 RSSI를 실제보다 적게 계산할 수 있고, 결과적으로 RSRQ는 실제보다 크게 계산될 수 있다. 있다. 이와 같이 계산된 RSRQ를 이용하여 아이들 모드의 단말이 셀 선택 또는 셀 재선택을 수행하는 경우, 셀 선택 또는 셀 재선택에 문제가 발생할 수 있다. 즉, 부정확하게 측정된 RSRQ에 의해서 필요한 경우보다 더 늦게 셀 재선택을 수행하게 되는 경우가 발생할 수 있다. As described above, when the bandwidths of the serving cell and the neighbor cell of the same channel are different from each other, if the narrowband RSRQ is measured at 6 RB according to the conventional method, interference from the neighbor cell may not be correctly received in the bandwidth gap. That is, when the size of the bandwidth gap is 6 RB or more, it is determined that the amount of interference from the neighboring cell is smaller than the actual amount of interference, and thus RSSI can be calculated less than the actual amount. As a result, the RSRQ can be calculated larger than the actual amount. have. When the UE in the idle mode performs cell selection or cell reselection using the calculated RSRQ, a problem may occur in cell selection or cell reselection. In other words, the cell reselection may occur later than necessary due to an incorrectly measured RSRQ.
이하, 본 발명의 일 실시예에 따라 아이들 모드의 단말이 RSRQ를 측정하고 측정된 RSRQ를 기반으로 셀 선택 품질 값을 결정할 때, 협대역 RSRQ를 기반으로 결정된 셀 선택 품질 값에 보정을 수행하거나, 광대역 RSRQ를 기반으로 셀 선택 품질 값을 결정하는 방법을 설명하도록 한다. 이하의 설명에서 본 발명의 일 실시예는 대역폭이 10 MHz 이상인 경우에 적용되거나, 또는 AllowedMeasBandwidth가 50 RB 또는 그 이상을 지시하는 경우에 적용될 수 있다.Hereinafter, when the UE in the idle mode measures the RSRQ and determines the cell selection quality value based on the measured RSRQ, the cell selection quality value determined based on the narrowband RSRQ is performed. A method of determining a cell selection quality value based on a wideband RSRQ will be described. In the following description, an embodiment of the present invention may be applied when the bandwidth is 10 MHz or more, or when the AllowedMeasBandwidth indicates 50 RB or more.
1) 먼저, 시스템 대역폭이 10 MHz 이상일 때 단말이 협대역 RSRQ를 측정하여 셀 선택 품질 값을 결정하는 경우, 협대역 RSRQ는 실제보다 적게 계산될 수 있다. 상술한 바와 같이 RSRQ는 N*RSRP/(E-UTRA 반송파 RSSI)로 정의된다. 이때 RSSI는 단말이 측정하는 모든 신호의 합에 해당하며, 이웃 셀로부터의 간섭 신호 역시 포함한다. 그러나 시스템 대역폭이 10 MHz 이상인 경우 6 RB를 기준으로 RSSI를 측정하면, 이웃 셀로부터의 간섭 신호량이 실제보다 적은 양으로 판단하여 RSSI가 작아지게 된다. 따라서, RSRQ는 실제보다 크게 계산될 수 있다. 따라서 이를 보정할 수 있는 값을 추가하여 셀 선택 품질 값을 결정할 수 있다. 수학식 2는 본 발명의 일 실시예에 따라 셀 선택 품질 값을 결정하는 수학식의 일 예를 나타낸다.1) First, when the UE determines the cell selection quality value by measuring the narrowband RSRQ when the system bandwidth is 10 MHz or more, the narrowband RSRQ may be less than the actual value. As described above, RSRQ is defined as N * RSRP / (E-UTRA carrier RSSI). At this time, the RSSI corresponds to the sum of all signals measured by the UE, and also includes interference signals from neighboring cells. However, when the RSSI is measured based on 6 RB when the system bandwidth is 10 MHz or more, the amount of the interference signal from the neighboring cell is determined to be smaller than the actual amount, thereby decreasing the RSSI. Therefore, RSRQ can be calculated to be larger than actual. Therefore, a cell selection quality value can be determined by adding a value capable of correcting this. Equation 2 shows an example of an equation for determining a cell selection quality value according to an embodiment of the present invention.
<수학식 2><Equation 2>
Squal = Qqualmeas - (Qqualmin + Qqualmingapoffset + Qqualminoffset)Squal = Q qualmeas- (Q qualmin + Q qualmingapoffset + Q qualminoffset )
수학식 2를 참조하면, 셀 선택 품질 값을 결정할 때 대역폭 갭을 고려한 오프셋인 Qqualmingapoffset이 추가된다. 즉, 오프셋 Qqualmingapoffset에 의해서 셀 선택 품질 값이 RSRQ만을 기반으로 결정될 때보다 작게 결정될 수 있다. 만약, allowedMeasBandwidth가 50 RB 또는 그 이상을 지시하는 경우에 Qqualmingapoffset를 고려하지 않고 RSRQ만을 고려하여 셀 선택 품질 값을 결정하면, 대역폭 갭 때문에 발생할 수 있는 측정 오류를 반영하지 못한 상태에서 셀 선택 품질 값을 계산하게 된다. 이를 위하여 셀 선택 품질 값을 결정할 때 RSRQ가 커지는 왜곡을 정정하기 위하여 일정 부분의 인가 값에 해당하는 Qqualmingapoffset을 추가적으로 이용할 수 있다. 이는 allowedMeasBandwidth가 50 RB 또는 그 이상을 지시함에도 불구하고 기존의 협대역 RSRQ를 측정하는 경우에 발생하는 문제를 해결하기 위함이다.Referring to Equation 2, Q qualmingapoffset, which is an offset considering a bandwidth gap, is added when determining a cell selection quality value. That is, the cell selection quality value may be determined smaller than when the cell selection quality value is determined based only on the RSRQ by the offset Q qualmingapoffset . If allowedMeasBandwidth indicates 50 RB or more, if the cell selection quality value is determined by considering only the RSRQ without considering the Q qualmingapoffset , the cell selection quality value does not reflect the measurement error that may occur due to the bandwidth gap. Will be calculated. To this end, in order to correct the distortion in which the RSRQ increases when determining the cell selection quality value, Q qualmingapoffset corresponding to a certain portion of the applied value may be additionally used. This is to solve the problem that occurs when the existing narrowband RSRQ is measured even though allowedMeasBandwidth indicates 50 RB or more.
2) 또는, 단말이 광대역 RSRQ를 측정하여 셀 선택 품질 값을 결정할 수 있다. 광대역 RSRQ 측정이 가능한 단말의 경우에, 단말이 50 RB 또는 그 이상의 시스템 대역폭을 가질 경우 광대역 RSRQ 측정이 가능하며, 광대역 RSRQ를 측정하는 경우에는 기존의 방식으로 Squal을 결정할 수 있다. 수학식 3은 본 발명의 일 실시예에 따라 셀 선택 품질 값을 결정하는 수학식의 또 다른 예를 나타낸다.2) Or, the UE can determine the cell selection quality value by measuring the wideband RSRQ. In the case of a terminal capable of measuring a wideband RSRQ, if the terminal has a system bandwidth of 50 RB or more, the wideband RSRQ can be measured. In the case of measuring the wideband RSRQ, the Squal can be determined by a conventional method. Equation 3 shows another example of the equation for determining the cell selection quality value according to an embodiment of the present invention.
<수학식 3><Equation 3>
Squal = Qqualmeas - (Qqualmin + Qqualminoffset) 및 광대역 RSRQ 측정Squal = Q qualmeas- (Q qualmin + Q qualminoffset ) and wideband RSRQ measurements
수학식 3에 의해서 광대역 RSRQ를 측정할 수 있다. 즉, 기존의 셀 선택 품질 값을 결정하는 수학식을 그대로 사용하되, 이를 광대역에 적용하여 셀 선택 품질 값을 결정할 수 있다. Equation 3 can be used to measure the wideband RSRQ. That is, the equation for determining the existing cell selection quality value may be used as it is, and the cell selection quality value may be determined by applying the same to the broadband.
수학식 4는 본 발명의 일 실시예에 따라 셀 선택 품질 값을 결정하는 수학식의 또 다른 예를 나타낸다.Equation 4 shows another example of the equation for determining the cell selection quality value according to an embodiment of the present invention.
<수학식 4><Equation 4>
Squal = Qqualmeas - (Qqualmin + Qqualmingapoffset + Qqualminoffset) 및 광대역 RSRQ 측정Squal = Q qualmeas- (Q qualmin + Q qualmingapoffset + Q qualminoffset ) and wideband RSRQ measurements
수학식 4에 의해서 광대역 RSRQ를 측정할 수 있다. 단, Qqualmingapoffset=0이다. By using Equation 4, the wideband RSRQ can be measured. Q qualmingapoffset = 0.
도 5는 본 발명의 일 실시예에 따른 시스템 정보 전송 방법의 일 실시예를 나타낸다.5 illustrates an embodiment of a system information transmission method according to an embodiment of the present invention.
도 5을 참조하면, 단계 S100에서 기지국은 단말로 광대역 RSRQ 측정 지시자를 전송한다. 단계 S110에서 단말은 광대역 RSRQ 측정 지시자를 기반으로 광대역 RSRQ를 측정한다.Referring to FIG. 5, in step S100, the base station transmits a wideband RSRQ measurement indicator to the terminal. In step S110, the UE measures the wideband RSRQ based on the wideband RSRQ measurement indicator.
기지국은 광대역 RSRQ 측정 지시자를 전송하여 단말에 광대역 RSRQ 측정이 가능한지 여부 및/또는 Qqualmingapoffset을 알려줄 수 있다. 상기 광대역 RSRQ 측정 지시자는 시스템 정보를 통해 브로드캐스트 될 수 있다.The base station may transmit a wideband RSRQ measurement indicator to inform the terminal whether wideband RSRQ measurement is possible and / or Q qualmingapoffset . The wideband RSRQ measurement indicator may be broadcast through system information.
표 2는 본 발명의 일 실시예에 따라 광대역 RSRQ 측정 지시자를 포함하는 SIB 1의 일 예를 나타낸다.Table 2 shows an example of SIB 1 including a wideband RSRQ measurement indicator according to an embodiment of the present invention.
