WO2014097665A1 - Master station, controller, slave station, optical communication system and failure monitoring method - Google Patents

Master station, controller, slave station, optical communication system and failure monitoring method Download PDF

Info

Publication number
WO2014097665A1
WO2014097665A1 PCT/JP2013/065062 JP2013065062W WO2014097665A1 WO 2014097665 A1 WO2014097665 A1 WO 2014097665A1 JP 2013065062 W JP2013065062 W JP 2013065062W WO 2014097665 A1 WO2014097665 A1 WO 2014097665A1
Authority
WO
WIPO (PCT)
Prior art keywords
protocol
station device
slave station
state
onu
Prior art date
Application number
PCT/JP2013/065062
Other languages
French (fr)
Japanese (ja)
Inventor
隆司 菊澤
竜介 川手
向井 宏明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014552952A priority Critical patent/JP5855282B2/en
Publication of WO2014097665A1 publication Critical patent/WO2014097665A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection (CSMA-CD)

Definitions

  • the present invention relates to a master station device, a control device, a slave station device, an optical communication system, and a failure monitoring method.
  • Ethernet registered trademark
  • GE-PON Gigabit Ethernet (registered trademark)-Passive Optical Network)
  • G-PON Gigabit PON
  • other PON systems are monitored by applying Ethernet (registered trademark) OAM (hereinafter abbreviated as EOAM).
  • OAM Ethernet (registered trademark) OAM
  • the OLT Optical Line Terminal
  • the ONU Optical Network Unit
  • S / W SoftWare
  • the state of the ONU is managed by a protocol corresponding to the EOAM or PON system, and the conduction state to the user interface is monitored by the OLT.
  • the present invention has been made in view of the above, and it is possible to manage from the network side to the slave station device by the EOAM without changing the slave station device (ONU) or with a small change amount.
  • An object is to obtain a station apparatus, a control apparatus, a slave station apparatus, an optical communication system, and a failure monitoring method.
  • the present invention is connected to a slave station device through an optical communication path, communicates with the slave station device using a first protocol, and is connected to a host network.
  • a first protocol control unit that obtains information indicating a status of the slave station device based on the first protocol, and indicates the status of the slave station device from the first protocol control unit
  • a second protocol for acquiring information and holding communication between the state management unit for storing the state of each slave station device as state information and the upper network based on a second protocol different from the first protocol
  • the control unit sets a proxy point for performing a response equivalent to a case where a monitoring point in the second protocol is set in the slave station device. Characterized in that it comprises a protocol conversion unit that performed on le control unit.
  • a master station device, a control device, a slave station device, an optical communication system, and a failure monitoring method according to the present invention can be performed without changing the slave station device (ONU) or with a small change amount from the network side by the EOAM. There is an effect that even the device can be managed.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a setting example of MEP and MIP in EOAM.
  • FIG. 3 is a diagram illustrating an arrangement example of MEPs and MIPs according to the first embodiment.
  • FIG. 4 is a diagram illustrating a configuration example of the OLT according to the first embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of the ONU according to the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of a failure monitoring procedure using the proxy monitoring point according to the first embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a communication system according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a setting example of MEP and MIP in EOAM.
  • FIG. 3 is a diagram illustrating an arrangement example of M
  • FIG. 8 is a diagram illustrating a configuration example of the OLT according to the fourth embodiment.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure of determination processing for determining whether or not to set a proxy monitoring point according to the fourth embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of a communication system when a proxy setting necessity determination unit is provided in a device external to the OLT.
  • FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a communication system including a PON system (optical communication system) according to the present invention.
  • the communication system of the present embodiment includes a station side optical communication device (also referred to as “Optical Line Terminal”, hereinafter referred to as “OLT”) 20 that operates as a master station device, and a slave station device.
  • a plurality of user-side optical communication devices also referred to as “Optical Network Unit”, hereinafter referred to as “ONU” 21-1 to 21-3, and Ethernet (registered trademark) switches arranged on the user side 10 and an Ethernet (registered trademark) switch 11 on the upper side (connected to the upper network).
  • FIG. 1 shows an example with three ONUs, the number of ONUs is not limited to this.
  • the OLT 20 and the ONUs 21-1 to 21-3 are connected via an optical coupler 22 and an optical fiber to constitute a PON system.
  • This PON system may be a GE-PON system based on IEEE 802.3ah. 983.1 G-PON system or the like may be used as long as the OLT can manage the states of the ONUs 21-1 to 21-3.
  • the OLT 20 and the Ethernet switches 10 and 11 include IEEE 802.1ag, Y. Ethernet (registered trademark) OAM (hereinafter abbreviated as “EOAM”) described in J. 1731.
  • the Ethernet switches 10 and 11 may be gateways or routers.
  • the Ethernet switch 10 includes an I / F (interface) 12 that performs interface processing on the lower side and an I / F 13 that performs interface processing on the upper side.
  • the ONU 21-1 includes an I / F 23 that performs lower-level interface processing and an I / F 24 that performs higher-level interface processing.
  • the ONU 21-2 and ONU 21-3 may have the same configuration as the ONU 21-1, or may be different.
  • the OLT 20 includes an I / F 25 that performs lower-level interface processing and an I / F 26 that performs higher-level interface processing.
  • the Ethernet switch 11 includes an I / F (interface) 14 that performs interface processing on the lower side and an I / F 15 that performs interface processing on the upper side.
  • the OLT 20 has a function of managing the state of the ONU for each ONU.
  • the ONU state includes, for example, a UNI (User Network Interface) link state, a conduction state, and a test state.
  • the OLT 20 manages the ONU status by, for example, management using operation management maintenance (OAM) or the like, and link status monitoring defined by IEEE 802.3ah. You may manage the state of.
  • OAM operation management maintenance
  • a maintenance end point (MEP) or a maintenance intermediate point (MIP) defined in the EOAM standard is set in the ONU, and an ETH-CC (Ethernet (registered trademark) Continuity) is set.
  • MEP maintenance end point
  • MIP maintenance intermediate point
  • Check A connectivity check is performed using a frame or the like, and a network state between MEPs is monitored.
  • the MEP has a function of generating and terminating an OAM frame for fault monitoring and the like.
  • the MIP has a function of notifying information from a lower level MEP to an MEP that is an upper monitoring point.
  • EOAM monitoring points have a monitoring level, and are used separately for customer management, provider, network operator, physical layer, and the like. Although monitoring is performed between MEPs at the same level, a MIP is defined at a corresponding higher level in order to notify a higher level to a certain level of MEP.
  • FIG. 2 is a diagram showing a setting example of MEP and MIP in EOAM.
  • FIG. 2 shows an example in which MEP and MIP in EOAM are set by a conventional method in the communication system shown in FIG. MEPs 30, 32, 33, 34, 35, 36, and 38 are management endpoints that monitor the devices.
  • MEPs 32 and 33 monitor between the Ethernet switch 11 and the OLT 20.
  • MEPs 31 and 37 are management endpoints that monitor the intermediate network (between the Ethernet switch 11 and the I / F 23 of the ONU 21-1).
  • the MEP 39 is a management endpoint set by the user.
  • MIPs 40 and 43 are management intermediate points set in the monitoring section of the user.
  • the MIP 41 is a management intermediate point that manages the intermediate network.
  • FIG. 2 is an example, and the setting positions of MEP and MIP are not limited to those in FIG.
  • the OLT 20 and the ONUs 21-1 to 21-3 have already been monitored using, for example, an IEEE 802.3ah OAM, and the OLT 20 is connected to the ONUs 21-1 to 21-3 and the ONUs 21-1 to 21-3.
  • the state 21-3 is managed.
  • the OLT 20 grasps the connection state from the ONUs 21-1 to 21-3 to some extent using the information obtained in the PON system.
  • the OLT 20 can notify the upper monitoring point of the state of the ONU obtained in the PON system.
  • the OLT 20 reflects the states of the ONUs 21-1 to 21-3 obtained in the PON system in the response in the EOAM.
  • MEPs and MIPs that should originally be set in the ONUs 21-1 to 21-3 are arranged in the OLT 20 as a proxy. This eliminates the need to set MEPs and MIPs to be set in the ONUs 21-1 to 21-3 in the ONUs 21-1 to 21-3.
  • FIG. 3 is a diagram showing an arrangement example of MEPs and MIPs according to the present embodiment.
  • a proxy MIP 50 is set in the OLT 20 instead of the MIP 43 set in the ONU 21-1
  • a proxy MEP 51 is set in the OLT 20 instead of the MEP 37 and MIP 42 set in the ONU 21-1.
  • a proxy MEP 52 is set in the OLT 20.
  • the MIP 42 performs a response process to the alarm of the MEP 35, and in the case of using the virtual MEP, the MEP 35 for detecting an abnormality in the PON section at the I / F 24 of the ONU 21-1 has no meaning to define. , MIP42 becomes unnecessary.
  • FIG. 4 is a diagram illustrating a configuration example of the OLT 20 according to the present embodiment.
  • the I / F 100 in FIG. 4 corresponds to the I / F 25 in FIG. 1, and the I / F 101 corresponds to the I / F 26 in FIG.
  • the I / F 100 includes a PON control unit (first protocol processing unit) 110 that performs processing on the OLT side based on the PON protocol (first protocol), an ONU state management unit (state management unit) 111, a protocol, A conversion unit 112, an EOAM processing unit (second protocol processing unit) 113 that performs processing based on EOAM (second protocol), and an optical transceiver 115 that performs optical signal transmission / reception processing are provided.
  • first protocol processing unit first protocol
  • ONU state management unit state management unit
  • a conversion unit 112 an EOAM processing unit (second protocol processing unit) 113 that performs processing based on EOAM (second protocol)
  • an optical transceiver 115 that performs optical signal transmission /
  • the PON protocol is a control protocol used in a MAC (Media Access Control) layer, which is a sublayer of Layer 2, and for example, MPCP (Multi-point Control Protocol) defined by IEEE, OAM and so on.
  • MAC Media Access Control
  • MPCP Multi-point Control Protocol
  • the PON control unit 110 manages the ONUs 21-1 to 21-3 based on the PON protocol, generates a control frame of the PON protocol, and transmits it to the ONUs 21-1 to 21-3 via the optical transceiver 115. To do. Further, the PON control unit 110 receives control frames of the PON protocol received from the ONUs 21-1 to 21-3 via the optical transceiver 115, and changes the states of the ONUs 21-1 to 21-3 based on the received control frames. Grasp and pass to the ONU state management unit 111. The PON control unit 110 grasps the link connection status and the like using control frames transmitted / received to / from the ONUs 21-1 to 21-3, and controls uplink user traffic.
  • the ONU state management unit 111 holds the states of the ONUs 21-1 to 21-3 as state information for each ONU.
  • the ONU state management unit 111 holds state information for ONUs that do not support EOAM, but does not have to hold state information for ONUs that do not support EOAM.
  • the protocol conversion unit 112 acquires ONU state information from the ONU state management unit 111, converts this state information into state information of a monitoring point in EOAM, and sets it in the ONU monitoring point 114 arranged in the EOAM processing unit 113. This conversion may be performed, for example, by managing the correspondence between the type of the ONU state and the state of the monitoring point in the EOAM in a table or the like, or may be performed by other methods.
  • the protocol conversion unit 112 may be configured by hardware, S / W, may be included in S / W that manages a higher-level PON system, or a combination thereof. Good.
  • the I / F 100 may be configured as one control unit (control device).
  • the ONU monitoring point 114 When the ONU monitoring point 114 receives an EOAM frame from the MEP facing the proxy monitoring point set to itself, the ONU monitoring point 114 performs processing of the frame, and for those that require a response, the ONU monitoring point 114 is originally set to the ONU. Responds instead of points.
  • the response here includes a case where the proxy monitoring point transmits an EOAM frame and a case where the proxy monitoring point becomes invalid and does not transmit a frame, as will be described later.
  • FIG. 5 is a diagram illustrating a configuration example of the ONU 21-1 according to the present embodiment.
  • the ONU 21-1 includes an I / F (corresponding to the I / F 23 in FIG. 1) 200 and an I / F (corresponding to the I / F 24 in FIG. 1) 201.
  • the I / F 201 includes a PON control unit 211 that performs processing on the ONU side based on the PON protocol, and an optical transceiver 210 that performs transmission / reception processing of an optical signal.
  • the PON control unit 211 processes the control frame received from the OLT 20 via the optical transceiver 210, generates a response frame for the control frame that requires a response, and transmits the response frame to the OLT 20 via the optical transceiver 210.
  • ONU 21-1 does not have a function corresponding to EOAM.
  • the PON control unit 110 of the OLT 20 detects that the UNI link of the ONU 21-1 is in a broken link state.
  • the ONU state management unit 111 holds state information from the PON control unit 110 that the UNI link of the ONU 21-1 is broken. Since the UNI link of the ONU 21-1 is broken, the protocol conversion unit 112 should not be able to respond to the MIP 43 in the configuration shown in FIG. Therefore, the same processing as when the MIP 43 does not respond is performed.
