WO2014097906A1 - Electricity storage device manufacturing method and doping bath - Google Patents

Electricity storage device manufacturing method and doping bath Download PDF

Info

Publication number
WO2014097906A1
WO2014097906A1 PCT/JP2013/082856 JP2013082856W WO2014097906A1 WO 2014097906 A1 WO2014097906 A1 WO 2014097906A1 JP 2013082856 W JP2013082856 W JP 2013082856W WO 2014097906 A1 WO2014097906 A1 WO 2014097906A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lithium
negative electrode
doping
positive electrode
Prior art date
Application number
PCT/JP2013/082856
Other languages
French (fr)
Japanese (ja)
Inventor
真 今野
平澤 貴久
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2014097906A1 publication Critical patent/WO2014097906A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0445Multimode batteries, e.g. containing auxiliary cells or electrodes switchable in parallel or series connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for manufacturing an electricity storage device and a doping tank.
  • lithium ion secondary batteries, lithium ion capacitors, and the like have attracted attention as power storage devices used in electric vehicles, hybrid vehicles, storage batteries for power storage, and the like.
  • a lithium ion secondary battery includes a positive electrode in which a lithium-containing metal oxide is laminated on the surface of a positive electrode current collector, a negative electrode in which a carbon material is laminated on the surface of a negative electrode current collector, and a positive electrode and a negative electrode.
  • the assembled electrode composed of the separator to be sealed has a structure enclosed in the exterior body together with the non-aqueous electrolyte.
  • a lithium ion capacitor generally includes a positive electrode in which a porous carbon material is laminated on the surface of a positive electrode current collector, a negative electrode in which a carbon material doped with lithium is laminated on the surface of a negative electrode current collector, and a positive electrode and a negative electrode.
  • An assembled electrode composed of a separator interposed between the electrodes and the non-aqueous electrolyte is enclosed in the outer package.
  • Patent Document 1 proposes a technique of pre-doping the negative electrode in advance with the amount of lithium remaining in the negative electrode without being dedoped when the negative electrode is manufactured.
  • Patent Document 2 discloses a technique in which an assembled electrode is immersed in a doping tank that exists separately from an exterior body in which a lithium electrode is immersed in an electrolytic solution, and lithium is pre-doped in a negative electrode.
  • Patent Document 3 discloses a technique in which a lithium electrode is disposed in an exterior body in addition to the assembled electrode and the electrolytic solution, and the negative electrode is pre-doped with lithium in the exterior body.
  • the conventional methods for manufacturing power storage devices such as lithium ion secondary batteries and lithium ion capacitors using lithium have the following problems. That is, metallic lithium hardly changes in dry air, but when there is moisture, it reacts with nitrogen at room temperature to produce lithium nitride. Therefore, once metallic lithium is used in each manufacturing process of the electricity storage device, the subsequent manufacturing process needs to be performed in a dry environment with a low dew point. For example, as described above, when the assembled electrode is immersed in a doping tank that is separate from the exterior body and lithium is doped into the negative electrode, the subsequent manufacturing process must be performed in a dry environment. Therefore, in order to form a dry environment, a large-scale process change is forced on each existing manufacturing process.
  • the method of arranging the lithium electrode in the exterior body of the electricity storage device and pre-doping lithium into the negative electrode in the exterior body takes time for pre-doping. Further, in this method, a large number of through holes are essential for the positive electrode and the negative electrode in order to ensure sufficient movement of lithium ions, and the cost of the electricity storage device increases due to the formation processing of the through holes.
  • the present invention has been made in view of the above circumstances, and a method for manufacturing an electricity storage device capable of reducing the number of manufacturing steps that require a dry environment as compared with the conventional one, and a doping tank suitable for this manufacturing method. It was obtained by trying to provide.
  • the method for producing an electricity storage device of the present invention includes an assembled electrode including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, an exterior body that houses the assembled electrode, and an electrolyte solution that fills the exterior body
  • a cell preparation step of preparing a storage cell having: After the cell preparation step, the electrolyte solution in the tank of the doping tank having the lithium electrode immersed in the same type of electrolyte as the electrolyte solution in the outer package and the electrolyte solution in the outer package are passed through. The lithium electrode and the negative electrode or the positive electrode are electrically connected to each other, and the lithium ions generated at the lithium electrode are passed through the electrolytic solution forming the liquid flow state.
  • the doping tank of the present invention includes the negative electrode or the positive electrode of a storage cell having at least an assembled electrode including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an exterior body that houses the assembled electrode.
  • a connection circuit having one end electrically connected to the lithium electrode and the other end electrically connectable to the negative electrode or the positive electrode; (Claim 7).
  • the manufacturing method of the electricity storage device includes the pre-doping step after the cell preparation step. That is, in the method for manufacturing the electricity storage device, after the assembled electrode is accommodated in the exterior body, lithium ions are supplied into the exterior body from a doping tank that exists separately from the exterior body of the electrical storage cell, and lithium is pre-doped into the negative electrode or the positive electrode . For this reason, in the method for manufacturing the electricity storage device, the pre-doping process, which is a subsequent process of the cell preparation process, may be at least in a dry environment, and the number of manufacturing processes that require a dry environment can be reduced as compared with the conventional method.
  • the doping tank has the above configuration. Therefore, the doping tank is connected to the exterior body by connecting the other end of the connection pipe to allow the electrolyte solution in the doping tank tank and the electrolyte solution in the exterior body to pass through the connection pipe. can do. Therefore, the doping tank can supply lithium ions generated from the lithium electrode from the doping tank to the exterior body through the electrolytic solution that forms the liquid passing state in the connection pipe. Moreover, the said doping tank can supply an electron to a negative electrode or a positive electrode by electrically connecting the other end of a connection circuit to a negative electrode or a positive electrode. Therefore, the doping tank can be suitably used for manufacturing the electricity storage device.
  • FIG. 3 is an explanatory diagram for explaining an electricity storage device according to the method for manufacturing an electricity storage device of Example 1. It is explanatory drawing for demonstrating the manufacturing method and doping tank of the electrical storage device of Example 2.
  • FIG. 3 is an explanatory diagram for explaining an electricity storage device according to the method for manufacturing an electricity storage device of Example 1. It is explanatory drawing for demonstrating the manufacturing method and doping tank of the electrical storage device of Example 2.
  • the method for manufacturing an electricity storage device is a method for producing an electricity storage device using lithium.
  • the electricity storage device is not particularly limited as long as it utilizes a redox reaction of lithium.
  • the power storage device is a lithium ion secondary battery (hereinafter sometimes abbreviated as “LiB”) or a lithium ion capacitor (hereinafter sometimes abbreviated as “LiC”). (Claim 6).
  • the electricity storage device is LiB
  • the lithium doped in the negative electrode accompanied by the dedoping of lithium from the positive electrode the lithium remains in the negative electrode without being dedoped from the negative electrode in the subsequent discharging process.
  • a minute amount of lithium can be pre-doped into the negative electrode in advance. Therefore, in this case, it is possible to reduce the number of manufacturing steps that require a dry environment, and it is possible to obtain LiB excellent in charge / discharge cycle characteristics.
  • the electricity storage device is LiC
  • lithium ions can be sufficiently supplied into the exterior body from a doping tank existing separately from the exterior body after accommodating the assembled electrode in the exterior body. Therefore, in this case, it is not necessary to previously form a large number of through-holes in the positive electrode and the negative electrode, as compared with the conventional manufacturing method in which lithium ions are supplied from the lithium electrode arranged in the exterior body and the negative electrode or the positive electrode is doped with lithium. Therefore, in this case, it is possible to reduce the number of manufacturing processes that require a dry environment, and it is possible to eliminate the formation of positive and negative electrode holes, thereby reducing the manufacturing cost of the electricity storage device. it can. In this case, an electricity storage device having a high degree of freedom in shape of the positive electrode and the negative electrode can be obtained.
  • the assembled electrode includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the assembled electrode can be composed of a laminate in which positive and negative electrodes are alternately laminated via separators.
  • Examples of the method for laminating the laminated body include a winding method and a zigzag folding method.
  • the positive electrode can be configured to have a positive electrode current collector and a positive electrode active material layer laminated on the surface of the positive electrode current collector.
  • the positive electrode current collector preferably has no through hole penetrating the front and back surfaces.
  • Specific examples of the material of the positive electrode current collector include aluminum (including an alloy, hereinafter omitted), stainless steel, and the like.
  • the positive electrode active material is not particularly limited as long as it can be doped and dedoped with lithium.
  • the positive electrode active material may capture and capture lithium ions as a compound, or may capture lithium ions in an electric double layer formed on the surface, such as activated carbon.
  • the former positive electrode active material examples include lithium-containing metal oxides, and specifically, for example, LiVO 2 , LiCrO 2 , LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 , LiCoVO 4.
  • LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 FePO 4 F, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li (Li a Ni x Mn y Co z ) and the like can be exemplified.
  • These positive electrode active materials can be used for production of LiB.
  • Specific examples of the latter positive electrode active material include porous carbon materials such as activated carbon and polyacene carbon materials. These positive electrode active materials can be used for the production of LiC.
  • the negative electrode can be configured to have a negative electrode current collector and a negative electrode active material layer laminated on the surface of the negative electrode current collector.
  • the negative electrode current collector preferably has no through hole penetrating the front and back surfaces.
  • Specific examples of the material for the negative electrode current collector include copper (including an alloy, hereinafter omitted), stainless steel, and the like.
  • the negative electrode active material is not particularly limited as long as it can be doped and dedoped with lithium.
  • Specific examples of the negative electrode active material include carbon materials such as graphite and amorphous carbon, lithium titanate, and the like. Of these, graphite is particularly suitable because it is readily available and has a large capacity.
  • the separator is not particularly limited as long as it can insulate between the positive electrode and the negative electrode and can be impregnated with the electrolytic solution.
  • Specific examples of the separator include an insulating porous film made of a polymer such as polyolefin, tetrafluoroethylene, polyimide, polyethylene terephthalate, and nylon.
  • the exterior body used in the cell preparation step can accommodate the assembled electrode and can be filled with the electrolyte, and can be configured to allow communication between the interior of the exterior body and the exterior of the exterior body.
  • the exterior body can be formed into a bag shape, a cylindrical shape, a square shape, or the like using, for example, a laminate film, a metal material such as aluminum or iron, a resin material, ceramics, or the like.
  • the method of filling the exterior body with the electrolytic solution is not particularly limited.
  • the electrolytic solution can be injected after housing the assembled electrode in the exterior body, or the assembled electrode can be accommodated after injecting the electrolytic solution into the exterior body.
  • the electrolytic solution in the exterior body can be supplied from the doping tank, or can be supplied from an electrolytic solution supply source different from the doping tank.
  • the electrolytic solution in the exterior body is supplied from the doping tank, it is excellent in continuity with the pre-doping step, which can contribute to improvement in productivity.
  • a non-aqueous electrolytic solution can be used.
  • the electrolyte include organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ⁇ -butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxofuran, methylene chloride, and sulfolane. it can.
  • the lithium salt to be contained in the electrolyte specifically, for example, and the like can be exemplified salts with LiBF 4, LiClO 4, LiPF 6 , LiAsF 6, LiSbF 6 high anion electron withdrawing like.
  • the electrolyte solution in the doping tank in which the lithium electrode is immersed in the same type of electrolyte solution as the electrolyte in the exterior body and the electrolyte solution in the exterior body are allowed to pass through and the liquid passing state is changed.
  • the electrical connection state between the lithium electrode and the negative electrode or the positive electrode may be ensured, or the liquid connection state may be formed after the electrical connection state is ensured. . Or you may make it ensure the said liquid flow state and the said electrical connection state simultaneously.
  • the electrolyte in the doping tank and the electrolyte in the exterior body can continuously communicate, and lithium ions can freely move from the doping tank to the exterior body. become.
  • the same kind of the electrolytic solution in the exterior body and the electrolytic solution in the doping tank means that the main components occupying 50% by mass or more of the components of the electrolytic solution are the same.
  • the exterior body has a communication hole that communicates the inside and the exterior of the exterior body at a position facing the end of the assembled electrode.
  • the communication hole and the doping tank are provided.
  • the inside of the tank may be in a state of communicating with each other via a connecting pipe (claim 2).
  • the electrolyte solution in the doping tank existing separately from the exterior body of the storage cell and the electrolyte solution in the exterior body can be relatively easily passed through the connecting pipe to obtain a liquid-permeable state. it can. Therefore, lithium ions can freely move through the electrolytic solution that forms the liquid passing state in the connecting pipe. Therefore, in this case, it is possible to ensure that lithium ions generated at the lithium electrode move to the electrolytic solution in the exterior body via the connection pipe and the communication hole.
  • the communication hole is formed at a position facing the end of the assembled electrode. Therefore, in this case, lithium ions introduced into the exterior body from the communication hole can easily enter the assembled electrode from the end of the assembled electrode through the gap between the electrodes or the porous separator, and can be efficiently doped.
  • the “end portion of the assembled electrode” means a portion where the positive electrode and / or the negative electrode and the separator are exposed.
  • the exterior body can have one or more communication holes, and the connection pipe can be provided in accordance with the number of communication holes of the exterior body.
  • the lithium electrode and the negative electrode or the positive electrode can be electrically connected by a short circuit or can be electrically connected via an external power source (claims). 3).
  • the latter method using an external power source can forcibly generate a potential difference between the lithium electrode and the negative electrode or the positive electrode by the external power source, so that ionization by oxidation of lithium at the lithium electrode and Reduction of lithium ions can be promoted. Therefore, the latter method using an external power source can promote doping of lithium into the negative electrode or the positive electrode as compared with the former method using a short circuit.
  • an external power supply may be connected so that a current can flow from the negative electrode or the positive electrode toward the lithium electrode.
  • the pre-doping step may include one of the following two procedures so that the negative electrode is finally doped with lithium. That is, the pre-doping step can include a procedure in which the lithium electrode and the negative electrode are electrically connected, and the negative electrode is doped with lithium.
  • the negative electrode is directly doped with lithium, the pre-doping process can be made relatively short, and the productivity of the electricity storage device is excellent.
  • the pre-doping step is performed by doping lithium in the positive electrode with the lithium electrode and the positive electrode electrically connected, and then charging with the positive electrode and the negative electrode electrically connected.
  • a step of doping the negative electrode with the lithium doped in the positive electrode can be included (claim 5).
  • the negative electrode is once doped with lithium through the positive electrode, the number of times lithium is transferred is increased as compared with the case where the negative electrode is directly doped, so that lithium can diffuse and be uniformly doped.
  • the positive electrode when applied to a lithium ion secondary battery, the positive electrode can be sufficiently doped with lithium by charging once and reducing the positive electrode lithium before doping.
  • the manufacturing method of the electricity storage device may have a sealing step of releasing the liquid passing state and the electrical connection state after the pre-doping step and sealing the outer package.
  • the decomposition gas generated in the pre-doping step can be removed from the inside of the exterior body.
  • the connection pipe is connected to the communication hole of the exterior body, the communication hole and the connection pipe may be separated and the communication hole may be sealed.
  • the communication hole portion is made of metal or the like
  • sealing can be performed by caulking, welding, or the like.
  • the communicating hole portion is made of a resin such as a laminate film
  • sealing can be performed by welding or the like.
  • sealing can be performed by press-fitting or adhering a plug into the communication hole regardless of the material of the communication hole portion.
