WO2014098344A1 - Bioimplant and preparation method therefor - Google Patents

Bioimplant and preparation method therefor Download PDF

Info

Publication number
WO2014098344A1
WO2014098344A1 PCT/KR2013/007263 KR2013007263W WO2014098344A1 WO 2014098344 A1 WO2014098344 A1 WO 2014098344A1 KR 2013007263 W KR2013007263 W KR 2013007263W WO 2014098344 A1 WO2014098344 A1 WO 2014098344A1
Authority
WO
WIPO (PCT)
Prior art keywords
implant
coating layer
bio
porous coating
titanium
Prior art date
Application number
PCT/KR2013/007263
Other languages
French (fr)
Korean (ko)
Inventor
김성곤
이광복
Original Assignee
(주)오티스바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)오티스바이오텍 filed Critical (주)오티스바이오텍
Publication of WO2014098344A1 publication Critical patent/WO2014098344A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7032Screws or hooks with U-shaped head or back through which longitudinal rods pass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/086Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/864Pins or screws or threaded wires; nuts therefor hollow, e.g. with socket or cannulated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus

Definitions

  • the present invention relates to a biological implant used for medical purposes, and more particularly, after fixing the bio-implant to bone tissue in the living body to increase the binding strength of the bone tissue and the bio-implant at the time of regeneration of bone cells, the fixation strength of the bio-implant becomes high, Bioimplants and methods of manufacturing the same may shorten the period of adhesion and prevent side effects occurring in the human body and increase biocompatibility by not injecting fillers such as bone cement when fixing the bio-implants to bone tissues in vivo. It is about.
  • bio implants used for medical purposes are used to permanently implant spinal fixation implants, interspecies correction implants, artificial joints, etc., and use biocompatible materials that are highly stable to human biological tissues.
  • the bio implant used in this case is composed of a spinal fixation screw inserted into the upper and lower sides of the damaged spine and serving as a support, and a rod serving as a support connected through each spinal fixation screw. 1 and 2 will be described as an example of the prior art of the Republic of Korea Patent Publication No. 2005-0023111.
  • FIG. 1 is a perspective view showing a conventional spinal fixation screw
  • Figure 2 is a cross-sectional view of FIG.
  • a conventional spinal fixation screw includes a screw rod 10 fixed to each vertebral ring root vertically adjacent to a damaged part of the spine, with a head on top of the screw rod 10.
  • the portion 14 is integrally formed, the head portion 14 is formed with a rod seating groove 11 in which the rod is seated in the transverse direction, from the rod seating groove 11 of the head portion 14 to the screw rod (
  • the through part 21 penetrating to the end of the 10 is to be formed inside the screw rod (10).
  • the screw rod 10 is formed on the outer circumferential surface portion of the screw rod 10 so that the screw rod 10 can be easily inserted into the vertebral ring root, and a plurality of threads are formed between the screw thread 25 and the screw thread 25.
  • Through-hole 24 is formed, or through-hole 24 is also formed in the end of the screw rod 10.
  • the through hole 24 is connected to the through hole 21 formed in the screw rod 10, the through hole 24 and the through hole 21 are formed to communicate with each other.
  • the screw rod 10 of the spinal fixation screw is inserted into each vertebral ring root vertically adjacent to the damaged part of the spine using a tool.
  • the vertebral ring root is pressed against the outer peripheral surface portion of the inserted screw rod (10).
  • the filler 23 is injected through the filler injection portion 22 formed at the upper end of the through hole 21.
  • An object of the present invention is to increase the fixing strength of the bio-implant and shorten the bone adhesion period by fixing the bio-implant to the bone tissue in the living body to increase the binding force between the bone tissue and the bio-implant when regenerating the bone cells.
  • the purpose is to prevent side effects occurring in the human body and increase the biocompatibility by preventing the injection of a filler, such as a separate bone cement when fixing the bio-implant to the bone tissue in the living body.
  • an embodiment of the present invention is a bio-implant that is bonded to bone tissue or artificial joint in vivo, and is made of titanium or titanium alloy on the entire outer surface of the bio-implant or the outer surface of the coupling portion inserted into the bone tissue. It provides a bio-implant characterized in that the porous coating layer is formed.
  • the titanium or titanium alloy powder having a particle diameter of 50 ⁇ 300 ⁇ m on the entire outer surface of the bio-implant or the outer surface of the coupling portion inserted into the bone tissue It provides a method for producing a biological implant, characterized in that the plasma spray to form a porous coating layer.
  • FIG. 1 is a perspective view showing a conventional spinal fixation screw.
  • FIG. 2 is a cross-sectional view of FIG. 1.
  • Figure 3 is a photograph showing a living implant according to the present invention.
  • FIG. 4 is a photograph showing a cross section of the porous coating layer by enlarging a part of the biological implant according to the present invention.
  • FIG. 5 is a cross-sectional view schematically showing a biological implant according to the present invention.
  • Figure 3 is a photograph showing a bio-implant according to the present invention
  • Figure 4 is a photo showing a cross-sectional view of the porous coating layer by expanding a portion of the bio-implant according to the present invention
  • Figure 5 is a cross-sectional view schematically showing the bio-implant according to the present invention to be.
  • the bio-implant 100 is a bio-implant coupled to bone tissue or artificial joint in the living body, and is inserted into the entire outer circumferential surface of the bio-implant 100 or bone tissue.
  • a porous coating layer 100c made of titanium or a titanium alloy is formed on the outer circumferential surface of the coupling portion 100a.
  • the porous coating layer (100c) is distributed in a number of pores (100b) are formed as an empty space therein, the surface of the porous coating layer (100c) is not smooth and is formed like a rough embossed or uneven surface, the living body in bone tissue After fixing the implant 100, bone cells are regenerated and grown into the pores 100b of the biological implant 100 to bone bond.
  • the bonding force between the bio-implant 100 and bone tissue that is, the bone adhesion increases, thereby increasing the fixation strength of the bio-implant 100 and shortening the bone adhesion period.
  • the porous coating layer may include a coating layer of hydroxyapatite on the outermost circumference, and a coating layer of hydroxyapatite of a component similar to bone tissue is formed on the outer circumferential surface to shorten the bone adhesion period after the procedure. You can do it.
  • the thickness D of the porous coating layer 100c from the metal surface of the biological implant 100 is formed to be 50 to 150 ⁇ m, and the porosity of the porous coating layer 100c, that is, the total volume of the porous coating layer 100c In the pores (100b) occupy a ratio of 1 to 30%, the surface roughness of the porous coating layer is formed to 50 ⁇ 150 ⁇ m.
  • the thickness of the coating layer of hydroxyapatite may be formed to 0.01 ⁇ 1 ⁇ m.
  • the thickness D of the porous coating layer 100c is less than 50 ⁇ m, the amount of the pores 100b is very small and the surface roughness is too low.
  • the porosity of the bio-implant 100 is maintained while bone cells are regenerated. Bonding force is reduced with the coating layer (100c) will increase the bone adhesion period after the procedure.
  • a peeling phenomenon may occur due to a decrease in the bonding strength (bonding stress) of the porous coating layer 100c with the surface of the biological implant 100. It occurs and breaks easily during the procedure.
  • the porosity of the porous coating layer (100c) is less than 1%, bone cells regenerate while rapidly penetrating into the pores (100b) of the bio-implant 100, the binding force between the bone cells and the bio-implant (100) is reduced It will be significantly lower.
  • the porosity of the porous coating layer (100c) is more than 30%, the strength of the porous coating layer (100c) itself is significantly lowered so that the phenomenon is easily broken during the procedure, the peeling phenomenon that only partially remains in the porous coating layer (100c) occurs do.
  • the surface roughness is the maximum roughness (Rt) of the porous coating layer (100c) unit is ⁇ m
  • the bonding stress is the peel strength of the surface and the porous coating layer (100c) of the bio-implant 100
  • the unit is MPa
  • the porosity is the porous coating layer
  • Table 1 shows the results of testing three kinds of bio-implant specimens according to the thickness of the porous coating layer.
  • the porous coating layer 100c which requires optimization of porosity, surface roughness, and thickness, may be formed of titanium (Ti) or titanium alloys, and the outermost surface may be formed of hydroxyapatite.
  • the titanium alloy is titanium (Ti) to aluminum (Al), vanadium (V), oxygen (O), iron (Fe), carbon (C), hydrogen (H), nitrogen (N), copper (Cu), tin It is formed including (Sn).
  • each component which comprises a titanium alloy is formed as follows based on weight%.
  • the method of manufacturing a bio-implant 100 is the diameter of the particle 50 to 300 ⁇ m on the entire outer peripheral surface of the biological implant 100 or the outer peripheral surface of the coupling portion 100a inserted into the bone tissue Phosphorus titanium or titanium alloy powder is thermally sprayed to form a porous coating layer 100c.
  • Plasma spraying refers to spraying performed by supplying various spraying material powders (metals and ceramics) into a plasma arc.
  • the gas may be nitrogen + hydrogen, argon + helium, argon + hydrogen, and the like. Titanium alloy powder is used.
  • the porous coating layer may include a coating layer of plasma-sprayed hydroxide hydroxyapatite (Hydroxyapatite) powder on the outer circumferential surface, and may further shorten the bone adhesion period by including a coating layer of hydroxyapatite of a component similar to bone tissue. Will be.
  • Hydroxide hydroxyapatite Hydroxide hydroxyapatite
  • the thickness of the porous coating layer (100c) is formed of 50 ⁇ 150 ⁇ m
  • the thickness of the coating layer of hydroxyapatite (Hydroxyapatite) may be formed of 0.01 ⁇ 1 ⁇ m.
  • the porosity of the porous coating layer 100c is 1 to 30%, and the surface roughness is 50 to 150 ⁇ m.
  • the bone cells are regenerated and penetrated into the pores (100b) of the bio-implant (100) and the amount of adhesion to the bone cells, the bonding strength between the porous coating layer (100c) and the surface of the bio-implant (100)
  • the porous coating layer 100c itself can be formed in an optimal state.
  • the porous coating layer 100c formed by optimizing the porosity, surface roughness, bonding strength, and thickness described above is formed of titanium (Ti) or titanium alloys, and the outermost surface is formed of hydroxyapatite.
  • the titanium alloy is titanium (Ti) to aluminum (Al), vanadium (V), oxygen (O), iron (Fe), carbon (C), hydrogen (H), nitrogen (N) as described above ), Copper (Cu) and tin (Sn).
  • the component ratio of each component constituting the titanium alloy is 87.905 to 90.768 weight percent of titanium, 5.50 to 6.75 weight percent of aluminum (Al), 3.50 to 4.50 weight percent of vanadium (V), and oxygen ( O) is 0.1 to 0.2% by weight, iron (Fe) is 0.1 to 0.3% by weight, carbon (C) is 0.01 to 0.08% by weight, hydrogen (H) is 0.01 to 0.015% by weight, and nitrogen (N) is 0.01 to 0.05
  • copper (Cu) is formed from 0.01 to 0.1% by weight
  • tin (Sn) is formed from 0.01 to 0.1% by weight.

