WO2014094618A1 - Polypeptides having endoglucanase activity and polynucleotides encoding same - Google Patents

Polypeptides having endoglucanase activity and polynucleotides encoding same Download PDF

Info

Publication number
WO2014094618A1
WO2014094618A1 PCT/CN2013/089804 CN2013089804W WO2014094618A1 WO 2014094618 A1 WO2014094618 A1 WO 2014094618A1 CN 2013089804 W CN2013089804 W CN 2013089804W WO 2014094618 A1 WO2014094618 A1 WO 2014094618A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
seq
polynucleotide
sequence
cell
Prior art date
Application number
PCT/CN2013/089804
Other languages
French (fr)
Inventor
Lan Tang
Ye Liu
Weijian Lai
Xianzhi JIANG
Original Assignee
Novozymes A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novozymes A/S filed Critical Novozymes A/S
Publication of WO2014094618A1 publication Critical patent/WO2014094618A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase

Definitions

  • the present invention relates to polypeptides having endoglucanase activity, and catalytic domains, and cellulose binding domains, and polynucleotides encoding the polypeptides.
  • the invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides and catalytic domains.
  • Cellulose is a polymer of the simple sugar glucose covalently linked by beta-1 ,4-bonds. Many microorganisms produce enzymes such as cellulases that hydrolyze beta-linked glucans.
  • Cellulases include endoglucanases, cellobiohydrolases, and beta-glucosidases. Endoglucanases digest the cellulose polymer at random locations, opening it to attack by cellobiohydrolases.
  • Cellobiohydrolases sequentially release molecules of cellobiose from the ends of the cellulose polymer.
  • Cellobiose is a water-soluble beta-1 ,4-linked dimer of glucose. Beta-glucosidases hydrolyze cellobiose to glucose.
  • cellulases are used in denim finishing to create a fashionable stone washed appearance in denim cloths in a biostoning process. Cellulases are also used, for instance, to clean fuzz and prevent formation of pills on the surface of cotton garments.
  • a polypeptide from Pyrenophora triticirepentis having endoglucanase activity is disclosed as UNIPROT: B2W5C9.
  • a polypeptide from Corynascus heterothallicus having endoglucanase activity is disclosed as GENESEQP: AED55944.
  • the present invention provides polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides.
  • the present invention relates to isolated polypeptides having endoglucanase activity selected from the group consisting of: (a) a polypeptide having at least 80% sequence identity to the mature polypeptide of SEQ ID NO: 2, or a polypeptide having at least 92% sequence identity to the mature polypeptide of SEQ ID NO: 4;
  • the present invention also relates to isolated polypeptides comprising a catalytic domain selected from the group consisting of:
  • the present invention also relates to isolated polypeptides comprising a cellulose binding domain selected from the group consisting of: (a) a cellulose binding domain having at least 90% sequence identity to amino acids 265 to 302 of SEQ ID NO: 4;
  • a cellulose binding domain encoded by a polynucleotide that hybridizes under high, or very high stringency conditions with (i) nucleotides 907 to 1020 of SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii);
  • a cellulose binding domain encoded by a polynucleotide having at least 90% sequence identity to nucleotides 907 to 1020 of SEQ ID NO: 3 or the cDNA sequence thereof;
  • the present invention also relates to isolated polynucleotides encoding the polypeptides of the present invention; nucleic acid constructs; recombinant expression vectors; recombinant host cells comprising the polynucleotides; and methods of producing the polypeptides.
  • the present invention also relates to methods of treating textile with enzyme having endoglucanase activity of the present invention.
  • the method for manufacturing textile is provided.
  • the textile is manufactured from fabric to garment.
  • the method may be applied to a biostoning process to form localized variation of color density in the surface of a dyed cellulosic or cellulose-containing textile.
  • the dyed cellulosic or cellulose-containing fabric is a denim fabric, more preferably indigo dyed denim fabric.
  • the method may be applied to a biopolishing process.
  • the present invention also relates to a polynucleotide encoding a signal peptide comprising or consisting of amino acids 1 to 22 of SEQ ID NO: 2 or amino acids 1 to 22 of SEQ ID NO: 4, which is operably linked to a gene encoding a protein; nucleic acid constructs, expression vectors, and recombinant host cells comprising the polynucleotides; and methods of producing a protein.
  • Figure 1 shows DNA map of plasmid pGH45_Sf231 1.
  • Figure 2 shows DNA map of plasmid pGH45_Gp7682. Definitions
  • Endoglucanase means an endo-1 ,4-(1 ,3;1 ,4)-beta-D- glucan 4-glucanohydrolase (E.C. 3.2.1.4) that catalyzes endohydrolysis of 1 ,4-beta-D-glycosidic linkages in cellulose, cellulose derivatives (such as carboxymethyl cellulose and hydroxyethyl cellulose), lichenin, beta-1 ,4 bonds in mixed beta-1 ,3 glucans such as cereal beta-D-glucans or xyloglucans, and other plant material containing cellulosic components.
  • endoglucanase means an endo-1 ,4-(1 ,3;1 ,4)-beta-D- glucan 4-glucanohydrolase (E.C. 3.2.1.4) that catalyzes endohydrolysis of 1 ,4-beta-D-glycosidic linkages in cellulose, cellulose
  • Endoglucanase activity can be determined by measuring reduction in substrate viscosity or increase in reducing ends determined by a reducing sugar assay (Zhang et ai, 2006, Biotechnology Advances 24: 452- 481 ). Endoglucanase activity may be determined using carboxymethyl cellulose (CMC) as substrate according to the procedure of part VI in page 264 of Ghose, 1987, Pure and Appl. Chem. 59: 257-268.
  • CMC carboxymethyl cellulose
  • endoglucanase activity is determined according to the procedure described in the Examples.
  • the polypeptides of the present invention have at least 80%, at least 85%, at least 90%, at least 95%, or at least 100% of the endoglucanase activity of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4.
  • allelic variant means any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences.
  • An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.
  • Binding domain means the region of an enzyme that mediates binding of the enzyme to amorphous regions of a cellulose substrate.
  • the cellulose binding domain (CBD) is typically found either at the N-terminal or at the C-terminal extremity of an endoglucanase.
  • Catalytic domain means the region of an enzyme containing the catalytic machinery of the enzyme.
  • cDNA means a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic or prokaryotic cell. cDNA lacks intron sequences that may be present in the corresponding genomic DNA.
  • the initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.
  • Coding sequence means a polynucleotide, which directly specifies the amino acid sequence of a polypeptide.
  • the boundaries of the coding sequence are generally determined by an open reading frame, which begins with a start codon such as ATG, GTG, or TTG and ends with a stop codon such as TAA, TAG, or TGA.
  • the coding sequence may be a genomic DNA, cDNA, synthetic DNA, or a combination thereof.
  • Control sequences means nucleic acid sequences necessary for expression of a polynucleotide encoding a mature polypeptide of the present invention.
  • Each control sequence may be native (i.e., from the same gene) or foreign (i.e., from a different gene) to the polynucleotide encoding the polypeptide or native or foreign to each other.
  • control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator.
  • the control sequences include a promoter, and transcriptional and translational stop signals.
  • the control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding a polypeptide.
  • Expression includes any step involved in the production of a polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.
  • Expression vector means a linear or circular DNA molecule that comprises a polynucleotide encoding a polypeptide and is operably linked to control sequences that provide for its expression.
  • fragment means a polypeptide or a catalytic or endoglucanase binding domain having one or more (e.g., several) amino acids absent from the amino and/or carboxyl terminus of a mature polypeptide or domain; wherein the fragment has endoglucanase or cellulose binding activity.
  • a fragment contains at least 85%, 90%, or 95% of the number of amino acids of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4.
  • High stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 65°C.
  • Host cell means any cell type that is susceptible to transformation, transfection, transduction, or the like with a nucleic acid construct or expression vector comprising a polynucleotide of the present invention.
  • host cell encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.
  • Isolated means a substance in a form or environment that does not occur in nature.
  • isolated substances include (1 ) any non-naturally occurring substance, (2) any substance including, but not limited to, any enzyme, variant, nucleic acid, protein, peptide or cofactor, that is at least partially removed from one or more or all of the naturally occurring constituents with which it is associated in nature; (3) any substance modified by the hand of man relative to that substance found in nature; or (4) any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated ⁇ e.g., recombinant production in a host cell; multiple copies of a gene encoding the substance; and use of a stronger promoter than the promoter naturally associated with the gene encoding the substance).
  • Mature polypeptide means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc.
  • the mature polypeptide is amino acids 23 to 252 of SEQ ID NO: 2 or amino acids 23 to 302 of SEQ ID NO: 4 based on the SignalP 3.0 program (Bendtsen et al., 2004, J. Mol. Biol. 340: 783-795) that predicts amino acids 1 to 22 of SEQ ID NO: 2 and 1 to 22 of SEQ ID NO: 4 are signal peptides.
  • mature peptide begins with QKTGKTT corresponding to residues 23-29 of SEQ ID NO: 2, which is consistent with the prediction that amino acids 1 to 22 of SEQ ID NO: 2 are a signal peptide
  • mature peptide begins with VSGTGQT corresponding to residues 23-29 of SEQ ID NO: 4, which is consistent with the prediction that amino acids 1 to 22 of SEQ ID NO: 4 are a signal peptide.
  • a host cell may produce a mixture of two of more different mature polypeptides (i.e., with a different C-terminal and/or N-terminal amino acid) expressed by the same polynucleotide. It is also known in the art that different host cells process polypeptides differently, and thus, one host cell expressing a polynucleotide may produce a different mature polypeptide ⁇ e.g., having a different C-terminal and/or N-terminal amino acid) as compared to another host cell expressing the same polynucleotide.
  • a mature polypeptides contains up to 105%, 1 10%, and 1 15% of the number of amino acids of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4.
  • Mature polypeptide coding sequence means a polynucleotide that encodes a mature polypeptide having endoglucanase activity.
  • the mature polypeptide coding sequence is nucleotides 67 to 808 of SEQ ID NO: 1 or the cDNA sequence thereof based on the SignalP 3.0 program (Bendtsen et al., 2004, supra)] that predicts nucleotides 1 to 66 of SEQ ID NO: 1 encode a signal peptide.
  • the mature polypeptide coding sequence is nucleotides 67 to 1020 of SEQ ID NO: 3, or the cDNA sequence thereof based on the program SignalP 3.0 (Bendtsen et al., 2004, supra) that predicts nucleotides 1 to 66 of SEQ ID NO: 3 encode a signal peptide.
  • Medium stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 55°C.
  • Medium-high stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 60°C.
  • nucleic acid construct means a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or is modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature or which is synthetic, which comprises one or more control sequences.
  • Operably linked means a configuration in which a control sequence is placed at an appropriate position relative to the coding sequence of a polynucleotide such that the control sequence directs expression of the coding sequence.
  • Sequence identity The relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter "sequence identity”.
  • the sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277), preferably version 5.0.0 or later.
  • the parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.
  • the output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:
  • the sequence identity between two deoxyribonucleotide sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, supra) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, supra), preferably version 5.0.0 or later.
  • the parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix.
  • the output of Needle labeled "longest identity" is used as the percent identity and is calculated as follows:
  • Subsequence means a polynucleotide having one or more
  • variant means a polypeptide having endoglucanase activity comprising an alteration, i.e., a substitution, insertion, and/or deletion, at one or more ⁇ e.g., several) positions.
  • Very high stringency conditions means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 70°C.
  • the present invention relates to isolated polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, which have endoglucanase activity.
  • the present invention relates to isolated polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 4 of at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, which have endoglucanase activity.
  • the polypeptides differ by up to 10 amino acids, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10, from the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4.
  • a polypeptide of the present invention preferably comprises or consists of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, or an allelic variant thereof; or is a fragment thereof having endoglucanase activity.
  • the polypeptide comprises or consists of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4.
  • the polypeptide comprises or consists of amino acids 23 to 252 of SEQ ID NO: 2 or amino acids 23 to 302 of SEQ ID NO: 4.
  • the present invention relates to an isolated polypeptide having endoglucanase activity encoded by a polynucleotide that hybridizes under very low stringency conditions, low stringency conditions, medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii) (Sambrook et ai, 1989, Molecular Cloning, A Laboratory Manual, 2d edition, Cold Spring Harbor, New York).
  • the polynucleotide of SEQ ID NO: 1 or SEQ ID NO: 3, or a subsequence thereof, as well as the polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4 or a fragment thereof may be used to design nucleic acid probes to identify and clone DNA encoding polypeptides having endoglucanase activity from strains of different genera or species according to methods well known in the art.
  • such probes can be used for hybridization with the genomic DNA or cDNA of a cell of interest, following standard Southern blotting procedures, in order to identify and isolate the corresponding gene therein.
  • Such probes can be considerably shorter than the entire sequence, but should be at least 15, e.g., at least 25, at least 35, or at least 70 nucleotides in length.
  • the nucleic acid probe is at least 100 nucleotides in length, e.g., at least 200 nucleotides, at least 300 nucleotides, at least 400 nucleotides, at least 500 nucleotides, at least 600 nucleotides, at least 700 nucleotides, at least 800 nucleotides, or at least 900 nucleotides in length.
  • Both DNA and RNA probes can be used.
  • the probes are typically labeled for detecting the corresponding gene (for example, with 32 P, 3 H, 35 S, biotin, or avidin). Such probes are encompassed by the present invention.
  • a genomic DNA or cDNA library prepared from such other strains may be screened for
  • Genomic or other DNA from such other strains may be separated by agarose or polyacrylamide gel electrophoresis, or other separation techniques.
  • DNA from the libraries or the separated DNA may be transferred to and immobilized on nitrocellulose or other suitable carrier material.
  • the carrier material is used in a Southern blot.
  • hybridization indicates that the polynucleotide hybridizes to a labeled nucleic acid probe corresponding to (i) SEQ ID NO: 1 or SEQ ID NO: 3; (ii) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3; (iii) the cDNA sequence thereof; (iv) the full-length complement thereof; or (v) a subsequence thereof; under very low to very high stringency conditions.
  • Molecules to which the nucleic acid probe hybridizes under these conditions can be detected using, for example, X-ray film or any other detection means known in the art.
  • the nucleic acid probe is a polynucleotide that encodes the polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4; the mature polypeptide thereof; or a fragment thereof.
  • the nucleic acid probe is SEQ ID NO: 1 or SEQ ID NO: 3 or the cDNA sequence thereof.
  • the present invention relates to an isolated polypeptide having endoglucanase activity encoded by a polynucleotide having a sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 or the cDNA sequence thereof of at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
  • the present invention relates to an isolated polypeptide having endoglucanase activity encoded by a polynucleotide having a sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 3 or the cDNA sequence thereof of at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
  • the present invention relates to variants of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more ⁇ e.g., several) positions.
  • the number of amino acid substitutions, deletions and/or insertions introduced into the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4 is up to 10, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • amino acid changes may be of a minor nature, that is conservative amino acid substitutions or insertions that do not significantly affect the folding and/or activity of the protein; small deletions, typically of 1 -30 amino acids; small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker peptide of up to 20-25 residues; or a small extension that facilitates purification by changing net charge or another function, such as a poly-histidine tract, an antigenic epitope or a binding domain.
  • conservative substitutions are within the groups of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine, serine, threonine and methionine).
  • Amino acid substitutions that do not generally alter specific activity are known in the art and are described, for example, by H. Neurath and R.L. Hill, 1979, In, The Proteins, Academic Press, New York.
  • amino acid changes are of such a nature that the physico-chemical properties of the polypeptides are altered.
  • amino acid changes may improve the thermal stability of the polypeptide, alter the substrate specificity, change the pH optimum, and the like.
  • Essential amino acids in a polypeptide can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, 1989, Science 244: 1081-1085). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for endoglucanase activity to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., 1996, J. Biol. Chem. 271 : 4699-4708.
  • the active site of the enzyme or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction, or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., 1992, Science 255: 306-312; Smith et al., 1992, J. Mol. Biol. 224: 899-904; Wlodaver et al., 1992, FEBS Lett. 309: 59-64.
  • the identity of essential amino acids can also be inferred from an alignment with a related polypeptide.
  • Single or multiple amino acid substitutions, deletions, and/or insertions can be made and tested using known methods of mutagenesis, recombination, and/or shuffling, followed by a relevant screening procedure, such as those disclosed by Reidhaar-Olson and Sauer, 1988, Science 241 : 53-57; Bowie and Sauer, 1989, Proc. Natl. Acad. Sci. USA 86: 2152-2156; WO 95/17413; or WO 95/22625.
  • Other methods that can be used include error-prone PCR, phage display ⁇ e.g., Lowman et al., 1991 , Biochemistry 30: 10832-10837; U.S. Patent No. 5,223,409; WO 92/06204), and region-directed mutagenesis (Derbyshire et al., 1986, Gene 46: 145; Ner et al., 1988, DM4 7: 127).
  • Mutagenesis/shuffling methods can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides expressed by host cells (Ness et al., 1999, Nature Biotechnology 17: 893-896). Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly sequenced using standard methods in the art. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide.
  • the polypeptide may be a hybrid polypeptide in which a region of one polypeptide is fused at the N-terminus or the C-terminus of a region of another polypeptide.
  • the polypeptide may be a fusion polypeptide or cleavable fusion polypeptide in which another polypeptide is fused at the N-terminus or the C-terminus of the polypeptide of the present invention.
  • a fusion polypeptide is produced by fusing a polynucleotide encoding another polypeptide to a polynucleotide of the present invention.
  • Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fusion polypeptide is under control of the same promoter(s) and terminator.
  • Fusion polypeptides may also be constructed using intein technology in which fusion polypeptides are created post-translationally (Cooper et al., 1993, EMBO J. 12: 2575-2583; Dawson et al., 1994, Science 266: 776-779).
  • a fusion polypeptide can further comprise a cleavage site between the two polypeptides. Upon secretion of the fusion protein, the site is cleaved releasing the two polypeptides.
  • cleavage sites include, but are not limited to, the sites disclosed in Martin et al., 2003, J. Ind. Microbiol. Biotechnol. 3: 568-576; Svetina et al., 2000, J. Biotechnol. 76: 245-251 ; Rasmussen-Wilson et al., 1997, Appl. Environ. Microbiol.
  • a polypeptide having endoglucanase activity of the present invention may be obtained from microorganisms of any genus.
  • the term "obtained from” as used herein in connection with a given source shall mean that the polypeptide encoded by a polynucleotide is produced by the source or by a strain in which the polynucleotide from the source has been inserted.
  • the polypeptide obtained from a given source is secreted extracellularly.
  • the polypeptide may be a fungal polypeptide.
  • the polypeptide may be a filamentous fungal polypeptide such as a Sporormia polypeptide.
  • the polypeptide is a Sporormia fimetaria polypeptide.
  • the polypeptide may be a filamentous fungal polypeptide such as a Geomyces polypeptide.
  • the polypeptide is a Geomyces asperulatus, Geomyces auratus, Geomyces cretaceus, Geomyces destructans, Geomyces laevis, Geomyces pannorum, Geomyces pulvereus, Geomyces sulphureus, or Geomyces vinaceus polypeptide.
  • polypeptide is a Geomyces pannorum polypeptide.
  • the invention encompasses both the perfect and imperfect states, and other taxonomic equivalents, e.g., anamorphs, regardless of the species name by which they are known. Those skilled in the art will readily recognize the identity of appropriate equivalents.
  • ATCC American Type Culture Collection
  • DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
  • CBS Centraalbureau Voor Schimmelcultures
  • NRRL Northern Regional Research Center
  • the polypeptide may be identified and obtained from other sources including microorganisms isolated from nature ⁇ e.g., soil, composts, water, etc.) or DNA samples obtained directly from natural materials ⁇ e.g., soil, composts, water, etc.) using the above- mentioned probes. Techniques for isolating microorganisms and DNA directly from natural habitats are well known in the art. A polynucleotide encoding the polypeptide may then be obtained by similarly screening a genomic DNA or cDNA library of another microorganism or mixed DNA sample.
  • the polynucleotide can be isolated or cloned by utilizing techniques that are known to those of ordinary skill in the art (see, e.g., Sambrook et al., 1989, supra). Catalytic Domains
  • the present invention also relates to catalytic domains having a sequence identity to amino acids 23 to 227 of SEQ ID NO: 2 of at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
  • the catalytic domains comprise amino acid sequences that differ by up to 10 amino acids, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10, from amino acids 23 to 227 of SEQ ID NO: 2.
  • the present invention also relates to catalytic domains having a sequence identity to amino acids 26 to 231 of SEQ ID NO: 4 of at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
  • the catalytic domains comprise amino acid sequences that differ by up to 10 amino acids, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10, from amino acids 26 to 231 of SEQ ID NO: 4.
  • the catalytic domain preferably comprises or consists of amino acids 23 to 227 of SEQ ID NO: 2 or an allelic variant thereof; or is a fragment thereof having endoglucanase activity.
  • the catalytic domain preferably comprises or consists of amino acids 26 to 231 of SEQ
  • ID NO: 4 or an allelic variant thereof; or is a fragment thereof having endoglucanase activity.
  • the present invention also relates to catalytic domains encoded by polynucleotides that hybridize under very low stringency conditions, low stringency conditions, medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions (as defined above) with (i) the nucleotides 67 to 733 of SEQ ID NO: 1 or the nucleotides 76 to 807 of SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii) (Sambrook et al., 1989, supra).
  • the present invention also relates to catalytic domains encoded by polynucleotides having a sequence identity to nucleotides 67 to 733 of SEQ ID NO: 1 or the cDNA sequence thereof of at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
  • the present invention also relates to catalytic domains encoded by polynucleotides having a sequence identity to nucleotides 76 to 807 of SEQ ID NO: 3 or the cDNA sequence thereof at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
  • the polynucleotide encoding the catalytic domain preferably comprises or consists of nucleotides 67 to 733 of SEQ ID NO: 1 .
  • the polynucleotide encoding the catalytic domain preferably comprises or consists of nucleotides 76 to 807 of SEQ ID NO: 3.
  • the present invention also relates to catalytic domain variants of amino acids 23 to 227 of SEQ ID NO: 2 or amino acids 26 to 231 of SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more ⁇ e.g., several) positions.
  • the number of amino acid substitutions, deletions and/or insertions introduced into the sequence of amino acids 23 to 227 of SEQ ID NO: 2 or amino acids 26 to 231 of SEQ ID NO: 4 is up to 10, e.g., 1 , 2, 3, 4, 5, 6, 8, 9, or 10. Binding Domains
  • the present invention also relates to cellulose binding domains having a sequence identity to amino acids 265 to 302 of SEQ ID NO: 4 of at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
  • the cellulose binding domains comprise amino acid sequences that differ by up to 10 amino acids, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10, from amino acids 265 to 302 of SEQ ID NO: 4.
  • the cellulose binding domain preferably comprises or consists of amino acids 265 to 302 of SEQ ID NO: 4 or an allelic variant thereof; or is a fragment thereof having cellulose binding activity.
  • the present invention also relates to cellulose binding domains encoded by polynucleotides that hybridize under medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions (as defined above) with (i) the nucleotides 907 to 1020 of SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii) (Sambrook et al., 1989, supra).
  • the present invention also relates to cellulose binding domains encoded by polynucleotides having a sequence identity to nucleotides 907 to 1020 of SEQ ID NO: 3 of at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
  • the present invention also relates to cellulose binding domain variants of amino acids 265 to 302 of SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more ⁇ e.g., several) positions.
  • the number of amino acid substitutions, deletions and/or insertions introduced into the sequence of amino acids 265 to 302 of SEQ ID NO: 4 is up to 10, e.g., 1 , 2, 3, 4, 5, 6, 8, 9, or 10.
  • a catalytic domain operably linked to the cellulose binding domain may be from a hydrolase, isomerase, ligase, lyase, oxidoreductase, or transferase, e.g., an aminopeptidase, amylase, carbohydrase, carboxypeptidase, catalase, cellobiohydrolase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, endoglucanase, esterase, alpha-galactosidase, beta-galactosidase, glucoamylase, alpha-glucosidase, beta-glucosidase, invertase, laccase, lipase, mannosidase, mutanase, oxidase, pectinolytic enzyme, peroxidase, phytase, poly
  • the present invention also relates to isolated polynucleotides encoding a polypeptide, a catalytic domain, or cellulose binding domain of the present invention, as described herein.
  • the techniques used to isolate or clone a polynucleotide are known in the art and include isolation from genomic DNA or cDNA, or a combination thereof.
  • the cloning of the polynucleotides from genomic DNA can be effected, e.g., by using the well known polymerase chain reaction (PCR) or antibody screening of expression libraries to detect cloned DNA fragments with shared structural features. See, e.g., Innis et al., 1990, PCR: A Guide to Methods and Application, Academic Press, New York.
  • Other nucleic acid amplification procedures such as ligase chain reaction (LCR), ligation activated transcription (LAT) and polynucleotide-based amplification (NASBA) may be used.
  • LCR ligase chain reaction
  • LAT ligation activated transcription
  • NASBA polynucleotide-based amplification
  • the polynucleotides may be cloned from a strain of Sporormia, or a related organism and thus, for example, may be an allelic or species variant of the polypeptide encoding region of the polynucleotide.
  • Modification of a polynucleotide encoding a polypeptide of the present invention may be necessary for synthesizing polypeptides substantially similar to the polypeptide.
  • the term "substantially similar" to the polypeptide refers to non-naturally occurring forms of the polypeptide.
  • These polypeptides may differ in some engineered way from the polypeptide isolated from its native source, e.g., variants that differ in specific activity, thermostability, pH optimum, or the like.
  • the variants may be constructed on the basis of the polynucleotide presented as the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO:3 or the cDNA sequence thereof, e.g., a subsequence thereof, and/or by introduction of nucleotide substitutions that do not result in a change in the amino acid sequence of the polypeptide, but which correspond to the codon usage of the host organism intended for production of the enzyme, or by introduction of nucleotide substitutions that may give rise to a different amino acid sequence.
  • nucleotide substitution see, e.g., Ford et a/., 1991 , Protein Expression and Purification 2: 95-107.
  • the present invention also relates to nucleic acid constructs comprising a polynucleotide of the present invention operably linked to one or more control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.
  • the polynucleotide may be manipulated in a variety of ways to provide for expression of the polypeptide. Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art.
  • the control sequence may be a promoter, a polynucleotide that is recognized by a host cell for expression of a polynucleotide encoding a polypeptide of the present invention.
  • the promoter contains transcriptional control sequences that mediate the expression of the polypeptide.
  • the promoter may be any polynucleotide that shows transcriptional activity in the host cell including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.
  • suitable promoters for directing transcription of the nucleic acid constructs of the present invention in a bacterial host cell are the promoters obtained from the Bacillus amyloliquefaciens alpha-amylase gene (amyQ), Bacillus licheniformis alpha-amylase gene ⁇ amyL), Bacillus licheniformis penicillinase gene ⁇ penP), Bacillus stearothermophilus maltogenic amylase gene ⁇ amyM), Bacillus subtilis levansucrase gene ⁇ sacB), Bacillus subtilis xylA and xylB genes, Bacillus thuringiensis crylllA gene (Agaisse and Lereclus, 1994, Molecular Microbiology 13: 97-107), E.
  • E. coli trc promoter (Egon et al., 1988, Gene 69: 301 -315), Streptomyces coelicolor agarase gene ⁇ dagA), and prokaryotic beta- lactamase gene (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. USA 75: 3727-3731 ), as well as the tac promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. USA 80: 21-25).
  • promoters for directing transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus nidulans acetamidase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase ⁇ glaA), Aspergillus oryzae TAKA amylase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Fusarium oxysporum trypsin-like protease (WO 96/00787), Fusarium venenatum amyloglucosidase (WO 00/56900), Fusarium venenatum Daria (WO 00/56900), Fusarium venenatum Quinn
  • useful promoters are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1 ), Saccharomyces cerevisiae galactokinase (GAL1 ), Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH1 , ADH2/GAP), Saccharomyces cerevisiae triose phosphate isomerase (TPI), Saccharomyces cerevisiae metallothionein (CUP1 ), and Saccharomyces cerevisiae 3-phosphoglycerate kinase.
  • ENO-1 Saccharomyces cerevisiae enolase
  • GAL1 Saccharomyces cerevisiae galactokinase
  • ADH1 alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase
  • TPI Saccharomyces cerevisia
  • the control sequence may also be a transcription terminator, which is recognized by a host cell to terminate transcription.
  • the terminator is operably linked to the 3'-terminus of the polynucleotide encoding the polypeptide. Any terminator that is functional in the host cell may be used in the present invention.
  • Preferred terminators for bacterial host cells are obtained from the genes for Bacillus clausii alkaline protease ⁇ aprH), Bacillus licheniformis alpha-amylase (amyL), and Escherichia coli ribosomal RNA (rrnB).
  • Preferred terminators for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans acetamidase, Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase, Aspergillus oryzae TAKA amylase, Fusarium oxysporum trypsin-like protease, Trichoderma reesei beta-glucosidase, Trichoderma reesei cellobiohydrolase I, Trichoderma reesei cellobiohydrolase II, Trichoderma reesei endoglucanase I, Trichoderma reesei endoglucanase II, Trichoderma reesei endoglucanase III, Trichoderma reesei endoglucanase V, Trichoderma ree
  • Preferred terminators for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase, Saccharomyces cerevisiae cytochrome C (CYC1 ), and Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase.
  • Other useful terminators for yeast host cells are described by Romanos et al., 1992, supra.
  • control sequence may also be an mRNA stabilizer region downstream of a promoter and upstream of the coding sequence of a gene which increases expression of the gene.
  • the control sequence may also be a leader, a nontranslated region of an mRNA that is important for translation by the host cell.
  • the leader is operably linked to the 5'-terminus of the polynucleotide encoding the polypeptide. Any leader that is functional in the host cell may be used.
  • Preferred leaders for filamentous fungal host cells are obtained from the genes for
  • Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase.
  • Suitable leaders for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1 ), Saccharomyces cerevisiae 3-phosphoglycerate kinase, Saccharomyces cerevisiae alpha-factor, and Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).
  • ENO-1 Saccharomyces cerevisiae enolase
  • Saccharomyces cerevisiae 3-phosphoglycerate kinase Saccharomyces cerevisiae alpha-factor
  • Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase ADH2/GAP