  • the protocol conversion unit 112 invalidates the MIP 50 (a proxy monitoring point corresponding to the MIP 43) of the ONU monitoring point 114 (converts it to a state that does not respond as state information in EOAM), and the ONU monitoring point does not respond. A similar state is assumed. Thereby, it is possible to detect the same link abnormality as when the MIP 43 does not respond at the opposing MEP point. It should be noted that it is possible to limit the output of the ETH-CC frame for connectivity check that is always transmitted without invalidating the monitoring point.
  • the PON control unit 110 detects that the PON link (optical line) with the ONU 21-1 is down, the MEP 37 and MIP 42 should not be able to respond in the case of the configuration shown in FIG. is there. Therefore, by disabling the proxy MEP 51 in the OLT 20, it is possible to grasp that the monitoring points MEP 37 and MIP 42 are not responding in the opposing MEP 31.
  • the MPCP timeout indicates a state in which the report from the ONU is not received by the OLT until the specified time in the Gate-Report control necessary for uplink data communication with the ONU. When the MPCP timeout occurs, the ONU is disconnected. It becomes a state.
  • FIG. 6 is a flowchart showing an example of a failure monitoring procedure using the proxy monitoring point of the present embodiment.
  • the OLT 20 sets a proxy monitoring point instead of the monitoring point set in the ONU 21-1 as the ONU monitoring point 114 (step S1). Specifically, frame parameters and the like in EOAM are set so that the ONU monitoring point 114 can make a response similar to the monitoring point originally set to ONU.
  • the protocol conversion unit 112 acquires ONU status information from the ONU status management unit 111 (step S2). The protocol conversion unit 112 determines whether there is a change in the status information of the ONU, and when there is a change (Yes in Step S3), reflects it in the ONU monitoring point 114 (Step S4).
  • the ONU monitoring point 114 is set not to transmit a frame, or a failure requiring notification is set to be transmitted using an EOAM frame.
  • the ONU monitoring point 114 performs a response in EOAM. If there is no change in the status information of the ONU (No at Step S3), the process returns to Step S2.
  • the protocol conversion unit 112 uses the ONU power-off information obtained from the ONU state management unit 111 to define a vendor defined in advance.
  • a frame of a format may be generated according to a unique OAM and transmitted from the ONU monitoring point 114 to the opposite MEP.
  • the OLT 20 returns a response similar to the monitoring point in the EOAM of the ONU 21-1 based on the EOAM based on the status information of the ONU 21-1 obtained from the PON control unit 110. I made it happen. For this reason, a proxy monitoring point is set in the OLT 20 without setting a monitoring point in the ONU 21-1. From the network side to the slave station device by the EOAM without changing the ONU or with a small change amount. There is an effect that can be managed.
  • the strict user traffic state cannot be reflected at the proxy monitoring point of the OLT 20. For this reason, in order to notify the user traffic state, only a part of the functions (for example, the function indicating the traffic state such as loopback control which is one of the functions of Ethernet OAM) is limited to the ONU 21-1. You may make it mount by.
  • FIG. FIG. 7 is a diagram showing a configuration example of a second embodiment of a communication system including a PON system according to the present invention.
  • the ONU 21-1 includes I / Fs 23-1 to 23-n (n is an integer of 2 or more), and each I / F corresponds to a different port.
  • the I / Fs 23-1 to 23-n execute UNI processing corresponding to the port to be connected.
  • the configuration of the communication system of the present embodiment is the same as that of the first embodiment except for the ONU 21-1.
  • Embodiment 1 a different part from Embodiment 1 is demonstrated.
  • monitoring points such as MEPs and MIPs of ONUs are set for each UNI (for each port).
  • the proxy monitoring point for each UNI is set as the ONU monitoring point 114 of the OLT 20 (for the I / F 23-1, the proxy MIP 50 of the MIP 43, the proxy MEP 51 of the MEP 37 are set, ..., I / F 23-
  • n an example is shown in which a proxy MIP60 of MIP63 and a proxy MEP61 of MEP64 are set).
  • F / W (firmware) update control for example, continuity state by loopback test, ONU 21-1 link state, etc. are common to the same ONU, not for each UNI. Therefore, there is a part that can share response operations such as MEP and MIP in EOAM.
  • the management ID is assigned to the monitoring point that has the same influence on the same ONU or the same link. Treat as one group.
  • the management point itself in the OLT 20 is defined as one, and the MEP or MIP response processing for a plurality of UNIs is performed collectively. And about the item which needs to respond for every UNI, the response process for every UNI is implemented.
  • an EOAM response process is performed with a monitoring point that commonly affects the same ONU or the same link as one proxy management point in the OLT 20. Therefore, it is possible to save device resources related to EOAM in the OLT 20 and simplify control.
  • Embodiment 3 FIG. Next, the communication system of Embodiment 3 concerning this invention is demonstrated.
  • the configuration of the communication system of the present embodiment is the same as that of the first embodiment.
  • Embodiment 1 a different part from Embodiment 1 is demonstrated.
  • the OLT 20 may contain both EOAM-compliant ONUs and non-compliant ONUs. Whether EOAM is supported or not can be determined by the type of ONU, the version of S / W, and the like. For this reason, in the present embodiment, the OLT 20 acquires and manages the information indicating the EOAM support status for each ONU from the PON control unit 110 by the ONU state management unit 111. Whether the protocol conversion unit 112 sets a monitoring point in the ONU or a proxy monitoring point in place of the ONU in the OLT 20 based on information managed by the ONU state management unit 111 , Determine.
  • the protocol conversion unit 112 determines whether or not the protocol conversion unit 112 reflects the ONU status information on the proxy monitoring point for each ONU, and determines the PON control unit for an ONU that does not support EOAM.
  • Information obtained from 110 is set in the ONU monitoring point 114 arranged in the EOAM processing unit 113.
  • management by EOAM is enabled without the administrator being aware of whether or not each ONU supports EOAM.
  • the ONU monitoring point 114 defined in the OLT 20 as a proxy may have a function that cannot be realized in the EOAM, it is desirable that the administrator has a means for knowing the ONU's EOAM support status.
  • the OLT 20 may not check the information indicating the correspondence status, but may check the ONUs 21-1 to 21-3 as necessary.
  • the EOAM support status is determined for each ONU in the communication system of the first embodiment, but the EOAM support status is determined for each ONU in the communication system of the second embodiment. You may make it perform operation
  • the OLT 20 manages information that supports or does not support EOAM for each ONU based on the information obtained from the PON control unit 110, and monitors the ONU for each ONU. It is determined whether to set a point or to set a monitoring point for the ONU as a proxy in the OLT 20. For this reason, even when ONUs corresponding to EOAM and non-compatible ONUs coexist, management by EOAM can be performed without requiring complicated settings by the administrator.
  • FIG. FIG. 8 is a diagram illustrating a configuration example of the fourth embodiment of the OLT according to the present invention.
  • the OLT 20a of the present embodiment includes an I / F 100a, an I / F 101 similar to that of the first embodiment, a proxy setting necessity determination unit 102, and a monitoring control I / F 103.
  • the I / F 100a is the same as the I / F 100 of the first embodiment except that the ONU setting control unit 116 is added to the I / F 100 of the first embodiment.
  • Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • Embodiment 1 is demonstrated.
  • the OLT 20a inquires whether each ONU supports EOAM, and determines whether to set a proxy monitoring point of the ONU based on the result of the inquiry.
  • FIG. 9 is a flowchart illustrating an example of a processing procedure of determination processing for determining whether or not proxy monitoring points need to be set according to the present embodiment.
  • the proxy setting necessity determination unit 102 of the OLT 20a inquires of the ONU about the status of support for EOAM (step S11). Specifically, the proxy setting necessity determination unit 102 instructs the ONU setting control unit 116 to inquire the ONU about the status of EOAM support.
  • the ONU setting control unit 116 instructs the PON control unit 110 to generate a control frame that inquires of the ONU about the EOAM support status based on the PON protocol.
  • the PON control unit 110 transmits a control frame generated based on the PON protocol to the ONU via the optical transceiver 115.
  • the proxy setting necessity determination unit 102 of the OLT 20a determines whether the response from the ONU is a result that does not support EOAM or whether the response from the ONU is Fail (a normal response to the control frame cannot be received from the ONU). (Step S12). Specifically, when receiving a response to the control frame transmitted in step S11, the PON control unit 110 transmits the response itself or the content of the response via the ONU setting control unit 116 as a proxy setting necessity determination unit 102. To notify. Based on this notification via the ONU setting control unit 116, the proxy setting necessity determination unit 102 determines that the response from the ONU is not compatible with EOAM, or the response from the ONU is Fail (a normal response within a certain time). Is not received).
  • the ONU When the ONU is set so as to be able to analyze a control frame for inquiring about the status of support for EOAM, the ONU can respond normally to the control frame, and returns whether or not it is compatible with EOAM as a response frame. To do.
  • the proxy setting necessity determination unit 102 sends the ONU state management unit 111 the corresponding ONU. Is instructed to be set to be EOAM-compatible (information indicating whether or not EOAM is supported is set to Yes) (step S13).
  • the ONU status management unit 111 manages the EOAM response status for each ONU as information as in the third embodiment, and the ONU response status is determined based on an instruction from the proxy setting necessity determination unit 102. Update information.
  • the proxy setting necessity determination unit 102 instructs the ONU to set a normal EOAM monitoring point (step S14), and ends the process. Based on this instruction, the ONU sets an EOAM monitoring point in itself.
  • the proxy setting necessity determination unit 102 makes a response to the ONU state management unit 111. It is instructed to set ONU correspondence status information as not corresponding to EOAM (No indicating information indicating whether or not EOAM correspondence is supported) (step S15).
  • the proxy setting necessity determination unit 102 instructs the EOAM processing unit 113 to set a proxy monitoring point as a proxy for the ONU (step S16), and ends the process.
  • the above processing is performed for each ONU, and for each ONU, it is determined whether to set a monitoring point in the ONU or to set a proxy monitoring point in the OLT 20a.
  • the proxy setting necessity determination unit 102 notifies the higher level side via the monitoring control I / F 103 of the determination result as to whether or not to set a proxy monitoring point.
  • the determination processing for determining whether or not the proxy monitoring point is set as described with reference to FIG. 9 may be performed when an ONU is newly connected, may be performed at regular intervals, or may be performed in any other communication system. This may be performed when a configuration change occurs, and there is no restriction on the execution timing of the determination process for determining whether a proxy monitoring point needs to be set.
  • the ONU setting control unit 116 is provided.
  • the proxy setting necessity determination unit 102 may communicate with the PON control unit 110 without providing the ONU setting control unit 116.
  • the proxy setting necessity determination unit 102 of the OLT 20a sets a monitoring point in the ONU for each ONU based on the inquiry result as to whether or not the ONU supports EOAM. Whether to set a proxy monitoring point in the EOAM processing unit 113 is determined. Therefore, even when the ONU EOAM response status changes, it is possible to determine whether to set a monitoring point or a proxy monitoring point in the ONU appropriately based on the latest status.
  • the proxy setting necessity determination unit 102 is provided in the OLT 20a.
  • the proxy setting necessity determination unit 102 may be provided in an external device.
  • FIG. 10 is a diagram illustrating a configuration example of a communication system when the proxy setting necessity determination unit 102 is provided in an external device.
  • the communication system of FIG. 10 includes an OLT 20 similar to that of the first embodiment instead of the OLT 20a, and includes a control management device 70 having a proxy setting necessity determination unit 71.
  • the proxy setting necessity determination unit 71 is the same as the proxy setting necessity determination unit 102 of the OLT 20a.
  • the PON control unit 110 of the OLT 20 Based on the instruction from the proxy setting necessity determination unit 71 of the control management device 70, the PON control unit 110 of the OLT 20 generates a control frame that inquires the ONU about the EOAM support status based on the PON protocol, It transmits via the optical transceiver 115. Further, the information on whether the response of the control frame is “Fail” and the contents of the response frame when the response is not “Fail” are notified to the proxy setting necessity determination unit 71 of the control management device 70. Based on the notification from the OLT 20, the proxy setting necessity determination unit 71 of the control management device 70 determines whether to set a monitoring point in the ONU for each ONU or to set a proxy monitoring point in place of the ONU in the OLT 20.
  • the OLT 20 makes a decision and notify the OLT 20 of the decision result. If the determination result is a result indicating that a proxy monitoring point instead of an ONU is set, the OLT 20 sets a proxy monitoring point in the EOAM processing unit 113 as a proxy for the ONU. On the other hand, when the determination result is a result indicating that a monitoring point is set in the ONU, the ONU is instructed to set the monitoring point.
  • the master station device, the control device, the slave station device, the optical communication system, and the fault monitoring method according to the present invention are suitable for a system that performs fault monitoring by EOAM.

