WO2014094591A1 - 小区休眠、休眠信息下发及处理方法和设备 - Google Patents

小区休眠、休眠信息下发及处理方法和设备 Download PDF

Info

Publication number
WO2014094591A1
WO2014094591A1 PCT/CN2013/089648 CN2013089648W WO2014094591A1 WO 2014094591 A1 WO2014094591 A1 WO 2014094591A1 CN 2013089648 W CN2013089648 W CN 2013089648W WO 2014094591 A1 WO2014094591 A1 WO 2014094591A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
local
base station
local cell
sleep mode
Prior art date
Application number
PCT/CN2013/089648
Other languages
English (en)
French (fr)
Inventor
赵亚利
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2014094591A1 publication Critical patent/WO2014094591A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a cell sleeping and sleeping information sending and processing method and device.
  • Background of the Invention With the deployment of a home base station, a micro cell, etc., a conventional homogeneous network of only a macro cell will gradually evolve into a heterogeneous network in which multiple types of cells coexist.
  • a macro base station (Marco eNB) can provide basic coverage, and a local base station (Local eNB) provides small coverage within the coverage of the macro base station, as shown in FIG. 1, where the Local eNB can be a relay device (RN). ), home base station (He B ), micro base station (Pico), etc.
  • RN relay device
  • He B home base station
  • Pico micro base station
  • the existing base station energy saving mechanism is mainly for scenarios with overlapping coverage, such as: GSM EDGE Radio Access Network (GERAN) / Universal Terrestrial Radio Access Network (UTRAN) /Evolved Universal Terrestrial Wireless Network (Evolved Universal
  • E-UTRAN Terrestrial Radio Access Network
  • the cell provides basic coverage
  • the E-UTRAN cell is covered by hotspots
  • the hotspot coverage is within the basic coverage.
  • the basic coverage and hotspot coverage are both E-UTRAN cells.
  • the scenario of energy saving of the base station is shown in Figure 2.
  • the macro cell (Marc cell) provides basic coverage, and the other local cells provide hotspot coverage.
  • the primary role of the hotspot cell is to offload the capacity of the basic coverage cell. Therefore, in the energy-saving consideration of the base station, the hotspot cell only needs to be turned on when there is a demand for the load-carrying. In other cases, it can be turned off to achieve the purpose of energy saving of the base station, that is, the so-called cell activation/deactivation mechanism.
  • the cell activation state the cell can work normally, that is, various physical layer signals can be normally transmitted and data transmission can be performed.
  • the cell deactivation state the cell cannot send any signal, and cannot send and receive data to and from the user equipment (UE).
  • UE user equipment
  • the specific hotspot cell deactivation mechanism mainly has the following types:
  • the base station providing hotspot coverage can autonomously deactivate all/partial cells when there is no data transmission requirement; third, based on macro base station control.
  • the base station providing the hotspot coverage decides to deactivate a cell under it, the cell may be in the connected state. Switching to other cells and indicating the reason for the handover in the handover request prevents the cells from switching the UE to the deactivated cell again.
  • the base station providing the hotspot coverage informs the neighboring base station through the inter-base station interface that the hotspot coverage base station deactivates which cells under it.
  • the hotspot cell After the hotspot cell is deactivated, once the base station providing the macro coverage has a capacity offload requirement, for example, the basic coverage cell coverage exceeds a certain threshold, then one or more hotspot cells need to be activated. If the cell providing the basic coverage is an E-UTRAN cell, the cell activation procedure of the X2 port may be used; if the basic coverage is provided by the UTRAN or the GERAN cell, the mobility management entity of the S1 port is required to indicate the information transmission. The MME Direct Information Transfer process is used to activate the hotspot cell.
  • NCT new carrier type
  • CRS new cell-specific reference signals
  • Mode 1 Reduce the CRS overhead of the cell.
  • the CRS is sent by each downlink subframe to be sent to the CRS if it is 1000 ms (for example, 5 ms).
  • Manner 2 Introducing a dormant state to a cell. When there is no UE in the cell or all UEs have no data to send, the cell enters a dormant state;
  • Mode 3 The combination of mode 1 and mode 2, that is, the cell dormant state is introduced while reducing the CRS overhead of the cell.
  • the UE may continuously execute the Macro cell and the Local cell. Switching operation between.
  • one way is to allow the UE to simultaneously aggregate the resources of the Local eNB and the Macro e B, but the RRC connection is maintained under the Marco e B, and the Local resource is only used for data transmission, that is, bearer separation.
  • the bearer separation mode allows the UE to select the nearest node to transmit, so that it can be transmitted with lower power and higher Modulation and Coding Scheme (MCS), so that power saving, interference reduction, and system throughput can be achieved at the same time.
  • MCS Modulation and Coding Scheme
  • the existing base station energy-saving mechanism has only two ways to handle the local coverage hotspot: fully open or completely shut down. Once the hotspot cell is completely shut down, no cell discovery related information will be sent anymore. Even if the UE moves to the coverage of the hotspot cell, the macro base station cannot discover that the hotspot cell is available in time, which will make it difficult for the macro base station to determine whether the hotspot cell should be turned on. And the UE is switched or bearer separated in a timely manner.
  • the embodiments of the present invention provide a cell dormancy and sleep information sending and processing method and device, which are used to provide a cell dormancy mechanism that enables a cell to resume an active state in time after the cell enters a dormant state.
  • a cell sleep method comprising:
  • the local base station determines a sleep mode of the local cell;
  • the sleep mode is a sleep mode that includes a cell activation period during the cell sleep period, and can send a cell discovery signal or detect a specific signal sent by the terminal during the cell activation period;
  • the local base station After the local base station enters the sleep state, the local base station determines a cell activation time period during the sleep according to the sleep mode, and sends a cell discovery signal or detects a specific signal sent by the terminal in the local cell during the cell activation time period.
  • the local base station determines a sleep mode of the local cell, and after the local cell enters the dormant state, determines a cell activation time period during the sleep mode according to the sleep mode, and sends the cell activation time period in the cell activation period.
  • the cell discovery signal or the detection of the specific signal sent by the terminal further implements a cell dormancy mechanism that enables the local cell to resume the active state in time after the local cell enters the dormant state.
  • the local base station determines the sleep mode of the local cell, which is specifically used in one of the following ways:
  • the local base station After determining that the local cell needs to enter the dormant state, the local base station determines the sleep mode according to the cell discovery signal design rule related to the physical layer;
  • the local base station receives the notification that the local cell sent by the neighboring base station enters the sleep state and the sleep mode, and determines the sleep mode as the sleep mode of the local cell.
  • the local base station After determining that the local cell needs to enter the dormant state, the local base station determines the sleep mode according to the protocol or the configuration information sent by the operation and maintenance entity OAM.
  • the local base station After receiving the notification that the local cell sent by the neighboring base station enters the dormant state, the local base station determines the sleep mode according to the protocol or the configuration information delivered by the OAM.
  • the method may further include:
  • the local base station After determining the sleep mode of the local cell, and before the local cell enters the sleep state, the local base station sends the determined information of the sleep mode of the local cell to the neighboring base station to which the neighboring cell of the local cell belongs.
  • the method further includes: the local base station sending the determined information about the sleep mode of the local cell to the local The terminal under the cell.
  • the method may further include: performing service data with the terminal in the local cell in the cell activation time period indicated by the sleep mode. transmission.
  • the method further includes: the local base station receiving the activation signaling of the local cell sent by the neighboring base station through the inter-base station interface, Ending the sleep state of the local cell according to the activation signaling, so that the local cell enters an active state; or, after receiving the handover request or bearer separation request sent by the neighboring base station through the inter-base station interface, the local base station ends the sleep state of the local cell, The local cell is brought into an active state, and the handover or bearer separation of the terminal to the local cell is completed according to the handover request or the bearer separation request.
  • the method further includes: after detecting, by the local base station, the specific signal sent by the terminal, the local base station ends.
  • the sleep state of the local cell causes the local cell to enter an active state, and notifies the neighboring base station that the local cell enters an active state.
  • the neighboring base station is a macro base station or other local base station.
  • a method for issuing a dormant information comprising:
  • the neighboring base station determines a sleep mode of the local cell of the local base station;
  • the sleep mode is a sleep mode that includes a cell activation period during the cell sleep period, and can send a cell discovery signal or detect a specific signal sent by the terminal during the cell activation period;
  • the neighboring base station sends the determined information of the sleep mode of the local cell to the terminal in the neighboring cell of the local cell.
  • the neighboring base station sends the information about the determined sleep mode of the local cell to the terminal in the neighboring cell of the local cell, thereby enabling the local cell to be timely after the local cell enters the dormant state. Restore the cell sleep mechanism in the active state.
  • the neighboring base station determines a sleep mode of the local cell of the local base station, and specifically includes:
  • the neighboring base station receives the information of the sleep mode of the local cell sent by the local base station, and determines the sleep mode of the local cell according to the information;
  • the neighboring base station After determining that the local cell of the local base station needs to enter the dormant state, the neighboring base station determines the sleep mode according to the cell discovery signal design rule related to the physical layer; or
  • the neighboring base station receives the request for the local cell to enter the dormant state sent by the local base station and the sleep mode, and determines whether to accept the request, and if yes, determines that the sleep mode is the sleep mode of the local cell, otherwise, according to the cell discovery signal related to the physical layer
  • the rule re-determines the sleep mode of the local cell.
  • the method further includes: After the indication signaling that is available to the local cell, determining whether the local cell needs to be activated according to the indication signaling; after determining that the local cell needs to be activated, the neighboring base station notifies the local base station to activate the local cell.
  • the neighboring base station notifying the local base station to activate the local cell may include:
  • the activation signaling of the local cell sent by the neighboring base station to the local base station through the inter-base station interface; or
  • the neighboring base station sends a handover request or a bearer separation request to the local base station through the inter-base station interface.
  • the neighboring base station is a macro base station or other local base station, based on the foregoing embodiment of any method for sending a dormant information.
  • a sleep information processing method comprising:
  • the terminal in the neighboring base station receives the information of the sleep mode of the local cell of the local base station delivered by the neighboring base station, where the sleep mode includes the cell activation time period during the cell sleep period, and can send the cell discovery signal or the detection in the cell activation time period.
  • the sleep mode of the specific signal sent by the terminal is not limited
  • the terminal determines whether the local cell is available according to the information of the sleep mode or the current geographic location of the terminal, and after determining that the local cell is available, reporting the indication signaling available to the local cell to the neighboring base station; or, the terminal is in the A specific signal is transmitted within a cell activation period indicated by the sleep mode.
  • the terminal determines whether the local cell is available according to the information of the received sleep mode or the current geographic location of the terminal, and reports the available indication signaling of the local cell to the neighboring base station after determining that the terminal is available.
  • the neighboring base station can notify the local base station to activate the local cell according to the indication signaling, and implement a cell dormancy mechanism that enables the local cell to resume the active state in time after the local cell enters the dormant state.
  • the terminal determines whether the local cell is available according to the information of the sleep mode, and the method includes: the terminal performs signal measurement on the local cell in a cell activation time period indicated by the sleep mode, and measures the local cell. After the signal, it is determined that the local cell of the local base station is available.
  • the reporting of the indication signaling that is applicable to the local cell to the neighboring base station may include: the terminal reporting the signal measurement result of the local cell or the cell identifier of the local cell to the neighboring base station.
  • the terminal determines whether the local cell is available according to the current geographic location of the terminal, and the method includes: determining, by the terminal, whether to enter a cell coverage of the local cell of the local base station according to the current geographic location of the terminal, and if yes, determining the local The cell is available.
  • the indication signaling that is available to the local cell to the neighboring base station may include: the terminal reporting the cell identity of the local cell to the neighboring base station.
  • the cell identifier of the local cell is a combination of a frequency point and a cell physical identifier PCI.
  • a local base station, the local base station includes:
  • a determining unit configured to determine a sleep mode of the local cell;
  • the sleep mode is a sleep mode including a cell activation period during cell sleep, and capable of transmitting a cell discovery signal or detecting a specific signal sent by the terminal during a cell activation period;
  • a dormant unit configured to determine, after the local cell enters a dormant state, determine a cell activation period during the sleep according to the sleep mode, and send a cell discovery signal or detect a specific signal sent by the terminal in the cell activation period.
  • the local base station determines the sleep mode of the local cell, and enters the rest of the local cell. After the sleep state, the cell activation period during the sleep period is determined according to the sleep mode, and the cell discovery signal is sent or the specific signal sent by the terminal is detected in the local cell activation period, thereby enabling the local cell to enter the sleep state. The local cell is restored to the cell sleep mechanism in an activated state in time.
  • the determining unit is configured to: determine the sleep mode of the local cell in one of the following manners:
  • Manner 1 After determining that the local cell needs to enter a dormant state, determining a sleep mode according to a cell discovery signal design rule related to the physical layer;
  • Manner 2 receiving a notification that the local cell sent by the neighboring base station enters a sleep state and a sleep mode, and determining the sleep mode as a sleep mode of the local cell;
  • the sleep mode After receiving the notification that the local cell sent by the neighboring base station enters the dormant state, the sleep mode is determined according to the protocol or the configuration information delivered by the OAM.
  • the local base station may further include:
  • a first sending unit configured to: after determining the sleep mode of the local cell, and before the local cell enters the sleep state, send the information about the sleep mode of the determined local cell to the The neighboring base station to which the neighboring cell of the local cell belongs.
  • the local base station may further include:
  • a second sending unit configured to send the determined information of the sleep mode of the local cell to the terminal under the local cell, after determining the sleep mode of the local cell, and before the local cell enters the dormant state;
  • the service data transmission is further performed with the terminal in the local cell in the cell activation time period indicated by the sleep mode.
  • the local base station further includes:
  • a first activation unit configured to receive activation signaling of the local cell sent by the neighboring base station through the inter-base station interface, and end the sleep state of the local cell according to the activation signaling, so that the local cell enters an active state;
  • the local base station further includes:
  • a second activation unit configured to: after detecting the specific signal sent by the terminal in the cell activation period, end the sleep state of the local cell, enable the local cell to enter an activation state, and notify the neighboring base station to enter the local cell Activation status.
  • the neighbor base station is a macro base station or other local base station.
  • the embodiment of the present invention further provides another local base station, including a processor and a shot. Frequency unit.
  • the processor is configured to: determine a sleep mode of the local cell; the sleep mode is a sleep mode including a cell activation period during cell sleep, and capable of transmitting a cell discovery signal or detecting a specific signal sent by the terminal during a cell activation period; After the local cell enters a sleep state, determining a cell activation period during the sleep according to the sleep mode;
  • the radio unit is configured to transmit a cell discovery signal or detect a specific signal transmitted by the terminal in the local cell during a cell activation period.
  • the local base station determines a sleep mode of the local cell, and after the local cell enters the dormant state, determines a cell activation time period during the sleep mode according to the sleep mode, and sends the cell activation time period in the cell activation period.
  • the cell discovery signal or the detection of the specific signal sent by the terminal further implements a cell dormancy mechanism that enables the local cell to resume the active state in time after the local cell enters the dormant state.
  • a neighboring base station, the neighboring base station includes:
  • a determining unit configured to determine a sleep mode of a local cell of the local base station; the sleep mode is a cell that includes a cell activation period during a cell sleep period, and is capable of transmitting a cell discovery signal or detecting a specific signal sent by the terminal during a cell activation period Mode
  • a sending unit configured to send information of the determined sleep mode of the local cell to the terminal in the neighboring cell of the local cell.
  • the neighboring base station sends the information about the determined sleep mode of the local cell to the terminal in the neighboring cell of the local cell, thereby enabling the local cell to be timely after the local cell enters the dormant state. Restore the cell sleep mechanism in the active state.