  • the control sequence may also be a polyadenylation sequence, a sequence operably linked to the 3'-terminus of the polynucleotide and, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell may be used.
  • Preferred polyadenylation sequences for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase Aspergillus oryzae TAKA amylase, and Fusarium oxysporum trypsin-like protease.
  • the control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a polypeptide and directs the polypeptide into the cell's secretory pathway.
  • the 5'-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding sequence naturally linked in translation reading frame with the segment of the coding sequence that encodes the polypeptide.
  • the 5'-end of the coding sequence may contain a signal peptide coding sequence that is foreign to the coding sequence.
  • a foreign signal peptide coding sequence may be required where the coding sequence does not naturally contain a signal peptide coding sequence.
  • a foreign signal peptide coding sequence may simply replace the natural signal peptide coding sequence in order to enhance secretion of the polypeptide.
  • any signal peptide coding sequence that directs the expressed polypeptide into the secretory pathway of a host cell may be used.
  • Effective signal peptide coding sequences for bacterial host cells are the signal peptide coding sequences obtained from the genes for Bacillus NCIB 1 1837 maltogenic amylase, Bacillus licheniformis subtilisin, Bacillus licheniformis beta-lactamase, Bacillus stearothermophilus alpha-amylase, Bacillus stearothermophilus neutral proteases ⁇ nprT, nprS, nprM), and Bacillus subtilis prsA. Further signal peptides are described by Simonen and Palva, 1993, Microbiological Reviews 57: 109-137.
  • Effective signal peptide coding sequences for filamentous fungal host cells are the signal peptide coding sequences obtained from the genes for Aspergillus niger neutral amylase, Aspergillus niger glucoamylase, Aspergillus oryzae TAKA amylase, Humicola insolens cellulase, Humicola insolens endoglucanase V, Humicola lanuginosa lipase, and Rhizomucor miehei aspartic proteinase.
  • Useful signal peptides for yeast host cells are obtained from the genes for Saccharomyces cerevisiae alpha-factor and Saccharomyces cerevisiae invertase. Other useful signal peptide coding sequences are described by Romanos et al., 1992, supra.
  • the control sequence may also be a propeptide coding sequence that encodes a propeptide positioned at the N-terminus of a polypeptide.
  • the resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases).
  • a propolypeptide is generally inactive and can be converted to an active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide.
  • the propeptide coding sequence may be obtained from the genes for Bacillus subtilis alkaline protease ⁇ aprE), Bacillus subtilis neutral protease ⁇ nprT), Myceliophthora thermophila laccase (WO 95/33836), Rhizomucor miehei aspartic proteinase, and Saccharomyces cerevisiae alpha-factor.
  • the propeptide sequence is positioned next to the N-terminus of a polypeptide and the signal peptide sequence is positioned next to the N-terminus of the propeptide sequence.
  • regulatory sequences that regulate expression of the polypeptide relative to the growth of the host cell.
  • regulatory sequences are those that cause expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound.
  • Regulatory sequences in prokaryotic systems include the lac, tac, and trp operator systems.
  • yeast the ADH2 system or GAL1 system may be used.
  • the Aspergillus niger glucoamylase promoter In filamentous fungi, the Aspergillus niger glucoamylase promoter, Aspergillus oryzae TAKA alpha-amylase promoter, and Aspergillus oryzae glucoamylase promoter, Trichoderma reesei cellobiohydrolase I promoter, and Trichoderma reesei cellobiohydrolase II promoter may be used.
  • Other examples of regulatory sequences are those that allow for gene amplification. In eukaryotic systems, these regulatory sequences include the dihydrofolate reductase gene that is amplified in the presence of methotrexate, and the metallothionein genes that are amplified with heavy metals. In these cases, the polynucleotide encoding the polypeptide would be operably linked to the regulatory sequence.
  • the present invention also relates to recombinant expression vectors comprising a polynucleotide of the present invention, a promoter, and transcriptional and translational stop signals.
  • the various nucleotide and control sequences may be joined together to produce a recombinant expression vector that may include one or more convenient restriction sites to allow for insertion or substitution of the polynucleotide encoding the polypeptide at such sites.
  • the polynucleotide may be expressed by inserting the polynucleotide or a nucleic acid construct comprising the polynucleotide into an appropriate vector for expression.
  • the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.
  • the recombinant expression vector may be any vector (e.g., a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about expression of the polynucleotide.
  • the choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced.
  • the vector may be a linear or closed circular plasmid.
  • the vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome.
  • the vector may contain any means for assuring self-replication.
  • the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated.
  • a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon may be used.
  • the vector preferably contains one or more selectable markers that permit easy selection of transformed, transfected, transduced, or the like cells.
  • a selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.
  • bacterial selectable markers are Bacillus licheniformis or Bacillus subtilis dal genes, or markers that confer antibiotic resistance such as ampicillin, chloramphenicol, kanamycin, neomycin, spectinomycin, or tetracycline resistance.
  • Suitable markers for yeast host cells include, but are not limited to, ADE2, HIS3, LEU2, LYS2, MET3, TRP1 , and URA3.
  • Selectable markers for use in a filamentous fungal host cell include, but are not limited to, adeA (phosphoribosylaminoimidazole-succinocarboxamide synthase), adeB (phosphoribosyl- aminoimidazole synthase), amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenyltransferase), and trpC (anthranilate synthase), as well as equivalents thereof.
  • adeA phosphoribosylaminoimidazole-succinocarboxamide synthase
  • adeB phospho
  • the selectable marker may be a dual selectable marker system as described in WO 2010/039889. In one aspect, the dual selectable marker is a hph-tk dual selectable marker system.
  • the vector preferably contains an element(s) that permits integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.
  • the vector may rely on the polynucleotide's sequence encoding the polypeptide or any other element of the vector for integration into the genome by homologous or non-homologous recombination.
  • the vector may contain additional polynucleotides for directing integration by homologous recombination into the genome of the host cell at a precise location(s) in the chromosome(s).
  • the integrational elements should contain a sufficient number of nucleic acids, such as 100 to 10,000 base pairs, 400 to 10,000 base pairs, and 800 to 10,000 base pairs, which have a high degree of sequence identity to the corresponding target sequence to enhance the probability of homologous recombination.
  • the integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding polynucleotides. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.
  • the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question.
  • the origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell.
  • the term "origin of replication" or "plasmid replicator” means a polynucleotide that enables a plasmid or vector to replicate in vivo.
  • bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, and pACYC184 permitting replication in E. coli, and pUB1 10, pE194, pTA1060, and ⁇ permitting replication in Bacillus.
  • origins of replication for use in a yeast host cell are the 2 micron origin of replication, ARS1 , ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6.
  • AMA1 and ANSI examples of origins of replication useful in a filamentous fungal cell are AMA1 and ANSI (Gems et al., 1991 , Gene 98: 61 -67; Cullen et al., 1987, Nucleic Acids Res. 15: 9163- 9175; WO 00/24883). Isolation of the AMA1 gene and construction of plasmids or vectors comprising the gene can be accomplished according to the methods disclosed in WO 00/24883.
  • More than one copy of a polynucleotide of the present invention may be inserted into a host cell to increase production of a polypeptide.
  • An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.
  • the present invention also relates to recombinant host cells, comprising a polynucleotide of the present invention operably linked to one or more control sequences that direct the production of a polypeptide of the present invention.
  • a construct or vector comprising a polynucleotide is introduced into a host cell so that the construct or vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier.
  • the term "host cell” encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The choice of a host cell will to a large extent depend upon the gene encoding the polypeptide and its source.
  • the host cell may be any cell useful in the recombinant production of a polypeptide of the present invention, e.g., a prokaryote or a eukaryote.
  • the prokaryotic host cell may be any Gram-positive or Gram-negative bacterium.
  • Gram- positive bacteria include, but are not limited to, Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus, and Streptomyces.
  • Gram-negative bacteria include, but are not limited to, Campylobacter, E. coli, Flavobacterium, Fusobacterium, Helicobacter, llyobacter, Neisseria, Pseudomonas, Salmonella, and Ureaplasma.
  • the bacterial host cell may be any Bacillus cell including, but not limited to, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis, and Bacillus thuringiensis cells.
  • the bacterial host cell may also be any Streptococcus cell including, but not limited to, Streptococcus equisimilis, Streptococcus pyogenes, Streptococcus uberis, and Streptococcus equi subsp. Zooepidemicus cells.
  • the bacterial host cell may also be any Streptomyces cell including, but not limited to,
  • Streptomyces achromogenes Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces griseus, and Streptomyces lividans cells.
  • the introduction of DNA into a Bacillus cell may be effected by protoplast transformation (see, e.g., Chang and Cohen, 1979, Mol. Gen. Genet. 168: 1 1 1-1 15), competent cell transformation (see, e.g., Young and Spizizen, 1961 , J. Bacteriol. 81 : 823-829, or Dubnau and Davidoff-Abelson, 1971 , J. Mol. Biol.
  • the introduction of DNA into an E. coli cell may be effected by protoplast transformation (see, e.g., Hanahan, 1983, J. Mol. Biol. 166: 557-580) or electroporation (see, e.g., Dower et al, 1988, Nucleic Acids Res. 16: 6127-6145).
  • the introduction of DNA into a Streptomyces cell may be effected by protoplast transformation, electroporation (see, e.g., Gong et al., 2004, Folia Microbiol. ⁇ Praha) 49: 399-405), conjugation (see, e.g., Mazodier et al., 1989, J. Bacteriol. 171 : 3583-3585), or transduction (see, e.g., Burke et al., 2001 , Proc. Natl. Acad. Sci. USA 98: 6289-6294).
  • the introduction of DNA into a Pseudomonas cell may be effected by electroporation (see, e.g., Choi et al., 2006, J. Microbiol. Methods 64: 391-397) or conjugation (see, e.g., Pinedo and Smets, 2005, Appl. Environ. Microbiol. 71 : 51-57).
  • the introduction of DNA into a Streptococcus cell may be effected by natural competence (see, e.g., Perry and Kuramitsu, 1981 , Infect. Immun.
  • the host cell may also be a eukaryote, such as a mammalian, insect, plant, or fungal cell.
  • the host cell may be a fungal cell.
  • "Fungi” as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota as well as the Oomycota and all mitosporic fungi (as defined by Hawksworth et al., In, Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK).
  • the fungal host cell may be a yeast cell.
  • yeast as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfecti (Blastomycetes). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, Passmore, and Davenport, editors, Soc. App. Bacteriol. Symposium Series No. 9, 1980).
  • the yeast host cell may be a Candida, Hansenula, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia cell, such as a Kluyveromyces lactis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis, Saccharomyces oviformis, or Yarrowia lipolytica cell.
  • the fungal host cell may be a filamentous fungal cell.
  • “Filamentous fungi” include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra).
  • the filamentous fungi are generally characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides.
  • Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic.
  • vegetative growth by yeasts such as Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may be fermentative.
  • the filamentous fungal host cell may be an Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysosporium, Coprinus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Humicola, Magnaporthe, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, or Trichoderma cell.
  • the filamentous fungal host cell may be an Aspergillus awamori, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Chrysosporium inops, Chrysosporium keratinophilum, Chrysosporium lucknowense, Chrysosporium merdarium, Chrysosporium pannicola, Chrysosporium queenslandicum, Chrysosporium tropicum, Chrysosporium zona
  • Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known per se. Suitable procedures for transformation of Aspergillus and Trichoderma host cells are described in EP 238023, Yelton et al., 1984, Proc. Natl. Acad. Sci. USA 81 : 1470-1474, and Christensen et al., 1988, Bio/Technology 6: 1419-1422. Suitable methods for transforming Fusarium species are described by Malardier et al., 1989, Gene 78: 147-156, and WO 96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J.N.
  • the present invention also relates to methods of producing a polypeptide of the present invention, comprising (a) cultivating a cell, which in its wild-type form produces the polypeptide, under conditions conducive for production of the polypeptide; and optionally, (b) recovering the polypeptide.
  • the cell is a Sporormia cell.
  • the cell is a Sporormia fimetaria cell.
  • the present invention also relates to methods of producing a polypeptide of the present invention, comprising (a) cultivating a recombinant host cell of the present invention under conditions conducive for production of the polypeptide; and optionally, (b) recovering the polypeptide.
  • the host cells are cultivated in a nutrient medium suitable for production of the polypeptide using methods known in the art.
  • the cells may be cultivated by shake flask cultivation, or small-scale or large-scale fermentation (including continuous, batch, fed- batch, or solid state fermentations) in laboratory or industrial fermentors in a suitable medium and under conditions allowing the polypeptide to be expressed and/or isolated.
  • the cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions ⁇ e.g., in catalogues of the American Type Culture Collection). If the polypeptide is secreted into the nutrient medium, the polypeptide can be recovered directly from the medium. If the polypeptide is not secreted, it can be recovered from cell lysates.
  • the polypeptide may be detected using methods known in the art that are specific for the polypeptides. These detection methods include, but are not limited to, use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, an enzyme assay may be used to determine the activity of the polypeptide.
  • the polypeptide may be recovered using methods known in the art.
  • the polypeptide may be recovered from the nutrient medium by conventional procedures including, but not limited to, collection, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.
  • a fermentation broth comprising the polypeptide is recovered.
  • the polypeptide may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures ⁇ e.g., preparative isoelectric focusing), differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, Janson and Ryden, editors, VCH Publishers, New York, 1989) to obtain substantially pure polypeptides.
  • chromatography e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion
  • electrophoretic procedures ⁇ e.g., preparative isoelectric focusing
  • differential solubility e.g., ammonium sulfate precipitation
  • SDS-PAGE or extraction
  • polypeptide is not recovered, but rather a host cell of the present invention expressing the polypeptide is used as a source of the polypeptide.
  • the present invention also relates to isolated plants, e.g., a transgenic plant, plant part, or plant cell, comprising a polynucleotide of the present invention so as to express and produce a polypeptide or domain in recoverable quantities.
  • the polypeptide or domain may be recovered from the plant or plant part.
  • the plant or plant part containing the polypeptide or domain may be used as such for improving the quality of a food or feed, e.g., improving nutritional value, palatability, and rheological properties, or to destroy an antinutritive factor.
  • the transgenic plant can be dicotyledonous (a dicot) or monocotyledonous (a monocot).
  • monocot plants are grasses, such as meadow grass (blue grass, Poa), forage grass such as Festuca, Lolium, temperate grass, such as Agrostis, and cereals, e.g., wheat, oats, rye, barley, rice, sorghum, and maize (corn).
  • dicot plants are tobacco, legumes, such as lupins, potato, sugar beet, pea, bean and soybean, and cruciferous plants (family Brassicaceae), such as cauliflower, rape seed, and the closely related model organism Arabidopsis thaliana.
  • plant parts are stem, callus, leaves, root, fruits, seeds, and tubers as well as the individual tissues comprising these parts, e.g., epidermis, mesophyll, parenchyme, vascular tissues, meristems.
  • Specific plant cell compartments such as chloroplasts, apoplasts, mitochondria, vacuoles, peroxisomes and cytoplasm are also considered to be a plant part.
  • any plant cell whatever the tissue origin, is considered to be a plant part.
  • plant parts such as specific tissues and cells isolated to facilitate the utilization of the invention are also considered plant parts, e.g., embryos, endosperms, aleurone and seed coats.
  • the transgenic plant or plant cell expressing the polypeptide or domain may be constructed in accordance with methods known in the art.
  • the plant or plant cell is constructed by incorporating one or more expression constructs encoding the polypeptide or domain into the plant host genome or chloroplast genome and propagating the resulting modified plant or plant cell into a transgenic plant or plant cell.
  • the expression construct is conveniently a nucleic acid construct that comprises a polynucleotide encoding a polypeptide or domain operably linked with appropriate regulatory sequences required for expression of the polynucleotide in the plant or plant part of choice.
  • the expression construct may comprise a selectable marker useful for identifying plant cells into which the expression construct has been integrated and DNA sequences necessary for introduction of the construct into the plant in question (the latter depends on the DNA introduction method to be used).
  • regulatory sequences such as promoter and terminator sequences and optionally signal or transit sequences
  • expression of the gene encoding a polypeptide or domain may be constitutive or inducible, or may be developmental, stage or tissue specific, and the gene product may be targeted to a specific tissue or plant part such as seeds or leaves.
  • Regulatory sequences are, for example, described by Tague et al., 1988, Plant Physiology 86: 506.
  • the 35S-CaMV, the maize ubiquitin 1 , or the rice actin 1 promoter may be used (Franck et al., 1980, Cell 2 285-294; Christensen et al., 1992, Plant Mol. Biol. 18: 675-689; Zhang et al., 1991 , Plant Cell 3: 1 155-1 165).
  • Organ-specific promoters may be, for example, a promoter from storage sink tissues such as seeds, potato tubers, and fruits (Edwards and Coruzzi, 1990, Ann. Rev. Genet. 24: 275-303), or from metabolic sink tissues such as meristems (Ito et al., 1994, Plant Mol. Biol.
  • a seed specific promoter such as the glutelin, prolamin, globulin, or albumin promoter from rice (Wu et al., 1998, Plant Cell Physiol. 39: 885-889), a Vicia faba promoter from the legumin B4 and the unknown seed protein gene from Vicia faba (Conrad et al., 1998, J. Plant Physiol. 152: 708- 71 1 ), a promoter from a seed oil body protein (Chen et al., 1998, Plant Cell Physiol.
  • the storage protein napA promoter from Brassica napus, or any other seed specific promoter known in the art, e.g., as described in WO 91/14772.
  • the promoter may be a leaf specific promoter such as the rbcs promoter from rice or tomato (Kyozuka et al., 1993, Plant Physiol. 102: 991 -1000), the chlorella virus adenine methyltransferase gene promoter (Mitra and Higgins, 1994, Plant Mol. Biol. 26: 85-93), the aldP gene promoter from rice (Kagaya et al., 1995, Mol. Gen. Genet.
  • the promoter may be induced by abiotic treatments such as temperature, drought, or alterations in salinity or induced by exogenously applied substances that activate the promoter, e.g., ethanol, oestrogens, plant hormones such as ethylene, abscisic acid, and gibberellic acid, and heavy metals.
  • a promoter enhancer element may also be used to achieve higher expression of a polypeptide or domain in the plant.
  • the promoter enhancer element may be an intron that is placed between the promoter and the polynucleotide encoding a polypeptide or domain.
  • the selectable marker gene and any other parts of the expression construct may be chosen from those available in the art.
  • the nucleic acid construct is incorporated into the plant genome according to conventional techniques known in the art, including Agrobacterium-medlated transformation, virus-mediated transformation, microinjection, particle bombardment, biolistic transformation, and electroporation (Gasser et al., 1990, Science 244: 1293; Potrykus, 1990, Bio/Technology 8: 535; Shimamoto et al., 1989, Nature 338: 274).
  • Agrobacterium tumefaciens- mediated gene transfer is a method for generating transgenic dicots (for a review, see Hooykas and Schilperoort, 1992, Plant Mol. Biol. 19: 15-38) and for transforming monocots, although other transformation methods may be used for these plants.
  • a method for generating transgenic monocots is particle bombardment (microscopic gold or tungsten particles coated with the transforming DNA) of embryonic calli or developing embryos (Christou, 1992, Plant J. 2: 275-281 ; Shimamoto, 1994, Curr. Opin. Biotechnol. 5: 158-162; Vasil et al., 1992, Bio/Technology 10: 667-674).
  • the transformants having incorporated the expression construct are selected and regenerated into whole plants according to methods well known in the art.
  • the transformation procedure is designed for the selective elimination of selection genes either during regeneration or in the following generations by using, for example, co- transformation with two separate T-DNA constructs or site specific excision of the selection gene by a specific recombinase.
  • transgenic plants may be made by crossing a plant having the construct to a second plant lacking the construct.
  • a construct encoding a polypeptide or domain can be introduced into a particular plant variety by crossing, without the need for ever directly transforming a plant of that given variety. Therefore, the present invention encompasses not only a plant directly regenerated from cells which have been transformed in accordance with the present invention, but also the progeny of such plants.
  • progeny may refer to the offspring of any generation of a parent plant prepared in accordance with the present invention. Such progeny may include a DNA construct prepared in accordance with the present invention.
  • Crossing results in the introduction of a transgene into a plant line by cross pollinating a starting line with a donor plant line.
  • Non-limiting examples of such steps are described in U.S. Patent No. 7, 151 ,204.
  • Plants may be generated through a process of backcross conversion.
  • plants include plants referred to as a backcross converted genotype, line, inbred, or hybrid.
  • Genetic markers may be used to assist in the introgression of one or more transgenes of the invention from one genetic background into another. Marker assisted selection offers advantages relative to conventional breeding in that it can be used to avoid errors caused by phenotypic variations. Further, genetic markers may provide data regarding the relative degree of elite germplasm in the individual progeny of a particular cross. For example, when a plant with a desired trait which otherwise has a non-agronomically desirable genetic background is crossed to an elite parent, genetic markers may be used to select progeny which not only possess the trait of interest, but also have a relatively large proportion of the desired germplasm. In this way, the number of generations required to introgress one or more traits into a particular genetic background is minimized.
  • the present invention also relates to methods of producing a polypeptide or domain of the present invention comprising (a) cultivating a transgenic plant or a plant cell comprising a polynucleotide encoding the polypeptide or domain under conditions conducive for production of the polypeptide or domain; and (b) recovering the polypeptide or domain.
  • the present invention also relates to methods of producing a mutant of a parent cell, which comprises disrupting or deleting a polynucleotide, or a portion thereof, encoding a polypeptide of the present invention, which results in the mutant cell producing less of the polypeptide than the parent cell when cultivated under the same conditions.
  • the mutant cell may be constructed by reducing or eliminating expression of the polynucleotide using methods well known in the art, for example, insertions, disruptions, replacements, or deletions.
  • the polynucleotide is inactivated.
  • the polynucleotide to be modified or inactivated may be, for example, the coding region or a part thereof essential for activity, or a regulatory element required for expression of the coding region.
  • An example of such a regulatory or control sequence may be a promoter sequence or a functional part thereof, i.e., a part that is sufficient for affecting expression of the polynucleotide.
  • Other control sequences for possible modification include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, signal peptide sequence, transcription terminator, and transcriptional activator.
  • Modification or inactivation of the polynucleotide may be performed by subjecting the parent cell to mutagenesis and selecting for mutant cells in which expression of the polynucleotide has been reduced or eliminated.
  • the mutagenesis which may be specific or random, may be performed, for example, by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the mutagenesis may be performed by use of any combination of these mutagenizing agents.
  • Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues.
  • UV ultraviolet
  • MNNG N-methyl-N'-nitro-N-nitrosoguanidine
  • EMS ethyl methane sulphonate
  • sodium bisulphite formic acid
  • nucleotide analogues examples include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide ana
  • the mutagenesis is typically performed by incubating the parent cell to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions, and screening and/or selecting for mutant cells exhibiting reduced or no expression of the gene.
  • Modification or inactivation of the polynucleotide may be accomplished by insertion, substitution, or deletion of one or more nucleotides in the gene or a regulatory element required for transcription or translation thereof.
  • nucleotides may be inserted or removed so as to result in the introduction of a stop codon, the removal of the start codon, or a change in the open reading frame.
  • modification or inactivation may be accomplished by site-directed mutagenesis or PCR generated mutagenesis in accordance with methods known in the art.
  • the modification may be performed in vivo, i.e., directly on the cell expressing the polynucleotide to be modified, it is preferred that the modification be performed in vitro as exemplified below.
  • An example of a convenient way to eliminate or reduce expression of a polynucleotide is based on techniques of gene replacement, gene deletion, or gene disruption.
  • a nucleic acid sequence corresponding to the endogenous polynucleotide is mutagenized in vitro to produce a defective nucleic acid sequence that is then transformed into the parent cell to produce a defective gene.
  • the defective nucleic acid sequence replaces the endogenous polynucleotide.
  • the defective polynucleotide also encodes a marker that may be used for selection of transformants in which the polynucleotide has been modified or destroyed.
  • the polynucleotide is disrupted with a selectable marker such as those described herein.
  • the present invention also relates to methods of inhibiting the expression of a polypeptide having endoglucanase activity in a cell, comprising administering to the cell or expressing in the cell a double-stranded RNA (dsRNA) molecule, wherein the dsRNA comprises a subsequence of a polynucleotide of the present invention.
  • dsRNA double-stranded RNA
  • the dsRNA is about 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25 or more duplex nucleotides in length.
  • the dsRNA is preferably a small interfering RNA (siRNA) or a micro RNA (miRNA).
  • the dsRNA is small interfering RNA for inhibiting transcription.
  • the dsRNA is micro RNA for inhibiting translation.
  • the present invention also relates to such double-stranded RNA (dsRNA) molecules, comprising a portion of the mature polypeptide coding sequence of SEQ ID NO: 1 for inhibiting expression of the polypeptide in a cell.
  • dsRNA double-stranded RNA
  • the dsRNA can enter a cell and cause the degradation of a single-stranded RNA (ssRNA) of similar or identical sequences, including endogenous mRNAs.
  • ssRNA single-stranded RNA
  • RNAi RNA interference
  • the dsRNAs of the present invention can be used in gene-silencing.
  • the invention provides methods to selectively degrade RNA using a dsRNAi of the present invention.
  • the process may be practiced in vitro, ex vivo or in vivo.
  • the dsRNA molecules can be used to generate a loss-of-fu notion mutation in a cell, an organ or an animal.
  • Methods for making and using dsRNA molecules to selectively degrade RNA are well known in the art; see, for example, U.S. Patent Nos. 6,489, 127; 6,506,559; 6,51 1 ,824; and 6,515, 109.
  • the present invention further relates to a mutant cell of a parent cell that comprises a disruption or deletion of a polynucleotide encoding the polypeptide or a control sequence thereof or a silenced gene encoding the polypeptide, which results in the mutant cell producing less of the polypeptide or no polypeptide compared to the parent cell.
  • the polypeptide-deficient mutant cells are particularly useful as host cells for expression of native and heterologous polypeptides. Therefore, the present invention further relates to methods of producing a native or heterologous polypeptide, comprising (a) cultivating the mutant cell under conditions conducive for production of the polypeptide; and (b) recovering the polypeptide.
  • heterologous polypeptides means polypeptides that are not native to the host cell, e.g., a variant of a native protein.
  • the host cell may comprise more than one copy of a polynucleotide encoding the native or heterologous polypeptide.
  • the methods used for cultivation and purification of the product of interest may be performed by methods known in the art.
  • the methods of the present invention for producing an essentially endoglucanase-free product are of particular interest in the production of eukaryotic polypeptides, in particular fungal proteins such as enzymes.
  • the endoglucanase-deficient cells may also be used to express heterologous proteins of pharmaceutical interest such as hormones, growth factors, receptors, and the like.
  • the term "eukaryotic polypeptides" includes not only native polypeptides, but also those polypeptides, e.g., enzymes, which have been modified by amino acid substitutions, deletions or additions, or other such modifications to enhance activity, thermostability, pH tolerance and the like.
  • the present invention relates to a protein product essentially free from endoglucanase activity that is produced by a method of the present invention.
  • the present invention also relates to a fermentation broth formulation or a cell composition comprising a polypeptide of the present invention.
  • the fermentation broth product further comprises additional ingredients used in the fermentation process, such as, for example, cells (including, the host cells containing the gene encoding the polypeptide of the present invention which are used to produce the polypeptide of interest), cell debris, biomass, fermentation media and/or fermentation products.
  • the composition is a cell-killed whole broth containing organic acid(s), killed cells and/or cell debris, and culture medium.
  • fermentation broth refers to a preparation produced by cellular fermentation that undergoes no or minimal recovery and/or purification.
  • fermentation broths are produced when microbial cultures are grown to saturation, incubated under carbon-limiting conditions to allow protein synthesis ⁇ e.g., expression of enzymes by host cells) and secretion into cell culture medium.
  • the fermentation broth can contain unfractionated or fractionated contents of the fermentation materials derived at the end of the fermentation.
  • the fermentation broth is unfractionated and comprises the spent culture medium and cell debris present after the microbial cells ⁇ e.g., filamentous fungal cells) are removed, e.g., by centrifugation.
  • the fermentation broth contains spent cell culture medium, extracellular enzymes, and viable and/or nonviable microbial cells.
  • the fermentation broth formulation and cell compositions comprise a first organic acid component comprising at least one 1 -5 carbon organic acid and/or a salt thereof and a second organic acid component comprising at least one 6 or more carbon organic acid and/or a salt thereof.
  • the first organic acid component is acetic acid, formic acid, propionic acid, a salt thereof, or a mixture of two or more of the foregoing and the second organic acid component is benzoic acid, cyclohexanecarboxylic acid, 4-methylvaleric acid, phenylacetic acid, a salt thereof, or a mixture of two or more of the foregoing.
  • the composition contains an organic acid(s), and optionally further contains killed cells and/or cell debris.
  • the killed cells and/or cell debris are removed from a cell-killed whole broth to provide a composition that is free of these components.
  • the fermentation broth formulations or cell compositions may further comprise a preservative and/or anti-microbial ⁇ e.g., bacteriostatic) agent, including, but not limited to, sorbitol, sodium chloride, potassium sorbate, and others known in the art.
  • a preservative and/or anti-microbial ⁇ e.g., bacteriostatic agent including, but not limited to, sorbitol, sodium chloride, potassium sorbate, and others known in the art.
  • the cell-killed whole broth or composition may contain the unfractionated contents of the fermentation materials derived at the end of the fermentation.
  • the cell-killed whole broth or composition contains the spent culture medium and cell debris present after the microbial cells ⁇ e.g., filamentous fungal cells) are grown to saturation, incubated under carbon- limiting conditions to allow protein synthesis.
  • the cell-killed whole broth or composition contains the spent cell culture medium, extracellular enzymes, and killed filamentous fungal cells.
  • the microbial cells present in the cell-killed whole broth or composition can be permeabilized and/or lysed using methods known in the art.