  • the doping tank will be described.
  • the description of the manufacturing method of the electrical storage device mentioned above can be referred as needed.
  • the doping tank can be suitably used in the above-described method for manufacturing an electricity storage device.
  • the lithium electrode may be entirely immersed in the electrolytic solution, or may be partially immersed in the electrolytic solution.
  • the shape of the lithium electrode is not particularly limited, and may be various shapes such as a block shape, a rod shape, and a foil shape. Further, the arrangement of the lithium electrode is not particularly limited.
  • the lithium electrode may be disposed on the bottom surface of the doping tank through a metal tray or the like, or may be disposed on the inner wall surface of the doping tank. Can do.
  • one end of the connecting pipe is disposed below the liquid level of the electrolytic solution in the tank.
  • a pressure difference is generated between the inside of the exterior body and the inside of the tank, for example, by making the inside of the exterior body into a vacuum state, and the electrolyte solution is transferred from the doping tank to the exterior body using this pressure difference.
  • the material of the connecting pipe is not particularly limited, and various types of resins and metals can be used. Among them, since the connecting pipe using a resin is insulative, lithium and the like are hardly deposited due to a potential difference generated in the electrolytic solution, and can be suitably used.
  • the connection circuit can include the external power source described above.
  • the external power source can be configured to be able to supply a constant current and / or a constant potential between, for example, a negative electrode or a positive electrode and a lithium electrode.
  • Example 1 A manufacturing method and a doping tank of the electricity storage device of Example 1 will be described with reference to FIGS. For convenience of explanation, the doping tank of Example 1 will be described first.
  • the doping tank 2 of this example accommodates the assembled electrode 10 including the positive electrode 101, the negative electrode 102, the separator 103 interposed between the positive electrode 101 and the negative electrode 102, and the assembled electrode 10. It is used to dope lithium into the negative electrode 102 or the positive electrode 101 of the electricity storage cell 1 having the outer package 11 that performs the above operation.
  • the doping tank 2 includes a tank 20 that stores the electrolytic solution 21, a lithium electrode 22 that is immersed in the electrolytic solution 21, a connection tube 24, and a connection circuit 25.
  • the lithium electrode 22 is all immersed in the electrolytic solution 21.
  • connection pipe 24 is configured such that one end communicates with the inside of the tank 20 and the other end communicates with the inside of the outer package 11 in the storage cell 1.
  • the connecting pipe 24 is made of resin.
  • One end of the connection pipe 24 is inserted into the tank 20 and is disposed below the liquid surface of the electrolytic solution 21 in the tank 20.
  • the other end of the connection pipe 24 extends toward the storage cell 1 and can be connected to a communication hole 113 of the exterior body 11 described later.
  • a valve 241 is provided that can be opened or closed to open or close the pipe.
  • connection circuit 25 is configured such that one end is electrically connected to the lithium electrode 22 and the other end is electrically connectable to the negative electrode 102 or the positive electrode 101.
  • the lithium electrode 22 is placed on a metal tray 221 placed on the bottom surface in the tank 20, and a lead wire 222 extending from the tray 221 is connected to an external terminal 23 provided outside the tank 20. Electrically connected.
  • One end of the connection circuit 25 is electrically connected to the lithium electrode 22 via the external terminal 23.
  • the other end of the connection circuit 25 is configured to be electrically connectable to the negative electrode 102 or the positive electrode 101 via the negative electrode terminal 14 or the positive electrode terminal 13 of the storage cell 1.
  • An external power source 251 is provided in the middle of the connection circuit 25, and the lithium electrode 22 and the negative electrode 102 or the positive electrode 101 are configured to be electrically connected via the external power source 251. Note that the external power supply 251 is connected so that a current can flow from the negative electrode 102 or the positive electrode 101 toward the lithium electrode 22 when the switch is turned on.
  • the manufacturing method of the electricity storage device of this example includes a cell preparation process and a pre-doping process.
  • the cell preparation step includes an assembled electrode 10 including a positive electrode 101, a negative electrode 102, a separator 103 interposed between the positive electrode 101 and the negative electrode 102, and an outer package housing the assembled electrode 10. 11 and a step of preparing a storage cell 1 having an electrolyte solution 12 filling the exterior body 11.
  • the assembled electrode 10 is formed of a laminated body in which the positive electrodes 101 and the negative electrodes 102 are alternately stacked via the separator 103 and wound.
  • the positive electrode 101 has a positive electrode current collector (not shown) and a positive electrode active material layer (not shown) including a lithium-containing metal oxide laminated on the surface of the positive electrode current collector.
  • the positive electrode active material layer is formed by applying a paste containing a porous carbon material and a binder to the surface of the positive electrode current collector, drying it, and pressing it.
  • the negative electrode 102 has a negative electrode current collector (not shown) and a negative electrode active material layer (not shown) containing a carbon material laminated on the surface of the negative electrode current collector.
  • the negative electrode active material layer is formed by applying a paste containing a carbon material and a binder to the surface of the negative electrode current collector, drying, and pressing.
  • the separator 103 is made of a porous resin film. Neither the positive electrode 101 nor the negative electrode 102 is subjected to a through hole forming process that penetrates the front and back surfaces.
  • the positive electrode 101 has a positive electrode tab (not shown). Each positive electrode is joined between each positive electrode tab by ultrasonic welding. The joined positive electrode tab is electrically connected to a positive electrode terminal 13 provided outside the exterior body 11.
  • the negative electrode 102 has a negative electrode tab (not shown). Each negative electrode is joined between each negative electrode tab by ultrasonic welding. The bonded negative electrode tab is electrically connected to a negative electrode terminal 14 provided outside the exterior body 11.
  • the exterior body 11 has a bottomed metallic cylinder portion 111 and a metallic lid body 112 attached by caulking after the assembled electrode 10 is accommodated therein.
  • the lid body 112 has a communication hole 113 that allows the interior of the exterior body 11 to communicate with the exterior of the exterior body 11. It is possible to form the exterior body 11 without using the lid body 112, and in this case, the communication hole 113 may be formed in any part of the exterior body 11 other than the lid body 113.
  • the lid body 112 is attached to the upper portion of the cylindrical portion 111 by caulking, and the other end of the connection pipe 24 of the doping tank 2 is connected to the communication hole 113. Connecting. Thereby, the communication hole 113 and the inside of the tank 20 of the doping tank 2 are communicated with each other via the connection pipe 24. Then, the non-aqueous electrolyte solution 21 is injected from the doping tank 2 through the communication hole 113, and the interior of the outer package 11 is filled with the electrolyte solution 12.
  • the vacuum pump 3 is connected to the communication hole 113 of the storage cell 1, the valve 31 is opened, and the inside of the exterior body 11 is deaerated under reduced pressure.
  • the valve 241 of the connecting pipe 24 is closed.
  • the external power supply 251 is off.
  • the valve 31 on the vacuum pump 3 side is closed and the valve 241 of the connecting pipe 24 is opened, and electrolysis is performed using the pressure difference between the inside of the exterior body 11 and the inside of the tank 20 of the doping tank 2.
  • the liquid 12 is injected.
  • the storage cell 1 is prepared as described above.
  • the electrolytic solution 21 in the bath 20 of the doping bath 2 having the lithium electrode 22 immersed in the electrolytic solution 21 of the same type as the electrolytic solution 12 in the outer package 11 in the bath 20 The electrolytic solution 12 in the outer package 11 is passed through to form a liquid passing state, and the lithium electrode 22 and the negative electrode 102 or the positive electrode 101 are electrically connected, and lithium ions generated at the lithium electrode 22 are generated.
  • the negative electrode 102 or the positive electrode 101 is doped with lithium by being supplied into the outer package 11 through the electrolytic solution 210 forming the liquid passing state.
  • the pre-doping process is subsequently performed in a dry environment. Therefore, when the exterior body 11 is filled with the electrolyte solution 12 by the injection of the electrolyte solution 21, the electrolyte solution 21 in the tank 20 of the doping tank 2 and the electrolyte solution 12 in the exterior body 11 are connected to the connection pipe 24.
  • the liquid is passed through the electrolytic solution 210 inside. Further, in this example, after the liquid passing state is formed, the external power source 251 of the connection circuit 25 connected to the negative electrode 14 is turned on, and the lithium electrode 22 and the negative electrode 102 are electrically connected.
  • the negative electrode 102 is doped with lithium.
  • the negative electrode 102 is doped with lithium as described above.
  • the manufacturing method of the electricity storage device of this example further includes a sealing step of releasing the liquid passing state and the electrical connection state and sealing the outer package 11 after the pre-doping step.
  • a sealing step of releasing the liquid passing state and the electrical connection state and sealing the outer package 11 after the pre-doping step is sealed by welding.
  • the assembled electrode 10 including the positive electrode 101, the negative electrode 102, the separator 103 interposed between the positive electrode 101 and the negative electrode 102, the exterior body 11 that houses the assembled electrode 10, and the exterior body 11 is obtained, and the storage device 4 (in this example, a lithium ion secondary battery) in which the negative electrode 102 is doped with lithium is obtained.
  • the storage device 4 in this example, a lithium ion secondary battery
  • the manufacturing method of the electricity storage device of this example has a pre-doping process after the cell preparation process. That is, in the method of manufacturing the electricity storage device of this example, after the assembled electrode is accommodated in the exterior body, lithium ions are supplied from the doping tank that exists separately from the exterior body of the electricity storage cell, and lithium is pre-doped to the negative electrode. . Therefore, the manufacturing method of the electrical storage device of this example should just make the pre dope process and the sealing process which seals an exterior body which are a post process of a cell preparation process in a dry environment.
  • the assembled electrode is immersed in a doping vessel that is separate from the outer package in which the lithium electrode is immersed in the electrolytic solution, and the negative electrode is doped with lithium, the number of manufacturing processes requiring a dry environment is reduced. can do.
  • the sealing process is usually performed in a dry environment even in the conventional manufacturing method.
  • the doping tank has the above configuration. Therefore, in the doping tank, the other end of the connection pipe is connected to the exterior body, so that the electrolyte solution in the doping tank tank and the electrolyte solution in the exterior body are passed through the connection pipe to be in a liquid-permeable state. be able to. Therefore, the doping tank can supply lithium ions generated from the lithium electrode from the inside of the doping tank to the exterior body through the electrolytic solution that forms the liquid passing state in the connection pipe. Further, the doping tank can supply electrons to the negative electrode by electrically connecting the other end of the connection circuit to the negative electrode. Therefore, the doping tank can be suitably used for manufacturing the electricity storage device of this example.
  • Example 1 it is possible to provide a method for manufacturing an electricity storage device capable of reducing the number of manufacturing steps that require a dry environment as compared with the conventional case, and a doping tank suitable for this manufacturing method.
  • Example 2 The power storage device manufacturing method of Example 2 is the same as that of Example 1 in that the porous carbon material as the positive electrode active material is a porous carbon material in the cell preparation step in the power storage device manufacturing method of Example 1. It is different from the device manufacturing method. Further, in the method of manufacturing the electricity storage device of Example 2, in the pre-doping step, after forming the liquid passing state, the lithium electrode 22 and the positive electrode 101 are electrically connected by a short circuit without using the external power source 251. After the lithium is doped into the positive electrode 101, charging is performed with the positive electrode 101 and the negative electrode 102 being electrically connected to each other, whereby the negative electrode 102 is doped with lithium doped into the positive electrode 101. The manufacturing method is different. Others are substantially the same as the manufacturing method of the electrical storage device of Example 1.
  • the doping tank 2 of Example 2 is different from the doping tank 2 of Example 1 in that it further includes an electrolyte reserve tank 26 that replenishes the electrolyte 21 in the tank 20 as shown in FIG. Yes. Others are substantially the same as the doping tank 2 of Example 1.
  • an assembled electrode including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, an exterior body that accommodates the assembled electrode, and an electrolyte that fills the exterior body
  • an electricity storage device lithium ion capacitor in this example
  • the negative electrode is doped with lithium
  • Example 2 As in Example 1, a method for manufacturing an electricity storage device capable of reducing the number of manufacturing steps that require a dry environment as compared to the conventional method and a doping bath suitable for this manufacturing method are provided. be able to.
  • the doping tank of Example 2 since the electrolyte preliminary tank is connected to the tank, the electrolyte can be replenished in the tank, and the liquid level of the electrolyte in the tank can be easily maintained. Therefore, the doping tank of Example 2 has an advantage that it is easy to maintain the above-mentioned liquid passing state, and to ensure the movement of lithium ions from the inside of the tank to the exterior body.
  • the replenishment of the electrolytic solution from the electrolytic solution preliminary tank into the tank can be performed by taking a balance using a pressure difference between the electrolytic solution preliminary tank and the tank. In other respects, the same effects as the doping tank of the first embodiment can be obtained.
  • Example 1 A paste containing LiCoO 2 and a binder was applied in a range of 40 mm ⁇ 40 mm to a thickness of 50 ⁇ m on the surface of an aluminum alloy foil having a thickness of 20 ⁇ m and dried to form a positive electrode. Further, a paste containing graphite and a binder was applied in a range of 40 mm ⁇ 40 mm to a thickness of 50 ⁇ m on the surface of a copper foil having a thickness of 20 ⁇ m, and dried to form a negative electrode. Subsequently, the laminated body which laminated
  • the positive electrode tabs and the negative electrode tabs in the laminate were joined together by ultrasonic welding.
  • the laminated body was sealed in a bottomed cylindrical portion having a communication hole and made of resin, and a cover was formed to form an exterior body.
  • the positive electrode terminal electrically connected to the welded positive electrode tab and the negative electrode terminal electrically connected to the welded negative electrode tab were formed outside the exterior body.
  • a vacuum pump and a connecting pipe of a doping tank having the configuration shown in FIG. 1 were connected to the communication hole of the obtained exterior body.
  • the inside of the exterior body was degassed by a vacuum pump, and at least three kinds of electrolytes in the tank (ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, butylene carbonate were mixed via a connecting pipe) 1 mol / L of a LiPF 6 or LiBF 4 lithium salt dissolved in a solvent) was injected into the exterior body by a differential pressure.
  • the electrolyte tube in the doping vessel and the electrolyte solution in the storage cell are in the connection tube by keeping the connecting tube of the doping vessel connected to the communication hole.
  • the liquid was passed through the electrolytic solution.
  • the external power supply of the connection circuit of the doping tank connected to the negative electrode of the electricity storage cell was turned on to electrically connect the lithium electrode and the negative electrode.
  • a current was applied from the negative electrode to the lithium electrode at a rate of 0.05 C to 1 C at a rate of 0.1 A / cm 2 or less.
  • generated by the lithium electrode was supplied from the inside of a doping tank into the electrical storage cell, and lithium for the irreversible capacity
  • the pre-doping step was performed in a dry environment controlled at a dew point of ⁇ 35 to ⁇ 65 ° C. dp.
  • the communication cell communication hole and the doping tank connecting pipe were separated. Subsequently, the communication hole part of the electrical storage cell was thermally welded and sealed. Thus, a lithium ion secondary battery as an electricity storage device was obtained.
  • Example 2 Other than the point that a positive electrode was formed by applying a paste containing a porous carbon material and a binder to the surface of a 20 ⁇ m thick aluminum alloy foil at a thickness of 100 ⁇ m (twice the capacity of graphite) in a range of 40 mm ⁇ 40 mm and drying. In the same manner as in Experimental Example 1, the negative electrode was directly doped with lithium to obtain a lithium ion capacitor as an electricity storage device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is an electricity storage device manufacturing method capable of reducing manufacturing process steps requiring a dry environment in comparison with the prior art, and also provided is a doping bath suitable for this manufacturing method. The electricity storage device manufacturing method has a cell preparation step and a pre-doping step. The cell preparation step prepares an electricity storage cell (1) having: an assembled electrode (10) having a separator (103) interposed between a positive electrode (101) and a negative electrode (102); an outer package body (11) housing the assembled electrode (10); and an electrolyte (12) filled in the outer package body (11). The pre-doping step allows, after the cell preparation step, the electrolyte (12) in the outer package body (11) to communicate with another electrolyte (21) in a bath (20) of a doping bath (2) having, in the bath (20), a lithium electrode (22) immersed in the electrolyte (21) to form a liquid communicating state. The pre-doping step also allows the lithium electrode (22) to be electrically connected to the positive electrode (101) or the negative electrode (102), supplies lithium-ions generated at the lithium electrode (22) into the outer package body (11) via an electrolyte (210) forming the liquid communication state, and dopes lithium into the positive electrode (101) or the negative electrode (102).