표 2
-- ASN1STARTSystemInformationBlockType1 ::= SEQUENCE {…}[[widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL- - Cond WB-RSRQ]] CellSelectionInfo-v920 ::= SEQUENCE {q-QualMin-r9 Q-QualMin-r9,q-QualMinOffset-r9 INTEGER (1..8) OPTIONAL -- Need OP}CellSelectionInfo-v11 ::= SEQUENCE {q-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL -- Need OP}
TABLE 2
-ASN1STARTSystemInformationBlockType1 :: = SEQUENCE {… } [[widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL--Cond WB-RSRQ]] CellSelectionInfo-v920 :: = SEQUENCE {q-QualMin-r9 Q-QualMin-r9, q-QualMinOffset-r9 INTEGER (1..8) OPTIONAL-Need OP} CellSelectionInfo-v11 :: = SEQUENCE { q-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL-Need OP }
표 2를 참조하면, widebandRSRQmeas 필드가 광대역 RSRQ 측정 지시자를 지시한다. widebandRSRQmeas 필드는 광대역 RSRQ 측정 가능 여부를 지시할 수 있다. 즉, widebandRSRQmeas 필드의 값이 enable로 설정되어 있을 경우에 단말이 광대역 RSRQ를 측정할 수 있는 단말이라면, 단말은 광대역 RSRQ를 측정한다. widebandRSRQmeas 필드는 allowedMeasBandwidth가 50 RB 또는 그 이상을 지시하는 경우에만 존재할 수 있다. 또한, widebandRSRQmeas 필드 외에 q-QualminGapOffset 필드가 추가로 전송될 수 있다. q-QualminGapOffset 필드는 allowedMeasBandwidth가 50 RB 또는 그 이상을 지시하고 단말이 협대역 RSRQ를 측정하는 경우, 이에 따른 RSRQ 측정의 차이를 보상하기 위한 오프셋을 지시한다.Referring to Table 2, the widebandRSRQmeas field indicates a wideband RSRQ measurement indicator. The widebandRSRQmeas field may indicate whether wideband RSRQ measurement is possible. That is, if the terminal is capable of measuring the wideband RSRQ when the value of the widebandRSRQmeas field is set to enable, the terminal measures the wideband RSRQ. The widebandRSRQmeas field may exist only when allowedMeasBandwidth indicates 50 RB or more. In addition, the q-QualminGapOffset field may be transmitted in addition to the widebandRSRQmeas field. The q-QualminGapOffset field indicates an offset for compensating for the difference in RSRQ measurement when the allowedMeasBandwidth indicates 50 RB or more and the UE measures narrowband RSRQ.
한편, 시스템 정보를 통하여 광대역 RSRQ 측정 지시자를 전송하는 것은 이를 사용하지 않는 단말에게는 불필요할 수 있다. 따라서, 시스템 정보를 통하여 광대역 RSRQ 측정 지시자를 전송하는 대신, 기존의 연결 모드에서 광대역 RSRQ 측정을 수행할 수 있도록 허락 받은 단말이 아이들 모드에서도 광대역 RSRQ 측정을 수행할 수 있도록 결정될 수 있다. 이때 단말이 연결 모드에서 아이들 모드로 변경될 때, 단말은 해당 셀뿐만 아니라 그 동안 단말이 접속하여 사용하였던 셀에 대한 상황을 파악할 수 있다. 즉, 단말은 연결 모드에서 아이들 모드로 변경될 때 연결 모드로 접속하였던 셀에 대한 정보를 저장할 수 있다. 단말은 특정 셀의 재선택 등의 과정에서 기존에 광대역 RSRQ 측정을 허용했던 셀인지 여부를 파악할 수 있다. 따라서 연결 모드에서 광대역 RSRQ 측정을 허락 받은 셀에서, 단말은 아이들 모드에서도 셀 재선택 등을 위하여 광대역 RSRQ 측정을 수행할 수 있도록 결정될 수 있다.Meanwhile, transmitting the wideband RSRQ measurement indicator through the system information may be unnecessary for the terminal that does not use it. Therefore, instead of transmitting the wideband RSRQ measurement indicator through the system information, the terminal allowed to perform the wideband RSRQ measurement in the existing connection mode may be determined to perform the wideband RSRQ measurement even in the idle mode. At this time, when the terminal is changed from the connected mode to the idle mode, the terminal can grasp not only the corresponding cell but also the situation of the cell used by the terminal. That is, the terminal may store information about the cell connected in the connected mode when the change from the connected mode to the idle mode. The UE may determine whether the cell has previously allowed wideband RSRQ measurement in the process of reselection of a specific cell. Therefore, in a cell that allows the wideband RSRQ measurement in the connected mode, the UE may be determined to perform the wideband RSRQ measurement in the idle mode for cell reselection.
표 3은 본 발명의 일 실시예에 따라 광대역 RSRQ 측정 지시자를 포함하는 SIB 3의 일 예를 나타낸다.Table 3 shows an example of SIB 3 including a wideband RSRQ measurement indicator according to an embodiment of the present invention.
표 3
-- ASN1STARTSystemInformationBlockType3 ::= SEQUENCE {…intraFreqCellReselectionInfo SEQUENCE {q-RxLevMin Q-RxLevMin,p-Max P-Max OPTIONAL, -- Need OPs-IntraSearch ReselectionThreshold OPTIONAL, -- Need OPallowedMeasBandwidth AllowedMeasBandwidth OPTIONAL, -- Need OPpresenceAntennaPort1 PresenceAntennaPort1,neighCellConfig NeighCellConfig,t-ReselectionEUTRA T-Reselection,t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONALwidebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL -- Cond WB-RSRQ-- Need OP},...,lateNonCriticalExtension OCTET STRING OPTIONAL, -- Need OP[[s-IntraSearch-v920 SEQUENCE {s-IntraSearchP-r9 ReselectionThreshold,s-IntraSearchQ-r9 ReselectionThresholdQ-r9} OPTIONAL, -- Need OPs-NonIntraSearch-v920 SEQUENCE {s-NonIntraSearchP-r9 ReselectionThreshold,s-NonIntraSearchQ-r9 ReselectionThresholdQ-r9} OPTIONAL, -- Need OPq-QualMin-r9 Q-QualMin-r9 OPTIONAL, -- Need OPq-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL -- Need OPthreshServingLowQ-r9 ReselectionThresholdQ-r9 OPTIONAL -- Need OP]]}
TABLE 3
-ASN1STARTSystemInformationBlockType3 :: = SEQUENCE {… intraFreqCellReselectionInfo SEQUENCE {q-RxLevMin Q-RxLevMin, p-Max P-Max OPTIONAL,-Need OPs-IntraSearch ReselectionThreshold OPTIONAL,-Need OPallowedMeasBandwidth AllowedMeasBandwidth OPTIONAL,-Need OPpresenceAntennaPort1 PresenceAeighennaConfigPort1, NeighborSelectPort N, t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL-Cond WB-RSRQ -Need OP}, ..., lateNonCriticalExtension OCTET STRING OPTIONAL,-Need OP [[s-IntraSearch-v920 SEQUENCE {s -IntraSearchP-r9 ReselectionThreshold, s-IntraSearchQ-r9 ReselectionThresholdQ-r9} OPTIONAL,-Need OPs-NonIntraSearch-v920 SEQUENCE {s-NonIntraSearchP-r9 ReselectionThreshold, s-NonIntraSearchQ-r9 ReselectionThresholdQ, r9} OP Need-OP QualMin-r9 Q-QualMin-r9 OPTIONAL, -Need OP q-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL-Need OP threshServingLowQ-r9 ReselectionThresholdQ-r9 OPTIONAL-Need OP]]}
표 3을 참조하면, widebandRSRQmeas 필드가 광대역 RSRQ 측정 지시자를 지시한다. widebandRSRQmeas 필드는 광대역 RSRQ 측정 가능 여부를 지시할 수 있다. 즉, widebandRSRQmeas 필드의 값이 enable로 설정되어 있을 경우에 단말이 광대역 RSRQ를 측정할 수 있는 단말이라면, 단말은 광대역 RSRQ를 측정한다. widebandRSRQmeas 필드는 allowedMeasBandwidth가 50 RB 또는 그 이상을 지시하는 경우에만 존재할 수 있다. 또한, widebandRSRQmeas 필드 외에 q-QualminGapOffset 필드가 추가로 전송될 수 있다. q-QualminGapOffset 필드는 allowedMeasBandwidth가 50 RB 또는 그 이상을 지시하고 단말이 협대역 RSRQ를 측정하는 경우, 이에 따른 RSRQ 측정의 차이를 보상하기 위한 오프셋을 지시한다.Referring to Table 3, the widebandRSRQmeas field indicates a wideband RSRQ measurement indicator. The widebandRSRQmeas field may indicate whether wideband RSRQ measurement is possible. That is, if the terminal is capable of measuring the wideband RSRQ when the value of the widebandRSRQmeas field is set to enable, the terminal measures the wideband RSRQ. The widebandRSRQmeas field may exist only when allowedMeasBandwidth indicates 50 RB or more. In addition, the q-QualminGapOffset field may be transmitted in addition to the widebandRSRQmeas field. The q-QualminGapOffset field indicates an offset for compensating for the difference in RSRQ measurement when the allowedMeasBandwidth indicates 50 RB or more and the UE measures narrowband RSRQ.
표 4는 본 발명의 일 실시예에 따라 광대역 RSRQ 측정 지시자를 포함하는 SIB 5의 일 예를 나타낸다.Table 4 shows an example of SIB 5 including a wideband RSRQ measurement indicator according to an embodiment of the present invention.
표 4
-- ASN1STARTSystemInformationBlockType5 ::= SEQUENCE {interFreqCarrierFreqList InterFreqCarrierFreqList,...,lateNonCriticalExtension OCTET STRING OPTIONAL -- Need OP}InterFreqCarrierFreqList ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfoInterFreqCarrierFreqInfo ::= SEQUENCE {dl-CarrierFreq ARFCN-ValueEUTRA,q-RxLevMin Q-RxLevMin,p-Max P-Max OPTIONAL, -- Need OPt-ReselectionEUTRA T-Reselection,t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL, -- Need OPthreshX-High ReselectionThreshold,threshX-Low ReselectionThreshold,allowedMeasBandwidth AllowedMeasBandwidth,presenceAntennaPort1 PresenceAntennaPort1,cellReselectionPriority CellReselectionPriority OPTIONAL, -- Need OPneighCellConfig NeighCellConfig,q-OffsetFreq Q-OffsetRange DEFAULT dB0,interFreqNeighCellList InterFreqNeighCellList OPTIONAL, -- Need ORinterFreqBlackCellList InterFreqBlackCellList OPTIONAL, -- Need OR...,widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL -- Cond WB-RSRQ[[ q-QualMin-r9 Q-QualMin-r9 OPTIONAL, -- Need OPq-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL -- Need OP threshX-Q-r9 SEQUENCE {threshX-HighQ-r9 ReselectionThresholdQ-r9,threshX-LowQ-r9 ReselectionThresholdQ-r9} OPTIONAL -- Cond RSRQ]]}InterFreqNeighCellList ::= SEQUENCE (SIZE (1..maxCellInter)) OF InterFreqNeighCellInfoInterFreqNeighCellInfo ::= SEQUENCE {physCellId PhysCellId,q-OffsetCell Q-OffsetRange}InterFreqBlackCellList ::= SEQUENCE (SIZE (1..maxCellBlack)) OF PhysCellIdRange-- ASN1STOP
Table 4
-ASN1STARTSystemInformationBlockType5 :: = SEQUENCE {interFreqCarrierFreqList InterFreqCarrierFreqList, ..., lateNonCriticalExtension OCTET STRING OPTIONAL-Need OP} InterFreqCarrierFreqList :: = SEQUENCE (SIZE (1..maxFreqC) FarrierFrqInfo ValueEUTRA, q-RxLevMin Q-RxLevMin, p-Max P-Max OPTIONAL,-Need OPt-Reselection , presenceAntennaPort1 PresenceAntennaPort1, cellReselectionPriority CellReselectionPriority OPTIONAL, - Need OPneighCellConfig NeighCellConfig, q-OffsetFreq q-OffsetRange DEFAULT dB0, interFreqNeighCellList interFreqNeighCellList OPTIONAL, - Need ORinterFreqBlackCellList InterFreqBlackCellList OPTIONAL, - Need OR ..., widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL -Cond WB-RSRQ [[q-QualMin-r9 Q-QualMin-r9 OPT IONAL,-Need OP q-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL-Need OP threshX-Q-r9 SEQUENCE {threshX-HighQ-r9 ReselectionThresholdQ-r9, threshX-LowQ-r9 ReselectionThresholdQ-r9} OPTIONAL- Cond RSRQ]]} InterFreqNeighCellList :: = SEQUENCE (SIZE (1..maxCellInter)) OF InterFreqNeighCellInfoInterFreqNeighCellInfo :: = SEQUENCE {physCellId PhysCellId, q-OffsetCell Q-OffsetRange} InterFreqBlackCellList (=). U.C. OF PhysCellIdRange-- ASN1STOP
표 4를 참조하면, widebandRSRQmeas 필드가 광대역 RSRQ 측정 지시자를 지시한다. widebandRSRQmeas 필드는 광대역 RSRQ 측정 가능 여부를 지시할 수 있다. 즉, widebandRSRQmeas 필드의 값이 enable로 설정되어 있을 경우에 단말이 광대역 RSRQ를 측정할 수 있는 단말이라면, 단말은 광대역 RSRQ를 측정한다. widebandRSRQmeas 필드는 allowedMeasBandwidth가 50 RB 또는 그 이상을 지시하는 경우에만 존재할 수 있다. 또한, widebandRSRQmeas 필드 외에 q-QualminGapOffset 필드가 추가로 전송될 수 있다. q-QualminGapOffset 필드는 allowedMeasBandwidth가 50 RB 또는 그 이상을 지시하고 단말이 협대역 RSRQ를 측정하는 경우, 이에 따른 RSRQ 측정의 차이를 보상하기 위한 오프셋을 지시한다.Referring to Table 4, the widebandRSRQmeas field indicates a wideband RSRQ measurement indicator. The widebandRSRQmeas field may indicate whether wideband RSRQ measurement is possible. That is, if the terminal is capable of measuring the wideband RSRQ when the value of the widebandRSRQmeas field is set to enable, the terminal measures the wideband RSRQ. The widebandRSRQmeas field may exist only when allowedMeasBandwidth indicates 50 RB or more. In addition, the q-QualminGapOffset field may be transmitted in addition to the widebandRSRQmeas field. The q-QualminGapOffset field indicates an offset for compensating for the difference in RSRQ measurement when the allowedMeasBandwidth indicates 50 RB or more and the UE measures narrowband RSRQ.