Abstract

The present invention relates to a bioimplant and a preparation method therefor. According to the present invention, the fixing strength of the bioimplant is increased and the time required for symphysis is decreased by increasing the binding force between osseous tissue and the bioimplant when osteocytes are regenerated after fixing the bioimplant to in vivo osseous tissue. In addition, a separate filler such as a bone cement is not injected when the bioimplant is fixed to in vivo osseous tissue, and thus side effects occurring in the human body are prevented and bioaffinity is increased.

Description

생체 임플란트 및 이의 제조방법Bio-implants and methods for preparing the same
본 발명은 의료용으로 사용되는 생체 임플란트에 관한 것으로서, 보다 상세하게는 생체 내의 뼈 조직에 생체 임플란트를 고정한 후 뼈 세포의 재생시 뼈 조직과 생체 임플란트와의 결합력을 높여 생체 임플란트의 고정 강도가 높아지고, 골유착 기간을 단축시키며 또한, 생체 내의 뼈 조직에 생체 임플란트의 고정시 별도의 골 시멘트와 같은 충진재를 주입하지 않게 되어 인체에 발생되는 부작용을 방지하고 생체 친화력을 높일 수 있는 생체 임플란트 및 이의 제조방법에 관한 것이다.The present invention relates to a biological implant used for medical purposes, and more particularly, after fixing the bio-implant to bone tissue in the living body to increase the binding strength of the bone tissue and the bio-implant at the time of regeneration of bone cells, the fixation strength of the bio-implant becomes high, Bioimplants and methods of manufacturing the same may shorten the period of adhesion and prevent side effects occurring in the human body and increase biocompatibility by not injecting fillers such as bone cement when fixing the bio-implants to bone tissues in vivo. It is about.
일반적으로 의료용으로 사용되는 생체 임플란트는 척추 고정 보형재, 종간 보정 보형재, 인공 관절 등을 영구적으로 이식시키기 위해 사용하는 것으로서, 인간의 생체조직에 대하여 매우 안정적인 생체 친화적인 재료를 사용하여야 한다.In general, bio implants used for medical purposes are used to permanently implant spinal fixation implants, interspecies correction implants, artificial joints, etc., and use biocompatible materials that are highly stable to human biological tissues.
또한, 부작용이나 기타 화학, 생화학적 반응성이 없어야 하고, 반복적인 하중 및 순간적인 압력의 부과에도 변형 및 파괴되지 않도록 기계적 강도가 매우 높아야 하며, 생체조직 특히, 뼈 조직과의 결합력이 매우 높아야 하는 의료용 기구이다.In addition, it must be free from side effects, other chemical and biochemical reactivity, and must have a very high mechanical strength so as not to be deformed and destroyed even under repeated loading and instantaneous pressure application, and have a very high binding force to living tissue, especially bone tissue. It is an appliance.
일례로, 척추가 골절되거나 척추의 일부가 파손 또는 손상된 환자의 경우 그 골절 또는 손상된 척추부위가 눌려지거나 압박되지 않도록 인접한 척추부위를 생체 임플란트를 사용하여 지지하는 수술을 하게 된다.For example, in the case of a fractured or damaged part of the spine or a damaged part of the spine, surgery is performed to support adjacent spinal areas using a bio implant so that the fracture or damaged spine is not pressed or compressed.
이 경우에 사용되는 생체 임플란트는 손상된 척추의 상하측에 삽입설치되어 고정대 역할을 하는 척추 고정 나사와 각각의 척추 고정 나사를 통해 연결되어 지지대 역할을 하는 로드 등으로 이루어져 있으며 이와 같은 생체 임플란트에 대해서는 다수의 선행기술들이 존재하는데, 도 1과 도 2는 대한민국 공개특허 2005-0023111를 선행기술의 일례로 설명하고자 한다.The bio implant used in this case is composed of a spinal fixation screw inserted into the upper and lower sides of the damaged spine and serving as a support, and a rod serving as a support connected through each spinal fixation screw. 1 and 2 will be described as an example of the prior art of the Republic of Korea Patent Publication No. 2005-0023111.
도 1은 종래의 척추 고정 나사를 나타내는 사시도이고, 도 2는 도 1의 단면도이다.1 is a perspective view showing a conventional spinal fixation screw, Figure 2 is a cross-sectional view of FIG.
이들 도면에 도시되어 있는 바와 같이, 종래의 척추 고정 나사는 척추의 손상된 부분에 상하로 인접한 각각의 척추뼈고리뿌리에 고정 설치되는 나사봉(10)을 포함하는데 나사봉(10)의 상부에는 헤드부(14)가 일체로 형성되며, 헤드부(14)는 로드가 안착되는 로드안착홈(11)이 횡방향으로 형성되고, 헤드부(14)의 로드안착홈(11)으로부터 상기 나사봉(10)의 끝단부로 관통하는 통공부(21)가 나사봉(10)의 내부에 형성되게 된다. As shown in these figures, a conventional spinal fixation screw includes a screw rod 10 fixed to each vertebral ring root vertically adjacent to a damaged part of the spine, with a head on top of the screw rod 10. The portion 14 is integrally formed, the head portion 14 is formed with a rod seating groove 11 in which the rod is seated in the transverse direction, from the rod seating groove 11 of the head portion 14 to the screw rod ( The through part 21 penetrating to the end of the 10 is to be formed inside the screw rod (10).
또한, 척추뼈고리뿌리에 나사봉(10)이 용이하게 삽입 고정되게 하기 위하여 나사봉(10)의 외주면부상에는 나사산(25)이 형성되어 있으며, 나사산(25)과 나사산(25) 사이에는 다수의 관통공(24)이 형성되어 있고, 또는 나사봉(10)의 끝단부에도 관통공(24)이 형성되어 있다. 뿐만 아니라, 관통공(24)은 나사봉(10)의 내부에 형성되어 있는 통공부(21)에 연결되어 있기 때문에 관통공(24)과 통공부(21)는 상호 연통되게 형성된다.In addition, the screw rod 10 is formed on the outer circumferential surface portion of the screw rod 10 so that the screw rod 10 can be easily inserted into the vertebral ring root, and a plurality of threads are formed between the screw thread 25 and the screw thread 25. Through-hole 24 is formed, or through-hole 24 is also formed in the end of the screw rod 10. In addition, since the through hole 24 is connected to the through hole 21 formed in the screw rod 10, the through hole 24 and the through hole 21 are formed to communicate with each other.