Description

蓄電デバイスの製造方法およびドーピング槽Storage device manufacturing method and doping tank
 本発明は、蓄電デバイスの製造方法およびドーピング槽に関する。 The present invention relates to a method for manufacturing an electricity storage device and a doping tank.
 近年、電気自動車やハイブリッド自動車、電力貯蔵用蓄電池などに用いられる蓄電デバイスとして、リチウムイオン二次電池やリチウムイオンキャパシタ等が注目されている。 In recent years, lithium ion secondary batteries, lithium ion capacitors, and the like have attracted attention as power storage devices used in electric vehicles, hybrid vehicles, storage batteries for power storage, and the like.
 リチウムイオン二次電池は、一般に、正極集電体の表面にリチウム含有金属酸化物を積層した正極と、負極集電体の表面に炭素材料を積層した負極と、正極と負極との間に介在するセパレータとから構成される組電極が、非水系の電解液とともに外装体内に封入された構造を有している。一方、リチウムイオンキャパシタは、一般に、正極集電体の表面に多孔質炭素材料を積層した正極と、負極集電体の表面にリチウムがドープされた炭素材料を積層した負極と、正極と負極との間に介在するセパレータとから構成される組電極が、非水系の電解液とともに外装体内に封入された構造を有している。 In general, a lithium ion secondary battery includes a positive electrode in which a lithium-containing metal oxide is laminated on the surface of a positive electrode current collector, a negative electrode in which a carbon material is laminated on the surface of a negative electrode current collector, and a positive electrode and a negative electrode. The assembled electrode composed of the separator to be sealed has a structure enclosed in the exterior body together with the non-aqueous electrolyte. On the other hand, a lithium ion capacitor generally includes a positive electrode in which a porous carbon material is laminated on the surface of a positive electrode current collector, a negative electrode in which a carbon material doped with lithium is laminated on the surface of a negative electrode current collector, and a positive electrode and a negative electrode. An assembled electrode composed of a separator interposed between the electrodes and the non-aqueous electrolyte is enclosed in the outer package.
 リチウムイオン二次電池は、初回充電過程で、正極からのリチウムの脱ドープを伴って負極にドープされたリチウムのうち、放電過程で負極から脱ドープされずにそのまま負極に残存してしまうリチウムが存在する。これは、電解液との反応により負極表面に形成されたSEI(固体電解質界面)と呼ばれる被膜にリチウムが取り込まれるためであり、この被膜に取り込まれたリチウムは、その後の電池反応に関与しない。そのため、例えば、特許文献1には、負極の作製時に、脱ドープされずに負極に残存する分のリチウムを予め負極にプレドープしておく技術が提案されている。 In the lithium ion secondary battery, among the lithium doped in the negative electrode with lithium de-doping from the positive electrode in the initial charging process, the lithium that remains in the negative electrode without being de-doped from the negative electrode in the discharging process is left. Exists. This is because lithium is taken into a film called SEI (solid electrolyte interface) formed on the negative electrode surface by the reaction with the electrolytic solution, and the lithium taken into the film does not participate in the subsequent battery reaction. Therefore, for example, Patent Document 1 proposes a technique of pre-doping the negative electrode in advance with the amount of lithium remaining in the negative electrode without being dedoped when the negative electrode is manufactured.
 一方、リチウムイオンキャパシタは、リチウムイオン二次電池のようにリチウムを含む材料を電極に用いていないので、リチウムを確保するために負極にリチウムがプレドープされる。上記プレドープの技術としては、例えば、特許文献2に、電解液にリチウム極が浸漬されている外装体とは別に存在するドーピング槽内に組電極を浸漬し、負極にリチウムをプレドープする技術が開示されている。他にも、特許文献3には、組電極および電解液に加えてリチウム極を外装体内に配置し、この外装体内において負極にリチウムをプレドープする技術が開示されている。 On the other hand, since a lithium ion capacitor does not use a material containing lithium as an electrode unlike a lithium ion secondary battery, lithium is pre-doped to ensure the lithium. As the pre-doping technique, for example, Patent Document 2 discloses a technique in which an assembled electrode is immersed in a doping tank that exists separately from an exterior body in which a lithium electrode is immersed in an electrolytic solution, and lithium is pre-doped in a negative electrode. Has been. In addition, Patent Document 3 discloses a technique in which a lithium electrode is disposed in an exterior body in addition to the assembled electrode and the electrolytic solution, and the negative electrode is pre-doped with lithium in the exterior body.
特開平7-235330号公報JP 7-235330 A 特開2012-44137号公報JP 2012-44137 A 特開2008-124227号公報JP 2008-124227 A
 しかしながら、従来のリチウムを利用するリチウムイオン二次電池やリチウムイオンキャパシタなどの蓄電デバイスの製造方法は、以下の問題がある。すなわち、金属リチウムは、乾いた空気中ではほとんど変化しないが、水分があると常温でも窒素と反応し窒化リチウムを生ずる。そのため、蓄電デバイスの各製造工程において、一旦金属リチウムを使用すると、それ以降の製造工程は、露点が低いドライ環境下で行う必要がある。例えば、上述したように、外装体とは別に存在するドーピング槽内に組電極を浸漬し、負極にリチウムをドープする場合には、それ以降の製造工程をドライ環境下で行う必要がある。したがって、ドライ環境を形成するために、既存の各製造工程に対して大掛かりな工程変更が強いられる。 However, the conventional methods for manufacturing power storage devices such as lithium ion secondary batteries and lithium ion capacitors using lithium have the following problems. That is, metallic lithium hardly changes in dry air, but when there is moisture, it reacts with nitrogen at room temperature to produce lithium nitride. Therefore, once metallic lithium is used in each manufacturing process of the electricity storage device, the subsequent manufacturing process needs to be performed in a dry environment with a low dew point. For example, as described above, when the assembled electrode is immersed in a doping tank that is separate from the exterior body and lithium is doped into the negative electrode, the subsequent manufacturing process must be performed in a dry environment. Therefore, in order to form a dry environment, a large-scale process change is forced on each existing manufacturing process.
 なお、上述したように、蓄電デバイスの外装体内にリチウム極を配置し、この外装体内において負極にリチウムをプレドープする方法は、プレドープに時間がかかる。さらに、この方法は、リチウムイオンの移動を十分に確保するために正極、負極に多数の貫通孔が必須となり、貫通孔の形成加工により蓄電デバイスのコストが増加する。 Note that, as described above, the method of arranging the lithium electrode in the exterior body of the electricity storage device and pre-doping lithium into the negative electrode in the exterior body takes time for pre-doping. Further, in this method, a large number of through holes are essential for the positive electrode and the negative electrode in order to ensure sufficient movement of lithium ions, and the cost of the electricity storage device increases due to the formation processing of the through holes.
 本発明は、上記事情に鑑みてなされたものであり、従来に比べ、ドライ環境を必要とする製造工程を少なくすることが可能な蓄電デバイスの製造方法、また、この製造方法に適したドーピング槽を提供しようとして得られたものである。 The present invention has been made in view of the above circumstances, and a method for manufacturing an electricity storage device capable of reducing the number of manufacturing steps that require a dry environment as compared with the conventional one, and a doping tank suitable for this manufacturing method. It was obtained by trying to provide.
 本発明の蓄電デバイスの製造方法は、正極と負極と上記正極と上記負極との間に介在するセパレータとを備える組電極と、該組電極を収容する外装体と、該外装体内を満たす電解液とを有する蓄電セルを準備するセル準備工程と、
 該セル準備工程の後、上記外装体内の電解液と同種の電解液に浸漬されたリチウム極を槽内に有するドーピング槽の上記槽内の電解液と上記外装体内の電解液とを通液させて通液状態を形成するとともに、上記リチウム極と上記負極または上記正極とを電気的に接続した状態とし、上記リチウム極で生成したリチウムイオンを上記通液状態を形成する電解液を介して上記外装体内に供給し、上記負極または上記正極にリチウムをドープするプレドープ工程と、
 を有することを特徴とする(請求項1)。
The method for producing an electricity storage device of the present invention includes an assembled electrode including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, an exterior body that houses the assembled electrode, and an electrolyte solution that fills the exterior body A cell preparation step of preparing a storage cell having:
After the cell preparation step, the electrolyte solution in the tank of the doping tank having the lithium electrode immersed in the same type of electrolyte as the electrolyte solution in the outer package and the electrolyte solution in the outer package are passed through. The lithium electrode and the negative electrode or the positive electrode are electrically connected to each other, and the lithium ions generated at the lithium electrode are passed through the electrolytic solution forming the liquid flow state. A pre-doping step of supplying lithium into the negative electrode or the positive electrode;
(Claim 1).
 本発明のドーピング槽は、正極と負極と上記正極と上記負極との間に介在するセパレータとを備える組電極と、該組電極を収容する外装体とを少なくとも有する蓄電セルの上記負極または上記正極にリチウムをドープするために用いられるドーピング槽であって、
 電解液を収容する槽と、
 上記電解液に浸漬されたリチウム極と、
 一端が上記槽内と連通するとともに他端が上記蓄電セルにおける上記外装体の内部と連通可能に構成された接続管と、
 一端が上記リチウム極に電気的に接続されるとともに他端が上記負極または上記正極に電気的に接続可能に構成された接続回路と、
 を有することを特徴とする(請求項7)。
The doping tank of the present invention includes the negative electrode or the positive electrode of a storage cell having at least an assembled electrode including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an exterior body that houses the assembled electrode. A doping bath used to dope lithium into
A tank containing an electrolyte solution;
A lithium electrode immersed in the electrolyte,
A connecting pipe configured so that one end communicates with the inside of the tank and the other end communicates with the inside of the exterior body in the storage cell;
A connection circuit having one end electrically connected to the lithium electrode and the other end electrically connectable to the negative electrode or the positive electrode;
(Claim 7).
 上記蓄電デバイスの製造方法は、上記セル準備工程の後に上記プレドープ工程を有している。つまり、上記蓄電デバイスの製造方法は、外装体内に組電極を収容した後に、蓄電セルの外装体とは別に存在するドーピング槽から外装体内にリチウムイオンを供給し、負極または正極にリチウムをプレドープする。そのため、上記蓄電デバイスの製造方法は、セル準備工程の後工程であるプレドープ工程を少なくともドライ環境下とすればよく、従来に比べ、ドライ環境を必要とする製造工程を少なくすることができる。 The manufacturing method of the electricity storage device includes the pre-doping step after the cell preparation step. That is, in the method for manufacturing the electricity storage device, after the assembled electrode is accommodated in the exterior body, lithium ions are supplied into the exterior body from a doping tank that exists separately from the exterior body of the electrical storage cell, and lithium is pre-doped into the negative electrode or the positive electrode . For this reason, in the method for manufacturing the electricity storage device, the pre-doping process, which is a subsequent process of the cell preparation process, may be at least in a dry environment, and the number of manufacturing processes that require a dry environment can be reduced as compared with the conventional method.
 上記ドーピング槽は、上記構成を有している。そのため、上記ドーピング槽は、接続管の他端を外装体に接続することにより、ドーピング槽の槽内の電解液と外装体内の電解液とを接続管を介して通液させて通液状態とすることができる。それ故、上記ドーピング槽は、リチウム極から生じたリチウムイオンを、接続管内にある上記通液状態を形成する電解液を介してドーピング槽の槽内から外装体内へ供給することができる。また、上記ドーピング槽は、接続回路の他端を負極または正極に電気的に接続することにより、電子を負極または正極に供給することができる。それ故、上記ドーピング槽は、上記蓄電デバイスの製造に好適に用いることができる。 The doping tank has the above configuration. Therefore, the doping tank is connected to the exterior body by connecting the other end of the connection pipe to allow the electrolyte solution in the doping tank tank and the electrolyte solution in the exterior body to pass through the connection pipe. can do. Therefore, the doping tank can supply lithium ions generated from the lithium electrode from the doping tank to the exterior body through the electrolytic solution that forms the liquid passing state in the connection pipe. Moreover, the said doping tank can supply an electron to a negative electrode or a positive electrode by electrically connecting the other end of a connection circuit to a negative electrode or a positive electrode. Therefore, the doping tank can be suitably used for manufacturing the electricity storage device.
 よって、本発明によれば、従来に比べ、ドライ環境を必要とする製造工程を少なくすることが可能な蓄電デバイスの製造方法、この製造方法に適したドーピング槽を提供することができる。 Therefore, according to the present invention, it is possible to provide a method for manufacturing an electricity storage device capable of reducing the number of manufacturing steps that require a dry environment as compared with the conventional case, and a doping bath suitable for this manufacturing method.
実施例1の蓄電デバイスの製造方法およびドーピング槽を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method and doping tank of the electrical storage device of Example 1. FIG. 実施例1の蓄電デバイスの製造方法およびドーピング槽を説明するための他の説明図である。It is another explanatory drawing for demonstrating the manufacturing method and doping tank of the electrical storage device of Example 1. FIG. 実施例1の蓄電デバイスの製造方法による蓄電デバイスを説明するための説明図である。FIG. 3 is an explanatory diagram for explaining an electricity storage device according to the method for manufacturing an electricity storage device of Example 1. 実施例2の蓄電デバイスの製造方法およびドーピング槽を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method and doping tank of the electrical storage device of Example 2. FIG.
 先ず、上記蓄電デバイスの製造方法について説明する。なお、必要に応じて後述するドーピング槽の説明を参照することができる。 First, a method for manufacturing the power storage device will be described. In addition, the description of the doping tank mentioned later can be referred as needed.
 上記蓄電デバイスの製造方法は、リチウムを利用する蓄電デバイスを製造する方法である。蓄電デバイスは、具体的には、リチウムの酸化還元反応を利用するものであれば特に限定されるものではない。蓄電デバイスは、より具体的には、リチウムイオン二次電池(以下、「LiB」と略称することがある。)またはリチウムイオンキャパシタ(以下、「LiC」と略称することがある。)とすることができる(請求項6)。 The method for manufacturing an electricity storage device is a method for producing an electricity storage device using lithium. Specifically, the electricity storage device is not particularly limited as long as it utilizes a redox reaction of lithium. More specifically, the power storage device is a lithium ion secondary battery (hereinafter sometimes abbreviated as “LiB”) or a lithium ion capacitor (hereinafter sometimes abbreviated as “LiC”). (Claim 6).
 蓄電デバイスがLiBである場合は、初回充電過程で、正極からのリチウムの脱ドープを伴って負極にドープされたリチウムのうち、その後の放電過程で負極から脱ドープされずにそのまま負極に残存する分のリチウムを予め負極にプレドープしておくことができる。そのため、この場合は、ドライ環境を必要とする製造工程を少なくすることができる上、充放電サイクル特性に優れたLiBを得ることができる。 In the case where the electricity storage device is LiB, in the initial charging process, among the lithium doped in the negative electrode accompanied by the dedoping of lithium from the positive electrode, the lithium remains in the negative electrode without being dedoped from the negative electrode in the subsequent discharging process. A minute amount of lithium can be pre-doped into the negative electrode in advance. Therefore, in this case, it is possible to reduce the number of manufacturing steps that require a dry environment, and it is possible to obtain LiB excellent in charge / discharge cycle characteristics.
 一方、蓄電デバイスがLiCである場合は、外装体内に組電極を収容した後に、外装体とは別に存在するドーピング槽から外装体内に十分にリチウムイオンを供給することができる。そのため、この場合は、外装体内に配置したリチウム極からリチウムイオンを供給し、負極または正極にリチウムをドープする従来製法に比べ、正極、負極に多数の貫通孔を予め形成する必要がなくなる。それ故、この場合は、ドライ環境を必要とする製造工程を少なくすることができる上、正極、負極の孔形成を不要とすることができるので、その分蓄電デバイスの製造コストを削減することができる。また、この場合は、正極、負極の形状自由度の高い蓄電デバイスを得ることができる。 On the other hand, when the electricity storage device is LiC, lithium ions can be sufficiently supplied into the exterior body from a doping tank existing separately from the exterior body after accommodating the assembled electrode in the exterior body. Therefore, in this case, it is not necessary to previously form a large number of through-holes in the positive electrode and the negative electrode, as compared with the conventional manufacturing method in which lithium ions are supplied from the lithium electrode arranged in the exterior body and the negative electrode or the positive electrode is doped with lithium. Therefore, in this case, it is possible to reduce the number of manufacturing processes that require a dry environment, and it is possible to eliminate the formation of positive and negative electrode holes, thereby reducing the manufacturing cost of the electricity storage device. it can. In this case, an electricity storage device having a high degree of freedom in shape of the positive electrode and the negative electrode can be obtained.