한편, 단말은 셀 재선택을 위하여 Srxlev 및 Squal을 이용하여 이웃 셀들을 평가(evaluate)할 수 있는데, 단말은 불필요한 측정이 수행되는 것을 방지하기 위하여 다음과 같은 추가적인 조건을 설정할 수 있다. Meanwhile, the terminal may evaluate the neighbor cells using Srxlev and Squal for cell reselection, and the terminal may set the following additional conditions to prevent unnecessary measurement from being performed.
1) 먼저, 단말은 서빙 셀에서 srxlev>SIntraSearchP이고 Squal>SIntraSearchQ이면 주파수 내 측정(intra-frequency measurement)을 수행하지 않으며, 그렇지 않은 경우에는 주파수 내 측정을 수행한다.1) First, if the terminal is srxlev> S IntraSearchP and Squal> S IntraSearchQ , the terminal does not perform intra-frequency measurement. Otherwise, the terminal performs intra-frequency measurement.
2) 또한, 단말은 E-UTRAN 주파수 간(inter-frequency) 또는 RAT 간(inter-RAT)에 대해서는 서빙 셀의 우선 순위보다 이웃 셀의 우선 순위가 높을 경우에 측정을 수행한다. 또한, E-UTRAN 주파수 간 또는 RAT 간에 대해서 이웃 셀의 우선 순위가 서빙 셀의 우선 순위와 동일하거나 낮은 경우, 단말은 서빙 셀에서 Srxlev>SnonIntraSearchP이고 Squal>SnonIntraSearchQ인 때에는 E-UTRAN 주파수 간 또는 RAT 간에 대해서 측정을 수행하지 않으며, 그렇지 않은 경우에는 E-UTRAN 주파수 간 또는 RAT 간에 대해서 측정을 수행한다. 2) In addition, the UE performs the measurement when the priority of the neighboring cell is higher than the priority of the serving cell for E-UTRAN inter-frequency or inter-RAT. In addition, when the priority of the neighboring cell is equal to or lower than the priority of the serving cell between the E-UTRAN frequencies or between the RATs, the UE is between E-UTRAN frequencies or when Srxlev> S nonIntraSearchP and Squal> S nonIntraSearchQ in the serving cell. No measurements are made between RATs, otherwise measurements are taken between E-UTRAN frequencies or between RATs.
SIntraSearchQ 및 SnonIntraSearchQ는 단말이 결정하는 Squal에 대하여 트리거링 임계값(triggering threshold)로 사용될 수 있다. 즉, SIntraSearchQ는 주파수 내 측정을 위한 Squal 임계값을 지시한다. SnonIntraSearchQ는 E-UTRAN 주파수 간 측정 또는 RAT 간 측정을 위한 Squal 임계값을 지시한다. SIntraSearchQ 및 SnonIntraSearchQ는 SIB3 등의 시스템 정보를 통해 전송될 수 있다. 시스템 대역폭이 10 MHz 이상인 경우, 기존과 같이 협대역 측정을 수행하면 Squal이 왜곡되어 계산될 수 있으며, 이에 따라 정상적으로 셀 재선택을 수행하지 못할 가능성이 있다.S IntraSearchQ and S nonIntraSearchQ may be used as a triggering threshold for the Squal determined by the UE. That is, S IntraSearchQ indicates a Squal threshold for intra-frequency measurements. S nonIntraSearchQ indicates a Squal threshold for measurement between E-UTRAN frequencies or measurement between RATs. S IntraSearchQ and S nonIntraSearchQ may be transmitted through system information such as SIB3. If the system bandwidth is 10 MHz or more, when performing narrowband measurement as before, the Squal may be distorted and calculated, and thus there is a possibility that the cell reselection may not be performed normally.
또한, E-UTRAN 주파수 간 및 RAT 간 셀 재선택 기준이 설정될 수 있다. E-UTRAN 주파수 간 및 RAT 간 셀 재선택 기준은 단말이 더 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 서빙 셀의 최소 Squal 임계값을 지시하는 ThreshServing,LowQ에 의해서 달라질 수 있다. 즉, ThreshServing,LowQ는 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 수 있도록 허락할 수 있는 Squal의 임계값을 의미한다. ThreshServing,LowQ는 SIB 3을 통해서 전송될 수 있다.In addition, cell reselection criteria between E-UTRAN frequencies and between RATs may be set. Cell reselection criteria between E-UTRAN frequencies and inter-RATs may be changed by Thresh Serving, LowQ indicating a minimum squal threshold of a serving cell when the UE performs cell reselection at a lower priority frequency or RAT. have. That is, Thresh Serving, LowQ means a threshold value of Squal that can allow cell reselection to be performed at a frequency or RAT having a low priority. Thresh Serving, LowQ can be transmitted via SIB 3.
ThreshServing,LowQ가 존재하는 경우, 단말은 셀 재선택 기준을 만족하고 현재 서빙 셀에 캠프 온 한지 1초 이상 지나면 서빙 주파수의 우선 순위보다 높은 우선 순위를 가지는 E-UTRAN 주파수 또는 RAT 주파수로의 셀 재선택을 수행할 수 있다. 이때 더 높은 우선 순위를 가지는 셀(E-UTRAN 또는 UTRAN FDD RAT/주파수)이 시간 구간 TreselectionRAT 동안 Squal>ThreshX,HighQ을 만족하거나, 더 높은 우선 순위를 가지는 셀(UTRAN TDD RAT/GENRA/CDMA2000)이 시간 구간 TreselectionRAT 동안 Srxlev>ThreshX,highP을 만족하는 경우에 셀 재선택 기준이 충족될 수 있다. ThreshX,HighQ는 현재 서빙 주파수보다 더 높은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 해당 셀의 Squal 임계값을 지시한다. 즉, ThreshX,HighQ는 현재 서빙 셀과 비교되는 높은 우선 순위를 가지는 주파수 또는 RAT의 Squal의 임계값을 의미한다. 일정 시간 동안 ThreshX,HighQ를 넘으면 셀 재선택이 수행될 수 있다. ThreshX,HighQ는 SIB 5를 통해서 전송될 수 있다. TreselectionRAT은 단말이 셀 재선택을 위하여 각 셀을 평가해야 하는 최소 시간이다.If Thresh Serving, LowQ is present, the UE satisfies the cell reselection criterion, and if it is more than 1 second after camping on the current serving cell, the UE has a higher priority than the priority of the serving frequency. Reselection can be performed. In this case, a cell having a higher priority (E-UTRAN or UTRAN FDD RAT / frequency) satisfies Squal> Thresh X, HighQ during the time interval Treselection RAT , or has a higher priority cell (UTRAN TDD RAT / GENRA / CDMA2000). The cell reselection criterion may be satisfied when Srxlev> Thresh X, highP is satisfied during the time interval Treselection RAT . Thresh X, HighQ indicates a Squal threshold of the corresponding cell when cell reselection is performed with a frequency or RAT having a higher priority than the current serving frequency. That is, Thresh X, HighQ means a threshold value of a frequency or a Squal of the RAT having a high priority compared to the current serving cell. Cell reselection may be performed when Thresh X, HighQ is exceeded for a predetermined time. Thresh X, HighQ may be transmitted over SIB 5. Treselection RAT is the minimum time that the UE must evaluate each cell for cell reselection.
ThreshServing,LowQ가 존재하지 않는 경우, 단말은 셀 재선택 기준을 만족하고 현재 서빙 셀에 캠프 온 한지 1초 이상 지나면 서빙 주파수의 우선 순위보다 높은 우선 순위를 가지는 E-UTRAN 주파수 또는 RAT 주파수로의 셀 재선택을 수행할 수 있다. 이때 더 높은 우선 순위를 가지는 주파수 또는 RAT가 시간 구간 TreselectionRAT 동안 Srxlev>ThreshX,highP을 만족하는 경우에 셀 재선택 기준이 충족될 수 있다.If Thresh Serving, LowQ does not exist, the UE satisfies the cell reselection criterion and passes to the E-UTRAN frequency or the RAT frequency having a higher priority than the serving frequency after 1 second after camping in the current serving cell. Cell reselection may be performed. In this case, the cell reselection criterion may be satisfied when a frequency or RAT having a higher priority satisfies Srxlev> Thresh X, highP during the time period Treselection RAT .
또한, 동일한 우선 순위를 가지는 E-UTRAN 주파수에 대한 셀 재선택은 주파수 내 랭킹(ranking) 설정과 동일한 방식으로 수행될 수 있다.In addition, cell reselection for an E-UTRAN frequency having the same priority may be performed in the same manner as setting an intra-frequency ranking.