  • a whole broth or cell composition as described herein is typically a liquid, but may contain insoluble components, such as killed cells, cell debris, culture media components, and/or insoluble enzyme(s). In some embodiments, insoluble components may be removed to provide a clarified liquid composition.
  • the whole broth formulations and cell compositions of the present invention may be produced by a method described in WO 90/15861 or WO 2010/096673.
  • the present invention also relates to compositions comprising a polypeptide of the present invention.
  • the compositions are enriched in such a polypeptide.
  • the term "enriched" indicates that the endoglucanase activity of the composition has been increased, e.g., with an enrichment factor of at least 1 .1 .
  • compositions may comprise a polypeptide of the present invention as the major enzymatic component, e.g., a mono-component composition.
  • the compositions may comprise multiple enzymatic activities, such as one or more ⁇ e.g., several) enzymes selected from the group consisting of hydrolase, isomerase, ligase, lyase, oxidoreductase, or transferase, e.g., an alpha-galactosidase, alpha-glucosidase, aminopeptidase, amylase, beta- galactosidase, beta-glucosidase, beta-xylosidase, carbohydrase, carboxypeptidase, catalase, cellobiohydrolase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, endoglucanase, ester
  • compositions may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry composition.
  • the compositions may be stabilized in accordance with methods known in the art.
  • compositions of the present invention are given below of preferred uses of the compositions of the present invention.
  • dosage of the composition and other conditions under which the composition is used may be determined on the basis of methods known in the art. Uses
  • the present invention is also directed to the following methods of treating textile with the polypeptides having endoglucanase activity, or compositions thereof. Biopolishinq
  • the processing of a fabric, such as of a cellulosic material, into material ready for garment manufacturing involves several steps: spinning of the fiber into a yarn; construction of woven or knit fabric from the yarn; and subsequent preparation processes, dyeing/printing and finishing operations.
  • Preparation processes are necessary for removing natural and man-induced impurities from fibers and for improving their aesthetic appearance and processability prior to for instance dyeing/printing and finishing.
  • Common preparation processes comprise desizing (for woven goods), scouring, and bleaching, which produce a fabric suitable for dyeing or finishing.
  • Biopolishing is a method to treat cellulosic fabrics during their manufacturing by enzymes such as cellulases, which improves fabric quality with respect to "reduced pilling formation".
  • the most important effects of biopolishing can be characterised by less fuzz and pilling, increased gloss/luster, improved fabric handle, increased durable softness and/or improved water absorbency.
  • Biopolishing usually takes place in the wet processing of the manufacture of knitted and woven fabrics or garments. Wet processing comprises such steps as e.g., desizing, scouring, bleaching, washing, dying/printing and finishing. Biopolishing could be performed as a separate step after any of the wetting steps or in combination with any of those wetting steps.
  • biopolishing depilling
  • anti-pilling are interchangeable.
  • the present invention relates to a method for manufacturing textile, by treating textile with an isolated polypeptide having endoglucanase activity in a biopolishing process.
  • the invention provides a method for obtaining a cellulosic or cellulose-containing textile having a reduced pilling formation, the method comprising treating textile with a polypeptide having endoglucanase activity in an aqueous solution.
  • the method of biopolishing can be applied to yarn, fabric or garment.
  • the yarns are dyed before weaving.
  • the warp yarns are dyed for example with indigo, and sized before weaving.
  • the dyeing of the denim yarn is a ring-dyeing.
  • a preferred embodiment of the invention is ring-dyeing of the yarn with a vat dye such as indigo, or an indigo-related dye such as thioindigo, or a sulfur dye, or a direct dye, or a reactive dye, or a naphthol.
  • the yarn may also be dyed with more than one dye, e.g., first with a sulphur dye and then with a vat dye, or vice versa.
  • the yarns undergo scouring and/or bleaching before they are dyed, in order to achieve higher quality of denim fabric.
  • the dyed fabric or garment proceeds to a desizing stage, preferably followed by a biostoning step and/or a color modification step.
  • the present invention also relates to a method for manufacturing textile, by treating textile with an isolated polypeptide having endoglucanase activity in a biostoning process.
  • the invention provides a method for introducing into the surface of dyed fabric or garment, localized variations in colour density in which the method comprises the step of contacting the fabric or garment with a polypeptide having endoglucanase activity as defined in the present invention.
  • the dyed fabric or garment is cellulosic or cellulose- containing fabric or garment. More preferably, the dyed fabric is a denim fabric, even more preferably, indigo dyed denim fabric.
  • biostoning “stone washing” and “abrasion” are interchangeable.
  • the invention provides a denim manufacturing process, which comprises: a) desizing of the denim fabric; b) biostoning the denim with a polypeptide having endoglucanase activity; c) rinsing.
  • the present invention also relates to an isolated polynucleotide encoding a signal peptide comprising or consisting of amino acids 1 to 22 of SEQ ID NO: 2 and an isolated polynucleotide encoding a signal peptide comprising or consisting of amino acids 1 to 22 of SEQ ID NO: 4.
  • the polynucleotides may further comprise a gene encoding a protein, which is operably linked to the signal peptide.
  • the protein is preferably foreign to the signal peptide.
  • the polynucleotide encoding the signal peptide is nucleotides 1 to 66 of SEQ ID NO: 1 .
  • the polynucleotide encoding the signal peptide is nucleotides 1 to 66 of SEQ ID NO: 3.
  • the present invention also relates to nucleic acid constructs, expression vectors and recombinant host cells comprising such polynucleotides.
  • the present invention also relates to methods of producing a protein, comprising (a) cultivating a recombinant host cell comprising such polynucleotide; and (b) recovering the protein.
  • the protein may be native or heterologous to a host cell.
  • the term “protein” is not meant herein to refer to a specific length of the encoded product and, therefore, encompasses peptides, oligopeptides, and polypeptides.
  • the term “protein” also encompasses two or more polypeptides combined to form the encoded product.
  • the proteins also include hybrid polypeptides and fused polypeptides.
  • the protein is a hormone, enzyme, receptor or portion thereof, antibody or portion thereof, or reporter.
  • the protein may be a hydrolase, isomerase, ligase, lyase, oxidoreductase, or transferase, e.g., an alpha-galactosidase, alpha-glucosidase, aminopeptidase, amylase, beta-galactosidase, beta-glucosidase, beta-xylosidase, carbohydrase, carboxypeptidase, catalase, cellobiohydrolase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, endoglucanase, esterase, glucoamylase, invertase, laccase, lipase, mannosidase, mutanase, oxidas
  • the gene may be obtained from any prokaryotic, eukaryotic, or other source.
  • An isolated polypeptide having endoglucanase activity selected from the group consisting of:
  • SEQ ID NO: 2 or a polypeptide having at least 92% sequence identity to the mature polypeptide of SEQ ID NO: 4;
  • polypeptide encoded by a polynucleotide that hybridizes under medium-high, high, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii);
  • polypeptide of paragraph 1 having at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide of SEQ ID NO: 2, or a polypeptide having at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide of SEQ ID NO: 4.
  • polypeptide of paragraph 1 or 2 which is encoded by a polynucleotide that hybridizes under medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii).
  • polypeptide of any of the paragraphs 1-3 comprising or consisting of SEQ ID NO: 2 or the mature polypeptide of SEQ ID NO: 2.
  • polypeptide of any of the paragraphs 1-4 comprising or consisting of SEQ ID NO: 4 or the mature polypeptide of SEQ ID NO: 4.
  • polypeptide of the paragraphs 4 or 5 wherein the mature polypeptide is amino acids 23 to 252 of SEQ ID NO: 2 or amino acids 23 to 302 of SEQ ID NO: 4.
  • polypeptide of any of the paragraphs 1-4 which is a variant of the mature polypeptide of SEQ ID NO: 2 comprising a substitution, deletion, and/or insertion at one or more positions.
  • polypeptide of paragraph 8 further comprising an endoglucanase binding domain.
  • any of the polypeptide of paragraphs 1 -9 which is obtained from Sporormia, preferably Sporormia fimetaria.
  • a method for treating textile by treating textile with an isolated polypeptide of any of paragraphs 1 -1 1.
  • the polynucleotide of claim 16 which is obtained from Sporormia, preferably Sporormia fimetaria, or is obtained from Geomyces, preferably Geomyces pannorum.
  • a nucleic acid construct or expression vector comprising the polynucleotide of paragraph 16 operably linked to one or more control sequences that direct the production of the polypeptide in an expression host.
  • a recombinant host cell comprising the polynucleotide of paragraph 16 operably linked to one or more control sequences that direct the production of the polypeptide.
  • a method of producing the polypeptide of any of paragraphs 1-1 1 comprising cultivating a cell, which in its wild-type form produces the polypeptide, under conditions conducive for production of the polypeptide.
  • a method of producing a polypeptide having endoglucanase activity comprising cultivating the host cell of paragraph 19 under conditions conducive for production of the polypeptide.
  • a method of producing a polypeptide having endoglucanase activity comprising cultivating the transgenic plant or plant cell of paragraph 24 under conditions conducive for production of the polypeptide.
  • a method of producing a mutant of a parent cell comprising inactivating a polynucleotide encoding the polypeptide of any of paragraphs 1 -1 1 , which results in the mutant producing less of the polypeptide than the parent cell.
  • mutant cell of paragraph 28 further comprising a gene encoding a native or heterologous protein.
  • a method of producing a protein comprising cultivating the mutant cell of paragraph 28 or 29 under conditions conducive for production of the protein. 31 . The method of paragraph 30, further comprising recovering the protein.
  • a double-stranded inhibitory RNA (dsRNA) molecule comprising a subsequence of the polynucleotide of paragraph 16, wherein optionally the dsRNA is an siRNA or an miRNA molecule.
  • dsRNA double-stranded inhibitory RNA
  • a method of inhibiting the expression of a polypeptide having endoglucanase activity in a cell comprising administering to the cell or expressing in the cell the double-stranded inhibitory RNA (dsRNA) molecule of paragraph 32 or 33.
  • dsRNA double-stranded inhibitory RNA
  • a method of producing a protein comprising cultivating the cell of paragraph 35 or 36 under conditions conducive for production of the protein.
  • a nucleic acid construct or expression vector comprising a gene encoding a protein operably linked to the polynucleotide of paragraph 39, wherein the gene is foreign to the polynucleotide encoding the signal peptide.
  • a recombinant host cell comprising a gene encoding a protein operably linked to the polynucleotide of paragraph 39, wherein the gene is foreign to the polynucleotide encoding the signal peptide.
  • a method of producing a protein comprising cultivating a recombinant host cell comprising a gene encoding a protein operably linked to the polynucleotide of paragraph 39, wherein the gene is foreign to the polynucleotide encoding the signal peptide, under conditions conducive for production of the protein.
  • a whole broth formulation or cell culture composition comprising the polypeptide of any of paragraphs 1-1 1.
  • Chemicals used as buffers and substrates were commercial products of at least reagent grade.
  • the fungal strain Sporormia fimetaria was isolated from a litter sample collected from China. The strain was identified as Sporormia fimetaria, based on both morphological characteristics and ITS rDNA sequence.
  • the fungal strain purchased from China General Microbiological Culture Collection Center was named as CGMCC 3.4589.
  • the strain CGMCC 3.4589 was identified as Geomyces pannorum, based on both morphological characteristics and ITS rDNA sequence.
  • PDA medium was composed of 39 grams of potato dextrose agar and deionized water to 1 liter.
  • YG agar plates were composed of 5.0 g of yeast extract, 10.0 g of glucose, 20.0 g of agar, and deionized water to 1 liter.
  • YPG medium contained 0.4% of yeast extract, 0.1 % of KH 2 P0 4 , 0.05% of MgS0 4 -7H 2 0, 1.5% glucose in deionized water.
  • YPM medium contained 1 % yeast extract, 2% of peptone, and 2% of maltose in deionized water.
  • Minimal medium plates were composed of 342 g of sucrose, 20 ml of salt solution (2.6% KCI, 2.6% MgSCy7H 2 0, 7.6% KH 2 P0 4 , 2ppm Na 2 B 4 O 7 -10H 2 O, 20ppm CuSCy5H 2 0, 40ppm FeSCy7H 2 0, 40ppm MnSCy2H 2 0, 40ppm Na 2 Mo0 4 -2H 2 0, 400ppm ZnSCy7H 2 0), 20 g of agar, and deionized water to 1 liter.
  • Cotton interlock 40S, bleached, HM-A0008, available from HM Cotton, Co., Ltd, Guangzhou, China.
  • the swatches were placed in the conditioned room (65%+/-5% humidity, 20+/-1 °C) for 24 hours before they were numbered, weighed by the analytical balance (for samples below 100 g) or a precision balance (for samples over 100 g) and recorded. After treatment, all samples were tumbled dried (AEG, LAVATHERM 37700, Germany) for 1 hour and conditioned for 24 hours in the conditioned room mentioned as above. For each sample, the weight loss was defined as below: 3 ⁇ 4if lit Mfo tsm$ ⁇ i-
  • the abrasion level and backstaining level of the denim samples were determined by measuring the reflectance with pre-calibrated DataColor SF450X, alternatively an equivalent apparatus can be used. Four readings were taken for each sample, and the average of the readings were used. The abrasion level was evaluated with the index CIE L * on the blue side (front side) of the sample, and the backstaining level was evaluated with the index CIE b * on the back side of the sample.
  • L * indicates the change in white/black on a scale from 0 to 100, and a decrease in L * means an increase in black colour (decrease in white colour) and an increase in L * means an increase in white colour (decrease in black colour).
  • Delta L * unit L * of the swatch treated with a certain celllulase - L * of the swatch before cellulase treatment. The larger the Delta L * unit is the higher is the denim abrasion level, e.g. a Delta L * unit of 4 has higher abrasion level than Delta L * unit of 3.
  • b * indicates the change in blue/yellow, and a decrease in b * means an increase in blue colour (decrease in yellow colour), and an increase in b * means an increase in yellow colour (decrease in blue colour).
  • Delta b * units b * of the swatch treated with a certain celllulase - b * of the swatch before cellulase treatment.
  • a larger Delta b * unit corresponds to a lower backstaining level, e.g. a Delta b * unit of -1.5 has lower backstaining level than the Delta b * unit of -2.5.
  • the enzyme protein in an enzyme product can be measured with BCATM Protein Assay Kit (product number 23225, commercial available from Thermo Fisher Scientific Inc.) according to the product manual.
  • the Sporormia fimetaria strain was inoculated onto a PDA plate and incubated for 5 days at 25°C in the darkness.
  • Several mycelia-PDA plugs were inoculated into 500 ml shake flasks containing 100 ml of YPG medium. The flasks were incubated for 3 days at 28°C with shaking at 160 rpm.
  • the mycelia were collected by filtration through MIRACLOTH® (Calbiochem, La Jolla, CA, USA) and frozen in liquid nitrogen. Frozen mycelia were ground, by a mortar and a pestle, to a fine powder, and genomic DNA was isolated using using a DNeasy® Plant Maxi Kit (QIAGEN Inc., Valencia, CA, USA).
  • the extracted genomic DNA samples were delivered to Beijing Genome Institute (BGI, Shenzhen, China) for genome sequencing using ILLUMINA® GA2 System (lllumina, Inc., San Diego, CA, USA).
  • the raw reads were assembled at BGI using in house program SOAPdenovo (Li et al., 2010, Genome Research 20(2): 265-72).
  • the assembled sequences were analyzed using standard bioinformatics methods for gene finding and functional prediction. Briefly, genelD (Parra et al., 2000, Genome Research 10(4):51 1 -515) was used for gene prediction.
  • Blastall version 2.2.10 Altschul et al., 1990, J. Mol. Biol.
  • GH45_Sf231 1 One GH45 endoglucanase gene, a name GH45_Sf231 1 was given here, was selected for expression cloning.
  • oligonucleotide primers were designed to amplify the GH45_Sf231 1 gene from genomic DNA of the Sporormia fimetaria strain. Primers fabricated by Invitrogen (Invitrogen, Beijing, China).
  • Reverse primer 5' GTCACCCTCTAGATCT ccgtcccttgagcattcttttc 3' (SEQ ID NO: 6) Lowercase characters in the forward primer represent the coding region of the gene and lowercase characters of the reverse primer represent the flanking region of the gene. The capitalized parts were homologous to the insertion sites of pPFJ0355 vector which has been described in WO 1 1/005867.
  • primer pair For each gene, 20 picomoles of primer pair (each of the forward and reverse) were used in a PCR reaction composed of 2ul (microliter) of the Sporormia fimetaria genomic DNA, 10 ⁇ of 5X GC Buffer, 1.5ul of DMSO, 2.5 mM each of dATP, dTTP, dGTP, and dCTP, and 0.6 unit of PhusionTM High-Fidelity DNA Polymerase (Finnzymes Oy, Espoo, Finland) in a final volume of 50 ⁇ . The amplification was performed using a Peltier Thermal Cycler (M J Research Inc.,
  • PCR products were isolated by 1.0% agarose gel electrophoresis using TBE buffer
  • PCR products were then purified from solution by using an illustra GFXTM PCR DNA and Gel Band Purification Kit (GE Healthcare, Buckinghamshire,
  • Plasmid pPFJ0355 was digested with Bam HI and Bgl II, isolated by 1 .0% agarose gel electrophoresis using TBE buffer, and purified using an illustra GFXTM PCR DNA and Gel Band
  • E. coli transformants containing expression constructs were detected by colony PCR which is a method for quick screening of plasmid inserts directly from E. coli colonies. Briefly, in the premixed PCR solution aliquot in each PCR tube, including PCR buffer, MgCI2, dNTP and primer pairs for which the PCR fragment generated, a single colony was added by picking up with a sterile tip and twirling the tip in the reaction solution. Normaly 7- 10 colonies were screened.
  • the plasmid DNA was prepared using a QIAprep ® Spin Miniprep Kit (QIAGEN Inc., Valencia, CA, USA).
  • the Sporormia fimetaria GH45 endoglucanase gene inserted in pGH45_Sf231 1 was confirmed by DNA sequencing using 3730XL DNA Analyzers (Applied Biosystems Inc, Foster City, CA, USA).
  • the nucleotide sequence and the deduced amino acid sequence of the Sporormia fimetaria GH45 genomic DNA is shown in SEQ ID NO: 1 and SEQ ID NO: 2 respectively.
  • the coding sequence is 81 1 bp including the stop codon and is interrupted by an intron of nucleotides 342 to 393.
  • the encoded predicted protein is 252 amino acids.
  • the N-terminal sequencing shows amino acids 1 to 22 of SEQ ID NO: 2 are a signal peptide.
  • the mature protein contains 230 amino acids with an isoelectric point of 7.93.
  • a comparative pairwise global alignment of amino acid sequences was determined. The alignment showed that the deduced amino acid sequence of the Sporormia fimetaria gene encoding polypeptide having endoglucanase activity (i.e. mature peptide of SEQ ID NO: 2) shares 74.76% identity to the deduced amino acid sequence of UNIPROT: B2W5C9 which is an endoglucanse from Pyrenophora triticirepentis, and shares 71.5% identity to the amino acid of GENESEQP: AED55944 which is an endoglucanase from Corynascus heterothallicus.
  • Example 4 Expression of the Sporormia fimetaria GH45 endoglucanase gene in Aspergillus oryzae
  • HowB101 (WO 95/035385) protoplasts were prepared according to the method of Christensen et al., (1988, Bio/Technology 6: 1419-1422). HowB101 was transformed with 3 ⁇ g (microgram) of pGH45_Sf231 1 . The transformation yielded approximately 50 transformants. Eight transformants were isolated to individual Minimal medium plates.
  • a slant of 07SNG was washed with 10 ml of YPM medium and inoculated into 10 flasks of 2L containing 400 ml of YPM medium, shaking at 30°C, 80rpm, to generate broth for characterization of the enzyme.
  • the culture was harvested on day 3 and filtered using a 0.45 ⁇ DURAPORE Membrane (Millipore, Bedford, MA, USA).
  • Example 6 Purification of recombinant Sporomia fimetaria GH45 endo-glucanase from Aspergillus oryzae 07SNG
  • the solution was applied to a 40 ml Q SEPHAROSE® Fast Flow column (GE Healthcare, Buckinghamshire, UK) equilibrated in 20mM Bis-Tris buffer, pH6.0, and the proteins unbound to the column were collected and further purified on a 40ml Phenyl Sepharose 6 Fast Flow column (GE 17-0965-05) with a linear (NH 4 ) 2 S0 4 gradient (1.2 - 0 M). Protein unbound to the column were collected and evaluated by SDS-PAGE (NP0336BOX, NUPAGE 4-12% BT GEL 1.5MM15W). Fractions containing a band of approximately 28 kDa were pooled. Then the pooled solution was concentrated by ultrafiltration.
  • AZCL-HE-cellulose 0.2% AZCL-HE-cellulose (Megazyme, l-AZCEL) was suspended in 20mM Bis-Tris buffer of pH 6.0 with addition of 0.01 % Triton X-100 by gentle stirring, which was used as substrate. Then 120 microliter substrate and 30 microliter enzyme sample of 1 mg/ml prepared according to Example 6 were mixed in a Microtiter plate and placed on ice before reaction. The assay was initiated by transferring the Microtiter plate to an Eppendorf thermomixer, which was set to the assay temperature of 50°C. The plate was incubated for 20 minutes on the Eppendorf thermomixer at its shaking rate 700 rpm for Microtiter plate. The incubation was stopped by transferring the plate back to the ice bath.
  • OD 595 was read as a measure of endo-cellulase activity. All reactions were done with triplicate and a buffer blind without adding any enzyme was included in the assay.
  • the enzyme is defined as the enzyme having endoglucanase activity.
  • Example 8 Denim abrasion with Sporomia fimetaria GH45 endoglucanase in Launder-O-meter
  • the Sporomia fimetaria GH45 endoglucanase (mature peptide of SEQ ID NO: 2) purified from Example 6 was used for denim abrasion in the present example.
  • Raw denim was desized and cut to 16 cm tall and 24 cm long.
  • the denim was cut and sewn, forming a tube with height of 12.5 cm and weight of about 18 g.
  • the tubes were placed in a conditioned room (65% relative humidity, 20°C) for 24 hours before they were numbered, weighed by the analytical balance and recorded.
  • One conditioned tube was placed in each beaker, with the blue side facing inward.
  • the Launder-O-Meter (LOM) machine was started after the required program was chosen, and it would hold when the temperature reached 35°C or 55°C.
  • Each beaker was fitted with a lid lined with 2 neoprin gaskets and close tightly with the metal clamping device.
  • the beakers were loaded into the preheated LOM.
  • Metal racks were used to accommodate and secure 6 beakers, in the horizontal position, in each of the 4 drum positions.
  • the LOM lid was closed and the washing program was continued and the timing was initiated. 2 hours later, all beakers were removed from LOM and the denim samples were transferred to the inactivation solution (2g/L sodium carbonate) at 85°C for 10 minutes.
  • the swatches were rinsed in hot water for 2 times and in cold water for 2 times.
  • the denim samples were tumble-dried (AEG, LAVATHERM 37700, Germany) for 1 hour, and then conditioned at 20°C, 65% relative humidity for 24 hours prior to evaluation.
  • the abrasion and backstaining level of the denim samples were determined by measuring the reflectance before and after the endoglucanase treatment with pre-calibrated DataColor SF450X. For both L * and b * , four readings were taken for each fabric and the average of the four readings was used. The abrasion level was evaluated with the index CIE L * of the blue side of the sample, and the backstaining level was evaluated with the index CIE b * of the back of the sample.
  • Sporomia fimetaria GH45 endoglucanase of the present invention shows a good abrasion performance on denims at low temperature, i.e. performance at 35°C is better than that at 55 °C, though it works at both temperatures.
  • Cotton fabric swatches were cut into about 16 cm * 16 cm (about 5 grams each). The swatches were placed in the conditioned room (65% humidity, 20°C) for 24 hours before they were numbered, weighed by the analytical balance and recorded. The biopolishing was conducted with a Launder-O-meter. Two conditioned swatches and 20 big steel balls (total weight of 220 grams) were placed in each beaker to supply the mechanical aids. The beaker was filled with enzymes according to Table 2 and buffer (pH 5, 50 mM acetate buffer; or pH 6.5, 50 mM phosphate buffer) to a total volume of 100 ml, which could get a liquid to fabric ratio of about 10:1 (v/w).
  • the LOM was operated similarly as Example 8 except that the 5 beakers were placed in a vertical position, in each of the 4 drum positions. After the treatment at the pre-set temperature at 35 or 55°C for 1 hour, the swatches was removed from the beakers into the inactivation solution with 2g/L of sodium carbonate and kept at 85°C for 10 min. Then the swatches were rinsed in hot water for 2 times and in cold water for 2 times. And they were tumble-dried for 1 hour, conditioned for 24 hours at 20°C, 65% relative humidity prior to evaluation in weight loss and pilling notes.
  • Sporomia fimetaria GH45 endoglucanase of the present invention works efficiently in biopolishing at neutral pH of 6.5 and low temperature condition of 35°C.
  • Table 2 Biopolishing by Sporomia fimetaria GH45 endoglucanase in LOM at 35 or 55°C, pH 5 or 6.5, 1 hour
  • Geomyces panorum strain CGMCC 3.4589 was inoculated onto a PDA plate and incubated for 10 days at 15°C in the darkness.
  • Several mycelia-PDA plugs were inoculated into 500 ml shake flasks containing 100 ml of YPG medium. The flasks were incubated for 6 days at 15°C with shaking at 160 rpm.
  • the mycelia were collected by filtration through MIRACLOTH® (Calbiochem, La Jolla, CA, USA) and frozen in liquid nitrogen. Frozen mycelia were ground, by a mortar and a pestle, to a fine powder, and genomic DNA was isolated using a method developed by Scott O. Rogers & Arnold J. Bendich (Plant Molecular Biology 5: 69-76, 1985).
  • Example 1 Genome sequencing, assembly and annotation
  • Example 10 The extracted genomic DNA samples in Example 10 were delivered to BerryGenomics company (Beijing, China) for genome sequencing using ILLUMINA® Hiseq2000 System (lllumina, Inc., San Diego, CA, USA). The raw reads were assembled using program Abyss 1.2.7 (Simpson et al., 2009, Genome Research 19(6): 1 1 17-1 123) with k-mer 51 and quality score cutoff 16. The assembled sequences were analyzed using standard bioinformatics methods for gene finding and functional prediction. Briefly, genelD (Parra et al., 2000, Genome Research 10(4):51 1 -515) was used for gene prediction. Blastall version 2.2.10 (Altschul et al., 1990, J. Mol. Biol.
  • GH45_Gp7682 One GH45 endoglucanase gene, a name GH45_Gp7682 was given here, was selected for expression cloning.
  • oligonucleotide primers were designed to amplify the GH45_Gp7682 gene from Geomyces panorum strain genomic DNA of Example 10. Primers fabricated by Invitrogen (Invitrogen, Beijing, China).
  • Reverse primer 5' GTCACCCTCTAGATCTtccttggtcatccacccaac 3' (SEQ ID NO: 8) Lowercase characters in the forward primer represent the coding region of the gene and the flanking region of the gene in the reverse primer. The capitalized parts were homologous to the insertion sites of pPFJ0355 vector (described in WO201 1005867).
  • primer pair each of the forward and reverse
  • PCR reaction composed of 2 ⁇ (microliter) of Geomyces pannorum strain genomic DNA, 10 ⁇ of 5X GC Buffer, 1.5 ⁇ of DMSO, 2.5 mM each of dATP, dTTP, dGTP, and dCTP, and 0.6 unit of PhusionTM High-Fidelity DNA Polymerase (Finnzymes Oy, Espoo, Finland) in a final volume of 50 ⁇ .
  • the amplification was performed using a Peltier Thermal Cycler (M J Research Inc., South San Francisco, CA, USA) programmed for denaturing at 98°C for 1 minutes; 6 cycles of denaturing at 98°C for 40 seconds, annealing at 65°C for 40 seconds, with 1 °C decrease per cycle and elongation at 72°C for 150 seconds; and another 25 cycles each at 94°C for 40 seconds, 60°C for 40 seconds and 72°C for 150 seconds; final extension at 72°C for 10 minutes.
  • the heat block then went to a 4°C soak cycle.
  • PCR products were isolated by 1 .0% agarose gel electrophoresis using TBE buffer
  • PCR products were then purified from solution by using an illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare, Buckinghamshire, UK) according to the manufacturer's instructions.
  • Plasmid pPFJ0355 was digested with Bam HI and Bgl II, isolated by 1 .0% agarose gel electrophoresis using TBE buffer, and purified using an illustra GFX PCR DNA and Gel Band Purification Kit according to the manufacturer's instructions.
  • plasmid DNA was prepared using a QIAprep Spin Miniprep Kit (QIAGEN Inc., Valencia, CA, USA). The Geomyces panorum GH45 endoglucanase gene inserted in pGH45_Gp7682 was confirmed by DNA sequencing using 3730XL DNA Analyzers (Applied Biosystems Inc, Foster City, CA, USA).
  • the nucleotide sequence and the deduced amino acid sequence of the Geomyces panorum GH45 genomic DNA is shown in SEQ ID NO: 3 and SEQ ID NO: 4 respectively.
  • the coding sequence is 1023 bp including the stop codon and is interrupted by introns of nucleotides 445 to 558.
  • the encoded predicted protein is 302 amino acids.
  • the N-terminal sequencing shows amino acids 1 to 22 of SEQ ID NO: 4 are a signal peptide.
  • the mature protein contains 280 amino acids with an isoelectric point of 4.48.
  • HowB101 (WO 95/035385) protoplasts were prepared according to the method of Christensen et al., (1988, Bio/Technology 6: 1419-1422). HowB101 was transformed with 3 ⁇ g (microgram) of pGH45_Gp7682. The transformation yielded approximately 50 transformants. Eight transformants were isolated to individual Minimal medium plates.
  • Example 14 Fermentation of Aspergillus oryzae expression strain 07SP9
  • a slant of 07SP9 was washed with 10 ml of YPM medium and inoculated into 8 flasks of 2L containing 400 ml of YPM medium, shaking at 30°C, 80rpm, to generate broth for characterization of the enzyme.
  • the culture was harvested on day 3 and filtered using a 0.45 ⁇ (micrometer) DURAPORE Membrane (Millipore, Bedford, MA, USA).
  • Example 15 Purification of recombinant Geomyces pannorum GH45 endoglucanase from Aspergillus oryzae 07SP9
  • AZCL-HE-cellulose 0.2% AZCL-HE-cellulose (Megazyme, l-AZCEL) was suspended in 20mM Bis-Tris buffer of pH 6.0 with addition of 0.01 % Triton X-100 by gentle stirring, which was used as substrate. Then 120 microliter substrate and 30 microliter enzyme sample of 1 mg/ml prepared according to Example 15 were mixed in a Microtiter plate and placed on ice before reaction. The assay was initiated by transferring the Microtiter plate to an Eppendorf thermomixer, which was set to the assay temperature of 50°C. The plate was incubated for 20 minutes on the Eppendorf thermomixer at its shaking rate 700 rpm for Microtiter plate. The incubation was stopped by transferring the plate back to the ice bath.
  • OD 595 was read as a measure of endo-cellulase activity. All reactions were done with triplicate and a buffer blind without adding any enzyme was included in the assay.
  • the enzyme is defined as the enzyme having endoglucanase activity.
  • Example 17 Denim abrasion with Geomyces pannorum GH45 endo-glucanase in
  • the Geomyces pannorum GH45 endoglucanase (mature peptide of SEQ ID NO: 4) purified from Example 15 was used for denim abrasion in the present example.
  • Raw denim was desized and cut to 16 cm tall and 24 cm long.
  • the denim was serged and sewn, forming a tube with height of 12.5 cm and weight of about 18 g.
  • the tubes were placed in a conditioned room (65% relative humidity, 20°C) for 24 hours before they were numbered, weighed by the analytical balance and recorded.
  • One conditioned tube was placed in each beaker, with the blue side facing inward.
  • 30 big nuts M6M-SR-A4-80, acid proof, M10 DIN 934
  • 10 small nuts M6M-SR-A4-80, acid proof, M6 DIN 934
  • 7 big star magnets (diam.
  • the Launder-O-Meter (LOM, SDL-Atlas LP2) machine was started after the required program was chosen, and it would hold when the temperature reached 35°C or 55°C.
  • Each beaker was fitted with a lid lined with 2 neoprin gaskets and close tightly with the metal clamping device.
  • the beakers were loaded into the preheated LOM.
  • Metal racks were used to accommodate and secure 6 beakers, in the horizontal position, in each of the 4 drum positions.
  • the LOM lid was closed and the washing program was continued and the timing was initiated. 2 hours later, all beakers were removed from LOM and the denim samples were transferred to the inactivation solution (2g/L sodium carbonate) at 85°C for 10 minutes.
  • the swatches were rinsed in hot water for 2 times and in cold water for 2 times.
  • the denim samples were tumble-dried (AEG, LAVATHERM 37700, Germany) for 1 hour, and then conditioned at 20°C, 65% relative humidity for 24 hours prior to evaluation.
  • the abrasion and backstaining level of the denim samples were determined by measuring the reflectance with pre-calibrated DataColor SF450X. Four readings were taken for each sample. The abrasion level was evaluated with the index CIE L * of the blue side of the sample, and the backstaining level was evaluated with the index CIE b * of the back of the sample. For both L * and b * , 4 readings were conducted for each fabric.
  • Geomyces pannorum GH45 endo- glucanase delivered a better abrasion performance on denims at 35 °C than at 55 °C, though it worked at both temperatures.
  • Example 18 Biopolishing with Geomyces pannorum GH45 endoglucanase in Launder-O-meter
  • the Geomyces pannorum GH45 endo-glucanase (mature peptide of SEQ ID NO: 4) purified from Example 15 was used for biopolishing in the present example.
  • Cotton fabric swatches were cut to about 16 cm * 16 cm (about 5 grams each). The swatches were placed in the conditioned room (65% humidity, 20°C) for 24 hours before they were numbered, weighed by the analytical balance and recorded. The biopolishing was conducted with a Launder-O-meter. Two conditioned swatches and 20 big steel balls (total weight of 220 grams) were placed in each beaker to supply the mechanical aids. The beaker was filled with enzymes according to table 2 and buffer (pH 5, 50 mM acetate buffer; or pH 6.5, 50 mM phosphate buffer) to a total volume of 100 ml, which could get a liquid ratio of about 10:1 (v/w).
  • buffer pH 5, 50 mM acetate buffer; or pH 6.5, 50 mM phosphate buffer
  • the LOM was operated similarly as Example 17 except that the 5 beakers were placed in a vertical position, in each of the 4 drum positions. After the treatment at the pre-set temperature at 35 or 55°C for 1 hour, the swatches was removed from the beakers and transferred into the inactivation solution with 2g/L of sodium carbonate and kept at 85°C for 10 min. Then the swatches were rinsed in hot water for 2 times and in cold water for 2 times. And they were tumble-dried for 1 hour, conditioned for 24 hours at 20°C, 65% relative humidity prior to evaluation in weight loss and pilling notes.
  • Geomyces panorum GH45 endo- glucanase of the present invention worked the most efficiently in biopolishing at neutral pH of 6.5 and low temperature condition of 35°C.