  • the determining unit is for:
  • determining a sleep mode according to a cell discovery signal design rule related to the physical layer After determining that the local cell of the local base station needs to enter a dormant state, determining a sleep mode according to a cell discovery signal design rule related to the physical layer; or
  • the neighboring base station further includes:
  • an activation unit configured to: after the information about the determined sleep mode of the local cell is sent to the terminal in the neighboring cell of the local cell, receive indication signaling that is available to the local cell, and according to the indication signaling Determining whether the local cell needs to be activated; after determining that the local cell needs to be activated, notifying the local base station to activate the local cell.
  • the activation unit may be specifically configured to:
  • a handover request or a bearer separation request is sent to the local base station through the inter-base station interface.
  • the embodiment of the present invention further provides a neighboring base station, including a processor and a radio frequency unit.
  • the processor is configured to: determine a sleep mode of a local cell of the local base station; the sleep mode is to include a cell activation period during cell sleep, and can send a cell discovery signal or detect a specific signal sent by the terminal during a cell activation period Sleep mode
  • the radio unit is configured to transmit the determined information of the sleep mode of the local cell to the terminal under the neighboring cell of the local cell.
  • the neighboring base station sends the information about the determined sleep mode of the local cell to the terminal in the neighboring cell of the local cell, thereby enabling the local cell to be timely after the local cell enters the dormant state. Restore the cell sleep mechanism in the active state.
  • a terminal comprising:
  • a receiving unit configured to receive information about a sleep mode of a local cell of a local base station delivered by a neighboring base station, where the sleep mode includes a cell activation period during a cell sleep period, and can send a cell discovery signal or detect during a cell activation period The sleep mode of the specific signal sent by the terminal;
  • a processing unit configured to determine, according to the information about the sleep mode or the current geographic location of the terminal, whether the local cell is available, and after determining that the local cell is available, reporting, to the neighboring base station, an indication that the local cell is available Signaling; or, the terminal sends a specific signal in a cell activation period indicated by the sleep mode.
  • the terminal determines whether the local cell is available according to the information of the received sleep mode or the current geographic location of the terminal, and reports the available indication signaling of the local cell to the neighboring base station after determining that the terminal is available.
  • the neighboring base station can notify the local base station to activate the local cell according to the indication signaling, and implement a cell dormancy mechanism that enables the local cell to resume the active state in time after the local cell enters the dormant state.
  • the processing unit is configured to:
  • the signal measurement result of the local cell or the cell identity of the local cell is reported to the neighboring base station.
  • the processing unit is configured to:
  • the cell identifier of the local cell is reported to the neighboring base station. Based on any of the foregoing terminal embodiments, the cell identifier of the local cell is a combination of a frequency point and a cell physical identifier PCI.
  • the embodiment of the present invention further provides a terminal, including a radio frequency unit and a processor, based on the same inventive concept as the method.
  • the radio unit is configured to: receive information about a sleep mode of a local cell of a local base station delivered by a neighboring base station, where the sleep mode includes a cell activation period during a cell sleep period, and can send a cell discovery signal during a cell activation period or Detecting a sleep mode of a specific signal sent by the terminal;
  • the processor is configured to: determine whether the local cell is available according to the information of the sleep mode or the current geographic location of the terminal, and report the available indication information of the local cell to the neighboring base station after determining that the local cell is available Or; the terminal sends a specific signal in a cell activation period indicated by the sleep mode.
  • the terminal determines whether the local cell is available according to the information of the received sleep mode or the current geographic location of the terminal, and reports the available indication signaling of the local cell to the neighboring base station after determining that the terminal is available.
  • the neighboring base station can notify the local base station to activate the local cell according to the indication signaling, and implement a cell dormancy mechanism that enables the local cell to resume the active state in time after the local cell enters the dormant state.
  • the local base station determines a sleep mode of the local cell, and after the local cell enters the sleep state, determines a cell activation period during the sleep according to the sleep mode, and is in the local during the cell activation period.
  • the cell sends a cell discovery signal
  • the neighboring base station sends the determined information of the sleep mode of the local cell to the terminal in the neighboring cell of the local cell, and the terminal determines according to the information of the sleep mode or the current geographic location of the terminal.
  • the local cell can be restored to the cell sleep mechanism in the activated state in time.
  • the local base station determines a sleep mode of the local cell, and after the local cell enters the dormant state, determines a cell activation time period during the sleep mode according to the sleep mode, and detects the cell activation time period.
  • FIG. 1 is a schematic diagram of a heterogeneous network in the prior art
  • FIG. 2 is a schematic diagram of a power saving scenario of a base station in the prior art
  • 3 is a schematic diagram of three working modes of the NCT in the prior art
  • 4a is a schematic flowchart of a method provided by an embodiment of the present application
  • 4b is a schematic diagram of a sleep mode in the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of another method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of still another method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a local base station according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another base station according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a neighboring base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another terminal according to an embodiment of the present application.
  • the embodiments of the present application provide a cell dormancy mechanism for enabling a cell to be restored to an active state after the cell enters a dormant state.
  • the embodiment of the present application provides a cell dormancy and sleep information delivery and processing method.
  • the local base station sends a cell discovery signal in a cell activation time period indicated by the sleep mode of the local cell, and after detecting the cell discovery signal in the cell activation time period, the terminal reports the indication signaling available to the local cell to the neighboring base station,
  • the base station may notify the local base station to activate the local cell according to the indication signaling; or, the local base station detects the specific signal sent by the terminal in the cell activation time period indicated by the sleep mode of the local cell, and the terminal sends the specific signal in the cell activation time period,
  • the local base station can activate the local cell after detecting the specific signal sent by the terminal.
  • a cell dormancy method provided by an embodiment of the present application includes the following steps:
  • Step 40 The local base station determines a sleep mode of the local cell.
  • the sleep mode is a sleep mode that includes a cell activation period during the cell sleep period, and can send a cell discovery signal or detect a specific signal sent by the terminal during the cell activation period.
  • the local base station sends a cell discovery signal or detects a specific signal sent by the terminal during a cell activation period during sleep, and does not perform a signal transceiving operation during a cell deactivation period during sleep;
  • Step 41 The local base station is in After the local cell enters a sleep state, the cell during the sleep period is determined according to the sleep mode. Activating the time period, and transmitting a cell discovery signal or detecting a specific signal sent by the terminal in the local cell during the cell activation period.
  • the local base station determines the sleep mode of the local cell, and may specifically use one of the following modes: Mode 1: After determining that the local cell needs to enter the dormant state, the local base station determines the sleep mode according to the cell discovery signal design rule related to the physical layer. For example, if the terminal is required to use the cell activation time period of the sleep mode to discover that the local cell is available, it is necessary to ensure that the length of the cell activation time period of the determined sleep mode is not less than the transmission time length of the cell discovery signal, that is, the sleep mode is guaranteed.
  • the cell discovery signal can be sent at least once during the cell activation period;
  • the local base station receives the notification that the local cell sent by the neighboring base station enters the sleep state and the sleep mode, and determines the sleep mode as the sleep mode of the local cell.
  • the local base station After determining that the local cell needs to enter the dormant state, the local base station determines the sleep mode according to the protocol information or the configuration information delivered by the operation and maintenance entity (OAM), that is, the configuration mode indicates the sleep mode of the local cell; After the local base station receives the notification that the local cell sent by the neighboring base station enters the dormant state, the sleep mode is determined according to the protocol agreement or the configuration information delivered by the OAM, that is, the sleep mode of the local cell is indicated in the configuration information.
  • OAM operation and maintenance entity
  • the local base station may send the determined information about the sleep mode of the local cell to the local cell after determining the sleep mode of the local cell and before the local cell enters the sleep state.
  • the local base station may send the determined information of the sleep mode of the local cell to the terminal under the local cell, so that the local base station
  • the terminal in the local cell can learn the cell activation time period indicated by the sleep mode of the local cell, and the terminal can perform service data transmission with the local base station in the cell activation time period, and correspondingly, the local base station is in the cell activation time period.
  • the service data transmission is performed with the terminal under the local cell during the cell activation period.
  • the local base station may receive the activation signaling of the local cell sent by the neighboring base station through the inter-base station interface, according to The activation signaling ends the sleep state of the local cell, and the local cell enters an active state.
  • the local base station receives a handover request or a bearer separation request sent by the neighboring base station through the inter-base station interface, and ends the local cell. In the dormant state, the local cell enters an active state, and completes handover or bearer separation of the terminal to the local cell according to the handover request or the bearer separation request.
  • the local base station detects the specific signal sent by the terminal in the cell activation time period in step 41, the local base station ends the local signal after detecting the specific signal sent by the terminal in the cell activation time period indicated by the sleep mode of the local cell.
  • the dormant state of the cell causes the local cell to enter an active state, and notifies the neighboring base station that the local cell enters an active state.
  • the neighboring base station may be a macro base station or other local base station.
  • an embodiment of the present application provides a method for sending a dormant information, including the following steps:
  • Step 50 The neighboring base station determines a sleep mode of the local cell of the local base station.
  • the sleep mode is a cell that includes a cell activation period during the cell sleep period, and can send a cell discovery signal or detect a specific signal sent by the terminal during the cell activation period. Mode, as shown in Figure 4b;
  • Step 51 The neighboring base station sends the determined information of the sleep mode of the local cell to the terminal in the neighboring cell of the local cell.
  • the neighboring base station determines the sleep mode of the local cell of the local base station, and the specific implementation may be as follows: the neighboring base station receives the information of the sleep mode of the local cell sent by the local base station, and determines the sleep mode of the local cell according to the information; or
  • the neighboring base station After determining that the local cell of the local base station needs to enter the dormant state, the neighboring base station determines the sleep mode according to the cell discovery signal design rule related to the physical layer. For example, if the terminal needs to use the cell activation time period of the sleep mode to discover that the local cell is available, The length of the cell activation period of the determined sleep mode is not less than the length of the cell discovery signal, that is, the cell discovery signal can be transmitted at least once in the cell activation period of the sleep mode; or
  • the neighboring base station receives the request for the local cell to enter the dormant state sent by the local base station and the sleep mode, and determines whether to accept the request, and if yes, determines that the sleep mode is the sleep mode of the local cell, otherwise, according to the cell discovery signal related to the physical layer
  • the rule re-determines the sleep mode of the local cell.
  • the neighboring base station determines whether the indication is required to be activated after receiving the indication signaling available to the local cell reported by the terminal.
  • the local cell after determining that the local cell needs to be activated, the neighboring base station notifies the local base station to activate the local cell.
  • the neighboring base station may consider factors such as the load of the neighboring cell and the number of terminals entering the coverage of the local cell when determining whether to activate the local cell, for example, if one terminal enters the coverage of the local cell, and the load of the neighboring cell is higher than the threshold. Then, it is judged that the local cell needs to be activated.
  • the neighboring base station notifies the local base station to activate the local cell, and the specific implementation may be as follows:
  • the neighboring base station sends the activation signaling to the local cell to the local base station through the inter-base station interface; or the neighboring base station sends a handover request or a bearer separation request to the local base station through the inter-base station interface.
  • the neighboring base station may be a macro base station or other local base station.
  • an embodiment of the present application provides a method for processing sleep information, including the following steps:
  • Step 60 The terminal in the neighboring base station receives the information about the sleep mode of the local cell of the local base station that is sent by the neighboring base station, where the sleep mode includes the cell activation time period during the cell sleep period, and can send the cell discovery in the cell activation time period. Signal or detecting the sleep mode of the specific signal sent by the terminal, as shown in Figure 4b;
  • Step 61 The terminal determines, according to the information of the sleep mode or the current geographic location of the terminal, that the local cell is If the local cell is available, the indication signal that is available to the local cell is reported to the neighboring base station, and if the local cell is determined to be unavailable, the indication signaling available to the local cell is not reported to the neighboring base station; or The terminal transmits a specific signal in a cell activation period indicated by the sleep mode, so that the local base station activates the local cell after detecting a specific signal sent by the terminal.
  • the specific signal may specifically be a random access (RA) signal, a sounding reference signal (SRS) or other newly designed signal.
  • step 61 the terminal determines, according to the information of the sleep mode, whether the local cell is available, and the specific implementation may be as follows:
  • the terminal performs signal measurement on the local cell in the cell activation time period indicated by the sleep mode, and after measuring the signal of the local cell, determining that the local cell of the local base station is available; after determining that the local cell is available, The signal measurement result of the local cell or the cell identity of the local cell is reported to the neighboring base station.
  • the signal measurement result may be a measured reference signal received power (RSRP) or a reference signal received shield (RSRQ), etc.
  • the cell identifier of the local cell may be a combination of a frequency point and a cell physical identifier (PCI).
  • step 61 the terminal determines whether the local cell is available according to the current geographic location of the terminal, and the specific implementation may be as follows:
  • the terminal determines whether to enter the cell coverage of the local cell of the local base station according to the current geographic location of the terminal, and if yes, determines that the local cell is available; and after determining that the local cell is available, reports the cell coverage of the local cell to the neighboring base station.
  • the notification may be embodied as a cell identifier of the local cell, such as a combination of a frequency point and a PCI.
  • the method for the terminal to obtain the coverage of the cell of the local cell may be: the local base station sends the information about the coverage of the cell of the local area to the neighboring base station, and the neighboring base station forwards the information about the coverage of the cell of the local cell to the terminal.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the local base station determines that the local cell needs to sleep and the sleep mode (pattern), and the local cell does not serve the UE before entering the fully activated state;
  • Step 1 The local base station determines that the local cell needs to sleep and sleep.
  • the local base station determines that the local cell needs to enter the dormant state according to factors such as the resource occupancy of the local cell and the number of UEs currently serving, and removes the UE in the local cell by configuring the secondary cell (Scell), switching, or bearer combining. . Then, the local base station determines the sleep pattern of the Local cell according to the cell discovery signal design rule related to the physical layer. For example, it is required to ensure that the UE can use the cell activation time period in the sleep pattern to discover that the Local cell is available. Further, after the local cell enters the dormant state, the UE under its coverage is not allowed to establish an RRC connection in the cell.
  • Step 2 The local base station notifies the neighboring base station that the local cell enters a sleep state and a sleep pattern;
  • Step 3 The neighboring base station notifies the UE of the sleep pattern of the local cell, where the UE is a UE that is managed by the neighboring base station of the Local cell and is within the coverage of the cell adjacent to the Local cell;
  • Step 4 The UE indicates to the neighboring base station that the Local cell is available.
  • the UE indicates to the neighboring base station that the Local cell is available through signaling. There are many ways to do this, such as:
  • the UE determines whether to enter the coverage of the Local cell according to the current geographic location, and if yes, sends the indication signaling available to the local cell to the neighboring base station; or
  • the UE measures the cell discovery signal sent by the local cell in the cell activation period of the dormancy pattern, and uploads the measurement result to the neighboring base station after the measurement;
  • Step 5 The neighboring base station decides whether to activate the Local cell
  • the neighboring base station After determining, by the neighboring base station, that the local cell is available, the neighboring base station needs to determine whether the Local cell needs to be activated, so as to separate the UE handover or the bearer from the local celL neighboring base station to perform local cell activation determination, and consider the load of the neighboring cell and enter the Local cell coverage.
  • the number of UEs in the range for example, if one UE enters the coverage of the Local cell, and the load of the neighboring cell is higher than the threshold, it is determined that the Local cell needs to be activated.
  • Step 6 The neighboring base station notifies the local base station to activate the Local cell
  • the local base station After the neighboring base station decides that the local cell needs to be activated, the local base station needs to be notified by the inter-base station interface to activate the local cell, and the notification may carry one or more indications of the local cell to be activated.
  • Step 7 The local base station activates the Local cell
  • the local base station After receiving the notification of the activation of the Local cell by the neighboring base station, the local base station ends the sleep state of the Local cell, so that the Local cell enters the fully activated state.