이와 같이 구성된 종래의 척추 고정 나사를 이용하여 척추의 손상된 부위를 치료하기 위하여, 척추의 손상된 부분에 상하로 인접한 각각의 척추뼈고리뿌리에 척추 고정 나사의 나사봉(10)을 공구를 이용하여 삽입 고정시키면, 삽입된 나사봉(10)의 외주면부를 척추뼈고리뿌리가 압착하게 된다.In order to treat the damaged area of the spine by using the conventional spinal fixation screw configured as described above, the screw rod 10 of the spinal fixation screw is inserted into each vertebral ring root vertically adjacent to the damaged part of the spine using a tool. When it is fixed, the vertebral ring root is pressed against the outer peripheral surface portion of the inserted screw rod (10).
이러한 상태에서, 통공부(21) 상단부에 형성된 충진재 주입부(22)를 통해 충진재(23)를 주입하게 된다.In this state, the filler 23 is injected through the filler injection portion 22 formed at the upper end of the through hole 21.
그러나, 이와 같은 종래의 척추 고정 나사는 다음과 같은 문제점이 있었다.However, such a conventional spinal fixation screw has the following problems.
첫째, 척추뼈에 척추 고정 나사를 고정한 후 뼈 조직과 척추 고정 나사와의 결합력이 약해 척추 고정 나사의 고정 강도가 낮아지는 문제점이 있었다.First, after fixing the vertebral fixation screw to the vertebrae, there is a problem in that the fixing strength of the vertebral fixation screw is low due to weak coupling force between the bone tissue and the fixation screw.
둘째, 척추 고정 나사와 뼈 조직과의 결합력을 높이기 위해 시멘트와 같은 충진재를 주입하는 경우에도 충진재가 척추 고정 나사 주위에 고르게 분포되지 않아 뼈 조직과의 결합력을 높이는 데에 한계점이 발생되는 문제점이 있었다.Second, even when a filler such as cement is injected to increase the binding force between the spinal fixation screw and the bone tissue, there is a problem in that the filler is not evenly distributed around the spinal fixation screw to increase the bonding force with the bone tissue. .
셋째, 척추 고정 나사와 뼈 조직과의 결합력을 높이기 위해 시멘트와 같은 충진재를 주입함으로써, 충진재의 화학적 성분으로 인해 인체에 부작용이 발생되고 생체 친화력이 낮아지는 문제점이 있었다.Third, by injecting a filler such as cement in order to increase the binding force between the spinal fixation screw and bone tissue, there is a problem that the side effects are caused to the human body due to the chemical composition of the filler and the biocompatibility is lowered.
본 발명은 생체 내의 뼈 조직에 생체 임플란트를 고정한 후 뼈 세포의 재생시 뼈 조직과 생체 임플란트와의 결합력을 높여 생체 임플란트의 고정 강도를 높이고 골유착 기간을 단축시키는 데 그 목적이 있다.An object of the present invention is to increase the fixing strength of the bio-implant and shorten the bone adhesion period by fixing the bio-implant to the bone tissue in the living body to increase the binding force between the bone tissue and the bio-implant when regenerating the bone cells.
또한, 생체 내의 뼈 조직에 생체 임플란트의 고정시 별도의 골 시멘트와 같은 충진재를 주입하지 않게 하여 인체에 발생되는 부작용을 방지하고 생체 친화력을 높이는 데 그 목적이 있다.In addition, the purpose is to prevent side effects occurring in the human body and increase the biocompatibility by preventing the injection of a filler, such as a separate bone cement when fixing the bio-implant to the bone tissue in the living body.
이러한 목적을 달성하기 위하여 본 발명의 일실시예는 생체 내의 뼈 조직 또는 인공 관절에 결합되는 생체 임플란트로서, 생체 임플란트의 외측면 전체 또는 뼈 조직에 삽입되는 결합부의 외측면에 티타늄 또는 티타늄 합금으로 된 다공성 코팅층이 형성된 것을 특징으로 하는 생체 임플란트를 제공한다.In order to achieve the above object, an embodiment of the present invention is a bio-implant that is bonded to bone tissue or artificial joint in vivo, and is made of titanium or titanium alloy on the entire outer surface of the bio-implant or the outer surface of the coupling portion inserted into the bone tissue. It provides a bio-implant characterized in that the porous coating layer is formed.
또한, 본 발명의 다른 일실시예는 생체 임플란트의 제조방법에 있어서, 생체 임플란트의 외측면 전체 또는 뼈 조직에 삽입되는 결합부의 외측면에 입자의 지름이 50 ~ 300 ㎛ 인 티타늄 또는 티타늄 합금 분말을 플라즈마 용사시켜 다공성 코팅층을 형성하는 것을 특징으로 하는 생체 임플란트의 제조방법을 제공한다.In addition, another embodiment of the present invention, in the method for manufacturing a bio-implant, the titanium or titanium alloy powder having a particle diameter of 50 ~ 300 ㎛ on the entire outer surface of the bio-implant or the outer surface of the coupling portion inserted into the bone tissue It provides a method for producing a biological implant, characterized in that the plasma spray to form a porous coating layer.
이상에서 설명한 바와 같이 본 발명에 의하면, 생체 내의 뼈 조직에 생체 임플란트를 고정한 후 뼈 세포의 재생시 뼈 조직과 생체 임플란트와의 결합력을 높여 생체 임플란트의 고정 강도가 높아지고, 골유착 기간을 단축시키는 효과가 있게 된다.As described above, according to the present invention, after fixing the bio-implant to the bone tissue in the living body to increase the binding strength between the bone tissue and the bio-implant at the time of regeneration of bone cells to increase the fixing strength of the bio-implant, shortening the bone adhesion period Will be.
또한, 생체 내의 뼈 조직에 생체 임플란트의 고정시 별도의 골 시멘트와 같은 충진재를 주입하지 않게 되어 인체에 발생되는 부작용을 방지하고 생체 친화력을 높이는 효과가 있게 된다.In addition, it is possible to prevent side effects occurring in the human body and increase biocompatibility by not injecting a filler such as a separate bone cement when fixing the bio-implant to bone tissue in the living body.