Abstract

Provided are isolated polypeptides having endoglucanase activity, catalytic domains and polynucleotides encoding the polypeptides, or catalytic domains. Also provided are nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, or catalytic domains.

Description

POLYPEPTIDES HAVING ENDOGLUCANASE ACTIVITY AND
POLYNUCLEOTIDES ENCODING SAME
Reference to a Sequence Listing
This application contains a Sequence Listing in computer readable form, which is incorporated herein by reference.
Background of the Invention
Field of the Invention
The present invention relates to polypeptides having endoglucanase activity, and catalytic domains, and cellulose binding domains, and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides and catalytic domains.
Description of the Related Art
Cellulose is a polymer of the simple sugar glucose covalently linked by beta-1 ,4-bonds. Many microorganisms produce enzymes such as cellulases that hydrolyze beta-linked glucans. Cellulases include endoglucanases, cellobiohydrolases, and beta-glucosidases. Endoglucanases digest the cellulose polymer at random locations, opening it to attack by cellobiohydrolases. Cellobiohydrolases sequentially release molecules of cellobiose from the ends of the cellulose polymer. Cellobiose is a water-soluble beta-1 ,4-linked dimer of glucose. Beta-glucosidases hydrolyze cellobiose to glucose.
There is a wide spectrum of industrial applications of cellulases. In the textile industry, cellulases are used in denim finishing to create a fashionable stone washed appearance in denim cloths in a biostoning process. Cellulases are also used, for instance, to clean fuzz and prevent formation of pills on the surface of cotton garments.
A polypeptide from Pyrenophora triticirepentis having endoglucanase activity is disclosed as UNIPROT: B2W5C9. A polypeptide from Corynascus heterothallicus having endoglucanase activity is disclosed as GENESEQP: AED55944.
There is always a need in the industry for an endoglucanse, especially with good performance in low temperature. The present invention provides polypeptides having endoglucanase activity and polynucleotides encoding the polypeptides.
Summary of the Invention
The present invention relates to isolated polypeptides having endoglucanase activity selected from the group consisting of: (a) a polypeptide having at least 80% sequence identity to the mature polypeptide of SEQ ID NO: 2, or a polypeptide having at least 92% sequence identity to the mature polypeptide of SEQ ID NO: 4;
(b) a polypeptide encoded by a polynucleotide that hybridizes under medium-high, high, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ
ID NO: 1 or SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii);
(c) a polypeptide encoded by a polynucleotide having at least 80% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 , or encoded by a polynucleotide having at least 92% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 3, or the cDNA sequence thereof;
(d) a variant of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more {e.g., several) positions; and
(e) a fragment of the polypeptide of (a), (b), (c), or (d) that has endoglucanase activity.
The present invention also relates to isolated polypeptides comprising a catalytic domain selected from the group consisting of:
(a) a catalytic domain having at least 80% sequence identity to amino acids 23 to 227 of SEQ ID NO: 2, or at least 95% sequence identity to amino acids 26 to 231 of SEQ ID NO: 4;
(b) a catalytic domain encoded by a polynucleotide that hybridizes under medium- high, high, or very high stringency conditions with (i) nucleotides 67 to 733 of SEQ ID NO: 1 or nucleotides 76 to 807 of SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii);
(c) a catalytic domain encoded by a polynucleotide having at least 80% sequence identity to nucleotides 67 to 733 of SEQ ID NO: 1 , or a catalytic domain encoded by a polynucleotide having at least 95% sequence identity to nucleotides 76 to 807 of SEQ ID NO: 3, or the cDNA sequence thereof;
(d) a variant of amino acids 23 to 227 of SEQ ID NO: 2 or a variant of amino acids 26 to 231 of SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more
{e.g., several) positions; and
(e) a fragment of the catalytic domain of (a), (b), (c), or (d) that has endoglucanase activity. The present invention also relates to isolated polypeptides comprising a cellulose binding domain selected from the group consisting of: (a) a cellulose binding domain having at least 90% sequence identity to amino acids 265 to 302 of SEQ ID NO: 4;
(b) a cellulose binding domain encoded by a polynucleotide that hybridizes under high, or very high stringency conditions with (i) nucleotides 907 to 1020 of SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii);
(c) a cellulose binding domain encoded by a polynucleotide having at least 90% sequence identity to nucleotides 907 to 1020 of SEQ ID NO: 3 or the cDNA sequence thereof;
(d) a variant of amino acids 265 to 302 of SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more {e.g., several) positions; and
(e) a fragment of the cellulose binding domain of (a), (b), (c), or (d) that has binding activity.
The present invention also relates to isolated polynucleotides encoding the polypeptides of the present invention; nucleic acid constructs; recombinant expression vectors; recombinant host cells comprising the polynucleotides; and methods of producing the polypeptides.
The present invention also relates to methods of treating textile with enzyme having endoglucanase activity of the present invention.
In some embodiments, the method for manufacturing textile is provided. In some embodiments, the textile is manufactured from fabric to garment.
In some embodiments, the method may be applied to a biostoning process to form localized variation of color density in the surface of a dyed cellulosic or cellulose-containing textile. Preferably, the dyed cellulosic or cellulose-containing fabric is a denim fabric, more preferably indigo dyed denim fabric.
In some embodiments, the method may be applied to a biopolishing process.
The present invention also relates to a polynucleotide encoding a signal peptide comprising or consisting of amino acids 1 to 22 of SEQ ID NO: 2 or amino acids 1 to 22 of SEQ ID NO: 4, which is operably linked to a gene encoding a protein; nucleic acid constructs, expression vectors, and recombinant host cells comprising the polynucleotides; and methods of producing a protein.
Brief Description of the Figures
Figure 1 shows DNA map of plasmid pGH45_Sf231 1.
Figure 2 shows DNA map of plasmid pGH45_Gp7682. Definitions
Endoglucanase: The term "endoglucanase" means an endo-1 ,4-(1 ,3;1 ,4)-beta-D- glucan 4-glucanohydrolase (E.C. 3.2.1.4) that catalyzes endohydrolysis of 1 ,4-beta-D-glycosidic linkages in cellulose, cellulose derivatives (such as carboxymethyl cellulose and hydroxyethyl cellulose), lichenin, beta-1 ,4 bonds in mixed beta-1 ,3 glucans such as cereal beta-D-glucans or xyloglucans, and other plant material containing cellulosic components. Endoglucanase activity can be determined by measuring reduction in substrate viscosity or increase in reducing ends determined by a reducing sugar assay (Zhang et ai, 2006, Biotechnology Advances 24: 452- 481 ). Endoglucanase activity may be determined using carboxymethyl cellulose (CMC) as substrate according to the procedure of part VI in page 264 of Ghose, 1987, Pure and Appl. Chem. 59: 257-268.
For purposes of the present invention, endoglucanase activity is determined according to the procedure described in the Examples. The polypeptides of the present invention have at least 80%, at least 85%, at least 90%, at least 95%, or at least 100% of the endoglucanase activity of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4.
Allelic variant: The term "allelic variant" means any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences. An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.
Binding domain : The term "cellulose binding domain" means the region of an enzyme that mediates binding of the enzyme to amorphous regions of a cellulose substrate. The cellulose binding domain (CBD) is typically found either at the N-terminal or at the C-terminal extremity of an endoglucanase.
Catalytic domain : The term "catalytic domain" means the region of an enzyme containing the catalytic machinery of the enzyme.
cDNA: The term "cDNA" means a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic or prokaryotic cell. cDNA lacks intron sequences that may be present in the corresponding genomic DNA. The initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.
Coding sequence: The term "coding sequence" means a polynucleotide, which directly specifies the amino acid sequence of a polypeptide. The boundaries of the coding sequence are generally determined by an open reading frame, which begins with a start codon such as ATG, GTG, or TTG and ends with a stop codon such as TAA, TAG, or TGA. The coding sequence may be a genomic DNA, cDNA, synthetic DNA, or a combination thereof. Control sequences: The term "control sequences" means nucleic acid sequences necessary for expression of a polynucleotide encoding a mature polypeptide of the present invention. Each control sequence may be native (i.e., from the same gene) or foreign (i.e., from a different gene) to the polynucleotide encoding the polypeptide or native or foreign to each other. Such control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator. At a minimum, the control sequences include a promoter, and transcriptional and translational stop signals. The control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding a polypeptide.
Expression : The term "expression" includes any step involved in the production of a polypeptide including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.
Expression vector: The term "expression vector" means a linear or circular DNA molecule that comprises a polynucleotide encoding a polypeptide and is operably linked to control sequences that provide for its expression.
Fragment: The term "fragment" means a polypeptide or a catalytic or endoglucanase binding domain having one or more (e.g., several) amino acids absent from the amino and/or carboxyl terminus of a mature polypeptide or domain; wherein the fragment has endoglucanase or cellulose binding activity. In one aspect, a fragment contains at least 85%, 90%, or 95% of the number of amino acids of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4.
High stringency conditions: The term "high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 65°C.
Host cell : The term "host cell" means any cell type that is susceptible to transformation, transfection, transduction, or the like with a nucleic acid construct or expression vector comprising a polynucleotide of the present invention. The term "host cell" encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.
Isolated : The term "isolated" means a substance in a form or environment that does not occur in nature. Non-limiting examples of isolated substances include (1 ) any non-naturally occurring substance, (2) any substance including, but not limited to, any enzyme, variant, nucleic acid, protein, peptide or cofactor, that is at least partially removed from one or more or all of the naturally occurring constituents with which it is associated in nature; (3) any substance modified by the hand of man relative to that substance found in nature; or (4) any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated {e.g., recombinant production in a host cell; multiple copies of a gene encoding the substance; and use of a stronger promoter than the promoter naturally associated with the gene encoding the substance).
Mature polypeptide: The term "mature polypeptide" means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc. In one aspect, the mature polypeptide is amino acids 23 to 252 of SEQ ID NO: 2 or amino acids 23 to 302 of SEQ ID NO: 4 based on the SignalP 3.0 program (Bendtsen et al., 2004, J. Mol. Biol. 340: 783-795) that predicts amino acids 1 to 22 of SEQ ID NO: 2 and 1 to 22 of SEQ ID NO: 4 are signal peptides. It is further confirmed by the N-terminal sequencing, showing mature peptide begins with QKTGKTT corresponding to residues 23-29 of SEQ ID NO: 2, which is consistent with the prediction that amino acids 1 to 22 of SEQ ID NO: 2 are a signal peptide, and mature peptide begins with VSGTGQT corresponding to residues 23-29 of SEQ ID NO: 4, which is consistent with the prediction that amino acids 1 to 22 of SEQ ID NO: 4 are a signal peptide.
It is known in the art that a host cell may produce a mixture of two of more different mature polypeptides (i.e., with a different C-terminal and/or N-terminal amino acid) expressed by the same polynucleotide. It is also known in the art that different host cells process polypeptides differently, and thus, one host cell expressing a polynucleotide may produce a different mature polypeptide {e.g., having a different C-terminal and/or N-terminal amino acid) as compared to another host cell expressing the same polynucleotide. In one aspect, a mature polypeptides contains up to 105%, 1 10%, and 1 15% of the number of amino acids of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4.
Mature polypeptide coding sequence: The term "mature polypeptide coding sequence" means a polynucleotide that encodes a mature polypeptide having endoglucanase activity. In one aspect, the mature polypeptide coding sequence is nucleotides 67 to 808 of SEQ ID NO: 1 or the cDNA sequence thereof based on the SignalP 3.0 program (Bendtsen et al., 2004, supra)] that predicts nucleotides 1 to 66 of SEQ ID NO: 1 encode a signal peptide. In another aspect, the mature polypeptide coding sequence is nucleotides 67 to 1020 of SEQ ID NO: 3, or the cDNA sequence thereof based on the program SignalP 3.0 (Bendtsen et al., 2004, supra) that predicts nucleotides 1 to 66 of SEQ ID NO: 3 encode a signal peptide.
Medium stringency conditions : The term "medium stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 55°C. Medium-high stringency conditions : The term "medium-high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 60°C.
Nucleic acid construct: The term "nucleic acid construct" means a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or is modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature or which is synthetic, which comprises one or more control sequences.
Operably linked : The term "operably linked" means a configuration in which a control sequence is placed at an appropriate position relative to the coding sequence of a polynucleotide such that the control sequence directs expression of the coding sequence.
Sequence identity: The relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter "sequence identity".
For purposes of the present invention, the sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix. The output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:
(Identical Residues x 100)/(Length of Alignment - Total Number of Gaps in Alignment) For purposes of the present invention, the sequence identity between two deoxyribonucleotide sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, supra) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, supra), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix. The output of Needle labeled "longest identity" (obtained using the -nobrief option) is used as the percent identity and is calculated as follows:
(Identical Deoxyribonucleotides x 100)/(Length of Alignment - Total Number of Gaps in Alignment)
Subsequence: The term "subsequence" means a polynucleotide having one or more
{e.g., several) nucleotides absent from the 5' and/or 3' end of a mature polypeptide coding sequence; wherein the subsequence encodes a fragment having endoglucanase activity. Variant: The term "variant" means a polypeptide having endoglucanase activity comprising an alteration, i.e., a substitution, insertion, and/or deletion, at one or more {e.g., several) positions. A substitution means replacement of the amino acid occupying a position with a different amino acid; a deletion means removal of the amino acid occupying a position; and an insertion means adding one or more {e.g., several) amino acids, e.g., 1-5 amino acids, adjacent to the amino acid occupying a position.
Very high stringency conditions: The term "very high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 0.2X SSC, 0.2% SDS at 70°C.
Detailed Description of the Invention
Polypeptides Having Endoglucanase Activity
In an embodiment, the present invention relates to isolated polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 2 of at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, which have endoglucanase activity. In an embodiment, the present invention relates to isolated polypeptides having a sequence identity to the mature polypeptide of SEQ ID NO: 4 of at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, which have endoglucanase activity. In one aspect, the polypeptides differ by up to 10 amino acids, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10, from the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4.
A polypeptide of the present invention preferably comprises or consists of the amino acid sequence of SEQ ID NO: 2 or SEQ ID NO: 4, or an allelic variant thereof; or is a fragment thereof having endoglucanase activity. In another aspect, the polypeptide comprises or consists of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4. In another aspect, the polypeptide comprises or consists of amino acids 23 to 252 of SEQ ID NO: 2 or amino acids 23 to 302 of SEQ ID NO: 4.
In another embodiment, the present invention relates to an isolated polypeptide having endoglucanase activity encoded by a polynucleotide that hybridizes under very low stringency conditions, low stringency conditions, medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii) (Sambrook et ai, 1989, Molecular Cloning, A Laboratory Manual, 2d edition, Cold Spring Harbor, New York). The polynucleotide of SEQ ID NO: 1 or SEQ ID NO: 3, or a subsequence thereof, as well as the polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4 or a fragment thereof, may be used to design nucleic acid probes to identify and clone DNA encoding polypeptides having endoglucanase activity from strains of different genera or species according to methods well known in the art. In particular, such probes can be used for hybridization with the genomic DNA or cDNA of a cell of interest, following standard Southern blotting procedures, in order to identify and isolate the corresponding gene therein. Such probes can be considerably shorter than the entire sequence, but should be at least 15, e.g., at least 25, at least 35, or at least 70 nucleotides in length. Preferably, the nucleic acid probe is at least 100 nucleotides in length, e.g., at least 200 nucleotides, at least 300 nucleotides, at least 400 nucleotides, at least 500 nucleotides, at least 600 nucleotides, at least 700 nucleotides, at least 800 nucleotides, or at least 900 nucleotides in length. Both DNA and RNA probes can be used. The probes are typically labeled for detecting the corresponding gene (for example, with 32P, 3H, 35S, biotin, or avidin). Such probes are encompassed by the present invention.
A genomic DNA or cDNA library prepared from such other strains may be screened for
DNA that hybridizes with the probes described above and encodes a polypeptide having endoglucanase activity. Genomic or other DNA from such other strains may be separated by agarose or polyacrylamide gel electrophoresis, or other separation techniques. DNA from the libraries or the separated DNA may be transferred to and immobilized on nitrocellulose or other suitable carrier material. In order to identify a clone or DNA that hybridizes with SEQ ID NO: 1 or SEQ ID NO: 3 or a subsequence thereof, the carrier material is used in a Southern blot.
For purposes of the present invention, hybridization indicates that the polynucleotide hybridizes to a labeled nucleic acid probe corresponding to (i) SEQ ID NO: 1 or SEQ ID NO: 3; (ii) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3; (iii) the cDNA sequence thereof; (iv) the full-length complement thereof; or (v) a subsequence thereof; under very low to very high stringency conditions. Molecules to which the nucleic acid probe hybridizes under these conditions can be detected using, for example, X-ray film or any other detection means known in the art.
In another aspect, the nucleic acid probe is a polynucleotide that encodes the polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4; the mature polypeptide thereof; or a fragment thereof. In another aspect, the nucleic acid probe is SEQ ID NO: 1 or SEQ ID NO: 3 or the cDNA sequence thereof.
In another embodiment, the present invention relates to an isolated polypeptide having endoglucanase activity encoded by a polynucleotide having a sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 or the cDNA sequence thereof of at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%. In another embodiment, the present invention relates to an isolated polypeptide having endoglucanase activity encoded by a polynucleotide having a sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 3 or the cDNA sequence thereof of at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
In another embodiment, the present invention relates to variants of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more {e.g., several) positions. In an embodiment, the number of amino acid substitutions, deletions and/or insertions introduced into the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4 is up to 10, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10. The amino acid changes may be of a minor nature, that is conservative amino acid substitutions or insertions that do not significantly affect the folding and/or activity of the protein; small deletions, typically of 1 -30 amino acids; small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker peptide of up to 20-25 residues; or a small extension that facilitates purification by changing net charge or another function, such as a poly-histidine tract, an antigenic epitope or a binding domain.
Examples of conservative substitutions are within the groups of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine, serine, threonine and methionine). Amino acid substitutions that do not generally alter specific activity are known in the art and are described, for example, by H. Neurath and R.L. Hill, 1979, In, The Proteins, Academic Press, New York. Common substitutions are Ala/Ser, Val/lle, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/lle, Leu/Val, Ala/Glu, and Asp/Gly.
Alternatively, the amino acid changes are of such a nature that the physico-chemical properties of the polypeptides are altered. For example, amino acid changes may improve the thermal stability of the polypeptide, alter the substrate specificity, change the pH optimum, and the like.
Essential amino acids in a polypeptide can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, 1989, Science 244: 1081-1085). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for endoglucanase activity to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton et al., 1996, J. Biol. Chem. 271 : 4699-4708. The active site of the enzyme or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction, or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos et al., 1992, Science 255: 306-312; Smith et al., 1992, J. Mol. Biol. 224: 899-904; Wlodaver et al., 1992, FEBS Lett. 309: 59-64. The identity of essential amino acids can also be inferred from an alignment with a related polypeptide.
Single or multiple amino acid substitutions, deletions, and/or insertions can be made and tested using known methods of mutagenesis, recombination, and/or shuffling, followed by a relevant screening procedure, such as those disclosed by Reidhaar-Olson and Sauer, 1988, Science 241 : 53-57; Bowie and Sauer, 1989, Proc. Natl. Acad. Sci. USA 86: 2152-2156; WO 95/17413; or WO 95/22625. Other methods that can be used include error-prone PCR, phage display {e.g., Lowman et al., 1991 , Biochemistry 30: 10832-10837; U.S. Patent No. 5,223,409; WO 92/06204), and region-directed mutagenesis (Derbyshire et al., 1986, Gene 46: 145; Ner et al., 1988, DM4 7: 127).
Mutagenesis/shuffling methods can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides expressed by host cells (Ness et al., 1999, Nature Biotechnology 17: 893-896). Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly sequenced using standard methods in the art. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide.
The polypeptide may be a hybrid polypeptide in which a region of one polypeptide is fused at the N-terminus or the C-terminus of a region of another polypeptide.
The polypeptide may be a fusion polypeptide or cleavable fusion polypeptide in which another polypeptide is fused at the N-terminus or the C-terminus of the polypeptide of the present invention. A fusion polypeptide is produced by fusing a polynucleotide encoding another polypeptide to a polynucleotide of the present invention. Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fusion polypeptide is under control of the same promoter(s) and terminator. Fusion polypeptides may also be constructed using intein technology in which fusion polypeptides are created post-translationally (Cooper et al., 1993, EMBO J. 12: 2575-2583; Dawson et al., 1994, Science 266: 776-779).
A fusion polypeptide can further comprise a cleavage site between the two polypeptides. Upon secretion of the fusion protein, the site is cleaved releasing the two polypeptides. Examples of cleavage sites include, but are not limited to, the sites disclosed in Martin et al., 2003, J. Ind. Microbiol. Biotechnol. 3: 568-576; Svetina et al., 2000, J. Biotechnol. 76: 245-251 ; Rasmussen-Wilson et al., 1997, Appl. Environ. Microbiol. 63: 3488-3493; Ward et al., 1995, Biotechnology 13: 498-503; and Contreras et al., 1991 , Biotechnology 9: 378-381 ; Eaton et al., 1986, Biochemistry 25: 505-512; Collins-Racie et al., 1995, Biotechnology 13: 982- 987; Carter et al., 1989, Proteins: Structure, Function, and Genetics 6: 240-248; and Stevens, 2003, Drug Discovery World 4: 35-48.
Sources of Polypeptides Having Endoglucanase Activity
A polypeptide having endoglucanase activity of the present invention may be obtained from microorganisms of any genus. For purposes of the present invention, the term "obtained from" as used herein in connection with a given source shall mean that the polypeptide encoded by a polynucleotide is produced by the source or by a strain in which the polynucleotide from the source has been inserted. In one aspect, the polypeptide obtained from a given source is secreted extracellularly.
The polypeptide may be a fungal polypeptide. For example, the polypeptide may be a filamentous fungal polypeptide such as a Sporormia polypeptide. In another aspect, the polypeptide is a Sporormia fimetaria polypeptide.
The polypeptide may be a filamentous fungal polypeptide such as a Geomyces polypeptide.
In another aspect, the polypeptide is a Geomyces asperulatus, Geomyces auratus, Geomyces cretaceus, Geomyces destructans, Geomyces laevis, Geomyces pannorum, Geomyces pulvereus, Geomyces sulphureus, or Geomyces vinaceus polypeptide.
In another aspect, the polypeptide is a Geomyces pannorum polypeptide.
It will be understood that for the aforementioned species, the invention encompasses both the perfect and imperfect states, and other taxonomic equivalents, e.g., anamorphs, regardless of the species name by which they are known. Those skilled in the art will readily recognize the identity of appropriate equivalents.
Strains of these species are readily accessible to the public in a number of culture collections, such as the American Type Culture Collection (ATCC), Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Centraalbureau Voor Schimmelcultures (CBS), and Agricultural Research Service Patent Culture Collection, Northern Regional Research Center (NRRL).
The polypeptide may be identified and obtained from other sources including microorganisms isolated from nature {e.g., soil, composts, water, etc.) or DNA samples obtained directly from natural materials {e.g., soil, composts, water, etc.) using the above- mentioned probes. Techniques for isolating microorganisms and DNA directly from natural habitats are well known in the art. A polynucleotide encoding the polypeptide may then be obtained by similarly screening a genomic DNA or cDNA library of another microorganism or mixed DNA sample. Once a polynucleotide encoding a polypeptide has been detected with the probe(s), the polynucleotide can be isolated or cloned by utilizing techniques that are known to those of ordinary skill in the art (see, e.g., Sambrook et al., 1989, supra). Catalytic Domains
In one embodiment, the present invention also relates to catalytic domains having a sequence identity to amino acids 23 to 227 of SEQ ID NO: 2 of at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%. In one aspect, the catalytic domains comprise amino acid sequences that differ by up to 10 amino acids, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10, from amino acids 23 to 227 of SEQ ID NO: 2.
In one embodiment, the present invention also relates to catalytic domains having a sequence identity to amino acids 26 to 231 of SEQ ID NO: 4 of at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%. In one aspect, the catalytic domains comprise amino acid sequences that differ by up to 10 amino acids, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10, from amino acids 26 to 231 of SEQ ID NO: 4. The catalytic domain preferably comprises or consists of amino acids 23 to 227 of SEQ ID NO: 2 or an allelic variant thereof; or is a fragment thereof having endoglucanase activity.
The catalytic domain preferably comprises or consists of amino acids 26 to 231 of SEQ
ID NO: 4 or an allelic variant thereof; or is a fragment thereof having endoglucanase activity.
In another embodiment, the present invention also relates to catalytic domains encoded by polynucleotides that hybridize under very low stringency conditions, low stringency conditions, medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions (as defined above) with (i) the nucleotides 67 to 733 of SEQ ID NO: 1 or the nucleotides 76 to 807 of SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii) (Sambrook et al., 1989, supra).
In another embodiment, the present invention also relates to catalytic domains encoded by polynucleotides having a sequence identity to nucleotides 67 to 733 of SEQ ID NO: 1 or the cDNA sequence thereof of at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
In another embodiment, the present invention also relates to catalytic domains encoded by polynucleotides having a sequence identity to nucleotides 76 to 807 of SEQ ID NO: 3 or the cDNA sequence thereof at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
The polynucleotide encoding the catalytic domain preferably comprises or consists of nucleotides 67 to 733 of SEQ ID NO: 1 .
The polynucleotide encoding the catalytic domain preferably comprises or consists of nucleotides 76 to 807 of SEQ ID NO: 3.
In another embodiment, the present invention also relates to catalytic domain variants of amino acids 23 to 227 of SEQ ID NO: 2 or amino acids 26 to 231 of SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more {e.g., several) positions. In one aspect, the number of amino acid substitutions, deletions and/or insertions introduced into the sequence of amino acids 23 to 227 of SEQ ID NO: 2 or amino acids 26 to 231 of SEQ ID NO: 4 is up to 10, e.g., 1 , 2, 3, 4, 5, 6, 8, 9, or 10. Binding Domains
In one embodiment, the present invention also relates to cellulose binding domains having a sequence identity to amino acids 265 to 302 of SEQ ID NO: 4 of at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%. In one aspect, the cellulose binding domains comprise amino acid sequences that differ by up to 10 amino acids, e.g., 1 , 2, 3, 4, 5, 6, 7, 8, 9, or 10, from amino acids 265 to 302 of SEQ ID NO: 4.
The cellulose binding domain preferably comprises or consists of amino acids 265 to 302 of SEQ ID NO: 4 or an allelic variant thereof; or is a fragment thereof having cellulose binding activity.
In another embodiment, the present invention also relates to cellulose binding domains encoded by polynucleotides that hybridize under medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions (as defined above) with (i) the nucleotides 907 to 1020 of SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii) (Sambrook et al., 1989, supra).
In another embodiment, the present invention also relates to cellulose binding domains encoded by polynucleotides having a sequence identity to nucleotides 907 to 1020 of SEQ ID NO: 3 of at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.
In another embodiment, the present invention also relates to cellulose binding domain variants of amino acids 265 to 302 of SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more {e.g., several) positions. In one aspect, the number of amino acid substitutions, deletions and/or insertions introduced into the sequence of amino acids 265 to 302 of SEQ ID NO: 4 is up to 10, e.g., 1 , 2, 3, 4, 5, 6, 8, 9, or 10.
A catalytic domain operably linked to the cellulose binding domain may be from a hydrolase, isomerase, ligase, lyase, oxidoreductase, or transferase, e.g., an aminopeptidase, amylase, carbohydrase, carboxypeptidase, catalase, cellobiohydrolase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, endoglucanase, esterase, alpha-galactosidase, beta-galactosidase, glucoamylase, alpha-glucosidase, beta-glucosidase, invertase, laccase, lipase, mannosidase, mutanase, oxidase, pectinolytic enzyme, peroxidase, phytase, polyphenoloxidase, proteolytic enzyme, ribonuclease, transglutaminase, xylanase, or beta-xylosidase. The polynucleotide encoding the catalytic domain may be obtained from any prokaryotic, eukaryotic, or other source. Polynucleotides