또한, ThreshServing,LowQ가 존재하는 경우, 단말은 셀 재선택 기준을 만족하고 현재 서빙 셀에 캠프 온 한지 1초 이상 지나면 서빙 주파수의 우선 순위보다 낮은 우선 순위를 가지는 E-UTRAN 주파수 또는 RAT 주파수로의 셀 재선택을 수행할 수 있다. 이때 시간 구간 TreselectionRAT 동안 서빙 셀은 Squal<ThreshServing,LowQ을 만족하고 낮은 우선 순위를 가지는 E-UTRAN 또는 UTRAN FDD RAT/주파수는 Squal>ThreshX,lowQ을 만족할 경우, 또는 시간 구간 TreselectionRAT 동안 서빙 셀은 Squal<ThreshServing,LowQ을 만족하고 낮은 우선 순위를 가지는 E-UTRAN 또는 UTRAN FDD RAT/주파수는 Srxlev>ThreshX,lowP을 만족할 경우에 셀 재선택 기준이 충족될 수 있다. ThreshX,lowQ는 현재 서빙 주파수보다 더 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 해당 셀의 Squal 임계값을 지시한다. 즉, ThreshX,lowQ는 현재 서빙 셀과 비교되는 낮은 우선 순위를 가지는 주파수 또는 RAT의 Squal의 임계값을 의미한다. 일정 시간 동안 ThreshX,lowQ를 넘으면 셀 재선택이 수행될 수 있다. ThreshX,lowQ는 SIB 5를 통해서 전송될 수 있다.In addition, when Thresh Serving, LowQ is present, the UE satisfies the cell reselection criterion and when the camper is present in the current serving cell for at least 1 second, the UE may return to the E-UTRAN frequency or the RAT frequency having a lower priority than the serving frequency. Cell reselection may be performed. At this time, if the serving cell satisfies Squal <Thresh Serving, LowQ and the low priority E-UTRAN or UTRAN FDD RAT / frequency satisfies Squal> Thresh X, lowQ during the time interval Treselection RAT , or the serving cell during the time interval Treselection RAT The cell reselection criterion may be satisfied when the cell satisfies Squal <Thresh Serving, LowQ and the E-UTRAN or UTRAN FDD RAT / frequency having a low priority satisfies Srxlev> Thresh X, lowP . Thresh X, lowQ indicates a Squal threshold of the corresponding cell when cell reselection is performed with a frequency or RAT having a lower priority than the current serving frequency. That is, Thresh X, lowQ means a threshold value of a frequency or a Squal of the RAT having a lower priority compared to the current serving cell. Cell reselection may be performed when Thresh X, lowQ is exceeded for a predetermined time. Thresh X, lowQ may be transmitted over SIB 5.
ThreshServing,LowQ가 존재하지 않는 경우, 단말은 셀 재선택 기준을 만족하고 현재 서빙 셀에 캠프 온 한지 1초 이상 지나면 서빙 주파수의 우선 순위보다 낮은 우선 순위를 가지는 E-UTRAN 주파수 또는 RAT 주파수로의 셀 재선택을 수행할 수 있다. 이때 시간 구간 TreselectionRAT 동안 서빙 셀은 Srxlev<ThreshServing,LowP을 만족하고 낮은 우선 순위를 가지는 E-UTRAN 또는 UTRAN FDD RAT/주파수는 Srxlev>ThreshX,lowP을 만족할 경우에 셀 재선택 기준이 충족될 수 있다.If Thresh Serving, LowQ is not present, the UE satisfies the cell reselection criterion and passes to the E-UTRAN frequency or the RAT frequency having a priority lower than the priority of the serving frequency after 1 second of camping in the current serving cell. Cell reselection may be performed. The time interval Treselection RAT serving cell for the Srxlev <Thresh Serving, satisfy LowP and low priority E-UTRAN or UTRAN FDD RAT / frequency having a rank Srxlev> Thresh X, be the case satisfied lowP the cell reselection criteria are met for Can be.
ThreshServing,LowQ, ThreshX,HighQ 및 ThreshX,LowQ는 앞에서 설명한 SIntraSearchQ와 SnonIntraSearchQ와 유사하게 단말이 계산한 Squal과 비교되는 값으로, 단말이 결정하는 Squal에 대하여 트리거링 임계값(triggering threshold)로 사용될 수 있다. 시스템 대역폭이 10 MHz 이상인 경우, 기존과 같이 협대역 측정을 수행하면 Squal이 왜곡되어 계산될 수 있으며, 이에 따라 정상적으로 셀 재선택을 수행하지 못할 가능성이 있다.Thresh Serving, LowQ , Thresh X, HighQ, and Thresh X, LowQ are similar values to S IntraSearchQ and S nonIntraSearchQ described above , and are compared with the Squal calculated by the UE, and the triggering threshold for the Squal determined by the UE Can be used as If the system bandwidth is 10 MHz or more, when performing narrowband measurement as before, the Squal may be distorted and calculated, and thus there is a possibility that the cell reselection may not be performed normally.
따라서, 본 발명의 일 실시예에 따라 시스템 대역폭 10 MHz 이상인 경우 앞에서 설명한 각 임계값 파라미터들에 오프셋을 적용하여 보정하거나, 광대역 시스템에 대응되는 새로운 임계값 파라미터들을 새롭게 정의하는 방법이 제안될 수 있다. Therefore, according to an embodiment of the present invention, a method of applying an offset to each of the threshold parameters described above when the system bandwidth is 10 MHz or more, or a method of newly defining new threshold parameters corresponding to a broadband system may be proposed. .
표 5는 본 발명의 일 실시예에 따라 광대역 RSRQ 측정 지시자 및 적어도 하나의 임계값 파라미터의 오프셋을 포함하는 SIB 3의 일 예를 나타낸다.Table 5 shows an example of SIB 3 including an offset of a wideband RSRQ measurement indicator and at least one threshold parameter according to an embodiment of the present invention.
표 5
-- ASN1STARTSystemInformationBlockType3 ::= SEQUENCE {…intraFreqCellReselectionInfo SEQUENCE {q-RxLevMin Q-RxLevMin,p-Max P-Max OPTIONAL, -- Need OPs-IntraSearch ReselectionThreshold OPTIONAL, -- Need OPallowedMeasBandwidth AllowedMeasBandwidth OPTIONAL, -- Need OPpresenceAntennaPort1 PresenceAntennaPort1,neighCellConfig NeighCellConfig,t-ReselectionEUTRA T-Reselection,t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL -- Cond WB-RSRQ-- Need OP},...,lateNonCriticalExtension OCTET STRING OPTIONAL, -- Need OP[[s-IntraSearch-v920 SEQUENCE {s-IntraSearchP-r9 ReselectionThreshold,s-IntraSearchQ-r9 ReselectionThresholdQ-r9s-IntraSearchQoffset-r11 ReselectionThresholdQ-r9} OPTIONAL, -- Need OPs-NonIntraSearch-v920 SEQUENCE {s-NonIntraSearchP-r9 ReselectionThreshold,s-NonIntraSearchQ-r9 ReselectionThresholdQ-r9s-NonIntraSearchQOffset-r11 ReselectionThresholdQ-r9} OPTIONAL, -- Need OPq-QualMin-r9 Q-QualMin-r9 OPTIONAL, -- Need OPq-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL -- Need OPthreshServingLowQ-r9 ReselectionThresholdQ-r9 OPTIONAL -- Need OPthreshServingLowQOffset-r11 ReselectionThresholdQ-r9 OPTIONAL -- Need OP]]}
Table 5
-ASN1STARTSystemInformationBlockType3 :: = SEQUENCE {… intraFreqCellReselectionInfo SEQUENCE {q-RxLevMin Q-RxLevMin, p-Max P-Max OPTIONAL,-Need OPs-IntraSearch ReselectionThreshold OPTIONAL,-Need OPallowedMeasBandwidth AllowedMeasBandwidth OPTIONAL,-Need OPpresenceAntennaPort1 PresenceAeighennaConfigPort1, NeighborSelectPort N, t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL-Cond WB-RSRQ -Need OP}, ..., lateNonCriticalExtension OCTET STRING OPTIONAL,-Need OP [[s-IntraSearch-v920 SEQUENCE {s -IntraSearchP-r9 ReselectionThreshold, s-IntraSearchQ-r9 ReselectionThresholdQ-r9 s-IntraSearchQoffset-r11 ReselectionThresholdQ-r9 } OPTIONAL,-Need OPs-NonIntraSearch-v920 SEQUENCE {s-NonIntraSearchP-r9 ReselectionThrestrar-N s-NonIntraSearchQOffset-r11 ReselectionThresholdQ-r9 } OPTIONAL,-Need OPq-QualMin-r9 Q-QualMin-r9 OPTIONAL, -Need OP q-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL-Nee d OP threshServingLowQ-r9 ReselectionThresholdQ-r9 OPTIONAL-Need OP threshServingLowQOffset-r11 ReselectionThresholdQ-r9 OPTIONAL-Need OP ]]}
표 5는 표 3에서 설명된 SIB 3에 s-IntraSearchQoffset 필드, s-nonIntraSearchQoffset 필드 및 threshServingLowQOffset 필드를 추가적으로 포함한 형태이다. s-IntraSearchQOffset 필드는 주파수 내 측정을 위한 Squal 임계값인 SIntraSearchQ에 적용되는 오프셋을 지시한다. 즉, s-IntraSearchQOffset 필드는 시스템 대역폭이 10 MHz 이상인 경우에 sIntraSearchQ에 대하여 발생할 수 있는 Squal 오류를 고려한 오프셋이다. s-IntraSearchQOffset 필드는 시스템 대역폭이 10 MHz인 경우에 적용될 수 있으며, 광대역 RSRQ를 측정하는 단말은 이를 사용하지 않을 수 있다. s-nonIntraSearchQOffset 필드는 E-UTRAN 주파수 간 측정 또는 RAT 간 측정을 위한 Squal 임계값인 SnonIntraSearchQ에 적용되는 오프셋을 지시한다. 즉, s-nonIntraSearchQOffset 필드는 시스템 대역폭이 10 MHz 이상인 경우에 snonIntraSearchQ에 대하여 발생할 수 있는 Squal 오류를 고려한 오프셋이다. s-nonIntraSearchQOffset 필드는 시스템 대역폭이 10 MHz인 경우에 적용될 수 있으며, 광대역 RSRQ를 측정하는 단말은 이를 사용하지 않을 수 있다. threshServingLowQOffset 필드는 단말이 더 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 서빙 셀의 최소 Squal 임계값을 지시하는 ThreshServing,LowQ에 적용되는 오프셋을 지시한다. 즉, threshServingLowQOffset 필드는 시스템 대역폭이 10 MHz 이상인 경우에 ThreshServing,LowQ에 대하여 발생할 수 있는 Squal 오류를 고려한 오프셋이다. threshServingLowQOffset 필드는 시스템 대역폭이 10 MHz인 경우에 적용될 수 있으며, 광대역 RSRQ를 측정하는 단말은 이를 사용하지 않을 수 있다. 이와 같이 서빙 셀 또는 이웃 셀에 대한 임계값 파라미터에 적용되는 오프셋이 각각 지시될 수 있다.Table 5 includes the s-IntraSearchQoffset field, the s-nonIntraSearchQoffset field, and the threshServingLowQOffset field in addition to SIB 3 described in Table 3. The s-IntraSearchQOffset field indicates an offset applied to S IntraSearchQ , which is a Squal threshold for intra-frequency measurement. That is, the s-IntraSearchQOffset field is an offset in consideration of a squal error that may occur for s IntraSearchQ when the system bandwidth is 10 MHz or more. The s-IntraSearchQOffset field may be applied when the system bandwidth is 10 MHz, and the terminal measuring the wideband RSRQ may not use it. The s-nonIntraSearchQOffset field indicates an offset applied to S nonIntraSearchQ which is a Squal threshold for inter-E-UTRAN frequency measurement or inter-RAT measurement. That is, the s-nonIntraSearchQOffset field is an offset considering a squal error that may occur for s nonIntraSearchQ when the system bandwidth is 10 MHz or more. The s-nonIntraSearchQOffset field may be applied when the system bandwidth is 10 MHz, and the terminal measuring the wideband RSRQ may not use it. The threshServingLowQOffset field indicates an offset applied to Thresh Serving, LowQ indicating a minimum squal threshold of a serving cell when the UE performs cell reselection at a lower priority frequency or RAT. That is, the threshServingLowQOffset field is an offset considering a squal error that may occur for Thresh Serving, LowQ when the system bandwidth is 10 MHz or more. The threshServingLowQOffset field may be applied when the system bandwidth is 10 MHz, and the UE measuring the wideband RSRQ may not use it. As such, an offset applied to a threshold parameter for a serving cell or a neighbor cell may be indicated.