Abstract

An optical line terminal (OLT) (20), which is connected to a higher-level network, is provided with: a passive optical network (PON) control unit (110) that acquires information indicating the state of an optical network unit (ONU) on the basis of a PON protocol; an ONU state management unit (111) that acquires the information indicating the state of the ONU from the PON control unit (110), and retains said information as state information; an Ethernet Operations, Administration, and Maintenance (EOAM) processing unit (113) that communicates with the higher-level network on the basis of EOAM; and a protocol conversion unit (112) that sets, for the EOAM processing unit (113), an alternate point, which responds in an equivalent manner to the case in which a monitoring point has been set in EOAM in the ONU on the basis of the state information.

Description

親局装置、制御装置、子局装置、光通信システムおよび障害監視方法Master station device, control device, slave station device, optical communication system, and fault monitoring method
 本発明は、親局装置、制御装置、子局装置、光通信システムおよび障害監視方法に関する。 The present invention relates to a master station device, a control device, a slave station device, an optical communication system, and a failure monitoring method.
 レイヤ2のネットワーク監視プロトコルの一つとして、IEEE(Institute of Electrical and Electronic Engineers)802.1agやY.1731で規格化されたEthernet(登録商標) OAM(Operation Administration and Maintenance)がある。GE-PON(Gigabit Ethernet(登録商標)-Passive Optical Network)やG-PON(Gigabit PON)などのPONシステムにEthernet(登録商標) OAM(以降、EOAMと略す)を適用してそれぞれの装置を監視する場合、親局装置として動作するOLT(Optical Line Terminal)や子局装置として動作するONU(Optical Network Unit)それぞれにプロトコル処理を実施する機能を搭載する必要がある。例えばONUに搭載するS/W(SoftWare)でそれらのプロトコル処理を実現することにより、EOAMに対応させる方法も提案されている(例えば、特許文献1参照)。 As one of the layer 2 network monitoring protocols, IEEE (Institut of Electrical and Electronic Engineers) 802.1ag or Y. There is Ethernet (registered trademark) OAM (Operation Administration and Maintenance) standardized in 1731. GE-PON (Gigabit Ethernet (registered trademark)-Passive Optical Network) and G-PON (Gigabit PON) and other PON systems are monitored by applying Ethernet (registered trademark) OAM (hereinafter abbreviated as EOAM). In this case, the OLT (Optical Line Terminal) that operates as a master station device and the ONU (Optical Network Unit) that operates as a slave station device need to be equipped with a function for performing protocol processing. For example, a method for supporting EOAM by realizing such protocol processing with S / W (SoftWare) installed in the ONU has also been proposed (see, for example, Patent Document 1).
 一方で、それぞれのPONシステムにおいては、ONUの状態をEOAMやPONシステムに応じたプロトコルにて管理しており、OLTにてユーザインタフェースまでの導通状態を監視している。 On the other hand, in each PON system, the state of the ONU is managed by a protocol corresponding to the EOAM or PON system, and the conduction state to the user interface is monitored by the OLT.
特表2010-527205号公報Special table 2010-527205 gazette
 従来のPONシステムにおいて、EOAMをONUに適用するには、ONUにIEEE802.1agやY.1731の機能を実装する必要がある。このため、IEEE802.1agやY.1731の機能を実装していないEOAM非対応のONUはEOAMプロトコルで監視出来ないという問題があった。 In the conventional PON system, in order to apply EOAM to the ONU, the IEEE 802.1ag or Y. 1731 functions need to be implemented. For this reason, IEEE 802.1ag or Y.I. There is a problem that ONUs not supporting EOAM that do not have the 1731 function cannot be monitored by the EOAM protocol.
 本発明は、上記に鑑みてなされたものであって、子局装置(ONU)に変更を加えずに、または少ない変更量で、EOAMによりネットワーク側から子局装置までを管理することができる親局装置、制御装置、子局装置、光通信システムおよび障害監視方法を得ることを目的とする。 The present invention has been made in view of the above, and it is possible to manage from the network side to the slave station device by the EOAM without changing the slave station device (ONU) or with a small change amount. An object is to obtain a station apparatus, a control apparatus, a slave station apparatus, an optical communication system, and a failure monitoring method.
 上述した課題を解決し、目的を達成するために、本発明は、子局装置と光通信路により接続され、前記子局装置と第1のプロトコルにより通信を行い、上位ネットワークに接続される親局装置であって、前記第1のプロトコルに基づいて前記子局装置の状態を示す情報を取得する第1のプロトコル制御部と、前記第1のプロトコル制御部から前記子局装置の状態を示す情報を取得し、子局装置ごとの状態を状態情報として保持する状態管理部と、前記第1のプロトコルと異なる第2のプロトコルに基づいて前記上位ネットワークとの間の通信を行う第2のプロトコル制御部と、前記状態情報に基づいて前記子局装置に前記第2のプロトコルにおける監視ポイントが設定された場合と同等の応答を行う代理ポイントの設定を前記第2のプロトコル制御部に対して実施するプロトコル変換部と、を備えることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, the present invention is connected to a slave station device through an optical communication path, communicates with the slave station device using a first protocol, and is connected to a host network. A first protocol control unit that obtains information indicating a status of the slave station device based on the first protocol, and indicates the status of the slave station device from the first protocol control unit A second protocol for acquiring information and holding communication between the state management unit for storing the state of each slave station device as state information and the upper network based on a second protocol different from the first protocol Based on the status information, the control unit sets a proxy point for performing a response equivalent to a case where a monitoring point in the second protocol is set in the slave station device. Characterized in that it comprises a protocol conversion unit that performed on le control unit.
 本発明にかかる親局装置、制御装置、子局装置、光通信システムおよび障害監視方法は、子局装置(ONU)に変更を加えずに、または少ない変更量で、EOAMによりネットワーク側から子局装置までを管理することができるという効果を奏する。 A master station device, a control device, a slave station device, an optical communication system, and a failure monitoring method according to the present invention can be performed without changing the slave station device (ONU) or with a small change amount from the network side by the EOAM. There is an effect that even the device can be managed.
図1は、実施の形態1の通信システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a communication system according to the first embodiment. 図2は、EOAMにおけるMEPおよびMIPの設定例を示す図である。FIG. 2 is a diagram illustrating a setting example of MEP and MIP in EOAM. 図3は、実施の形態1のMEPおよびMIPの配置例を示す図である。FIG. 3 is a diagram illustrating an arrangement example of MEPs and MIPs according to the first embodiment. 図4は、実施の形態1のOLTの構成例を示す図である。FIG. 4 is a diagram illustrating a configuration example of the OLT according to the first embodiment. 図5は、実施の形態1のONUの構成例を示す図である。FIG. 5 is a diagram illustrating a configuration example of the ONU according to the first embodiment. 図6は、実施の形態1の代理監視ポイントを用いた障害監視手順の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of a failure monitoring procedure using the proxy monitoring point according to the first embodiment. 図7は、実施の形態2の通信システムの構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a communication system according to the second embodiment. 図8は、実施の形態4のOLTの構成例を示す図である。FIG. 8 is a diagram illustrating a configuration example of the OLT according to the fourth embodiment. 図9は、実施の形態4の代理監視ポイントの設定要否の判定処理の処理手順の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of a processing procedure of determination processing for determining whether or not to set a proxy monitoring point according to the fourth embodiment. 図10は、OLTの外部の装置に代理設定要否判定部を設ける場合の通信システムの構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a communication system when a proxy setting necessity determination unit is provided in a device external to the OLT.
 以下に、本発明にかかる親局装置、制御装置、子局装置、光通信システムおよび障害監視方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of a master station device, a control device, a slave station device, an optical communication system, and a fault monitoring method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明にかかるPONシステム(光通信システム)を含む通信システムの実施の形態1の構成例を示す図である。図1に示すように、本実施の形態の通信システムは、親局装置として動作する局側光通信装置(“Optical Line Terminal”とも言い、以降「OLT」と称す。)20と、子局装置として動作する複数の利用者側光通信装置(“Optical Network Unit”とも言い、以降「ONU」と称す。)21-1~21-3と、利用者側に配置されたイーサネット(登録商標)スイッチ10と、上位側の(上位ネットワークに接続される)イーサネット(登録商標)スイッチ11とから構成される。なお、図1では、ONUが3台の例を示しているがONUの数はこれに限定されない。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of a first embodiment of a communication system including a PON system (optical communication system) according to the present invention. As shown in FIG. 1, the communication system of the present embodiment includes a station side optical communication device (also referred to as “Optical Line Terminal”, hereinafter referred to as “OLT”) 20 that operates as a master station device, and a slave station device. A plurality of user-side optical communication devices (also referred to as “Optical Network Unit”, hereinafter referred to as “ONU”) 21-1 to 21-3, and Ethernet (registered trademark) switches arranged on the user side 10 and an Ethernet (registered trademark) switch 11 on the upper side (connected to the upper network). Although FIG. 1 shows an example with three ONUs, the number of ONUs is not limited to this.
 OLT20とONU21-1~21-3は、光カプラ22および光ファイバを介して接続され、PONシステムを構成する。このPONシステムは、IEEE802.3ahをベースとしたGE-PONシステムでもよいし、G.983.1のG-PONシステムなどでもよく、ONU21-1~21-3の状態をOLTが管理できる構成のシステムであればよい。OLT20およびイーサネットスイッチ10,11にはIEEE802.1agやY.1731に記載されているEthernet(登録商標) OAM(以降、「EOAM」と略す。)機能を備える。イーサネットスイッチ10,11はゲートウェイやルータであってもよい。 The OLT 20 and the ONUs 21-1 to 21-3 are connected via an optical coupler 22 and an optical fiber to constitute a PON system. This PON system may be a GE-PON system based on IEEE 802.3ah. 983.1 G-PON system or the like may be used as long as the OLT can manage the states of the ONUs 21-1 to 21-3. The OLT 20 and the Ethernet switches 10 and 11 include IEEE 802.1ag, Y. Ethernet (registered trademark) OAM (hereinafter abbreviated as “EOAM”) described in J. 1731. The Ethernet switches 10 and 11 may be gateways or routers.
 イーサネットスイッチ10は、下位側のインタフェース処理を行うI/F(インタフェース)12と、上位側のインタフェース処理を行うI/F13とを備える。ONU21-1は、下位側のインタフェース処理を行うI/F23と、上位側のインタフェース処理を行うI/F24とを備える。ONU21-2,ONU21-3は、ONU21-1と同様の構成であってもよく異なっていてもよい。OLT20は、下位側のインタフェース処理を行うI/F25と、上位側のインタフェース処理を行うI/F26とを備える。イーサネットスイッチ11は、下位側のインタフェース処理を行うI/F(インタフェース)14と、上位側のインタフェース処理を行うI/F15とを備える。 The Ethernet switch 10 includes an I / F (interface) 12 that performs interface processing on the lower side and an I / F 13 that performs interface processing on the upper side. The ONU 21-1 includes an I / F 23 that performs lower-level interface processing and an I / F 24 that performs higher-level interface processing. The ONU 21-2 and ONU 21-3 may have the same configuration as the ONU 21-1, or may be different. The OLT 20 includes an I / F 25 that performs lower-level interface processing and an I / F 26 that performs higher-level interface processing. The Ethernet switch 11 includes an I / F (interface) 14 that performs interface processing on the lower side and an I / F 15 that performs interface processing on the upper side.
 OLT20は、ONUごとに当該ONUの状態を管理する機能を備える。ONUの状態としては、例えばUNI(User Network Interface)のリンク状態や、導通状態、試験状態などがある。OLT20が、ONUの状態を管理する方法としては、例えば運用管理保守(OAM)等を用いて管理する方法や、IEEE802.3ahで規定されているリンク状態監視などがあり、どのような方法でONUの状態を管理していてもよい。 The OLT 20 has a function of managing the state of the ONU for each ONU. The ONU state includes, for example, a UNI (User Network Interface) link state, a conduction state, and a test state. The OLT 20 manages the ONU status by, for example, management using operation management maintenance (OAM) or the like, and link status monitoring defined by IEEE 802.3ah. You may manage the state of.
 ここで、ONUをEOAMの監視ポイントとする場合、ONUに、EOAMの規格で定義されたメンテナンスエンドポイント(MEP)やメンテナンス中間ポイント(MIP)を設定し、ETH-CC(Ethernet(登録商標) Continuity Check)フレーム等を用いて接続性チェックを行い、MEP間のネットワーク状態を監視する。MEPは、障害監視などのためのOAMフレームの生成と終端を実施する機能を有する。MIPは、下位のレベルのMEPからの情報を、上位の監視ポイントであるMEPに通知する機能を有する。 Here, when an ONU is used as an EOAM monitoring point, a maintenance end point (MEP) or a maintenance intermediate point (MIP) defined in the EOAM standard is set in the ONU, and an ETH-CC (Ethernet (registered trademark) Continuity) is set. Check) A connectivity check is performed using a frame or the like, and a network state between MEPs is monitored. The MEP has a function of generating and terminating an OAM frame for fault monitoring and the like. The MIP has a function of notifying information from a lower level MEP to an MEP that is an upper monitoring point.