 セル準備工程において、組電極は、正極と、負極と、正極と負極との間に介在するセパレータとを備えている。組電極は、具体的には、正極と負極とがセパレータを介して交互に積層された積層体より構成することができる。積層体の積層方法としては、例えば、巻回方式、つづら折り方式などを例示することができる。 In the cell preparation step, the assembled electrode includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. Specifically, the assembled electrode can be composed of a laminate in which positive and negative electrodes are alternately laminated via separators. Examples of the method for laminating the laminated body include a winding method and a zigzag folding method.
 正極は、正極集電体と、正極集電体の表面に積層された正極活物質層とを有する構成とすることができる。正極集電体は、表裏面を貫く貫通孔が形成されていないことが好ましい。正極集電体の材質としては、具体的には、例えば、アルミニウム(合金含む、以下、省略)、ステンレス鋼などを例示することができる。正極活物質は、リチウムをドープ、脱ドープ可能であれば特に限定されるものではない。正極活物質は、リチウムイオンを化合物として取り込んで捕捉するものであっても良いし、活性炭などのように表面に形成された電気二重層にリチウムイオンを捕捉するものであってもよい。前者の正極活物質としては、リチウム含有金属酸化物などを例示することができ、具体的には、例えば、LiVO、LiCrO、LiCoO、LiMn、LiNiO、LiFePO、LiCoVO、LiCoMnO、LiFeMn、LiFePOF、LiCo1/3Ni1/3Mn1/3、Li(LiNiMnCo)などを例示することができる。これらの正極活物質は、LiBの製造に用いることができる。後者の正極活物質としては、具体的には、例えば、活性炭、ポリアセン系炭素材料等の多孔質炭素材料などを例示することができる。これらの正極活物質は、LiCの製造に用いることができる。 The positive electrode can be configured to have a positive electrode current collector and a positive electrode active material layer laminated on the surface of the positive electrode current collector. The positive electrode current collector preferably has no through hole penetrating the front and back surfaces. Specific examples of the material of the positive electrode current collector include aluminum (including an alloy, hereinafter omitted), stainless steel, and the like. The positive electrode active material is not particularly limited as long as it can be doped and dedoped with lithium. The positive electrode active material may capture and capture lithium ions as a compound, or may capture lithium ions in an electric double layer formed on the surface, such as activated carbon. Examples of the former positive electrode active material include lithium-containing metal oxides, and specifically, for example, LiVO 2 , LiCrO 2 , LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiFePO 4 , LiCoVO 4. LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 FePO 4 F, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li (Li a Ni x Mn y Co z ) and the like can be exemplified. . These positive electrode active materials can be used for production of LiB. Specific examples of the latter positive electrode active material include porous carbon materials such as activated carbon and polyacene carbon materials. These positive electrode active materials can be used for the production of LiC.
 負極は、具体的には、負極集電体と、負極集電体の表面に積層された負極活物質層とを有する構成とすることができる。負極集電体は、表裏面を貫く貫通孔が形成されていないことが好ましい。負極集電体の材質としては、具体的には、例えば、銅(合金含む、以下、省略)、ステンレス鋼などを例示することができる。負極活物質は、リチウムをドープ、脱ドープ可能であれば特に限定されるものではない。負極活物質としては、具体的には、例えば、黒鉛、アモルファスカーボン等の炭素材料、チタン酸リチウム等などを例示することができる。これらのうち、黒鉛は、入手が容易であり容量が大きいため特に好適に用いることができる。 Specifically, the negative electrode can be configured to have a negative electrode current collector and a negative electrode active material layer laminated on the surface of the negative electrode current collector. The negative electrode current collector preferably has no through hole penetrating the front and back surfaces. Specific examples of the material for the negative electrode current collector include copper (including an alloy, hereinafter omitted), stainless steel, and the like. The negative electrode active material is not particularly limited as long as it can be doped and dedoped with lithium. Specific examples of the negative electrode active material include carbon materials such as graphite and amorphous carbon, lithium titanate, and the like. Of these, graphite is particularly suitable because it is readily available and has a large capacity.
 セパレータは、正極と負極との間を絶縁でき、電解液を含浸させることができれば特に限定されるものではない。セパレータとしては、具体的には、例えば、ポリオレフィン、テトラフルオロエチレン、ポリイミド、ポリエチレンテレフタレート、ナイロン等のポリマーよりなる絶縁性の多孔質フィルムなどを例示することができる。 The separator is not particularly limited as long as it can insulate between the positive electrode and the negative electrode and can be impregnated with the electrolytic solution. Specific examples of the separator include an insulating porous film made of a polymer such as polyolefin, tetrafluoroethylene, polyimide, polyethylene terephthalate, and nylon.
 セル準備工程において用いる外装体は、具体的には、組電極を収容可能であるとともに電解液を満たすことが可能であり、外装体内部と外装体外部とを連通可能に構成することができる。外装体は、具体的には、例えば、ラミネートフィルム、アルミニウムや鉄等の金属材料、樹脂材料、セラミックス等を用いて、袋状、円筒状、角状等の形状に形成することができる。 Specifically, the exterior body used in the cell preparation step can accommodate the assembled electrode and can be filled with the electrolyte, and can be configured to allow communication between the interior of the exterior body and the exterior of the exterior body. Specifically, the exterior body can be formed into a bag shape, a cylindrical shape, a square shape, or the like using, for example, a laminate film, a metal material such as aluminum or iron, a resin material, ceramics, or the like.
 セル準備工程において、外装体内を電解液で満たす方法は、特に限定されるものではない。例えば、外装体内に組電極を収容した後に電解液を注入することもできるし、外装体内に電解液を注入した後に組電極を収容することもできる。また、外装体内の電解液は、上記ドーピング槽から供給することもできるし、上記ドーピング槽とは異なる電解液供給源から供給することもできる。外装体内の電解液をドーピング槽から供給した場合には、プレドープ工程との連続性に優れるので、生産性の向上に寄与することができる。 In the cell preparation process, the method of filling the exterior body with the electrolytic solution is not particularly limited. For example, the electrolytic solution can be injected after housing the assembled electrode in the exterior body, or the assembled electrode can be accommodated after injecting the electrolytic solution into the exterior body. Further, the electrolytic solution in the exterior body can be supplied from the doping tank, or can be supplied from an electrolytic solution supply source different from the doping tank. When the electrolytic solution in the exterior body is supplied from the doping tank, it is excellent in continuity with the pre-doping step, which can contribute to improvement in productivity.
 電解液としては、非水系の電解液を用いることができる。電解液としては、具体的には、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γ-ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソフラン、塩化メチレン、スルホランなどの有機溶媒を例示することができる。電解液に含有させるリチウム塩としては、具体的には、例えば、LiBF、LiClO、LiPF、LiAsF、LiSbFなど電子吸引性の高い陰イオンを有する塩などを例示することができる。 As the electrolytic solution, a non-aqueous electrolytic solution can be used. Specific examples of the electrolyte include organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxofuran, methylene chloride, and sulfolane. it can. The lithium salt to be contained in the electrolyte, specifically, for example, and the like can be exemplified salts with LiBF 4, LiClO 4, LiPF 6 , LiAsF 6, LiSbF 6 high anion electron withdrawing like.
 セル準備工程後のプレドープ工程では、外装体内の電解液と同種の電解液にリチウム極が浸漬されたドーピング槽の槽内の電解液と外装体内の電解液とを通液させて通液状態を形成した後に、リチウム極と負極または正極との電気的な接続状態を確保するようにしても良いし、上記電気的な接続状態を確保した後に、上記通液状態を形成するようにしても良い。あるいは、上記通液状態と上記電気的な接続状態とを同時に確保するようにしても良い。なお、上記通液状態を形成することによって、ドーピング槽の槽内の電解液と外装体内の電解液とが連続的に通じ合い、ドーピング槽から外装体内へリチウムイオンが自由に移動することが可能になる。また、外装体内の電解液とドーピング槽内の電解液とが「同種」とは、電解液の成分のうち、50質量%以上を占める主成分が同じであることを意味する。 In the pre-doping step after the cell preparation step, the electrolyte solution in the doping tank in which the lithium electrode is immersed in the same type of electrolyte solution as the electrolyte in the exterior body and the electrolyte solution in the exterior body are allowed to pass through and the liquid passing state is changed. After the formation, the electrical connection state between the lithium electrode and the negative electrode or the positive electrode may be ensured, or the liquid connection state may be formed after the electrical connection state is ensured. . Or you may make it ensure the said liquid flow state and the said electrical connection state simultaneously. In addition, by forming the above-described liquid passing state, the electrolyte in the doping tank and the electrolyte in the exterior body can continuously communicate, and lithium ions can freely move from the doping tank to the exterior body. become. Further, “the same kind” of the electrolytic solution in the exterior body and the electrolytic solution in the doping tank means that the main components occupying 50% by mass or more of the components of the electrolytic solution are the same.
 上記蓄電デバイスの製造方法において、外装体は、組電極の端部と対向する位置に外装体の内部と外部とを連通させる連通孔を有しており、プレドーピング工程において、連通孔とドーピング槽の槽内とは接続管を介して連通した状態とされるとよい(請求項2)。 In the method for manufacturing an electricity storage device, the exterior body has a communication hole that communicates the inside and the exterior of the exterior body at a position facing the end of the assembled electrode. In the pre-doping step, the communication hole and the doping tank are provided. The inside of the tank may be in a state of communicating with each other via a connecting pipe (claim 2).
 この場合は、蓄電セルの外装体とは別に存在するドーピング槽の槽内の電解液と外装体内の電解液とを接続管を介して比較的簡単に通液させて通液状態とすることができる。そのため、リチウムイオンは、接続管内にある上記通液状態を形成する電解液を介して自由に移動することが可能となる。それ故、この場合は、リチウム極で生成したリチウムイオンが接続管および連通孔を経由して外装体内の電解液に移動するのを確実なものとすることができる。また、連通孔は、組電極の端部と対向する位置に形成されている。そのため、この場合は、連通孔から外装体内に導入されるリチウムイオンが、組電極の端部から電極間の隙間あるいは多孔質のセパレータを通じて組電極内部に浸入しやすくなり、効率良くドープすることが可能となる。なお、「組電極の端部」とは、正極および/または負極とセパレータが露出する部分を意味する。また、外装体は、1または2以上の連通孔を有することができ、接続管は、外装体が有する連通孔の数に合わせて設けることができる。 In this case, the electrolyte solution in the doping tank existing separately from the exterior body of the storage cell and the electrolyte solution in the exterior body can be relatively easily passed through the connecting pipe to obtain a liquid-permeable state. it can. Therefore, lithium ions can freely move through the electrolytic solution that forms the liquid passing state in the connecting pipe. Therefore, in this case, it is possible to ensure that lithium ions generated at the lithium electrode move to the electrolytic solution in the exterior body via the connection pipe and the communication hole. The communication hole is formed at a position facing the end of the assembled electrode. Therefore, in this case, lithium ions introduced into the exterior body from the communication hole can easily enter the assembled electrode from the end of the assembled electrode through the gap between the electrodes or the porous separator, and can be efficiently doped. It becomes possible. The “end portion of the assembled electrode” means a portion where the positive electrode and / or the negative electrode and the separator are exposed. Further, the exterior body can have one or more communication holes, and the connection pipe can be provided in accordance with the number of communication holes of the exterior body.
 上記プレドープ工程において、リチウム極と負極または正極とは、短絡により電気的に接続した状態とされることもできるし、外部電源を介して電気的に接続した状態とされることもできる(請求項3)。 In the pre-doping step, the lithium electrode and the negative electrode or the positive electrode can be electrically connected by a short circuit or can be electrically connected via an external power source (claims). 3).
 外部電源を用いる後者の方法は、外部電源によってリチウム極と負極または正極との間に強制的に電位差を発生させることができるので、リチウム極でのリチウムの酸化によるイオン化と、負極または正極でのリチウムイオンの還元とを促進させることができる。そのため、外部電源を用いる後者の方法は、短絡による前者の方法に比べ、負極または正極へのリチウムのドープを促進させることができる。なお、外部電源を用いる後者の方法では、負極または正極からリチウム極に向かって電流を流すことができるように外部電源を接続すればよい。 The latter method using an external power source can forcibly generate a potential difference between the lithium electrode and the negative electrode or the positive electrode by the external power source, so that ionization by oxidation of lithium at the lithium electrode and Reduction of lithium ions can be promoted. Therefore, the latter method using an external power source can promote doping of lithium into the negative electrode or the positive electrode as compared with the former method using a short circuit. In the latter method using an external power supply, an external power supply may be connected so that a current can flow from the negative electrode or the positive electrode toward the lithium electrode.
 上記プレドープ工程は、最終的に負極にリチウムがドープされるように以下の2つの手順のうちのいずれか一方を含むことができる。すなわち、プレドープ工程は、リチウム極と負極とを電気的に接続した状態とし、負極にリチウムをドープする手順を含むことができる(請求項4)。 The pre-doping step may include one of the following two procedures so that the negative electrode is finally doped with lithium. That is, the pre-doping step can include a procedure in which the lithium electrode and the negative electrode are electrically connected, and the negative electrode is doped with lithium.
 この場合は、負極にリチウムを直接ドープするので、プレドープ工程を比較的短くすることができ、蓄電デバイスの生産性に優れる。 In this case, since the negative electrode is directly doped with lithium, the pre-doping process can be made relatively short, and the productivity of the electricity storage device is excellent.
 また、上記手順に代えて、プレドープ工程は、リチウム極と正極とを電気的に接続した状態として正極にリチウムをドープした後、正極と負極とを電気的に接続した状態として充電を行うことにより、正極にドープされた上記リチウムを負極にドープする手順を含むことができる(請求項5)。 Further, instead of the above procedure, the pre-doping step is performed by doping lithium in the positive electrode with the lithium electrode and the positive electrode electrically connected, and then charging with the positive electrode and the negative electrode electrically connected. A step of doping the negative electrode with the lithium doped in the positive electrode can be included (claim 5).
 この場合は、一旦、正極を介して負極にリチウムをドープするので、直接負極にドープするよりもリチウムの受け渡し回数が増え、リチウムが拡散し、均一にドープすることができる。なお、リチウムイオン二次電池に適用する場合には、一旦充電を行い、正極のリチウムを減らしてからドープすることにより、正極に十分にリチウムをドープすることができる。 In this case, since the negative electrode is once doped with lithium through the positive electrode, the number of times lithium is transferred is increased as compared with the case where the negative electrode is directly doped, so that lithium can diffuse and be uniformly doped. In addition, when applied to a lithium ion secondary battery, the positive electrode can be sufficiently doped with lithium by charging once and reducing the positive electrode lithium before doping.
 上記蓄電デバイスの製造方法は、上記プレドープ工程の後、上記通液状態および上記電気的な接続状態を解き、外装体を封止する封止工程を有することができる。この場合は、プレドープ工程の後に、外装体を封止しているので、プレドープ工程で発生した分解ガスを外装体内部から取り除くことができる。外装体の連通孔に接続管を接続している場合には、連通孔と接続管とを分離させ、連通孔を封止ればよい。連通孔部分が金属等からなる場合には、かしめ、溶接などにより封止を行うことができる。また、連通孔部分がラミネートフィルム等の樹脂からなる場合には、溶着等により封止を行うことができる。それ以外にも、連通孔部分の材質に関わらず、連通孔に栓を圧入したり、接着したりすることなどにより封止を行うこともできる。 The manufacturing method of the electricity storage device may have a sealing step of releasing the liquid passing state and the electrical connection state after the pre-doping step and sealing the outer package. In this case, since the exterior body is sealed after the pre-doping step, the decomposition gas generated in the pre-doping step can be removed from the inside of the exterior body. When the connection pipe is connected to the communication hole of the exterior body, the communication hole and the connection pipe may be separated and the communication hole may be sealed. When the communication hole portion is made of metal or the like, sealing can be performed by caulking, welding, or the like. Further, when the communicating hole portion is made of a resin such as a laminate film, sealing can be performed by welding or the like. In addition, sealing can be performed by press-fitting or adhering a plug into the communication hole regardless of the material of the communication hole portion.