표 6은 본 발명의 일 실시예에 따라 광대역 RSRQ 측정 지시자 및 적어도 하나의 임계값 파라미터의 오프셋을 포함하는 SIB 5의 일 예를 나타낸다.Table 6 shows an example of SIB 5 including an offset of a wideband RSRQ measurement indicator and at least one threshold parameter according to an embodiment of the present invention.
표 6
-- ASN1STARTSystemInformationBlockType5 ::= SEQUENCE {interFreqCarrierFreqList InterFreqCarrierFreqList,...,lateNonCriticalExtension OCTET STRING OPTIONAL -- Need OP}InterFreqCarrierFreqList ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfoInterFreqCarrierFreqInfo ::= SEQUENCE {dl-CarrierFreq ARFCN-ValueEUTRA,q-RxLevMin Q-RxLevMin,p-Max P-Max OPTIONAL, -- Need OPt-ReselectionEUTRA T-Reselection,t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL, -- Need OPthreshX-High ReselectionThreshold,threshX-Low ReselectionThreshold,allowedMeasBandwidth AllowedMeasBandwidth,presenceAntennaPort1 PresenceAntennaPort1,cellReselectionPriority CellReselectionPriority OPTIONAL, -- Need OPneighCellConfig NeighCellConfig,q-OffsetFreq Q-OffsetRange DEFAULT dB0,interFreqNeighCellList InterFreqNeighCellList OPTIONAL, -- Need ORinterFreqBlackCellList InterFreqBlackCellList OPTIONAL, -- Need OR...,widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL -- Cond WB-RSRQ[[ q-QualMin-r9 Q-QualMin-r9 OPTIONAL, -- Need OPq-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL -- Need OPthreshX-Q-r9 SEQUENCE {threshX-HighQ-r9 ReselectionThresholdQ-r9,threshX-HighQOffset-r11 ReselectionThresholdQ-r9,threshX-LowQ-r9 ReselectionThresholdQ-r9threshX-LowQOffset-r11 ReselectionThresholdQ-r9,} OPTIONAL -- Cond RSRQ]]}InterFreqNeighCellList ::= SEQUENCE (SIZE (1..maxCellInter)) OFInterFreqNeighCellInfoInterFreqNeighCellInfo ::= SEQUENCE {physCellId PhysCellId,q-OffsetCell Q-OffsetRange}InterFreqBlackCellList ::= SEQUENCE (SIZE (1..maxCellBlack)) OF PhysCellIdRange-- ASN1STOP
Table 6
-ASN1STARTSystemInformationBlockType5 :: = SEQUENCE {interFreqCarrierFreqList InterFreqCarrierFreqList, ..., lateNonCriticalExtension OCTET STRING OPTIONAL-Need OP} InterFreqCarrierFreqList :: = SEQUENCE (SIZE (1..maxFreqC) FarrierFrqInfo ValueEUTRA, q-RxLevMin Q-RxLevMin, p-Max P-Max OPTIONAL,-Need OPt-Reselection , presenceAntennaPort1 presenceAntennaPort1, cellReselectionPriority cellReselectionPriority OPTIONAL, - Need OPneighCellConfig NeighCellConfig, q-OffsetFreq q-OffsetRange DEFAULT dB0, interFreqNeighCellList InterFreqNeighCellList OPTIONAL, - Need ORinterFreqBlackCellList InterFreqBlackCellList OPTIONAL, - Need OR ..., widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL -Cond WB-RSRQ [[q-QualMin-r9 Q-QualMin-r9 OPT IONAL,-Need OP q-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL-Need OP threshX-Q-r9 SEQUENCE {threshX-HighQ-r9 ReselectionThresholdQ- r9, threshX-HighQOffset-r11 ReselectionThresholdQ-r9, threshX-Low -r9 ReselectionThresholdQ-r9 threshX-LowQOffset-r11 ReselectionThresholdQ-r9, } OPTIONAL-Cond RSRQ]]} InterFreqNeighCellList :: = SEQUENCE (SIZE (1..maxCellInter)) OFInterFreqNeighCellInfoInterFreqNeighCellInfoCellInfoPick -OffsetRange} InterFreqBlackCellList :: = SEQUENCE (SIZE (1..maxCellBlack)) OF PhysCellIdRange-- ASN1STOP
표 6은 표 4에서 설명된 SIB 5에 threshX-HighQOffset 필드 및 threshX-LowQOffset 필드를 추가적으로 포함한 형태이다. threshX-HighQOffset 필드는 현재 서빙 주파수보다 더 높은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 해당 셀의 Squal 임계값인 ThreshX,HighQ에 적용되는 오프셋을 지시한다. 즉, threshX-HighQOffset 필드는 시스템 대역폭이 10 MHz 이상인 경우에 ThreshX,HighQ에 대하여 발생할 수 있는 Squal 오류를 고려한 오프셋이다. threshX-HighQOffset 필드는 시스템 대역폭이 10 MHz인 경우에 적용될 수 있으며, 광대역 RSRQ를 측정하는 단말은 이를 사용하지 않을 수 있다. threshX-LowQOffset 필드는 현재 서빙 주파수보다 더 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 해당 셀의 Squal 임계값인 ThreshX,LowQ에 적용되는 오프셋을 지시한다. 즉, threshX-LowQOffset 필드는 시스템 대역폭이 10 MHz 이상인 경우에 ThreshX,LowQ에 대하여 발생할 수 있는 Squal 오류를 고려한 오프셋이다. threshX-LowQOffset 필드는 시스템 대역폭이 10 MHz인 경우에 적용될 수 있으며, 광대역 RSRQ를 측정하는 단말은 이를 사용하지 않을 수 있다. 이와 같이 서빙 셀 또는 이웃 셀에 대한 임계값 파라미터에 적용되는 오프셋이 각각 지시될 수 있다.Table 6 is a form including the threshX-HighQOffset field and the threshX-LowQOffset field in addition to SIB 5 described in Table 4. The threshX-HighQOffset field indicates an offset applied to Thresh X, HighQ , which is a Squal threshold of a corresponding cell when cell reselection is performed with a frequency or RAT having a higher priority than the current serving frequency. That is, the threshX-HighQOffset field is an offset considering a squal error that may occur for Thresh X and HighQ when the system bandwidth is 10 MHz or more. The threshX-HighQOffset field may be applied when the system bandwidth is 10 MHz, and the terminal measuring the wideband RSRQ may not use it. The threshX-LowQOffset field indicates an offset applied to Thresh X, LowQ , which is a Squal threshold of a corresponding cell when cell reselection is performed at a frequency or RAT having a lower priority than a current serving frequency. That is, the threshX-LowQOffset field is an offset considering Squal errors that may occur for Thresh X and LowQ when the system bandwidth is 10 MHz or more. The threshX-LowQOffset field may be applied when the system bandwidth is 10 MHz, and the terminal measuring the wideband RSRQ may not use it. As such, an offset applied to a threshold parameter for a serving cell or a neighbor cell may be indicated.
표 7은 본 발명의 일 실시예에 따라 광대역 RSRQ 측정 지시자 및 광대역 시스템에 대응되는 적어도 하나의 임계값 파라미터를 포함하는 SIB 3의 일 예를 나타낸다.Table 7 shows an example of SIB 3 including a wideband RSRQ measurement indicator and at least one threshold parameter corresponding to a wideband system according to an embodiment of the present invention.