 EOAMの監視ポイントには監視レベルがあり、例えばカスタマー管理用、プロバイダ用、ネットワークオペレータ用、物理層用などに分けて使われる。監視は同一レベルのMEP間で行われるが、あるレベルのMEPに対して上位レベルに通知するため、該当する上位レベルにMIPが定義される。 EOAM monitoring points have a monitoring level, and are used separately for customer management, provider, network operator, physical layer, and the like. Although monitoring is performed between MEPs at the same level, a MIP is defined at a corresponding higher level in order to notify a higher level to a certain level of MEP.
 図2は、EOAMにおけるMEPおよびMIPの設定例を示す図である。図2は、図1に示した通信システムにおいて、EOAMにおけるMEPおよびMIPを従来の方法により設定した例を示している。MEP30,32,33,34,35,36,38は、装置間を監視する管理エンドポイントであり、例えば、MEP32,33は、イーサネットスイッチ11とOLT20間を監視する。MEP31,37は、中間ネットワーク(イーサネットスイッチ11とONU21-1のI/F23までの間)を監視する管理エンドポイントである。MEP39は、利用者が設定する管理エンドポイントである。MIP40,43は、利用者の監視区間に設定された管理中間ポイントである。MIP41は、中間ネットワークを管理する管理中間ポイントである。図2は一例であり、MEP、MIPの設定位置は、図2に限定されない。 FIG. 2 is a diagram showing a setting example of MEP and MIP in EOAM. FIG. 2 shows an example in which MEP and MIP in EOAM are set by a conventional method in the communication system shown in FIG. MEPs 30, 32, 33, 34, 35, 36, and 38 are management endpoints that monitor the devices. For example, the MEPs 32 and 33 monitor between the Ethernet switch 11 and the OLT 20. MEPs 31 and 37 are management endpoints that monitor the intermediate network (between the Ethernet switch 11 and the I / F 23 of the ONU 21-1). The MEP 39 is a management endpoint set by the user. MIPs 40 and 43 are management intermediate points set in the monitoring section of the user. The MIP 41 is a management intermediate point that manages the intermediate network. FIG. 2 is an example, and the setting positions of MEP and MIP are not limited to those in FIG.
 一方、OLT20とONU21-1~21-3の間では例えばIEEE802.3ahのOAM等を用いてすでに監視を行っており、OLT20は、ONU21-1~21-3までの接続状態やONU21-1~21-3の状態を管理している。OLT20が、ONU21-1~21-3のUNIのリンク状態(I/F23とI/F13の間のリンク状態)などを知ることができるPONシステムもある。 On the other hand, the OLT 20 and the ONUs 21-1 to 21-3 have already been monitored using, for example, an IEEE 802.3ah OAM, and the OLT 20 is connected to the ONUs 21-1 to 21-3 and the ONUs 21-1 to 21-3. The state 21-3 is managed. There is also a PON system in which the OLT 20 can know the UNI link status (link status between the I / F 23 and the I / F 13) of the ONUs 21-1 to 21-3.
 そのため、EOAMの監視ポイントをONUに設定しなくても、OLT20は、PONシステム内で得られる情報を用いて、ある程度ONU21-1~21-3までの接続状態を把握している。OLT20は、このPONシステム内で得られたONUの状態を上位の監視ポイントに通知することができる。 Therefore, even if the EOAM monitoring point is not set to the ONU, the OLT 20 grasps the connection state from the ONUs 21-1 to 21-3 to some extent using the information obtained in the PON system. The OLT 20 can notify the upper monitoring point of the state of the ONU obtained in the PON system.
 そこで、本実施の形態では、OLT20が、PONシステム内で得られたONU21-1~21-3の状態をEOAMにおける応答に反映する。すなわち、本来ONU21-1~21-3に設定するべきMEPやMIPを、OLT20に代理に配置する。これにより、ONU21-1~21-3に、ONU21-1~21-3に設定するべきMEPやMIPを設定する必要がなくなる。 Therefore, in this embodiment, the OLT 20 reflects the states of the ONUs 21-1 to 21-3 obtained in the PON system in the response in the EOAM. In other words, MEPs and MIPs that should originally be set in the ONUs 21-1 to 21-3 are arranged in the OLT 20 as a proxy. This eliminates the need to set MEPs and MIPs to be set in the ONUs 21-1 to 21-3 in the ONUs 21-1 to 21-3.
 図3は、本実施の形態のMEPおよびMIPの配置例を示す図である。図2ではONU21-1に設定されていたMIP43の代わりに、OLT20内に代理のMIP50を設定し、ONU21-1に設定されていたMEP37,MIP42の代わりに、OLT20内に代理のMEP51を設定し、ONU21-1に設定されていたMEP38の代わりに、OLT20内に代理のMEP52を設定する。MIP42については、MEP35の警報に対する応答処理を行うものであり、仮想MEPを用いる場合においては、ONU21-1のI/F24でPON区間の異常を検出するためのMEP35は定義する意味をなさないため、MIP42は不要となる。 FIG. 3 is a diagram showing an arrangement example of MEPs and MIPs according to the present embodiment. In FIG. 2, a proxy MIP 50 is set in the OLT 20 instead of the MIP 43 set in the ONU 21-1, and a proxy MEP 51 is set in the OLT 20 instead of the MEP 37 and MIP 42 set in the ONU 21-1. , Instead of the MEP 38 set in the ONU 21-1, a proxy MEP 52 is set in the OLT 20. The MIP 42 performs a response process to the alarm of the MEP 35, and in the case of using the virtual MEP, the MEP 35 for detecting an abnormality in the PON section at the I / F 24 of the ONU 21-1 has no meaning to define. , MIP42 becomes unnecessary.
 図4は、本実施の形態のOLT20の構成例を示す図である。図4のI/F100は図1のI/F25に相当し、I/F101は図1のI/F26に相当する。I/F100は、PONプロトコル(第1のプトロコル)に基づいてOLT側の処理を実施するPON制御部(第1のプロトコル処理部)110と、ONU状態管理部(状態管理部)111と、プロトコル変換部112と、EOAM(第2のプロトコル)に基づく処理を行うEOAM処理部(第2のプロトコル処理部)113と、光信号の送受信処理を行う光送受信器115と、を備える。 FIG. 4 is a diagram illustrating a configuration example of the OLT 20 according to the present embodiment. The I / F 100 in FIG. 4 corresponds to the I / F 25 in FIG. 1, and the I / F 101 corresponds to the I / F 26 in FIG. The I / F 100 includes a PON control unit (first protocol processing unit) 110 that performs processing on the OLT side based on the PON protocol (first protocol), an ONU state management unit (state management unit) 111, a protocol, A conversion unit 112, an EOAM processing unit (second protocol processing unit) 113 that performs processing based on EOAM (second protocol), and an optical transceiver 115 that performs optical signal transmission / reception processing are provided.
 なお、上記のPONプロトコルとは、レイヤ2の副層であるMAC(Media Access Control)層等で用いられる制御用プロトコルであって、例えばIEEEで規定されているMPCP(Multi-point Control Protocol)やOAM等のことである。 Note that the PON protocol is a control protocol used in a MAC (Media Access Control) layer, which is a sublayer of Layer 2, and for example, MPCP (Multi-point Control Protocol) defined by IEEE, OAM and so on.
 PON制御部110は、PONプロトコルに基づいて、ONU21-1~21-3の管理を行い、PONプロトコルの制御フレーム等を生成して、光送受信器115経由でONU21-1~21-3へ送信する。また、PON制御部110は、光送受信器115経由でONU21-1~21-3から受信したPONプロトコルの制御フレームを受信し、受信した制御フレームに基づいてONU21-1~21-3の状態を把握し、ONU状態管理部111へ渡す。PON制御部110では、ONU21-1~21-3と送受信する制御フレームを用いて、リンク接続状態等を把握し、また、上りのユーザトラフィックの制御等を実施する。ONU状態管理部111は、ONU21-1~21-3の状態をONUごとに状態情報として保持する。ONU状態管理部111は、EOAMに対応していないONUについて状態情報を保持するが、EOAMに対応していないONUについては状態情報を保持しなくてもよい。 The PON control unit 110 manages the ONUs 21-1 to 21-3 based on the PON protocol, generates a control frame of the PON protocol, and transmits it to the ONUs 21-1 to 21-3 via the optical transceiver 115. To do. Further, the PON control unit 110 receives control frames of the PON protocol received from the ONUs 21-1 to 21-3 via the optical transceiver 115, and changes the states of the ONUs 21-1 to 21-3 based on the received control frames. Grasp and pass to the ONU state management unit 111. The PON control unit 110 grasps the link connection status and the like using control frames transmitted / received to / from the ONUs 21-1 to 21-3, and controls uplink user traffic. The ONU state management unit 111 holds the states of the ONUs 21-1 to 21-3 as state information for each ONU. The ONU state management unit 111 holds state information for ONUs that do not support EOAM, but does not have to hold state information for ONUs that do not support EOAM.
 プロトコル変換部112は、ONU状態管理部111からONUの状態情報を取得し、この状態情報をEOAMにおける監視ポイントの状態情報に変換し、EOAM処理部113に配置したONU監視ポイント114に設定する。この変換は、例えば、ONUの状態の種類とEOAMにおける監視ポイントの状態との対応をテーブル等に管理して実施するようにしてもよいし、その他の方法で実施してもよい。なお、プロトコル変換部112はハードウェアで構成してもよいし、S/Wで構成してもよいし、上位のPONシステムを管理するS/W等に具備してもよいし、その組み合わせでもよい。また、I/F100を1つの制御部(制御装置)として構成してもよい。ONU監視ポイント114は、自身に設定した代理の監視ポイントに対向するMEPからEOAMのフレームを受信した場合に、当該フレームの処理を実施し、応答が必要なものについては、本来ONUに設定する監視ポイントの代わりに応答を行う。なお、ここでの応答には、代理の監視ポイントがEOAMフレームを送信する場合と後述するように代理の監視ポイントが無効になりフレームを送信しない場合とが含まれる。 The protocol conversion unit 112 acquires ONU state information from the ONU state management unit 111, converts this state information into state information of a monitoring point in EOAM, and sets it in the ONU monitoring point 114 arranged in the EOAM processing unit 113. This conversion may be performed, for example, by managing the correspondence between the type of the ONU state and the state of the monitoring point in the EOAM in a table or the like, or may be performed by other methods. Note that the protocol conversion unit 112 may be configured by hardware, S / W, may be included in S / W that manages a higher-level PON system, or a combination thereof. Good. Further, the I / F 100 may be configured as one control unit (control device). When the ONU monitoring point 114 receives an EOAM frame from the MEP facing the proxy monitoring point set to itself, the ONU monitoring point 114 performs processing of the frame, and for those that require a response, the ONU monitoring point 114 is originally set to the ONU. Responds instead of points. The response here includes a case where the proxy monitoring point transmits an EOAM frame and a case where the proxy monitoring point becomes invalid and does not transmit a frame, as will be described later.
 図5は、本実施の形態のONU21-1の構成例を示す図である。図5に示すように、ONU21-1は、I/F(図1のI/F23に対応)200とI/F(図1のI/F24に対応)201を備える。I/F201は、PONプロトコルに基づいてONU側の処理を実施するPON制御部211と、光信号の送受信処理を行う光送受信器210と、を備える。PON制御部211は、光送受信器210経由でOLT20から受信した制御フレームを処理し、応答を要する制御フレームに対して応答フレームを生成し、光送受信器210経由でOLT20へ送信する。本実施の形態では、ONU21-1は、EOAMの対応した機能は備えていないとする。 FIG. 5 is a diagram illustrating a configuration example of the ONU 21-1 according to the present embodiment. As shown in FIG. 5, the ONU 21-1 includes an I / F (corresponding to the I / F 23 in FIG. 1) 200 and an I / F (corresponding to the I / F 24 in FIG. 1) 201. The I / F 201 includes a PON control unit 211 that performs processing on the ONU side based on the PON protocol, and an optical transceiver 210 that performs transmission / reception processing of an optical signal. The PON control unit 211 processes the control frame received from the OLT 20 via the optical transceiver 210, generates a response frame for the control frame that requires a response, and transmits the response frame to the OLT 20 via the optical transceiver 210. In the present embodiment, it is assumed that ONU 21-1 does not have a function corresponding to EOAM.
 例えば、OLT20のPON制御部110が、ONU21-1のUNIリンクがリンク断の状態であることを検出したとする。ONU状態管理部111は、PON制御部110からONU21-1のUNIリンクがリンク断であるという状態情報を保持する。プロトコル変換部112は、ONU21-1のUNIリンクがリンク断であることから、図2のような構成であった場合には、MIP43は応答できなくなるはずである。したがって、MIP43が応答しない場合と同様の処理を実施する。この場合、プロトコル変換部112は、ONU監視ポイント114のMIP50(MIP43に対応する代理監視ポイント)を無効とし(EOAMにおける状態情報として応答しない状態に変換する)、ONUの監視ポイントが応答しない場合と同様の状態とする。これにより、対向するMEPポイントでは、MIP43が応答しないときと同様のリンク異常を検出することが可能となる。なお、監視ポイントを無効にせずとも、常時送信している接続性チェックのETH-CCフレームの出力を制限する方法としてもよい。 For example, it is assumed that the PON control unit 110 of the OLT 20 detects that the UNI link of the ONU 21-1 is in a broken link state. The ONU state management unit 111 holds state information from the PON control unit 110 that the UNI link of the ONU 21-1 is broken. Since the UNI link of the ONU 21-1 is broken, the protocol conversion unit 112 should not be able to respond to the MIP 43 in the configuration shown in FIG. Therefore, the same processing as when the MIP 43 does not respond is performed. In this case, the protocol conversion unit 112 invalidates the MIP 50 (a proxy monitoring point corresponding to the MIP 43) of the ONU monitoring point 114 (converts it to a state that does not respond as state information in EOAM), and the ONU monitoring point does not respond. A similar state is assumed. Thereby, it is possible to detect the same link abnormality as when the MIP 43 does not respond at the opposing MEP point. It should be noted that it is possible to limit the output of the ETH-CC frame for connectivity check that is always transmitted without invalidating the monitoring point.