The present invention also relates to isolated polynucleotides encoding a polypeptide, a catalytic domain, or cellulose binding domain of the present invention, as described herein.
The techniques used to isolate or clone a polynucleotide are known in the art and include isolation from genomic DNA or cDNA, or a combination thereof. The cloning of the polynucleotides from genomic DNA can be effected, e.g., by using the well known polymerase chain reaction (PCR) or antibody screening of expression libraries to detect cloned DNA fragments with shared structural features. See, e.g., Innis et al., 1990, PCR: A Guide to Methods and Application, Academic Press, New York. Other nucleic acid amplification procedures such as ligase chain reaction (LCR), ligation activated transcription (LAT) and polynucleotide-based amplification (NASBA) may be used. The polynucleotides may be cloned from a strain of Sporormia, or a related organism and thus, for example, may be an allelic or species variant of the polypeptide encoding region of the polynucleotide.
Modification of a polynucleotide encoding a polypeptide of the present invention may be necessary for synthesizing polypeptides substantially similar to the polypeptide. The term "substantially similar" to the polypeptide refers to non-naturally occurring forms of the polypeptide. These polypeptides may differ in some engineered way from the polypeptide isolated from its native source, e.g., variants that differ in specific activity, thermostability, pH optimum, or the like. The variants may be constructed on the basis of the polynucleotide presented as the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO:3 or the cDNA sequence thereof, e.g., a subsequence thereof, and/or by introduction of nucleotide substitutions that do not result in a change in the amino acid sequence of the polypeptide, but which correspond to the codon usage of the host organism intended for production of the enzyme, or by introduction of nucleotide substitutions that may give rise to a different amino acid sequence. For a general description of nucleotide substitution, see, e.g., Ford et a/., 1991 , Protein Expression and Purification 2: 95-107.
Nucleic Acid Constructs
The present invention also relates to nucleic acid constructs comprising a polynucleotide of the present invention operably linked to one or more control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.
The polynucleotide may be manipulated in a variety of ways to provide for expression of the polypeptide. Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art. The control sequence may be a promoter, a polynucleotide that is recognized by a host cell for expression of a polynucleotide encoding a polypeptide of the present invention. The promoter contains transcriptional control sequences that mediate the expression of the polypeptide. The promoter may be any polynucleotide that shows transcriptional activity in the host cell including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.
Examples of suitable promoters for directing transcription of the nucleic acid constructs of the present invention in a bacterial host cell are the promoters obtained from the Bacillus amyloliquefaciens alpha-amylase gene (amyQ), Bacillus licheniformis alpha-amylase gene {amyL), Bacillus licheniformis penicillinase gene {penP), Bacillus stearothermophilus maltogenic amylase gene {amyM), Bacillus subtilis levansucrase gene {sacB), Bacillus subtilis xylA and xylB genes, Bacillus thuringiensis crylllA gene (Agaisse and Lereclus, 1994, Molecular Microbiology 13: 97-107), E. coli lac operon, E. coli trc promoter (Egon et al., 1988, Gene 69: 301 -315), Streptomyces coelicolor agarase gene {dagA), and prokaryotic beta- lactamase gene (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. USA 75: 3727-3731 ), as well as the tac promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. USA 80: 21-25). Further promoters are described in "Useful proteins from recombinant bacteria" in Gilbert et al., 1980, Scientific American 242: 74-94; and in Sambrook et al., 1989, supra. Examples of tandem promoters are disclosed in WO 99/43835.
Examples of suitable promoters for directing transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus nidulans acetamidase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase {glaA), Aspergillus oryzae TAKA amylase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Fusarium oxysporum trypsin-like protease (WO 96/00787), Fusarium venenatum amyloglucosidase (WO 00/56900), Fusarium venenatum Daria (WO 00/56900), Fusarium venenatum Quinn (WO 00/56900), Rhizomucor miehei lipase, Rhizomucor miehei aspartic proteinase, Trichoderma reesei beta-glucosidase, Trichoderma reesei cellobiohydrolase I, Trichoderma reesei cellobiohydrolase II, Trichoderma reesei endoglucanase I, Trichoderma reesei endoglucanase II, Trichoderma reesei endoglucanase III, Trichoderma reesei endoglucanase V, Trichoderma reesei xylanase I, Trichoderma reesei xylanase II, Trichoderma reesei xylanase III, Trichoderma reesei beta-xylosidase, and Trichoderma reesei translation elongation factor, as well as the NA2-tpi promoter (a modified promoter from an Aspergillus neutral alpha-amylase gene in which the untranslated leader has been replaced by an untranslated leader from an Aspergillus triose phosphate isomerase gene; non-limiting examples include modified promoters from an Aspergillus niger neutral alpha- amylase gene in which the untranslated leader has been replaced by an untranslated leader from an Aspergillus nidulans or Aspergillus oryzae triose phosphate isomerase gene); and mutant, truncated, and hybrid promoters thereof. Other promoters are described in U.S. Patent No. 6,01 1 ,147.
In a yeast host, useful promoters are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1 ), Saccharomyces cerevisiae galactokinase (GAL1 ), Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH1 , ADH2/GAP), Saccharomyces cerevisiae triose phosphate isomerase (TPI), Saccharomyces cerevisiae metallothionein (CUP1 ), and Saccharomyces cerevisiae 3-phosphoglycerate kinase. Other useful promoters for yeast host cells are described by Romanos et al., 1992, Yeast 8: 423-488.
The control sequence may also be a transcription terminator, which is recognized by a host cell to terminate transcription. The terminator is operably linked to the 3'-terminus of the polynucleotide encoding the polypeptide. Any terminator that is functional in the host cell may be used in the present invention.
Preferred terminators for bacterial host cells are obtained from the genes for Bacillus clausii alkaline protease {aprH), Bacillus licheniformis alpha-amylase (amyL), and Escherichia coli ribosomal RNA (rrnB).
Preferred terminators for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans acetamidase, Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase, Aspergillus oryzae TAKA amylase, Fusarium oxysporum trypsin-like protease, Trichoderma reesei beta-glucosidase, Trichoderma reesei cellobiohydrolase I, Trichoderma reesei cellobiohydrolase II, Trichoderma reesei endoglucanase I, Trichoderma reesei endoglucanase II, Trichoderma reesei endoglucanase III, Trichoderma reesei endoglucanase V, Trichoderma reesei xylanase I, Trichoderma reesei xylanase II, Trichoderma reesei xylanase III, Trichoderma reesei beta-xylosidase, and Trichoderma reesei translation elongation factor.
Preferred terminators for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase, Saccharomyces cerevisiae cytochrome C (CYC1 ), and Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase. Other useful terminators for yeast host cells are described by Romanos et al., 1992, supra.
The control sequence may also be an mRNA stabilizer region downstream of a promoter and upstream of the coding sequence of a gene which increases expression of the gene.
Examples of suitable mRNA stabilizer regions are obtained from a Bacillus thuringiensis crylllA gene (WO 94/25612) and a Bacillus subtilis SP82 gene (Hue et al., 1995, Journal of Bacteriology 177: 3465-3471 ). The control sequence may also be a leader, a nontranslated region of an mRNA that is important for translation by the host cell. The leader is operably linked to the 5'-terminus of the polynucleotide encoding the polypeptide. Any leader that is functional in the host cell may be used.
Preferred leaders for filamentous fungal host cells are obtained from the genes for
Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase.
Suitable leaders for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase (ENO-1 ), Saccharomyces cerevisiae 3-phosphoglycerate kinase, Saccharomyces cerevisiae alpha-factor, and Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).
The control sequence may also be a polyadenylation sequence, a sequence operably linked to the 3'-terminus of the polynucleotide and, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell may be used.
Preferred polyadenylation sequences for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase Aspergillus oryzae TAKA amylase, and Fusarium oxysporum trypsin-like protease.
Useful polyadenylation sequences for yeast host cells are described by Guo and Sherman, 1995, Mol. Cellular Biol. 15: 5983-5990.
The control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a polypeptide and directs the polypeptide into the cell's secretory pathway. The 5'-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding sequence naturally linked in translation reading frame with the segment of the coding sequence that encodes the polypeptide. Alternatively, the 5'-end of the coding sequence may contain a signal peptide coding sequence that is foreign to the coding sequence. A foreign signal peptide coding sequence may be required where the coding sequence does not naturally contain a signal peptide coding sequence. Alternatively, a foreign signal peptide coding sequence may simply replace the natural signal peptide coding sequence in order to enhance secretion of the polypeptide. However, any signal peptide coding sequence that directs the expressed polypeptide into the secretory pathway of a host cell may be used.
Effective signal peptide coding sequences for bacterial host cells are the signal peptide coding sequences obtained from the genes for Bacillus NCIB 1 1837 maltogenic amylase, Bacillus licheniformis subtilisin, Bacillus licheniformis beta-lactamase, Bacillus stearothermophilus alpha-amylase, Bacillus stearothermophilus neutral proteases {nprT, nprS, nprM), and Bacillus subtilis prsA. Further signal peptides are described by Simonen and Palva, 1993, Microbiological Reviews 57: 109-137. Effective signal peptide coding sequences for filamentous fungal host cells are the signal peptide coding sequences obtained from the genes for Aspergillus niger neutral amylase, Aspergillus niger glucoamylase, Aspergillus oryzae TAKA amylase, Humicola insolens cellulase, Humicola insolens endoglucanase V, Humicola lanuginosa lipase, and Rhizomucor miehei aspartic proteinase.
Useful signal peptides for yeast host cells are obtained from the genes for Saccharomyces cerevisiae alpha-factor and Saccharomyces cerevisiae invertase. Other useful signal peptide coding sequences are described by Romanos et al., 1992, supra.
The control sequence may also be a propeptide coding sequence that encodes a propeptide positioned at the N-terminus of a polypeptide. The resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases). A propolypeptide is generally inactive and can be converted to an active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide coding sequence may be obtained from the genes for Bacillus subtilis alkaline protease {aprE), Bacillus subtilis neutral protease {nprT), Myceliophthora thermophila laccase (WO 95/33836), Rhizomucor miehei aspartic proteinase, and Saccharomyces cerevisiae alpha-factor.
Where both signal peptide and propeptide sequences are present, the propeptide sequence is positioned next to the N-terminus of a polypeptide and the signal peptide sequence is positioned next to the N-terminus of the propeptide sequence.
It may also be desirable to add regulatory sequences that regulate expression of the polypeptide relative to the growth of the host cell. Examples of regulatory sequences are those that cause expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Regulatory sequences in prokaryotic systems include the lac, tac, and trp operator systems. In yeast, the ADH2 system or GAL1 system may be used. In filamentous fungi, the Aspergillus niger glucoamylase promoter, Aspergillus oryzae TAKA alpha-amylase promoter, and Aspergillus oryzae glucoamylase promoter, Trichoderma reesei cellobiohydrolase I promoter, and Trichoderma reesei cellobiohydrolase II promoter may be used. Other examples of regulatory sequences are those that allow for gene amplification. In eukaryotic systems, these regulatory sequences include the dihydrofolate reductase gene that is amplified in the presence of methotrexate, and the metallothionein genes that are amplified with heavy metals. In these cases, the polynucleotide encoding the polypeptide would be operably linked to the regulatory sequence.
Expression Vectors
The present invention also relates to recombinant expression vectors comprising a polynucleotide of the present invention, a promoter, and transcriptional and translational stop signals. The various nucleotide and control sequences may be joined together to produce a recombinant expression vector that may include one or more convenient restriction sites to allow for insertion or substitution of the polynucleotide encoding the polypeptide at such sites. Alternatively, the polynucleotide may be expressed by inserting the polynucleotide or a nucleic acid construct comprising the polynucleotide into an appropriate vector for expression. In creating the expression vector, the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.
The recombinant expression vector may be any vector (e.g., a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about expression of the polynucleotide. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced. The vector may be a linear or closed circular plasmid.
The vector may be an autonomously replicating vector, i.e., a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one that, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Furthermore, a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon, may be used.
The vector preferably contains one or more selectable markers that permit easy selection of transformed, transfected, transduced, or the like cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.
Examples of bacterial selectable markers are Bacillus licheniformis or Bacillus subtilis dal genes, or markers that confer antibiotic resistance such as ampicillin, chloramphenicol, kanamycin, neomycin, spectinomycin, or tetracycline resistance. Suitable markers for yeast host cells include, but are not limited to, ADE2, HIS3, LEU2, LYS2, MET3, TRP1 , and URA3. Selectable markers for use in a filamentous fungal host cell include, but are not limited to, adeA (phosphoribosylaminoimidazole-succinocarboxamide synthase), adeB (phosphoribosyl- aminoimidazole synthase), amdS (acetamidase), argB (ornithine carbamoyltransferase), bar (phosphinothricin acetyltransferase), hph (hygromycin phosphotransferase), niaD (nitrate reductase), pyrG (orotidine-5'-phosphate decarboxylase), sC (sulfate adenyltransferase), and trpC (anthranilate synthase), as well as equivalents thereof. Preferred for use in an Aspergillus cell are Aspergillus nidulans or Aspergillus oryzae amdS and pyrG genes and a Streptomyces hygroscopicus bar gene. Preferred for use in a Trichoderma cell are adeA, adeB, amdS, hph, and pyrG genes. The selectable marker may be a dual selectable marker system as described in WO 2010/039889. In one aspect, the dual selectable marker is a hph-tk dual selectable marker system.
The vector preferably contains an element(s) that permits integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.
For integration into the host cell genome, the vector may rely on the polynucleotide's sequence encoding the polypeptide or any other element of the vector for integration into the genome by homologous or non-homologous recombination. Alternatively, the vector may contain additional polynucleotides for directing integration by homologous recombination into the genome of the host cell at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, the integrational elements should contain a sufficient number of nucleic acids, such as 100 to 10,000 base pairs, 400 to 10,000 base pairs, and 800 to 10,000 base pairs, which have a high degree of sequence identity to the corresponding target sequence to enhance the probability of homologous recombination. The integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding polynucleotides. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.
For autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question. The origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell. The term "origin of replication" or "plasmid replicator" means a polynucleotide that enables a plasmid or vector to replicate in vivo.
Examples of bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, and pACYC184 permitting replication in E. coli, and pUB1 10, pE194, pTA1060, and ρΑΜβΙ permitting replication in Bacillus.
Examples of origins of replication for use in a yeast host cell are the 2 micron origin of replication, ARS1 , ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6.
Examples of origins of replication useful in a filamentous fungal cell are AMA1 and ANSI (Gems et al., 1991 , Gene 98: 61 -67; Cullen et al., 1987, Nucleic Acids Res. 15: 9163- 9175; WO 00/24883). Isolation of the AMA1 gene and construction of plasmids or vectors comprising the gene can be accomplished according to the methods disclosed in WO 00/24883.
More than one copy of a polynucleotide of the present invention may be inserted into a host cell to increase production of a polypeptide. An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.
The procedures used to ligate the elements described above to construct the recombinant expression vectors of the present invention are well known to one skilled in the art (see, e.g., Sambrook et al., 1989, supra). Host Cells
The present invention also relates to recombinant host cells, comprising a polynucleotide of the present invention operably linked to one or more control sequences that direct the production of a polypeptide of the present invention. A construct or vector comprising a polynucleotide is introduced into a host cell so that the construct or vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier. The term "host cell" encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The choice of a host cell will to a large extent depend upon the gene encoding the polypeptide and its source.
The host cell may be any cell useful in the recombinant production of a polypeptide of the present invention, e.g., a prokaryote or a eukaryote.
The prokaryotic host cell may be any Gram-positive or Gram-negative bacterium. Gram- positive bacteria include, but are not limited to, Bacillus, Clostridium, Enterococcus, Geobacillus, Lactobacillus, Lactococcus, Oceanobacillus, Staphylococcus, Streptococcus, and Streptomyces. Gram-negative bacteria include, but are not limited to, Campylobacter, E. coli, Flavobacterium, Fusobacterium, Helicobacter, llyobacter, Neisseria, Pseudomonas, Salmonella, and Ureaplasma.
The bacterial host cell may be any Bacillus cell including, but not limited to, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis, and Bacillus thuringiensis cells.
The bacterial host cell may also be any Streptococcus cell including, but not limited to, Streptococcus equisimilis, Streptococcus pyogenes, Streptococcus uberis, and Streptococcus equi subsp. Zooepidemicus cells.
The bacterial host cell may also be any Streptomyces cell including, but not limited to,
Streptomyces achromogenes, Streptomyces avermitilis, Streptomyces coelicolor, Streptomyces griseus, and Streptomyces lividans cells. The introduction of DNA into a Bacillus cell may be effected by protoplast transformation (see, e.g., Chang and Cohen, 1979, Mol. Gen. Genet. 168: 1 1 1-1 15), competent cell transformation (see, e.g., Young and Spizizen, 1961 , J. Bacteriol. 81 : 823-829, or Dubnau and Davidoff-Abelson, 1971 , J. Mol. Biol. 56: 209-221 ), electroporation (see, e.g., Shigekawa and Dower, 1988, Biotechniques 6: 742-751 ), or conjugation (see, e.g., Koehler and Thorne, 1987, J. Bacteriol. 169: 5271 -5278). The introduction of DNA into an E. coli cell may be effected by protoplast transformation (see, e.g., Hanahan, 1983, J. Mol. Biol. 166: 557-580) or electroporation (see, e.g., Dower et al, 1988, Nucleic Acids Res. 16: 6127-6145). The introduction of DNA into a Streptomyces cell may be effected by protoplast transformation, electroporation (see, e.g., Gong et al., 2004, Folia Microbiol. {Praha) 49: 399-405), conjugation (see, e.g., Mazodier et al., 1989, J. Bacteriol. 171 : 3583-3585), or transduction (see, e.g., Burke et al., 2001 , Proc. Natl. Acad. Sci. USA 98: 6289-6294). The introduction of DNA into a Pseudomonas cell may be effected by electroporation (see, e.g., Choi et al., 2006, J. Microbiol. Methods 64: 391-397) or conjugation (see, e.g., Pinedo and Smets, 2005, Appl. Environ. Microbiol. 71 : 51-57). The introduction of DNA into a Streptococcus cell may be effected by natural competence (see, e.g., Perry and Kuramitsu, 1981 , Infect. Immun. 32: 1295-1297), protoplast transformation (see, e.g., Catt and Jollick, 1991 , Microbios 68: 189-207), electroporation (see, e.g., Buckley et al., 1999, Appl. Environ. Microbiol. 65: 3800-3804), or conjugation (see, e.g., Clewell, 1981 , Microbiol. Rev. 45: 409-436). However, any method known in the art for introducing DNA into a host cell can be used.
The host cell may also be a eukaryote, such as a mammalian, insect, plant, or fungal cell.
The host cell may be a fungal cell. "Fungi" as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota as well as the Oomycota and all mitosporic fungi (as defined by Hawksworth et al., In, Ainsworth and Bisby's Dictionary of The Fungi, 8th edition, 1995, CAB International, University Press, Cambridge, UK).
The fungal host cell may be a yeast cell. "Yeast" as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfecti (Blastomycetes). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in Biology and Activities of Yeast (Skinner, Passmore, and Davenport, editors, Soc. App. Bacteriol. Symposium Series No. 9, 1980).
The yeast host cell may be a Candida, Hansenula, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia cell, such as a Kluyveromyces lactis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis, Saccharomyces oviformis, or Yarrowia lipolytica cell. The fungal host cell may be a filamentous fungal cell. "Filamentous fungi" include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth et al., 1995, supra). The filamentous fungi are generally characterized by a mycelial wall composed of chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as Saccharomyces cerevisiae is by budding of a unicellular thallus and carbon catabolism may be fermentative.
The filamentous fungal host cell may be an Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysosporium, Coprinus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Humicola, Magnaporthe, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, or Trichoderma cell.
For example, the filamentous fungal host cell may be an Aspergillus awamori, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis caregiea, Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, Ceriporiopsis rivulosa, Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Chrysosporium inops, Chrysosporium keratinophilum, Chrysosporium lucknowense, Chrysosporium merdarium, Chrysosporium pannicola, Chrysosporium queenslandicum, Chrysosporium tropicum, Chrysosporium zonatum, Coprinus cinereus, Coriolus hirsutus, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium purpurogenum, Phanerochaete chrysosporium, Phlebia radiata, Pleurotus eryngii, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, or Trichoderma viride cell.
Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known per se. Suitable procedures for transformation of Aspergillus and Trichoderma host cells are described in EP 238023, Yelton et al., 1984, Proc. Natl. Acad. Sci. USA 81 : 1470-1474, and Christensen et al., 1988, Bio/Technology 6: 1419-1422. Suitable methods for transforming Fusarium species are described by Malardier et al., 1989, Gene 78: 147-156, and WO 96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, In Abelson, J.N. and Simon, M.I., editors, Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito et al., 1983, J. Bacteriol. 153: 163; and Hinnen et al., 1978, Proc. Natl. Acad. Sci. USA 75: 1920.
Methods of Production
The present invention also relates to methods of producing a polypeptide of the present invention, comprising (a) cultivating a cell, which in its wild-type form produces the polypeptide, under conditions conducive for production of the polypeptide; and optionally, (b) recovering the polypeptide. In one aspect, the cell is a Sporormia cell. In another aspect, the cell is a Sporormia fimetaria cell.
The present invention also relates to methods of producing a polypeptide of the present invention, comprising (a) cultivating a recombinant host cell of the present invention under conditions conducive for production of the polypeptide; and optionally, (b) recovering the polypeptide.
The host cells are cultivated in a nutrient medium suitable for production of the polypeptide using methods known in the art. For example, the cells may be cultivated by shake flask cultivation, or small-scale or large-scale fermentation (including continuous, batch, fed- batch, or solid state fermentations) in laboratory or industrial fermentors in a suitable medium and under conditions allowing the polypeptide to be expressed and/or isolated. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions {e.g., in catalogues of the American Type Culture Collection). If the polypeptide is secreted into the nutrient medium, the polypeptide can be recovered directly from the medium. If the polypeptide is not secreted, it can be recovered from cell lysates.
The polypeptide may be detected using methods known in the art that are specific for the polypeptides. These detection methods include, but are not limited to, use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, an enzyme assay may be used to determine the activity of the polypeptide.
The polypeptide may be recovered using methods known in the art. For example, the polypeptide may be recovered from the nutrient medium by conventional procedures including, but not limited to, collection, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation. In one aspect, a fermentation broth comprising the polypeptide is recovered.
The polypeptide may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures {e.g., preparative isoelectric focusing), differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, Janson and Ryden, editors, VCH Publishers, New York, 1989) to obtain substantially pure polypeptides.
In an alternative aspect, the polypeptide is not recovered, but rather a host cell of the present invention expressing the polypeptide is used as a source of the polypeptide.
Plants
The present invention also relates to isolated plants, e.g., a transgenic plant, plant part, or plant cell, comprising a polynucleotide of the present invention so as to express and produce a polypeptide or domain in recoverable quantities. The polypeptide or domain may be recovered from the plant or plant part. Alternatively, the plant or plant part containing the polypeptide or domain may be used as such for improving the quality of a food or feed, e.g., improving nutritional value, palatability, and rheological properties, or to destroy an antinutritive factor.
The transgenic plant can be dicotyledonous (a dicot) or monocotyledonous (a monocot). Examples of monocot plants are grasses, such as meadow grass (blue grass, Poa), forage grass such as Festuca, Lolium, temperate grass, such as Agrostis, and cereals, e.g., wheat, oats, rye, barley, rice, sorghum, and maize (corn).
Examples of dicot plants are tobacco, legumes, such as lupins, potato, sugar beet, pea, bean and soybean, and cruciferous plants (family Brassicaceae), such as cauliflower, rape seed, and the closely related model organism Arabidopsis thaliana.
Examples of plant parts are stem, callus, leaves, root, fruits, seeds, and tubers as well as the individual tissues comprising these parts, e.g., epidermis, mesophyll, parenchyme, vascular tissues, meristems. Specific plant cell compartments, such as chloroplasts, apoplasts, mitochondria, vacuoles, peroxisomes and cytoplasm are also considered to be a plant part. Furthermore, any plant cell, whatever the tissue origin, is considered to be a plant part. Likewise, plant parts such as specific tissues and cells isolated to facilitate the utilization of the invention are also considered plant parts, e.g., embryos, endosperms, aleurone and seed coats.
Also included within the scope of the present invention are the progeny of such plants, plant parts, and plant cells.
The transgenic plant or plant cell expressing the polypeptide or domain may be constructed in accordance with methods known in the art. In short, the plant or plant cell is constructed by incorporating one or more expression constructs encoding the polypeptide or domain into the plant host genome or chloroplast genome and propagating the resulting modified plant or plant cell into a transgenic plant or plant cell.
The expression construct is conveniently a nucleic acid construct that comprises a polynucleotide encoding a polypeptide or domain operably linked with appropriate regulatory sequences required for expression of the polynucleotide in the plant or plant part of choice. Furthermore, the expression construct may comprise a selectable marker useful for identifying plant cells into which the expression construct has been integrated and DNA sequences necessary for introduction of the construct into the plant in question (the latter depends on the DNA introduction method to be used).
The choice of regulatory sequences, such as promoter and terminator sequences and optionally signal or transit sequences, is determined, for example, on the basis of when, where, and how the polypeptide or domain is desired to be expressed. For instance, the expression of the gene encoding a polypeptide or domain may be constitutive or inducible, or may be developmental, stage or tissue specific, and the gene product may be targeted to a specific tissue or plant part such as seeds or leaves. Regulatory sequences are, for example, described by Tague et al., 1988, Plant Physiology 86: 506.
For constitutive expression, the 35S-CaMV, the maize ubiquitin 1 , or the rice actin 1 promoter may be used (Franck et al., 1980, Cell 2 285-294; Christensen et al., 1992, Plant Mol. Biol. 18: 675-689; Zhang et al., 1991 , Plant Cell 3: 1 155-1 165). Organ-specific promoters may be, for example, a promoter from storage sink tissues such as seeds, potato tubers, and fruits (Edwards and Coruzzi, 1990, Ann. Rev. Genet. 24: 275-303), or from metabolic sink tissues such as meristems (Ito et al., 1994, Plant Mol. Biol. 24: 863-878), a seed specific promoter such as the glutelin, prolamin, globulin, or albumin promoter from rice (Wu et al., 1998, Plant Cell Physiol. 39: 885-889), a Vicia faba promoter from the legumin B4 and the unknown seed protein gene from Vicia faba (Conrad et al., 1998, J. Plant Physiol. 152: 708- 71 1 ), a promoter from a seed oil body protein (Chen et al., 1998, Plant Cell Physiol. 39: 935- 941 ), the storage protein napA promoter from Brassica napus, or any other seed specific promoter known in the art, e.g., as described in WO 91/14772. Furthermore, the promoter may be a leaf specific promoter such as the rbcs promoter from rice or tomato (Kyozuka et al., 1993, Plant Physiol. 102: 991 -1000), the chlorella virus adenine methyltransferase gene promoter (Mitra and Higgins, 1994, Plant Mol. Biol. 26: 85-93), the aldP gene promoter from rice (Kagaya et al., 1995, Mol. Gen. Genet. 248: 668-674), or a wound inducible promoter such as the potato pin2 promoter (Xu et al., 1993, Plant Mol. Biol. 22: 573-588). Likewise, the promoter may be induced by abiotic treatments such as temperature, drought, or alterations in salinity or induced by exogenously applied substances that activate the promoter, e.g., ethanol, oestrogens, plant hormones such as ethylene, abscisic acid, and gibberellic acid, and heavy metals.
A promoter enhancer element may also be used to achieve higher expression of a polypeptide or domain in the plant. For instance, the promoter enhancer element may be an intron that is placed between the promoter and the polynucleotide encoding a polypeptide or domain. For instance, Xu et al., 1993, supra, disclose the use of the first intron of the rice actin 1 gene to enhance expression. The selectable marker gene and any other parts of the expression construct may be chosen from those available in the art.
The nucleic acid construct is incorporated into the plant genome according to conventional techniques known in the art, including Agrobacterium-medlated transformation, virus-mediated transformation, microinjection, particle bombardment, biolistic transformation, and electroporation (Gasser et al., 1990, Science 244: 1293; Potrykus, 1990, Bio/Technology 8: 535; Shimamoto et al., 1989, Nature 338: 274).
Agrobacterium tumefaciens- mediated gene transfer is a method for generating transgenic dicots (for a review, see Hooykas and Schilperoort, 1992, Plant Mol. Biol. 19: 15-38) and for transforming monocots, although other transformation methods may be used for these plants. A method for generating transgenic monocots is particle bombardment (microscopic gold or tungsten particles coated with the transforming DNA) of embryonic calli or developing embryos (Christou, 1992, Plant J. 2: 275-281 ; Shimamoto, 1994, Curr. Opin. Biotechnol. 5: 158-162; Vasil et al., 1992, Bio/Technology 10: 667-674). An alternative method for transformation of monocots is based on protoplast transformation as described by Omirulleh et al., 1993, Plant Mol. Biol. 21 : 415-428. Additional transformation methods include those described in U.S. Patent Nos. 6,395,966 and 7,151 ,204 (both of which are herein incorporated by reference in their entirety).