  • Step 8 The neighboring base station assists in separating the UE handover or bearer into the Local cell.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the base station that provides basic coverage determines the sleep pattern of the Local cell, and the Local cell does not serve the UE before entering the fully activated state;
  • Step 1 The neighboring base station determines that the local cell needs to sleep and sleep.
  • the neighboring base station provides basic coverage. Once it finds that there is no data transmission requirement on the local cell (for example, the local cell is only used for bearer separation, and the neighboring base station can know whether there is data transmission requirement on the local cell), then it can be decided to let the local cell enter the sleep state.
  • the state, and determining its sleep pattern, the determination of the sleep pattern needs to ensure that the UE can discover that the Local cell is available by using the cell activation period in the sleep pattern. If the bearer of the neighboring base station is separated from the local cell, the bearer merge should be performed first, and then the local cell is notified to enter the sleep state.
  • the local base station determines whether the local cell is dormant or dormant, and requests the neighboring base station that provides the basic coverage, and then the neighboring base station decides whether to accept the request of the local base station, and if not, re-determines the sleep pattern.
  • Step 2 The neighboring base station notifies the local base station that the local cell enters the sleep state and its sleep pattern;
  • the neighboring base station that provides the basic coverage may notify the local base station that the local cell enters the dormant state and its sleep pattern through the inter-base station interface.
  • the local base station may first configure the SCell, handover, or bearer merge, etc. When the mode is transferred to other cells, it can also go directly to the sleep state, and the UE discovers the radio link failure (RLF) by itself. Further, the local base station may only send the cell discovery signal within the cell activation period determined according to the sleep pattern.
  • RLF radio link failure
  • Step 3 The neighboring base station notifies the UE of the sleep pattern of the local cell, where the UE is a UE that is managed by the neighboring cell of the Local cell and is within the coverage of the cell adjacent to the Local cell;
  • Step 4 The UE indicates to the neighboring base station that the Local cell is available.
  • the UE indicates to the neighboring base station that the Local cell is available through signaling. There are many ways to do this, such as:
  • the UE determines whether to enter the coverage of the Local cell according to the current geographic location, and if yes, sends the indication signaling available to the local cell to the neighboring base station; or
  • the UE measures the cell discovery signal sent by the local cell in the cell activation period of the dormancy pattern, and uploads the measurement result to the neighboring base station after the measurement;
  • Step 5 The neighboring base station decides whether to activate the Local cell
  • the neighboring base station After determining, by the neighboring base station, that the local cell is available, the neighboring base station needs to determine whether the Local cell needs to be activated, so as to separate the UE handover or the bearer from the local celL neighboring base station to perform local cell activation determination, and consider the load of the neighboring cell and enter the Local cell coverage.
  • the number of UEs in the range for example, if one UE enters the coverage of the Local cell, and the load of the neighboring cell is higher than the threshold, it is determined that the Local cell needs to be activated.
  • Step 6 The neighboring base station notifies the local base station to activate the Local cell
  • the local base station After the neighboring base station decides that the local cell needs to be activated, the local base station needs to be notified by the inter-base station interface to activate the local cell, and the notification may carry one or more indications of the local cell to be activated.
  • Step 7 The local base station activates the Local cell
  • the local base station After receiving the notification of the activation of the Local cell by the neighboring base station, the local base station ends the sleep state of the Local cell, so that the Local cell enters the fully activated state.
  • Step 8 The neighboring base station assists in separating the UE handover or bearer into the Local cell.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the local base station determines that the local cell needs to sleep and the sleep pattern, and the local cell can serve the UE in the cell activation period of the sleep pattern;
  • the difference between the third embodiment and the first embodiment is that the UE does not transfer the UE when the local cell is dormant. Therefore, in addition to ensuring that the UE can use the cell activation period in the sleep pattern to discover that the local cell is available, the sleep pattern needs to ensure that the UE does not generate RLF. .
  • the specific process of the third embodiment is shown in Figure 7c:
  • Step 1 The local base station determines that the local cell needs to sleep and sleep.
  • the local base station determines whether the sleep state can be entered according to the UE data transmission requirement currently served by the local cell. If yes, then the local cell needs to enter the dormant state, and the local base station needs to determine the sleep pattern according to the current RLF decision condition and the design rule of the physical layer cell discovery signal, and the sleep pattern needs to ensure that the UE does not generate RLF as much as possible and can guarantee new The UE entering the cell can discover that the cell is available in time. Further, in the cell activation period of the sleep pattern, the local cell can perform data transmission and reception normally in addition to the cell discovery signal.
  • Step 2 The local base station notifies the neighboring base station that the local cell enters a sleep state and a sleep pattern
  • the local base station Since the local cell can also serve the UE in the cell during the cell activation period determined according to the dormancy pattern, the local base station needs to notify the UE that it serves the sleep pattern of the Local cell.
  • Step 3 The neighboring base station notifies the UE of the sleep pattern of the local cell, where the UE is a UE that is managed by the neighboring cell of the Local cell and is within the coverage of the cell adjacent to the Local cell;
  • Step 4 The UE indicates to the neighboring base station that the Local cell is available.
  • the UE indicates to the neighboring base station that the Local cell is available through signaling. There are many ways to do this, such as:
  • the UE determines whether to enter the coverage of the Local cell according to the current geographic location, and if yes, sends the indication signaling available to the local cell to the neighboring base station; or
  • the UE measures the cell discovery signal sent by the local cell in the cell activation period of the dormancy pattern, and uploads the measurement result to the neighboring base station after the measurement;
  • Step 5 The neighboring base station decides whether to activate the Local cell
  • the neighboring base station After determining, by the neighboring base station, that the local cell is available, the neighboring base station needs to determine whether the Local cell needs to be activated, so as to separate the UE handover or the bearer from the local celL neighboring base station to perform local cell activation determination, and consider the load of the neighboring cell and enter the Local cell coverage.
  • the number of UEs in the range for example, if one UE enters the coverage of the Local cell, and the load of the neighboring cell is higher than the threshold, it is determined that the Local cell needs to be activated.
  • Step 6 The neighboring base station notifies the local base station to activate the Local cell
  • the local base station After the neighboring base station decides that the local cell needs to be activated, the local base station needs to be notified by the inter-base station interface to activate the local cell, and the notification may carry one or more indications of the local cell to be activated.
  • Step 7 The local base station activates the Local cell
  • the local base station After receiving the notification of the activation of the Local cell by the neighboring base station, the local base station ends the sleep state of the Local cell, so that the Local cell enters the fully activated state.
  • Step 8 The neighboring base station assists in separating the UE handover or bearer into the Local cell.
  • step 5 if the neighboring base station determines that the local cell needs to be activated, the local cell may directly send a handover or bearer separation request to the local cell, and the local cell may automatically activate the local cell and perform the bearer after receiving the handover or bearer separation request. Separation or switching processing, that is, steps 6 and 7 can be omitted.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the base station that provides basic coverage determines the sleep of the Local cell.
  • the local cell may serve the UE during the cell activation period of the sleep pattern;
  • the fourth embodiment is mainly applicable to a scenario in which the local cell does not work independently, and only the bearer is separated and the bearer separated data needs to be forwarded by the cell that provides the basic coverage.
  • the base station that provides basic coverage in this scenario needs to consider the delay requirement of the separated bearer when determining the sleep pattern of the Local cell and/or avoid the RLF of the UE separated on the Local cell.
  • the difference from the second embodiment is mainly reflected in step 1.
  • the specific process is shown in Figure 7d:
  • Step 1 The neighboring base station determines that the local cell needs to sleep and sleep.
  • the neighboring base station provides basic coverage. Once it finds that there is no data transmission requirement on the local cell (for example, the local cell is only used for bearer separation, and the neighboring base station can know whether there is data transmission requirement on the local cell), then it can be decided to let the local cell enter the sleep state.
  • the status, and the determination of the sleep pattern, the determination of the sleep pattern needs to ensure that the UE can use the activation period in the sleep pattern to find that the local cell is available and/or the service delay transmitted to the Local cell transmission is not affected.
  • Step 2 The neighboring base station notifies the local base station that the local cell enters the sleep state and its sleep pattern
  • the neighboring base station providing basic coverage may notify the local base station of the local cell to enter the sleep state and its sleep pattern through the inter-base station interface, and after receiving the sleep indication, the local base station enters the sleep state according to the sleep pattern, and the cell activation time period determined according to the sleep pattern
  • normal data transmission and reception can be performed. If the local cell can also serve the UE in the cell during the cell activation period determined by the sleep pattern, the local base station needs to notify the UE of the serving cell of the local cell before the local cell sleeps, if With the bearer separation, the neighboring base station may also notify the UE served by the Local cell of the sleep pattern of the Local cell.
  • Step 3 The neighboring base station notifies the UE of the sleep pattern of the local cell, where the UE is a UE that is managed by the neighboring cell of the Local cell and is within the coverage of the cell adjacent to the Local cell;
  • Step 4 The UE indicates to the neighboring base station that the Local cell is available.
  • the UE indicates to the neighboring base station that the Local cell is available through signaling. There are many ways to do this, such as:
  • the UE determines whether to enter the coverage of the Local cell according to the current geographic location, and if yes, sends the indication signaling available to the local cell to the neighboring base station; or
  • the UE measures the cell discovery signal sent by the local cell in the cell activation period of the dormancy pattern, and uploads the measurement result to the neighboring base station after the measurement;
  • Step 5 The neighboring base station decides whether to activate the Local cell
  • the neighboring base station After determining, by the neighboring base station, that the local cell is available, the neighboring base station needs to determine whether the Local cell needs to be activated, so as to separate the UE handover or the bearer from the local celL neighboring base station to perform local cell activation determination, and consider the load of the neighboring cell and enter the Local cell coverage.
  • the number of UEs in the range for example, if one UE enters the coverage of the Local cell, and the load of the neighboring cell is higher than the threshold, it is determined that the Local cell needs to be activated.
  • Step 6 The neighboring base station notifies the local base station to activate the Local cell; After the neighboring base station decides that the local cell needs to be activated, the local base station needs to be notified by the inter-base station interface to activate the local cell, and the notification may carry one or more indications of the local cell to be activated.
  • Step 7 The local base station activates the Local cell
  • the local base station After receiving the notification of the activation of the Local cell by the neighboring base station, the local base station ends the sleep state of the Local cell, so that the Local cell enters the fully activated state.
  • Step 8 The neighboring base station assists in separating the UE handover or bearer into the Local cell.
  • step 5 if the neighboring base station determines that the local cell needs to be activated, the local base station may directly send a handover or bearer separation request to the local base station, and the local base station may automatically activate the local cell and perform bearer separation after receiving the handover or bearer separation request.
  • the switching process that is, steps 6 and 7 can be omitted.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the sleep mode is performed according to a protocol or an OAM configuration
  • Step 1 The local base station determines that the local cell needs to sleep and sleep.
  • the local base station determines that the local cell needs to enter the sleep state according to factors such as the resource occupancy of the local cell and the number of UEs currently serving.
  • the sleep pattern of the Local cell is configured by protocol or OAM.
  • the cell discovery signal (such as cell-specific pilot signal (CRS), primary synchronization signal (PSS), secondary synchronization signal (SSS), etc.) may be normally transmitted in the local cell during the cell activation period determined according to the sleep pattern.
  • Business data can be sent and received.
  • Step 2 The local base station notifies the neighboring base station that the Neighbor cell enters a sleep state.
  • Step 3 The neighboring base station notifies the UE that the local cell is in a dormant state, wherein the UE is a UE that is managed by a neighboring cell of the Local cell and is in a cell coverage area adjacent to the Local cell;
  • the UE determines the sleep pattern of the Local cell according to the agreement of the protocol
  • Step 4 The UE indicates to the neighboring base station that the Local cell is available.
  • the UE indicates to the neighboring base station that the Local cell is available through signaling. There are many ways to do this, such as:
  • the UE determines whether to enter the coverage of the Local cell according to the current geographic location, and if yes, sends the indication signaling available to the local cell to the neighboring base station; or
  • the UE measures the cell discovery signal sent by the local cell in the cell activation period of the dormancy pattern, and uploads the measurement result to the neighboring base station after the measurement;
  • Step 5 The neighboring base station decides whether to activate the Local cell
  • the neighboring base station After determining, by the neighboring base station, that the local cell is available, the neighboring base station needs to determine whether the Local cell needs to be activated, so as to separate the UE handover or the bearer from the local celL neighboring base station to perform local cell activation determination, and consider the load of the neighboring cell and enter the Local cell coverage.
  • the number of UEs in the range for example, if one UE enters the coverage of the Local cell, and the load of the neighboring cell is higher than the threshold, it is determined that the Local cell needs to be activated.
  • Step 6 The neighboring base station notifies the local base station to activate the Local cell;
  • the local base station After the neighboring base station decides that the local cell needs to be activated, the local base station needs to be notified by the inter-base station interface to activate the local cell, and the notification may carry one or more indications of the local cell to be activated.
  • Step 7 The local base station activates the Local cell
  • the local base station After receiving the notification of the activation of the Local cell by the neighboring base station, the local base station ends the sleep state of the Local cell, so that the Local cell enters the fully activated state.
  • Step 8 The neighboring base station assists in separating the UE handover or bearer into the Local cell.
  • the base station that provides the basic coverage determines the local cell sleep, and determines the sleep pattern according to the protocol agreement or the configuration of the OAM;
  • Step 1 The neighboring base station determines that the local cell needs to sleep and sleep.
  • the neighboring base station provides basic coverage. Once it finds that there is no data transmission requirement on the local cell (for example, the local cell is only used for bearer separation, and the neighboring base station can know whether there is data transmission requirement on the local cell), then it can be decided to let the local cell enter the sleep state. State, and determine its sleep pattern. If the neighboring base station has a bearer separated from the local cell, the bearer merge should be performed first, and then the local cell is notified to enter the sleep state.
  • Step 2 The neighboring base station notifies the local base station that the local cell enters a sleep state.
  • the neighboring base station providing basic coverage may notify the local base station that the local cell enters the dormant state through the inter-base station interface. After receiving the dormancy indication, the local base station may perform sleep according to the protocol agreement or the sleep pattern of the OAM configuration, and the cell activation time period defined by the sleep pattern
  • the internal Local cell can normally send the cell discovery signal, and can also send and receive service data.
  • Step 3 The neighboring base station notifies the UE of the sleep pattern of the local cell, where the UE is a UE that is managed by the neighboring cell of the Local cell and is within the coverage of the cell adjacent to the Local cell;
  • Step 4 The UE indicates to the neighboring base station that the Local cell is available.
  • the UE indicates to the neighboring base station that the Local cell is available through signaling. There are many ways to do this, such as:
  • the UE determines whether to enter the coverage of the Local cell according to the current geographic location, and if yes, sends the indication signaling available to the local cell to the neighboring base station; or
  • the UE measures the cell discovery signal sent by the local cell in the cell activation period of the dormancy pattern, and uploads the measurement result to the neighboring base station after the measurement;
  • Step 5 The neighboring base station decides whether to activate the Local cell
  • the neighboring base station After determining, by the neighboring base station, that the local cell is available, the neighboring base station needs to determine whether the Local cell needs to be activated, so as to separate the UE handover or the bearer from the local celL neighboring base station to perform local cell activation determination, and consider the load of the neighboring cell and enter the Local cell coverage. Factors such as the number of UEs in the range, such as once a UE enters the Local cell If the coverage of the neighboring cell is higher than the threshold, it is determined that the Local cell needs to be activated.
  • Step 6 The neighboring base station notifies the local base station to activate the Local cell
  • the local base station After the neighboring base station decides that the local cell needs to be activated, the local base station needs to be notified by the inter-base station interface to activate the local cell, and the notification may carry one or more indications of the local cell to be activated.