표 7
-- ASN1STARTSystemInformationBlockType3 ::= SEQUENCE {…intraFreqCellReselectionInfo SEQUENCE {q-RxLevMin Q-RxLevMin,p-Max P-Max OPTIONAL, -- Need OPs-IntraSearch ReselectionThreshold OPTIONAL, -- Need OPallowedMeasBandwidth AllowedMeasBandwidth OPTIONAL, -- Need OPpresenceAntennaPort1 PresenceAntennaPort1,neighCellConfig NeighCellConfig,t-ReselectionEUTRA T-Reselection,t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONALwidebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL -- Cond WB-RSRQ-- Need OP},...,lateNonCriticalExtension OCTET STRING OPTIONAL, -- Need OP[[s-IntraSearch-v920 SEQUENCE {s-IntraSearchP-r9 ReselectionThreshold,s-IntraSearchQ-r9 ReselectionThresholdQ-r9s-IntraSearchQwb-r11 ReselectionThresholdQ-r11} OPTIONAL, -- Need OPs-NonIntraSearch-v920 SEQUENCE {s-NonIntraSearchP-r9 ReselectionThreshold,s-NonIntraSearchQ-r9 ReselectionThresholdQ-r9s-NonIntraSearchQwb-r11 ReselectionThresholdQ-r11} OPTIONAL, -- Need OPq-QualMin-r9 Q-QualMin-r9 OPTIONAL, -- Need OPq-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL -- Need OPthreshServingLowQ-r9 ReselectionThresholdQ-r9 OPTIONAL -- Need OPthreshServingLowQwb-r11 ReselectionThresholdQ-r11 OPTIONAL -- Need OP]]}
TABLE 7
-ASN1STARTSystemInformationBlockType3 :: = SEQUENCE {… intraFreqCellReselectionInfo SEQUENCE {q-RxLevMin Q-RxLevMin, p-Max P-Max OPTIONAL,-Need OPs-IntraSearch ReselectionThreshold OPTIONAL,-Need OPallowedMeasBandwidth AllowedMeasBandwidth OPTIONAL,-Need OPpresenceAntennaPort1 PresenceAeighennaConfigPort1, NeighborSelectPort N, t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL-Cond WB-RSRQ -Need OP}, ..., lateNonCriticalExtension OCTET STRING OPTIONAL,-Need OP [[s-IntraSearch-v920 SEQUENCE {s -IntraSearchP-r9 ReselectionThreshold, s-IntraSearchQ-r9 ReselectionThresholdQ-r9 s-IntraSearchQwb-r11 ReselectionThresholdQ-r11 } OPTIONAL,-Need OPs-NonIntraSearch-v920 SEQUENCE {s-NonIntraSearchP-r9 ReselectionThrestrar-N s-NonIntraSearchQwb-r11 ReselectionThresholdQ-r11 } OPTIONAL,-Need OPq-QualMin-r9 Q-QualMin-r9 OPTIONAL, -Need OP q-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL-Need OP t hreshServingLowQ-r9 ReselectionThresholdQ-r9 OPTIONAL-Need OP threshServingLowQwb-r11 ReselectionThresholdQ-r11 OPTIONAL-Need OP ]]}
표 7은 표 5에서 설명된 SIB 3에 s-IntraSearchQoffset 필드, s-nonIntraSearchQoffset 필드 및 threshServingLowQOffset 필드가 각각 s-IntraSearchQwb 필드, s-nonIntraSearchQwb 필드 및 threshServingLowQwb 필드로 대체된 것이다. s-IntraSearchQwb 필드는 시스템 대역폭이 10 MHz 이상인 경우 주파수 내 측정을 위한 Squal 임계값을 지시한다. 즉, s-IntraSearchQwb 필드는 광대역 RSRQ 측정을 수행하는 단말에 대해서 SIntraSearchQ를 대체할 수 있다. s-nonIntraSearchQwb 필드는 시스템 대역폭이 10 MHz 이상인 경우 E-UTRAN 주파수 간 측정 또는 RAT 간 측정을 위한 Squal 임계값을 지시한다. 즉, s-nonIntraSearchQwb 필드는 광대역 RSRQ 측정을 수행하는 단말에 대해서 SnonIntraSearchQ를 대체할 수 있다. threshServingLowQwb 필드는 시스템 대역폭이 10 MHz 이상인 경우 단말이 더 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 서빙 셀의 최소 Squal 임계값을 지시한다. 즉, threshServingLowQwb 필드는 광대역 RSRQ 측정을 수행하는 단말에 대해서 ThreshServing,LowQ을 대체할 수 있다. 이와 같이 광대역 시스템에 대응되며 새롭게 정의된 서빙 셀 또는 이웃 셀에 대한 임계값 파라미터가 각각 지시될 수 있다.Table 7 shows that in SIB 3 described in Table 5, the s-IntraSearchQoffset field, the s-nonIntraSearchQoffset field, and the threshServingLowQOffset field are replaced with the s-IntraSearchQwb field, the s-nonIntraSearchQwb field, and the threshServingLowQwb field, respectively. The s-IntraSearchQwb field indicates a Squal threshold for intra-frequency measurement when the system bandwidth is 10 MHz or more. That is, the s-IntraSearchQwb field may replace S IntraSearchQ for a terminal performing wideband RSRQ measurement. The s-nonIntraSearchQwb field indicates a Squal threshold for measuring between E-UTRAN frequencies or measuring between RATs when the system bandwidth is 10 MHz or more. That is, the s-nonIntraSearchQwb field may replace S nonIntraSearchQ for a terminal performing wideband RSRQ measurement. The threshServingLowQwb field indicates the minimum Squal threshold of the serving cell when the UE performs cell reselection at a lower priority frequency or RAT when the system bandwidth is 10 MHz or more. That is, the threshServingLowQwb field may replace Thresh Serving, LowQ for a UE performing wideband RSRQ measurement. As such, the threshold parameters corresponding to the broadband system and newly defined serving cells or neighbor cells may be indicated.
표 8은 본 발명의 일 실시예에 따라 광대역 RSRQ 측정 지시자 및 광대역 시스템에 대응되는 적어도 하나의 임계값 파라미터를 포함하는 SIB 5의 일 예를 나타낸다.Table 8 shows an example of SIB 5 including a wideband RSRQ measurement indicator and at least one threshold parameter corresponding to a wideband system according to an embodiment of the present invention.
표 8
-- ASN1STARTSystemInformationBlockType5 ::= SEQUENCE {interFreqCarrierFreqList InterFreqCarrierFreqList,...,lateNonCriticalExtension OCTET STRING OPTIONAL -- Need OP}InterFreqCarrierFreqList ::= SEQUENCE (SIZE (1..maxFreq)) OF InterFreqCarrierFreqInfoInterFreqCarrierFreqInfo ::= SEQUENCE {dl-CarrierFreq ARFCN-ValueEUTRA,q-RxLevMin Q-RxLevMin,p-Max P-Max OPTIONAL, -- Need OPt-ReselectionEUTRA T-Reselection,t-ReselectionEUTRA-SF SpeedStateScaleFactors OPTIONAL, -- Need OPthreshX-High ReselectionThreshold,threshX-Low ReselectionThreshold,allowedMeasBandwidth AllowedMeasBandwidth,presenceAntennaPort1 PresenceAntennaPort1,cellReselectionPriority CellReselectionPriority OPTIONAL, -- Need OPneighCellConfig NeighCellConfig,q-OffsetFreq Q-OffsetRange DEFAULT dB0,interFreqNeighCellList InterFreqNeighCellList OPTIONAL, -- Need ORinterFreqBlackCellList InterFreqBlackCellList OPTIONAL, -- Need OR...,widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL -- Cond WB-RSRQ[[ q-QualMin-r9 Q-QualMin-r9 OPTIONAL, -- Need OPq-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL -- Need OPthreshX-Q-r9 SEQUENCE {threshX-HighQ-r9 ReselectionThresholdQ-r9,threshX-HighQwb-r11 ReselectionThresholdQ-r11,threshX-LowQ-r9 ReselectionThresholdQ-r9threshX-LowQwb-r11 ReselectionThresholdQ-r11,} OPTIONAL -- Cond RSRQ]]}InterFreqNeighCellList ::= SEQUENCE (SIZE (1..maxCellInter)) OF InterFreqNeighCellInfoInterFreqNeighCellInfo ::= SEQUENCE {physCellId PhysCellId,q-OffsetCell Q-OffsetRange}InterFreqBlackCellList ::= SEQUENCE (SIZE (1..maxCellBlack)) OF PhysCellIdRange-- ASN1STOP
Table 8
-ASN1STARTSystemInformationBlockType5 :: = SEQUENCE {interFreqCarrierFreqList InterFreqCarrierFreqList, ..., lateNonCriticalExtension OCTET STRING OPTIONAL-Need OP} InterFreqCarrierFreqList :: = SEQUENCE (SIZE (1..maxFreqC) FarrierFrqInfo ValueEUTRA, q-RxLevMin Q-RxLevMin, p-Max P-Max OPTIONAL,-Need OPt-Reselection , presenceAntennaPort1 PresenceAntennaPort1, cellReselectionPriority CellReselectionPriority OPTIONAL, - Need OPneighCellConfig NeighCellConfig, q-OffsetFreq Q-OffsetRange DEFAULT dB0, interFreqNeighCellList interFreqNeighCellList OPTIONAL, - Need ORinterFreqBlackCellList InterFreqBlackCellList OPTIONAL, - Need OR ..., widebandRSRQMeas-r11 ENUMERATED {enabled} OPTIONAL -Cond WB-RSRQ [[q-QualMin-r9 Q-QualMin-r9 OPT IONAL,-Need OP q-QualMinGapOffset-r9 Q-QualMinGapOffset-r11, OPTIONAL-Need OP threshX-Q-r9 SEQUENCE {threshX-HighQ-r9 ReselectionThresholdQ- r9, threshX-HighQwb-r11 ReselectionThresholdQ-row , threshX-Low -r9 ReselectionThresholdQ-r9 threshX-LowQwb-r11 ReselectionThresholdQ-r11, } OPTIONAL-Cond RSRQ]]} InterFreqNeighCellList :: = SEQUENCE (SIZE (1..maxCellInter)) OF InterFreqNeighCellInfoInterFreq, NeighCellInfoCellInfoSelect = CellInfo Q-OffsetRange} InterFreqBlackCellList :: = SEQUENCE (SIZE (1..maxCellBlack)) OF PhysCellIdRange-- ASN1STOP
표 8은 표 6에서 설명된 SIB 5에 threshX-HighQOffset 필드 및 threshX-LowQOffset 필드가 각각 threshX-HighQwb 필드 및 threshX-LowQwb 필드로 대체된 것이다. threshX-HighQOffset 필드는 시스템 대역폭이 10 MHz 이상인 경우 현재 서빙 주파수보다 더 높은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 해당 셀의 Squal 임계값을 지시한다. 즉, threshX-HighQOffset 필드는 광대역 RSRQ 측정을 수행하는 단말에 대해서 ThreshX,HighQ를 대체할 수 있다. threshX-LowQOffset 필드는 시스템 대역폭이 10 MHz 이상인 경우 현재 서빙 주파수보다 더 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 해당 셀의 Squal 임계값을 지시한다. 즉, threshX-LowQOffset 필드는 광대역 RSRQ 측정을 수행하는 단말에 대해서 ThreshX,LowQ를 대체할 수 있다. 이와 같이 광대역 시스템에 대응되며 새롭게 정의된 서빙 셀 또는 이웃 셀에 대한 임계값 파라미터가 각각 지시될 수 있다.Table 8 shows that the threshX-HighQOffset field and threshX-LowQOffset field are replaced with the threshX-HighQwb field and threshX-LowQwb field, respectively, in SIB 5 described in Table 6. The threshX-HighQOffset field indicates the Squal threshold of the corresponding cell when cell reselection is performed at a frequency or RAT having a higher priority than the current serving frequency when the system bandwidth is 10 MHz or more. That is, the threshX-HighQOffset field may replace Thresh X and HighQ for the UE that performs wideband RSRQ measurement. The threshX-LowQOffset field indicates a Squal threshold of the corresponding cell when cell reselection is performed at a frequency or RAT having a lower priority than the current serving frequency when the system bandwidth is 10 MHz or more. That is, the threshX-LowQOffset field may replace Thresh X, LowQ for a UE performing wideband RSRQ measurement. As such, the threshold parameters corresponding to the broadband system and newly defined serving cells or neighbor cells may be indicated.
도 6은 본 발명의 일 실시예에 따른 제안된 셀 선택 품질 값 결정 방법의 일 예를 나타낸다.6 illustrates an example of a method for determining a cell selection quality value according to an embodiment of the present invention.
단계 S400에서 단말은 기지국으로부터 광대역 RSRQ 측정 지시자를 수신한다. 단계 S410에서 단말은 기지국으로부터 임계값 파라미터들에 적용되는 적어도 하나의 오프셋 또는 광대역 시스템에 대응되는 새롭게 정의된 적어도 하나의 임계값 파라미터를 수신한다. 단계 S420에서 단말은 상기 광대역 RSRQ 측정 지시자를 기반으로 RSRQ를 측정한다. 단계 S430에서 단말은 상기 측정된 RSRQ와 상기 적어도 하나의 오프셋 또는 상기 적어도 하나의 임계값 파라미터를 기반으로 셀 선택 품질 값을 결정한다.In step S400, the terminal receives a wideband RSRQ measurement indicator from the base station. In step S410, the terminal receives from the base station at least one threshold parameter corresponding to the at least one offset or broadband system applied to the threshold parameters. In step S420, the UE measures the RSRQ based on the wideband RSRQ measurement indicator. In step S430, the UE determines a cell selection quality value based on the measured RSRQ and the at least one offset or the at least one threshold parameter.
도 7은 본 발명의 실시예가 구현되는 무선 통신 시스템의 블록도이다. 7 is a block diagram of a wireless communication system in which an embodiment of the present invention is implemented.
