WO2014098341A1 - Flame retardant thermoplastic resin composition, and articles molded therefrom - Google Patents

Flame retardant thermoplastic resin composition, and articles molded therefrom Download PDF

Info

Publication number
WO2014098341A1
WO2014098341A1 PCT/KR2013/006944 KR2013006944W WO2014098341A1 WO 2014098341 A1 WO2014098341 A1 WO 2014098341A1 KR 2013006944 W KR2013006944 W KR 2013006944W WO 2014098341 A1 WO2014098341 A1 WO 2014098341A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
substituted
ether
unsubstituted
thermoplastic resin
Prior art date
Application number
PCT/KR2013/006944
Other languages
French (fr)
Korean (ko)
Inventor
배수학
주민정
박동민
신승식
최동길
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014098341A1 publication Critical patent/WO2014098341A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/02Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
    • C08G79/04Phosphorus linked to oxygen or to oxygen and carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides

Definitions

  • the present invention relates to a flame retardant thermoplastic resin composition and a molded article formed therefrom. More specifically, the present invention relates to a flame-retardant thermoplastic resin composition having excellent flame retardancy, thermal stability and long-term durability and environmentally friendly flame retardant thermoplastic resin composition and molded articles formed by applying a polymerized phosphorus compound having a specific structure as a flame retardant.
  • Styrene-based resins which are used as exterior materials for electronic products, are applied to almost all electronic products due to their excellent processability and mechanical properties.
  • the styrene resin itself has a property that combustion can easily occur and is not resistant to fire. Therefore, the styrene-based resin can be easily burned by the external ignition source, and may serve to further spread the fire. Accordingly, in order to guarantee the safety of fire of electronic products, the United States, Japan, Europe and the like regulate the law to use only polymer resin satisfying the flame retardant standard as an exterior material.
  • halogen-based compounds may damage the mold and have a fatal effect on the human body due to the hydrogen halide gas generated during processing.
  • polybrominated diphenyl ethers which are mainly halogen-based flame retardants, are highly likely to generate very toxic gases such as dioxins and furans during combustion, attention has been focused on flame-retardant methods that do not apply halogen-based compounds.
  • blends that can be flame retarded using a phosphorus compound include a blend of polycarbonate and acrylonitrile-butadiene-styrene copolymer, a blend of rubber-reinforced styrene resin and polyphenylene ether resin, and the like.
  • Korean Patent No. 2002-007813 discloses a method of using a mixture of carboxy phosphonic acid and phosphoric acid or a derivative compound as a flame retardant in a polystyrene resin or the like, and studies similar to the present patent have been actively conducted.
  • the patent and the like have excellent flame retardancy when using a halogen-based flame retardant or a phosphate ester flame retardant, but may not bond to a material that requires long-term durability such as a solar material.
  • thermoplastic resin composition In order to solve the problems of the conventional flame-retardant thermoplastic resin, the present inventors apply a polymeric phosphonate flame retardant to the thermoplastic resin, while excellent in environmental stability and fire safety, excellent heat resistance and excellent long-term durability compared to existing products It is early to develop a thermoplastic resin composition.
  • Another object of the present invention is to provide an environmentally friendly flame retardant thermoplastic resin composition and a molded article formed therefrom without using a halogen-based flame retardant.
  • Still another object of the present invention is to provide a flame retardant thermoplastic resin composition and a molded article formed therefrom which can be used as an internal / exterior material such as electronic products due to relatively excellent thermal stability, mechanical strength and fluidity.
  • the flame retardant thermoplastic resin composition may include 100 parts by weight of a basic resin comprising (A) about 10 to about 49% by weight of an aromatic vinyl resin and (B) about 51 to about 90% by weight of a polyphenylene ether resin; And (C) about 0.1 to about 30 parts by weight of a polyphosphonate comprising a unit represented by Formula 1 below:
  • A is a single bond, C1-C5 alkylene group, C2-C5 alkylidene group, C5-C6 cycloalkylidene group, -S- or -SO 2-
  • R 1 is substituted or unsubstituted A substituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group, or a C6-C20 substituted or unsubstituted aryloxy group
  • R 2 and R 3 are each independently substituted or unsubstituted C1-
  • a and b are each independently an integer of 0 to 4
  • n is 1 to It is an integer of 500.
  • the polyphosphonate (C) may include at least one polyphosphonate including a unit represented by the following formula (2).
  • a and B are each independently a single bond, an alkylene group of C1-C5, an alkylidene group of C2-C5, a cycloalkylidene group of C5-C6, -S- or -SO 2- , A and B are not the same as each other, R 1 and R 4 are each independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group or C6-C20 substituted or unsubstituted Is an aryloxy group, R 2 , R 3 , R 5 and R 6 are each independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C3-C6 cycloalkyl group, a substituted or unsubstituted C6 -C12 is an aryl group or a halogen atom, a, b, c and d are each
  • the sum of m and n may be 3 to 600.
  • the aromatic vinyl-based resin (A) comprises a monomer mixture comprising about 1 to about 30 weight percent of a rubbery polymer having an average particle diameter of about 0.1 to about 3 ⁇ m and about 70 to about 99 weight percent of an aromatic vinyl monomer. It may be a polymer.
  • the polyphenylene ether resin (B) may be poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, Poly (2,6-dipropyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2-methyl-6-propyl-1,4 -Phenylene) ether, poly (2-ethyl-6-propyl-1,4-phenylene) ether, poly (2,6-diphenyl-1,4-phenylene) ether, poly (2,6-dimethyl Copolymer of -1,4-phenylene) ether and poly (2,3,6-trimethyl-1,4-phenylene) ether, and poly (2,6-dimethyl-1,4-phenylene) ether It may contain one or more of the copolymers of poly (2,3,6-triethyl-1,4-phenylene)
  • the flame retardant thermoplastic resin composition has a tensile strength of about 610 to about 800 kgf / according to ASTM D-638 after exposure at a temperature of about 135 ° C. for about 3,000 hours. may be 2 mm.
  • the flame retardant thermoplastic resin composition may further comprise an additive comprising at least one flame retardant, lubricant, plasticizer, heat stabilizer, anti-drip agent, antioxidant, compatibilizer, light stabilizer, pigment, dye and inorganic additives. have.
  • Another aspect of the invention relates to a molded article.
  • the molded article is formed from the flame retardant thermoplastic resin composition.
  • the present invention is excellent in flame retardancy, thermal stability and long-term durability, environmentally friendly by not using a halogen-based flame retardant, relative to thermal stability, mechanical strength and fluidity, flame retardant thermoplastic resin that can be used as an interior / exterior material such as electronic products It has the effect of providing the composition and the molded article formed therefrom.
  • the flame retardant thermoplastic resin composition according to the present invention comprises 100 parts by weight of a base resin comprising about 10 to about 49 wt% of an aromatic vinyl resin and about 51 to about 90 wt% of a polyphenylene ether resin; And about 0.1 to about 30 parts by weight of a polyphosphonate including a unit represented by Formula 1 below.
  • the aromatic vinyl resin (A) used in the present invention is a polymer of an aromatic vinyl monomer (monomer), a copolymer with another monomer copolymerizable with an aromatic vinyl monomer, or a polymer of a monomer mixture containing the aromatic vinyl monomer and a rubbery polymer. Phosphorus rubber-modified aromatic vinyl resin.
  • the aromatic vinyl monomers may include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-methylstyrene, para t-butylstyrene, ethyl styrene, and the like. These can be used individually or in mixture of 2 or more types.
  • the other copolymerizable monomer may be acrylonitrile, acrylic acid, methacrylic acid, maleic anhydride, N-substituted maleimide, or the like. These can be used individually or in mixture of 2 or more types.
  • the rubbery polymers include butadiene type rubbers, copolymers of butadiene and styrene, diene rubbers such as poly (acrylonitrile-butadiene) and saturated rubbers hydrogenated with the diene rubber, isoprene rubber, acrylic rubber and ethylene-propylene- Diene terpolymer (EPDM) and the like can be used.
  • diene rubbers such as poly (acrylonitrile-butadiene) and saturated rubbers hydrogenated with the diene rubber
  • isoprene rubber acrylic rubber and ethylene-propylene- Diene terpolymer (EPDM) and the like
  • EPDM ethylene-propylene- Diene terpolymer
  • polybutadiene, a copolymer of butadiene and styrene, isoprene rubber, alkyl acrylate rubbers, and the like can be used.
  • the content of the rubbery polymer may be about 1 to about 30% by weight, for example, about 5 to about 15% by weight of the monomer mixture.
  • the content of the aromatic vinyl monomer may be about 70 to about 99% by weight, for example about 85 to about 95% by weight of the monomer mixture. It is possible to obtain a good balance of physical properties of the impact strength and mechanical properties in the above range.
  • the average particle diameter of the rubbery polymer may be about 0.1 to about 3 ⁇ m, for example, about 0.25 to about 2.5 ⁇ m in Z-average.
  • the rubber-modified aromatic vinyl resin and the polyphenylene ether resin blend in the above range can exhibit appropriate physical properties.
  • examples of the aromatic vinyl resin (A) include polystyrene (PS), high impact polystyrene (HIPS), acrylonitrile-butadiene-styrene copolymer resin (ABS), acrylonitrile-styrene copolymer resin (SAN), acrylonitrile-styrene-acrylate copolymer resin (ASA), etc.
  • PS polystyrene
  • HIPS high impact polystyrene
  • ABS acrylonitrile-butadiene-styrene copolymer resin
  • SAN acrylonitrile-styrene copolymer resin
  • ASA acrylonitrile-styrene-acrylate copolymer resin
  • HIPS high impact polystyrene
  • HIPS high impact polystyrene
  • the method for producing the aromatic vinyl resin (A) is well known by those skilled in the art to which the present invention pertains, and is easy to purchase commercially.
  • the aromatic vinyl resin (A) may be polymerized by thermal polymerization without an initiator or polymerized in the presence of an initiator.
  • an initiator at least one of peroxide initiators such as benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, cumene hydroperoxide, and azo initiators such as azobis isobutyronitrile may be selected and used.
  • peroxide initiators such as benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, cumene hydroperoxide
  • azo initiators such as azobis isobutyronitrile
  • the aromatic vinyl resin (A) may be prepared using a bulk polymerization, suspension polymerization, emulsion polymerization or a mixture thereof, and among these polymerization methods, a bulk polymerization method may be preferably used.
  • the aromatic vinyl resin (A) may have a weight average molecular weight of about 50,000 to about 200,000 g / mol, for example, about 100,000 to about 200,000 g / mol, measured by gel permeation chromatography (GPC), but is not limited thereto. .
  • the aromatic vinyl resin (A) constitutes a base resin in the flame retardant thermoplastic resin composition of the present invention, and is about 10 to about 49 wt% of the base resin consisting of (A) + (B), for example, about 15 to about 45 weight percent, specifically about 20 to about 40 weight percent. If the content of the aromatic vinyl-based resin (A) is less than about 10% by weight of the base resin, there is a risk that the impact strength, fluidity, etc. may be lowered, and when it exceeds 49% by weight, long-term durability may be lowered. .
  • the polyphenylene ether resin (B) used in the present invention is for increasing flame retardancy and heat resistance.
  • a common polyphenylene ether resin used in a flame retardant thermoplastic resin composition can be used, for example, poly (2,6-dimethyl-1,4-phenylene) Ether, poly (2,6-diethyl-1,4-phenylene) ether, poly (2,6-dipropyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1, 4-phenylene) ether, poly (2-methyl-6-propyl-1,4-phenylene) ether, poly (2-ethyl-6-propyl-1,4-phenylene) ether, poly (2,6 -Diphenyl-1,4-phenylene) ether, poly (2,6-dimethyl-1,4-phenylene) ether and poly (2,3,6-trimethyl-1,4-phenylene) ether Copolymers, copo
  • poly (2,6-dimethyl-1,4-phenylene) ether or poly (2,6-dimethyl-1,4-phenylene) ether and poly (2,3,6-trimethyl-1, Copolymers of 4-phenylene) ether may be used, and specifically, poly (2,6-dimethyl-1,4-phenylene) ether may be used.
  • the degree of polymerization of the polyphenylene ether resin (B) is not particularly limited, but considering the thermal stability and workability of the resin composition, the intrinsic viscosity when measured in a chloroform solvent at 25 ° C. is about 0.2 to about 0.8 dl. / g may be used.
  • the polyphenylene ether-based resin (B) constitutes a base resin in the flame retardant thermoplastic resin composition of the present invention, and is about 51 to about 90% by weight of the base resin consisting of (A) + (B), for example, about 55 To about 85% by weight, specifically about 60 to about 80% by weight. If the content of the polyphenylene ether resin (B) is less than about 51% by weight of the basic resin, there is a fear that long-term durability, flame retardancy and heat resistance is lowered, and when it exceeds about 90% by weight, impact strength and the like There is a risk of deterioration.
  • Polyphosphonate (C) used in the present invention includes a unit represented by the following formula (1).
  • A is a single bond, C1-C5 alkylene group, C2-C5 alkylidene group, C5-C6 cycloalkylidene group, -S- or -SO 2-
  • R 1 is substituted or unsubstituted A substituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group, or a C6-C20 substituted or unsubstituted aryloxy group
  • R 2 and R 3 are each independently substituted or unsubstituted C1-
  • a and b are each independently an integer of 0 to 4
  • n is 1 to 500, for example, an integer from 4 to 500.
  • the polyphosphonate (C) may include at least one polyphosphonate including a unit represented by the following formula (2).
  • a and B are each independently a single bond, an alkylene group of C1-C5, an alkylidene group of C2-C5, a cycloalkylidene group of C5-C6, -S- or -SO 2- , A and B are not the same as each other, R 1 and R 4 are each independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group or C6-C20 substituted or unsubstituted Is an aryloxy group, R 2 , R 3 , R 5 and R 6 are each independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C3-C6 cycloalkyl group, a substituted or unsubstituted C6 -C12 is an aryl group or halogen atom, a, b, c and d are each independently an independently an
  • the sum of m and n may be 3 to 600. More excellent flame retardancy can be provided in the above range.
  • the polyphosphonates (C) are, for example, polyphosphonates in the form of homopolymers, polyphosphonates in the form of copolymers, respectively, or polyphosphonates in the form of homopolymers and polyphosphes in the form of copolymers. Phonates may be used together, but are not limited thereto.
  • the polyphosphonate (C) is prepared by reacting a diol including one or more of a diol represented by the following Chemical Formula 3 and a diol represented by the following Chemical Formula 4 and a phosphonic dichloride represented by the following Chemical Formula 5. can do.
  • A, B, R 2 , R 3 , R 5 , R 6 , a, b, c and d are as defined in Formula 2 above.
  • diol examples include 4,4'-dihydroxybiphenyl, 2,2-bis- (4-hydroxyphenyl) -propane, 2,4-bis- (4-hydroxyphenyl) -2- Methylbutane, 1,1-bis- (4-hydroxyphenyl) -cyclohexane, 2,2-bis- (3-chloro-4-hydroxyphenyl) -propane, 2,2-bis- (3,5 -Dichloro-4-hydroxyphenyl) -propane and the like, and may be used alone or in combination of two or more thereof.
  • 4,4'-dihydroxybiphenyl alone or 4,4'-dihydroxybiphenyl and 2,2-bis- (4-hydroxyphenyl) -propane may be applied.
  • the ratio between diols may be appropriately adjusted according to the physical properties to be expressed.
  • the molar ratio of 4,4′-dihydroxybiphenyl and 2,2-bis- (4-hydroxyphenyl) -propane may be from about 5 to about 95: about 95 to about 5. More excellent flame retardancy can be provided in the above range.
  • each R is independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group, or a C6-C20 substituted or unsubstituted aryloxy group.
  • the phosphonic dichloride represented by Formula 5 may use two kinds of compounds in which R is not the same, and R in Formula 5 corresponds to R 1 and R 4 in Formulas 1 and 2.
  • the phosphonic dichloride can be reacted dropwise with a solution containing a diol, a catalyst, and an end capping agent, and about 1 equivalent of the total diol can be reacted with about 1 equivalent of the phosphonic dichloride.
  • the reaction of the diol and phosphonic dichloride can be carried out by a conventional polymerization method under a Lewis acid catalyst.
  • a Lewis acid catalyst for the polymerization, for example, solution polymerization may be used.
  • the Lewis acid catalyst aluminum chloride, magnesium chloride, or the like may be used, but is not limited thereto.
  • the catalyst may be applied in an amount of about 0.01 to about 10 equivalents, such as about 0.01 to about 1 equivalents, specifically about 0.01 to about 0.1 equivalents, based on about 1 equivalent of the total diol.
  • the reaction may be carried out in the presence of an end capping agent.
  • an end capping agent C1-C5 alkyl group-containing phenol may be preferably applied.
  • phenol, 4-t-butylphenol, or 2-t-butylphenol may be used.
  • the end capping agent may be used in an amount of about 1 equivalent or less, such as about 0.01 to about 0.5 equivalents, based on about 1 equivalent of the total diol.
  • the reaction may be completed and then washed with an acid solution.
  • Phosphoric acid, hydrochloric acid, nitric acid, sulfuric acid, etc. may be applied as the acid solution, for example, phosphoric acid or hydrochloric acid.
  • the acid solution may be in a concentration of about 0.1 to about 10%, for example about 1 to about 5%. Thereafter, washing and filtration may give a polyphosphonate in the form of a white solid.
  • the polyphosphonate (C) may have a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 1,000 to about 50,000 g / mol. For example, about 1,000 to about 20,000 g / mol, specifically about 1,000 to about 10,000 g / mol. More excellent flame retardancy can be provided in the above range.
  • Mw weight average molecular weight measured by gel permeation chromatography
  • the polyphosphonate may have an acid value of about 0.005 to about 4 KOH mg / g, for example, about 0.01 to about 1 KOH mg / g. Decomposition of the thermoplastic resin does not occur in the above range.
  • the polyphosphonate may have a polydispersity index (PDI) of about 1 to about 3.5, for example about 1.5 to about 2.5. In the above range, physical properties such as flame retardancy and fluidity, impact strength, heat resistance, and the like may be excellent.
  • PDI polydispersity index
  • the polyphosphonate may have a glass transition temperature of about 75 to about 90 °C, for example about 78 to about 87 °C.
  • the processability of the resin composition may be excellent in the above range.
  • the polyphosphonate (C) may have an acid value change rate of about 0.005 to about 6, for example, about 0.01 to about 5, by the following Formula 1. In the above range, decomposition of the thermoplastic resin may not occur. In embodiments, the rate of change of the acid value of the polyphosphonate (C) may be about 0.05 to about 1.
  • ⁇ AV represents an acid value change rate
  • AVa represents an acid value after about 10 g of polyphosphonate is left at about 280 ° C. for about 1 hour
  • AVb represents an initial acid value of polyphosphonate.
  • the polyphosphonate (C) is about 0.1 to about 30 parts by weight, for example about 1 to about 25 parts by weight, specifically about 10 to about 100 parts by weight of the base resin consisting of (A) + (B) About 25 parts by weight. If the content of the polyphosphonate (C) is less than about 0.1 part by weight based on 100 parts by weight of the base resin, there is a risk that the flame resistance, heat resistance, and the like may be lowered. When the content of the polyphosphonate (C) exceeds about 30 parts by weight, fluidity, impact strength, Physical properties such as flame retardancy and heat resistance, and long-term durability may be lowered.
  • the flame-retardant thermoplastic resin composition according to the present invention has a tensile strength of about 610 to about 800 kgf / mm measured under the condition of about 5 mm / min after exposure to about 3,000 hours at a temperature of about 135 °C according to ASTM D-638 2 , for example, about 620 to about 750 kgf / mm 2 , the tensile strength change rate according to the following formula 2 is about 10% or less, the long-term durability is particularly excellent.
  • ⁇ TS (TS 0 -TS 3,000 ) ⁇ 100 / TS 0
  • Equation 1 TS 0 is tensile strength before high temperature exposure, and TS 3,000 is tensile strength after about 3,000 hours of exposure at high temperature.
  • the flame retardant thermoplastic resin composition of the present invention may further include additives such as flame retardant aids, lubricants, plasticizers, heat stabilizers, anti-drip agents, antioxidants, compatibilizers, light stabilizers, pigments, dyes, inorganic additives, and the like, if necessary. These can be used individually or in mixture of 2 or more types.
  • the additive may include about 0.1 to about 10 parts by weight based on 100 parts by weight of the base resin, but is not limited thereto.
  • the flame retardant thermoplastic resin composition may be prepared by pelletizing after melt-extrusion in an extruder after mixing the components and other additives at the same time.
  • the prepared pellets may be manufactured into various molded articles through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding.
  • Another aspect of the present invention provides a molded article formed from the thermoplastic resin composition.
  • the molded article is excellent in impact resistance, fluidity, flame retardancy, etc. can be widely applied to parts, exterior materials, automobile parts, sundries, structural materials of electrical and electronic products.
  • Poly (2,6-dimethyl-phenylether) (trade name: LXR-035C) from China Buluta Chemical was used.
  • the resin is in the form of a pale yellow powder having an average particle diameter of several tens of micrometers to several mm.
  • biphenyl polyphosphonate represented by Chemical Formula 1a manufactured by Cheil Industries was used as the flame retardant.
  • n 4.
  • polyphosphonate represented by Chemical Formula 2a manufactured by Cheil Industries was used as the flame retardant.
  • the pellets were prepared by extruding in a temperature range of 200 to 280 °C in a conventional twin screw extruder.
  • the prepared pellet was dried at 80 ° C. for 3 hours, and then injected into a mold at a temperature of 180 to 280 ° C. and a mold temperature of 40 to 80 ° C. in a 6 Oz injection machine to prepare a flame retardant specimen.
  • the physical properties of the prepared specimens were evaluated by the following method.
  • Izod impact strength (unit: kgf ⁇ cm / cm): Notch was evaluated by making an Izod specimen having a thickness of 1/8 "by the evaluation method specified in ASTM D256.
  • ⁇ TS (TS 0 -TS 3,000 ) ⁇ 100 / TS 0
  • Equation 1 TS 0 is tensile strength before high temperature exposure, and TS 3,000 is tensile strength after 3000 hours of exposure at high temperature.
  • VST Low heat resistance
  • Comparative Example 4 Even when the fonate (C-1) is applied, when the polyphenylene ether resin (B) content is low, it can be seen that long-term durability is lowered at 110 ° C or higher. Comparative Examples 5 and 6, in which the polyphosphonate (C) was not applied as the flame retardant, showed that the heat resistance and the flame retardancy were similar to those of the examples, but the long-term durability (long-term heat resistance) was significantly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a flame retardant thermoplastic resin composition which is characterized by comprising: (A) about 10 to 49 wt% of aromatic vinyl-based resin; (B) 100 parts by weight of base resin comprising about 51 to 90 wt% of polyphenylene ether based resin; and (C) about 0.1 to 30 parts by weight of polyphosphonates comprising units expressed by chemical formula 1 of claim 1. The flame retardant thermoplastic resin has excellent flame retardancy, thermal stability, long-term durability, and is environmentally-friendly.