  • Step 7 The local base station activates the Local cell
  • the local base station After receiving the notification of the activation of the Local cell by the neighboring base station, the local base station ends the sleep state of the Local cell, so that the Local cell enters the fully activated state.
  • Step 8 The neighboring base station assists in separating the UE handover or bearer into the Local cell.
  • the local base station determines, by itself, that the local cell needs to sleep and sleep.
  • Step 1 The local base station determines that the local cell needs to sleep and sleep.
  • the local base station determines that the local cell needs to enter the dormant state according to factors such as the resource occupancy of the local cell and the number of UEs currently serving, and removes the UE in the local cell by configuring the secondary cell (Scell), switching, or bearer combining. .
  • the local base station determines the sleep pattern of the Local cell according to the cell discovery signal design rule associated with the physical layer.
  • the local base station detects the specific signal sent by the terminal in the cell activation period defined by the sleep pattern; Step 2: The local base station notifies the neighboring base station that the Local cell enters the sleep state and the sleep pattern;
  • Step 3 The neighboring base station notifies the UE of the sleep pattern of the local cell, where the UE is a UE that is managed by the neighboring cell of the Local cell and is within the coverage of the cell adjacent to the Local cell;
  • Step 4 The UE sends a specific signal in a cell activation period defined by the sleep pattern.
  • Step 5 The local base station activates the Local cell after detecting the specific signal sent by the UE.
  • the base station that provides basic coverage determines the sleep pattern of the Local cell
  • Step 1 The neighboring base station determines that the local cell needs to sleep and sleep.
  • the neighboring base station provides basic coverage. Once it finds that there is no data transmission requirement on the local cell (for example, the local cell is only used for bearer separation, and the neighboring base station can know whether there is data transmission requirement on the local cell), then it can be decided to let the local cell enter the sleep state. State, and determine its sleep pattern. If the neighboring base station has a bearer separated from the local cell, the bearer should be merged first, and then the local cell is notified to enter the sleep state.
  • Step 2 The neighboring base station notifies the local base station that the local cell enters the sleep state and its sleep pattern
  • the neighboring base station providing the basic coverage may notify the local base station that the local cell enters the dormant state and its sleep pattern through the inter-base station interface, and after receiving the dormancy indication, the local base station checks the cell activation time period defined by the sleep pattern. Measure the specific signal sent by the terminal.
  • Step 3 The neighboring base station notifies the UE of the sleep pattern of the local cell, where the UE is a UE that is managed by the neighboring cell of the Local cell and is within the coverage of the cell adjacent to the Local cell;
  • Step 4 The UE sends a specific signal in a cell activation period defined by the sleep pattern.
  • Step 5 The local base station activates the Local cell after detecting the specific signal sent by the UE.
  • an embodiment of the present application provides a local base station, where the local base station includes:
  • a determining unit 80 configured to determine a sleep mode of the local cell; the sleep mode is a sleep mode that includes a cell activation period during the cell sleep period, and can send a cell discovery signal or detect a specific signal sent by the terminal during the cell activation period;
  • the dormant unit 81 is configured to determine, after the local cell enters a dormant state, determine a cell activation time period during the dormancy according to the sleep mode, and send a cell discovery signal or detect a specific signal sent by the terminal in the local cell during the cell activation time period. .
  • the determining unit 80 is configured to: determine, according to one of the following manners, a sleep mode of the local cell: mode 1: after determining that the local cell needs to enter a dormant state, determining a sleep mode according to a cell discovery signal design rule related to the physical layer ;
  • Manner 2 receiving a notification that the local cell sent by the neighboring base station enters a sleep state and a sleep mode, and determining the sleep mode as a sleep mode of the local cell;
  • the sleep mode After receiving the notification that the local cell sent by the neighboring base station enters the dormant state, the sleep mode is determined according to the protocol or the configuration information delivered by the OAM.
  • the local base station further includes:
  • the first sending unit 82 is configured to: after determining the sleep mode of the local cell, and before the local cell enters the sleep state, send the information about the sleep mode of the determined local cell to the first mode or the third mode.
  • the local base station further includes:
  • the second sending unit 83 is configured to send the determined information about the sleep mode of the local cell to the terminal under the local cell, after determining the sleep mode of the local cell, and before the local cell enters the sleep state;
  • the service data transmission is further performed with the terminal in the local cell in the activation time period indicated by the sleep mode.
  • the local base station further includes:
  • the first activation unit 84 is configured to receive an activation signal sent by the neighboring base station to the local cell by using an inter-base station interface. Ending the sleep state of the local cell according to the activation signaling, so that the local cell enters an active state; or, after receiving a handover request or a bearer separation request sent by the neighboring base station through the inter-base station interface, ending the sleep of the local cell
  • the state is that the local cell enters an active state, and completes handover or bearer separation of the terminal to the local cell according to the handover request or the bearer separation request.
  • the local base station further includes:
  • the second activation unit 85 is configured to: after detecting the specific signal sent by the terminal in the cell activation period, end the sleep state of the local cell, enable the local cell to enter an activation state, and notify the neighboring base station of the local cell Enter the active state.
  • the neighboring base station is a macro base station or other local base station.
  • the embodiment of the present invention further provides another local base station, as shown in FIG. 9, including a processor 91 and a radio frequency unit 92.
  • the processor 91 is configured to: determine a sleep mode of the local cell; the sleep mode is a sleep mode including a cell activation period during cell sleep, and capable of transmitting a cell discovery signal or detecting a specific signal sent by the terminal during a cell activation period After the local cell enters a sleep state, determining a cell activation period during the sleep according to the sleep mode;
  • the radio frequency unit 92 is configured to: transmit a cell discovery signal or detect a specific signal transmitted by the terminal in the local cell during a cell activation period.
  • an embodiment of the present application provides a neighboring base station, where the neighboring base station includes:
  • a determining unit 101 configured to determine a sleep mode of a local cell of the local base station; the sleep mode is to include a cell activation period during cell sleep, and can send a cell discovery signal or detect a specific signal sent by the terminal during a cell activation period Sleep mode
  • the sending unit 102 is configured to send the determined information about the sleep mode of the local cell to the terminal in the neighboring cell of the local cell.
  • the determining unit 101 is configured to:
  • determining a sleep mode according to a cell discovery signal design rule related to the physical layer After determining that the local cell of the local base station needs to enter a dormant state, determining a sleep mode according to a cell discovery signal design rule related to the physical layer; or
  • the neighboring base station further includes:
  • the activation unit 103 is configured to send, to the neighbor of the local cell, information about a determined sleep mode of the local cell. After the terminal in the cell, the indication signal that is available to the local cell reported by the terminal is received, and the local cell is determined to be activated according to the indication signaling. After determining that the local cell needs to be activated, the local base station is notified to activate the Local cell.
  • the activation unit 103 is configured to:
  • a handover request or a bearer separation request is sent to the local base station through the inter-base station interface.
  • the embodiment of the present invention further provides a neighboring base station, as shown in FIG. 9, including a processor 91 and a radio frequency unit 92.
  • the processor 91 is configured to: determine a sleep mode of a local cell of the local base station; the sleep mode is to include a cell activation period during the cell sleep period, and can send a cell discovery signal or detect a specific transmission by the terminal during the cell activation period Sleep mode of the signal;
  • the radio frequency unit 92 is configured to: send the determined information of the sleep mode of the local cell to the terminal in the neighboring cell of the local cell.
  • an embodiment of the present application provides a terminal, where the terminal includes:
  • the receiving unit 111 is configured to receive information about a sleep mode of a local cell of a local base station delivered by a neighboring base station, where the sleep mode includes a cell activation time period during cell dormancy, and can send a cell discovery signal in a cell activation time period or Detecting a sleep mode of a specific signal sent by the terminal;
  • the processing unit 112 is configured to determine, according to the information about the sleep mode or the current geographic location of the terminal, whether the local cell is available, and after determining that the local cell is available, reporting, by the neighboring base station, an indication that the local cell is available. Or the terminal sends a specific signal in a cell activation period indicated by the sleep mode, so that the local base station activates the local cell after detecting a specific signal sent by the terminal.
  • processing unit 111 is configured to:
  • the signal measurement result of the local cell or the cell identity of the local cell is reported to the neighboring base station.
  • the cell identity of the local cell may be a combination of frequency and PCI.
  • processing unit 111 is configured to:
  • the neighboring base station After determining that the local cell is available, the neighboring base station reports a notification of the cell coverage of the local cell.
  • the specific content of the notification may be a cell identifier of a local cell, such as a combination of a frequency point and a PCI.
  • the embodiment of the present invention further provides a terminal, as shown in FIG. 12, including a radio frequency unit 121 and a processor 122.
  • the radio frequency unit 121 is configured to: receive information about a sleep mode of a local cell of a local base station delivered by a neighboring base station, where the sleep mode includes a cell activation period during a cell sleep period, and can send a cell discovery signal in a cell activation period Or detecting a sleep mode of a specific signal sent by the terminal;
  • the processor 122 is configured to: determine, according to the information about the sleep mode or the current geographic location of the terminal, whether the local cell is available, and after determining that the local cell is available, report an indication that the local cell is available to the neighboring base station. Signaling; or, the terminal sends a specific signal in a cell activation period indicated by the sleep mode.
  • the beneficial effects of the application include:
  • the local base station determines a sleep mode of the local cell, and after the local cell enters the sleep state, determines a cell activation period during the sleep according to the sleep mode, and is in the local during the cell activation period.
  • the cell sends a cell discovery signal
  • the neighboring base station sends the determined information of the sleep mode of the local cell to the terminal in the neighboring cell of the local cell, and the terminal determines according to the information of the sleep mode or the current geographic location of the terminal.
  • the local cell can be restored to the cell sleep mechanism in the activated state in time.
  • the local base station determines a sleep mode of the local cell, and after the local cell enters the dormant state, determines a cell activation time period during the sleep mode according to the sleep mode, and detects the cell activation time period.
  • the specific signal sent by the terminal, and the neighboring base station sends the determined information of the sleep mode of the local cell to the terminal in the neighboring cell of the local cell, where the terminal sends a specific signal in the cell activation time period indicated by the sleep mode, Therefore, the local base station can activate the local cell as needed after detecting the specific signal sent by the terminal, thereby implementing a cell dormancy mechanism that enables the local cell to resume the active state in time after the local cell enters the dormant state.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that the computer Or performing a series of operational steps on other programmable devices to produce computer-implemented processing such that instructions executed on a computer or other programmable device are provided for implementing a block in a flow or a flow and/or block diagram of the flowchart Or the steps of the function specified in multiple boxes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种小区休眠、休眠信息下发及处理方法和设备,涉及无线通信领域,用于提供一种在小区进入休眠状态后能够使该小区及时恢复激活状态的小区休眠机制。本申请中,本地基站在休眠模式的小区激活时间段内发送小区发现信号,终端在检测到小区发现信号向邻基站上报本地小区可用的指示信令,邻基站可以根据该指示信令通知本地基站激活该本地小区;或者,本地基站在休眠模式的小区激活时间段内检测终端发送的特定信号,在检测到后可以激活本地小区,进而实现了在本地小区进入休眠状态后能够使该本地小区及时恢复激活状态的小区休眠机制。

Description

小区休眠、 休眠信息下发及处理方法和设备 本申请要求在 2012年 12月 17日提交中国专利局、 申请号为 201210549462.X、发明名称为
"小区休眠、休眠信息下发及处理方法和设备"的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。 技术领域 本申请涉及无线通信领域,尤其涉及一种小区休眠、休眠信息下发及处理方法和设备。 背景技术 随着家庭基站、 微小区等的部署, 传统的只有宏小区的同构网络将逐步演进为多种类 型小区共存的异构网。 在异构网络下, 宏基站 (Marco eNB )可以提供基本覆盖, 本地基 站(Local eNB )在宏基站覆盖范围内提供小范围覆盖, 如图 1所示, 其中 Local eNB可以 是中继设备(RN )、 家庭基站(He B )、 微基站(Pico )等。
现有的基站节能机制主要是针对有重叠覆盖的场景, 比如: 由 GSM/EDGE无线接入 网 (GSM EDGE Radio Access Network, GERAN ) /通用陆地无线接入网络 ( Universal Terrestrial Radio Access Network, UTRAN ) /演进的通用陆地无线网络( Evolved Universal
Terrestrial Radio Access Network, E-UTRAN ) 小区提供基本覆盖, E-UTRAN小区作为热 点覆盖, 热点覆盖位于基本覆盖范围内。 以基本覆盖和热点覆盖都是 E-UTRAN小区为例, 基站节能的场景如图 2所示,其中宏小区( Marco cell )提供基本覆盖,其它本地小区( Local cell )提供热点覆盖。
在重叠覆盖场景下, 热点小区的主要作用就是分流基本覆盖小区的容量。 因此处于基 站节能考虑, 热点小区仅需要在有承载分流需求时才有必要开启, 其它情况下可以关闭以 达到基站节能的目的, 即所谓的小区激活 /去激活机制。 在小区激活状态下, 小区可以正常 工作, 即可以正常发送各种物理层信号以及进行数据传输。 小区去激活状态下, 小区不能 发送任何信号, 也不能和用户终端 ( User Equipment, UE )之间进行数据收发。
热点小区的节能通过激活 /去激活热点小区的方式实现。具体的热点小区去激活机制主 要有如下几种:
第一, 基于操作与维护实体(OAM )控制;
第二, 提供热点覆盖的基站在没有数据传输需求时可以自主去激活全部 /部分小区; 第三, 基于宏基站控制。
当提供热点覆盖的基站决定去激活其下某个小区时, 可以将该小区处于连接态的 UE 切换到其它小区, 并在切换请求中指示切换原因, 避免这些小区将 UE再次切换到该去激 活小区。 此外, 提供热点覆盖的基站在去激活其下某个或者某些小区后, 通过基站间接口 通知邻基站该热点覆盖基站去激活了其下哪些小区。
热点小区被去激活后, 一旦提供宏覆盖的基站有容量分流需求, 比如基本覆盖小区覆 盖超过某个门限, 那么需要激活一个或者多个热点小区。 如果提供基本覆盖的小区是 E-UTRAN小区, 那么可以使用 X2口的小区激活( Cell Activation )过程; 如果提供基本覆 盖的是 UTRAN或者 GERAN小区, 那么需要使用 S1 口的移动性管理实体指示信息传输 ( MME Direct Information Transfer )过程来实现热点小区的激活。
长期演进(Long Term Evolution, LTE ) 系统的版本 12 ( Rel-12 )基于节能和降低千扰 等目的将引入新载波类型 (New Carrier Type, NCT )。 NCT和传统意义上的小区相比, 可 能引入一些新的特殊设计, 比如新的小区发现方式, 新的小区专属导频信号(Cell-specific reference signals, CRS )模式 ( pattern )等。
为了实现 NCT节能的目的, NCT可能的三种工作方式如下:
方式 1 : 降低小区 CRS开销, 比如由每个下行子帧都发送 CRS修改为若千 ms (比如 5ms )发送一次 CRS;
方式 2: 对小区引入休眠( dormant )状态, 当小区内没有 UE或者所有 UE都没有数 据发送时该小区进入 dormant状态;
方式 3: 方式 1和方式 2的组合, 即在降低小区 CRS开销的同时, 引入小区 dormant 状态。
上述三种 NCT工作方式如图 3所示。
对于异构网络, 由于宏基站覆盖范围内有大量 Local cell存在, 而且这些 Local cell一 般覆盖范围都比较小,当 UE在宏基站覆盖范围内移动时,UE将可能不断执行 Macro cell 与 Local cell之间的切换操作。 为了避免频繁切换导致数据传输中断, 一种方式就是让 UE可 以同时聚合 Local eNB和 Macro e B的资源, 但是 RRC连接维持在 Marco e B下, Local 资源仅用于数据传输, 即承载分离。
承载分离方式可以让 UE选择就近节点传输, 从而可以使用较低的功率和较高的调制 编码方式(Modulation and Coding Scheme, MCS )发送, 这样就可以同时达到节电、 降低 千扰、 提升系统吞吐量的目的。
综上, 对于异构网络, 现有基站节能机制对提供本地覆盖的热点小区的处理只有两种 方式: 完全打开或者完全关闭。 一旦热点小区完全关闭, 将不再发送任何小区发现相关信 息, UE 即使移动到该热点小区的覆盖范围, 宏基站也不能及时发现该热点小区可用, 这 样将不便于宏基站判断是否应该开启热点小区并较为及时地对 UE 进行切换或者承载分 离。 发明内容 本申请实施例提供一种小区休眠、 休眠信息下发及处理方法和设备, 用于提供一种在 小区进入休眠状态后能够使该小区及时恢复激活状态的小区休眠机制。
—种小区休眠方法, 该方法包括:
本地基站确定本地小区的休眠模式; 该休眠模式是在小区休眠期间包含小区激活时间 段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信号的休眠模 式;
本地基站在本地小区进入休眠状态后, 根据所述休眠模式确定休眠期间的小区激活时 间段, 并在小区激活时间段内在所述本地小区发送小区发现信号或检测终端发送的特定信 号。
本申请实施例提供的方案中, 本地基站确定本地小区的休眠模式, 在本地小区进入休 眠状态后, 根据该休眠模式确定休眠期间的小区激活时间段, 并在小区激活时间段内在该 本地小区发送小区发现信号或检测终端发送的特定信号, 进而实现了在本地小区进入休眠 状态后能够使该本地小区及时恢复激活状态的小区休眠机制。
较佳地, 本地基站确定本地小区的休眠模式, 具体釆用如下方式之一:
方式一: 本地基站在确定本地小区需要进入休眠状态后, 根据物理层相关的小区发现 信号设计规则确定休眠模式;