 次に、上記ドーピング槽について説明する。なお、必要に応じて上述した蓄電デバイスの製造方法の説明を参照することができる。 Next, the doping tank will be described. In addition, the description of the manufacturing method of the electrical storage device mentioned above can be referred as needed.
 上記ドーピング槽は、上述した蓄電デバイスの製造方法に好適に用いることができる。上記ドーピング槽において、リチウム極は、その全部が電解液に浸漬されていてもよいし、部分的に電解液に浸漬されていてもよい。リチウム極は、その形状が特に限定されるものではなく、例えば、ブロック状、棒状、箔状など、各種の形状とすることができる。また、リチウム極は、その配置が特に限定されるものではなく、例えば、ドーピング槽の底面上に金属製の受け皿等を任意に介して配置したり、ドーピング槽の内壁面に配置したりすることができる。 The doping tank can be suitably used in the above-described method for manufacturing an electricity storage device. In the doping tank, the lithium electrode may be entirely immersed in the electrolytic solution, or may be partially immersed in the electrolytic solution. The shape of the lithium electrode is not particularly limited, and may be various shapes such as a block shape, a rod shape, and a foil shape. Further, the arrangement of the lithium electrode is not particularly limited. For example, the lithium electrode may be disposed on the bottom surface of the doping tank through a metal tray or the like, or may be disposed on the inner wall surface of the doping tank. Can do.
 上記接続管の一端は、槽内の電解液の液面よりも下に配置されているとよい。この場合は、外装体の内部を例えば真空状態とするなどして、外装体の内部と槽内との間に圧力差を発生させ、この圧力差を利用してドーピング槽から外装体内へ電解液を供給することが可能となる。接続管の材質は、特に限定されるものではなく、各種の樹脂や金属などを用いることができる。中でも、樹脂を用いた接続管は絶縁性であるので、電解液に発生する電位差によってリチウムなどが析出しにくく好適に利用できる。 It is preferable that one end of the connecting pipe is disposed below the liquid level of the electrolytic solution in the tank. In this case, a pressure difference is generated between the inside of the exterior body and the inside of the tank, for example, by making the inside of the exterior body into a vacuum state, and the electrolyte solution is transferred from the doping tank to the exterior body using this pressure difference. Can be supplied. The material of the connecting pipe is not particularly limited, and various types of resins and metals can be used. Among them, since the connecting pipe using a resin is insulative, lithium and the like are hardly deposited due to a potential difference generated in the electrolytic solution, and can be suitably used.
 上記接続回路は、上述した外部電源を含むことができる。外部電源は、例えば、負極または正極とリチウム極との間に定電流および/または定電位を供給可能に構成することができる。 The connection circuit can include the external power source described above. The external power source can be configured to be able to supply a constant current and / or a constant potential between, for example, a negative electrode or a positive electrode and a lithium electrode.
 以下、実施例の蓄電デバイスの製造方法およびドーピング槽について、図面を用いて説明する。 Hereinafter, the manufacturing method and the doping tank of the electricity storage device of the examples will be described with reference to the drawings.
(実施例1)
 実施例1の蓄電デバイスの製造方法およびドーピング槽について、図1~図3を用いて説明する。説明の都合上、実施例1のドーピング槽を先に説明する。
(Example 1)
A manufacturing method and a doping tank of the electricity storage device of Example 1 will be described with reference to FIGS. For convenience of explanation, the doping tank of Example 1 will be described first.
 図1~図2に示すように、本例のドーピング槽2は、正極101と負極102と正極101と負極102との間に介在するセパレータ103とを備える組電極10と、組電極10を収容する外装体11とを有する蓄電セル1の負極102または正極101にリチウムをドープするために用いられる。 As shown in FIGS. 1 and 2, the doping tank 2 of this example accommodates the assembled electrode 10 including the positive electrode 101, the negative electrode 102, the separator 103 interposed between the positive electrode 101 and the negative electrode 102, and the assembled electrode 10. It is used to dope lithium into the negative electrode 102 or the positive electrode 101 of the electricity storage cell 1 having the outer package 11 that performs the above operation.
 ドーピング槽2は、電解液21を収容する槽20と、電解液21に浸漬されたリチウム極22と、接続管24と、接続回路25とを有している。本例では、リチウム極22は、その全てが電解液21中に浸漬されている。 The doping tank 2 includes a tank 20 that stores the electrolytic solution 21, a lithium electrode 22 that is immersed in the electrolytic solution 21, a connection tube 24, and a connection circuit 25. In this example, the lithium electrode 22 is all immersed in the electrolytic solution 21.
 接続管24は、一端が槽20内と連通するとともに他端が蓄電セル1における外装体11の内部と連通可能に構成されている。なお、本例では、接続管24は、樹脂製である。接続管24の一端は、槽20内に挿入されており、槽20内の電解液21の液面下に配置されている。接続管24の他端は、蓄電セル1に向けて延びており、後述する外装体11の連通孔113に接続可能とされている。接続管24の途中には、開閉により管内を導通状態、非導通状態とすることが可能なバルブ241が設けられている。 The connection pipe 24 is configured such that one end communicates with the inside of the tank 20 and the other end communicates with the inside of the outer package 11 in the storage cell 1. In this example, the connecting pipe 24 is made of resin. One end of the connection pipe 24 is inserted into the tank 20 and is disposed below the liquid surface of the electrolytic solution 21 in the tank 20. The other end of the connection pipe 24 extends toward the storage cell 1 and can be connected to a communication hole 113 of the exterior body 11 described later. In the middle of the connecting pipe 24, a valve 241 is provided that can be opened or closed to open or close the pipe.
 接続回路25は、一端がリチウム極22に電気的に接続されるとともに他端が負極102または正極101に電気的に接続可能に構成されている。本例では、槽20内の底面上に置かれた金属製の受け皿221上にリチウム極22が載置されており、受け皿221から延びるリード線222が、槽20外に設けた外部端子23に電気的に接続されている。そして、接続回路25の一端は、この外部端子23を介してリチウム極22と電気的に接続されている。一方、接続回路25の他端は、蓄電セル1の負極端子14または正極端子13を介して負極102または正極101と電気的に接続可能に構成されている。接続回路25の途中には、外部電源251が設けられており、リチウム極22と負極102または正極101とは外部電源251を介して電気的に接続可能に構成されている。なお、外部電源251は、スイッチがオンされた場合に負極102または正極101からリチウム極22に向かって電流を流すことが可能となるように接続されている。 The connection circuit 25 is configured such that one end is electrically connected to the lithium electrode 22 and the other end is electrically connectable to the negative electrode 102 or the positive electrode 101. In this example, the lithium electrode 22 is placed on a metal tray 221 placed on the bottom surface in the tank 20, and a lead wire 222 extending from the tray 221 is connected to an external terminal 23 provided outside the tank 20. Electrically connected. One end of the connection circuit 25 is electrically connected to the lithium electrode 22 via the external terminal 23. On the other hand, the other end of the connection circuit 25 is configured to be electrically connectable to the negative electrode 102 or the positive electrode 101 via the negative electrode terminal 14 or the positive electrode terminal 13 of the storage cell 1. An external power source 251 is provided in the middle of the connection circuit 25, and the lithium electrode 22 and the negative electrode 102 or the positive electrode 101 are configured to be electrically connected via the external power source 251. Note that the external power supply 251 is connected so that a current can flow from the negative electrode 102 or the positive electrode 101 toward the lithium electrode 22 when the switch is turned on.
 次に、実施例1の蓄電デバイスの製造方法について説明する。 Next, a method for manufacturing the electricity storage device of Example 1 will be described.
 本例の蓄電デバイスの製造方法は、セル準備工程と、プレドープ工程とを有している。 The manufacturing method of the electricity storage device of this example includes a cell preparation process and a pre-doping process.
 図1、図2に示すように、セル準備工程は、正極101と負極102と正極101と負極102との間に介在するセパレータ103とを備える組電極10と、組電極10を収容する外装体11と、外装体11内を満たす電解液12とを有する蓄電セル1を準備する工程である。 As shown in FIG. 1 and FIG. 2, the cell preparation step includes an assembled electrode 10 including a positive electrode 101, a negative electrode 102, a separator 103 interposed between the positive electrode 101 and the negative electrode 102, and an outer package housing the assembled electrode 10. 11 and a step of preparing a storage cell 1 having an electrolyte solution 12 filling the exterior body 11.
 本例では、組電極10は、正極101と負極102とがセパレータ103を介して交互に積層され、巻回された積層体より構成されている。正極101は、正極集電体(不図示)と、正極集電体の表面に積層されたリチウム含有金属酸化物を含む正極活物質層(不図示)とを有している。正極活物質層は、多孔質炭素材料とバインダーとを含むペーストを正極集電体の表面に塗布、乾燥後、プレスして形成されている。負極102は、負極集電体(不図示)と、負極集電体の表面に積層された炭素材料を含む負極活物質層(不図示)とを有している。負極活物質層は、炭素材料とバインダーとを含むペーストを負極集電体の表面に塗布、乾燥後、プレスして形成されている。セパレータ103は、多孔質樹脂フィルムよりなる。正極101および負極102は、いずれも表裏面を貫く貫通孔の形成加工が施されていない。なお、正極101は、正極タブ(不図示)を有している。各正極同士は、超音波溶接によって各正極タブ間が接合されている。この接合された正極タブは、外装体11の外部に設けられた正極端子13に電気的に接続されている。同様に、負極102は、負極タブ(不図示)を有している。各負極同士は、超音波溶接によって各負極タブ間が接合されている。この接合された負極タブは、外装体11の外部に設けられた負極端子14に電気的に接続されている。 In this example, the assembled electrode 10 is formed of a laminated body in which the positive electrodes 101 and the negative electrodes 102 are alternately stacked via the separator 103 and wound. The positive electrode 101 has a positive electrode current collector (not shown) and a positive electrode active material layer (not shown) including a lithium-containing metal oxide laminated on the surface of the positive electrode current collector. The positive electrode active material layer is formed by applying a paste containing a porous carbon material and a binder to the surface of the positive electrode current collector, drying it, and pressing it. The negative electrode 102 has a negative electrode current collector (not shown) and a negative electrode active material layer (not shown) containing a carbon material laminated on the surface of the negative electrode current collector. The negative electrode active material layer is formed by applying a paste containing a carbon material and a binder to the surface of the negative electrode current collector, drying, and pressing. The separator 103 is made of a porous resin film. Neither the positive electrode 101 nor the negative electrode 102 is subjected to a through hole forming process that penetrates the front and back surfaces. The positive electrode 101 has a positive electrode tab (not shown). Each positive electrode is joined between each positive electrode tab by ultrasonic welding. The joined positive electrode tab is electrically connected to a positive electrode terminal 13 provided outside the exterior body 11. Similarly, the negative electrode 102 has a negative electrode tab (not shown). Each negative electrode is joined between each negative electrode tab by ultrasonic welding. The bonded negative electrode tab is electrically connected to a negative electrode terminal 14 provided outside the exterior body 11.
 外装体11は、有底の金属製の筒部111と、内部に組電極10を収容した後にかしめにより取り付けられる金属製の蓋体112とを有している。蓋体112は、外装体11内部と外装体11外部とを連通させる連通孔113を有している。なお、蓋体112を用いずに外装体11を形成することも可能であり、この場合、連通孔113は、蓋体113以外の外装体11のいずれの部位に形成されていてもよい。 The exterior body 11 has a bottomed metallic cylinder portion 111 and a metallic lid body 112 attached by caulking after the assembled electrode 10 is accommodated therein. The lid body 112 has a communication hole 113 that allows the interior of the exterior body 11 to communicate with the exterior of the exterior body 11. It is possible to form the exterior body 11 without using the lid body 112, and in this case, the communication hole 113 may be formed in any part of the exterior body 11 other than the lid body 113.
 本例では、外装体11の筒部111内に組電極10を収容した後、筒部111の上部に蓋体112をかしめにより取り付け、連通孔113にドーピング槽2の接続管24の他端を接続する。これにより、連通孔113とドーピング槽2の槽20内とが、接続管24を介して連通された状態となる。そして、この連通孔113を介してドーピング槽2から非水系の電解液21を注入し、外装体11内を電解液12で満たす。なお、本例では、具体的には、図1に示すように、蓄電セル1の連通孔113に真空ポンプ3を接続し、バルブ31を開けて外装体11内を減圧脱気する。なお、図1では、接続管24のバルブ241は閉まっている。また、外部電源251はオフとなっている。その後、図2に示すように、真空ポンプ3側のバルブ31を閉めて接続管24のバルブ241を開け、外装体11の内部とドーピング槽2の槽20内との差圧を利用して電解液12の注入を行う。セル準備工程では、上記のようにして蓄電セル1の準備を行う。 In this example, after the assembled electrode 10 is accommodated in the cylindrical portion 111 of the exterior body 11, the lid body 112 is attached to the upper portion of the cylindrical portion 111 by caulking, and the other end of the connection pipe 24 of the doping tank 2 is connected to the communication hole 113. Connecting. Thereby, the communication hole 113 and the inside of the tank 20 of the doping tank 2 are communicated with each other via the connection pipe 24. Then, the non-aqueous electrolyte solution 21 is injected from the doping tank 2 through the communication hole 113, and the interior of the outer package 11 is filled with the electrolyte solution 12. In this example, specifically, as shown in FIG. 1, the vacuum pump 3 is connected to the communication hole 113 of the storage cell 1, the valve 31 is opened, and the inside of the exterior body 11 is deaerated under reduced pressure. In FIG. 1, the valve 241 of the connecting pipe 24 is closed. The external power supply 251 is off. Thereafter, as shown in FIG. 2, the valve 31 on the vacuum pump 3 side is closed and the valve 241 of the connecting pipe 24 is opened, and electrolysis is performed using the pressure difference between the inside of the exterior body 11 and the inside of the tank 20 of the doping tank 2. The liquid 12 is injected. In the cell preparation step, the storage cell 1 is prepared as described above.
 プレドープ工程は、セル準備工程の後、上記外装体11内の電解液12と同種の電解液21に浸漬されたリチウム極22を槽20内に有するドーピング槽2の槽20内の電解液21と外装体11内の電解液12とを通液させて通液状態を形成するとともに、リチウム極22と負極102または正極101とを電気的に接続した状態とし、リチウム極22で生成したリチウムイオンを上記通液状態を形成する電解液210を介して外装体11内に供給し、負極102または正極101にリチウムをドープする工程である。 In the pre-doping step, after the cell preparation step, the electrolytic solution 21 in the bath 20 of the doping bath 2 having the lithium electrode 22 immersed in the electrolytic solution 21 of the same type as the electrolytic solution 12 in the outer package 11 in the bath 20 The electrolytic solution 12 in the outer package 11 is passed through to form a liquid passing state, and the lithium electrode 22 and the negative electrode 102 or the positive electrode 101 are electrically connected, and lithium ions generated at the lithium electrode 22 are generated. In this step, the negative electrode 102 or the positive electrode 101 is doped with lithium by being supplied into the outer package 11 through the electrolytic solution 210 forming the liquid passing state.