Description

난연성 열가소성 수지 조성물 및 이로부터 형성된 성형품Flame retardant thermoplastic resin composition and molded article formed therefrom
본 발명은 난연성 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다. 보다 구체적으로 본 발명은 특정 구조의 중합형 인계 화합물을 난연제로 적용하여, 난연성, 열안정성 및 장기적 내구성이 우수하고 친환경적인 난연성 열가소성 수지 조성물 및 이로부터 형성된 성형품에 관한 것이다.The present invention relates to a flame retardant thermoplastic resin composition and a molded article formed therefrom. More specifically, the present invention relates to a flame-retardant thermoplastic resin composition having excellent flame retardancy, thermal stability and long-term durability and environmentally friendly flame retardant thermoplastic resin composition and molded articles formed by applying a polymerized phosphorus compound having a specific structure as a flame retardant.
전자제품의 외장재로 사용되고 있는 스티렌계 수지는 우수한 가공성 및 기계적 특성으로 인하여 거의 모든 전자제품에 적용되고 있다. 그러나, 스티렌계 수지 자체는 쉽게 연소가 일어날 수 있는 특성을 가지고 있으며 화재에 대한 저항성이 없다. 따라서, 스티렌계 수지는 외부의 발화원에 의하여 쉽게 연소가 일어날 수 있고, 화재를 더욱 확산되게 하는 역할을 할 수 있다. 이에 따라, 미국, 일본, 유럽 등의 국가에서는 전자제품의 화재에 대한 안전성을 보장하기 위하여, 난연규격을 만족하는 고분자 수지만을 외장재로 사용하도록 법으로 규제하고 있다.Styrene-based resins, which are used as exterior materials for electronic products, are applied to almost all electronic products due to their excellent processability and mechanical properties. However, the styrene resin itself has a property that combustion can easily occur and is not resistant to fire. Therefore, the styrene-based resin can be easily burned by the external ignition source, and may serve to further spread the fire. Accordingly, in order to guarantee the safety of fire of electronic products, the United States, Japan, Europe and the like regulate the law to use only polymer resin satisfying the flame retardant standard as an exterior material.
가장 많이 적용되고 있는 공지된 난연 방법으로는 수지에 할로겐계 화합물과 안티몬계 화합물을 적용하여 난연성을 부여하는 것이다. 그러나, 할로겐을 포함하는 화합물은 가공 시 발생하는 할로겐화 수소 가스로 인해 금형이 손상될 수 있고 인체에 치명적인 영향을 끼칠 수 있다. 또한, 할로겐계 난연제의 주를 이루는 폴리브롬화 디페닐에테르는 연소 시에 다이옥신이나 퓨란과 같은 매우 유독한 가스를 발생할 가능성이 높기 때문에 할로겐계 화합물을 적용하지 않는 난연화 방법에 관심이 모아지고 있다.Known flame retardant methods are most commonly applied to impart flame retardancy by applying a halogen-based compound and an antimony-based compound to the resin. However, halogen-containing compounds may damage the mold and have a fatal effect on the human body due to the hydrogen halide gas generated during processing. In addition, since polybrominated diphenyl ethers, which are mainly halogen-based flame retardants, are highly likely to generate very toxic gases such as dioxins and furans during combustion, attention has been focused on flame-retardant methods that do not apply halogen-based compounds.
상기 할로겐을 함유하고 있지 않은 화합물로서, 인 또는 질소를 포함한 화합물을 첨가하여 수지 조성물에 난연성을 부여하는 방법이 연구되어 왔다. 특히, 인계 화합물을 사용하여 난연화가 가능한 블렌드로는 폴리카보네이트와 아크릴로나이트릴-부타디엔-스티렌 공중합체의 블렌드, 고무 강화 스티렌계 수지와 폴리페닐렌에테르수지의 블렌드 등이 대표적이다.As the compound containing no halogen, a method of imparting flame retardance to a resin composition by adding a compound containing phosphorus or nitrogen has been studied. In particular, blends that can be flame retarded using a phosphorus compound include a blend of polycarbonate and acrylonitrile-butadiene-styrene copolymer, a blend of rubber-reinforced styrene resin and polyphenylene ether resin, and the like.
국내특허 특2002-007813호에는 폴리스티렌 수지 등에 난연제로 카르복시 포스파이닉산과 인산 또는 유도체 화합물을 혼용하여 사용하는 방법이 개시되어 있고, 당 특허와 유사한 연구가 활발히 진행되고 있다. 상기 특허 등은 할로겐계 난연제 또는 인산에스테르 난연제 사용 시 난연성이 우수하나, 태양광 소재와 같은 장기 내구성을 요구하는 소재 등에는 접합하지 않을 우려가 있다.Korean Patent No. 2002-007813 discloses a method of using a mixture of carboxy phosphonic acid and phosphoric acid or a derivative compound as a flame retardant in a polystyrene resin or the like, and studies similar to the present patent have been actively conducted. The patent and the like have excellent flame retardancy when using a halogen-based flame retardant or a phosphate ester flame retardant, but may not bond to a material that requires long-term durability such as a solar material.
이에 본 발명자들은 종래의 난연성 열가소성 수지의 문제점들을 해결하고자, 열가소성 수지에 고분자 포스포네이트 난연제를 적용함으로써, 환경 안정성과 화재 안전성이 우수하면서, 기존 제품에 비해 내열도가 우수하고 장기 내구성이 우수한 난연성 열가소성 수지 조성물을 개발하기에 이른 것이다.In order to solve the problems of the conventional flame-retardant thermoplastic resin, the present inventors apply a polymeric phosphonate flame retardant to the thermoplastic resin, while excellent in environmental stability and fire safety, excellent heat resistance and excellent long-term durability compared to existing products It is early to develop a thermoplastic resin composition.
본 발명의 목적은 난연성, 열안정성 및 장기적 내구성이 우수한 난연성 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하기 위한 것이다.It is an object of the present invention to provide a flame retardant thermoplastic resin composition excellent in flame retardancy, thermal stability and long-term durability and a molded article formed therefrom.
본 발명의 다른 목적은 할로겐계 난연제를 사용하지 않아 친환경적인 난연성 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하기 위한 것이다.Another object of the present invention is to provide an environmentally friendly flame retardant thermoplastic resin composition and a molded article formed therefrom without using a halogen-based flame retardant.
본 발명의 또 다른 목적은 열안정성, 기계적 강도 및 유동성이 상대적으로 우수하여 전자제품 등의 내/외장재로 사용할 수 있는 난연성 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하기 위한 것이다.Still another object of the present invention is to provide a flame retardant thermoplastic resin composition and a molded article formed therefrom which can be used as an internal / exterior material such as electronic products due to relatively excellent thermal stability, mechanical strength and fluidity.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.
본 발명의 한 관점은 난연성 열가소성 수지 조성물에 관한 것이다. 상기 난연성 열가소성 수지 조성물은 (A) 방향족 비닐계 수지 약 10 내지 약 49 중량% 및 (B) 폴리페닐렌에테르계 수지 약 51 내지 약 90 중량%를 포함하는 기초수지 100 중량부; 및 (C) 하기 화학식 1로 표시되는 단위를 포함하는 폴리포스포네이트 약 0.1 내지 약 30 중량부를 포함하는 것을 특징으로 한다:One aspect of the invention relates to a flame retardant thermoplastic resin composition. The flame retardant thermoplastic resin composition may include 100 parts by weight of a basic resin comprising (A) about 10 to about 49% by weight of an aromatic vinyl resin and (B) about 51 to about 90% by weight of a polyphenylene ether resin; And (C) about 0.1 to about 30 parts by weight of a polyphosphonate comprising a unit represented by Formula 1 below:
[화학식 1][Formula 1]
Figure PCTKR2013006944-appb-I000001
Figure PCTKR2013006944-appb-I000001
상기 화학식 1에서, A는 단일 결합, C1-C5의 알킬렌기, C2-C5의 알킬리덴기, C5-C6의 시클로알킬리덴기, -S- 또는 -SO2-이고, R1은 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C6-C20의 아릴기 또는 C6-C20의 치환 또는 비치환된 아릴옥시기이고, R2 및 R3는 각각 독립적으로 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C3-C6의 시클로알킬기, 치환 또는 비치환된 C6-C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이고, n은 1 내지 500의 정수이다.In Formula 1, A is a single bond, C1-C5 alkylene group, C2-C5 alkylidene group, C5-C6 cycloalkylidene group, -S- or -SO 2- , R 1 is substituted or unsubstituted A substituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group, or a C6-C20 substituted or unsubstituted aryloxy group, R 2 and R 3 are each independently substituted or unsubstituted C1- An alkyl group of C6, a substituted or unsubstituted cycloalkyl group of C3-C6, a substituted or unsubstituted C6-C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4, n is 1 to It is an integer of 500.
구체예에서, 상기 폴리포스포네이트(C)는 하기 화학식 2로 표시되는 단위를 포함하는 폴리포스포네이트를 1종 이상 포함할 수 있다.In embodiments, the polyphosphonate (C) may include at least one polyphosphonate including a unit represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2013006944-appb-I000002
Figure PCTKR2013006944-appb-I000002
상기 화학식 2에서, A 및 B는 각각 독립적으로 단일 결합, C1-C5의 알킬렌기, C2-C5의 알킬리덴기, C5-C6의 시클로알킬리덴기, -S- 또는 -SO2-이고, 단, A 및 B는 서로 동일하지 않으며, R1 및 R4는 각각 독립적으로 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C6-C20의 아릴기 또는 C6-C20의 치환 또는 비치환된 아릴옥시기이고, R2, R3, R5 및 R6는 각각 독립적으로 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C3-C6의 시클로알킬기, 치환 또는 비치환된 C6-C12의 아릴기 또는 할로겐 원자이며, a, b, c 및 d는 각각 독립적으로 0 내지 4의 정수이고, m은 0 내지 500의 정수이며, n은 1 내지 500의 정수이다.In Formula 2, A and B are each independently a single bond, an alkylene group of C1-C5, an alkylidene group of C2-C5, a cycloalkylidene group of C5-C6, -S- or -SO 2- , A and B are not the same as each other, R 1 and R 4 are each independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group or C6-C20 substituted or unsubstituted Is an aryloxy group, R 2 , R 3 , R 5 and R 6 are each independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C3-C6 cycloalkyl group, a substituted or unsubstituted C6 -C12 is an aryl group or a halogen atom, a, b, c and d are each independently an integer of 0 to 4, m is an integer of 0 to 500, n is an integer of 1 to 500.
바람직하게는 상기 m과 n의 합은 3 내지 600일 수 있다.Preferably, the sum of m and n may be 3 to 600.
구체예에서, 상기 방향족 비닐계 수지(A)는 약 0.1 내지 약 3 ㎛의 평균 입경을 갖는 고무질 중합체 약 1 내지 약 30 중량% 및 방향족 비닐 단량체 약 70 내지 약 99 중량%을 포함하는 단량체 혼합물의 중합체일 수 있다.In an embodiment, the aromatic vinyl-based resin (A) comprises a monomer mixture comprising about 1 to about 30 weight percent of a rubbery polymer having an average particle diameter of about 0.1 to about 3 μm and about 70 to about 99 weight percent of an aromatic vinyl monomer. It may be a polymer.