方式二: 本地基站接收邻基站发送的本地小区进入休眠状态的通知以及休眠模式, 将 该休眠模式确定为本地小区的休眠模式;
方式三: 本地基站在确定本地小区需要进入休眠状态后, 根据协议约定或操作与维护 实体 OAM下发的配置信息确定休眠模式;
方式四: 本地基站接收邻基站发送的本地小区进入休眠状态的通知后, 根据协议约定 或 OAM下发的配置信息确定休眠模式。
进一步的, 在釆用上述方式一或方式三时, 进一步可以包括:
本地基站在确定本地小区的休眠模式之后、 且在本地小区进入休眠状态之前, 将确定 的本地小区的休眠模式的信息发送给该本地小区的邻小区所属的邻基站。
基于上述任意实施例, 较佳地, 本地基站在确定本地小区的休眠模式之后、 且在本地 小区进入休眠状态之前, 进一步包括: 本地基站将确定的本地小区的休眠模式的信息下发 给该本地小区下的终端。 相应的, 本地基站在该休眠模式指示的小区激活时间段内在该本 地小区发送小区发现信号时, 进一步可以包括: 在该休眠模式指示的小区激活时间段内与 该本地小区下的终端进行业务数据传输。 基于上述任意实施例, 较佳地, 若本地基站在小区激活时间段内在该本地小区发送小 区发现信号, 进一步包括: 本地基站接收邻基站通过基站间接口发送的对该本地小区的激 活信令,根据该激活信令结束该本地小区的休眠状态,使该本地小区进入激活状态; 或者, 本地基站接收邻基站通过基站间接口发送的切换请求或承载分离请求后, 结束该本地小区 的休眠状态, 使该本地小区进入激活状态, 并根据该切换请求或承载分离请求完成终端到 该本地小区的切换或承载分离。
基于上述任意方法实施例, 较佳地, 若本地基站在小区激活时间段内检测终端发送的 特定信号,则进一步包括:本地基站在该小区激活时间段内检测到终端发送的特定信号后, 结束该本地小区的休眠状态, 使该本地小区进入激活状态, 并通知邻基站该本地小区进入 激活状态。
基于上述任意实施例, 较佳地, 邻基站为宏基站或其他本地基站。
一种休眠信息下发方法, 该方法包括:
邻基站确定本地基站的本地小区的休眠模式; 该休眠模式是在小区休眠期间包含小区 激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信号的 休眠模式;
邻基站将确定的本地小区的休眠模式的信息下发给所述本地小区的邻小区下的终端。 本申请实施例提供的方案中, 邻基站将确定的本地小区的休眠模式的信息下发给该本 地小区的邻小区下的终端, 进而实现了在本地小区进入休眠状态后能够使该本地小区及时 恢复激活状态的小区休眠机制。
较佳地, 邻基站确定本地基站的本地小区的休眠模式, 具体包括:
邻基站接收本地基站发送的本地小区的休眠模式的信息, 根据该信息确定本地小区的 休眠模式; 或者,
邻基站在确定本地基站的本地小区需要进入休眠状态后, 根据物理层相关的小区发现 信号设计规则确定休眠模式; 或者,
邻基站接收本地基站发送的本地小区进入休眠状态的请求以及休眠模式, 确定是否接 受该请求, 若是, 则确定该休眠模式为该本地小区的休眠模式, 否则, 根据物理层相关的 小区发现信号设计规则重新确定该本地小区的休眠模式。
基于上述任意休眠信息下发方法的实施例, 较佳地, 在邻基站将确定的本地小区的休 眠模式的信息下发给本地小区的邻小区下的终端之后, 进一步包括: 邻基站接收终端上 4艮 的该本地小区可用的指示信令后 , 根据该指示信令确定是否需要激活该本地小区; 邻基站 在确定需要激活该本地小区后, 通知本地基站激活该本地小区。
进一步的, 邻基站通知本地基站激活该本地小区, 具体可以包括:
邻基站通过基站间接口向本地基站发送的对该本地小区的激活信令; 或者, 邻基站通过基站间接口向本地基站发送切换请求或承载分离请求。
基于上述任意休眠信息下发方法的实施例, 较佳地, 邻基站为宏基站或其他本地基 站。
一种休眠信息处理方法, 该方法包括:
邻基站下的终端接收邻基站下发的本地基站的本地小区的休眠模式的信息, 该休眠模 式是在小区休眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号 或检测终端发送的特定信号的休眠模式;
该终端根据该休眠模式的信息或该终端的当前地理位置, 确定该本地小区是否可用, 在确定该本地小区可用后, 向邻基站上报该本地小区可用的指示信令; 或者, 该终端在该 休眠模式指示的小区激活时间段内发送特定信号。
本申请实施例提供的方案中, 终端根据接收到的休眠模式的信息或该终端的当前地理 位置, 确定本地小区是否可用, 在确定可用后向邻基站上报该本地小区可用的指示信令, 从而使得邻基站可以根据该指示信令在需要时通知本地基站激活该本地小区, 进而实现了 在本地小区进入休眠状态后能够使该本地小区及时恢复激活状态的小区休眠机制。
较佳地, 该终端根据上述休眠模式的信息, 确定上述本地小区是否可用, 具体包括: 该终端在该休眠模式指示的小区激活时间段内对该本地小区进行信号测量, 在测量到该本 地小区的信号后, 确定本地基站的本地小区可用。 相应的, 向邻基站上报上述本地小区可 用的指示信令, 具体可以包括: 终端将对该本地小区的信号测量结果或该本地小区的小区 标识上报给邻基站。
较佳地, 终端根据该终端的当前地理位置, 确定上述本地小区是否可用, 具体包括: 终端根据该终端的当前地理位置确定是否进入本地基站的本地小区的小区覆盖范围, 若 是, 则确定该本地小区可用。 相应的, 向邻基站上报该本地小区可用的指示信令, 具体可 以包括: 终端向邻基站上报该本地小区的小区标识。
基于上述任意终端侧方法实施例, 较佳地, 本地小区的小区标识为频点和小区物理标 识 PCI的组合。
一种本地基站, 该本地基站包括:
确定单元, 用于确定本地小区的休眠模式; 该休眠模式是在小区休眠期间包含小区激 活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信号的休 眠模式;
休眠单元, 用于在本地小区进入休眠状态后, 根据所述休眠模式确定休眠期间的小区 激活时间段, 并在小区激活时间段内在所述本地小区发送小区发现信号或检测终端发送的 特定信号。
本申请实施例提供的方案中, 本地基站确定本地小区的休眠模式, 在本地小区进入休 眠状态后, 根据该休眠模式确定休眠期间的小区激活时间段, 并在小区激活时间段内在该 本地小区发送小区发现信号或检测终端发送的特定信号, 进而实现了在本地小区进入休眠 状态后能够使该本地小区及时恢复激活状态的小区休眠机制。
较佳地, 确定单元用于: 釆用如下方式之一确定本地小区的休眠模式:
方式一: 在确定本地小区需要进入休眠状态后, 根据物理层相关的小区发现信号设计 规则确定休眠模式;
方式二: 接收邻基站发送的本地小区进入休眠状态的通知以及休眠模式, 将该休眠模 式确定为本地小区的休眠模式;
方式三:在确定本地小区需要进入休眠状态后,根据协议约定或操作与维护实体 OAM 下发的配置信息确定休眠模式;
方式四: 接收邻基站发送的本地小区进入休眠状态的通知后, 根据协议约定或 OAM 下发的配置信息确定休眠模式。
较佳地, 该本地基站还可以包括:
第一发送单元,用于在釆用所述方式一或方式三时,在确定本地小区的休眠模式之后、 且在本地小区进入休眠状态之前, 将确定的本地小区的休眠模式的信息发送给所述本地小 区的邻小区所属的邻基站。
或者, 较佳地, 该本地基站还可以包括:
第二发送单元, 用于在确定本地小区的休眠模式之后、 且在本地小区进入休眠状态之 前, 将确定的本地小区的休眠模式的信息下发给所述本地小区下的终端;
在所述休眠模式指示的小区激活时间段内在所述本地小区发送小区发现信号时, 进一 步在所述休眠模式指示的小区激活时间段内与所述本地小区下的终端进行业务数据传输。
基于上述任意本地基站实施例, 较佳地, 该本地基站还包括:
第一激活单元, 用于接收邻基站通过基站间接口发送的对所述本地小区的激活信令, 根据该激活信令结束所述本地小区的休眠状态, 使该本地小区进入激活状态; 或者,
接收邻基站通过基站间接口发送的切换请求或承载分离请求后, 结束所述本地小区的 休眠状态, 使该本地小区进入激活状态, 并根据所述切换请求或承载分离请求完成终端到 所述本地小区的切换或承载分离。
或者, 较佳地, 该本地基站还包括:
第二激活单元, 用于在所述小区激活时间段内检测到终端发送的特定信号后, 结束所 述本地小区的休眠状态, 使该本地小区进入激活状态, 并通知邻基站所述本地小区进入激 活状态。
基于上述任意本地基站实施例, 较佳地, 邻基站为宏基站或其他本地基站。
基于与方法同样的发明构思, 本发明实施例还提供另一种本地基站, 包括处理器和射 频单元。
处理器被配置为: 确定本地小区的休眠模式; 该休眠模式是在小区休眠期间包含小区 激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信号的 休眠模式; 在本地小区进入休眠状态后, 根据所述休眠模式确定休眠期间的小区激活时间 段;
射频单元被配置为在小区激活时间段内在所述本地小区发送小区发现信号或检测终 端发送的特定信号。
本申请实施例提供的方案中, 本地基站确定本地小区的休眠模式, 在本地小区进入休 眠状态后, 根据该休眠模式确定休眠期间的小区激活时间段, 并在小区激活时间段内在该 本地小区发送小区发现信号或检测终端发送的特定信号, 进而实现了在本地小区进入休眠 状态后能够使该本地小区及时恢复激活状态的小区休眠机制。
一种邻基站, 该邻基站包括:
确定单元, 用于确定本地基站的本地小区的休眠模式; 该休眠模式是在小区休眠期间 包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特 定信号的休眠模式;
发送单元, 用于将确定的本地小区的休眠模式的信息下发给所述本地小区的邻小区下 的终端。
本申请实施例提供的方案中, 邻基站将确定的本地小区的休眠模式的信息下发给该本 地小区的邻小区下的终端, 进而实现了在本地小区进入休眠状态后能够使该本地小区及时 恢复激活状态的小区休眠机制。
较佳地, 确定单元用于:
接收本地基站发送的本地小区的休眠模式的信息, 根据该信息确定所述本地小区的休 眠模式; 或者,
在确定本地基站的本地小区需要进入休眠状态后, 根据物理层相关的小区发现信号设 计规则确定休眠模式; 或者,
接收本地基站发送的本地小区进入休眠状态的请求以及休眠模式, 确定是否接受该请 求, 若是, 则确定该休眠模式为所述本地小区的休眠模式, 否则, 根据物理层相关的小区 发现信号设计规则重新确定所述本地小区的休眠模式。
较佳地, 该邻基站还包括:
激活单元, 用于在将确定的本地小区的休眠模式的信息下发给所述本地小区的邻小区 下的终端之后, 接收终端上报的所述本地小区可用的指示信令, 根据该指示信令确定是否 需要激活所述本地小区; 在确定需要激活所述本地小区后, 通知本地基站激活所述本地小 区。 进一步的, 激活单元具体可以用于:
通过基站间接口向本地基站发送的对所述本地小区的激活信令; 或者,
通过基站间接口向本地基站发送切换请求或承载分离请求。
基于与方法同样的发明构思, 本发明实施例还提供一种邻基站, 包括处理器和射频单 元。
该处理器被配置为: 确定本地基站的本地小区的休眠模式; 该休眠模式是在小区休眠 期间包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送 的特定信号的休眠模式;
射频单元被配置为将确定的本地小区的休眠模式的信息下发给所述本地小区的邻小 区下的终端。
本申请实施例提供的方案中, 邻基站将确定的本地小区的休眠模式的信息下发给该本 地小区的邻小区下的终端, 进而实现了在本地小区进入休眠状态后能够使该本地小区及时 恢复激活状态的小区休眠机制。
一种终端, 该终端包括:
接收单元, 用于接收邻基站下发的本地基站的本地小区的休眠模式的信息, 该休眠模 式是在小区休眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号 或检测终端发送的特定信号的休眠模式;
处理单元, 用于#>据所述休眠模式的信息或该终端的当前地理位置, 确定所述本地小 区是否可用, 在确定所述本地小区可用后, 向邻基站上报所述本地小区可用的指示信令; 或者, 所述终端在所述休眠模式指示的小区激活时间段内发送特定信号。
本申请实施例提供的方案中, 终端根据接收到的休眠模式的信息或该终端的当前地理 位置, 确定本地小区是否可用, 在确定可用后向邻基站上报该本地小区可用的指示信令, 从而使得邻基站可以根据该指示信令在需要时通知本地基站激活该本地小区, 进而实现了 在本地小区进入休眠状态后能够使该本地小区及时恢复激活状态的小区休眠机制。
较佳地, 处理单元用于:
在休眠模式指示的小区激活时间段内对所述本地小区进行信号测量, 在测量到所述本 地小区的信号后, 确定本地基站的本地小区可用;
在确定所述本地小区可用后, 将对所述本地小区的信号测量结果或者所述本地小区的 小区标识上报给邻基站。
较佳地, 处理单元用于:
根据该终端的当前地理位置确定是否进入本地基站的本地小区的小区覆盖范围, 若 是, 则确定所述本地小区可用;
在确定所述本地小区可用后, 向邻基站上报所述本地小区的小区标识。 基于上述任意终端实施例, 较佳地, 所述本地小区的小区标识为频点和小区物理标识 PCI的组合。
基于与方法同样的发明构思,本发明实施例还提供一种终端, 包括射频单元和处理器。 射频单元被配置为: 接收邻基站下发的本地基站的本地小区的休眠模式的信息, 该休 眠模式是在小区休眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区发现 信号或检测终端发送的特定信号的休眠模式;
处理器被配置为: 根据所述休眠模式的信息或该终端的当前地理位置, 确定所述本地 小区是否可用,在确定所述本地小区可用后,向邻基站上报所述本地小区可用的指示信令; 或者, 所述终端在所述休眠模式指示的小区激活时间段内发送特定信号。
本申请实施例提供的方案中, 终端根据接收到的休眠模式的信息或该终端的当前地理 位置, 确定本地小区是否可用, 在确定可用后向邻基站上报该本地小区可用的指示信令, 从而使得邻基站可以根据该指示信令在需要时通知本地基站激活该本地小区, 进而实现了 在本地小区进入休眠状态后能够使该本地小区及时恢复激活状态的小区休眠机制。
本申请实施例提供的一种方案中, 本地基站确定本地小区的休眠模式, 在本地小区进 入休眠状态后, 根据该休眠模式确定休眠期间的小区激活时间段, 并在小区激活时间段内 在该本地小区发送小区发现信号, 以及, 邻基站将确定的本地小区的休眠模式的信息下发 给该本地小区的邻小区下的终端, 该终端根据该休眠模式的信息或该终端的当前地理位 置, 确定该本地小区是否可用, 在确定可用后向邻基站上报该本地小区可用的指示信令, 从而使得邻基站可以根据该指示信令在需要时通知本地基站激活该本地小区, 进而实现了 在本地小区进入休眠状态后能够使该本地小区及时恢复激活状态的小区休眠机制。
本申请实施例提供的另一种方案中, 本地基站确定本地小区的休眠模式, 在本地小区 进入休眠状态后, 根据该休眠模式确定休眠期间的小区激活时间段, 并在小区激活时间段 内检测终端发送的特定信号, 以及, 邻基站将确定的本地小区的休眠模式的信息下发给该 本地小区的邻小区下的终端, 该终端在该休眠模式指示的小区激活时间段内发送特定信 号, 从而使得本地基站可以在检测到终端发送的特定信号后根据需要激活该本地小区, 进 而实现了在本地小区进入休眠状态后能够使该本地小区及时恢复激活状态的小区休眠机 制。 附图说明 图 1为现有技术中的异构网络示意图;
图 2为现有技术中的基站节能场景示意图;
图 3为现有技术中的 NCT三种工作方式示意图; 图 4a为本申请实施例提供的方法流程示意图;
图 4b为本申请实施例中的休眠模式示意图;
图 5为本申请实施例提供的另一方法流程示意图;
图 6为本申请实施例提供的又一方法流程示意图;
图 7a为本申请实施例一的流程示意图;
图 7b为本申请实施例二的流程示意图;
图 7c为本申请实施例三的流程示意图;
图 7d为本申请实施例四的流程示意图;
图 7e为本申请实施例五的流程示意图;
图 7f为本申请实施例六的流程示意图;
图 7g为本申请实施例七的流程示意图;
图 7h为本申请实施例八的流程示意图;
图 8为本申请实施例提供的本地基站结构示意图;
图 9为本申请实施例提供的另一种基站结构示意图;
图 10为本发明实施例提供的邻基站结构示意图;
图 11为本申请实施例提供的一种终端结构示意图;
图 12为本申请实施例提供的另一种终端结构示意图。 具体实施方式 为了提供一种在小区进入休眠状态后能够使该小区及时恢复激活状态的小区休眠机 制, 本申请实施例提供一种小区休眠、 休眠信息下发及处理方法。 本方法中, 本地基站在 本地小区的休眠模式指示的小区激活时间段内发送小区发现信号, 终端在小区激活时间段 内检测到小区发现信号后向邻基站上报本地小区可用的指示信令, 邻基站可以根据该指示 信令通知本地基站激活该本地小区; 或者, 本地基站在本地小区的休眠模式指示的小区激 活时间段内检测终端发送的特定信号, 终端在小区激活时间段内发送特定信号, 本地基站 在检测到终端发送的特定信号后可以激活本地小区。
参见图 4a, 本申请实施例提供的小区休眠方法, 包括以下步骤:
步骤 40: 本地基站确定本地小区的休眠模式; 该休眠模式是在小区休眠期间包含小区 激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信号的 休眠模式, 如图 4b 所示, 本地基站在休眠期间的小区激活时间段内发送小区发现信号或 检测终端发送的特定信号, 在休眠期间的小区去激活时间段内不进行信号收发操作; 步骤 41 : 本地基站在本地小区进入休眠状态后, 根据该休眠模式确定休眠期间的小区 激活时间段, 并在小区激活时间段内在该本地小区发送小区发现信号或检测终端发送的特 定信号。
步骤 40中, 本地基站确定本地小区的休眠模式, 具体可以釆用如下方式之一: 方式一: 本地基站在确定本地小区需要进入休眠状态后, 根据物理层相关的小区发现 信号设计规则确定休眠模式; 比如, 若需要终端能够利用休眠模式的小区激活时间段发现 本地小区可用, 则需要保证确定的休眠模式的小区激活时间段的长度不小于小区发现信号 的发送时间长度, 即保证在休眠模式的小区激活时间段内能够发送至少一次小区发现信 号;
方式二: 本地基站接收邻基站发送的本地小区进入休眠状态的通知以及休眠模式, 将 该休眠模式确定为本地小区的休眠模式;
方式三: 本地基站在确定本地小区需要进入休眠状态后, 根据协议约定或操作与维护 实体( OAM )下发的配置信息确定休眠模式, 即该配置信息中指示了本地小区的休眠模式; 方式四: 本地基站接收邻基站发送的本地小区进入休眠状态的通知后, 根据协议约定 或 OAM下发的配置信息确定休眠模式, 即该配置信息中指示了本地小区的休眠模式。
较佳的, 在釆用上述方式一或方式三时, 本地基站可以在确定本地小区的休眠模式之 后、 且在本地小区进入休眠状态之前, 将确定的本地小区的休眠模式的信息发送给本地小 区的邻小区所属的邻基站, 以使该邻基站将该休眠模式的信息下发给该邻小区下的终端。
较佳的, 本地基站在确定本地小区的休眠模式之后、 且在本地小区进入休眠状态之 前, 本地基站可以将确定的本地小区的休眠模式的信息下发给该本地小区下的终端, 从而 使该本地小区下的终端能够获知本地小区的休眠模式指示的小区激活时间段, 进而该终端 可以在该小区激活时间段内与本地基站进行业务数据传输, 相应的, 本地基站在该小区激 活时间段内发送小区发现信号时, 还在该小区激活时间段内与本地小区下的终端进行业务 数据传输。
进一步的, 若步骤 41中本地基站在小区激活时间段内在本地小区发送小区发现信号, 则在步骤 41 后, 本地基站可以接收邻基站通过基站间接口发送的对该本地小区的激活信 令, 根据该激活信令结束该本地小区的休眠状态, 使该本地小区进入激活状态; 或者, 在 步骤 41 后, 本地基站接收邻基站通过基站间接口发送的切换请求或承载分离请求, 结束 该本地小区的休眠状态, 使该本地小区进入激活状态, 并根据该切换请求或承载分离请求 完成终端到该本地小区的切换或承载分离。
进一步的, 若步骤 41 中本地基站在小区激活时间段内检测终端发送的特定信号, 则 本地基站在本地小区的休眠模式指示的小区激活时间段内检测到终端发送的特定信号后, 结束该本地小区的休眠状态, 使该本地小区进入激活状态, 并通知邻基站该本地小区进入 激活状态。 本方法中, 邻基站可以为宏基站或其他本地基站。
参见图 5 , 本申请实施例提供一种休眠信息下发方法, 包括以下步骤:
步骤 50: 邻基站确定本地基站的本地小区的休眠模式; 该休眠模式是在小区休眠期间 包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特 定信号的休眠模式, 如图 4b所示;