Following transformation, the transformants having incorporated the expression construct are selected and regenerated into whole plants according to methods well known in the art. Often the transformation procedure is designed for the selective elimination of selection genes either during regeneration or in the following generations by using, for example, co- transformation with two separate T-DNA constructs or site specific excision of the selection gene by a specific recombinase.
In addition to direct transformation of a particular plant genotype with a construct of the present invention, transgenic plants may be made by crossing a plant having the construct to a second plant lacking the construct. For example, a construct encoding a polypeptide or domain can be introduced into a particular plant variety by crossing, without the need for ever directly transforming a plant of that given variety. Therefore, the present invention encompasses not only a plant directly regenerated from cells which have been transformed in accordance with the present invention, but also the progeny of such plants. As used herein, progeny may refer to the offspring of any generation of a parent plant prepared in accordance with the present invention. Such progeny may include a DNA construct prepared in accordance with the present invention. Crossing results in the introduction of a transgene into a plant line by cross pollinating a starting line with a donor plant line. Non-limiting examples of such steps are described in U.S. Patent No. 7, 151 ,204. Plants may be generated through a process of backcross conversion. For example, plants include plants referred to as a backcross converted genotype, line, inbred, or hybrid.
Genetic markers may be used to assist in the introgression of one or more transgenes of the invention from one genetic background into another. Marker assisted selection offers advantages relative to conventional breeding in that it can be used to avoid errors caused by phenotypic variations. Further, genetic markers may provide data regarding the relative degree of elite germplasm in the individual progeny of a particular cross. For example, when a plant with a desired trait which otherwise has a non-agronomically desirable genetic background is crossed to an elite parent, genetic markers may be used to select progeny which not only possess the trait of interest, but also have a relatively large proportion of the desired germplasm. In this way, the number of generations required to introgress one or more traits into a particular genetic background is minimized.
The present invention also relates to methods of producing a polypeptide or domain of the present invention comprising (a) cultivating a transgenic plant or a plant cell comprising a polynucleotide encoding the polypeptide or domain under conditions conducive for production of the polypeptide or domain; and (b) recovering the polypeptide or domain.
Removal or Reduction of Endoglucanase Activity
The present invention also relates to methods of producing a mutant of a parent cell, which comprises disrupting or deleting a polynucleotide, or a portion thereof, encoding a polypeptide of the present invention, which results in the mutant cell producing less of the polypeptide than the parent cell when cultivated under the same conditions.
The mutant cell may be constructed by reducing or eliminating expression of the polynucleotide using methods well known in the art, for example, insertions, disruptions, replacements, or deletions. In a preferred aspect, the polynucleotide is inactivated. The polynucleotide to be modified or inactivated may be, for example, the coding region or a part thereof essential for activity, or a regulatory element required for expression of the coding region. An example of such a regulatory or control sequence may be a promoter sequence or a functional part thereof, i.e., a part that is sufficient for affecting expression of the polynucleotide. Other control sequences for possible modification include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, signal peptide sequence, transcription terminator, and transcriptional activator.
Modification or inactivation of the polynucleotide may be performed by subjecting the parent cell to mutagenesis and selecting for mutant cells in which expression of the polynucleotide has been reduced or eliminated. The mutagenesis, which may be specific or random, may be performed, for example, by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the mutagenesis may be performed by use of any combination of these mutagenizing agents.
Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues.
When such agents are used, the mutagenesis is typically performed by incubating the parent cell to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions, and screening and/or selecting for mutant cells exhibiting reduced or no expression of the gene.
Modification or inactivation of the polynucleotide may be accomplished by insertion, substitution, or deletion of one or more nucleotides in the gene or a regulatory element required for transcription or translation thereof. For example, nucleotides may be inserted or removed so as to result in the introduction of a stop codon, the removal of the start codon, or a change in the open reading frame. Such modification or inactivation may be accomplished by site-directed mutagenesis or PCR generated mutagenesis in accordance with methods known in the art. Although, in principle, the modification may be performed in vivo, i.e., directly on the cell expressing the polynucleotide to be modified, it is preferred that the modification be performed in vitro as exemplified below.
An example of a convenient way to eliminate or reduce expression of a polynucleotide is based on techniques of gene replacement, gene deletion, or gene disruption. For example, in the gene disruption method, a nucleic acid sequence corresponding to the endogenous polynucleotide is mutagenized in vitro to produce a defective nucleic acid sequence that is then transformed into the parent cell to produce a defective gene. By homologous recombination, the defective nucleic acid sequence replaces the endogenous polynucleotide. It may be desirable that the defective polynucleotide also encodes a marker that may be used for selection of transformants in which the polynucleotide has been modified or destroyed. In an aspect, the polynucleotide is disrupted with a selectable marker such as those described herein.
The present invention also relates to methods of inhibiting the expression of a polypeptide having endoglucanase activity in a cell, comprising administering to the cell or expressing in the cell a double-stranded RNA (dsRNA) molecule, wherein the dsRNA comprises a subsequence of a polynucleotide of the present invention. In a preferred aspect, the dsRNA is about 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25 or more duplex nucleotides in length. The dsRNA is preferably a small interfering RNA (siRNA) or a micro RNA (miRNA). In a preferred aspect, the dsRNA is small interfering RNA for inhibiting transcription. In another preferred aspect, the dsRNA is micro RNA for inhibiting translation.
The present invention also relates to such double-stranded RNA (dsRNA) molecules, comprising a portion of the mature polypeptide coding sequence of SEQ ID NO: 1 for inhibiting expression of the polypeptide in a cell. While the present invention is not limited by any particular mechanism of action, the dsRNA can enter a cell and cause the degradation of a single-stranded RNA (ssRNA) of similar or identical sequences, including endogenous mRNAs. When a cell is exposed to dsRNA, mRNA from the homologous gene is selectively degraded by a process called RNA interference (RNAi).
The dsRNAs of the present invention can be used in gene-silencing. In one aspect, the invention provides methods to selectively degrade RNA using a dsRNAi of the present invention. The process may be practiced in vitro, ex vivo or in vivo. In one aspect, the dsRNA molecules can be used to generate a loss-of-fu notion mutation in a cell, an organ or an animal. Methods for making and using dsRNA molecules to selectively degrade RNA are well known in the art; see, for example, U.S. Patent Nos. 6,489, 127; 6,506,559; 6,51 1 ,824; and 6,515, 109.
The present invention further relates to a mutant cell of a parent cell that comprises a disruption or deletion of a polynucleotide encoding the polypeptide or a control sequence thereof or a silenced gene encoding the polypeptide, which results in the mutant cell producing less of the polypeptide or no polypeptide compared to the parent cell.
The polypeptide-deficient mutant cells are particularly useful as host cells for expression of native and heterologous polypeptides. Therefore, the present invention further relates to methods of producing a native or heterologous polypeptide, comprising (a) cultivating the mutant cell under conditions conducive for production of the polypeptide; and (b) recovering the polypeptide. The term "heterologous polypeptides" means polypeptides that are not native to the host cell, e.g., a variant of a native protein. The host cell may comprise more than one copy of a polynucleotide encoding the native or heterologous polypeptide.
The methods used for cultivation and purification of the product of interest may be performed by methods known in the art.
The methods of the present invention for producing an essentially endoglucanase-free product are of particular interest in the production of eukaryotic polypeptides, in particular fungal proteins such as enzymes. The endoglucanase-deficient cells may also be used to express heterologous proteins of pharmaceutical interest such as hormones, growth factors, receptors, and the like. The term "eukaryotic polypeptides" includes not only native polypeptides, but also those polypeptides, e.g., enzymes, which have been modified by amino acid substitutions, deletions or additions, or other such modifications to enhance activity, thermostability, pH tolerance and the like. In a further aspect, the present invention relates to a protein product essentially free from endoglucanase activity that is produced by a method of the present invention.
Fermentation Broth Formulations or Cell Compositions
The present invention also relates to a fermentation broth formulation or a cell composition comprising a polypeptide of the present invention. The fermentation broth product further comprises additional ingredients used in the fermentation process, such as, for example, cells (including, the host cells containing the gene encoding the polypeptide of the present invention which are used to produce the polypeptide of interest), cell debris, biomass, fermentation media and/or fermentation products. In some embodiments, the composition is a cell-killed whole broth containing organic acid(s), killed cells and/or cell debris, and culture medium.
The term "fermentation broth" as used herein refers to a preparation produced by cellular fermentation that undergoes no or minimal recovery and/or purification. For example, fermentation broths are produced when microbial cultures are grown to saturation, incubated under carbon-limiting conditions to allow protein synthesis {e.g., expression of enzymes by host cells) and secretion into cell culture medium. The fermentation broth can contain unfractionated or fractionated contents of the fermentation materials derived at the end of the fermentation. Typically, the fermentation broth is unfractionated and comprises the spent culture medium and cell debris present after the microbial cells {e.g., filamentous fungal cells) are removed, e.g., by centrifugation. In some embodiments, the fermentation broth contains spent cell culture medium, extracellular enzymes, and viable and/or nonviable microbial cells.
In an embodiment, the fermentation broth formulation and cell compositions comprise a first organic acid component comprising at least one 1 -5 carbon organic acid and/or a salt thereof and a second organic acid component comprising at least one 6 or more carbon organic acid and/or a salt thereof. In a specific embodiment, the first organic acid component is acetic acid, formic acid, propionic acid, a salt thereof, or a mixture of two or more of the foregoing and the second organic acid component is benzoic acid, cyclohexanecarboxylic acid, 4-methylvaleric acid, phenylacetic acid, a salt thereof, or a mixture of two or more of the foregoing.
In one aspect, the composition contains an organic acid(s), and optionally further contains killed cells and/or cell debris. In one embodiment, the killed cells and/or cell debris are removed from a cell-killed whole broth to provide a composition that is free of these components.
The fermentation broth formulations or cell compositions may further comprise a preservative and/or anti-microbial {e.g., bacteriostatic) agent, including, but not limited to, sorbitol, sodium chloride, potassium sorbate, and others known in the art. The cell-killed whole broth or composition may contain the unfractionated contents of the fermentation materials derived at the end of the fermentation. Typically, the cell-killed whole broth or composition contains the spent culture medium and cell debris present after the microbial cells {e.g., filamentous fungal cells) are grown to saturation, incubated under carbon- limiting conditions to allow protein synthesis. In some embodiments, the cell-killed whole broth or composition contains the spent cell culture medium, extracellular enzymes, and killed filamentous fungal cells. In some embodiments, the microbial cells present in the cell-killed whole broth or composition can be permeabilized and/or lysed using methods known in the art.
A whole broth or cell composition as described herein is typically a liquid, but may contain insoluble components, such as killed cells, cell debris, culture media components, and/or insoluble enzyme(s). In some embodiments, insoluble components may be removed to provide a clarified liquid composition.
The whole broth formulations and cell compositions of the present invention may be produced by a method described in WO 90/15861 or WO 2010/096673.
Enzyme Compositions
The present invention also relates to compositions comprising a polypeptide of the present invention. Preferably, the compositions are enriched in such a polypeptide. The term "enriched" indicates that the endoglucanase activity of the composition has been increased, e.g., with an enrichment factor of at least 1 .1 .
The compositions may comprise a polypeptide of the present invention as the major enzymatic component, e.g., a mono-component composition. Alternatively, the compositions may comprise multiple enzymatic activities, such as one or more {e.g., several) enzymes selected from the group consisting of hydrolase, isomerase, ligase, lyase, oxidoreductase, or transferase, e.g., an alpha-galactosidase, alpha-glucosidase, aminopeptidase, amylase, beta- galactosidase, beta-glucosidase, beta-xylosidase, carbohydrase, carboxypeptidase, catalase, cellobiohydrolase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, endoglucanase, esterase, glucoamylase, invertase, laccase, lipase, mannosidase, mutanase, oxidase, pectinolytic enzyme, peroxidase, phytase, polyphenoloxidase, proteolytic enzyme, ribonuclease, transglutaminase, or xylanase.
The compositions may be prepared in accordance with methods known in the art and may be in the form of a liquid or a dry composition. The compositions may be stabilized in accordance with methods known in the art.
Examples are given below of preferred uses of the compositions of the present invention. The dosage of the composition and other conditions under which the composition is used may be determined on the basis of methods known in the art. Uses
The present invention is also directed to the following methods of treating textile with the polypeptides having endoglucanase activity, or compositions thereof. Biopolishinq
The processing of a fabric, such as of a cellulosic material, into material ready for garment manufacturing involves several steps: spinning of the fiber into a yarn; construction of woven or knit fabric from the yarn; and subsequent preparation processes, dyeing/printing and finishing operations. Preparation processes are necessary for removing natural and man-induced impurities from fibers and for improving their aesthetic appearance and processability prior to for instance dyeing/printing and finishing. Common preparation processes comprise desizing (for woven goods), scouring, and bleaching, which produce a fabric suitable for dyeing or finishing.
Biopolishing is a method to treat cellulosic fabrics during their manufacturing by enzymes such as cellulases, which improves fabric quality with respect to "reduced pilling formation". The most important effects of biopolishing can be characterised by less fuzz and pilling, increased gloss/luster, improved fabric handle, increased durable softness and/or improved water absorbency. Biopolishing usually takes place in the wet processing of the manufacture of knitted and woven fabrics or garments. Wet processing comprises such steps as e.g., desizing, scouring, bleaching, washing, dying/printing and finishing. Biopolishing could be performed as a separate step after any of the wetting steps or in combination with any of those wetting steps. As used herein, the term "biopolishing", "depilling" and "anti-pilling" are interchangeable.
The present invention relates to a method for manufacturing textile, by treating textile with an isolated polypeptide having endoglucanase activity in a biopolishing process.
In one embodiment, the invention provides a method for obtaining a cellulosic or cellulose-containing textile having a reduced pilling formation, the method comprising treating textile with a polypeptide having endoglucanase activity in an aqueous solution. In this embodiment, the method of biopolishing can be applied to yarn, fabric or garment. Biostoninq
Some dyed fabric such as denim fabric, requires that the yarns are dyed before weaving. For denim fabric, the warp yarns are dyed for example with indigo, and sized before weaving. Preferably the dyeing of the denim yarn is a ring-dyeing. A preferred embodiment of the invention is ring-dyeing of the yarn with a vat dye such as indigo, or an indigo-related dye such as thioindigo, or a sulfur dye, or a direct dye, or a reactive dye, or a naphthol. The yarn may also be dyed with more than one dye, e.g., first with a sulphur dye and then with a vat dye, or vice versa.
Preferably, the yarns undergo scouring and/or bleaching before they are dyed, in order to achieve higher quality of denim fabric. In general, after woven into dyed fabric, such as denim, the dyed fabric or garment proceeds to a desizing stage, preferably followed by a biostoning step and/or a color modification step.
The present invention also relates to a method for manufacturing textile, by treating textile with an isolated polypeptide having endoglucanase activity in a biostoning process.
In one embodiment, the invention provides a method for introducing into the surface of dyed fabric or garment, localized variations in colour density in which the method comprises the step of contacting the fabric or garment with a polypeptide having endoglucanase activity as defined in the present invention. Preferably, the dyed fabric or garment is cellulosic or cellulose- containing fabric or garment. More preferably, the dyed fabric is a denim fabric, even more preferably, indigo dyed denim fabric. As used herein, the term "biostoning", "stone washing" and "abrasion" are interchangeable.
In another embodiment, the invention provides a denim manufacturing process, which comprises: a) desizing of the denim fabric; b) biostoning the denim with a polypeptide having endoglucanase activity; c) rinsing.
Signal Peptide
The present invention also relates to an isolated polynucleotide encoding a signal peptide comprising or consisting of amino acids 1 to 22 of SEQ ID NO: 2 and an isolated polynucleotide encoding a signal peptide comprising or consisting of amino acids 1 to 22 of SEQ ID NO: 4. The polynucleotides may further comprise a gene encoding a protein, which is operably linked to the signal peptide. The protein is preferably foreign to the signal peptide. In one aspect, the polynucleotide encoding the signal peptide is nucleotides 1 to 66 of SEQ ID NO: 1 . In another aspect, the polynucleotide encoding the signal peptide is nucleotides 1 to 66 of SEQ ID NO: 3.
The present invention also relates to nucleic acid constructs, expression vectors and recombinant host cells comprising such polynucleotides.
The present invention also relates to methods of producing a protein, comprising (a) cultivating a recombinant host cell comprising such polynucleotide; and (b) recovering the protein.
The protein may be native or heterologous to a host cell. The term "protein" is not meant herein to refer to a specific length of the encoded product and, therefore, encompasses peptides, oligopeptides, and polypeptides. The term "protein" also encompasses two or more polypeptides combined to form the encoded product. The proteins also include hybrid polypeptides and fused polypeptides.
Preferably, the protein is a hormone, enzyme, receptor or portion thereof, antibody or portion thereof, or reporter. For example, the protein may be a hydrolase, isomerase, ligase, lyase, oxidoreductase, or transferase, e.g., an alpha-galactosidase, alpha-glucosidase, aminopeptidase, amylase, beta-galactosidase, beta-glucosidase, beta-xylosidase, carbohydrase, carboxypeptidase, catalase, cellobiohydrolase, cellulase, chitinase, cutinase, cyclodextrin glycosyltransferase, deoxyribonuclease, endoglucanase, esterase, glucoamylase, invertase, laccase, lipase, mannosidase, mutanase, oxidase, pectinolytic enzyme, peroxidase, phytase, polyphenoloxidase, proteolytic enzyme, ribonuclease, transglutaminase, or xylanase.
The gene may be obtained from any prokaryotic, eukaryotic, or other source.
The present invention is further described by the following examples that should not be construed as limiting the scope of the invention.
The present methods and compositions are further described in the following numbered paragraphs.
1. An isolated polypeptide having endoglucanase activity, selected from the group consisting of:
(a) a polypeptide having at least 80% sequence identity to the mature polypeptide of
SEQ ID NO: 2, or a polypeptide having at least 92% sequence identity to the mature polypeptide of SEQ ID NO: 4;
(b) a polypeptide encoded by a polynucleotide that hybridizes under medium-high, high, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii);
(c) a polypeptide encoded by a polynucleotide having at least 80% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 , or encoded by a polynucleotide having at least 92% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 3, or the cDNA sequence thereof;
(d) a variant of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more {e.g., several) positions; and
(e) a fragment of the polypeptide of (a), (b), (c), or (d) that has endoglucanase activity.
2. In some embodiments of the polypeptide of paragraph 1 , having at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide of SEQ ID NO: 2, or a polypeptide having at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide of SEQ ID NO: 4.
3. In some embodiments of the polypeptide of paragraph 1 or 2, which is encoded by a polynucleotide that hybridizes under medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii).
4. In some embodiments of the polypeptide of any of the paragraphs 1-3, comprising or consisting of SEQ ID NO: 2 or the mature polypeptide of SEQ ID NO: 2.
5. In some embodiments of the polypeptide of any of the paragraphs 1-4, comprising or consisting of SEQ ID NO: 4 or the mature polypeptide of SEQ ID NO: 4.
6. In some embodiments of the polypeptide of the paragraphs 4 or 5, wherein the mature polypeptide is amino acids 23 to 252 of SEQ ID NO: 2 or amino acids 23 to 302 of SEQ ID NO: 4.
7. In some embodiments of the polypeptide of any of the paragraphs 1-4, which is a variant of the mature polypeptide of SEQ ID NO: 2 comprising a substitution, deletion, and/or insertion at one or more positions.
8. An isolated polypeptide comprising a catalytic domain selected from the group consisting of:
(a) a catalytic domain having at least 80% sequence identity to amino acids 23 to 227 of SEQ ID NO: 2, or at least 95% sequence identity to amino acids 26 to 231 of SEQ ID NO: 4;
(b) a catalytic domain encoded by a polynucleotide that hybridizes under medium- high, high, or very high stringency conditions with (i) nucleotides 67 to 733 of SEQ ID NO: 1 or nucleotides 76 to 807 of SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii);
(c) a catalytic domain encoded by a polynucleotide having at least 80% sequence identity to nucleotides 67 to 733 of SEQ ID NO: 1 , or a catalytic domain encoded by a polynucleotide having at least 95% sequence identity to nucleotides 76 to 807 of SEQ ID NO: 3, or the cDNA sequence thereof;
(d) a variant of amino acids 23 to 227 of SEQ ID NO: 2 or a variant of amino acids 26 to 231 of SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more {e.g., several) positions; and
(e) a fragment of the catalytic domain of (a), (b), (c), or (d) that has endoglucanase activity.
9. In some embodiments of the polypeptide of paragraph 8, further comprising an endoglucanase binding domain.
10. In some embodiments of any of the polypeptide of paragraphs 1 -9, which is obtained from Sporormia, preferably Sporormia fimetaria.
1 1 . In some embodiments of any of the polypeptide of paragraphs 1-9, which is obtained from Geomyces, preferably Geomyces pannorum. 12. A composition comprising the polypeptide of any of claims 1 -1 1 .
13. A method for treating textile, by treating textile with an isolated polypeptide of any of paragraphs 1 -1 1.
14. The method of paragraph 13, wherein the treating textile is to manufacture textile from fabric to garment.
15. The method of paragraph 14, wherein the method is a biostoning process or a biopolishing process.
16. An isolated polynucleotide encoding the polypeptide of any of paragraphs 1 -1 1 .
17. The polynucleotide of claim 16, which is obtained from Sporormia, preferably Sporormia fimetaria, or is obtained from Geomyces, preferably Geomyces pannorum.
18. A nucleic acid construct or expression vector comprising the polynucleotide of paragraph 16 operably linked to one or more control sequences that direct the production of the polypeptide in an expression host.
19. A recombinant host cell comprising the polynucleotide of paragraph 16 operably linked to one or more control sequences that direct the production of the polypeptide.
20. A method of producing the polypeptide of any of paragraphs 1-1 1 , comprising cultivating a cell, which in its wild-type form produces the polypeptide, under conditions conducive for production of the polypeptide.
21 . The method of paragraph 20, further comprising recovering the polypeptide.
22. A method of producing a polypeptide having endoglucanase activity, comprising cultivating the host cell of paragraph 19 under conditions conducive for production of the polypeptide.
23. The method of paragraph 22, further comprising recovering the polypeptide.
24. A transgenic plant, plant part or plant cell transformed with a polynucleotide encoding the polypeptide of any of paragraphs 1-1 1.
25. A method of producing a polypeptide having endoglucanase activity, comprising cultivating the transgenic plant or plant cell of paragraph 24 under conditions conducive for production of the polypeptide.
26. The method of paragraph 25, further comprising recovering the polypeptide.
27. A method of producing a mutant of a parent cell, comprising inactivating a polynucleotide encoding the polypeptide of any of paragraphs 1 -1 1 , which results in the mutant producing less of the polypeptide than the parent cell.
28. A mutant cell produced by the method of paragraph 27.
29. The mutant cell of paragraph 28, further comprising a gene encoding a native or heterologous protein.
30. A method of producing a protein, comprising cultivating the mutant cell of paragraph 28 or 29 under conditions conducive for production of the protein. 31 . The method of paragraph 30, further comprising recovering the protein.
32. A double-stranded inhibitory RNA (dsRNA) molecule comprising a subsequence of the polynucleotide of paragraph 16, wherein optionally the dsRNA is an siRNA or an miRNA molecule.
33. The double-stranded inhibitory RNA (dsRNA) molecule of paragraph 32, which is about 15, 16, 17, 18, 19, 20, 21 , 22, 23, 24, 25 or more duplex nucleotides in length.
34. A method of inhibiting the expression of a polypeptide having endoglucanase activity in a cell, comprising administering to the cell or expressing in the cell the double-stranded inhibitory RNA (dsRNA) molecule of paragraph 32 or 33.
35. A cell produced by the method of paragraph 34.
36. The cell of paragraph 35, further comprising a gene encoding a native or heterologous protein.
37. A method of producing a protein, comprising cultivating the cell of paragraph 35 or 36 under conditions conducive for production of the protein.
38. The method of paragraph 37, further comprising recovering the protein.
39. An isolated polynucleotide encoding a signal peptide comprising or consisting of amino acids 1 to 22 of SEQ ID NO: 2, or amino acids 1 to 22 of SEQ ID NO: 4.
40. A nucleic acid construct or expression vector comprising a gene encoding a protein operably linked to the polynucleotide of paragraph 39, wherein the gene is foreign to the polynucleotide encoding the signal peptide.
41 . A recombinant host cell comprising a gene encoding a protein operably linked to the polynucleotide of paragraph 39, wherein the gene is foreign to the polynucleotide encoding the signal peptide.
42. A method of producing a protein, comprising cultivating a recombinant host cell comprising a gene encoding a protein operably linked to the polynucleotide of paragraph 39, wherein the gene is foreign to the polynucleotide encoding the signal peptide, under conditions conducive for production of the protein.
43. The method of paragraph 42, further comprising recovering the protein.
44. A whole broth formulation or cell culture composition comprising the polypeptide of any of paragraphs 1-1 1.
Examples
Materials
Chemicals used as buffers and substrates were commercial products of at least reagent grade.
Strain The fungal strain Sporormia fimetaria was isolated from a litter sample collected from China. The strain was identified as Sporormia fimetaria, based on both morphological characteristics and ITS rDNA sequence.
The fungal strain purchased from China General Microbiological Culture Collection Center was named as CGMCC 3.4589. The strain CGMCC 3.4589 was identified as Geomyces pannorum, based on both morphological characteristics and ITS rDNA sequence.
Media
PDA medium was composed of 39 grams of potato dextrose agar and deionized water to 1 liter.
YG agar plates were composed of 5.0 g of yeast extract, 10.0 g of glucose, 20.0 g of agar, and deionized water to 1 liter.
YPG medium contained 0.4% of yeast extract, 0.1 % of KH2P04, 0.05% of MgS04 -7H20, 1.5% glucose in deionized water.
YPM medium contained 1 % yeast extract, 2% of peptone, and 2% of maltose in deionized water.
Minimal medium plates were composed of 342 g of sucrose, 20 ml of salt solution (2.6% KCI, 2.6% MgSCy7H20, 7.6% KH2P04, 2ppm Na2B4O7-10H2O, 20ppm CuSCy5H20, 40ppm FeSCy7H20, 40ppm MnSCy2H20, 40ppm Na2Mo04-2H20, 400ppm ZnSCy7H20), 20 g of agar, and deionized water to 1 liter.
50 mM acetate buffer: 2.873 g sodium acetate and 0.901 g acetic acid were dissolved in
1 L deionized water.
50 mM phosphate buffer: 5.642 g Disodium hydrogen phosphate dodecahydrate (Na2HP04-12H20) and 5.344 g sodium dihydrogen phosphate dehydrate (NaH2P04-2H20) were dissolved in 1 L deionized water.
Fabrics
Cotton interlock: 40S, bleached, HM-A0008, available from HM Cotton, Co., Ltd, Guangzhou, China.
Denim: batch No. L001 , 7*7/76*42, 12 oz., available from Hangzhou Yimei, Co., Ltd,
China.
Method
Weight loss determination
The swatches were placed in the conditioned room (65%+/-5% humidity, 20+/-1 °C) for 24 hours before they were numbered, weighed by the analytical balance (for samples below 100 g) or a precision balance (for samples over 100 g) and recorded. After treatment, all samples were tumbled dried (AEG, LAVATHERM 37700, Germany) for 1 hour and conditioned for 24 hours in the conditioned room mentioned as above. For each sample, the weight loss was defined as below: ¾if lit Mfo tsm$ < i-
Pilling notes test
Fabrics including treated and untreated which had been pre-conditioned in norm climate (65% humidity, 20°C) for at least 24 hours were tested for the pilling notes with Nu-Martindale Tester (James H. Heal Co. Ltd, England), with untreated fabrics of the same type as the abraded fabrics. A standard pilling test (Swiss Norm (SN) 198525) was carried out after 2000 Revolutions by marking from 1 -5, with the meaning defined as below, where 1 shows poor anti- pilling and 5 shows excellent anti-pilling property. Thus the higher the Martindale pilling notes score the more effective the endo-glucanase biopolishing treatment.
Note 5: No pilling
Note 4: Slight Pilling
Note 3: Moderate Pilling
Note 2: Distinct Pilling
Note 1 : Heavy Pilling
1/2, 1/4 notes are allowed
To make the test result more reliable, 3 separate readings were carried out by different persons for each sample, and the average of the 3 readings was adopted as the final result of pilling notes.
Color Measurement for denim