구체예에서, 상기 폴리페닐렌에테르계 수지(B)는 폴리(2,6-디메틸-1,4-페닐렌)에테르, 폴리(2,6-디에틸-1,4-페닐렌)에테르, 폴리(2,6-디프로필-1,4-페닐렌)에테르, 폴리(2-메틸-6-에틸-1,4-페닐렌)에테르, 폴리(2-메틸-6-프로필-1,4-페닐렌)에테르, 폴리(2-에틸-6-프로필-1,4-페닐렌)에테르, 폴리(2,6-디페닐-1,4-페닐렌)에테르, 폴리(2,6-디메틸-1,4-페닐렌)에테르와 폴리(2,3,6-트리메틸-1,4-페닐렌)에테르의 공중합체, 및 폴리(2,6-디메틸-1,4-페닐렌)에테르와 폴리(2,3,6-트리에틸-1,4-페닐렌)에테르의 공중합체 중 1종 이상을 포함할 수 있다.In an embodiment, the polyphenylene ether resin (B) may be poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, Poly (2,6-dipropyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2-methyl-6-propyl-1,4 -Phenylene) ether, poly (2-ethyl-6-propyl-1,4-phenylene) ether, poly (2,6-diphenyl-1,4-phenylene) ether, poly (2,6-dimethyl Copolymer of -1,4-phenylene) ether and poly (2,3,6-trimethyl-1,4-phenylene) ether, and poly (2,6-dimethyl-1,4-phenylene) ether It may contain one or more of the copolymers of poly (2,3,6-triethyl-1,4-phenylene) ether.
구체예에서, 상기 난연성 열가소성 수지 조성물은 ASTM D-638에 의거하여, 약 135℃의 온도에서 약 3,000 시간 노출 시킨 후 약 5 mm/min의 조건에서 측정한 인장강도가 약 610 내지 약 800 kgf/mm2일 수 있다.In embodiments, the flame retardant thermoplastic resin composition has a tensile strength of about 610 to about 800 kgf / according to ASTM D-638 after exposure at a temperature of about 135 ° C. for about 3,000 hours. may be 2 mm.
구체예에서, 상기 난연성 열가소성 수지 조성물은 난연보조제, 활제, 가소제, 열안정제, 적하방지제, 산화방지제, 상용화제, 광안정제, 안료, 염료 및 무기물 첨가제를 적어도 1종 포함하는 첨가제를 더 포함할 수 있다.In embodiments, the flame retardant thermoplastic resin composition may further comprise an additive comprising at least one flame retardant, lubricant, plasticizer, heat stabilizer, anti-drip agent, antioxidant, compatibilizer, light stabilizer, pigment, dye and inorganic additives. have.
본 발명의 다른 관점은 성형품에 관한 것이다. 상기 성형품은 상기 난연성 열가소성 수지 조성물로부터 형성된다.Another aspect of the invention relates to a molded article. The molded article is formed from the flame retardant thermoplastic resin composition.
본 발명은 난연성, 열안정성 및 장기적 내구성이 우수하고, 할로겐계 난연제를 사용하지 않아 친환경적이며, 열안정성, 기계적 강도 및 유동성이 상대적으로 우수하여 전자제품 등의 내/외장재로 사용할 수 있는 난연성 열가소성 수지 조성물 및 이로부터 형성된 성형품을 제공하는 발명의 효과를 가진다.The present invention is excellent in flame retardancy, thermal stability and long-term durability, environmentally friendly by not using a halogen-based flame retardant, relative to thermal stability, mechanical strength and fluidity, flame retardant thermoplastic resin that can be used as an interior / exterior material such as electronic products It has the effect of providing the composition and the molded article formed therefrom.
이하, 본 발명을 상세히 설명하면, 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 난연성 열가소성 수지 조성물은 방향족 비닐계 수지 약 10 내지 약 49 중량% 및 폴리페닐렌에테르계 수지 약 51 내지 약 90 중량%를 포함하는 기초수지 100 중량부; 및 하기 화학식 1로 표시되는 단위를 포함하는 폴리포스포네이트 약 0.1 내지 약 30 중량부를 포함하는 것이다.The flame retardant thermoplastic resin composition according to the present invention comprises 100 parts by weight of a base resin comprising about 10 to about 49 wt% of an aromatic vinyl resin and about 51 to about 90 wt% of a polyphenylene ether resin; And about 0.1 to about 30 parts by weight of a polyphosphonate including a unit represented by Formula 1 below.
(A) 방향족 비닐계 수지(A) Aromatic vinyl resin
본 발명에 사용되는 방향족 비닐계 수지(A)는 방향족 비닐 단량체(모노머)의 중합체, 방향족 비닐 단량체와 공중합 가능한 다른 단량체와의 공중합체, 또는 상기 방향족 비닐 단량체 및 고무질 중합체를 포함하는 단량체 혼합물의 중합체인 고무 변성 방향족 비닐계 수지일 수 있다.The aromatic vinyl resin (A) used in the present invention is a polymer of an aromatic vinyl monomer (monomer), a copolymer with another monomer copolymerizable with an aromatic vinyl monomer, or a polymer of a monomer mixture containing the aromatic vinyl monomer and a rubbery polymer. Phosphorus rubber-modified aromatic vinyl resin.
상기 방향족 비닐 단량체로는 스티렌, α-메틸스티렌, β-메틸스티렌, p-메틸스티렌, 파라 t-부틸스티렌, 에틸스티렌 등이 포함될 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.The aromatic vinyl monomers may include styrene, α-methylstyrene, β-methylstyrene, p-methylstyrene, para t-butylstyrene, ethyl styrene, and the like. These can be used individually or in mixture of 2 or more types.
상기 공중합 가능한 다른 단량체로는 아크릴로니트릴, 아크릴산, 메타크릴산, 무수말레인산, N-치환말레이미드 등이 사용될 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다.The other copolymerizable monomer may be acrylonitrile, acrylic acid, methacrylic acid, maleic anhydride, N-substituted maleimide, or the like. These can be used individually or in mixture of 2 or more types.
상기 고무질 중합체는 부타디엔형 고무류, 부타디엔과 스티렌의 공중합체, 폴리(아크릴로니트릴-부타디엔) 등의 디엔계 고무 및 상기 디엔계 고무를 수소 첨가한 포화고무, 이소프렌고무, 아크릴계고무 및 에틸렌-프로필렌-디엔단량체 삼원공중합체(EPDM)등을 사용할 수 있으며, 예를 들면, 폴리부타디엔, 부타디엔과 스티렌의 공중합체, 이소프렌고무, 알킬아크릴레이트 고무류 등이 사용될 수 있다.The rubbery polymers include butadiene type rubbers, copolymers of butadiene and styrene, diene rubbers such as poly (acrylonitrile-butadiene) and saturated rubbers hydrogenated with the diene rubber, isoprene rubber, acrylic rubber and ethylene-propylene- Diene terpolymer (EPDM) and the like can be used. For example, polybutadiene, a copolymer of butadiene and styrene, isoprene rubber, alkyl acrylate rubbers, and the like can be used.
상기 방향족 비닐계 수지(A)로서, 상기 고무 변성 방향족 비닐계 수지가 사용될 경우, 상기 고무질 중합체의 함량은 상기 단량체 혼합물 중 약 1 내지 약 30 중량%, 예를 들면 약 5 내지 약 15 중량%일 수 있고, 상기 방향족 비닐 단량체의 함량은 상기 단량체 혼합물 중 약 70 내지 약 99 중량%, 예를 들면 약 85 내지 약 95 중량%일 수 있다. 상기 범위에서 우수한 충격강도와 기계적 물성의 물성 발란스를 얻을 수 있다.As the aromatic vinyl resin (A), when the rubber modified aromatic vinyl resin is used, the content of the rubbery polymer may be about 1 to about 30% by weight, for example, about 5 to about 15% by weight of the monomer mixture. And the content of the aromatic vinyl monomer may be about 70 to about 99% by weight, for example about 85 to about 95% by weight of the monomer mixture. It is possible to obtain a good balance of physical properties of the impact strength and mechanical properties in the above range.
또한, 상기 고무질 중합체의 평균 입경은 Z-평균으로 약 0.1 내지 약 3 ㎛, 예를 들면 약 0.25 내지 약 2.5 ㎛일 수 있다. 상기 범위에서 고무 변성 방향족 비닐계 수지와 폴리페닐렌에테르계 수지 블렌드 시 적절한 물성을 나타낼 수 있다.In addition, the average particle diameter of the rubbery polymer may be about 0.1 to about 3 μm, for example, about 0.25 to about 2.5 μm in Z-average. When the rubber-modified aromatic vinyl resin and the polyphenylene ether resin blend in the above range can exhibit appropriate physical properties.
구체예에서, 상기 방향족 비닐계 수지(A)의 예로는 폴리스티렌(PS), 고충격 폴리스티렌(HIPS), 아크릴로니트릴-부타디엔-스티렌 공중합체 수지(ABS), 아크릴로니트릴-스티렌 공중합체 수지(SAN), 아크릴로니트릴-스티렌-아크릴레이트 공중합체 수지(ASA) 등을 예시할 수 있다. 이들은 단독 또는 2종 이상 혼합되어 사용될 수 있다. 예를 들면, 고충격 폴리스티렌(HIPS) 등의 고무 변성 방향족 비닐계 수지가 사용될 수 있으며, 이들은 폴리페닐렌에테르계 수지와 상용성 면에서 우수할 수 있다.In an embodiment, examples of the aromatic vinyl resin (A) include polystyrene (PS), high impact polystyrene (HIPS), acrylonitrile-butadiene-styrene copolymer resin (ABS), acrylonitrile-styrene copolymer resin ( SAN), acrylonitrile-styrene-acrylate copolymer resin (ASA), etc. can be illustrated. These can be used individually or in mixture of 2 or more types. For example, rubber modified aromatic vinyl resins such as high impact polystyrene (HIPS) may be used, and these may be excellent in compatibility with polyphenylene ether resins.
상기 방향족 비닐계 수지(A)의 제조방법은 본 발명이 속하는 분야의 통상의 지식을 가진 자에 의해 잘 알려져 있으며, 상업적 구입이 용이하다.The method for producing the aromatic vinyl resin (A) is well known by those skilled in the art to which the present invention pertains, and is easy to purchase commercially.
예를 들면, 상기 방향족 비닐계 수지(A)는 개시제 없이 열중합에 의해 중합되거나, 개시제의 존재 하에 중합될 수 있다. 상기 중합 개시제로는 벤조일 퍼옥사이드, t-부틸 하이드로 퍼옥사이드, 아세틸 퍼옥사이드, 큐멘하이드로 퍼옥사이드 등의 과산화물계 개시제와 아조비스 이소부티로니트릴 같은 아조계 개시제 중 1종 이상이 선택되어 이용될 수 있으나, 이에 제한되는 것은 아니다.For example, the aromatic vinyl resin (A) may be polymerized by thermal polymerization without an initiator or polymerized in the presence of an initiator. As the polymerization initiator, at least one of peroxide initiators such as benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide, cumene hydroperoxide, and azo initiators such as azobis isobutyronitrile may be selected and used. However, it is not limited thereto.
상기 방향족 비닐계 수지(A)는 괴상중합, 현탁중합, 유화중합 또는 이들의 혼합방법을 사용하여 제조될 수 있으며, 이러한 중합방법들 중 괴상중합방법이 바람직하게 사용될 수 있다.The aromatic vinyl resin (A) may be prepared using a bulk polymerization, suspension polymerization, emulsion polymerization or a mixture thereof, and among these polymerization methods, a bulk polymerization method may be preferably used.
상기 방향족 비닐계 수지(A)는 GPC(Gel Permeation Chromatography)로 측정한 중량평균분자량이 약 50,000 내지 약 200,000 g/mol, 예를 들면 약 100,000 내지 약 200,000 g/mol일 수 있으나, 이에 제한되지 않는다.The aromatic vinyl resin (A) may have a weight average molecular weight of about 50,000 to about 200,000 g / mol, for example, about 100,000 to about 200,000 g / mol, measured by gel permeation chromatography (GPC), but is not limited thereto. .
상기 방향족 비닐계 수지(A)는 본 발명의 난연성 열가소성 수지 조성물에서 기초수지를 구성하며, (A)+(B)로 이루어진 기초수지 중 약 10 내지 약 49 중량%, 예를 들면 약 15 내지 약 45 중량%, 구체적으로 약 20 내지 약 40 중량%로 포함될 수 있다. 상기 방향족 비닐계 수지(A)의 함량이 기초수지 중, 약 10 중량% 미만이면, 충격강도, 유동성 등이 저하될 우려가 있고, 약 49 중량%를 초과하면, 장기적 내구성이 저하될 우려가 있다.The aromatic vinyl resin (A) constitutes a base resin in the flame retardant thermoplastic resin composition of the present invention, and is about 10 to about 49 wt% of the base resin consisting of (A) + (B), for example, about 15 to about 45 weight percent, specifically about 20 to about 40 weight percent. If the content of the aromatic vinyl-based resin (A) is less than about 10% by weight of the base resin, there is a risk that the impact strength, fluidity, etc. may be lowered, and when it exceeds 49% by weight, long-term durability may be lowered. .
(B) 폴리페닐렌에테르계 수지(B) polyphenylene ether resin