 また、PON制御部110が、ONU21-1との間のPONリンク(光回線)ダウンを検出したとすると、図2のような構成であった場合には、MEP37、MIP42は応答できなくなるはずである。したがって、OLT20内の代理のMEP51を無効にすることにより、対向するMEP31では、監視ポイントMEP37、MIP42が応答していないと把握することができる。例えば、PON制御部110におけるONUの状態を示すものとして、GE-PONシステムではMPCPタイムアウトがある。MPCPタイムアウトはONUとの上りデータ通信に必要なGate-Report制御において、ONUからのReportが指定した時間までOLTで受信されなかった状態を示しており、MPCPタイムアウトが発生すると、ONUはリンク断の状態になる。 If the PON control unit 110 detects that the PON link (optical line) with the ONU 21-1 is down, the MEP 37 and MIP 42 should not be able to respond in the case of the configuration shown in FIG. is there. Therefore, by disabling the proxy MEP 51 in the OLT 20, it is possible to grasp that the monitoring points MEP 37 and MIP 42 are not responding in the opposing MEP 31. For example, as an indication of the ONU state in the PON control unit 110, there is an MPCP timeout in the GE-PON system. The MPCP timeout indicates a state in which the report from the ONU is not received by the OLT until the specified time in the Gate-Report control necessary for uplink data communication with the ONU. When the MPCP timeout occurs, the ONU is disconnected. It becomes a state.
 図6は、本実施の形態の代理の監視ポイントを用いた障害監視手順の一例を示すフローチャートである。まず、OLT20では、ONU21-1に設定する監視ポイントの代わりの代理の監視ポイントをONU監視ポイント114に設定する(ステップS1)。具体的には、ONU監視ポイント114が、本来ONUに設定する監視ポイントと同様の応答ができるように、EOAMにおけるフレームのパラメータ等を設定しておく。次に、OLT20では、プロトコル変換部112が、ONU状態管理部111からONUの状態情報を取得する(ステップS2)。プロトコル変換部112は、ONUの状態情報に変化があったか否かを判断し、変化があった場合(ステップS3 Yes)、ONU監視ポイント114に反映させる(ステップS4)。具体的には、ONU監視ポイント114がフレームを送信しないようにしたり、通知が必要な障害をEOAMフレームによって送信するように設定したりする。そして、ONU監視ポイント114は、EOAMにおける応答を実施する。ONUの状態情報に変化がなかった場合(ステップS3 No)、ステップS2へ戻る。 FIG. 6 is a flowchart showing an example of a failure monitoring procedure using the proxy monitoring point of the present embodiment. First, the OLT 20 sets a proxy monitoring point instead of the monitoring point set in the ONU 21-1 as the ONU monitoring point 114 (step S1). Specifically, frame parameters and the like in EOAM are set so that the ONU monitoring point 114 can make a response similar to the monitoring point originally set to ONU. Next, in the OLT 20, the protocol conversion unit 112 acquires ONU status information from the ONU status management unit 111 (step S2). The protocol conversion unit 112 determines whether there is a change in the status information of the ONU, and when there is a change (Yes in Step S3), reflects it in the ONU monitoring point 114 (Step S4). Specifically, the ONU monitoring point 114 is set not to transmit a frame, or a failure requiring notification is set to be transmitted using an EOAM frame. The ONU monitoring point 114 performs a response in EOAM. If there is no change in the status information of the ONU (No at Step S3), the process returns to Step S2.
 他にも、ONUの電源断をOLT20のPON制御部110で検出可能である場合、プロトコル変換部112が、ONUの状態管理部111から得られたONU電源断情報を用いて、あらかじめ定義したベンダ独自のOAMにしたがって形式のフレームを生成し、ONU監視ポイント114から対向のMEPに対して送信するようにしてもよい。これにより、電源断によるリンク切断状態を異常時と区別して通知することが出来る。 In addition, when the ONU power-off can be detected by the PON control unit 110 of the OLT 20, the protocol conversion unit 112 uses the ONU power-off information obtained from the ONU state management unit 111 to define a vendor defined in advance. A frame of a format may be generated according to a unique OAM and transmitted from the ONU monitoring point 114 to the opposite MEP. As a result, the link disconnection state due to the power supply disconnection can be notified separately from the abnormal state.
 以上のように、本実施の形態では、OLT20が、PON制御部110から得られるONU21-1の状態情報に基づいて、EOAMに基づいてONU21-1の内のEOAMにおける監視ポイントと同様の応答を実現するようにした。このため、ONU21-1に監視ポイントを設定せずにOLT20に代理の監視ポイントを設定することになり、ONUに変更を加えずに、または少ない変更量で、EOAMによりネットワーク側から子局装置までを管理することができるという効果を奏する。 As described above, in the present embodiment, the OLT 20 returns a response similar to the monitoring point in the EOAM of the ONU 21-1 based on the EOAM based on the status information of the ONU 21-1 obtained from the PON control unit 110. I made it happen. For this reason, a proxy monitoring point is set in the OLT 20 without setting a monitoring point in the ONU 21-1. From the network side to the slave station device by the EOAM without changing the ONU or with a small change amount. There is an effect that can be managed.
 なお、OLT20の代理監視ポイントにおいては、厳密なユーザトラフィック状態を反映できない。このため、ユーザトラフィックの状態を通知するために、ONU21-1に一部の機能のみ(例えばEthernet OAMの機能の一つであるループバック制御などトラフィック状態を表す機能に限定)を例えばS/Wにより実装するようにしてもよい。 Note that the strict user traffic state cannot be reflected at the proxy monitoring point of the OLT 20. For this reason, in order to notify the user traffic state, only a part of the functions (for example, the function indicating the traffic state such as loopback control which is one of the functions of Ethernet OAM) is limited to the ONU 21-1. You may make it mount by.
実施の形態2.
 図7は、本発明にかかるPONシステムを含む通信システムの実施の形態2の構成例を示す図である。本実施の形態では、ONU21-1が複数のポートを有し、ポートごとにUNIを定義する例について説明する。ONU21-1は、I/F23-1~23-n(nは2以上の整数)を備え、各I/Fはそれぞれ異なるポートに対応する。I/F23-1~23-nは、接続するポートに対応したUNIの処理を実施する。本実施の形態の通信システムの構成は、ONU21-1以外は実施の形態1と同様である。以下、実施の形態1と異なる部分を説明する。
Embodiment 2. FIG.
FIG. 7 is a diagram showing a configuration example of a second embodiment of a communication system including a PON system according to the present invention. In the present embodiment, an example in which the ONU 21-1 has a plurality of ports and the UNI is defined for each port will be described. The ONU 21-1 includes I / Fs 23-1 to 23-n (n is an integer of 2 or more), and each I / F corresponds to a different port. The I / Fs 23-1 to 23-n execute UNI processing corresponding to the port to be connected. The configuration of the communication system of the present embodiment is the same as that of the first embodiment except for the ONU 21-1. Hereinafter, a different part from Embodiment 1 is demonstrated.
 ONUが複数のUNI(下位側のインタフェース)を有する場合、EOAMでは、一般にUNIごと(ポートごと)にONUのMEPやMIP等の監視ポイントが設定される。図7では、OLT20のONU監視ポイント114として、UNIごとの代理の監視ポイントを設定(I/F23-1について、MIP43の代理のMIP50、MEP37の代理のMEP51を設定し、…、I/F23-nについて、MIP63の代理のMIP60、MEP64の代理のMEP61を設定)した例を示している。一方、同一デバイスにおいて、例えばF/W(ファームウェア)の更新制御や、折り返し試験による導通の状態、ONU21-1のリンク状態など、ONU全般の設定は、UNI毎ではなく同一ONUでは共通する。したがって、EOAMにおけるMEP、MIP等の応答動作も共通化可能な部分がある。 When the ONU has a plurality of UNIs (lower interfaces), in EOAM, generally, monitoring points such as MEPs and MIPs of ONUs are set for each UNI (for each port). In FIG. 7, the proxy monitoring point for each UNI is set as the ONU monitoring point 114 of the OLT 20 (for the I / F 23-1, the proxy MIP 50 of the MIP 43, the proxy MEP 51 of the MEP 37 are set, ..., I / F 23- For n, an example is shown in which a proxy MIP60 of MIP63 and a proxy MEP61 of MEP64 are set). On the other hand, in the same device, for example, F / W (firmware) update control, continuity state by loopback test, ONU 21-1 link state, etc. are common to the same ONU, not for each UNI. Therefore, there is a part that can share response operations such as MEP and MIP in EOAM.
 そこで、実施の形態1で述べたようにOLT20がONUの代理の監視ポイントを有する場合に、例えば同一ONUや、同一Linkで影響が共通的に発生する監視ポイントに対して、それぞれの管理IDを一つのグループとして扱う。このグループではOLT20における管理ポイント自体は一つとして定義し、まとめて複数UNI分のMEPまたはMIP応答処理を行う。そして、UNIごとに応答する必要のある項目については、UNIごとの応答処理を実施する。 Therefore, as described in the first embodiment, when the OLT 20 has a monitoring point acting as an ONU, for example, the management ID is assigned to the monitoring point that has the same influence on the same ONU or the same link. Treat as one group. In this group, the management point itself in the OLT 20 is defined as one, and the MEP or MIP response processing for a plurality of UNIs is performed collectively. And about the item which needs to respond for every UNI, the response process for every UNI is implemented.
 以上のように、同一ONUや、同一Linkで影響が共通的に発生する監視ポイントをOLT20内の1つの代理の管理ポイントとして、EOAMの応答処理を行うようにした。このため、OLT20内のEOAMに関するデバイスリソースの節約や、制御の簡略化を図ることが可能となる。 As described above, an EOAM response process is performed with a monitoring point that commonly affects the same ONU or the same link as one proxy management point in the OLT 20. Therefore, it is possible to save device resources related to EOAM in the OLT 20 and simplify control.
実施の形態3.
 次に、本発明にかかる実施の形態3の通信システムについて説明する。本実施の形態の通信システムの構成は実施の形態1と同様である。以下、実施の形態1と異なる部分を説明する。
Embodiment 3 FIG.
Next, the communication system of Embodiment 3 concerning this invention is demonstrated. The configuration of the communication system of the present embodiment is the same as that of the first embodiment. Hereinafter, a different part from Embodiment 1 is demonstrated.
 OLT20に、EOAM対応のONUと、非対応のONUとが混在して収容される場合もある。EOAMに対応しているか非対応であるかは、ONUの種別やS/Wのバージョンなどによって判断できる。このため、本実施の形態では、OLT20は、ONU状態管理部111が、PON制御部110からONUごとにEOAMの対応状況が分かる情報を取得して管理する。プロトコル変換部112は、ONU状態管理部111が管理している情報に基づいて、ONUごとに、当該ONU内に監視ポイントを設定するか、OLT20内に当該ONUに代わる代理監視ポイントを設定するか、を決定する。プロトコル変換部112は、この決定結果に基づいて、ONUごとにプロトコル変換部112が代理監視ポイントにONUの状態情報を反映させるか否かを判断し、EOAMに非対応のONUについて、PON制御部110から得られた情報をEOAM処理部113に配置したONU監視ポイント114に設定する。このような処理により、管理者が各ONUのEOAM対応・非対応を意識することなく、EOAMによる管理を可能とする。但し、代理としてOLT20に定義したONU監視ポイント114では、EOAMにおいて実現できない機能が生じる場合も考えられるため、管理者がONUのEOAM対応状況を知る手段も備えることが望ましい。または、OLT20が、その対応状況が分かる情報を管理するのではなく、必要に応じてONU21-1~21-3に問い合わせて確認する方法でもよい。 In some cases, the OLT 20 may contain both EOAM-compliant ONUs and non-compliant ONUs. Whether EOAM is supported or not can be determined by the type of ONU, the version of S / W, and the like. For this reason, in the present embodiment, the OLT 20 acquires and manages the information indicating the EOAM support status for each ONU from the PON control unit 110 by the ONU state management unit 111. Whether the protocol conversion unit 112 sets a monitoring point in the ONU or a proxy monitoring point in place of the ONU in the OLT 20 based on information managed by the ONU state management unit 111 , Determine. Based on the determination result, the protocol conversion unit 112 determines whether or not the protocol conversion unit 112 reflects the ONU status information on the proxy monitoring point for each ONU, and determines the PON control unit for an ONU that does not support EOAM. Information obtained from 110 is set in the ONU monitoring point 114 arranged in the EOAM processing unit 113. By such processing, management by EOAM is enabled without the administrator being aware of whether or not each ONU supports EOAM. However, since the ONU monitoring point 114 defined in the OLT 20 as a proxy may have a function that cannot be realized in the EOAM, it is desirable that the administrator has a means for knowing the ONU's EOAM support status. Alternatively, the OLT 20 may not check the information indicating the correspondence status, but may check the ONUs 21-1 to 21-3 as necessary.
 なお、本実施の形態では、実施の形態1の通信システムにおいてONUごとにEOAMの対応状況を判定するようにしたが、実施の形態2の通信システムにおいてONUごとにEOAMの対応状況を判定し本実施の形態の動作を行うようにしてもよい。 In the present embodiment, the EOAM support status is determined for each ONU in the communication system of the first embodiment, but the EOAM support status is determined for each ONU in the communication system of the second embodiment. You may make it perform operation | movement of embodiment.
 このように、本実施の形態では、OLT20が、PON制御部110から得られる情報に基づいて、ONUごとにEOAMに対応しているか非対応の情報を管理し、ONUごとに当該ONU内に監視ポイントを設定するか、OLT20内に当該ONUの代理の監視ポイントを設定するか、を決定するようにした。このため、EOAMに対応するONUと非対応のONUが混在する場合にも、管理者の煩雑な設定等を必要とせずに、EOAMによる管理を実施することができる。 As described above, in the present embodiment, the OLT 20 manages information that supports or does not support EOAM for each ONU based on the information obtained from the PON control unit 110, and monitors the ONU for each ONU. It is determined whether to set a point or to set a monitoring point for the ONU as a proxy in the OLT 20. For this reason, even when ONUs corresponding to EOAM and non-compatible ONUs coexist, management by EOAM can be performed without requiring complicated settings by the administrator.
実施の形態4.