 本例では、セル準備工程においてドーピング槽2の槽20から外装体11内へ電解液21を注入した後、引き続きドライ環境下にてプレドープ工程を行う。そのため、この電解液21の注入によって外装体11内が電解液12で満たされた時点で、ドーピング槽2の槽20内の電解液21と外装体11内の電解液12とが、接続管24内にある電解液210を介して通液された通液状態とされる。また、本例では、上記通液状態を形成した後、負極14に接続された接続回路25の外部電源251をオンとし、リチウム極22と負極102とを電気的に接続する。これにより、リチウム極22でリチウムイオンが生成し、生成したリチウムイオンがドーピング槽2の槽20内から接続管24および連通孔113を経由して外装体11内の電解液12に供給(輸送・泳動等も含む)される。また、負極14には電子が供給される。その結果、本例では、負極102にリチウムがドープされる。プレドープ工程では、上記のようにして負極102にリチウムをドープする。 In this example, after injecting the electrolyte solution 21 from the tank 20 of the doping tank 2 into the outer package 11 in the cell preparation process, the pre-doping process is subsequently performed in a dry environment. Therefore, when the exterior body 11 is filled with the electrolyte solution 12 by the injection of the electrolyte solution 21, the electrolyte solution 21 in the tank 20 of the doping tank 2 and the electrolyte solution 12 in the exterior body 11 are connected to the connection pipe 24. The liquid is passed through the electrolytic solution 210 inside. Further, in this example, after the liquid passing state is formed, the external power source 251 of the connection circuit 25 connected to the negative electrode 14 is turned on, and the lithium electrode 22 and the negative electrode 102 are electrically connected. As a result, lithium ions are generated at the lithium electrode 22, and the generated lithium ions are supplied from the tank 20 of the doping tank 2 to the electrolyte solution 12 in the outer package 11 via the connection pipe 24 and the communication hole 113 (transportation / transportation). Electrophoresis etc.). Electrons are supplied to the negative electrode 14. As a result, in this example, the negative electrode 102 is doped with lithium. In the pre-doping step, the negative electrode 102 is doped with lithium as described above.
 本例の蓄電デバイスの製造方法は、プレドープ工程の後、さらに、上記通液状態および上記電気的な接続状態を解き、外装体11を封止する封止工程を有している。本例では、具体的には、ドライ環境下にて、外装体11の連通孔113とドーピング槽2の接続管24とを分離させた後、連通孔113を溶接により封止する。 The manufacturing method of the electricity storage device of this example further includes a sealing step of releasing the liquid passing state and the electrical connection state and sealing the outer package 11 after the pre-doping step. In this example, specifically, after the communication hole 113 of the outer package 11 and the connection pipe 24 of the doping tank 2 are separated in a dry environment, the communication hole 113 is sealed by welding.
 以上により、図3に示すように、正極101と負極102と正極101と負極102との間に介在するセパレータ103とを備える組電極10と、組電極10を収容する外装体11と、外装体11内を満たす電解液12とを有しており、負極102にリチウムがドープされた蓄電デバイス4(本例ではリチウムイオン二次電池)が得られる。 As described above, as shown in FIG. 3, the assembled electrode 10 including the positive electrode 101, the negative electrode 102, the separator 103 interposed between the positive electrode 101 and the negative electrode 102, the exterior body 11 that houses the assembled electrode 10, and the exterior body 11 is obtained, and the storage device 4 (in this example, a lithium ion secondary battery) in which the negative electrode 102 is doped with lithium is obtained.
 次に、本例の蓄電デバイスの製造方法およびドーピング槽の作用効果について説明する。 Next, the manufacturing method of the electricity storage device of this example and the function and effect of the doping tank will be described.
 本例の蓄電デバイスの製造方法は、セル準備工程の後にプレドープ工程を有している。つまり、本例の蓄電デバイスの製造方法は、外装体内に組電極を収容した後に、蓄電セルの外装体とは別に存在するドーピング槽から外装体内にリチウムイオンを供給し、負極にリチウムをプレドープする。そのため、本例の蓄電デバイスの製造方法は、セル準備工程の後工程であるプレドープ工程、外装体を封止する封止工程をドライ環境下とすればよい。したがって、電解液にリチウム極が浸漬されている外装体とは別に存在するドーピング槽内に組電極を浸漬し、負極にリチウムをドープする従来製法に比べ、ドライ環境を必要とする製造工程を少なくすることができる。なお、封止工程は、従来製法でもドライ環境下にて行われるのが通常である。 The manufacturing method of the electricity storage device of this example has a pre-doping process after the cell preparation process. That is, in the method of manufacturing the electricity storage device of this example, after the assembled electrode is accommodated in the exterior body, lithium ions are supplied from the doping tank that exists separately from the exterior body of the electricity storage cell, and lithium is pre-doped to the negative electrode. . Therefore, the manufacturing method of the electrical storage device of this example should just make the pre dope process and the sealing process which seals an exterior body which are a post process of a cell preparation process in a dry environment. Therefore, compared to the conventional manufacturing method in which the assembled electrode is immersed in a doping vessel that is separate from the outer package in which the lithium electrode is immersed in the electrolytic solution, and the negative electrode is doped with lithium, the number of manufacturing processes requiring a dry environment is reduced. can do. The sealing process is usually performed in a dry environment even in the conventional manufacturing method.
 また、ドーピング槽は、上記構成を有している。そのため、ドーピング槽は、接続管の他端を外装体に接続することにより、ドーピング槽の槽内の電解液と外装体内の電解液とを接続管を介して通液させて通液状態とすることができる。それ故、ドーピング槽は、リチウム極から生じたリチウムイオンを、接続管内にある上記通液状態を形成する電解液を介してドーピング槽の槽内から外装体内へ供給することができる。また、ドーピング槽は、接続回路の他端を負極に電気的に接続することにより、電子を負極に供給することができる。それ故、ドーピング槽は、本例の蓄電デバイスの製造に好適に用いることができる。 Moreover, the doping tank has the above configuration. Therefore, in the doping tank, the other end of the connection pipe is connected to the exterior body, so that the electrolyte solution in the doping tank tank and the electrolyte solution in the exterior body are passed through the connection pipe to be in a liquid-permeable state. be able to. Therefore, the doping tank can supply lithium ions generated from the lithium electrode from the inside of the doping tank to the exterior body through the electrolytic solution that forms the liquid passing state in the connection pipe. Further, the doping tank can supply electrons to the negative electrode by electrically connecting the other end of the connection circuit to the negative electrode. Therefore, the doping tank can be suitably used for manufacturing the electricity storage device of this example.
 よって、実施例1によれば、従来に比べ、ドライ環境を必要とする製造工程を少なくすることが可能な蓄電デバイスの製造方法、この製造方法に適したドーピング槽を提供することができる。 Therefore, according to Example 1, it is possible to provide a method for manufacturing an electricity storage device capable of reducing the number of manufacturing steps that require a dry environment as compared with the conventional case, and a doping tank suitable for this manufacturing method.
(実施例2)
 実施例2の蓄電デバイスの製造方法は、実施例1の蓄電デバイスの製造方法におけるセル準備工程において、正極活物質としての多孔質炭素材料を多孔質炭素材料とする点で、実施例1の蓄電デバイスの製造方法と相違している。また、実施例2の蓄電デバイスの製造方法は、プレドープ工程において、上記通液状態を形成した後、リチウム極22と正極101とを外部電源251を用いずに短絡により電気的に接続した状態として正極101にリチウムをドープした後、正極101と負極102とを電気的に接続した状態として充電を行うことにより、正極101にドープしたリチウムを負極102にドープする点で、実施例1の蓄電デバイスの製造方法と相違している。その他は、実施例1の蓄電デバイスの製造方法と略同様である。
(Example 2)
The power storage device manufacturing method of Example 2 is the same as that of Example 1 in that the porous carbon material as the positive electrode active material is a porous carbon material in the cell preparation step in the power storage device manufacturing method of Example 1. It is different from the device manufacturing method. Further, in the method of manufacturing the electricity storage device of Example 2, in the pre-doping step, after forming the liquid passing state, the lithium electrode 22 and the positive electrode 101 are electrically connected by a short circuit without using the external power source 251. After the lithium is doped into the positive electrode 101, charging is performed with the positive electrode 101 and the negative electrode 102 being electrically connected to each other, whereby the negative electrode 102 is doped with lithium doped into the positive electrode 101. The manufacturing method is different. Others are substantially the same as the manufacturing method of the electrical storage device of Example 1.
 また、実施例2のドーピング槽2は、図4に示すように、槽20内に電解液21を補充する電解液予備タンク26をさらに有する点で、実施例1のドーピング槽2と相違している。その他は、実施例1のドーピング槽2と略同様である。 Moreover, the doping tank 2 of Example 2 is different from the doping tank 2 of Example 1 in that it further includes an electrolyte reserve tank 26 that replenishes the electrolyte 21 in the tank 20 as shown in FIG. Yes. Others are substantially the same as the doping tank 2 of Example 1.
 実施例2の蓄電デバイスの製造方法によれば、正極と負極と正極と負極との間に介在するセパレータとを備える組電極と、組電極を収容する外装体と、外装体内を満たす電解液とを有しており、負極にリチウムがドープされた蓄電デバイス(本例ではリチウムイオンキャパシタ)が得られる。 According to the method for manufacturing an electricity storage device of Example 2, an assembled electrode including a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode, an exterior body that accommodates the assembled electrode, and an electrolyte that fills the exterior body Thus, an electricity storage device (lithium ion capacitor in this example) in which the negative electrode is doped with lithium is obtained.
 実施例2の場合も、実施例1と同様に、従来に比べ、ドライ環境を必要とする製造工程を少なくすることが可能な蓄電デバイスの製造方法、この製造方法に適したドーピング槽を提供することができる。 In the case of Example 2, as in Example 1, a method for manufacturing an electricity storage device capable of reducing the number of manufacturing steps that require a dry environment as compared to the conventional method and a doping bath suitable for this manufacturing method are provided. be able to.
 また、実施例2のドーピング槽は、電解液予備タンクが槽に接続されているので、槽内に電解液を補充することができ、槽内の電解液の液面を維持しやすくなる。それ故、実施例2のドーピング槽は、上記通液状態を維持しやすく、槽内から外装体内へのリチウムイオンの移動を確実なものとしやすい利点がある。なお、電解液予備タンクから槽内への電解液の補充は、電解液予備タンク内と槽内との圧力差などを利用してつり合いをとることなどによって行うことができる。その他は、実施例1のドーピング槽と同様の作用効果を奏することができる。 Further, in the doping tank of Example 2, since the electrolyte preliminary tank is connected to the tank, the electrolyte can be replenished in the tank, and the liquid level of the electrolyte in the tank can be easily maintained. Therefore, the doping tank of Example 2 has an advantage that it is easy to maintain the above-mentioned liquid passing state, and to ensure the movement of lithium ions from the inside of the tank to the exterior body. The replenishment of the electrolytic solution from the electrolytic solution preliminary tank into the tank can be performed by taking a balance using a pressure difference between the electrolytic solution preliminary tank and the tank. In other respects, the same effects as the doping tank of the first embodiment can be obtained.
(実験例1)
 厚み20μmのアルミニウム合金箔の表面に、LiCoOとバインダーとを含むペーストを40mm×40mmの範囲に50μmの厚みで塗布し、乾燥させて正極を形成した。また、厚み20μmの銅箔の表面に、黒鉛とバインダーとを含むペーストを40mm×40mmの範囲に50μmの厚みで塗布し、乾燥させて負極を形成した。次いで、得られた正極と負極とを、厚み25μmの多孔質ポリプロピレンフィルムを介して交互に積層した積層体を形成した。なお、積層体における正極タブ同士、負極タブ同士は、ともに超音波溶接により接合した。次いで、この積層体を、連通孔を有し、樹脂からなる有底の筒部に封入するとともに蓋をして外装体を形成した。なお、外装体の外部には、上記溶接された正極タブに電気的に接続された正極端子、上記溶接された負極タブに電気的に接続された負極端子を形成した。次いで、得られた外装体の連通孔に真空ポンプおよび図1に示した構成を有するドーピング槽の接続管を接続した。次いで、真空ポンプにより外装体の内部を減圧脱気するとともに、接続管を介して槽内の電解液(エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ブチレンカーボネートのうち、3種類以上を混合した溶媒にLiPFまたはLiBFのリチウム塩を1mol/L溶解したもの)を差圧により外装体の内部へ注入した。これにより、蓄電セルを準備した。
(Experimental example 1)
A paste containing LiCoO 2 and a binder was applied in a range of 40 mm × 40 mm to a thickness of 50 μm on the surface of an aluminum alloy foil having a thickness of 20 μm and dried to form a positive electrode. Further, a paste containing graphite and a binder was applied in a range of 40 mm × 40 mm to a thickness of 50 μm on the surface of a copper foil having a thickness of 20 μm, and dried to form a negative electrode. Subsequently, the laminated body which laminated | stacked the obtained positive electrode and negative electrode alternately via the 25-micrometer-thick porous polypropylene film was formed. The positive electrode tabs and the negative electrode tabs in the laminate were joined together by ultrasonic welding. Next, the laminated body was sealed in a bottomed cylindrical portion having a communication hole and made of resin, and a cover was formed to form an exterior body. In addition, the positive electrode terminal electrically connected to the welded positive electrode tab and the negative electrode terminal electrically connected to the welded negative electrode tab were formed outside the exterior body. Next, a vacuum pump and a connecting pipe of a doping tank having the configuration shown in FIG. 1 were connected to the communication hole of the obtained exterior body. Next, the inside of the exterior body was degassed by a vacuum pump, and at least three kinds of electrolytes in the tank (ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, butylene carbonate were mixed via a connecting pipe) 1 mol / L of a LiPF 6 or LiBF 4 lithium salt dissolved in a solvent) was injected into the exterior body by a differential pressure. This prepared the electrical storage cell.
 本例では、上記電解液の注入後、ドーピング槽の接続管を連通孔に接続したままとすることにより、ドーピング槽の槽内の電解液と蓄電セル内の電解液とが、接続管内にある電解液を介して通液された通液状態とした。次いで、蓄電セルの負極に接続したドーピング槽の接続回路の外部電源をオンとして、リチウム極と負極とを電気的に接続した。この際の条件は、負極からリチウム極に、0.05Cレート~1Cレート、0.1A/cm以下で電流を印加した。これにより、リチウム極で生成したリチウムイオンをドーピング槽内から蓄電セル内へ供給し、負極容量の20%にあたる不可逆容量分のリチウムを負極に直接ドープした。なお、上記プレドープ工程は、露点-35~-65℃dpで管理されたドライ環境下にて実施した。 In this example, after the electrolyte solution is injected, the electrolyte tube in the doping vessel and the electrolyte solution in the storage cell are in the connection tube by keeping the connecting tube of the doping vessel connected to the communication hole. The liquid was passed through the electrolytic solution. Subsequently, the external power supply of the connection circuit of the doping tank connected to the negative electrode of the electricity storage cell was turned on to electrically connect the lithium electrode and the negative electrode. In this case, a current was applied from the negative electrode to the lithium electrode at a rate of 0.05 C to 1 C at a rate of 0.1 A / cm 2 or less. Thereby, the lithium ion produced | generated by the lithium electrode was supplied from the inside of a doping tank into the electrical storage cell, and lithium for the irreversible capacity | capacitance which is 20% of a negative electrode capacity | capacitance was doped to the negative electrode directly. The pre-doping step was performed in a dry environment controlled at a dew point of −35 to −65 ° C. dp.
 次に、上記ドライ環境下にて、蓄電セルの連通孔とドーピング槽の接続管とを分離させた。次いで、蓄電セルの連通孔部分を熱溶着して封止した。以上により、蓄電デバイスとしてのリチウムイオン二次電池を得た。 Next, in the dry environment, the communication cell communication hole and the doping tank connecting pipe were separated. Subsequently, the communication hole part of the electrical storage cell was thermally welded and sealed. Thus, a lithium ion secondary battery as an electricity storage device was obtained.
(実験例2)
 厚み20μmのアルミニウム合金箔の表面に、多孔質炭素材料とバインダーとを含むペーストを100μm(黒鉛の2倍容量)の厚みで40mm×40mmの範囲に塗布し、乾燥させて正極を形成した点以外は、実験例1と同様にして負極にリチウムを直接ドープし、蓄電デバイスとしてのリチウムイオンキャパシタを得た。
(Experimental example 2)
Other than the point that a positive electrode was formed by applying a paste containing a porous carbon material and a binder to the surface of a 20 μm thick aluminum alloy foil at a thickness of 100 μm (twice the capacity of graphite) in a range of 40 mm × 40 mm and drying. In the same manner as in Experimental Example 1, the negative electrode was directly doped with lithium to obtain a lithium ion capacitor as an electricity storage device.
 以上、実施例について説明したが、本発明は、上記実施例により限定されるものではなく、本発明の趣旨を損なわない範囲内で種々の変形を行うことができる。 Although the embodiments have been described above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.
1 蓄電セル
10 組電極
101 正極
102 負極
103 セパレータ
11 外装体
12 電解液
2 ドーピング槽
20 槽
21 電解液
210 電解液
22 リチウム極
24 接続管
25 接続回路
DESCRIPTION OF SYMBOLS 1 Storage cell 10 Assembly electrode 101 Positive electrode 102 Negative electrode 103 Separator 11 Exterior body 12 Electrolytic solution 2 Doping tank 20 Tank 21 Electrolytic solution 210 Electrolytic solution 22 Lithium electrode 24 Connection pipe 25 Connection circuit