도 1은 종래의 척추 고정 나사를 나타내는 사시도이다.1 is a perspective view showing a conventional spinal fixation screw.
도 2는 도 1의 단면도이다.2 is a cross-sectional view of FIG. 1.
도 3은 본 발명에 의한 생체 임플란트를 나타내는 사진이다.Figure 3 is a photograph showing a living implant according to the present invention.
도 4는 본 발명에 의한 생체 임플란트의 일부를 확대시켜 다공성 코팅층의 단면을 나타낸 사진이다.4 is a photograph showing a cross section of the porous coating layer by enlarging a part of the biological implant according to the present invention.
도 5는 본 발명에 의한 생체 임플란트를 개략화 시켜 나타낸 단면도이다.5 is a cross-sectional view schematically showing a biological implant according to the present invention.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the component of this invention, terms, such as 1st, 2nd, A, B, (a), (b), can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected to or connected to that other component, but there may be another configuration between each component. It is to be understood that the elements may be "connected", "coupled" or "connected".
도 3은 본 발명에 의한 생체 임플란트를 나타내는 사진, 도 4는 본 발명에 의한 생체 임플란트의 일부를 확대시켜 다공성 코팅층의 단면을 나타낸 사진, 도 5는 본 발명에 의한 생체 임플란트를 개략화시켜 나타낸 단면도이다.Figure 3 is a photograph showing a bio-implant according to the present invention, Figure 4 is a photo showing a cross-sectional view of the porous coating layer by expanding a portion of the bio-implant according to the present invention, Figure 5 is a cross-sectional view schematically showing the bio-implant according to the present invention to be.
이들 도면에 도시된 바와 같이 본 발명의 일실시예에 의한 생체 임플란트(100)는, 생체 내의 뼈 조직 또는 인공 관절에 결합되는 생체 임플란트로서, 생체 임플란트(100)의 외주면 전체 또는 뼈 조직에 삽입되는 결합부(100a)의 외주면에 티타늄 또는 티타늄 합금으로 된 다공성 코팅층(100c)이 형성되어 있다.As shown in these drawings, the bio-implant 100 according to the embodiment of the present invention is a bio-implant coupled to bone tissue or artificial joint in the living body, and is inserted into the entire outer circumferential surface of the bio-implant 100 or bone tissue. On the outer circumferential surface of the coupling portion 100a, a porous coating layer 100c made of titanium or a titanium alloy is formed.
다공성 코팅층(100c)은 내부에 빈 공간으로 형성되는 수많은 기공(100b)들이 분포되어 있으며 다공성 코팅층(100c)의 표면은 매끄럽지 않고 거칠은 엠보 형상 또는 요철면처럼 형성되어 있어서, 생체 내의 뼈 조직에 생체 임플란트(100)를 고정한 후 뼈 세포가 재생하면서 생체 임플란트(100)의 기공(100b)들 내부로 성장하여 골유착하게 된다.The porous coating layer (100c) is distributed in a number of pores (100b) are formed as an empty space therein, the surface of the porous coating layer (100c) is not smooth and is formed like a rough embossed or uneven surface, the living body in bone tissue After fixing the implant 100, bone cells are regenerated and grown into the pores 100b of the biological implant 100 to bone bond.
따라서, 생체 임플란트(100)와 뼈 조직과의 결합력 즉, 골유착력이 높아지게 되어 생체 임플란트(100)의 고정 강도가 높아지며 골유착 기간을 단축시키게 되어 있다.Therefore, the bonding force between the bio-implant 100 and bone tissue, that is, the bone adhesion increases, thereby increasing the fixation strength of the bio-implant 100 and shortening the bone adhesion period.
또한, 다공성 코팅층은 최외주면에 수산화인회석(Hydroxyapatite)으로 된 코팅층을 포함할 수 있으며, 뼈 조직과 유사한 성분의 수산화인회석(Hydroxyapatite)으로 된 코팅층이 최외주면에 형성됨으로써 시술 후 골유착 기간을 보다 단축시킬 수 있게 된다.In addition, the porous coating layer may include a coating layer of hydroxyapatite on the outermost circumference, and a coating layer of hydroxyapatite of a component similar to bone tissue is formed on the outer circumferential surface to shorten the bone adhesion period after the procedure. You can do it.
생체 임플란트(100)의 금속 표면으로부터의 다공성 코팅층(100c)의 두께(D)는 50 ~ 150 ㎛ 로 형성되고, 다공성 코팅층(100c)의 다공률(porosity) 즉, 다공성 코팅층(100c)의 전체 부피에서 기공(100b)들이 차지하는 비율은 1 ~ 30 % 로 형성되며, 다공성 코팅층의 표면거칠기는 50 ~ 150 ㎛ 로 형성된다.The thickness D of the porous coating layer 100c from the metal surface of the biological implant 100 is formed to be 50 to 150 μm, and the porosity of the porous coating layer 100c, that is, the total volume of the porous coating layer 100c In the pores (100b) occupy a ratio of 1 to 30%, the surface roughness of the porous coating layer is formed to 50 ~ 150 ㎛.
여기서, 수산화인회석(Hydroxyapatite)으로 된 코팅층의 두께는 0.01 ~ 1 ㎛ 로 형성될 수 있다.Here, the thickness of the coating layer of hydroxyapatite (Hydroxyapatite) may be formed to 0.01 ~ 1 ㎛.
그리고, 다공성 코팅층(100c)의 두께(D)가 50 ㎛ 미만이 되면 기공(100b)이 형성되는 양이 매우 적어지고 표면거칠기도 너무 낮아지게 되어, 뼈 세포가 재생하면서 생체 임플란트(100)의 다공성 코팅층(100c)과 결합력이 떨어지게 되어 시술 후 골유착 기간이 늘어나게 된다.When the thickness D of the porous coating layer 100c is less than 50 μm, the amount of the pores 100b is very small and the surface roughness is too low. The porosity of the bio-implant 100 is maintained while bone cells are regenerated. Bonding force is reduced with the coating layer (100c) will increase the bone adhesion period after the procedure.