본 발명에 사용되는 폴리페닐렌에테르계 수지(B)는 난연성 및 내열성을 높이기 위한 것이다. 상기 폴리페닐렌에테르계 수지(B)로는 난연성 열가소성 수지 조성물에 사용되는 통상의 폴리페닐렌에테르계 수지를 사용할 수 있으며, 예를 들면, 폴리(2,6-디메틸-1,4-페닐렌)에테르, 폴리(2,6-디에틸-1,4-페닐렌)에테르, 폴리(2,6-디프로필-1,4-페닐렌)에테르, 폴리(2-메틸-6-에틸-1,4-페닐렌)에테르, 폴리(2-메틸-6-프로필-1,4-페닐렌)에테르, 폴리(2-에틸-6-프로필-1,4-페닐렌)에테르, 폴리(2,6-디페닐-1,4-페닐렌)에테르, 폴리(2,6-디메틸-1,4-페닐렌)에테르와 폴리(2,3,6-트리메틸-1,4-페닐렌)에테르의 공중합체, 폴리(2,6-디메틸-1,4-페닐렌)에테르와 폴리(2,3,6-트리에틸-1,4-페닐렌)에테르의 공중합체 등이 사용될 수 있다. 구체적으로, 폴리(2,6-디메틸-1,4-페닐렌)에테르, 또는 폴리(2,6-디메틸-1,4-페닐렌)에테르와 폴리(2,3,6-트리메틸-1,4-페닐렌)에테르의 공중합체를 사용할 수 있고, 구체적으로 폴리(2,6-디메틸-1,4-페닐렌)에테르를 사용할 수 있다.The polyphenylene ether resin (B) used in the present invention is for increasing flame retardancy and heat resistance. As the polyphenylene ether resin (B), a common polyphenylene ether resin used in a flame retardant thermoplastic resin composition can be used, for example, poly (2,6-dimethyl-1,4-phenylene) Ether, poly (2,6-diethyl-1,4-phenylene) ether, poly (2,6-dipropyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1, 4-phenylene) ether, poly (2-methyl-6-propyl-1,4-phenylene) ether, poly (2-ethyl-6-propyl-1,4-phenylene) ether, poly (2,6 -Diphenyl-1,4-phenylene) ether, poly (2,6-dimethyl-1,4-phenylene) ether and poly (2,3,6-trimethyl-1,4-phenylene) ether Copolymers, copolymers of poly (2,6-dimethyl-1,4-phenylene) ether and poly (2,3,6-triethyl-1,4-phenylene) ether and the like can be used. Specifically, poly (2,6-dimethyl-1,4-phenylene) ether or poly (2,6-dimethyl-1,4-phenylene) ether and poly (2,3,6-trimethyl-1, Copolymers of 4-phenylene) ether may be used, and specifically, poly (2,6-dimethyl-1,4-phenylene) ether may be used.
상기 폴리페닐렌에테르계 수지(B)의 중합도는 특별히 제한되지 않으나, 수지 조성물의 열안정성이나 작업성 등을 고려하면, 25℃의 클로로포름 용매에서 측정하였을 때의 고유점도가 약 0.2 내지 약 0.8 dl/g인 것이 사용될 수 있다.The degree of polymerization of the polyphenylene ether resin (B) is not particularly limited, but considering the thermal stability and workability of the resin composition, the intrinsic viscosity when measured in a chloroform solvent at 25 ° C. is about 0.2 to about 0.8 dl. / g may be used.
상기 폴리페닐렌에테르계 수지(B)는 본 발명의 난연성 열가소성 수지 조성물에서 기초수지를 구성하며, (A)+(B)로 이루어진 기초수지 중 약 51 내지 약 90 중량%, 예를 들면 약 55 내지 약 85 중량%, 구체적으로 약 60 내지 약 80 중량%로 포함될 수 있다. 상기 폴리페닐렌에테르계 수지(B)의 함량이 상기 기초수지 중, 약 51 중량% 미만이면, 장기적 내구성, 난연성 및 내열성이 저하될 우려가 있고, 약 90 중량%를 초과하면, 충격강도 등이 저하될 우려가 있다.The polyphenylene ether-based resin (B) constitutes a base resin in the flame retardant thermoplastic resin composition of the present invention, and is about 51 to about 90% by weight of the base resin consisting of (A) + (B), for example, about 55 To about 85% by weight, specifically about 60 to about 80% by weight. If the content of the polyphenylene ether resin (B) is less than about 51% by weight of the basic resin, there is a fear that long-term durability, flame retardancy and heat resistance is lowered, and when it exceeds about 90% by weight, impact strength and the like There is a risk of deterioration.
(C) 폴리포스포네이트(C) polyphosphonates
본 발명에 사용되는 폴리포스포네이트(C)는 하기 화학식 1로 표시되는 단위를 포함한다.Polyphosphonate (C) used in the present invention includes a unit represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2013006944-appb-I000003
Figure PCTKR2013006944-appb-I000003
상기 화학식 1에서, A는 단일 결합, C1-C5의 알킬렌기, C2-C5의 알킬리덴기, C5-C6의 시클로알킬리덴기, -S- 또는 -SO2-이고, R1은 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C6-C20의 아릴기 또는 C6-C20의 치환 또는 비치환된 아릴옥시기이고, R2 및 R3는 각각 독립적으로 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C3-C6의 시클로알킬기, 치환 또는 비치환된 C6-C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이고, n은 1 내지 500, 예를 들면 4 내지 500의 정수이다.In Formula 1, A is a single bond, C1-C5 alkylene group, C2-C5 alkylidene group, C5-C6 cycloalkylidene group, -S- or -SO 2- , R 1 is substituted or unsubstituted A substituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group, or a C6-C20 substituted or unsubstituted aryloxy group, R 2 and R 3 are each independently substituted or unsubstituted C1- An alkyl group of C6, a substituted or unsubstituted cycloalkyl group of C3-C6, a substituted or unsubstituted C6-C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4, n is 1 to 500, for example, an integer from 4 to 500.
구체예에서, 상기 폴리포스포네이트(C)는 하기 화학식 2로 표시되는 단위를 포함하는 폴리포스포네이트를 1종 이상 포함할 수 있다.In embodiments, the polyphosphonate (C) may include at least one polyphosphonate including a unit represented by the following formula (2).
[화학식 2][Formula 2]
Figure PCTKR2013006944-appb-I000004
Figure PCTKR2013006944-appb-I000004
상기 화학식 2에서, A 및 B는 각각 독립적으로 단일 결합, C1-C5의 알킬렌기, C2-C5의 알킬리덴기, C5-C6의 시클로알킬리덴기, -S- 또는 -SO2-이고, 단, A 및 B는 서로 동일하지 않으며, R1 및 R4는 각각 독립적으로 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C6-C20의 아릴기 또는 C6-C20의 치환 또는 비치환된 아릴옥시기이고, R2, R3, R5 및 R6는 각각 독립적으로 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C3-C6의 시클로알킬기, 치환 또는 비치환된 C6-C12의 아릴기 또는 할로겐 원자이며, a, b, c 및 d는 각각 독립적으로 0 내지 4의 정수이고, m은 0 내지 500, 예를 들면 1 내지 500의 정수이며, n은 1 내지 500, 예를 들면 4 내지 500의 정수이다.In Formula 2, A and B are each independently a single bond, an alkylene group of C1-C5, an alkylidene group of C2-C5, a cycloalkylidene group of C5-C6, -S- or -SO 2- , A and B are not the same as each other, R 1 and R 4 are each independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group or C6-C20 substituted or unsubstituted Is an aryloxy group, R 2 , R 3 , R 5 and R 6 are each independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C3-C6 cycloalkyl group, a substituted or unsubstituted C6 -C12 is an aryl group or halogen atom, a, b, c and d are each independently an integer of 0 to 4, m is an integer of 0 to 500, for example 1 to 500, n is 1 to 500, For example, it is an integer of 4-500.
구체예에서, 상기 m과 n의 합은 3 내지 600일 수 있다. 상기 범위에서 보다 우수한 난연성을 부여할 수 있다.In embodiments, the sum of m and n may be 3 to 600. More excellent flame retardancy can be provided in the above range.
상기 폴리포스포네이트(C)는 예를 들면, 단일중합체 형태의 폴리포스포네이트, 공중합체 형태의 폴리포스포네이트가 각각 사용되거나, 단일중합체 형태의 폴리포스포네이트와 공중합체 형태의 폴리포스포네이트가 함께 사용될 수 있으나, 이에 한정되지 않는다.The polyphosphonates (C) are, for example, polyphosphonates in the form of homopolymers, polyphosphonates in the form of copolymers, respectively, or polyphosphonates in the form of homopolymers and polyphosphes in the form of copolymers. Phonates may be used together, but are not limited thereto.
상기 폴리포스포네이트(C)는 하기 화학식 3으로 표시되는 다이올 및 하기 화학식 4로 표시되는 다이올 중 1종 이상을 포함하는 다이올 및 하기 화학식 5로 표시되는 포스포닉 디클로라이드를 반응시켜 제조할 수 있다.The polyphosphonate (C) is prepared by reacting a diol including one or more of a diol represented by the following Chemical Formula 3 and a diol represented by the following Chemical Formula 4 and a phosphonic dichloride represented by the following Chemical Formula 5. can do.
[화학식 3][Formula 3]
Figure PCTKR2013006944-appb-I000005
Figure PCTKR2013006944-appb-I000005
[화학식 4][Formula 4]
Figure PCTKR2013006944-appb-I000006
Figure PCTKR2013006944-appb-I000006
상기 화학식 3 및 4에서, A, B, R2, R3, R5, R6, a, b, c 및 d는 상기 화학식 2에서 정의한 바와 같다.In Formulas 3 and 4, A, B, R 2 , R 3 , R 5 , R 6 , a, b, c and d are as defined in Formula 2 above.
상기 다이올의 구체적인 예로는 4,4'-디히드록시비페닐, 2,2-비스-(4-히드록시페닐)-프로판, 2,4-비스-(4-히드록시페닐)-2-메틸부탄, 1,1-비스-(4-히드록시페닐)-시클로헥산, 2,2-비스-(3-클로로-4-히드록시페닐)-프로판, 2,2-비스-(3,5-디클로로-4-히드록시페닐)-프로판 등이 있으며, 단독 또는 2종 이상 혼합하여 사용될 수 있다. 구체예에서, 4,4'-디히드록시비페닐 단독, 또는 4,4'-디히드록시비페닐과 2,2-비스-(4-히드록시페닐)-프로판이 적용될 수 있다. 2종의 다이올 사용 시, 다이올간 비율은 발현하고자 하는 물성에 따라 적절히 조절될 수 있다. 구체예에서, 4,4'-디히드록시비페닐과 2,2-비스-(4-히드록시페닐)-프로판의 몰비가 약 5 내지 약 95 : 약 95 내지 약 5일 수 있다. 상기 범위에서 보다 우수한 난연성을 부여할 수 있다.Specific examples of the diol include 4,4'-dihydroxybiphenyl, 2,2-bis- (4-hydroxyphenyl) -propane, 2,4-bis- (4-hydroxyphenyl) -2- Methylbutane, 1,1-bis- (4-hydroxyphenyl) -cyclohexane, 2,2-bis- (3-chloro-4-hydroxyphenyl) -propane, 2,2-bis- (3,5 -Dichloro-4-hydroxyphenyl) -propane and the like, and may be used alone or in combination of two or more thereof. In an embodiment, 4,4'-dihydroxybiphenyl alone or 4,4'-dihydroxybiphenyl and 2,2-bis- (4-hydroxyphenyl) -propane may be applied. When using two diols, the ratio between diols may be appropriately adjusted according to the physical properties to be expressed. In an embodiment, the molar ratio of 4,4′-dihydroxybiphenyl and 2,2-bis- (4-hydroxyphenyl) -propane may be from about 5 to about 95: about 95 to about 5. More excellent flame retardancy can be provided in the above range.
[화학식 5][Formula 5]
Figure PCTKR2013006944-appb-I000007
Figure PCTKR2013006944-appb-I000007
상기 화학식 5에서, R은 각각 독립적으로 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C6-C20의 아릴기 또는 C6-C20의 치환 또는 비치환된 아릴옥시기이다. 여기서, 상기 화학식 5로 표시되는 포스포닉 디클로라이드는 R이 동일하지 않은 2종의 화합물을 사용할 수 있으며, 화학식 5의 R은 화학식 1 및 2의 R1 및 R4에 해당하는 것이다.In Formula 5, each R is independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group, or a C6-C20 substituted or unsubstituted aryloxy group. Here, the phosphonic dichloride represented by Formula 5 may use two kinds of compounds in which R is not the same, and R in Formula 5 corresponds to R 1 and R 4 in Formulas 1 and 2.
구체예에서, 다이올, 촉매 및 말단 캡핑제가 혼합된 용액에 포스포닉 디클로라이드를 적가시켜 반응시킬 수 있고, 전체 다이올 약 1 당량에 대하여, 포스포닉 디클로라이드를 약 1 당량으로 반응시킬 수 있다.In an embodiment, the phosphonic dichloride can be reacted dropwise with a solution containing a diol, a catalyst, and an end capping agent, and about 1 equivalent of the total diol can be reacted with about 1 equivalent of the phosphonic dichloride. .