기지국(800)은 프로세서(810; processor), 메모리(820; memory) 및 RF부(830; radio frequency unit)을 포함한다. 프로세서(810)는 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(810)에 의해 구현될 수 있다. 메모리(820)는 프로세서(810)와 연결되어, 프로세서(810)를 구동하기 위한 다양한 정보를 저장한다. RF부(830)는 프로세서(810)와 연결되어, 무선 신호를 전송 및/또는 수신한다.The base station 800 includes a processor 810, a memory 820, and an RF unit 830. Processor 810 implements the proposed functions, processes, and / or methods. Layers of the air interface protocol may be implemented by the processor 810. The memory 820 is connected to the processor 810 and stores various information for driving the processor 810. The RF unit 830 is connected to the processor 810 to transmit and / or receive a radio signal.
단말(900)은 프로세서(910), 메모리(920) 및 RF부(930)을 포함한다. 프로세서(910)는 본 발명의 실시예에 따른 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(910)에 의해 구현될 수 있다. 메모리(920)는 프로세서(910)와 연결되어, 프로세서(910)를 구동하기 위한 다양한 정보를 저장한다. RF부(930)는 프로세서(910)와 연결되어, 무선 신호를 전송 및/또는 수신한다.The terminal 900 includes a processor 910, a memory 920, and an RF unit 930. The processor 910 implements functions, processes and / or methods in accordance with an embodiment of the present invention. Layers of the air interface protocol may be implemented by the processor 910. The memory 920 is connected to the processor 910 and stores various information for driving the processor 910. The RF unit 930 is connected to the processor 910 to transmit and / or receive a radio signal.
프로세서(810, 910)은 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리(820, 920)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(830, 930)은 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(820, 920)에 저장되고, 프로세서(810, 910)에 의해 실행될 수 있다. 메모리(820, 920)는 프로세서(810, 910) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(810, 910)와 연결될 수 있다. Processors 810 and 910 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices. The memory 820, 920 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device. The RF unit 830 and 930 may include a baseband circuit for processing a radio signal. When the embodiment is implemented in software, the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function. The module may be stored in the memory 820, 920 and executed by the processor 810, 910. The memories 820 and 920 may be inside or outside the processors 810 and 910, and may be connected to the processors 810 and 910 by various well-known means.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (20)

  1. 무선 통신 시스템에서 단말에 의한 셀 선택 품질 값(cell selection quality value, Squal)을 결정하는 방법에 있어서,A method for determining a cell selection quality value (Squal) by a terminal in a wireless communication system,
    기지국으로부터 상기 단말이 광대역(wideband) RSRQ(reference signal received quality)를 측정할 수 있는지 여부를 지시하는 광대역 RSRQ 측정 지시자 및 대역폭 갭 오프셋을 수신하고,Receiving a wideband RSRQ measurement indicator and a bandwidth gap offset indicating whether the terminal can measure a wideband reference signal received quality (RSRQ) from a base station,
    상기 광대역 RSRQ 측정 지시자를 기반으로 RSRQ를 측정하고,Measure an RSRQ based on the wideband RSRQ measurement indicator;
    상기 측정된 RSRQ를 기반으로 상기 셀 선택 품질 값을 결정하는 것을 포함하는 방법.Determining the cell selection quality value based on the measured RSRQ.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 광대역 RSRQ 측정 지시자 및 대역폭 갭 오프셋은 시스템 정보를 통해 수신되는 것을 특징으로 하는 방법.Wherein the wideband RSRQ measurement indicator and bandwidth gap offset are received via system information.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 시스템 정보는 SIB(system information block) 1, SIB3 또는 SIB5 중 적어도 하나인 것을 특징으로 하는 방법.The system information is at least one of the system information block (SIB) 1, SIB3 or SIB5.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 광대역 RSRQ 측정 지시자가 상기 단말이 광대역 RSRQ를 측정할 수 있음을 지시하는 경우,When the wideband RSRQ measurement indicator indicates that the terminal can measure a wideband RSRQ,
    상기 측정된 RSRQ는 광대역 RSRQ이며,The measured RSRQ is a wideband RSRQ,
    상기 셀 선택 품질 값은 아래의 수학식에 의해 결정되는 것을 특징으로 하는 방법.The cell selection quality value is determined by the following equation.
    Squal = Qqualmeas - (Qqualmin + Qqualminoffset) Squal = Q qualmeas- (Q qualmin + Q qualminoffset )
    단, 상기 Squal은 상기 셀 선택 품질 값, 상기 Qqualmeas는 상기 광대역 RSRQ, 상기 Qqualmin은 셀에서의 최소 필요 품질 레벨 (dBm), 상기 Qqualminoffset은 상기 Squal에서 상기 Qqualmin에 대한 오프셋을 지시한다.Where Squal is the cell selection quality value, Q qualmeas is the wideband RSRQ, Q qualmin is the minimum required quality level (dBm) in the cell, and Q qualminoffset indicates an offset from the Squal to the Qqualmin.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 광대역 RSRQ 측정 지시자가 상기 단말이 광대역 RSRQ를 측정할 수 없음을 지시하는 경우,If the wideband RSRQ measurement indicator indicates that the terminal can not measure the wideband RSRQ,
    상기 측정된 RSRQ는 협대역(narrowband) RSRQ이며,The measured RSRQ is a narrowband RSRQ,
    상기 셀 선택 품질 값은 아래의 수학식에 의해 결정되는 것을 특징으로 하는 방법.The cell selection quality value is determined by the following equation.
    Squal = Qqualmeas - (Qqualmin + Qqualmingapoffset + Qqualminoffset)Squal = Q qualmeas- (Q qualmin + Q qualmingapoffset + Q qualminoffset )
    단, 상기 Squal은 상기 셀 선택 품질 값, 상기 Qqualmeas는 상기 광대역 RSRQ, 상기 Qqualmin은 셀에서의 최소 필요 품질 레벨 (dBm), 상기 Qqualmingapoffset은 상기 대역폭 갭 오프셋, 상기 Qqualminoffset은 상기 Squal에서 상기 Qqualmin에 대한 오프셋을 지시한다.Where Squal is the cell selection quality value, Q qualmeas is the wideband RSRQ, Q qualmin is the minimum required quality level in dBm of the cell, Q qualmingapoffset is the bandwidth gap offset, and Q qualminoffset is the Squal. It indicates an offset with respect to the Qqualmin.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 셀 선택 품질 값과 비교되는 임계값(threshold) 파라미터에 적용되는 적어도 하나의 오프셋을 상기 기지국으로부터 수신하는 것을 더 포함하는 방법.Receiving from the base station at least one offset applied to a threshold parameter compared to the cell selection quality value.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 적어도 하나의 오프셋은 주파수 내 측정(intra-frequency measurement)을 위한 Squal 임계값인 SIntraSearchQ에 적용되는 오프셋, E-UTRAN(evolved universal terrestrial radio access network) 주파수 간(inter-frequency) 측정 또는 RAT(radio access technology) 간 측정을 위한 Squal 임계값인 SnonIntraSearchQ에 적용되는 오프셋 및 상기 단말이 더 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 서빙 셀의 최소 Squal 임계값을 지시하는 ThreshServing,LowQ에 적용되는 오프셋 중 적어도 하나를 포함하는 방법.The at least one offset is an offset applied to S IntraSearchQ , which is a Squal threshold for intra-frequency measurement, an evolved universal terrestrial radio access network (E-UTRAN) inter-frequency measurement or RAT ( an offset applied to S nonIntraSearchQ , a Squal threshold for measurement between radio access technologies, and a Thresh indicating a minimum Squal threshold of a serving cell when the UE performs cell reselection with a lower priority frequency or RAT And at least one of an offset applied to Serving, LowQ .
  8. 제 6 항에 있어서,The method of claim 6,
    상기 적어도 하나의 오프셋은 현재 서빙 주파수보다 더 높은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 해당 셀의 Squal 임계값인 ThreshX,HighQ에 적용되는 오프셋 및 현재 서빙 주파수보다 더 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 해당 셀의 Squal 임계값인 ThreshX,LowQ에 적용되는 오프셋 중 적어도 하나를 포함하는 방법.The at least one offset is a lower priority than the current serving frequency and an offset applied to Thresh X, HighQ which is the Squal threshold of the cell when performing cell reselection with a frequency or RAT having a higher priority than the current serving frequency. And performing at least one of an offset applied to Thresh X, LowQ , which is a Squal threshold of the cell, when performing cell reselection with a frequency or RAT having a rank.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 셀 선택 품질 값과 비교되며 상기 시스템 대역폭이 10 MHz 이상인 무선 통신 시스템에 대응되는, 새롭게 정의된 적어도 하나의 임계값 파라미터를 상기 기지국으로부터 수신하는 것을 더 포함하는 방법.Receiving from the base station at least one newly defined threshold parameter compared to the cell selection quality value and corresponding to a wireless communication system having a system bandwidth of at least 10 MHz.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 적어도 하나의 임계값 파라미터는 주파수 내 측정을 위한 Squal 임계값, E-UTRAN 주파수 간 측정 또는 RAT 간 측정을 위한 Squal 임계값 및 상기 단말이 더 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 서빙 셀의 최소 Squal 임계값 중 적어도 하나를 포함하는 방법.The at least one threshold parameter includes a cell reselection using a squal threshold for intra-frequency measurements, a squal threshold for inter-EAT frequency measurements or inter-RAT measurements, and a frequency or RAT at which the UE has a lower priority. Performing at least one of a minimum Squal threshold of the serving cell.
  11. 제 9 항에 있어서,The method of claim 9,
    상기 적어도 하나의 임계값 파라미터는 현재 서빙 주파수보다 더 높은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 해당 셀의 Squal 임계값 및 현재 서빙 주파수보다 더 낮은 우선 순위를 가지는 주파수 또는 RAT로 셀 재선택을 수행할 때 해당 셀의 Squal 임계값 중 적어도 하나를 포함하는 방법.The at least one threshold parameter is a frequency or RAT having a lower priority than the Squal threshold and the current serving frequency of the corresponding cell when performing cell reselection at a frequency or RAT having a higher priority than the current serving frequency. And at least one of the Squal thresholds of the cells when performing cell reselection.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 셀 선택 품질 값이 셀 선택 기준(criteria)을 만족하는 경우, 이웃 셀(neighbor cell)로 셀 선택(cell selection) 또는 셀 재선택(cell reselection)을 수행하는 것을 더 포함하는 방법.And performing cell selection or cell reselection to a neighbor cell when the cell selection quality value satisfies a cell selection criterion.
  13. 무선 신호를 전송 또는 수신하는 RF(radio frequency)부; 및RF (radio frequency) unit for transmitting or receiving a radio signal; And
    상기 RF부와 연결되는 프로세서를 포함하되,Including a processor connected to the RF unit,
    상기 프로세서는,The processor,
    기지국으로부터 상기 단말이 광대역(wideband) RSRQ(reference signal received quality)를 측정할 수 있는지 여부를 지시하는 광대역 RSRQ 측정 지시자 및 대역폭 갭 오프셋을 수신하고,Receiving a wideband RSRQ measurement indicator and a bandwidth gap offset indicating whether the terminal can measure a wideband reference signal received quality (RSRQ) from a base station,
    상기 광대역 RSRQ 측정 지시자를 기반으로 RSRQ를 측정하고,Measure an RSRQ based on the wideband RSRQ measurement indicator;
    상기 측정된 RSRQ를 기반으로 셀 선택 품질 값(cell selection quality value)을 결정하도록 구성되는 단말.And configured to determine a cell selection quality value based on the measured RSRQ.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 광대역 RSRQ 측정 지시자 및 대역폭 갭 오프셋은 시스템 정보를 통해 수신되는 것을 특징으로 하는 단말.And the wideband RSRQ measurement indicator and bandwidth gap offset are received through system information.