그리고, 생체 임플란트(100)의 다공성 코팅층(100c)의 두께(D)가 150 ㎛ 초과되면 다공성 코팅층(100c)이 생체 임플란트(100)의 표면과의 접합 강도(접합 응력) 저하로 인한 박리 현상이 발생되고 시술시 쉽게 부서지는 현상이 발생된다.In addition, when the thickness D of the porous coating layer 100c of the biological implant 100 exceeds 150 μm, a peeling phenomenon may occur due to a decrease in the bonding strength (bonding stress) of the porous coating layer 100c with the surface of the biological implant 100. It occurs and breaks easily during the procedure.
또한, 다공성 코팅층(100c)의 다공률이 1 % 미만이 되면 뼈 세포가 재생하면서 생체 임플란트(100)의 기공(100b)들로 스며드는 양이 급격히 줄어들어서 뼈세포와 생체 임플란트(100)와의 결합력이 현저히 낮아지게 된다. In addition, when the porosity of the porous coating layer (100c) is less than 1%, bone cells regenerate while rapidly penetrating into the pores (100b) of the bio-implant 100, the binding force between the bone cells and the bio-implant (100) is reduced It will be significantly lower.
또한, 다공성 코팅층(100c)의 다공률이 30 % 초과되면 다공성 코팅층(100c) 자체의 강도가 현저히 낮아져서 시술시 쉽게 부서지는 현상이 발생되어 다공성 코팅층(100c)이 부분적으로만 남게 되는 박리 현상이 발생된다.In addition, when the porosity of the porous coating layer (100c) is more than 30%, the strength of the porous coating layer (100c) itself is significantly lowered so that the phenomenon is easily broken during the procedure, the peeling phenomenon that only partially remains in the porous coating layer (100c) occurs do.
이러한 다공성 코팅층(100c)의 두께, 표면거칠기, 접합 강도(접합 응력), 다공률에 대한 시험 결과는 아래 표와 같다.Test results for the thickness, surface roughness, bonding strength (bonding stress), and porosity of the porous coating layer 100c are shown in the table below.
여기서, 표면거칠기는 다공성 코팅층(100c)의 최대거칠기(Rt)로 단위는 ㎛, 접합 응력은 생체 임플란트(100)의 표면과 다공성 코팅층(100c)의 박리 강도로 단위는 MPa, 다공률은 다공성 코팅층(100c)의 전체 부피에서 기공(100b)들이 차지하는 부피의 비율로 단위는 % 이며, 표 1은 다공성 코팅층의 두께에 따라 3종류의 생체 임플란트 시편을 시험한 결과이다.Here, the surface roughness is the maximum roughness (Rt) of the porous coating layer (100c) unit is μm, the bonding stress is the peel strength of the surface and the porous coating layer (100c) of the bio-implant 100, the unit is MPa, the porosity is the porous coating layer The percentage of the volume occupied by the pores (100b) in the total volume of (100c) is a unit, Table 1 shows the results of testing three kinds of bio-implant specimens according to the thickness of the porous coating layer.
표 1
시험 1 시험 2 시험 3
코팅층 두께, ㎛ 50 미만 50~150 150 초과
표면거칠기(Rt), ㎛ 50 미만 50~150 150 초과
접합 응력, MPa 35 초과 18~35 18 미만
다공률(Porosity), % 1 미만 1~30 10~30
Table 1
Test 1 Test 2 Test 3
Coating layer thickness, μm Less than 50 50-150 More than 150
Surface Roughness (Rt), μm Less than 50 50-150 More than 150
Joint stress, MPa Greater than 35 18-35 Less than 18
Porosity,% Less than 1 1-30 10-30
이와 같이 다공률과 표면거칠기, 두께의 최적화가 필요한 다공성 코팅층(100c)은 티타늄(Ti)으로 형성되거나, 티타늄 합금(Titanium Alloys)으로 형성되며 최외주면은 수산화인회석(Hydroxyapatite)으로 형성될 수 있는데, 여기서 티타늄 합금은 티타늄(Ti)에 알루미늄(Al), 바나듐(V), 산소(O), 철(Fe), 탄소(C), 수소(H), 질소(N), 구리(Cu), 주석(Sn)을 포함하여 형성된다.As such, the porous coating layer 100c, which requires optimization of porosity, surface roughness, and thickness, may be formed of titanium (Ti) or titanium alloys, and the outermost surface may be formed of hydroxyapatite. The titanium alloy is titanium (Ti) to aluminum (Al), vanadium (V), oxygen (O), iron (Fe), carbon (C), hydrogen (H), nitrogen (N), copper (Cu), tin It is formed including (Sn).
그리고, 티타늄 합금을 구성하는 각 성분의 성분비는 중량% 를 기준으로 아래와 같이 형성된다.And the component ratio of each component which comprises a titanium alloy is formed as follows based on weight%.
즉, 티타늄 87.905 ~ 90.768 중량%에, 알루미늄(Al)은 5.50 ~ 6.75 중량%, 바나듐(V)은 3.50 ~ 4.50 중량%, 산소(O)는 0.1 ~ 0.2 중량%, 철(Fe)은 0.1 ~ 0.3 중량%, 탄소(C)는 0.01 ~ 0.08 중량%, 수소(H)는 0.01 ~ 0.015 중량%, 질소(N)는 0.01 ~ 0.05 중량%, 구리(Cu)는 0.01 ~ 0.1 중량%, 주석(Sn)은 0.01 ~ 0.1 중량% 로 형성된다.That is, 87.905 to 90.768 weight percent of titanium, 5.50 to 6.75 weight percent of aluminum (Al), 3.50 to 4.50 weight percent of vanadium (V), 0.1 to 0.2 weight percent of oxygen (O), and 0.1 to 0.2 weight percent of iron (Fe). 0.3 weight%, carbon (C) 0.01 to 0.08 weight%, hydrogen (H) 0.01 to 0.015 weight%, nitrogen (N) 0.01 to 0.05 weight%, copper (Cu) 0.01 to 0.1 weight%, tin ( Sn) is formed at 0.01 to 0.1% by weight.
한편, 본 발명의 다른 일실시예에 의한 생체 임플란트(100)의 제조방법은 생체 임플란트(100)의 외주면 전체 또는 뼈 조직에 삽입되는 결합부(100a)의 외주면에 입자의 지름이 50 ~ 300 ㎛ 인 티타늄 또는 티타늄 합금 분말을 플라즈마 용사시켜 다공성 코팅층(100c)을 형성한다.On the other hand, the method of manufacturing a bio-implant 100 according to another embodiment of the present invention is the diameter of the particle 50 to 300 ㎛ on the entire outer peripheral surface of the biological implant 100 or the outer peripheral surface of the coupling portion 100a inserted into the bone tissue Phosphorus titanium or titanium alloy powder is thermally sprayed to form a porous coating layer 100c.