상기 다이올과 포스포닉 디클로라이드의 반응은 루이스산 촉매 하에서 통상의 중합방법으로 수행할 수 있다. 상기 중합은 예를 들면 용액중합이 사용될 수 있다. 상기 루이스산 촉매로는 알루미늄 클로라이드, 마그네슘 클로라이드 등이 사용될 수 있으나, 이에 제한되는 것은 아니다. 상기 촉매는 전체 다이올 약 1 당량에 대하여, 약 0.01 내지 약 10 당량, 예를 들면 약 0.01 내지 약 1 당량, 구체적으로 약 0.01 내지 약 0.1 당량으로 적용될 수 있다.The reaction of the diol and phosphonic dichloride can be carried out by a conventional polymerization method under a Lewis acid catalyst. For the polymerization, for example, solution polymerization may be used. As the Lewis acid catalyst, aluminum chloride, magnesium chloride, or the like may be used, but is not limited thereto. The catalyst may be applied in an amount of about 0.01 to about 10 equivalents, such as about 0.01 to about 1 equivalents, specifically about 0.01 to about 0.1 equivalents, based on about 1 equivalent of the total diol.
또한, 상기 반응은 말단캡핑제 존재 하에 수행될 수 있다. 상기 말단캡핑제로는 C1-C5의 알킬기 함유 페놀이 바람직하게 적용될 수 있으며, 예를 들면, 페놀, 4-t-부틸페놀, 2-t-부틸페놀이 사용될 수 있다. 상기 말단 캡핑제는 전체 다이올 약 1 당량에 대하여, 약 1 당량 이하, 예를 들면 약 0.01 내지 약 0.5 당량으로 사용될 수 있다.In addition, the reaction may be carried out in the presence of an end capping agent. As the end capping agent, C1-C5 alkyl group-containing phenol may be preferably applied. For example, phenol, 4-t-butylphenol, or 2-t-butylphenol may be used. The end capping agent may be used in an amount of about 1 equivalent or less, such as about 0.01 to about 0.5 equivalents, based on about 1 equivalent of the total diol.
구체예에서, 상기 반응이 종료된 후 산 용액으로 세척할 수 있다. 상기 산 용액으로는 인산, 염산, 질산, 황산 등이 적용될 수 있으며, 예를 들면 인산 또는 염산이다. 이때, 산 용액은 약 0.1 내지 약 10%, 예를 들면 약 1 내지 약 5%의 농도일 수 있다. 이후, 세척 및 여과단계를 거쳐 흰색 고체 형태의 폴리포스포네이트를 수득할 수 있다.In an embodiment, the reaction may be completed and then washed with an acid solution. Phosphoric acid, hydrochloric acid, nitric acid, sulfuric acid, etc. may be applied as the acid solution, for example, phosphoric acid or hydrochloric acid. At this time, the acid solution may be in a concentration of about 0.1 to about 10%, for example about 1 to about 5%. Thereafter, washing and filtration may give a polyphosphonate in the form of a white solid.
상기 폴리포스포네이트(C)는 GPC(Gel Permeation Chromatography)로 측정한 중량평균분자량(Mw)이 약 1,000 내지 약 50,000 g/mol일 수 있다. 예를 들면 약 1,000 내지 약 20,000 g/mol, 구체적으로 약 1,000 내지 약 10,000 g/mol일 수 있다. 상기 범위에서 보다 우수한 난연성을 부여할 수 있다.The polyphosphonate (C) may have a weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of about 1,000 to about 50,000 g / mol. For example, about 1,000 to about 20,000 g / mol, specifically about 1,000 to about 10,000 g / mol. More excellent flame retardancy can be provided in the above range.
상기 폴리포스포네이트는 산가가 약 0.005 내지 약 4 KOH mg/g, 예를 들면 약 0.01 내지 약 1 KOH mg/g일 수 있다. 상기 범위에서 열가소성 수지의 분해가 발생하지 않는다.The polyphosphonate may have an acid value of about 0.005 to about 4 KOH mg / g, for example, about 0.01 to about 1 KOH mg / g. Decomposition of the thermoplastic resin does not occur in the above range.
상기 폴리포스포네이트는 다분산지수(PDI)가 약 1 내지 약 3.5, 예를 들면 약 1.5 내지 약 2.5일 수 있다. 상기 범위에서 난연성 및 유동성, 충격강도, 내열성 등의 물성 발란스가 우수할 수 있다.The polyphosphonate may have a polydispersity index (PDI) of about 1 to about 3.5, for example about 1.5 to about 2.5. In the above range, physical properties such as flame retardancy and fluidity, impact strength, heat resistance, and the like may be excellent.
상기 폴리포스포네이트는 유리전이온도가 약 75 내지 약 90℃, 예를 들면 약 78 내지 약 87℃일 수 있다. 상기 범위에서 수지 조성물의 가공성이 우수할 수 있다.The polyphosphonate may have a glass transition temperature of about 75 to about 90 ℃, for example about 78 to about 87 ℃. The processability of the resin composition may be excellent in the above range.
상기 폴리포스포네이트(C)는 하기 식 1에 의한 산가 변화율이 약 0.005 내지 약 6, 예를 들면 약 0.01 내지 약 5일 수 있다. 상기 범위에서 열가소성 수지의 분해가 발생되지 않을 수 있다. 구체예에서, 상기 폴리포스포네이트(C)의 산가 변화율은 약 0.05 내지 약 1일 수 있다.The polyphosphonate (C) may have an acid value change rate of about 0.005 to about 6, for example, about 0.01 to about 5, by the following Formula 1. In the above range, decomposition of the thermoplastic resin may not occur. In embodiments, the rate of change of the acid value of the polyphosphonate (C) may be about 0.05 to about 1.
[식 1][Equation 1]
Figure PCTKR2013006944-appb-I000008
Figure PCTKR2013006944-appb-I000008
상기 식 1에서, ΔAV는 산가 변화율을 나타내고, AVa는 폴리포스포네이트 약 10g을 약 280℃에서, 약 1시간 동안 방치한 후의 산가를 나타내며, AVb는 폴리포스포네이트 초기 산가를 나타낸다.In Formula 1, ΔAV represents an acid value change rate, AVa represents an acid value after about 10 g of polyphosphonate is left at about 280 ° C. for about 1 hour, and AVb represents an initial acid value of polyphosphonate.
상기 폴리포스포네이트(C)는 (A)+(B)로 이루어진 기초수지 100 중량부에 대하여, 약 0.1 내지 약 30 중량부, 예를 들면 약 1 내지 약 25 중량부, 구체적으로 약 10 내지 약 25 중량부로 사용될 수 있다. 상기 폴리포스포네이트(C)의 함량이 상기 기초수지 100 중량부에 대하여, 약 0.1 중량부 미만이면, 난연성, 내열성 등이 저하될 우려가 있고, 약 30 중량부를 초과하면, 유동성, 충격강도, 난연성, 내열성 등의 물성 발란스 및 장기적 내구성이 저하될 우려가 있다.The polyphosphonate (C) is about 0.1 to about 30 parts by weight, for example about 1 to about 25 parts by weight, specifically about 10 to about 100 parts by weight of the base resin consisting of (A) + (B) About 25 parts by weight. If the content of the polyphosphonate (C) is less than about 0.1 part by weight based on 100 parts by weight of the base resin, there is a risk that the flame resistance, heat resistance, and the like may be lowered. When the content of the polyphosphonate (C) exceeds about 30 parts by weight, fluidity, impact strength, Physical properties such as flame retardancy and heat resistance, and long-term durability may be lowered.
본 발명에 따른 난연성 열가소성 수지 조성물은 ASTM D-638에 의거하여, 약 135℃의 온도에서 약 3,000시간 노출 시킨 후 약 5 mm/min의 조건에서 측정한 인장강도가 약 610 내지 약 800 kgf/mm2, 예를 들면 약 620 내지 약 750 kgf/mm2이며, 하기 식 2에 따른 인장강도 변화율이 약 10% 이하로서, 장기적 내구성이 특히 우수한 것이다.The flame-retardant thermoplastic resin composition according to the present invention has a tensile strength of about 610 to about 800 kgf / mm measured under the condition of about 5 mm / min after exposure to about 3,000 hours at a temperature of about 135 ℃ according to ASTM D-638 2 , for example, about 620 to about 750 kgf / mm 2 , the tensile strength change rate according to the following formula 2 is about 10% or less, the long-term durability is particularly excellent.
[식 2][Equation 2]
ΔTS = (TS0-TS3,000)×100/TS0 ΔTS = (TS 0 -TS 3,000 ) × 100 / TS 0
상기 식 1에서, TS0는 고온 노출 전 인장강도이고, TS3,000은 고온에서 약 3,000시간 노출 후의 인장강도이다.In Equation 1, TS 0 is tensile strength before high temperature exposure, and TS 3,000 is tensile strength after about 3,000 hours of exposure at high temperature.
본 발명의 난연성 열가소성 수지 조성물은 필요에 따라, 난연보조제, 활제, 가소제, 열안정제, 적하방지제, 산화방지제, 상용화제, 광안정제, 안료, 염료, 무기물 첨가제 등의 첨가제를 더 포함할 수 있다. 이들은 단독 또는 2종 이상 혼합하여 사용될 수 있다. 예를 들면, 상기 첨가제는 상기 기초수지 100 중량부에 대하여, 약 0.1 내지 약 10 중량부 포함될 수 있으나, 이에 제한되지 않는다.The flame retardant thermoplastic resin composition of the present invention may further include additives such as flame retardant aids, lubricants, plasticizers, heat stabilizers, anti-drip agents, antioxidants, compatibilizers, light stabilizers, pigments, dyes, inorganic additives, and the like, if necessary. These can be used individually or in mixture of 2 or more types. For example, the additive may include about 0.1 to about 10 parts by weight based on 100 parts by weight of the base resin, but is not limited thereto.
상기 난연성 열가소성 수지 조성물은 상기 구성성분과 기타 첨가제들을 동시에 혼합한 후에, 압출기 내에서 용융 압출하고 펠렛 형태로 제조할 수 있다. 상기 제조된 펠렛은 사출성형, 압출성형, 진공성형, 캐스팅성형 등의 다양한 성형방법을 통해 다양한 성형품으로 제조될 수 있다.The flame retardant thermoplastic resin composition may be prepared by pelletizing after melt-extrusion in an extruder after mixing the components and other additives at the same time. The prepared pellets may be manufactured into various molded articles through various molding methods such as injection molding, extrusion molding, vacuum molding, and casting molding.
본 발명의 다른 관점은 상기 열가소성 수지 조성물로부터 형성된 성형품을 제공한다. 상기 성형품은 내충격성, 유동성, 난연성 등이 모두 우수하여 전기전자 제품의 부품, 외장재, 자동차 부품, 잡화, 구조재 등에 광범위하게 적용 가능하다.Another aspect of the present invention provides a molded article formed from the thermoplastic resin composition. The molded article is excellent in impact resistance, fluidity, flame retardancy, etc. can be widely applied to parts, exterior materials, automobile parts, sundries, structural materials of electrical and electronic products.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
실시예 Example
하기 실시예 및 비교예에서 사용된 각 성분의 사양은 다음과 같다:The specifications of each component used in the following Examples and Comparative Examples are as follows:
(A) 방향족 비닐계 수지(A) Aromatic vinyl resin
제일모직(주)의 고무강화 스티렌계 수지 HG-1760S를 사용하였다. 사용된 부타디엔 고무(고무질 중합체)의 평균 입경은 1.5 ㎛이며, 상기 고무의 함량은 6.5 중량%이다.Cheil Industries Ltd. rubber-reinforced styrene resin HG-1760S was used. The average particle diameter of the butadiene rubber (rubber polymer) used is 1.5 μm, and the content of the rubber is 6.5% by weight.
(B) 폴리페닐렌에테르계 수지(B) polyphenylene ether resin
중국 불루스타 케미칼의 폴리(2,6-디메틸-페닐에테르)(상품명: LXR-035C)를 사용하였다. 상기 수지는 수십 ㎛ 내지 수 mm의 평균입경을 갖는 연노랑색의 분말 형태이다.Poly (2,6-dimethyl-phenylether) (trade name: LXR-035C) from China Buluta Chemical was used. The resin is in the form of a pale yellow powder having an average particle diameter of several tens of micrometers to several mm.
(C-1) 폴리포스포네이트(C-1) polyphosphonate
난연제로서, 제일모직에서 제조한 하기 화학식 1a로 표시되는 비페닐 폴리포스포네이트를 사용하였다.As the flame retardant, biphenyl polyphosphonate represented by Chemical Formula 1a manufactured by Cheil Industries was used.
[화학식 1a][Formula 1a]
Figure PCTKR2013006944-appb-I000009
Figure PCTKR2013006944-appb-I000009
상기 화학식 1a에서, n은 4이다.In Formula 1a, n is 4.