The abrasion level and backstaining level of the denim samples were determined by measuring the reflectance with pre-calibrated DataColor SF450X, alternatively an equivalent apparatus can be used. Four readings were taken for each sample, and the average of the readings were used. The abrasion level was evaluated with the index CIE L* on the blue side (front side) of the sample, and the backstaining level was evaluated with the index CIE b* on the back side of the sample.
L* indicates the change in white/black on a scale from 0 to 100, and a decrease in L* means an increase in black colour (decrease in white colour) and an increase in L* means an increase in white colour (decrease in black colour). Delta L* unit = L* of the swatch treated with a certain celllulase - L* of the swatch before cellulase treatment. The larger the Delta L* unit is the higher is the denim abrasion level, e.g. a Delta L* unit of 4 has higher abrasion level than Delta L* unit of 3.
b* indicates the change in blue/yellow, and a decrease in b* means an increase in blue colour (decrease in yellow colour), and an increase in b* means an increase in yellow colour (decrease in blue colour). Delta b* units = b* of the swatch treated with a certain celllulase - b* of the swatch before cellulase treatment. A larger Delta b* unit corresponds to a lower backstaining level, e.g. a Delta b* unit of -1.5 has lower backstaining level than the Delta b* unit of -2.5.
Protein Content
The enzyme protein in an enzyme product can be measured with BCA™ Protein Assay Kit (product number 23225, commercial available from Thermo Fisher Scientific Inc.) according to the product manual.
Example 1 : Sporormia fimetaria genomic DNA extraction
The Sporormia fimetaria strain was inoculated onto a PDA plate and incubated for 5 days at 25°C in the darkness. Several mycelia-PDA plugs were inoculated into 500 ml shake flasks containing 100 ml of YPG medium. The flasks were incubated for 3 days at 28°C with shaking at 160 rpm. The mycelia were collected by filtration through MIRACLOTH® (Calbiochem, La Jolla, CA, USA) and frozen in liquid nitrogen. Frozen mycelia were ground, by a mortar and a pestle, to a fine powder, and genomic DNA was isolated using using a DNeasy® Plant Maxi Kit (QIAGEN Inc., Valencia, CA, USA).
Example 2: Genome sequencing, assembly and annotation
The extracted genomic DNA samples were delivered to Beijing Genome Institute (BGI, Shenzhen, China) for genome sequencing using ILLUMINA® GA2 System (lllumina, Inc., San Diego, CA, USA). The raw reads were assembled at BGI using in house program SOAPdenovo (Li et al., 2010, Genome Research 20(2): 265-72). The assembled sequences were analyzed using standard bioinformatics methods for gene finding and functional prediction. Briefly, genelD (Parra et al., 2000, Genome Research 10(4):51 1 -515) was used for gene prediction. Blastall version 2.2.10 (Altschul et al., 1990, J. Mol. Biol. 215 (3): 403-410, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA) and HMMER version 2.1.1 (Eddy, 1998, Bioinformatics 14(9):755-763, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA) were used to predict function based on structural homology. The family GH45 endoglucanase enzyme candidate was identified directly by analysis of the Blast results. The Agene program (Munch and Krogh, 2006, BMC Bioinformatics 7:263) and SignalP program (Nielsen et al., 1997, Protein Engineering 10: 1 -6) were used to identify starting codons. The SignalP program was further used to estimate length of signal peptide. Pepstats (Rice et al., 2000, Trends Genet. 16(6): 276-277, European Bioinformatics Institute, Hinxton, Cambridge CB10 1 SD, UK) was used to estimate isoelectric point of proteins, and molecular weight. Example 3: Cloning of the Sporormia fimetaria GH45 endoglucanase genes from genomic DNA
One GH45 endoglucanase gene, a name GH45_Sf231 1 was given here, was selected for expression cloning.
Based on the DNA information obtained from genome sequencing, oligonucleotide primers, shown below, were designed to amplify the GH45_Sf231 1 gene from genomic DNA of the Sporormia fimetaria strain. Primers fabricated by Invitrogen (Invitrogen, Beijing, China).
Forward primer: 5' ACACAACTGGGGATCC ACC atgcttctctccctcaagaacattg 3' (SEQ ID
NO: 5)
Reverse primer: 5' GTCACCCTCTAGATCT ccgtcccttgagcattcttttc 3' (SEQ ID NO: 6) Lowercase characters in the forward primer represent the coding region of the gene and lowercase characters of the reverse primer represent the flanking region of the gene. The capitalized parts were homologous to the insertion sites of pPFJ0355 vector which has been described in WO 1 1/005867.
For each gene, 20 picomoles of primer pair (each of the forward and reverse) were used in a PCR reaction composed of 2ul (microliter) of the Sporormia fimetaria genomic DNA, 10 μΙ of 5X GC Buffer, 1.5ul of DMSO, 2.5 mM each of dATP, dTTP, dGTP, and dCTP, and 0.6 unit of Phusion™ High-Fidelity DNA Polymerase (Finnzymes Oy, Espoo, Finland) in a final volume of 50 μΙ. The amplification was performed using a Peltier Thermal Cycler (M J Research Inc.,
South San Francisco, CA, USA) programmed for denaturing at 98°C for 1 minutes; 6 cycles of denaturing at 98°C for 40 seconds, annealing at 65°C for 40 seconds, with 1 °C decrease per cycle and elongation at 72°C for 150 seconds; and another 25 cycles each at 94°C for 40 seconds, 60°C for 40 seconds and 72°C for 150 seconds; final extension at 72°C for 10 minutes. The heat block then went to a 4°C soak cycle.
The PCR products were isolated by 1.0% agarose gel electrophoresis using TBE buffer
(90mM Tris-borate and 1 mM EDTA) where a single product band around the expected size,
0.8kb, was visualized under UV light. PCR products were then purified from solution by using an illustra GFX™ PCR DNA and Gel Band Purification Kit (GE Healthcare, Buckinghamshire,
UK) according to the manufacturer's instructions.
Plasmid pPFJ0355 was digested with Bam HI and Bgl II, isolated by 1 .0% agarose gel electrophoresis using TBE buffer, and purified using an illustra GFX™ PCR DNA and Gel Band
Purification Kit according to the manufacturer's instructions.
An ln-fusion® CF Dry-down Cloning Kit (Clontech Laboratories, Inc., Mountain View, CA,
USA) was used to clone the fragment directly into the expression vector pPFJ0355, without the need for restriction digestion and ligation.
The PCR products and the digested vector were ligated together using an ln-fusion® CF
Dry-down PCR Cloning resulting in plasmid: pGH45_Sf231 1 (Figure 1 ), in which transcription of Sporormia fimetaria GH45 endoglucanase gene was under the control of a promoter from the gene of Aspergillus oryzae alpha-amylase. The cloning operation was according to the manufacturer's instruction. In brief, 30 ng of pPFJ0355 digested with Bam HI and Bgl II, and 60 ng of the Sporormia fimetaria GH45 endoglucanase gene PCR product were added to the reaction vial and resuspended the powder in a final volume of 10ul with addition of deionized water. The reaction was incubated at 37°C for 15 minutes and then 50°C for 15 minutes. Three μΙ of the reaction were used to transform E. coli TOP10 competent cells (TIANGEN Biotech (Beijing) Co. Ltd., Beijing, China). E. coli transformants containing expression constructs were detected by colony PCR which is a method for quick screening of plasmid inserts directly from E. coli colonies. Briefly, in the premixed PCR solution aliquot in each PCR tube, including PCR buffer, MgCI2, dNTP and primer pairs for which the PCR fragment generated, a single colony was added by picking up with a sterile tip and twirling the tip in the reaction solution. Normaly 7- 10 colonies were screened. After the PCR program, reactions were checked on agarose gel. The colony giving the amplification of expected size was possibly to contain the correct insert. The plasmid DNA was prepared using a QIAprep® Spin Miniprep Kit (QIAGEN Inc., Valencia, CA, USA). The Sporormia fimetaria GH45 endoglucanase gene inserted in pGH45_Sf231 1 was confirmed by DNA sequencing using 3730XL DNA Analyzers (Applied Biosystems Inc, Foster City, CA, USA).
The nucleotide sequence and the deduced amino acid sequence of the Sporormia fimetaria GH45 genomic DNA is shown in SEQ ID NO: 1 and SEQ ID NO: 2 respectively. The coding sequence is 81 1 bp including the stop codon and is interrupted by an intron of nucleotides 342 to 393. The encoded predicted protein is 252 amino acids. The N-terminal sequencing shows amino acids 1 to 22 of SEQ ID NO: 2 are a signal peptide. The mature protein contains 230 amino acids with an isoelectric point of 7.93.
A comparative pairwise global alignment of amino acid sequences was determined. The alignment showed that the deduced amino acid sequence of the Sporormia fimetaria gene encoding polypeptide having endoglucanase activity (i.e. mature peptide of SEQ ID NO: 2) shares 74.76% identity to the deduced amino acid sequence of UNIPROT: B2W5C9 which is an endoglucanse from Pyrenophora triticirepentis, and shares 71.5% identity to the amino acid of GENESEQP: AED55944 which is an endoglucanase from Corynascus heterothallicus.
Example 4: Expression of the Sporormia fimetaria GH45 endoglucanase gene in Aspergillus oryzae
Aspergillus oryzae HowB101 (WO 95/035385) protoplasts were prepared according to the method of Christensen et al., (1988, Bio/Technology 6: 1419-1422). HowB101 was transformed with 3μg (microgram) of pGH45_Sf231 1 . The transformation yielded approximately 50 transformants. Eight transformants were isolated to individual Minimal medium plates.
Four transformants were inoculated separately into 3 ml of YPM medium in a 24-well plate and incubated at 30°C with mixing at 150 rpm. After 3 days incubation, 20 μΙ of supernatant from each culture were analyzed by SDS-PAGE using a NUPAGE® NOVEX® 4- 12% Bis-Tris Gel with MES (Invitrogen Corporation, Carlsbad, CA, USA) according to the manufacturer's instructions. The resulting gel was stained with INSTANTBLUE™ (Expedeon Ltd., Babraham Cambridge, UK). The SDS-PAGE profile of the culture showed that the Sporormia fimetaria GH45 endoglucanase gene was expressed with protein band detected. The size of the major band was smeary at around 28KD. The expression strain was designated as 07SNG.
Example 5: Fermentation of Aspergillus oryzae expression strain 07SNG
A slant of 07SNG was washed with 10 ml of YPM medium and inoculated into 10 flasks of 2L containing 400 ml of YPM medium, shaking at 30°C, 80rpm, to generate broth for characterization of the enzyme. The culture was harvested on day 3 and filtered using a 0.45 μηι DURAPORE Membrane (Millipore, Bedford, MA, USA).
Example 6: Purification of recombinant Sporomia fimetaria GH45 endo-glucanase from Aspergillus oryzae 07SNG
4000 ml supernatant of the recombinant strain 07SNG was precipitated with ammonium sulfate (80% saturation) and re-dissolved in 50 ml 20mM Bis-Tris buffer, pH6.0, then dialyzed against the same buffer and filtered through a 0.45 mm filter, the final volume was 60 ml. The solution was applied to a 40 ml Q SEPHAROSE® Fast Flow column (GE Healthcare, Buckinghamshire, UK) equilibrated in 20mM Bis-Tris buffer, pH6.0, and the proteins unbound to the column were collected and further purified on a 40ml Phenyl Sepharose 6 Fast Flow column (GE 17-0965-05) with a linear (NH4)2S04 gradient (1.2 - 0 M). Protein unbound to the column were collected and evaluated by SDS-PAGE (NP0336BOX, NUPAGE 4-12% BT GEL 1.5MM15W). Fractions containing a band of approximately 28 kDa were pooled. Then the pooled solution was concentrated by ultrafiltration.
Example 7: Endoglucanase activity assay
0.2% AZCL-HE-cellulose (Megazyme, l-AZCEL) was suspended in 20mM Bis-Tris buffer of pH 6.0 with addition of 0.01 % Triton X-100 by gentle stirring, which was used as substrate. Then 120 microliter substrate and 30 microliter enzyme sample of 1 mg/ml prepared according to Example 6 were mixed in a Microtiter plate and placed on ice before reaction. The assay was initiated by transferring the Microtiter plate to an Eppendorf thermomixer, which was set to the assay temperature of 50°C. The plate was incubated for 20 minutes on the Eppendorf thermomixer at its shaking rate 700 rpm for Microtiter plate. The incubation was stopped by transferring the plate back to the ice bath. Then the plate was centrifuged in an ice cold centrifuge for 5 minutes and 100 microliter supernatant was transferred to a microtiter plate. OD595 was read as a measure of endo-cellulase activity. All reactions were done with triplicate and a buffer blind without adding any enzyme was included in the assay.
If OD595 value of the enzyme sample minus OD595 value of the blind is above 0, the enzyme is defined as the enzyme having endoglucanase activity.
OD595 value of the Sporomia fimetaria GH45 sample tested in this example minus OD595 of the blind was above 0, which shows the Sporomia fimetaria GH45 in the present invention has the endoglucanase activity.
Example 8: Denim abrasion with Sporomia fimetaria GH45 endoglucanase in Launder-O-meter
The Sporomia fimetaria GH45 endoglucanase (mature peptide of SEQ ID NO: 2) purified from Example 6 was used for denim abrasion in the present example.
Raw denim was desized and cut to 16 cm tall and 24 cm long. The denim was cut and sewn, forming a tube with height of 12.5 cm and weight of about 18 g. The tubes were placed in a conditioned room (65% relative humidity, 20°C) for 24 hours before they were numbered, weighed by the analytical balance and recorded. One conditioned tube was placed in each beaker, with the blue side facing inward. For each beaker, 30 big nuts (M6M-SR-A4-80, acid proof, M10 DIN 934), 10 small nuts (M6M-SR-A4-80, acid proof, M6 DIN 934),7 big star magnets(diameter of 17 mm, item no.3-CO-41 1 1 17, Cowie, Schweiz via Bie & Berntsen), and 3 small star magnets(diameter of 14 mm, item no. 3-CO-1 1 1 17, Cowie, Schweiz via Bie & Berntsen) were used to supply the mechanical aids. Then the buffer (50mM phosphate buffer, pH=6.5) and the enzyme solutions were added according to Table 1 , based on the calculation of actual fabric weights, to make a total volume around 70ml, which would create a liquid to fabric ratio of 3.8:1 (v/w).
The Launder-O-Meter (LOM) machine was started after the required program was chosen, and it would hold when the temperature reached 35°C or 55°C. Each beaker was fitted with a lid lined with 2 neoprin gaskets and close tightly with the metal clamping device. The beakers were loaded into the preheated LOM. Metal racks were used to accommodate and secure 6 beakers, in the horizontal position, in each of the 4 drum positions. The LOM lid was closed and the washing program was continued and the timing was initiated. 2 hours later, all beakers were removed from LOM and the denim samples were transferred to the inactivation solution (2g/L sodium carbonate) at 85°C for 10 minutes. Then the swatches were rinsed in hot water for 2 times and in cold water for 2 times. The denim samples were tumble-dried (AEG, LAVATHERM 37700, Germany) for 1 hour, and then conditioned at 20°C, 65% relative humidity for 24 hours prior to evaluation.
The abrasion and backstaining level of the denim samples were determined by measuring the reflectance before and after the endoglucanase treatment with pre-calibrated DataColor SF450X. For both L* and b*, four readings were taken for each fabric and the average of the four readings was used. The abrasion level was evaluated with the index CIE L* of the blue side of the sample, and the backstaining level was evaluated with the index CIE b* of the back of the sample.
As shown in Table 1 , at neutral pH condition, Sporomia fimetaria GH45 endoglucanase of the present invention shows a good abrasion performance on denims at low temperature, i.e. performance at 35°C is better than that at 55 °C, though it works at both temperatures.
Table 1 . Denim abrasion by Sporomia fimetaria GH45 endoglucanase in LOM at 35 or 55°C, pH 6.5, 2 hours
Figure imgf000048_0001
Note: average of triple samples; enzyme dosage: 0.064 mg enzyme per gram of denim.
Example 9: Biopolishing with Sporomia fimetaria GH45 endoglucanase in Launder-O-meter
The Sporomia fimetaria GH45 endoglucanase (mature peptide of SEQ ID NO: 2) purified from Example 6 was used for biopolishing in the present example.
Cotton fabric swatches were cut into about 16 cm * 16 cm (about 5 grams each). The swatches were placed in the conditioned room (65% humidity, 20°C) for 24 hours before they were numbered, weighed by the analytical balance and recorded. The biopolishing was conducted with a Launder-O-meter. Two conditioned swatches and 20 big steel balls (total weight of 220 grams) were placed in each beaker to supply the mechanical aids. The beaker was filled with enzymes according to Table 2 and buffer (pH 5, 50 mM acetate buffer; or pH 6.5, 50 mM phosphate buffer) to a total volume of 100 ml, which could get a liquid to fabric ratio of about 10:1 (v/w).
The LOM was operated similarly as Example 8 except that the 5 beakers were placed in a vertical position, in each of the 4 drum positions. After the treatment at the pre-set temperature at 35 or 55°C for 1 hour, the swatches was removed from the beakers into the inactivation solution with 2g/L of sodium carbonate and kept at 85°C for 10 min. Then the swatches were rinsed in hot water for 2 times and in cold water for 2 times. And they were tumble-dried for 1 hour, conditioned for 24 hours at 20°C, 65% relative humidity prior to evaluation in weight loss and pilling notes.
As summarized in table 2, Sporomia fimetaria GH45 endoglucanase of the present invention works efficiently in biopolishing at neutral pH of 6.5 and low temperature condition of 35°C. Table 2. Biopolishing by Sporomia fimetaria GH45 endoglucanase in LOM at 35 or 55°C, pH 5 or 6.5, 1 hour
Figure imgf000049_0001
Example 10: Geomyces pannorum genomic DNA extraction
Geomyces panorum strain CGMCC 3.4589 was inoculated onto a PDA plate and incubated for 10 days at 15°C in the darkness. Several mycelia-PDA plugs were inoculated into 500 ml shake flasks containing 100 ml of YPG medium. The flasks were incubated for 6 days at 15°C with shaking at 160 rpm. The mycelia were collected by filtration through MIRACLOTH® (Calbiochem, La Jolla, CA, USA) and frozen in liquid nitrogen. Frozen mycelia were ground, by a mortar and a pestle, to a fine powder, and genomic DNA was isolated using a method developed by Scott O. Rogers & Arnold J. Bendich (Plant Molecular Biology 5: 69-76, 1985).
Example 1 1 : Genome sequencing, assembly and annotation
The extracted genomic DNA samples in Example 10 were delivered to BerryGenomics company (Beijing, China) for genome sequencing using ILLUMINA® Hiseq2000 System (lllumina, Inc., San Diego, CA, USA). The raw reads were assembled using program Abyss 1.2.7 (Simpson et al., 2009, Genome Research 19(6): 1 1 17-1 123) with k-mer 51 and quality score cutoff 16. The assembled sequences were analyzed using standard bioinformatics methods for gene finding and functional prediction. Briefly, genelD (Parra et al., 2000, Genome Research 10(4):51 1 -515) was used for gene prediction. Blastall version 2.2.10 (Altschul et al., 1990, J. Mol. Biol. 215 (3): 403-410, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA) and HMMER version 2.1.1 (Eddy, 1998, Bioinformatics 14(9): 755-763, National Center for Biotechnology Information (NCBI), Bethesda, MD, USA) were used to predict function based on structural homology. The family GH45 endoglucanase enzyme candidate was identified directly by analysis of the Blast results. The Agene program (Munch and Krogh, 2006, BMC Bioinformatics 7:263) and SignalP program (Nielsen et al., 1997, Protein Engineering 10: 1 -6) were used to identify starting codons. The SignalP program was further used to estimate length of signal peptide. Pepstats (Rice et al., 2000, Trends Genet. 16(6): 276-277, European Bioinformatics Institute, Hinxton, Cambridge CB10 1 SD, UK) was used to estimate isoelectric point of proteins, and molecular weight.
Example 12: Cloning of the Geomyces pannorum GH45 endoglucanase gene from genomic DNA
One GH45 endoglucanase gene, a name GH45_Gp7682 was given here, was selected for expression cloning.
Based on the DNA information obtained from genome sequencing, oligonucleotide primers, shown below, were designed to amplify the GH45_Gp7682 gene from Geomyces panorum strain genomic DNA of Example 10. Primers fabricated by Invitrogen (Invitrogen, Beijing, China).
Forward primer: 5' ACACAACTGGGGATCCACCatggctctctccaagctcacc 3' (SEQ ID NO: 7)
Reverse primer: 5' GTCACCCTCTAGATCTtccttggtcatccacccaac 3' (SEQ ID NO: 8) Lowercase characters in the forward primer represent the coding region of the gene and the flanking region of the gene in the reverse primer. The capitalized parts were homologous to the insertion sites of pPFJ0355 vector (described in WO201 1005867).
For each gene, 20 picomoles of primer pair (each of the forward and reverse) were used in a PCR reaction composed of 2μΙ (microliter) of Geomyces pannorum strain genomic DNA, 10 μΙ of 5X GC Buffer, 1.5 μΙ of DMSO, 2.5 mM each of dATP, dTTP, dGTP, and dCTP, and 0.6 unit of Phusion™ High-Fidelity DNA Polymerase (Finnzymes Oy, Espoo, Finland) in a final volume of 50 μΙ. The amplification was performed using a Peltier Thermal Cycler (M J Research Inc., South San Francisco, CA, USA) programmed for denaturing at 98°C for 1 minutes; 6 cycles of denaturing at 98°C for 40 seconds, annealing at 65°C for 40 seconds, with 1 °C decrease per cycle and elongation at 72°C for 150 seconds; and another 25 cycles each at 94°C for 40 seconds, 60°C for 40 seconds and 72°C for 150 seconds; final extension at 72°C for 10 minutes. The heat block then went to a 4°C soak cycle.
The PCR products were isolated by 1 .0% agarose gel electrophoresis using TBE buffer
(90mM Tris-borate and 1 mM EDTA) where a single product band around the expected size, 1.0kb, was visualized under UV light. PCR products were then purified from solution by using an illustra GFX PCR DNA and Gel Band Purification Kit (GE Healthcare, Buckinghamshire, UK) according to the manufacturer's instructions.
Plasmid pPFJ0355 was digested with Bam HI and Bgl II, isolated by 1 .0% agarose gel electrophoresis using TBE buffer, and purified using an illustra GFX PCR DNA and Gel Band Purification Kit according to the manufacturer's instructions.
An ln-fusion CF Dry-down Cloning Kit (Clontech Laboratories, Inc., Mountain View, CA,
USA) was used to clone the fragment directly into the expression vector pPFJ0355, without the need for restriction digestion and ligation.
The PCR products and the digested vector were ligated together using an ln-fusion CF Dry-down PCR Cloning resulting in plasmid: pGH45_Gp7682 (Figure 2), in which the transcription of Geomyces panorum GH45 endoglucanase gene was under the control of a promoter from the gene of Aspergillus oryzae alpha-amylase. The cloning operation was according to the manufacturer's instruction. In brief, 30 ng of pPFJ0355 digested with Bam HI and Bgl II, and 60 ng of the Geomyces panorum GH45 endoglucanase gene PCR product were added to the reaction vial and resuspended the powder in a final volume of 10ul (microliter) with addition of deionized water. The reaction was incubated at 37°C for 15 minutes and then 50°C for 15 minutes. 3μΙ of the reaction were used to transform E. coll TOP10 competent cells (TIANGEN Biotech (Beijing) Co. Ltd., Beijing, China). E. coll transformants containing expression constructs were detected by colony PCR which is a method for quick screening of plasmid inserts directly from E. coll colonies. Briefly, in the premixed PCR solution aliquot in each PCR tube, including PCR buffer, MgCI2, dNTP and primer pairs for which the PCR fragment generated, a single colony was added by picking up with a sterile tip and twirling the tip in the reaction solution. Normaly 7-10 colonies were screened. After the PCR program, reactions were checked on agarose gel. The colony giving the amplification of expected size was possibly to contain the correct insert. The plasmid DNA was prepared using a QIAprep Spin Miniprep Kit (QIAGEN Inc., Valencia, CA, USA). The Geomyces panorum GH45 endoglucanase gene inserted in pGH45_Gp7682 was confirmed by DNA sequencing using 3730XL DNA Analyzers (Applied Biosystems Inc, Foster City, CA, USA).
The nucleotide sequence and the deduced amino acid sequence of the Geomyces panorum GH45 genomic DNA is shown in SEQ ID NO: 3 and SEQ ID NO: 4 respectively. The coding sequence is 1023 bp including the stop codon and is interrupted by introns of nucleotides 445 to 558. The encoded predicted protein is 302 amino acids. The N-terminal sequencing shows amino acids 1 to 22 of SEQ ID NO: 4 are a signal peptide. The mature protein contains 280 amino acids with an isoelectric point of 4.48.
A comparative pairwise global alignment of amino acid sequences was determined. The alignment showed that the deduced amino acid sequence of the Geomyces panorum gene encoding polypeptide having endoglucanase activity (i.e. mature peptide of SEQ ID NO: 2) shares 73.21 % identity to the deduced amino acid sequence of UNIPROT: E3Q4I0 which an endoglucanse from Colletotrichum graminicola, and shares 91.07% identity to the amino acid of GENESEQP: AYE53856 which is an endoglucanase from Geomyces pannorum (WO2010076388). Example 13: Expression of the Geomyces pannorum GH45 endoglucanase gene in Aspergillus oryzae
Aspergillus oryzae HowB101 (WO 95/035385) protoplasts were prepared according to the method of Christensen et al., (1988, Bio/Technology 6: 1419-1422). HowB101 was transformed with 3μg (microgram) of pGH45_Gp7682. The transformation yielded approximately 50 transformants. Eight transformants were isolated to individual Minimal medium plates.
Four transformants were inoculated separately into 3 ml of YPM medium in a 24-well plate and incubated at 30°C with mixing at 150 rpm. After 3 days incubation, 20 μΙ of supernatant from each culture were analyzed by SDS-PAGE using a NUPAGE® NOVEX® 4- 12% Bis-Tris Gel with MES (Invitrogen Corporation, Carlsbad, CA, USA) according to the manufacturer's instructions. The resulting gel was stained with INSTANTBLUE™ (Expedeon Ltd., Babraham Cambridge, UK). The SDS-PAGE profile of the culture showed that the Geomyces panorum GH45 endoglucanase gene was expressed with protein band detected. The size of the major band was smeary at around 40kDa. The expression strain was designated as 07SP9.
Example 14: Fermentation of Aspergillus oryzae expression strain 07SP9
A slant of 07SP9 was washed with 10 ml of YPM medium and inoculated into 8 flasks of 2L containing 400 ml of YPM medium, shaking at 30°C, 80rpm, to generate broth for characterization of the enzyme. The culture was harvested on day 3 and filtered using a 0.45 μηι (micrometer) DURAPORE Membrane (Millipore, Bedford, MA, USA).
Example 15: Purification of recombinant Geomyces pannorum GH45 endoglucanase from Aspergillus oryzae 07SP9
3200 ml supernatant of the recombinant strain 07SP9 was precipitated with ammonium sulfate (80% saturation) and re-dissolved in 50 ml 20mM Bis-Tris buffer, pH6.0, then dialyzed against the same buffer and filtered through a 0.45 mm filter, the final volume was 60 ml. The solution was applied to a 40 ml Q SEPHAROSE® Fast Flow column (GE Healthcare, Buckinghamshire, UK) equilibrated in 20mM Bis-Tris buffer, pH6.0, and the proteins unbound to the column were collected and evaluated by SDS-PAGE (NP0336BOX, NUPAGE 4-12% BT GEL 1 .5MM15W). Fractions containing a band of approximately 40 kDa were pooled. Then the pooled solution was concentrated by ultrafiltration. Example 16: Endoglucanase activity assay
0.2% AZCL-HE-cellulose (Megazyme, l-AZCEL) was suspended in 20mM Bis-Tris buffer of pH 6.0 with addition of 0.01 % Triton X-100 by gentle stirring, which was used as substrate. Then 120 microliter substrate and 30 microliter enzyme sample of 1 mg/ml prepared according to Example 15 were mixed in a Microtiter plate and placed on ice before reaction. The assay was initiated by transferring the Microtiter plate to an Eppendorf thermomixer, which was set to the assay temperature of 50°C. The plate was incubated for 20 minutes on the Eppendorf thermomixer at its shaking rate 700 rpm for Microtiter plate. The incubation was stopped by transferring the plate back to the ice bath. Then the plate was centrifuged in an ice cold centrifuge for 5 minutes and 100 microliter supernatant was transferred to a microtiter plate. OD595 was read as a measure of endo-cellulase activity. All reactions were done with triplicate and a buffer blind without adding any enzyme was included in the assay.
If OD595 value of the enzyme sample minus OD595 value of the blind is above 0, the enzyme is defined as the enzyme having endoglucanase activity.
OD595 value of the Geomyces pannorum GH45 endoglucanase sample tested in this example minus OD595 of the blind was above 0, which shows the Geomyces pannorum GH45 endoglucanase in the present invention has the endoglucanase activity. Example 17: Denim abrasion with Geomyces pannorum GH45 endo-glucanase in
Launder-O-meter
The Geomyces pannorum GH45 endoglucanase (mature peptide of SEQ ID NO: 4) purified from Example 15 was used for denim abrasion in the present example.
Raw denim was desized and cut to 16 cm tall and 24 cm long. The denim was serged and sewn, forming a tube with height of 12.5 cm and weight of about 18 g. The tubes were placed in a conditioned room (65% relative humidity, 20°C) for 24 hours before they were numbered, weighed by the analytical balance and recorded. One conditioned tube was placed in each beaker, with the blue side facing inward. For each beaker, 30 big nuts (M6M-SR-A4-80, acid proof, M10 DIN 934), 10 small nuts (M6M-SR-A4-80, acid proof, M6 DIN 934), 7 big star magnets (diam. 17 mm, item no.3-CO-41 1 1 17, Cowie, Schweiz via Bie & Berntsen), and 3 small star magnets (diam. 14 mm, item no. 3-CO-1 1 1 17, Cowie, Schweiz via Bie & Berntsen) were used to supply the mechanical aids. Then the buffer (50mM phosphate buffer, pH=6.5) and the enzyme solutions were added according to Table 3, based on the calculation of actual fabric weights, to make a total volume around 70ml, which would create a liquid to fabric ratio of 3.8:1 (v/w).
The Launder-O-Meter (LOM, SDL-Atlas LP2) machine was started after the required program was chosen, and it would hold when the temperature reached 35°C or 55°C. Each beaker was fitted with a lid lined with 2 neoprin gaskets and close tightly with the metal clamping device. The beakers were loaded into the preheated LOM. Metal racks were used to accommodate and secure 6 beakers, in the horizontal position, in each of the 4 drum positions. The LOM lid was closed and the washing program was continued and the timing was initiated. 2 hours later, all beakers were removed from LOM and the denim samples were transferred to the inactivation solution (2g/L sodium carbonate) at 85°C for 10 minutes. Then the swatches were rinsed in hot water for 2 times and in cold water for 2 times. The denim samples were tumble-dried (AEG, LAVATHERM 37700, Germany) for 1 hour, and then conditioned at 20°C, 65% relative humidity for 24 hours prior to evaluation.
The abrasion and backstaining level of the denim samples were determined by measuring the reflectance with pre-calibrated DataColor SF450X. Four readings were taken for each sample. The abrasion level was evaluated with the index CIE L* of the blue side of the sample, and the backstaining level was evaluated with the index CIE b* of the back of the sample. For both L* and b*, 4 readings were conducted for each fabric.
As shown in Table 3, at neutral pH condition, Geomyces pannorum GH45 endo- glucanase delivered a better abrasion performance on denims at 35 °C than at 55 °C, though it worked at both temperatures.
Table 3. Denim abrasion by Geomyces pannorum GH45 endo-glucanase in LOM at 35 or 55°C, pH 6.5, 2 hours
Figure imgf000054_0001
Note: average of triple samples; enzyme dosage: 0.064 mg enzyme per gram of denim.
Example 18: Biopolishing with Geomyces pannorum GH45 endoglucanase in Launder-O-meter
The Geomyces pannorum GH45 endo-glucanase (mature peptide of SEQ ID NO: 4) purified from Example 15 was used for biopolishing in the present example.
Cotton fabric swatches were cut to about 16 cm * 16 cm (about 5 grams each). The swatches were placed in the conditioned room (65% humidity, 20°C) for 24 hours before they were numbered, weighed by the analytical balance and recorded. The biopolishing was conducted with a Launder-O-meter. Two conditioned swatches and 20 big steel balls (total weight of 220 grams) were placed in each beaker to supply the mechanical aids. The beaker was filled with enzymes according to table 2 and buffer (pH 5, 50 mM acetate buffer; or pH 6.5, 50 mM phosphate buffer) to a total volume of 100 ml, which could get a liquid ratio of about 10:1 (v/w).
The LOM was operated similarly as Example 17 except that the 5 beakers were placed in a vertical position, in each of the 4 drum positions. After the treatment at the pre-set temperature at 35 or 55°C for 1 hour, the swatches was removed from the beakers and transferred into the inactivation solution with 2g/L of sodium carbonate and kept at 85°C for 10 min. Then the swatches were rinsed in hot water for 2 times and in cold water for 2 times. And they were tumble-dried for 1 hour, conditioned for 24 hours at 20°C, 65% relative humidity prior to evaluation in weight loss and pilling notes.
As summarized in table 4, it was evident that Geomyces panorum GH45 endo- glucanase of the present invention worked the most efficiently in biopolishing at neutral pH of 6.5 and low temperature condition of 35°C.
Table 4. Biopolishing by Geomyces pannorum GH45 endo-glucanase in LOM at 35 or 55°C, pH 5 or 6.5, 1 hour
Figure imgf000055_0001
Note: average of triple samples
The invention described and claimed herein is not to be limited in scope by the specific aspects herein disclosed, since these aspects are intended as illustrations of several aspects of the invention. Any equivalent aspects are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. In the case of conflict, the present disclosure including definitions will control.