플라즈마 용사란, 플라즈마 아크 중에 각종 용사재 분말(금속, 세라믹)을 공급하여 행하는 용사를 말하는데, 가스는 질소+수소, 아르곤+헬륨, 아르곤+수소 등이 사용되며, 본 발명에서의 용사재는 티타늄 또는 티타늄 합금 분말을 이용한다.Plasma spraying refers to spraying performed by supplying various spraying material powders (metals and ceramics) into a plasma arc. The gas may be nitrogen + hydrogen, argon + helium, argon + hydrogen, and the like. Titanium alloy powder is used.
또한, 다공성 코팅층은 최외주면에 수산화인회석(Hydroxyapatite) 분말을 플라즈마 용사시킨 코팅층을 포함할 수 있으며, 뼈 조직과 유사한 성분의 수산화인회석(Hydroxyapatite)으로 된 코팅층이 포함됨으로써 골유착 기간을 보다 단축시킬 수 있게 된다.In addition, the porous coating layer may include a coating layer of plasma-sprayed hydroxide hydroxyapatite (Hydroxyapatite) powder on the outer circumferential surface, and may further shorten the bone adhesion period by including a coating layer of hydroxyapatite of a component similar to bone tissue. Will be.
여기서, 다공성 코팅층(100c)의 두께는 50 ~ 150 ㎛ 로 형성되고, 수산화인회석(Hydroxyapatite)으로 된 코팅층의 두께는 0.01 ~ 1 ㎛ 로 형성될 수 있다.Here, the thickness of the porous coating layer (100c) is formed of 50 ~ 150 ㎛, the thickness of the coating layer of hydroxyapatite (Hydroxyapatite) may be formed of 0.01 ~ 1 ㎛.
그리고, 다공성 코팅층(100c)의 다공률(porosity)은 1 ~ 30 % 로, 표면거칠기는 50 ~ 150 ㎛ 로 형성된다.The porosity of the porous coating layer 100c is 1 to 30%, and the surface roughness is 50 to 150 μm.
따라서, 전술한 바와 같이 뼈 세포가 재생하면서 생체 임플란트(100)의 기공(100b)들로 스며들어 성장하는 양과 뼈세포와의 결합력, 다공성 코팅층(100c)과 생체 임플란트(100) 표면과의 접합 강도, 다공성 코팅층(100c) 자체의 강도를 최적의 상태로 형성할 수 있게 된다.Therefore, as described above, the bone cells are regenerated and penetrated into the pores (100b) of the bio-implant (100) and the amount of adhesion to the bone cells, the bonding strength between the porous coating layer (100c) and the surface of the bio-implant (100) The porous coating layer 100c itself can be formed in an optimal state.
또한, 전술한 다공률과 표면거칠기, 접합 강도, 두께의 최적화를 이루며 형성되는 다공성 코팅층(100c)은 티타늄(Ti)이나 티타늄 합금(Titanium Alloys)으로 형성되며 최외주면은 수산화인회석(Hydroxyapatite)으로 형성될 수 있는데, 여기서 티타늄 합금은 전술한 바와 같이 티타늄(Ti)에 알루미늄(Al), 바나듐(V), 산소(O), 철(Fe), 탄소(C), 수소(H), 질소(N), 구리(Cu), 주석(Sn)을 포함하여 형성된다.In addition, the porous coating layer 100c formed by optimizing the porosity, surface roughness, bonding strength, and thickness described above is formed of titanium (Ti) or titanium alloys, and the outermost surface is formed of hydroxyapatite. Wherein the titanium alloy is titanium (Ti) to aluminum (Al), vanadium (V), oxygen (O), iron (Fe), carbon (C), hydrogen (H), nitrogen (N) as described above ), Copper (Cu) and tin (Sn).
그리고, 티타늄 합금을 구성하는 각 성분의 성분비는 중량% 를 기준으로, 티타늄 87.905 ~ 90.768 중량%에, 알루미늄(Al)은 5.50 ~ 6.75 중량%, 바나듐(V)은 3.50 ~ 4.50 중량%, 산소(O)는 0.1 ~ 0.2 중량%, 철(Fe)은 0.1 ~ 0.3 중량%, 탄소(C)는 0.01 ~ 0.08 중량%, 수소(H)는 0.01 ~ 0.015 중량%, 질소(N)는 0.01 ~ 0.05 중량%, 구리(Cu)는 0.01 ~ 0.1 중량%, 주석(Sn)은 0.01 ~ 0.1 중량%로 형성된다.In addition, the component ratio of each component constituting the titanium alloy is 87.905 to 90.768 weight percent of titanium, 5.50 to 6.75 weight percent of aluminum (Al), 3.50 to 4.50 weight percent of vanadium (V), and oxygen ( O) is 0.1 to 0.2% by weight, iron (Fe) is 0.1 to 0.3% by weight, carbon (C) is 0.01 to 0.08% by weight, hydrogen (H) is 0.01 to 0.015% by weight, and nitrogen (N) is 0.01 to 0.05 By weight, copper (Cu) is formed from 0.01 to 0.1% by weight, tin (Sn) is formed from 0.01 to 0.1% by weight.
이상에서 설명한 바와 같이 본 발명에 의하면, 생체 내의 뼈 조직에 생체 임플란트를 고정한 후 뼈 세포의 재생시 뼈 조직과 생체 임플란트와의 결합력을 높여 생체 임플란트의 고정 강도가 높아지고, 골유착 기간을 단축시키는 효과가 있게 된다.As described above, according to the present invention, after fixing the bio-implant to the bone tissue in the living body to increase the binding strength between the bone tissue and the bio-implant at the time of regeneration of bone cells to increase the fixing strength of the bio-implant, shortening the bone adhesion period Will be.
또한, 생체 내의 뼈 조직에 생체 임플란트의 고정시 별도의 골 시멘트와 같은 충진재를 주입하지 않게 되어 인체에 발생되는 부작용을 방지하고 생체 친화력을 높이는 효과가 있게 된다.In addition, it is possible to prevent side effects occurring in the human body and increase biocompatibility by not injecting a filler such as a separate bone cement when fixing the bio-implant to bone tissue in the living body.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.In the above description, all elements constituting the embodiments of the present invention are described as being combined or operating in combination, but the present invention is not necessarily limited to the embodiments. In other words, within the scope of the present invention, all of the components may be selectively operated in combination with one or more.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, the terms "comprise", "comprise" or "having" described above mean that the corresponding component may be included, unless otherwise stated, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meanings as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms commonly used, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be construed in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (12)