(C-2) 폴리포스포네이트(C-2) polyphosphonate
난연제로서, 제일모직에서 제조한 하기 화학식 2a로 표시되는 폴리포스포네이트를 사용하였다.As the flame retardant, polyphosphonate represented by Chemical Formula 2a manufactured by Cheil Industries was used.
[화학식 2a][Formula 2a]
Figure PCTKR2013006944-appb-I000010
Figure PCTKR2013006944-appb-I000010
상기 화학식 2a에서, m 및 n은 각각 2이다.In Formula 2a, m and n are each 2.
(C-3) 방향족 인산 에스테르 화합물(C-3) Aromatic Phosphate Ester Compounds
일본 대팔화학의 비스(디메틸페닐)포스페이트 비스페놀A(상품명: CR741S)를 난연제로 사용하였다.Bis (dimethylphenyl) phosphate bisphenol A (trade name: CR741S) of Nippon-Dhalf Chemical was used as a flame retardant.
실시예 1~7 및 비교예 1~6Examples 1-7 and Comparative Examples 1-6
상기 각 구성 성분을 하기 표 1 및 2에 기재된 바와 같은 함량으로 첨가한 후, hindered phenol계 열안정제 0.1 중량부를 첨가하여, 용융, 혼련 압출하여 펠렛을 제조하였다. 이때, 압출은 L/D=29, 직경 45 mm인 이축 압출기를 사용하였으며, 제조된 펠렛은 80℃에서 6시간 건조 후, 6 Oz 사출기에서 사출하여 시편을 제조하였다. 제조된 시편에 대하여 하기의 방법으로 물성을 평가하고, 그 결과를 하기 표 1 및 2에 나타내었다.After adding each of the components in the content as described in Tables 1 and 2, 0.1 parts by weight of a hindered phenol-based heat stabilizer was added, melted, kneaded and extruded to prepare a pellet. At this time, the extrusion was used a twin screw extruder having a diameter of L / D = 29, 45 mm, the prepared pellet was dried for 6 hours at 80 ℃, and injected into a 6 Oz injection machine to prepare a specimen. The physical properties of the prepared specimens were evaluated by the following method, and the results are shown in Tables 1 and 2 below.
상기 각 성분을 표 1 및 2의 함량으로 혼합한 후, 통상의 이축 압출기에서 200 내지 280℃ 온도범위에서 압출하여 펠렛을 제조하였다. 제조된 펠렛은 80℃에서 3시간 건조 후, 6 Oz 사출기에서 성형온도 180 내지 280℃, 금형온도 40 내지 80℃의 조건으로 사출하여 난연 시편을 제조하였다. 제조된 시편에 대해 하기 방법으로 물성을 평가하였다.After mixing the components in the amounts of Tables 1 and 2, the pellets were prepared by extruding in a temperature range of 200 to 280 ℃ in a conventional twin screw extruder. The prepared pellet was dried at 80 ° C. for 3 hours, and then injected into a mold at a temperature of 180 to 280 ° C. and a mold temperature of 40 to 80 ° C. in a 6 Oz injection machine to prepare a flame retardant specimen. The physical properties of the prepared specimens were evaluated by the following method.
물성 측정 방법Property measurement method
(1) 난연도: 두께 1/10"의 시편을 제조하여 UL94 VB 난연 규정에 따라 난연도를 측정하였다.(1) Flame retardancy: A specimen of 1/10 "thickness was prepared and the flame retardance was measured according to UL94 VB flame retardancy regulations.
(2) 아이조드(Izod) 충격강도(단위: kgfㆍcm/cm): ASTM D256에 규정된 평가방법에 의하여 두께 1/8"의 아이조드 시편에 노치(Notch)를 만들어 평가하였다.(2) Izod impact strength (unit: kgf · cm / cm): Notch was evaluated by making an Izod specimen having a thickness of 1/8 "by the evaluation method specified in ASTM D256.
(3) 내열도(VST, 단위: ℃): ASTM D1525에 준하여, 5 kgf 하중에서 측정하였다.(3) Heat resistance (VST, unit: ℃): measured at 5 kgf load in accordance with ASTM D1525.
(4) 인장강도 및 변화율 평가(장기적 내구성 평가): 시편을 각각 80℃, 110℃ 및 135℃가 일정하게 유지되는 조건 하에서, 0시간, 1,000시간, 2,000시간 및 3,000시간 동안 노출시킨 후, ASTM D-638에 의거하여, 인장강도(인장속도: 5mm/min, 시편 두께: 3.2mm, 단위: kgf/mm2)를 측정하고, 하기 식 2에 따라 인장강도 변화율(ΔTS, 단위: %)을 계산하였다.(4) Tensile strength and rate of change evaluation (long term durability evaluation): After the specimens were exposed to 0 hours, 1,000 hours, 2,000 hours and 3,000 hours under the condition that 80 ° C, 110 ° C and 135 ° C were kept constant, Based on D-638, tensile strength (tensile velocity: 5 mm / min, specimen thickness: 3.2 mm, unit: kgf / mm 2 ) was measured, and tensile strength change rate (ΔTS, unit:%) was calculated according to the following Equation 2. Calculated.
[식 2][Equation 2]
ΔTS = (TS0-TS3,000)×100/TS0 ΔTS = (TS 0 -TS 3,000 ) × 100 / TS 0
상기 식 1에서, TS0는 고온 노출 전 인장강도이고, TS3,000은 고온에서 3,000시간 노출 후의 인장강도이다.In Equation 1, TS 0 is tensile strength before high temperature exposure, and TS 3,000 is tensile strength after 3000 hours of exposure at high temperature.
표 1
실시예
1 2 3 4 5 6 7
(A) 49 45 35 30 20 35 35
(B) 51 55 65 70 80 65 65
(C-1) 21 20 15 15 12 - 7.5
(C-2) - - - - - 15 7.5
UL94 난연도 V-0 V-0 V-0 V-0 V-0 V-0 V-0
Izod 충격강도 (kgf·cm/cm) 11 12 12 13 15 11 12
VST 내열도 (℃) 131 135 138 141 150 140 139
인장강도(kgf/mm2) 80℃ 0hr 670 700 720 730 750 715 720
1000hr 675 710 700 710 740 720 710
2000hr 680 705 715 700 730 725 720
3000hr 682 699 725 699 720 720 720
110℃ 0hr 670 700 720 730 750 715 720
1000hr 660 705 700 710 730 700 700
2000hr 651 680 695 695 700 695 700
3000hr 644 660 690 680 690 690 690
135℃ 0hr 670 700 720 730 750 715 720
1000hr 670 685 710 715 720 710 710
2000hr 640 660 680 700 690 680 680
3000hr 621 651 660 660 660 660 660
인장강도변화율 (%) 80℃ -1.79 0.14 -0.69 4.25 4 -0.7 0
110℃ 3.88 5.71 4.16 6.85 8 3.5 4.16
135℃ 7.31 7 8.33 9.59 12 8.0 8.3
Table 1
Example
One 2 3 4 5 6 7
(A) 49 45 35 30 20 35 35
(B) 51 55 65 70 80 65 65
(C-1) 21 20 15 15 12 - 7.5
(C-2) - - - - - 15 7.5
UL94 flame retardant V-0 V-0 V-0 V-0 V-0 V-0 V-0
Izod impact strength (kgfcm / cm) 11 12 12 13 15 11 12
VST heat resistance (℃) 131 135 138 141 150 140 139
Tensile strength (kgf / mm 2 ) 80 ℃ 0hr 670 700 720 730 750 715 720
1000hr 675 710 700 710 740 720 710
2000hr 680 705 715 700 730 725 720
3000hr 682 699 725 699 720 720 720
110 ℃ 0hr 670 700 720 730 750 715 720
1000hr 660 705 700 710 730 700 700
2000hr 651 680 695 695 700 695 700
3000hr 644 660 690 680 690 690 690
135 ℃ 0hr 670 700 720 730 750 715 720
1000hr 670 685 710 715 720 710 710
2000hr 640 660 680 700 690 680 680
3000hr 621 651 660 660 660 660 660
Tensile Strength Change Rate (%) 80 ℃ -1.79 0.14 -0.69 4.25 4 -0.7 0
110 ℃ 3.88 5.71 4.16 6.85 8 3.5 4.16
135 ℃ 7.31 7 8.33 9.59 12 8.0 8.3
표 2
비교예
1 2 3 4 5 6
(A) 60 55 55 55 30 20
(B) 40 45 45 45 70 80
(C-1) - - - 23 - -
(C-3) 25 22 - - 15 10
UL94 난연도 V-0 V-0 fail V-0 V-0 V-0
Izod 충격강도 (kgf·cm/cm) 7 8 16 9 12 12
VST 내열도 (℃) 85 89 137 110 132 145
인장강도(kgf/mm2) 80℃ 0hr 550 570 710 650 720 715
1000hr 560 577 720 640 715 725
2000hr 510 515 715 630 690 680
3000hr 480 488 700 621 680 690
110℃ 0hr ※ 측정불가 710 650 720 715
1000hr 700 620 715 700
2000hr 690 590 610 615
3000hr 690 480 545 595
135℃ 0hr ※ 측정불가 710 650 720 715
1000hr 690 630 715 700
2000hr 495 500 511 570
3000hr 433 420 499 510
인장강도변화율 (%) 80℃ ※ 측정불가 1.41 4.46 5.55 3.50
110℃ ※ 측정불가 2.82 26.15 24.31 16.78
135℃ ※ 측정불가 39.01 35.38 30.69 28.67
TABLE 2
Comparative example
One 2 3 4 5 6
(A) 60 55 55 55 30 20
(B) 40 45 45 45 70 80
(C-1) - - - 23 - -
(C-3) 25 22 - - 15 10
UL94 flame retardant V-0 V-0 fail V-0 V-0 V-0
Izod impact strength (kgfcm / cm) 7 8 16 9 12 12
VST heat resistance (℃) 85 89 137 110 132 145
Tensile strength (kgf / mm 2 ) 80 ℃ 0hr 550 570 710 650 720 715
1000hr 560 577 720 640 715 725
2000hr 510 515 715 630 690 680
3000hr 480 488 700 621 680 690
110 ℃ 0hr ※ Not measurable 710 650 720 715
1000hr 700 620 715 700
2000hr 690 590 610 615
3000hr 690 480 545 595
135 ℃ 0hr ※ Not measurable 710 650 720 715
1000hr 690 630 715 700
2000hr 495 500 511 570
3000hr 433 420 499 510
Tensile Strength Change Rate (%) 80 ℃ ※ Not measurable 1.41 4.46 5.55 3.50
110 ℃ ※ Not measurable 2.82 26.15 24.31 16.78
135 ℃ ※ Not measurable 39.01 35.38 30.69 28.67
※: 시편의 내열도(VST)가 낮아 시편의 변형으로 인해 측정이 불가함※: Low heat resistance (VST) of the specimen prevents measurement due to deformation of the specimen
표 1 및 2의 결과로부터, 난연제로 본 발명의 폴리포스포네이트(C)를 적용할 경우(실시예 1 내지 7), 난연성, 내열성, 장기 내열 내구성, 충격강도 등이 우수한 것을 알 수 있다. 반면, 폴리페닐렌에테르계 수지(B) 함량이 낮고 난연제로 폴리포스포네이트(C-1, C-2 등)를 적용하지 않은 비교예 1 및 2는 내열성 및 기계적 강도가 급격히 저하됨을 알 수 있고, 폴리페닐렌에테르계 수지(B) 함량이 낮고 난연제를 사용하지 않을 경우(비교예 3), 135℃에서의 장기적 내구성 및 난연도가 급격히 저하됨을 알 수 있으며, 비교예 4와 같이 폴리포스포네이트(C-1)를 적용하여도 폴리페닐렌에테르계 수지(B) 함량이 낮은 경우에는 110℃ 이상에서 장기적 내구성이 떨어지는 것을 알 수 있다. 난연제로 폴리포스포네이트(C)를 적용하지 않은 비교예 5 및 6은 내열도 및 난연도가 실시예의 내열도 및 난연도와 유사하였으나, 장기적 내구성(장기 내열 특성)이 현저히 저하됨을 알 수 있다.From the results in Tables 1 and 2, it can be seen that when the polyphosphonate (C) of the present invention is used as a flame retardant (Examples 1 to 7), the flame retardancy, heat resistance, long-term heat resistance, impact strength and the like are excellent. On the other hand, Comparative Examples 1 and 2, in which the polyphenylene ether resin (B) content is low and the polyphosphonates (C-1, C-2, etc.) are not applied as a flame retardant, show that the heat resistance and mechanical strength sharply decrease. In addition, when the polyphenylene ether resin (B) content is low and a flame retardant is not used (Comparative Example 3), it can be seen that the long-term durability and flame retardancy at 135 ° C. are sharply reduced, as in Comparative Example 4 Even when the fonate (C-1) is applied, when the polyphenylene ether resin (B) content is low, it can be seen that long-term durability is lowered at 110 ° C or higher. Comparative Examples 5 and 6, in which the polyphosphonate (C) was not applied as the flame retardant, showed that the heat resistance and the flame retardancy were similar to those of the examples, but the long-term durability (long-term heat resistance) was significantly reduced.
이상, 첨부된 표를 참조하여 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야 한다.As mentioned above, embodiments of the present invention have been described with reference to the attached table, but the present invention is not limited to the above embodiments and can be manufactured in various forms, and the general knowledge in the art to which the present invention pertains. Those skilled in the art will appreciate that the present invention may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.