步骤 51 :邻基站将确定的本地小区的休眠模式的信息下发给该本地小区的邻小区下的 终端。
步骤 50中, 邻基站确定本地基站的本地小区的休眠模式, 具体实现可以如下: 邻基站接收本地基站发送的本地小区的休眠模式的信息, 根据该信息确定该本地小区 的休眠模式; 或者,
邻基站在确定本地基站的本地小区需要进入休眠状态后, 根据物理层相关的小区发现 信号设计规则确定休眠模式, 比如, 若需要终端能够利用休眠模式的小区激活时间段发现 本地小区可用, 则需要保证确定的休眠模式的小区激活时间段的长度不小于小区发现信号 的发送时间长度, 即保证在休眠模式的小区激活时间段内能够发送至少一次小区发现信 号; 或者,
邻基站接收本地基站发送的本地小区进入休眠状态的请求以及休眠模式, 确定是否接 受该请求, 若是, 则确定该休眠模式为该本地小区的休眠模式, 否则, 根据物理层相关的 小区发现信号设计规则重新确定该本地小区的休眠模式。
较佳的, 在邻基站将确定的本地小区的休眠模式的信息下发给本地小区的邻小区下的 终端之后, 邻基站接收终端上报的该本地小区可用的指示信令后, 确定是否需要激活该本 地小区; 邻基站在确定需要激活该本地小区后, 通知本地基站激活该本地小区。 邻基站在 确定是否需要激活该本地小区时可以考虑邻小区的负荷、 进入本地小区覆盖范围的终端个 数等因素, 比如一旦有一个终端进入本地小区的覆盖范围, 且邻小区的负荷高于门限, 则 判断需要激活该本地小区。
具体的, 邻基站通知本地基站激活所述本地小区, 具体实现可以如下:
邻基站通过基站间接口向本地基站发送的对该本地小区的激活信令; 或者, 邻基站通 过基站间接口向本地基站发送切换请求或承载分离请求。
本方法中, 邻基站可以为宏基站或其他本地基站。
参见图 6 , 本申请实施例提供一种休眠信息处理方法, 包括以下步骤:
步骤 60: 邻基站下的终端接收邻基站下发的本地基站的本地小区的休眠模式的信息, 该休眠模式是在小区休眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区 发现信号或检测终端发送的特定信号的休眠模式, 如图 4b所示;
步骤 61: 该终端根据该休眠模式的信息或该终端的当前地理位置, 确定该本地小区是 否可用, 在确定该本地小区可用后, 向邻基站上报该本地小区可用的指示信令, 若确定该 本地小区不可用, 则不向邻基站上报该本地小区可用的指示信令; 或者, 该终端在该休眠 模式指示的小区激活时间段内发送特定信号, 以使本地基站在检测到终端发送的特定信号 后激活该本地小区。 该特定信号具体可以是随机接入(RA )信号、 探测参考信号 (SRS ) 或其他新设计的信号等。
步骤 61 中, 该终端根据该休眠模式的信息确定该本地小区是否可用, 具体实现可以 如下:
该终端在该休眠模式指示的小区激活时间段内对该本地小区进行信号测量, 在测量到 该本地小区的信号后, 确定本地基站的本地小区可用; 在确定该本地小区可用后, 将对该 本地小区的信号测量结果或者本地小区的小区标识上报给邻基站。 该信号测量结果可以是 测量得到的参考信号接收功率(RSRP )或参考信号接收盾量(RSRQ )等, 该本地小区的 小区标识可以是频点和小区物理标识(PCI ) 的组合等。
步骤 61 中, 该终端根据该终端的当前地理位置, 确定该本地小区是否可用, 具体实 现可以如下:
该终端根据该终端的当前地理位置确定是否进入本地基站的本地小区的小区覆盖范 围, 若是, 则确定该本地小区可用; 在确定该本地小区可用后, 向邻基站上报进入该本地 小区的小区覆盖范围的通知。 具体的, 该通知可以体现为该本地小区的小区标识, 比如频 点和 PCI的组合。 终端获取本地小区的小区覆盖范围的方法可以为: 本地基站将本地 、区 的小区覆盖范围的信息发送给邻基站, 邻基站将本地小区的小区覆盖范围的信息转发给终 端。
下面结合具体实施例对本申请进行说明:
实施例一:
本实施例中,本地基站自行决定 Local cell需要休眠以及休眠模式( pattern ), Local cell 进入完全激活状态之前不为 UE服务;
具体流程如图 7a所示:
步骤 1: 本地基站决定 Local cell需要休眠及休眠 pattern;
本地基站根据 Local cell的资源占用情况、 当前服务的 UE个数等因素决定 Local cell 需要进入休眠状态, 将该 Local cell下的 UE通过去配置辅小区 ( Scell )、 切换或者承载合 并等方式移除。然后本地基站根据物理层相关的小区发现信号设计规则确定 Local cell的休 眠 pattern, 比如需要保证 UE能够利用休眠 pattern中的小区激活时间段发现 Local cell可 用。进一步,在 Local cell进入休眠状态后, 不允许其覆盖范围下的 UE在该小区建立 RRC 连接。
步骤 2: 本地基站通知邻基站该 Local cell进入休眠状态以及休眠 pattern; 步骤 3: 邻基站将 Local cell的休眠 pattern通知给 UE, 其中, 该 UE为 Local cell的邻 基站管理的, 且与 Local cell相邻的小区覆盖范围内的 UE;
步骤 4: UE向邻基站指示 Local cell可用;
UE通过信令向邻基站指示 Local cell可用。 具体可以有多种方式, 比如:
UE根据当前所处的地理位置确定是否进入 Local cell的覆盖范围, 如果进入, 则向邻 基站发送 Local cell可用的指示信令; 或者,
UE在休眠 pattern的小区激活时间段内测量 Local cell发送的小区发现信号,在测量到 后将测量结果上艮给邻基站;
步骤 5: 邻基站判决是否激活 Local cell;
邻基站根据 UE的上报指示确定 Local cell可用后, 需要决定是否需要激活 Local cell, 以便将 UE切换或者承载分离到 Local celL 邻基站进行 Local cell激活判决时可以考虑邻 小区的负荷、进入 Local cell覆盖范围的 UE个数等因素,比如一旦有一个 UE进入 Local cell 的覆盖范围, 且邻小区的负荷高于门限, 则判断需要激活 Local cell。
步骤 6: 邻基站通知本地基站激活 Local cell;
邻基站判决需要激活 Local cell后, 需要通过基站间接口通知本地基站激活该 Local cell, 通知中可以携带一个或者多个要激活的 Local cell的指示。
步骤 7: 本地基站激活 Local cell;
本地基站接收到邻基站激活 Local cell的通知后,结束 Local cell的休眠状态,使 Local cell进入完全激活状态。
步骤 8: 邻基站辅助将 UE切换或者承载分离到 Local cell。
实施例二:
本实施例中, 提供基本覆盖的基站 (本实施例中称邻基站) 决定 Local cell 的休眠 pattern, Local cell进入完全激活状态前不为 UE服务;
实施例一和实施例二的区别主要在步骤 1和步骤 2,实施例二的具体流程如图 7b所示: 步骤 1: 邻基站决定 Local cell需要休眠及休眠 pattern;
邻基站提供基本覆盖, 一旦其发现 Local cell上没有数据传输需求(比如 Local cell仅 用于承载分离, 邻基站是可以知道 Local cell上是否有数据传输需求的), 那么可以决定让 Local cell进入休眠状态, 并确定其休眠 pattern,休眠 pattern的确定需要保证 UE能够利用 休眠 pattern中的小区激活时间段发现 Local cell可用。如果邻基站有承载分离到 Local cell , 应该先进行承载合并, 再通知 Local cell进入休眠状态。 当然也不排除本地基站确定 Local cell是否休眠和休眠 pattern, 并向提供基本覆盖的邻基站进行请求, 再由邻基站决定是否 接受本地基站的请求, 若不接受则重新确定休眠 pattern。
步骤 2: 邻基站通知本地基站 Local cell进入休眠状态及其休眠 pattern; 提供基本覆盖的邻基站,可以通过基站间接口通知本地基站 Local cell进入休眠状态以 及其休眠 pattern, 本地基站接收到休眠指示后, 可以先将其下的 UE通过去配置 SCell、 切 换或者承载合并等方式转移到其它小区上, 也可以直接进入休眠状态, 等 UE 自行发现无 线链路失败(RLF )。 进一步, 本地基站在根据休眠 pattern确定的小区激活时间段内可以 仅发送小区发现信号。
步骤 3: 邻基站将 Local cell的休眠 pattern通知给 UE, 其中, 该 UE为 Local cell的邻 基站管理的, 且与 Local cell相邻的小区覆盖范围内的 UE;
步骤 4: UE向邻基站指示 Local cell可用;
UE通过信令向邻基站指示 Local cell可用。 具体可以有多种方式, 比如:
UE根据当前所处的地理位置确定是否进入 Local cell的覆盖范围, 如果进入, 则向邻 基站发送 Local cell可用的指示信令; 或者,
UE在休眠 pattern的小区激活时间段内测量 Local cell发送的小区发现信号,在测量到 后将测量结果上艮给邻基站;
步骤 5: 邻基站判决是否激活 Local cell;
邻基站根据 UE的上报指示确定 Local cell可用后, 需要决定是否需要激活 Local cell, 以便将 UE切换或者承载分离到 Local celL 邻基站进行 Local cell激活判决时可以考虑邻 小区的负荷、进入 Local cell覆盖范围的 UE个数等因素,比如一旦有一个 UE进入 Local cell 的覆盖范围, 且邻小区的负荷高于门限, 则判断需要激活 Local cell。
步骤 6: 邻基站通知本地基站激活 Local cell;
邻基站判决需要激活 Local cell后, 需要通过基站间接口通知本地基站激活该 Local cell, 通知中可以携带一个或者多个要激活的 Local cell的指示。
步骤 7: 本地基站激活 Local cell;
本地基站接收到邻基站激活 Local cell的通知后,结束 Local cell的休眠状态,使 Local cell进入完全激活状态。
步骤 8: 邻基站辅助将 UE切换或者承载分离到 Local cell。
实施例三:
本实施例中, 本地基站自行决定 Local cell需要休眠以及休眠 pattern, 在休眠 pattern 的小区激活时间段内 Local cell可为 UE服务;
实施例三和实施例一的区别是在 Local cell休眠时不转移 UE,因此休眠 pattern除了要 保证 UE能够利用休眠 pattern中的小区激活时间段发现 Local cell可用外,还需要保证 UE 不会发生 RLF。 实施例三的具体流程如图 7c所示:
步骤 1: 本地基站决定 Local cell需要休眠及休眠 pattern;
本地基站根据 Local cell当前服务的 UE数据传输需求, 判断是否可以进入休眠状态, 如果可以, 那么决定 Local cell需要进入休眠状态, 本地基站需要根据当前 RLF判决条件 以及物理层小区发现信号的设计规则确定休眠 pattern, 其休眠 pattern需要保证其下 UE尽 量不会发生 RLF并且可以保证新进入该小区的 UE能够比较及时发现该小区可用。进一步, 在休眠 pattern的小区激活时间段内, Local cell除了可以发送小区发现信号外, 还可以正 常进行数据收发。
步骤 2: 本地基站通知邻基站该 Local cell进入休眠状态以及休眠 pattern;
由于在根据休眠 pattern确定的小区激活时间段内, Local cell还可以为该 cell下 UE服 务, 因此本地基站需要将 Local cell的休眠 pattern通知给其服务的 UE。
步骤 3: 邻基站将 Local cell的休眠 pattern通知给 UE, 其中, 该 UE为 Local cell的邻 基站管理的, 且与 Local cell相邻的小区覆盖范围内的 UE;
步骤 4: UE向邻基站指示 Local cell可用;
UE通过信令向邻基站指示 Local cell可用。 具体可以有多种方式, 比如:
UE根据当前所处的地理位置确定是否进入 Local cell的覆盖范围, 如果进入, 则向邻 基站发送 Local cell可用的指示信令; 或者,
UE在休眠 pattern的小区激活时间段内测量 Local cell发送的小区发现信号,在测量到 后将测量结果上艮给邻基站;
步骤 5: 邻基站判决是否激活 Local cell;
邻基站根据 UE的上报指示确定 Local cell可用后, 需要决定是否需要激活 Local cell, 以便将 UE切换或者承载分离到 Local celL 邻基站进行 Local cell激活判决时可以考虑邻 小区的负荷、进入 Local cell覆盖范围的 UE个数等因素,比如一旦有一个 UE进入 Local cell 的覆盖范围, 且邻小区的负荷高于门限, 则判断需要激活 Local cell。
步骤 6: 邻基站通知本地基站激活 Local cell;
邻基站判决需要激活 Local cell后, 需要通过基站间接口通知本地基站激活该 Local cell, 通知中可以携带一个或者多个要激活的 Local cell的指示。
步骤 7: 本地基站激活 Local cell;
本地基站接收到邻基站激活 Local cell的通知后,结束 Local cell的休眠状态,使 Local cell进入完全激活状态。
步骤 8: 邻基站辅助将 UE切换或者承载分离到 Local cell。
另夕卜, 对于步骤 5 , 如果邻基站判断需要激活 Local cell, 也可以直接向 Local cell发送 切换或者承载分离请求, Local cell 接收到该切换或者承载分离请求后即可以自动激活 Local cell并进行承载分离或者切换处理, 即步骤 6和步骤 7可以省略。
实施例四:
本实施例中, 提供基本覆盖的基站 (本实施例中称邻基站) 决定 Local cell 的休眠 pattern, 在休眠 pattern的小区激活时间段内 Local cell可为 UE服务;
实施例四主要适用于 Local cell不独立工作,仅接受承载分离且承载分离的数据需要由 提供基本覆盖的小区转发的场景。 该场景下提供基本覆盖的基站为 Local cell 确定休眠 pattern时需要考虑被分离承载的时延要求和 /或避免承载分离 UE在 Local cell上发生 RLF。 与实施例二的区别主要体现在步骤 1上。 具体流程如图 7d所示:
步骤 1: 邻基站决定 Local cell需要休眠及休眠 pattern;
邻基站提供基本覆盖, 一旦其发现 Local cell上没有数据传输需求(比如 Local cell仅 用于承载分离, 邻基站是可以知道 Local cell上是否有数据传输需求的), 那么可以决定让 Local cell进入休眠状态, 并确定其休眠 pattern,休眠 pattern的确定需要保证 UE能够利用 休眠 pattern中的激活期发现 Local cell可用和 /或被分离到 Local cell传输的业务时延不受 影响。
步骤 2: 邻基站通知本地基站 Local cell进入休眠状态及其休眠 pattern;
提供基本覆盖的邻基站,可以通过基站间接口通知本地基站 Local cell进入休眠状态以 及其休眠 pattern, 本地基站接收到休眠指示后, 按照休眠 pattern进入休眠状态, 在根据休 眠 pattern确定的小区激活时间段内, 除了可以发送小区发现信号外, 进一步还可以进行正 常数据收发。 如果在根据休眠 pattern确定的小区激活时间段内, Local cell还可以为该 cell 下的 UE服务, 因此在 Local cell休眠前本地基站还需要将 Local cell的休眠 pattern通知给 其服务的 UE,如果釆用承载分离,也可以由邻基站将 Local cell的休眠 pattern通知给 Local cell服务的 UE。
步骤 3: 邻基站将 Local cell的休眠 pattern通知给 UE, 其中, 该 UE为 Local cell的邻 基站管理的, 且与 Local cell相邻的小区覆盖范围内的 UE;
步骤 4: UE向邻基站指示 Local cell可用;
UE通过信令向邻基站指示 Local cell可用。 具体可以有多种方式, 比如:
UE根据当前所处的地理位置确定是否进入 Local cell的覆盖范围, 如果进入, 则向邻 基站发送 Local cell可用的指示信令; 或者,
UE在休眠 pattern的小区激活时间段内测量 Local cell发送的小区发现信号,在测量到 后将测量结果上艮给邻基站;
步骤 5: 邻基站判决是否激活 Local cell;
邻基站根据 UE的上报指示确定 Local cell可用后, 需要决定是否需要激活 Local cell, 以便将 UE切换或者承载分离到 Local celL 邻基站进行 Local cell激活判决时可以考虑邻 小区的负荷、进入 Local cell覆盖范围的 UE个数等因素,比如一旦有一个 UE进入 Local cell 的覆盖范围, 且邻小区的负荷高于门限, 则判断需要激活 Local cell。
步骤 6: 邻基站通知本地基站激活 Local cell; 邻基站判决需要激活 Local cell后, 需要通过基站间接口通知本地基站激活该 Local cell, 通知中可以携带一个或者多个要激活的 Local cell的指示。
步骤 7: 本地基站激活 Local cell;
本地基站接收到邻基站激活 Local cell的通知后,结束 Local cell的休眠状态,使 Local cell进入完全激活状态。
步骤 8: 邻基站辅助将 UE切换或者承载分离到 Local cell。
另外, 对于步骤 5 , 如果邻基站判断需要激活 Local cell, 也可以直接向本地基站发送 切换或者承载分离请求,本地基站接收到该切换或者承载分离请求后即可以自动激活 Local cell并进行承载分离或者切换处理, 即步骤 6和 7可以省略。
实施例五:
本实施例中, 按照协议或者 OAM配置的休眠 pattern进行休眠;
具体流程如图 7e所示:
步骤 1: 本地基站决定 Local cell需要休眠及休眠 pattern;
本地基站根据 Local cell的资源占用情况、 当前服务的 UE个数等因素决定 Local cell 需要进入休眠状态。 Local cell的休眠 pattern由协议约定或者 OAM配置。根据休眠 pattern 确定的小区激活时间段内,可以在 Local cell正常进行小区发现信号(比如小区专属导频信 号(CRS )、 主同步信号 (PSS )、 辅同步信号(SSS )等)的发送, 还可以进行业务数据的 收发。
步骤 2: 本地基站通知邻基站该 Neighbor cell进入休眠状态;
步骤 3: 邻基站将 Local cell进入休眠状态通知给 UE, 其中, 该 UE为 Local cell的邻 基站管理的, 且与 Local cell相邻的小区覆盖范围内的 UE;
UE按照协议约定确定 Local cell的休眠 pattern;
步骤 4: UE向邻基站指示 Local cell可用;
UE通过信令向邻基站指示 Local cell可用。 具体可以有多种方式, 比如:
UE根据当前所处的地理位置确定是否进入 Local cell的覆盖范围, 如果进入, 则向邻 基站发送 Local cell可用的指示信令; 或者,
UE在休眠 pattern的小区激活时间段内测量 Local cell发送的小区发现信号,在测量到 后将测量结果上艮给邻基站;
步骤 5: 邻基站判决是否激活 Local cell;
邻基站根据 UE的上报指示确定 Local cell可用后, 需要决定是否需要激活 Local cell, 以便将 UE切换或者承载分离到 Local celL 邻基站进行 Local cell激活判决时可以考虑邻 小区的负荷、进入 Local cell覆盖范围的 UE个数等因素,比如一旦有一个 UE进入 Local cell 的覆盖范围, 且邻小区的负荷高于门限, 则判断需要激活 Local cell。 步骤 6: 邻基站通知本地基站激活 Local cell;
邻基站判决需要激活 Local cell后, 需要通过基站间接口通知本地基站激活该 Local cell, 通知中可以携带一个或者多个要激活的 Local cell的指示。
步骤 7: 本地基站激活 Local cell;