  15. 제 14 항에 있어서,The method of claim 14,
    상기 시스템 정보는 SIB(system information block) 1, SIB3 또는 SIB5 중 적어도 하나인 것을 특징으로 하는 단말.The system information is at least one of the system information block (SIB) 1, SIB3 or SIB5.
  16. 무선 통신 시스템에서 기지국에 의한 셀 선택 품질 값(cell selection quality value, Squal)의 결정을 지원하는 방법에 있어서,A method for supporting determination of a cell selection quality value (Squal) by a base station in a wireless communication system,
    단말이 광대역(wideband) RSRQ(reference signal received quality)를 측정할 수 있는지 여부를 지시하는 광대역 RSRQ 측정 지시자 및 대역폭 갭 오프셋을 상기 단말로 전송하는 것을 포함하되,Transmitting a wideband RSRQ measurement indicator and a bandwidth gap offset indicating whether the terminal can measure a wideband reference signal received quality (RSRQ) to the terminal,
    상기 단말은, The terminal,
    상기 광대역 RSRQ 측정 지시자를 기반으로 RSRQ를 측정하고,Measure an RSRQ based on the wideband RSRQ measurement indicator;
    상기 측정된 RSRQ를 기반으로 상기 셀 선택 품질 값을 결정하는 것을 포함하는 방법.Determining the cell selection quality value based on the measured RSRQ.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 광대역 RSRQ 측정 지시자 및 대역폭 갭 오프셋은 시스템 정보를 통해 전송되는 것을 특징으로 하는 방법.Wherein the wideband RSRQ measurement indicator and bandwidth gap offset are transmitted via system information.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 시스템 정보는 SIB(system information block) 1, SIB3 또는 SIB5 중 적어도 하나인 것을 특징으로 하는 방법.The system information is at least one of the system information block (SIB) 1, SIB3 or SIB5.
  19. 제 16 항에 있어서,The method of claim 16,
    상기 광대역 RSRQ 측정 지시자가 상기 단말이 광대역 RSRQ를 측정할 수 있음을 지시하는 경우,When the wideband RSRQ measurement indicator indicates that the terminal can measure a wideband RSRQ,
    상기 측정된 RSRQ는 광대역 RSRQ이며,The measured RSRQ is a wideband RSRQ,
    상기 셀 선택 품질 값은 아래의 수학식에 의해 결정되는 것을 특징으로 하는 방법.The cell selection quality value is determined by the following equation.
    Squal = Qqualmeas - (Qqualmin + Qqualminoffset) Squal = Q qualmeas- (Q qualmin + Q qualminoffset )
    단, 상기 Squal은 상기 셀 선택 품질 값, 상기 Qqualmeas는 상기 광대역 RSRQ, 상기 Qqualmin은 셀에서의 최소 필요 품질 레벨 (dBm), ), 상기 Qqualminoffset은 상기 Squal에서 상기 Qqualmin에 대한 오프셋을 지시한다.However, the Squal is the offset for the Q qualmin in the cell selection quality value, the Q qualmeas is the broadband RSRQ, the Q qualmin is the minimum required quality level (dBm) of the cell), the Q qualminoffset is the Squal Instruct.
  20. 제 16 항에 있어서,The method of claim 16,
    상기 광대역 RSRQ 측정 지시자가 상기 단말이 광대역 RSRQ를 측정할 수 없음을 지시하는 경우,If the wideband RSRQ measurement indicator indicates that the terminal can not measure the wideband RSRQ,
    상기 측정된 RSRQ는 협대역(narrowband) RSRQ이며,The measured RSRQ is a narrowband RSRQ,
    상기 셀 선택 품질 값은 아래의 수학식에 의해 결정되는 것을 특징으로 하는 방법.The cell selection quality value is determined by the following equation.
    Squal = Qqualmeas - (Qqualmin + Qqualmingapoffset + Qqualminoffset)Squal = Q qualmeas- (Q qualmin + Q qualmingapoffset + Q qualminoffset )
    단, 상기 Squal은 상기 셀 선택 품질 값, 상기 Qqualmeas는 상기 광대역 RSRQ, 상기 Qqualmin은 셀에서의 최소 필요 품질 레벨 (dBm), 상기 Qqualmingapoffset은 상기 대역폭 갭 오프셋, 상기 Qqualminoffset은 상기 Squal에서 상기 Qqualmin에 대한 오프셋을 지시한다.Where Squal is the cell selection quality value, Q qualmeas is the wideband RSRQ, Q qualmin is the minimum required quality level in dBm of the cell, Q qualmingapoffset is the bandwidth gap offset, and Q qualminoffset is the Squal. It indicates an offset with respect to the Q qualmin .
PCT/KR2013/010848 2012-12-20 2013-11-27 Method and apparatus for determining cell selection quality value in wireless communication system WO2014098386A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120149905A KR20140080279A (en) 2012-12-20 2012-12-20 Method and apparatus for determining cell selection quality value in wireless communication system
KR10-2012-0149905 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014098386A1 true WO2014098386A1 (en) 2014-06-26

Family

ID=50978653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010848 WO2014098386A1 (en) 2012-12-20 2013-11-27 Method and apparatus for determining cell selection quality value in wireless communication system

Country Status (2)

Country Link
KR (1) KR20140080279A (en)
WO (1) WO2014098386A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190632A1 (en) * 2015-05-22 2016-12-01 엘지전자 주식회사 Method and device for reselecting cell having same priority
WO2018143727A1 (en) * 2017-02-02 2018-08-09 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in mobile communication system
CN109286948A (en) * 2017-07-21 2019-01-29 宏达国际电子股份有限公司 Handle the device and method of measuring configuration and return
CN114514769A (en) * 2019-10-02 2022-05-17 三星电子株式会社 Method and apparatus for performing Radio Resource Management (RRM) measurement in wireless communication system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102353202B1 (en) 2015-11-06 2022-01-19 삼성전자 주식회사 Method and apparatus for service enhancement in a communication system supporting public safety network service
WO2020071835A1 (en) 2018-10-05 2020-04-09 삼성전자 주식회사 Method and apparatus for transmitting and receiving data in wireless communication system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100036335A (en) * 2007-06-21 2010-04-07 인터디지탈 테크날러지 코포레이션 Handover related measurement reporting for e-utran
KR20120009913A (en) * 2010-07-22 2012-02-02 엘지에릭슨 주식회사 Apparatus and method for searching neighbor cells of femto cell and mobile telecommunication system for the same
KR20120033161A (en) * 2010-09-29 2012-04-06 엘지전자 주식회사 Method for selection antenna
KR20120093984A (en) * 2010-09-28 2012-08-23 지티이 코포레이션 Method and system for reporting extra measurement result

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100036335A (en) * 2007-06-21 2010-04-07 인터디지탈 테크날러지 코포레이션 Handover related measurement reporting for e-utran
KR20120009913A (en) * 2010-07-22 2012-02-02 엘지에릭슨 주식회사 Apparatus and method for searching neighbor cells of femto cell and mobile telecommunication system for the same
KR20120093984A (en) * 2010-09-28 2012-08-23 지티이 코포레이션 Method and system for reporting extra measurement result
KR20120033161A (en) * 2010-09-29 2012-04-06 엘지전자 주식회사 Method for selection antenna

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190632A1 (en) * 2015-05-22 2016-12-01 엘지전자 주식회사 Method and device for reselecting cell having same priority
US10200930B2 (en) 2015-05-22 2019-02-05 Lg Electronics Inc. Method and device for reselecting cell having same priority
WO2018143727A1 (en) * 2017-02-02 2018-08-09 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in mobile communication system
US11019544B2 (en) 2017-02-02 2021-05-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in mobile communication system
US11765632B2 (en) 2017-02-02 2023-09-19 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in mobile communication system
CN109286948A (en) * 2017-07-21 2019-01-29 宏达国际电子股份有限公司 Handle the device and method of measuring configuration and return
US11375390B2 (en) 2017-07-21 2022-06-28 Htc Corporation Device and method of handling a measurement configuration and a reporting
CN114514769A (en) * 2019-10-02 2022-05-17 三星电子株式会社 Method and apparatus for performing Radio Resource Management (RRM) measurement in wireless communication system
CN114514769B (en) * 2019-10-02 2024-04-12 三星电子株式会社 Method and apparatus for performing Radio Resource Management (RRM) measurements in a wireless communication system

Also Published As

Publication number Publication date
KR20140080279A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
US10123246B2 (en) Method for communicating in wireless communication system supporting multiple access network and apparatus supporting same
US9838953B2 (en) Method for steering traffic in wireless communication system and device using same
US8909228B2 (en) Apparatus and method for reporting measurement result in wireless communication system
WO2012134198A2 (en) Apparatus and method for controlling paging in heterogeneous wireless network system
US9961610B2 (en) Method for communicating in wireless communication system supporting multiple access network and apparatus supporting same
WO2016018012A1 (en) Method and apparatus for performing access control for wlan interworking in wireless communication system
WO2014021661A1 (en) Inter-frequency/inter-rat cell reselection method and apparatus of ue in lte mobile communication system
WO2011053083A2 (en) Method for detecting csg cells in wireless communication system and apparatus therefor
WO2013112014A1 (en) Method and apparatus for controlling dormant mode in wireless communication system
WO2015174799A1 (en) Method and apparatus for performing traffic steering for carrier aggregation and dual connectivity in wireless communication system
WO2014073940A1 (en) Method for reselecting cell in wireless communication system and apparatus supporting same
WO2010151016A2 (en) Method of performing measurement of terminal with applying cell type specific offset in wireless communication system
WO2014098532A1 (en) Method for communicating in wireless communication system supporting multiple access network and apparatus supporting same
WO2014137127A1 (en) Cell reselection method and user equipment therefor
WO2015084046A1 (en) Cell selection method and measurement method for cell reselection
WO2012021004A2 (en) Method and apparatus for reporting a logged measurement in a wireless communication system
WO2015137732A1 (en) Method and apparatus for updating andsf policy in wireless communication system
WO2011055958A2 (en) Method and apparatus for measuring a channel state when receiving system information on a neighboring cell in a wireless communication system
WO2014098531A1 (en) Method for moving in wireless communication system and apparatus supporting same
WO2014098386A1 (en) Method and apparatus for determining cell selection quality value in wireless communication system
WO2014098535A1 (en) Method for communicating in wireless communication system and apparatus supporting same
WO2014098504A1 (en) Method for communicating in wireless communication system supporting multiple access network and apparatus supporting same
US10404412B2 (en) Method for interworking performed by base station and base station using same
KR20090030907A (en) Methods of cell selection in mobile communication system
WO2017095131A1 (en) Method and apparatus for performing application category based traffic steering in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865169

Country of ref document: EP

Kind code of ref document: A1