Claims (8)

  1. (A) 방향족 비닐계 수지 약 10 내지 약 49 중량% 및 (B) 폴리페닐렌에테르계 수지 약 51 내지 약 90 중량%를 포함하는 기초수지 100 중량부; 및100 parts by weight of a base resin comprising about 10% to about 49% by weight of an aromatic vinyl resin and about 51% to about 90% by weight of a polyphenylene ether resin; And
    (C) 하기 화학식 1로 표시되는 단위를 포함하는 폴리포스포네이트 약 0.1 내지 약 30 중량부를 포함하는 것을 특징으로 하는 난연성 열가소성 수지 조성물:(C) a flame retardant thermoplastic resin composition comprising about 0.1 to about 30 parts by weight of a polyphosphonate comprising a unit represented by Formula 1 below:
    [화학식 1][Formula 1]
    Figure PCTKR2013006944-appb-I000011
    Figure PCTKR2013006944-appb-I000011
    상기 화학식 1에서, A는 단일 결합, C1-C5의 알킬렌기, C2-C5의 알킬리덴기, C5-C6의 시클로알킬리덴기, -S- 또는 -SO2-이고, R1은 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C6-C20의 아릴기 또는 C6-C20의 치환 또는 비치환된 아릴옥시기이고, R2 및 R3는 각각 독립적으로 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C3-C6의 시클로알킬기, 치환 또는 비치환된 C6-C12의 아릴기 또는 할로겐 원자이며, a 및 b는 각각 독립적으로 0 내지 4의 정수이고, n은 1 내지 500의 정수이다.In Formula 1, A is a single bond, C1-C5 alkylene group, C2-C5 alkylidene group, C5-C6 cycloalkylidene group, -S- or -SO 2- , R 1 is substituted or unsubstituted A substituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group, or a C6-C20 substituted or unsubstituted aryloxy group, R 2 and R 3 are each independently substituted or unsubstituted C1- An alkyl group of C6, a substituted or unsubstituted cycloalkyl group of C3-C6, a substituted or unsubstituted C6-C12 aryl group or a halogen atom, a and b are each independently an integer of 0 to 4, n is 1 to It is an integer of 500.
  2. 제1항에 있어서, 상기 폴리포스포네이트(C)는 하기 화학식 2로 표시되는 단위를 포함하는 폴리포스포네이트를 1종 이상 포함하는 것을 특징으로 하는 난연성 열가소성 수지 조성물:The flame retardant thermoplastic resin composition of claim 1, wherein the polyphosphonate (C) comprises at least one polyphosphonate comprising a unit represented by the following Chemical Formula 2:
    [화학식 2][Formula 2]
    Figure PCTKR2013006944-appb-I000012
    Figure PCTKR2013006944-appb-I000012
    상기 화학식 2에서, A 및 B는 각각 독립적으로 단일 결합, C1-C5의 알킬렌기, C2-C5의 알킬리덴기, C5-C6의 시클로알킬리덴기, -S- 또는 -SO2-이고, 단, A 및 B는 서로 동일하지 않으며, R1 및 R4는 각각 독립적으로 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C6-C20의 아릴기 또는 C6-C20의 치환 또는 비치환된 아릴옥시기이고, R2, R3, R5 및 R6는 각각 독립적으로 치환 또는 비치환된 C1-C6의 알킬기, 치환 또는 비치환된 C3-C6의 시클로알킬기, 치환 또는 비치환된 C6-C12의 아릴기 또는 할로겐 원자이며, a, b, c 및 d는 각각 독립적으로 0 내지 4의 정수이고, m은 0 내지 500의 정수이며, n은 1 내지 500의 정수이다.In Formula 2, A and B are each independently a single bond, an alkylene group of C1-C5, an alkylidene group of C2-C5, a cycloalkylidene group of C5-C6, -S- or -SO 2- , A and B are not the same as each other, R 1 and R 4 are each independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C6-C20 aryl group or C6-C20 substituted or unsubstituted Is an aryloxy group, R 2 , R 3 , R 5 and R 6 are each independently a substituted or unsubstituted C1-C6 alkyl group, a substituted or unsubstituted C3-C6 cycloalkyl group, a substituted or unsubstituted C6 -C12 is an aryl group or a halogen atom, a, b, c and d are each independently an integer of 0 to 4, m is an integer of 0 to 500, n is an integer of 1 to 500.
  3. 제2항에 있어서, 상기 m과 n의 합은 3 내지 600인 것을 특징으로 하는 난연성 열가소성 수지 조성물.The flame retardant thermoplastic resin composition of claim 2, wherein the sum of m and n is 3 to 600.
  4. 제1항에 있어서, 상기 방향족 비닐계 수지(A)는 약 0.1 내지 약 3 ㎛의 평균 입경을 갖는 고무질 중합체 약 1 내지 약 30 중량% 및 방향족 비닐 단량체 약 70 내지 약 99 중량%을 포함하는 단량체 혼합물의 중합체인 것을 특징으로 하는 난연성 열가소성 수지 조성물.The monomer of claim 1, wherein the aromatic vinyl resin (A) comprises about 1 to about 30 wt% of a rubbery polymer having an average particle diameter of about 0.1 to about 3 μm and about 70 to about 99 wt% of an aromatic vinyl monomer. Flame retardant thermoplastic resin composition, characterized in that the polymer of the mixture.
  5. 제1항에 있어서, 상기 폴리페닐렌에테르계 수지(B)는 폴리(2,6-디메틸-1,4-페닐렌)에테르, 폴리(2,6-디에틸-1,4-페닐렌)에테르, 폴리(2,6-디프로필-1,4-페닐렌)에테르, 폴리(2-메틸-6-에틸-1,4-페닐렌)에테르, 폴리(2-메틸-6-프로필-1,4-페닐렌)에테르, 폴리(2-에틸-6-프로필-1,4-페닐렌)에테르, 폴리(2,6-디페닐-1,4-페닐렌)에테르, 폴리(2,6-디메틸-1,4-페닐렌)에테르와 폴리(2,3,6-트리메틸-1,4-페닐렌)에테르의 공중합체, 및 폴리(2,6-디메틸-1,4-페닐렌)에테르와 폴리(2,3,6-트리에틸-1,4-페닐렌)에테르의 공중합체 중 1종 이상을 포함하는 것을 특징으로 하는 난연성 열가소성 수지 조성물.The polyphenylene ether-based resin (B) is poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene). Ether, poly (2,6-dipropyl-1,4-phenylene) ether, poly (2-methyl-6-ethyl-1,4-phenylene) ether, poly (2-methyl-6-propyl-1 , 4-phenylene) ether, poly (2-ethyl-6-propyl-1,4-phenylene) ether, poly (2,6-diphenyl-1,4-phenylene) ether, poly (2,6 Copolymers of -dimethyl-1,4-phenylene) ether and poly (2,3,6-trimethyl-1,4-phenylene) ether, and poly (2,6-dimethyl-1,4-phenylene) A flame retardant thermoplastic resin composition comprising at least one of copolymers of ether and poly (2,3,6-triethyl-1,4-phenylene) ether.
  6. 제1항에 있어서, 상기 난연성 열가소성 수지 조성물은 ASTM D-638에 의거하여, 약 135℃의 온도에서 약 3,000 시간 노출 시킨 후 약 5 mm/min의 조건에서 측정한 인장강도가 약 610 내지 약 800 kgf/mm2인 것을 특징으로 하는 난연성 열가소성 수지 조성물.The flame retardant thermoplastic resin composition of claim 1, wherein the flame retardant thermoplastic resin composition has a tensile strength of about 610 to about 800 measured at a condition of about 5 mm / min after exposure at a temperature of about 135 ° C. for about 3,000 hours according to ASTM D-638. The flame retardant thermoplastic resin composition, characterized in that kgf / mm 2 .
  7. 제1항에 있어서, 상기 난연성 열가소성 수지 조성물은 난연보조제, 활제, 가소제, 열안정제, 적하방지제, 산화방지제, 상용화제, 광안정제, 안료, 염료, 및 무기물 첨가제를 적어도 1종 포함하는 첨가제를 더욱 포함하는 것을 특징으로 하는 난연성 열가소성 수지 조성물.The method of claim 1, wherein the flame retardant thermoplastic resin composition further comprises an additive comprising at least one flame retardant aid, lubricant, plasticizer, heat stabilizer, anti-drip agent, antioxidant, compatibilizer, light stabilizer, pigment, dye, and inorganic additive. Flame retardant thermoplastic resin composition comprising a.
  8. 제1항에 내지 제7항 중 어느 한 항에 따른 난연성 열가소성 수지 조성물로부터 형성된 성형품.The molded article formed from the flame-retardant thermoplastic resin composition of any one of Claims 1-7.
PCT/KR2013/006944 2012-12-17 2013-08-01 Flame retardant thermoplastic resin composition, and articles molded therefrom WO2014098341A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0147858 2012-12-17
KR1020120147858A KR20140090290A (en) 2012-12-17 2012-12-17 Flame retardant thermoplastic resin composition and article produced therefrom