Claims (7)

  1.  正極と負極と上記正極と上記負極との間に介在するセパレータとを備える組電極と、該組電極を収容する外装体と、該外装体内を満たす電解液とを有する蓄電セルを準備するセル準備工程と、
     該セル準備工程の後、上記外装体内の電解液と同種の電解液に浸漬されたリチウム極を槽内に有するドーピング槽の上記槽内の電解液と上記外装体内の電解液とを通液させて通液状態を形成するとともに、上記リチウム極と上記負極または上記正極とを電気的に接続した状態とし、上記リチウム極で生成したリチウムイオンを上記通液状態を形成する電解液を介して上記外装体内に供給し、上記負極または上記正極にリチウムをドープするプレドープ工程と、
    を有することを特徴とする蓄電デバイスの製造方法。
    Cell preparation for preparing a storage cell having an assembled electrode including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, an exterior body that accommodates the assembled electrode, and an electrolyte solution that fills the exterior body Process,
    After the cell preparation step, the electrolyte solution in the tank of the doping tank having the lithium electrode immersed in the same type of electrolyte as the electrolyte solution in the outer package and the electrolyte solution in the outer package are passed through. The lithium electrode and the negative electrode or the positive electrode are electrically connected to each other, and the lithium ions generated at the lithium electrode are passed through the electrolytic solution forming the liquid flow state. A pre-doping step of supplying lithium into the negative electrode or the positive electrode;
    The manufacturing method of the electrical storage device characterized by having.
  2.  請求項1に記載の蓄電デバイスの製造方法であって、
     上記外装体は、上記組電極の端部と対向する位置に上記外装体の内部と外部とを連通させる連通孔を有しており、
     上記プレドーピング工程において、該連通孔と上記ドーピング槽の槽内とは接続管を介して連通した状態とされることを特徴とする蓄電デバイスの製造方法。
    It is a manufacturing method of the electrical storage device according to claim 1,
    The exterior body has a communication hole that communicates the inside and the exterior of the exterior body at a position facing the end of the assembled electrode,
    In the pre-doping step, the communication hole and the inside of the doping tank are in communication with each other via a connecting pipe.
  3.  請求項1または2に記載の蓄電デバイスの製造方法であって、
     上記プレドーピング工程において、上記リチウム極と上記負極または上記正極とは外部電源を介して電気的に接続した状態とされることを特徴とする蓄電デバイスの製造方法。
    It is a manufacturing method of the electrical storage device according to claim 1 or 2,
    In the pre-doping step, the lithium electrode and the negative electrode or the positive electrode are electrically connected via an external power source.
  4.  請求項1~3のいずれか1項に記載の蓄電デバイスの製造方法であって、
     上記プレドープ工程は、上記リチウム極と上記負極とを電気的に接続した状態とし、上記負極に上記リチウムをドープする手順を含むことを特徴とする蓄電デバイスの製造方法。
    A method for manufacturing an electricity storage device according to any one of claims 1 to 3,
    The method of manufacturing an electricity storage device, wherein the pre-doping step includes a step of electrically connecting the lithium electrode and the negative electrode and doping the negative electrode with the lithium.
  5.  請求項1~3のいずれか1項に記載の蓄電デバイスの製造方法であって、
     上記プレドープ工程は、上記リチウム極と上記正極とを電気的に接続した状態として上記正極に上記リチウムをドープした後、上記正極と上記負極とを電気的に接続した状態として充電を行うことにより、上記正極にドープされた上記リチウムを上記負極にドープする手順を含むことを特徴とする蓄電デバイスの製造方法。
    A method for manufacturing an electricity storage device according to any one of claims 1 to 3,
    In the pre-doping step, the lithium electrode and the positive electrode are electrically connected and the lithium is doped into the positive electrode, and then the positive electrode and the negative electrode are electrically connected to perform charging. The manufacturing method of the electrical storage device characterized by including the procedure which dopes the said negative electrode doped to the said positive electrode to the said negative electrode.
  6.  請求項1~5のいずれか1項に記載の蓄電デバイスの製造方法であって、
     上記蓄電デバイスは、リチウムイオン二次電池またはリチウムイオンキャパシタであることを特徴とする蓄電デバイスの製造方法。
    A method for manufacturing an electricity storage device according to any one of claims 1 to 5,
    The method for manufacturing an electricity storage device, wherein the electricity storage device is a lithium ion secondary battery or a lithium ion capacitor.
  7.  正極と負極と上記正極と上記負極との間に介在するセパレータとを備える組電極と、該組電極を収容する外装体とを少なくとも有する蓄電セルの上記負極または上記正極にリチウムをドープするために用いられるドーピング槽であって、
     電解液を収容する槽と、
     上記電解液に浸漬されたリチウム極と、
     一端が上記槽内と連通するとともに他端が上記蓄電セルにおける上記外装体の内部と連通可能に構成された接続管と、
     一端が上記リチウム極に電気的に接続されるとともに他端が上記負極または上記正極に電気的に接続可能に構成された接続回路と、
    を有することを特徴とするドーピング槽。
    In order to dope lithium into the negative electrode or the positive electrode of the storage cell, which has at least an assembled electrode including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an exterior body that accommodates the assembled electrode A doping bath used,
    A tank containing an electrolyte solution;
    A lithium electrode immersed in the electrolyte,
    A connecting pipe configured so that one end communicates with the inside of the tank and the other end communicates with the inside of the exterior body in the storage cell;
    A connection circuit having one end electrically connected to the lithium electrode and the other end electrically connectable to the negative electrode or the positive electrode;
    A doping tank characterized by comprising:
PCT/JP2013/082856 2012-12-19 2013-12-06 Electricity storage device manufacturing method and doping bath WO2014097906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-276635 2012-12-19
JP2012276635A JP2014120701A (en) 2012-12-19 2012-12-19 Method for manufacturing power storage device and doping tank