  1. 생체 내의 뼈 조직 또는 인공 관절에 결합되는 생체 임플란트로서, A bio-implant that binds to bone tissue or artificial joints in vivo,
    생체 임플란트의 외주면 전체 또는 뼈 조직에 삽입되는 결합부의 외주면에 티타늄 또는 티타늄 합금으로 된 다공성 코팅층이 형성된 것을 특징으로 하는 생체 임플란트.Biological implant, characterized in that the porous coating layer made of titanium or titanium alloy is formed on the outer peripheral surface of the coupling portion inserted into the entire outer peripheral surface or bone tissue.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 다공성 코팅층은 최외주면에 수산화인회석(Hydroxyapatite)으로 된 코팅층을 포함하는 것을 특징으로 하는 생체 임플란트.The porous coating layer is a biological implant, characterized in that it comprises a coating layer of hydroxyapatite (Hydroxyapatite) on the outermost peripheral surface.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 다공성 코팅층의 두께는 50 ~ 150 ㎛ 로 형성되는 것을 특징으로 하는 생체 임플란트.The thickness of the porous coating layer is a biological implant, characterized in that formed in 50 ~ 150 ㎛.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 다공성 코팅층의 다공률(porosity)은 1 ~ 30 % 로 형성되는 것을 특징으로 하는 생체 임플란트.The porosity (porosity) of the porous coating layer is a biological implant, characterized in that formed in 1 ~ 30%.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 다공성 코팅층은 표면거칠기가 50 ~ 150 ㎛ 로 형성되는 것을 특징으로 하는 생체 임플란트.The porous coating layer is a biological implant, characterized in that the surface roughness is formed to 50 ~ 150 ㎛.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 티타늄 합금은, 티타늄(Ti)에 알루미늄(Al), 바나듐(V), 산소(O), 철(Fe), 탄소(C), 수소(H), 질소(N), 구리(Cu), 주석(Sn)을 포함하는 것을 특징으로 하는 생체 임플란트.The titanium alloy is titanium (Ti), aluminum (Al), vanadium (V), oxygen (O), iron (Fe), carbon (C), hydrogen (H), nitrogen (N), copper (Cu), A bio implant comprising tin (Sn).
  7. 생체 임플란트의 제조방법에 있어서, In the method for producing a biological implant,
    생체 임플란트의 외주면 전체 또는 뼈 조직에 삽입되는 결합부의 외주면에 입자의 지름이 50 ~ 300 ㎛ 인 티타늄 또는 티타늄 합금 분말을 플라즈마 용사시켜 다공성 코팅층을 형성하는 것을 특징으로 하는 생체 임플란트의 제조방법.A method of manufacturing a bio-implant, characterized in that to form a porous coating layer by plasma-spraying titanium or titanium alloy powder having a particle diameter of 50 ~ 300 ㎛ on the entire outer circumferential surface of the bio-implant or the outer peripheral surface of the coupling portion inserted into the bone tissue.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 다공성 코팅층은 티타늄 또는 티타늄 합금 분말을 플라즈마 용사시킨 후 최외주면에 수산화인회석(Hydroxyapatite) 분말을 플라즈마 용사시켜 코팅층을 더 형성하는 것을 특징으로 하는 생체 임플란트의 제조방법.The porous coating layer is a method of producing a bio-implant, characterized in that the plasma sprayed titanium or titanium alloy powder and then plasma-sprayed hydroxyapatite (Hydroxyapatite) powder on the outermost surface to form a coating layer.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 다공성 코팅층은 두께가 50 ~ 150 ㎛ 로 형성되는 것을 특징으로 하는 생체 임플란트의 제조방법.The porous coating layer is a method for producing a biological implant, characterized in that the thickness is formed to 50 ~ 150 ㎛.
  10. 제 9 항에 있어서, The method of claim 9,
    상기 다공성 코팅층은 다공률(porosity)이 1 ~ 30 % 로 형성되는 것을 특징으로 하는 생체 임플란트의 제조방법.The porous coating layer is a method for producing a bio-implant, characterized in that the porosity (porosity) is formed in 1 ~ 30%.
  11. 제 10 항에 있어서, The method of claim 10,
    상기 다공성 코팅층은 표면거칠기가 50 ~ 150 ㎛ 로 형성되는 것을 특징으로 하는 생체 임플란트의 제조방법.The porous coating layer is a method of producing a bio-implant, characterized in that the surface roughness is formed to 50 ~ 150 ㎛.
  12. 제 7 항에 있어서, The method of claim 7, wherein
    상기 티타늄 합금은, 티타늄(Ti)에 알루미늄(Al), 바나듐(V), 산소(O), 철(Fe), 탄소(C), 수소(H), 질소(N), 구리(Cu), 주석(Sn)을 포함하는 것을 특징으로 하는 생체 임플란트의 제조방법.The titanium alloy is titanium (Ti), aluminum (Al), vanadium (V), oxygen (O), iron (Fe), carbon (C), hydrogen (H), nitrogen (N), copper (Cu), Method of producing a bio-implant characterized in that it comprises a tin (Sn).
PCT/KR2013/007263 2012-12-20 2013-08-13 Bioimplant and preparation method therefor WO2014098344A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120149689A KR20140080882A (en) 2012-12-20 2012-12-20 Bioactive Implant and Manufacturing Method of The Same
KR10-2012-0149689 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014098344A1 true WO2014098344A1 (en) 2014-06-26