Publications (1)

Publication Number Publication Date
WO2014098341A1 true WO2014098341A1 (en) 2014-06-26

Family

ID=50978627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006944 WO2014098341A1 (en) 2012-12-17 2013-08-01 Flame retardant thermoplastic resin composition, and articles molded therefrom

Country Status (2)

Country Link
KR (1) KR20140090290A (en)
WO (1) WO2014098341A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109867942A (en) * 2019-01-30 2019-06-11 中国科学院宁波材料技术与工程研究所 A kind of preparation method and products thereof of fire-retardant fretting map polyphenylene oxide composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350793A (en) * 1980-01-26 1982-09-21 Bayer Aktiengesellschaft Flame-retardant composition of polyphenylene ether, polystyrene resin and polyphosphonate
KR20020005237A (en) * 2000-07-04 2002-01-17 안복현 Flame Retardant Thermoplastic Resin Composition
KR20090072936A (en) * 2007-12-28 2009-07-02 제일모직주식회사 Flameproof Thermoplastic Resin Composition and Method for Preparing the Same
KR20100065901A (en) * 2008-12-09 2010-06-17 제일모직주식회사 Novel phosphoric compound, method of preparing the same and flameproof thermoplastic resin composition using the same
KR20120078586A (en) * 2010-12-30 2012-07-10 제일모직주식회사 Polyphosphonate, method for preparing thereof and flame retardant thermoplastic resin composition comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4350793A (en) * 1980-01-26 1982-09-21 Bayer Aktiengesellschaft Flame-retardant composition of polyphenylene ether, polystyrene resin and polyphosphonate
KR20020005237A (en) * 2000-07-04 2002-01-17 안복현 Flame Retardant Thermoplastic Resin Composition
KR20090072936A (en) * 2007-12-28 2009-07-02 제일모직주식회사 Flameproof Thermoplastic Resin Composition and Method for Preparing the Same
KR20100065901A (en) * 2008-12-09 2010-06-17 제일모직주식회사 Novel phosphoric compound, method of preparing the same and flameproof thermoplastic resin composition using the same
KR20120078586A (en) * 2010-12-30 2012-07-10 제일모직주식회사 Polyphosphonate, method for preparing thereof and flame retardant thermoplastic resin composition comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109867942A (en) * 2019-01-30 2019-06-11 中国科学院宁波材料技术与工程研究所 A kind of preparation method and products thereof of fire-retardant fretting map polyphenylene oxide composite material
CN109867942B (en) * 2019-01-30 2021-06-29 中国科学院宁波材料技术与工程研究所 Preparation method of flame-retardant micro-foaming polyphenyl ether composite material and product thereof

Also Published As

Publication number Publication date
KR20140090290A (en) 2014-07-17

Similar Documents

Publication Publication Date Title
EP1651718B1 (en) Flameproof thermoplastic resin composition
KR20100004848A (en) Flame retardant and impact modifier, method for preparing thereof, and thermoplastic resin composition containing the same
KR100778010B1 (en) Non-halogen flameproof styrenic resin composition
EP2143754B1 (en) Flame retardent and impact modifier, method for preparing thereof, and thermoplastic resin composition containing the same
WO2021020741A1 (en) Thermoplastic resin composition and molded article formed therefrom
WO2017057904A1 (en) Thermoplastic resin composition and molded product comprising same
WO2019132584A1 (en) Thermoplastic resin composition and molded product formed therefrom
WO2012086867A1 (en) Acrylic copolymer resin composition
WO2018124790A2 (en) Thermoplastic resin composition and molded article using same
WO2010067926A1 (en) Novel phosphate compounds, preparation method thereof, and flame-retardant thermoplastic resin compositions using same
WO2019132575A1 (en) Thermoplastic resin composition and molded article manufactured therefrom
WO2018043930A1 (en) Aromatic vinyl-based copolymer, method for preparing same, and thermoplastic resin composition including same
WO2017105007A1 (en) Rubber modified vinyl-based graft copolymer, and thermoplastic resin composition containing same
WO2014098341A1 (en) Flame retardant thermoplastic resin composition, and articles molded therefrom
WO2018117438A1 (en) Resin composition and molded product manufactured therefrom
WO2022211458A1 (en) Thermoplastic resin composition and article manufactured using same
WO2022005181A1 (en) Polyphosphonate resin composition and molded product manufactured therefrom
WO2022025409A1 (en) Thermoplastic resin composition and molded article formed therefrom
WO2010074384A1 (en) Novel phosphonate compounds and flame retardant styrene resin compositions containing the same
WO2013100295A1 (en) Flame-retardant thermoplastic resin composition and molded product manufactured therefrom
WO2020004997A1 (en) Thermoplastic resin composition and molded product formed therefrom
WO2024210476A1 (en) Flame-retardant resin composition and method for preparing same
WO2012091300A1 (en) Thermoplastic resin composition, and molded article including same
KR100815992B1 (en) Flameproof thermoplastic resin composition
WO2013100343A1 (en) Flame retardant thermoplastic resin composition, and molded product prepared therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864102

Country of ref document: EP

Kind code of ref document: A1