Publications (1)

Publication Number Publication Date
WO2014097906A1 true WO2014097906A1 (en) 2014-06-26

Family

ID=50978241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082856 WO2014097906A1 (en) 2012-12-19 2013-12-06 Electricity storage device manufacturing method and doping bath

Country Status (2)

Country Link
JP (1) JP2014120701A (en)
WO (1) WO2014097906A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3506409A4 (en) * 2017-05-24 2019-10-30 LG Chem, Ltd. Method for manufacturing secondary battery and auxiliary case for manufacturing secondary battery
CN111628136A (en) * 2020-06-04 2020-09-04 萨姆蒂萨(天津)数据信息技术有限公司 Lithium ion pole piece battery pack liquid injection and opening activation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184517B2 (en) * 2015-05-08 2022-12-06 エノビクス・コーポレイション Replenished negative electrode for secondary battery
JP6616984B2 (en) * 2015-09-04 2019-12-04 イビデン株式会社 Method for producing SEI film-coated negative electrode active material powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299698A (en) * 2006-05-02 2007-11-15 Fdk Corp Method of manufacturing lithium ion accumulating element
JP2008311363A (en) * 2007-06-13 2008-12-25 Advanced Capacitor Technologies Inc Method for predoping lithium ion and method for manufacturing lithium ion capacitor storage element
JP2011243941A (en) * 2010-05-13 2011-12-01 Samsung Electro-Mechanics Co Ltd Doping bath for fabricating energy storage device
JP2012044137A (en) * 2010-08-19 2012-03-01 Samsung Electro-Mechanics Co Ltd Method of pre-doping electrode with lithium ion and manufacturing method of electrochemical capacitor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299698A (en) * 2006-05-02 2007-11-15 Fdk Corp Method of manufacturing lithium ion accumulating element
JP2008311363A (en) * 2007-06-13 2008-12-25 Advanced Capacitor Technologies Inc Method for predoping lithium ion and method for manufacturing lithium ion capacitor storage element
JP2011243941A (en) * 2010-05-13 2011-12-01 Samsung Electro-Mechanics Co Ltd Doping bath for fabricating energy storage device
JP2012044137A (en) * 2010-08-19 2012-03-01 Samsung Electro-Mechanics Co Ltd Method of pre-doping electrode with lithium ion and manufacturing method of electrochemical capacitor using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3506409A4 (en) * 2017-05-24 2019-10-30 LG Chem, Ltd. Method for manufacturing secondary battery and auxiliary case for manufacturing secondary battery
US11316237B2 (en) 2017-05-24 2022-04-26 Lg Energy Solution, Ltd. Method for manufacturing secondary battery and auxiliary case for manufacturing secondary battery
CN111628136A (en) * 2020-06-04 2020-09-04 萨姆蒂萨(天津)数据信息技术有限公司 Lithium ion pole piece battery pack liquid injection and opening activation method

Also Published As

Publication number Publication date
JP2014120701A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
CN104659368B (en) The manufacturing method of charge storage element, charge storage element module and charge storage element
JP6644658B2 (en) Lithium ion battery
JP5096851B2 (en) Method for manufacturing power storage device
CN105340120A (en) Lithium battery
JP2012054524A (en) Lithium ion capacitor and its manufacturing method
US20160284479A1 (en) Capacitor and method for producing the same
JPWO2016132444A1 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery
CN112820878A (en) Capacitor assisted gradient electrode
JP6730284B2 (en) Electrode manufacturing method and power storage device manufacturing method
JP5214172B2 (en) Electrode manufacturing method and storage device manufacturing method
WO2014097906A1 (en) Electricity storage device manufacturing method and doping bath
JP2012156405A (en) Electricity storage device
RU2644590C1 (en) Auxiliary battery with non-aqueous electrolyte and method of manufacturing the auxiliary battery with non-aqueous electrolyte
JP2017068939A (en) Lithium secondary battery
KR101059934B1 (en) Manufacturing method of hybrid supercapacitor
JP2008282838A (en) Hybrid electric double layer capacitor
US20220181710A1 (en) Capacitor-assisted lithium-sulfur battery
JP6010763B2 (en) Electrochemical capacitor
KR20120019625A (en) Energy storing device
US20230387475A1 (en) Lithium supercapattery with stacked or wound negative and positive electrodes sets along with separator
KR101696228B1 (en) Lithium ion capacitor and manufacturing method of thereof
JP2018056548A (en) Processing device for manufacturing of power storage device and method of manufacturing power storage device
KR20120051886A (en) Lithium ion capacitor cell and manufacturing method of the same
JP2017157445A (en) Battery outer package, nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP2017063069A (en) Method for manufacturing power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866414

Country of ref document: EP

Kind code of ref document: A1