 図8は、本発明にかかるOLTの実施の形態4の構成例を示す図である。本実施の形態のOLT20aは、I/F100aと、実施の形態1と同様のI/F101と、代理設定要否判定部102と、監視制御I/F103とを備える。I/F100aは、実施の形態1のI/F100にONU設定制御部116を追加する以外は、実施の形態1のI/F100と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略する。以下、実施の形態1と異なる部分を説明する。
Embodiment 4 FIG.
FIG. 8 is a diagram illustrating a configuration example of the fourth embodiment of the OLT according to the present invention. The OLT 20a of the present embodiment includes an I / F 100a, an I / F 101 similar to that of the first embodiment, a proxy setting necessity determination unit 102, and a monitoring control I / F 103. The I / F 100a is the same as the I / F 100 of the first embodiment except that the ONU setting control unit 116 is added to the I / F 100 of the first embodiment. Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted. Hereinafter, a different part from Embodiment 1 is demonstrated.
 本実施の形態では、OLT20aが、各ONUにEOAMに対応しているか否かを問い合わせ、この問い合わせの結果に基づいて当該ONUの代理監視ポイントを設定するか否かを判定する。図9は、本実施の形態の代理監視ポイントの設定要否の判定処理の処理手順の一例を示すフローチャートである。図9に示すように、OLT20aの代理設定要否判定部102は、ONUに対してEOAMへの対応状況を問い合わせる(ステップS11)。具体的には、代理設定要否判定部102はONU設定制御部116に対してONUに対してEOAMへの対応状況を問い合わせるよう指示する。ONU設定制御部116は、ONUに対してEOAMへの対応状況を問い合わせる制御フレームをPONプロトコルに基づいて生成するようPON制御部110へ指示する。PON制御部110は、PONプロトコルに基づいて生成した制御フレームを光送受信器115経由でONUへ送信する。 In this embodiment, the OLT 20a inquires whether each ONU supports EOAM, and determines whether to set a proxy monitoring point of the ONU based on the result of the inquiry. FIG. 9 is a flowchart illustrating an example of a processing procedure of determination processing for determining whether or not proxy monitoring points need to be set according to the present embodiment. As illustrated in FIG. 9, the proxy setting necessity determination unit 102 of the OLT 20a inquires of the ONU about the status of support for EOAM (step S11). Specifically, the proxy setting necessity determination unit 102 instructs the ONU setting control unit 116 to inquire the ONU about the status of EOAM support. The ONU setting control unit 116 instructs the PON control unit 110 to generate a control frame that inquires of the ONU about the EOAM support status based on the PON protocol. The PON control unit 110 transmits a control frame generated based on the PON protocol to the ONU via the optical transceiver 115.
 OLT20aの代理設定要否判定部102は、ONUからの応答がEOAMに未対応という結果であったか、またはONUからの応答がFail(ONUから制御フレームに対する正常な応答を受信できない)であるかを判断する(ステップS12)。具体的には、PON制御部110は、ステップS11で送信した制御フレームに対する応答を受信した場合には、この応答自体またはこの応答の内容をONU設定制御部116経由で代理設定要否判定部102へ通知する。代理設定要否判定部102は、ONU設定制御部116経由のこの通知に基づいてONUからの応答がEOAMに未対応という結果であったか、またはONUからの応答がFail(一定時間以内に正常な応答が受信できない)であるか否かを判断する。ONUは、EOAMへの対応状況を問い合わせる制御フレームを解析できるように設定されている場合には、当該制御フレームに正常に応答することができ、EOAMに対応しているか否かを応答フレームとして返送する。 The proxy setting necessity determination unit 102 of the OLT 20a determines whether the response from the ONU is a result that does not support EOAM or whether the response from the ONU is Fail (a normal response to the control frame cannot be received from the ONU). (Step S12). Specifically, when receiving a response to the control frame transmitted in step S11, the PON control unit 110 transmits the response itself or the content of the response via the ONU setting control unit 116 as a proxy setting necessity determination unit 102. To notify. Based on this notification via the ONU setting control unit 116, the proxy setting necessity determination unit 102 determines that the response from the ONU is not compatible with EOAM, or the response from the ONU is Fail (a normal response within a certain time). Is not received). When the ONU is set so as to be able to analyze a control frame for inquiring about the status of support for EOAM, the ONU can respond normally to the control frame, and returns whether or not it is compatible with EOAM as a response frame. To do.
 ONUからの応答がFailでなくかつ当該応答がEOAMに対応しているという結果であった場合(ステップS12 No)、代理設定要否判定部102は、ONU状態管理部111に対して、当該ONUの対応状況の情報を、EOAMに対応している(EOAMに対応しているか否かを示す情報をYesとする)と設定するよう指示する(ステップS13)。なお、ONU状態管理部111は、実施の形態3と同様にONUごとのEOAMの対応状況を情報として管理しており、代理設定要否判定部102からの指示に基づいて、ONUの対応状況の情報を更新する。 If the response from the ONU is not Fail and the response corresponds to EOAM (No in step S12), the proxy setting necessity determination unit 102 sends the ONU state management unit 111 the corresponding ONU. Is instructed to be set to be EOAM-compatible (information indicating whether or not EOAM is supported is set to Yes) (step S13). Note that the ONU status management unit 111 manages the EOAM response status for each ONU as information as in the third embodiment, and the ONU response status is determined based on an instruction from the proxy setting necessity determination unit 102. Update information.
 ステップS13の後、代理設定要否判定部102は、ONUに通常のEOAMの監視ポイントを設定するよう指示し(ステップS14)、処理を終了する。ONUは、この指示に基づいて、自身にEOAMの監視ポイントを設定する。 After step S13, the proxy setting necessity determination unit 102 instructs the ONU to set a normal EOAM monitoring point (step S14), and ends the process. Based on this instruction, the ONU sets an EOAM monitoring point in itself.
 ONUからの応答がFailであるかまたは当該応答がEOAMに非対応であるという結果であった場合(ステップS12 Yes)、代理設定要否判定部102は、ONU状態管理部111に対して、当該ONUの対応状況の情報を、EOAMに対応していない(EOAM対応に対応しているか否かを示す情報をNoとする)と設定するよう指示する(ステップS15)。 When the response from the ONU is “Fail” or the response is not EOAM compliant (Yes in step S12), the proxy setting necessity determination unit 102 makes a response to the ONU state management unit 111. It is instructed to set ONU correspondence status information as not corresponding to EOAM (No indicating information indicating whether or not EOAM correspondence is supported) (step S15).
 ステップS15の後、代理設定要否判定部102は、EOAM処理部113に対して、ONUの代理として代理監視ポイントを設定するよう指示し(ステップS16)、処理を終了する。以上の処理をONUごとに実施して、各ONUについて、ONUに監視ポイントを設定するか、OLT20a内に代理監視ポイントを設定するかを決定する。代理設定要否判定部102は、代理監視ポイントを設定するか否かの決定結果を監視制御I/F103経由で上位側へ通知する。図9で説明した代理監視ポイントの設定要否の判定処理は、ONUが新規に接続されるときに実施してもよいし、一定時間ごとに実施してもよいし、その他通信システム内になんらかの構成変更が生じた場合に実施してもよく、代理監視ポイントの設定要否の判定処理の実施タイミングに制約はない。 After step S15, the proxy setting necessity determination unit 102 instructs the EOAM processing unit 113 to set a proxy monitoring point as a proxy for the ONU (step S16), and ends the process. The above processing is performed for each ONU, and for each ONU, it is determined whether to set a monitoring point in the ONU or to set a proxy monitoring point in the OLT 20a. The proxy setting necessity determination unit 102 notifies the higher level side via the monitoring control I / F 103 of the determination result as to whether or not to set a proxy monitoring point. The determination processing for determining whether or not the proxy monitoring point is set as described with reference to FIG. 9 may be performed when an ONU is newly connected, may be performed at regular intervals, or may be performed in any other communication system. This may be performed when a configuration change occurs, and there is no restriction on the execution timing of the determination process for determining whether a proxy monitoring point needs to be set.
 なお、本実施の形態では、ONU設定制御部116を備えるようにしたが、ONU設定制御部116を備えずに、代理設定要否判定部102がPON制御部110とやりとりを行ってもよい。 In this embodiment, the ONU setting control unit 116 is provided. However, the proxy setting necessity determination unit 102 may communicate with the PON control unit 110 without providing the ONU setting control unit 116.
 以上のように、本実施の形態では、OLT20aの代理設定要否判定部102が、ONUへのEOAMに対応しているか否かの問い合わせ結果に基づいて、ONUごとに、ONUに監視ポイントを設定するかEOAM処理部113に代理監視ポイントを設定するかを決定するようにした。このため、ONUのEOAMの対応状況が変化した場合も、最新の状況に基づいて適切にONUに監視ポイントを設定するか代理監視ポイントを設定するかを判断することができる。 As described above, in this embodiment, the proxy setting necessity determination unit 102 of the OLT 20a sets a monitoring point in the ONU for each ONU based on the inquiry result as to whether or not the ONU supports EOAM. Whether to set a proxy monitoring point in the EOAM processing unit 113 is determined. Therefore, even when the ONU EOAM response status changes, it is possible to determine whether to set a monitoring point or a proxy monitoring point in the ONU appropriately based on the latest status.
 なお、本実施の形態では、OLT20a内に代理設定要否判定部102を備えるようにしたが、外部の装置に代理設定要否判定部102を設けてもよい。図10は、外部の装置に代理設定要否判定部102を設ける場合の通信システムの構成例を示す図である。図10の通信システムは、OLT20aの替わりに実施の形態1と同様のOLT20を備え、代理設定要否判定部71を有する制御管理装置70を備える。代理設定要否判定部71は、OLT20aの代理設定要否判定部102と同様である。OLT20のPON制御部110は、制御管理装置70の代理設定要否判定部71からの指示に基づいて、ONUに対してEOAMへの対応状況を問い合わせる制御フレームをPONプロトコルに基づいて生成して、光送受信器115経由で送信する。また、当該制御フレームの応答がFailであるかの情報、応答がFailでない場合の応答フレームの内容を制御管理装置70の代理設定要否判定部71へ通知する。制御管理装置70の代理設定要否判定部71は、OLT20からの通知に基づいて、ONUごとにONU内に監視ポイントを設定するか、OLT20内にONUの替わりの代理監視ポイントを設定するかを決定し、決定結果をOLT20に通知する。OLT20は、この決定結果がONUの替わりの代理監視ポイントを設定することを示す結果であった場合、EOAM処理部113にONUの代理として代理監視ポイントを設定する。一方、この決定結果がONUに監視ポイントを設定することを示す結果であった場合、ONUに対して監視ポイントを設定するよう指示する。 In this embodiment, the proxy setting necessity determination unit 102 is provided in the OLT 20a. However, the proxy setting necessity determination unit 102 may be provided in an external device. FIG. 10 is a diagram illustrating a configuration example of a communication system when the proxy setting necessity determination unit 102 is provided in an external device. The communication system of FIG. 10 includes an OLT 20 similar to that of the first embodiment instead of the OLT 20a, and includes a control management device 70 having a proxy setting necessity determination unit 71. The proxy setting necessity determination unit 71 is the same as the proxy setting necessity determination unit 102 of the OLT 20a. Based on the instruction from the proxy setting necessity determination unit 71 of the control management device 70, the PON control unit 110 of the OLT 20 generates a control frame that inquires the ONU about the EOAM support status based on the PON protocol, It transmits via the optical transceiver 115. Further, the information on whether the response of the control frame is “Fail” and the contents of the response frame when the response is not “Fail” are notified to the proxy setting necessity determination unit 71 of the control management device 70. Based on the notification from the OLT 20, the proxy setting necessity determination unit 71 of the control management device 70 determines whether to set a monitoring point in the ONU for each ONU or to set a proxy monitoring point in place of the ONU in the OLT 20. Make a decision and notify the OLT 20 of the decision result. If the determination result is a result indicating that a proxy monitoring point instead of an ONU is set, the OLT 20 sets a proxy monitoring point in the EOAM processing unit 113 as a proxy for the ONU. On the other hand, when the determination result is a result indicating that a monitoring point is set in the ONU, the ONU is instructed to set the monitoring point.
  以上のように、本発明にかかる親局装置、制御装置、子局装置、光通信システムおよび障害監視方法は、EOAMにより障害監視を行うシステムに適している。 As described above, the master station device, the control device, the slave station device, the optical communication system, and the fault monitoring method according to the present invention are suitable for a system that performs fault monitoring by EOAM.
 10,11 イーサネットスイッチ、20 OLT、21-1~21-3 ONU、12,13,14,15,23,23-1~23-n,24,25,26,100,101,200,201 I/F、30,31,32,33,34,35,36,37,38,39,51,52,61,62,64 MEP、40,41,42,43,50,60,63 MIP、70 制御管理装置、71,102 代理設定要否判定部、103 監視制御I/F、110,211 PON制御部、111 ONU状態管理部、112 プロトコル変換部、113 EOAM処理部、115,210 光送受信器、116 ONU設定制御部。 10, 11 Ethernet switch, 20 OLT, 21-1 to 21-3 ONU, 12, 13, 14, 15, 23, 23-1 to 23-n, 24, 25, 26, 100, 101, 200, 201 I / F, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 51, 52, 61, 62, 64 MEP, 40, 41, 42, 43, 50, 60, 63 MIP, 70 Control management device, 71, 102 Proxy setting necessity determination unit, 103 Monitoring control I / F, 110, 211 PON control unit, 111 ONU state management unit, 112 Protocol conversion unit, 113 EOAM processing unit, 115, 210 Optical transceiver 116 ONU setting control unit.