Family

ID=50978629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007263 WO2014098344A1 (en) 2012-12-20 2013-08-13 Bioimplant and preparation method therefor

Country Status (2)

Country Link
KR (1) KR20140080882A (en)
WO (1) WO2014098344A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222723A (en) * 2016-08-17 2016-12-14 林春梅 A kind of implant composite biological coatings and preparation technology thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102029033B1 (en) * 2017-10-31 2019-10-08 (주)오티스바이오텍 Medical bioactive implant and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146504A (en) * 1991-11-29 1993-06-15 Kyocera Corp Organism implantation member and manufacture thereof
EP0623687A2 (en) * 1993-04-06 1994-11-09 Bristol-Myers Squibb Company Porous coated implant and method of making same
JPH072180B2 (en) * 1985-05-07 1995-01-18 プラスマインフェント ア−・ゲ− Buried body coating
JP2005095584A (en) * 2003-09-02 2005-04-14 National Institute Of Advanced Industrial & Technology Implantation material compatible with organism and method for preparation thereof
EP1980276B1 (en) * 2007-02-22 2011-03-23 Tigran Technologies AB Porous implant grain or granule

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072180B2 (en) * 1985-05-07 1995-01-18 プラスマインフェント ア−・ゲ− Buried body coating
JPH05146504A (en) * 1991-11-29 1993-06-15 Kyocera Corp Organism implantation member and manufacture thereof
EP0623687A2 (en) * 1993-04-06 1994-11-09 Bristol-Myers Squibb Company Porous coated implant and method of making same
JP2005095584A (en) * 2003-09-02 2005-04-14 National Institute Of Advanced Industrial & Technology Implantation material compatible with organism and method for preparation thereof
EP1980276B1 (en) * 2007-02-22 2011-03-23 Tigran Technologies AB Porous implant grain or granule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106222723A (en) * 2016-08-17 2016-12-14 林春梅 A kind of implant composite biological coatings and preparation technology thereof

Also Published As

Publication number Publication date
KR20140080882A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
CA2431736C (en) A method for attaching a porous metal layer to a metal substrate
JP4091728B2 (en) Bioimplant material and its manufacturing method
EP0560279B1 (en) Open cell tantalum structures for cancellous bone implants and cell and tissue receptors
CA2817860C (en) Dental implant system and method for producing a dental implant system
EP1958650B1 (en) Method of modifying the surface of medical device
US20100009103A1 (en) Medical material
CA2438801A1 (en) Porous metals and metal coatings for implants
CN103357063A (en) Metal composite material capable of inducing bone growth and application thereof
Srivastav An overview of metallic biomaterials for bone support and replacement
WO2014098344A1 (en) Bioimplant and preparation method therefor
CN109172862A (en) A kind of medical porous titanium tantalum composite material
US9248020B2 (en) Ceramic monoblock implants with osseointegration fixation surfaces
US10285816B2 (en) Implant including cartilage plug and porous metal
GB2139095A (en) Improvements in and relating to semi-implants
CN112773573A (en) Inner support prosthesis for femoral head
CN107029284A (en) A kind of artificial joint material
Bayata et al. The mechanical behaviors of various dental implant materials under fatigue
CN105147383A (en) Porous tantalum metal hollow screw and application thereof
JPH0349766A (en) Production of porous body having excellent osteoaffinity
US20050119760A1 (en) Body joint replacement titanium implant comprising one or several base bodies
CN113208780A (en) Joint replacement prosthesis
EP0679096B1 (en) Load bearing implantable prosthesis
KR102029033B1 (en) Medical bioactive implant and method of manufacturing the same
CN201668542U (en) Ta coating artificial knee joint prosthesis
CN219461540U (en) Filling module for hip joint revision and hip joint revision prosthesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 26.08.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13864484

Country of ref document: EP

Kind code of ref document: A1