Claims

CLAIMS What is claimed is:
1. An isolated polypeptide having endoglucanase activity, selected from the group consisting of:
(a) a polypeptide having at least 80% sequence identity to the mature polypeptide of
SEQ ID NO: 2, or a polypeptide having at least 92% sequence identity to the mature polypeptide of SEQ ID NO: 4;
(b) a polypeptide encoded by a polynucleotide that hybridizes under medium-high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii);
(c) a polypeptide encoded by a polynucleotide having at least 80% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 1 , or encoded by a polynucleotide having at least 92% sequence identity to the mature polypeptide coding sequence of SEQ ID NO: 3, or the cDNA sequence thereof;
(d) a variant of the mature polypeptide of SEQ ID NO: 2 or SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more positions; and
(e) a fragment of the polypeptide of (a), (b), (c), or (d) that has endoglucanase activity.
2. The polypeptide of claim 1 , having at least 80%, at least 85%, at least 90%, at least 91 %, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide of SEQ ID NO: 2, or a polypeptide having at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% or 100% sequence identity to the mature polypeptide of SEQ ID NO: 4.
3. The polypeptide of claim 1 or 2, which is encoded by a polynucleotide that hybridizes under medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the mature polypeptide coding sequence of SEQ ID NO: 1 or SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii).
4. The polypeptide of any of claims 1 -3, comprising or consisting of SEQ ID NO: 2 or the mature polypeptide of SEQ ID NO: 2.
5. The polypeptide of any of claims 1-3, comprising or consisting of SEQ ID NO: 4 or the mature polypeptide of SEQ ID NO: 4.
6. The polypeptide of claim 4 or 5, wherein the mature polypeptide is amino acids 23 to 252 of SEQ ID NO: 2 or amino acids 23 to 302 of SEQ ID NO: 4.
7. An isolated polypeptide comprising a catalytic domain selected from the group consisting of:
(a) a catalytic domain having at least 80% sequence identity to amino acids 23 to 227 of SEQ ID NO: 2, or at least 95% sequence identity to amino acids 26 to 231 of SEQ ID NO: 4;
(b) a catalytic domain encoded by a polynucleotide that hybridizes under medium- high, high, or very high stringency conditions with (i) nucleotides 67 to 733 of SEQ ID NO: 1 or nucleotides 76 to 807 of SEQ ID NO: 3, (ii) the cDNA sequence thereof, or (iii) the full-length complement of (i) or (ii);
(c) a catalytic domain encoded by a polynucleotide having at least 80% sequence identity to nucleotides 67 to 733 of SEQ ID NO: 1 , or a catalytic domain encoded by a polynucleotide having at least 95% sequence identity to nucleotides 76 to 807 of SEQ ID NO: 3, or the cDNA sequence thereof;
(d) a variant of amino acids 23 to 227 of SEQ ID NO: 2 or a variant of amino acids 26 to 231 of SEQ ID NO: 4 comprising a substitution, deletion, and/or insertion at one or more
(or several) positions; and
(e) a fragment of the catalytic domain of (a), (b), (c), or (d) that has endoglucanase activity.
8. The polypeptide of claim 9, further comprising an endoglucanase binding domain.
9. The polypeptide of any of claims 1-8, which is obtained from Sporormia, preferably Sporormia fimetaria.
10. The polypeptide of any of claims 1-8, which is obtained from Geomyces, preferably Geomyces pannorum.
1 1 . An isolated polynucleotide encoding the polypeptide of any of claims 1 -10.
12. A nucleic acid construct or expression vector comprising the polynucleotide of claim 1 1 operably linked to one or more control sequences that direct the production of the polypeptide in an expression host.
13. A recombinant host cell comprising the polynucleotide of claim 1 1 operably linked to one or more control sequences that direct the production of the polypeptide.
14. A method for treating textile with an isolated polypeptide of any of claims 1-10.
15. The method of claim 14, wherein the treating textile is to manufacture textile from fabric to garment.
PCT/CN2013/089804 2012-12-19 2013-12-18 Polypeptides having endoglucanase activity and polynucleotides encoding same WO2014094618A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2012/086949 2012-12-19
CN2012086954 2012-12-19
CNPCT/CN2012/086954 2012-12-19
CN2012086949 2012-12-19

Publications (1)

Publication Number Publication Date
WO2014094618A1 true WO2014094618A1 (en) 2014-06-26

Family

ID=50977603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089804 WO2014094618A1 (en) 2012-12-19 2013-12-18 Polypeptides having endoglucanase activity and polynucleotides encoding same

Country Status (1)

Country Link
WO (1) WO2014094618A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272297A (en) * 2008-12-30 2011-12-07 生化酶股份有限公司 Fungal endoglucanases, their production and use
WO2012089024A1 (en) * 2010-12-30 2012-07-05 Novozymes A/S Method for treating textile with endoglucanase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102272297A (en) * 2008-12-30 2011-12-07 生化酶股份有限公司 Fungal endoglucanases, their production and use
WO2012089024A1 (en) * 2010-12-30 2012-07-05 Novozymes A/S Method for treating textile with endoglucanase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GU, FANG-YUAN ET AL.: "Advances in cellulase and its development tendency.", JOURNAL OF MICROBIOLOGY, vol. 28, no. 1, 15 January 2008 (2008-01-15), pages 83 - 87 *

Similar Documents

Publication Publication Date Title
US10041055B2 (en) Polypeptides having mannanase activity and polynucleotides encoding same
US8034599B2 (en) Polypeptides having arabinofuranosidase activity and polynucleotides encoding same
DK2195421T3 (en) Polypeptides with acetylxylanesteraseaktivitet and polynucleotides encoding them
WO2017084560A1 (en) Cellulase variants and polynucleotides encoding same
US10308922B2 (en) Methods of processing textiles using polypeptides having endoglucanase activity
US11788078B2 (en) Processes for producing ethanol
US20110269206A1 (en) Polypeptides Having Catalase Activity And Polynucleotides Encoding Same
US20150031091A1 (en) Polypeptides having alpha-amylase activity and polynucleotides encoding same
EP2938628A1 (en) Polypeptides having endoglucanase activity and polynucleotides encoding same
US9909112B2 (en) Polypeptides having alpha-amylase activity and polynucleotides encoding same
US9617528B2 (en) Endoglucanase-producing recombinant host cells and methods of producing polypeptides having endoglucanase activity
EP2817325B1 (en) Polypeptides having endoglucanase activity and polynucleotides encoding same
US9598816B2 (en) Methods for treating textiles using polypeptides having endoglucanase activity
WO2014094618A1 (en) Polypeptides having endoglucanase activity and polynucleotides encoding same
CN104204199B (en) Polypeptide and the polynucleotides for encoding the polypeptide with endoglucanase activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864101

Country of ref document: EP

Kind code of ref document: A1