Claims (11)

  1.  子局装置と光通信路により接続され、前記子局装置と第1のプロトコルにより通信を行い、上位ネットワークに接続される親局装置であって、
     前記第1のプロトコルに基づいて前記子局装置の状態を示す情報を取得する第1のプロトコル制御部と、
     前記第1のプロトコル制御部から前記子局装置の状態を示す情報を取得し、子局装置ごとの状態を状態情報として保持する状態管理部と、
     前記第1のプロトコルと異なる第2のプロトコルに基づいて前記上位ネットワークとの間の通信を行う第2のプロトコル制御部と、
     前記状態情報に基づいて前記子局装置に前記第2のプロトコルにおける監視ポイントが設定された場合と同等の応答を行う代理ポイントの設定を前記第2のプロトコル制御部に対して実施するプロトコル変換部と、
     を備えることを特徴とする親局装置。
    A master station device connected to a slave station device through an optical communication path, communicating with the slave station device using a first protocol, and connected to a higher-level network,
    A first protocol control unit for obtaining information indicating a state of the slave station device based on the first protocol;
    A state management unit that acquires information indicating the state of the slave station device from the first protocol control unit, and holds the state of each slave station device as state information;
    A second protocol control unit that performs communication with the upper network based on a second protocol different from the first protocol;
    A protocol conversion unit that performs setting of a proxy point for performing a response equivalent to the case where a monitoring point in the second protocol is set in the slave station device based on the state information to the second protocol control unit When,
    A master station device comprising:
  2.  前記子局装置が複数の下位側のインタフェースを備える場合に、前記下位側のインタフェースごとに代理ポイントを設定することを特徴とする請求項1に記載の親局装置。 2. The master station apparatus according to claim 1, wherein, when the slave station apparatus includes a plurality of lower-order interfaces, a proxy point is set for each lower-order interface.
  3.  前記子局装置が複数の下位側のインタフェースを備える場合に、同一の前記子局装置内の前記下位側のインタフェースに対応する監視ポイントを1つのグループとし、グループごとに代理ポイントを設定することを特徴とする請求項1に記載の親局装置。 When the slave station device has a plurality of lower side interfaces, the monitoring points corresponding to the lower side interfaces in the same slave station device are set as one group, and a proxy point is set for each group. The master station device according to claim 1, wherein
  4.  前記第1のプロトコルに基づいて前記子局装置ごとに当該子局装置が前記第2のプロトコルに対応しているか否かを判定し、前記第2のプロトコルにしていないと判定された前記子局装置について前記代理ポイントを設定することを特徴とする請求項1または2に記載の親局装置。 Based on the first protocol, for each of the slave station devices, it is determined whether the slave station device is compatible with the second protocol, and the slave station is determined not to be in the second protocol 3. The master station device according to claim 1, wherein the proxy point is set for the device.
  5.  子局装置と光通信路により接続され、前記子局装置と第1のプロトコルにより通信を行い、上位ネットワークに接続される親局装置における制御装置であって、
     前記第1のプロトコルに基づいて前記子局装置の状態を示す情報を取得する第1のプロトコル制御部と、
     前記第1のプロトコル制御部から前記子局装置の状態を示す情報を取得し、子局装置ごとの状態を状態情報として保持する状態管理部と、
     前記第1のプロトコルと異なる第2のプロトコルに基づいて前記上位ネットワークとの間の通信を行う第2のプロトコル制御部と、
     前記状態情報に基づいて前記子局装置に前記第2のプロトコルにおける監視ポイントが設定された場合と同等の応答を行う代理ポイントの設定を前記第2のプロトコル制御部に対して実施するプロトコル変換部と、
     を備えることを特徴とする制御装置。
    A control device in the master station device connected to the slave station device through an optical communication path, communicating with the slave station device using the first protocol, and connected to a higher-level network,
    A first protocol control unit for obtaining information indicating a state of the slave station device based on the first protocol;
    A state management unit that acquires information indicating the state of the slave station device from the first protocol control unit, and holds the state of each slave station device as state information;
    A second protocol control unit that performs communication with the upper network based on a second protocol different from the first protocol;
    A protocol conversion unit that performs setting of a proxy point for performing a response equivalent to the case where a monitoring point in the second protocol is set in the slave station device based on the state information to the second protocol control unit When,
    A control device comprising:
  6.  子局装置と第1のプロトコルにより通信を行い、前記第1のプロトコルと異なる第2のプロトコルに基づいて上位ネットワークとの間の通信を行い、前記第1のプロトコルにより取得した前記子局装置の状態を示す情報を状態情報として保持し、前記状態情報に基づいて前記子局装置に前記第2のプロトコルにおける監視ポイントが設定された場合と同等の応答を行う親局装置と、前記第1のプロトコルにより通信を行う前記子局装置であって、
     前記第2のプロトコルに従ってトラフィック状態を通知することを特徴とする子局装置。
    The slave station device communicates with the first protocol, communicates with an upper network based on a second protocol different from the first protocol, and the slave station device acquired by the first protocol Information indicating a state is held as state information, and a master station device that makes a response equivalent to a case where a monitoring point in the second protocol is set in the slave station device based on the state information; The slave station device that performs communication according to a protocol,
    A slave station apparatus that notifies a traffic state according to the second protocol.
  7.  子局装置と、前記子局装置に光通信路により接続されるとともに上位ネットワークに接続される親局装置とを備え、前記子局装置と前記親局装置が第1のプロトコルにより通信を行う光通信システムであって、
     前記親局装置は、
     前記第1のプロトコルに基づいて前記子局装置の状態を示す情報を取得する第1のプロトコル制御部と、
     前記第1のプロトコル制御部から前記子局装置の状態を示す情報を取得し、子局装置ごとの状態を状態情報として保持する状態管理部と、
     前記第1のプロトコルと異なる第2のプロトコルに基づいて前記上位ネットワークとの間の通信を行う第2のプロトコル制御部と、
     前記状態情報に基づいて前記子局装置に前記第2のプロトコルにおける監視ポイントが設定された場合と同等の応答を行う代理ポイントの設定を前記第2のプロトコル制御部に対して実施するプロトコル変換部と、
     を備えることを特徴とする光通信システム。
    An optical device comprising: a slave station device; and a master station device connected to the slave station device via an optical communication path and connected to an upper network, wherein the slave station device and the master station device communicate with each other according to a first protocol. A communication system,
    The master station device is
    A first protocol control unit for obtaining information indicating a state of the slave station device based on the first protocol;
    A state management unit that acquires information indicating the state of the slave station device from the first protocol control unit, and holds the state of each slave station device as state information;
    A second protocol control unit that performs communication with the upper network based on a second protocol different from the first protocol;
    A protocol conversion unit that performs setting of a proxy point for performing a response equivalent to the case where a monitoring point in the second protocol is set in the slave station device based on the state information to the second protocol control unit When,
    An optical communication system comprising:
  8.  子局装置と、前記子局装置に光通信路により接続されるとともに上位ネットワークに接続される親局装置とを備え、前記子局装置と前記親局装置が第1のプロトコルにより通信を行う光通信システムにおける障害監視方法であって、
     前記親局装置が、
     前記第1のプロトコルに基づいて前記子局装置の状態を示す情報を取得する第1のプロトコル処理ステップと、
     前記第1のプロトコル処理ステップで取得した前記子局装置の状態を示す情報を、子局装置ごとに状態情報として保持する状態管理ステップと、
     前記第1のプロトコルと異なる第2のプロトコルに基づいて前記上位ネットワークとの間の通信を行う第2のプロトコル処理ステップと、
     前記状態情報に基づいて前記子局装置に前記第2のプロトコルにおける監視ポイントが設定された場合と同等の応答を行う代理ポイントの設定を前記第2の処理ステップに対して実施するプロトコル変換ステップと、
     を含むことを特徴とする障害監視方法。
    An optical device comprising: a slave station device; and a master station device connected to the slave station device via an optical communication path and connected to an upper network, wherein the slave station device and the master station device communicate with each other according to a first protocol. A fault monitoring method in a communication system, comprising:
    The master station device is
    A first protocol processing step of acquiring information indicating a state of the slave station device based on the first protocol;
    A state management step of holding information indicating the state of the slave station device acquired in the first protocol processing step as state information for each slave station device;
    A second protocol processing step of performing communication with the upper network based on a second protocol different from the first protocol;
    A protocol conversion step for setting, for the second processing step, a proxy point for performing a response equivalent to a case where a monitoring point in the second protocol is set in the slave station device based on the status information; ,
    A failure monitoring method comprising:
  9.  前記子局装置に対して、前記第2のプロトコルに対応しているか否かの問い合わせを前記第1のプロトコルに基づいて実施するよう前記第1のプロトコル制御部へ指示し、前記問い合わせに対する応答に基づいて、前記子局装置の代理となる前記代理ポイントを自装装置に設定するか否かを判断する代理設定要否判定部、を備えることを特徴とする請求項1、2または3に記載の親局装置。 Instructs the first protocol control unit to inquire to the slave station device whether or not it is compatible with the second protocol based on the first protocol, and in response to the inquiry The proxy setting necessity determination part which determines whether the said proxy point used as a proxy of the said slave station apparatus is set to a self-equipment based on this is provided, The Claim 1, 2, or 3 characterized by the above-mentioned. Master station device.
  10.  前記親局装置から、前記第1のプロトコルに基づいた、前記第2のプロトコルに対応しているか否かの問い合わせを受信した場合に、自装置が前記第2のプロトコルに対応しているか否かを応答することを特徴とする請求項6に記載の子局装置。 Whether or not the own device is compatible with the second protocol when receiving an inquiry from the master station device as to whether the second protocol is supported based on the first protocol The slave station apparatus according to claim 6, wherein
  11.  前記子局装置に対して、前記第2のプロトコルに対応しているか否かの問い合わせを前記第1のプロトコルに基づいて実施するよう前記親局装置へ指示し、前記問い合わせに対する応答に基づいて、前記子局装置の代理となる前記代理ポイントを前記親局装置に設定するか否かを判断する制御管理装置、
     をさらに備え、
     前記親局装置は、
     前記制御管理装置からの指示に基づいて、前記問い合わせを前記第1のプロトコルに基づいて実施し、前記問い合わせに対する応答を前記制御管理装置へ通知することを特徴とする請求項7に記載の光通信システム。
    Instructing the slave station device to perform an inquiry as to whether the slave station device is compatible with the second protocol based on the first protocol, and based on a response to the inquiry, A control management device for determining whether or not to set the proxy point serving as a proxy for the slave station device in the master station device;
    Further comprising
    The master station device is
    8. The optical communication according to claim 7, wherein the inquiry is executed based on the first protocol based on an instruction from the control management apparatus, and a response to the inquiry is notified to the control management apparatus. system.
PCT/JP2013/065062 2012-12-21 2013-05-30 Master station, controller, slave station, optical communication system and failure monitoring method WO2014097665A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014552952A JP5855282B2 (en) 2012-12-21 2013-05-30 Master station device, control device, slave station device, optical communication system, and fault monitoring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/083359 2012-12-21
PCT/JP2012/083359 WO2014097491A1 (en) 2012-12-21 2012-12-21 Master station, controller, slave station, optical communication system and failure monitoring method

Publications (1)

Publication Number Publication Date
WO2014097665A1 true WO2014097665A1 (en) 2014-06-26

Family

ID=50977867

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/083359 WO2014097491A1 (en) 2012-12-21 2012-12-21 Master station, controller, slave station, optical communication system and failure monitoring method
PCT/JP2013/065062 WO2014097665A1 (en) 2012-12-21 2013-05-30 Master station, controller, slave station, optical communication system and failure monitoring method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083359 WO2014097491A1 (en) 2012-12-21 2012-12-21 Master station, controller, slave station, optical communication system and failure monitoring method

Country Status (1)

Country Link
WO (2) WO2014097491A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020388B2 (en) * 2018-12-17 2022-02-16 日本電信電話株式会社 Monitoring device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082290A1 (en) * 2009-01-13 2010-07-22 株式会社日立製作所 Communication system, subscriber accommodating apparatus and communication method
JP2010527205A (en) * 2007-05-07 2010-08-05 アルカテル−ルーセント GPONOAM using the method of IEEE802.1ag
WO2011020361A1 (en) * 2009-08-20 2011-02-24 中兴通讯股份有限公司 Method for administrating optical access nodes and optical access node thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527205A (en) * 2007-05-07 2010-08-05 アルカテル−ルーセント GPONOAM using the method of IEEE802.1ag
WO2010082290A1 (en) * 2009-01-13 2010-07-22 株式会社日立製作所 Communication system, subscriber accommodating apparatus and communication method
WO2011020361A1 (en) * 2009-08-20 2011-02-24 中兴通讯股份有限公司 Method for administrating optical access nodes and optical access node thereof

Also Published As

Publication number Publication date
WO2014097491A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
US10623293B2 (en) Systems and methods for dynamic operations, administration, and management
EP1990950B1 (en) A management method for passive optical network terminal and system thereof
CA2941538A1 (en) Link switching method, device, and system
WO2011076129A1 (en) Failure detection method and device for fcoe virtual link
US8611231B2 (en) Connectivity fault management for ethernet tree (E-Tree) type services
US9391842B2 (en) Self-configuring transport network
KR101383370B1 (en) transmitting system using of dying gasp
US20170279525A1 (en) Method, Apparatus, and System for Detecting Rogue Optical Network Unit
WO2014097665A1 (en) Master station, controller, slave station, optical communication system and failure monitoring method
JP5855282B2 (en) Master station device, control device, slave station device, optical communication system, and fault monitoring method
WO2011160382A1 (en) Method and system for selecting optical network unit management and maintenance manner
JP6287404B2 (en) Station side equipment
US20220224595A1 (en) Optical communication device and control method
WO2019091350A1 (en) Dual uplink method, optical network management device, and optical transmission system
JP2011142505A (en) Pon system, optical line terminal and optical network unit of the same, and oam link state determination method
JP6372345B2 (en) Station side communication device, passive optical network system, and re-registration processing method
JP6414406B2 (en) Station side device, home side device, PON system, and optical communication method
JP7463841B2 (en) CONTROL DEVICE, PON SYSTEM, AND COMMUNICATION METHOD
JP2013219581A (en) Extended oam system determination method in pon system, station side device and customer premises side device
JP6235644B2 (en) Subscriber line termination device, accommodation station device, and alarm transmission method
WO2020129613A1 (en) Monitoring device
CN104022893A (en) Configuration managing method for SNMP redirection with multiple subagents
KR101229641B1 (en) Method for node controling and ethernet system for the same
JP5475706B2 (en) Monitoring device, communication device, and network monitoring method
JP2016171431A (en) Communication system, communication device, and method for controlling communication device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014552952

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864961

Country of ref document: EP

Kind code of ref document: A1