本地基站接收到邻基站激活 Local cell的通知后,结束 Local cell的休眠状态,使 Local cell进入完全激活状态。
步骤 8: 邻基站辅助将 UE切换或者承载分离到 Local cell。
实施例六:
本实施例中, 提供基本覆盖的基站(本实施例中称邻基站)决定 Local cell休眠, 并根 据协议约定或者 OAM的配置确定休眠 pattern;
具体流程如图 7f所示:
步骤 1: 邻基站决定 Local cell需要休眠及休眠 pattern;
邻基站提供基本覆盖, 一旦其发现 Local cell上没有数据传输需求(比如 Local cell仅 用于承载分离, 邻基站是可以知道 Local cell上是否有数据传输需求的), 那么可以决定让 Local cell进入休眠状态, 并确定其休眠 pattern。 如果邻基站有承载分离到 Local cell, 应该 先进行承载合并, 再通知 Local cell进入休眠。
步骤 2: 邻基站通知本地基站 Local cell进入休眠状态;
提供基本覆盖的邻基站, 可以通过基站间接口通知本地基站 Local cell进入休眠状态, 本地基站接收到休眠指示后, 可以根据协议约定或者 OAM配置的休眠 pattern进行休眠, 休眠 pattern定义的小区激活时间段内 Local cell可以正常进行小区发现信号的发送, 还可 以进行业务数据的收发。
步骤 3: 邻基站将 Local cell的休眠 pattern通知给 UE, 其中, 该 UE为 Local cell的邻 基站管理的, 且与 Local cell相邻的小区覆盖范围内的 UE;
步骤 4: UE向邻基站指示 Local cell可用;
UE通过信令向邻基站指示 Local cell可用。 具体可以有多种方式, 比如:
UE根据当前所处的地理位置确定是否进入 Local cell的覆盖范围, 如果进入, 则向邻 基站发送 Local cell可用的指示信令; 或者,
UE在休眠 pattern的小区激活时间段内测量 Local cell发送的小区发现信号,在测量到 后将测量结果上艮给邻基站;
步骤 5: 邻基站判决是否激活 Local cell;
邻基站根据 UE的上报指示确定 Local cell可用后, 需要决定是否需要激活 Local cell, 以便将 UE切换或者承载分离到 Local celL 邻基站进行 Local cell激活判决时可以考虑邻 小区的负荷、进入 Local cell覆盖范围的 UE个数等因素,比如一旦有一个 UE进入 Local cell 的覆盖范围, 且邻小区的负荷高于门限, 则判断需要激活 Local cell。
步骤 6: 邻基站通知本地基站激活 Local cell;
邻基站判决需要激活 Local cell后, 需要通过基站间接口通知本地基站激活该 Local cell, 通知中可以携带一个或者多个要激活的 Local cell的指示。
步骤 7: 本地基站激活 Local cell;
本地基站接收到邻基站激活 Local cell的通知后,结束 Local cell的休眠状态,使 Local cell进入完全激活状态。
步骤 8: 邻基站辅助将 UE切换或者承载分离到 Local cell。
实施例七:
本实施例中, 本地基站自行决定 Local cell需要休眠以及休眠 pattern;
具体流程如图 7g所示:
步骤 1: 本地基站决定 Local cell需要休眠及休眠 pattern;
本地基站根据 Local cell的资源占用情况、 当前服务的 UE个数等因素决定 Local cell 需要进入休眠状态, 将该 Local cell下的 UE通过去配置辅小区 ( Scell )、 切换或者承载合 并等方式移除。然后本地基站根据物理层相关的小区发现信号设计规则确定 Local cell的休 眠 pattern。 本地基站在休眠 pattern定义的小区激活时间段内检测终端发送的特定信号; 步骤 2: 本地基站通知邻基站该 Local cell进入休眠状态以及休眠 pattern;
步骤 3: 邻基站将 Local cell的休眠 pattern通知给 UE, 其中, 该 UE为 Local cell的邻 基站管理的, 且与 Local cell相邻的小区覆盖范围内的 UE;
步骤 4: UE在休眠 pattern定义的小区激活时间段内发送特定信号;
步骤 5: 本地基站在检测到 UE发送的特定信号后激活 Local cell。
实施例八:
本实施例中, 提供基本覆盖的基站 (本实施例中称邻基站) 决定 Local cell 的休眠 pattern;
具体流程如图 7h所示:
步骤 1: 邻基站决定 Local cell需要休眠及休眠 pattern;
邻基站提供基本覆盖, 一旦其发现 Local cell上没有数据传输需求(比如 Local cell仅 用于承载分离, 邻基站是可以知道 Local cell上是否有数据传输需求的), 那么可以决定让 Local cell进入休眠状态, 并确定其休眠 pattern。 如果邻基站有承载分离到 Local cell, 应该 先进行承载合并, 再通知 Local cell进入休眠状态。
步骤 2: 邻基站通知本地基站 Local cell进入休眠状态及其休眠 pattern;
提供基本覆盖的邻基站,可以通过基站间接口通知本地基站 Local cell进入休眠状态以 及其休眠 pattern, 本地基站接收到休眠指示后, 在休眠 pattern定义的小区激活时间段内检 测终端发送的特定信号。
步骤 3: 邻基站将 Local cell的休眠 pattern通知给 UE, 其中, 该 UE为 Local cell的邻 基站管理的, 且与 Local cell相邻的小区覆盖范围内的 UE;
步骤 4: UE在休眠 pattern定义的小区激活时间段内发送特定信号;
步骤 5: 本地基站在检测到 UE发送的特定信号后激活 Local cell。
参见图 8, 本申请实施例提供一种本地基站, 该本地基站包括:
确定单元 80, 用于确定本地小区的休眠模式; 该休眠模式是在小区休眠期间包含小区 激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信号的 休眠模式;
休眠单元 81 , 用于在本地小区进入休眠状态后, 根据所述休眠模式确定休眠期间的小 区激活时间段, 并在小区激活时间段内在所述本地小区发送小区发现信号或检测终端发送 的特定信号。
进一步的, 所述确定单元 80用于: 釆用如下方式之一确定本地小区的休眠模式: 方式一: 在确定本地小区需要进入休眠状态后, 根据物理层相关的小区发现信号设计 规则确定休眠模式;
方式二: 接收邻基站发送的本地小区进入休眠状态的通知以及休眠模式, 将该休眠模 式确定为本地小区的休眠模式;
方式三:在确定本地小区需要进入休眠状态后,根据协议约定或操作与维护实体 OAM 下发的配置信息确定休眠模式;
方式四: 接收邻基站发送的本地小区进入休眠状态的通知后, 根据协议约定或 OAM 下发的配置信息确定休眠模式。
进一步的, 该本地基站还包括:
第一发送单元 82, 用于在釆用所述方式一或方式三时, 在确定本地小区的休眠模式之 后、 且在本地小区进入休眠状态之前, 将确定的本地小区的休眠模式的信息发送给所述本 地小区的邻小区所属的邻基站, 以使该邻基站将所述休眠模式的信息下发给该邻小区下的 终端。
进一步的, 该本地基站还包括:
第二发送单元 83 , 用于在确定本地小区的休眠模式之后、 且在本地小区进入休眠状态 之前, 将确定的本地小区的休眠模式的信息下发给所述本地小区下的终端;
在所述休眠模式指示的激活时间段内在所述本地小区发送小区发现信号时, 进一步在 所述休眠模式指示的激活时间段内与所述本地小区下的终端进行业务数据传输。
进一步的, 该本地基站还包括:
第一激活单元 84, 用于接收邻基站通过基站间接口发送的对所述本地小区的激活信 令, 根据该激活信令结束所述本地小区的休眠状态, 使该本地小区进入激活状态; 或者, 接收邻基站通过基站间接口发送的切换请求或承载分离请求后, 结束所述本地小区的 休眠状态, 使该本地小区进入激活状态, 并根据所述切换请求或承载分离请求完成终端到 所述本地小区的切换或承载分离。
进一步的, 该本地基站还包括:
第二激活单元 85 , 用于在所述小区激活时间段内检测到终端发送的特定信号后, 结束 所述本地小区的休眠状态, 使该本地小区进入激活状态, 并通知邻基站所述本地小区进入 激活状态。
进一步的, 所述邻基站为宏基站或其他本地基站。
基于与方法同样的发明构思, 本发明实施例还提供另一种本地基站, 如图 9所示, 包 括处理器 91和射频单元 92。
处理器 91 被配置为: 确定本地小区的休眠模式; 该休眠模式是在小区休眠期间包含 小区激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信 号的休眠模式; 在本地小区进入休眠状态后, 根据所述休眠模式确定休眠期间的小区激活 时间段;
射频单元 92被配置为: 在小区激活时间段内在所述本地小区发送小区发现信号或检 测终端发送的特定信号。
参见图 10, 本申请实施例提供一种邻基站, 该邻基站包括:
确定单元 101 , 用于确定本地基站的本地小区的休眠模式; 该休眠模式是在小区休眠 期间包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送 的特定信号的休眠模式;
发送单元 102, 用于将确定的本地小区的休眠模式的信息下发给所述本地小区的邻小 区下的终端。
进一步的, 所述确定单元 101用于:
接收本地基站发送的本地小区的休眠模式的信息, 根据该信息确定所述本地小区的休 眠模式; 或者,
在确定本地基站的本地小区需要进入休眠状态后, 根据物理层相关的小区发现信号设 计规则确定休眠模式; 或者,
接收本地基站发送的本地小区进入休眠状态的请求以及休眠模式, 确定是否接受该请 求, 若是, 则确定该休眠模式为所述本地小区的休眠模式, 否则, 根据物理层相关的小区 发现信号设计规则重新确定所述本地小区的休眠模式。
进一步的, 该邻基站还包括:
激活单元 103 , 用于在将确定的本地小区的休眠模式的信息下发给所述本地小区的邻 小区下的终端之后, 接收终端上报的所述本地小区可用的指示信令, 根据该指示信令确定 是否需要激活所述本地小区; 在确定需要激活所述本地小区后, 通知本地基站激活所述本 地小区。
进一步的, 所述激活单元 103用于:
通过基站间接口向本地基站发送的对所述本地小区的激活信令; 或者,
通过基站间接口向本地基站发送切换请求或承载分离请求。
基于与方法同样的发明构思, 本发明实施例还提供一种邻基站, 如图 9所示, 包括处 理器 91和射频单元 92。
该处理器 91 被配置为: 确定本地基站的本地小区的休眠模式; 该休眠模式是在小区 休眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端 发送的特定信号的休眠模式;
该射频单元 92被配置为: 将确定的本地小区的休眠模式的信息下发给所述本地小区 的邻小区下的终端。
参见图 11 , 本申请实施例提供一种终端, 该终端包括:
接收单元 111 , 用于接收邻基站下发的本地基站的本地小区的休眠模式的信息, 该休 眠模式是在小区休眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区发现 信号或检测终端发送的特定信号的休眠模式;
处理单元 112, 用于根据所述休眠模式的信息或该终端的当前地理位置, 确定所述本 地小区是否可用, 在确定所述本地小区可用后, 向邻基站上报所述本地小区可用的指示信 令; 或者, 所述终端在所述休眠模式指示的小区激活时间段内发送特定信号, 以使本地基 站在检测到终端发送的特定信号后激活所述本地小区。
进一步的, 所述处理单元 111用于:
在所述休眠模式指示的小区激活时间段内对所述本地小区进行信号测量, 在测量到所 述本地小区的信号后, 确定本地基站的本地小区可用;
在确定所述本地小区可用后, 将对所述本地小区的信号测量结果或者本地小区的小区 标识上报给邻基站。 本地小区的小区标识可以是频点和 PCI的组合。
进一步的, 所述处理单元 111用于:
根据该终端的当前地理位置确定是否进入本地基站的本地小区的小区覆盖范围, 若 是, 则确定所述本地小区可用;
在确定所述本地小区可用后, 向邻基站上报进入所述本地小区的小区覆盖范围的通 知。 该通知具体内容可以是本地小区的小区标识, 比如频点和 PCI的组合。
基于与方法同样的发明构思, 本发明实施例还提供一种终端, 如图 12 所示, 包括射 频单元 121和处理器 122。 射频单元 121被配置为: 接收邻基站下发的本地基站的本地小区的休眠模式的信息, 该休眠模式是在小区休眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区 发现信号或检测终端发送的特定信号的休眠模式;
处理器 122被配置为: 根据所述休眠模式的信息或该终端的当前地理位置, 确定所述 本地小区是否可用, 在确定所述本地小区可用后, 向邻基站上报所述本地小区可用的指示 信令; 或者, 所述终端在所述休眠模式指示的小区激活时间段内发送特定信号。
综上, 本申请的有益效果包括:
本申请实施例提供的一种方案中, 本地基站确定本地小区的休眠模式, 在本地小区进 入休眠状态后, 根据该休眠模式确定休眠期间的小区激活时间段, 并在小区激活时间段内 在该本地小区发送小区发现信号, 以及, 邻基站将确定的本地小区的休眠模式的信息下发 给该本地小区的邻小区下的终端, 该终端根据该休眠模式的信息或该终端的当前地理位 置, 确定该本地小区是否可用, 在确定可用后向邻基站上报该本地小区可用的指示信令, 从而使得邻基站可以根据该指示信令在需要时通知本地基站激活该本地小区, 进而实现了 在本地小区进入休眠状态后能够使该本地小区及时恢复激活状态的小区休眠机制。
本申请实施例提供的另一种方案中, 本地基站确定本地小区的休眠模式, 在本地小区 进入休眠状态后, 根据该休眠模式确定休眠期间的小区激活时间段, 并在小区激活时间段 内检测终端发送的特定信号, 以及, 邻基站将确定的本地小区的休眠模式的信息下发给该 本地小区的邻小区下的终端, 该终端在该休眠模式指示的小区激活时间段内发送特定信 号, 从而使得本地基站可以在检测到终端发送的特定信号后根据需要激活该本地小区, 进 而实现了在本地小区进入休眠状态后能够使该本地小区及时恢复激活状态的小区休眠机 制。
本申请是参照根据本申请实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本申请范围的所有变更和修改。
显然, 本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和 范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内, 则本申请也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种小区休眠方法, 其特征在于, 该方法包括:
本地基站确定本地小区的休眠模式; 该休眠模式是在小区休眠期间包含小区激活时间 段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信号的休眠模 式;
本地基站在本地小区进入休眠状态后, 根据所述休眠模式确定休眠期间的小区激活时 间段, 并在小区激活时间段内在所述本地小区发送小区发现信号或检测终端发送的特定信 号。
2、 如权利要求 1所述的方法, 其特征在于, 所述本地基站确定本地小区的休眠模式, 具体釆用如下方式之一:
方式一: 本地基站在确定本地小区需要进入休眠状态后, 根据物理层相关的小区发现 信号设计规则确定休眠模式;
方式二: 本地基站接收邻基站发送的本地小区进入休眠状态的通知以及休眠模式, 将 该休眠模式确定为本地小区的休眠模式;
方式三: 本地基站在确定本地小区需要进入休眠状态后, 根据协议约定或操作与维护 实体 OAM下发的配置信息确定休眠模式;
方式四: 本地基站接收邻基站发送的本地小区进入休眠状态的通知后, 根据协议约定 或 OAM下发的配置信息确定休眠模式。
3、 如权利要求 2 所述的方法, 其特征在于, 在釆用所述方式一或方式三时, 进一步 包括:
本地基站在确定本地小区的休眠模式之后、 且在本地小区进入休眠状态之前, 将确定 的本地小区的休眠模式的信息发送给所述本地小区的邻小区所属的邻基站。
4、 如权利要求 1 所述的方法, 其特征在于, 本地基站在确定本地小区的休眠模式之 后、 且在本地小区进入休眠状态之前, 进一步包括:
本地基站将确定的本地小区的休眠模式的信息下发给所述本地小区下的终端; 所述本地基站在所述休眠模式指示的小区激活时间段内在所述本地小区发送小区发 现信号时, 进一步包括: 在所述休眠模式指示的小区激活时间段内与所述本地小区下的终 端进行业务数据传输。
5、 如权利要求 1 所述的方法, 其特征在于, 若本地基站在小区激活时间段内在所述 本地小区发送小区发现信号, 进一步包括:
本地基站接收邻基站通过基站间接口发送的对所述本地小区的激活信令, 根据该激活 信令结束所述本地小区的休眠状态, 使该本地小区进入激活状态; 或者,
本地基站接收邻基站通过基站间接口发送的切换请求或承载分离请求后, 结束所述本 地小区的休眠状态, 使该本地小区进入激活状态, 并根据所述切换请求或承载分离请求完 成终端到所述本地小区的切换或承载分离。
6、 如权利要求 1 所述的方法, 其特征在于, 若本地基站在小区激活时间段内检测终 端发送的特定信号, 则进一步包括:
本地基站在所述小区激活时间段内检测到终端发送的特定信号后, 结束所述本地小区 的休眠状态, 使该本地小区进入激活状态, 并通知邻基站所述本地小区进入激活状态。
7、 如权利要求 2、 3、 5、 6中任一所述的方法, 其特征在于, 所述邻基站为宏基站或 其他本地基站。
8、 一种休眠信息下发方法, 其特征在于, 该方法包括:
邻基站确定本地基站的本地小区的休眠模式; 该休眠模式是在小区休眠期间包含小区 激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信号的 休眠模式;
邻基站将确定的本地小区的休眠模式的信息下发给所述本地小区的邻小区下的终端。
9、 如权利要求 8 所述的方法, 其特征在于, 所述邻基站确定本地基站的本地小区的 休眠模式, 具体包括:
邻基站接收本地基站发送的本地小区的休眠模式的信息, 根据该信息确定所述本地小 区的休眠模式; 或者,
邻基站在确定本地基站的本地小区需要进入休眠状态后, 根据物理层相关的小区发现 信号设计规则确定休眠模式; 或者,
邻基站接收本地基站发送的本地小区进入休眠状态的请求以及休眠模式, 确定是否接 受该请求, 若是, 则确定该休眠模式为所述本地小区的休眠模式, 否则, 根据物理层相关 的小区发现信号设计规则重新确定所述本地小区的休眠模式。
10、 如权利要求 8所述的方法, 其特征在于, 在邻基站将确定的本地小区的休眠模式 的信息下发给所述本地小区的邻小区下的终端之后, 进一步包括:
邻基站接收终端上报的所述本地小区可用的指示信令后, 根据该指示信令确定是否需 要激活所述本地小区;
邻基站在确定需要激活所述本地小区后, 通知本地基站激活所述本地小区。
11、如权利要求 10所述的方法,其特征在于, 所述邻基站通知本地基站激活所述本地 小区, 具体包括:
邻基站通过基站间接口向本地基站发送的对所述本地小区的激活信令; 或者, 邻基站通过基站间接口向本地基站发送切换请求或承载分离请求。
12、如权利要求 8-11中任一所述的方法, 其特征在于, 所述邻基站为宏基站或其他本 地基站。
13、 一种休眠信息处理方法, 其特征在于, 该方法包括:
邻基站下的终端接收邻基站下发的本地基站的本地小区的休眠模式的信息, 该休眠模 式是在小区休眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号 或检测终端发送的特定信号的休眠模式;
所述终端根据所述休眠模式的信息或该终端的当前地理位置, 确定所述本地小区是否 可用, 在确定所述本地小区可用后, 向邻基站上报所述本地小区可用的指示信令; 或者, 所述终端在所述休眠模式指示的小区激活时间段内发送特定信号。
14、 如权利要求 13 所述的方法, 其特征在于, 所述终端根据所述休眠模式的信息, 确定所述本地小区是否可用, 具体包括:
所述终端在所述休眠模式指示的小区激活时间段内对所述本地小区进行信号测量, 在 测量到所述本地小区的信号后, 确定本地基站的本地小区可用;
所述向邻基站上 ·ί艮所述本地小区可用的指示信令, 具体包括:
所述终端将对所述本地小区的信号测量结果或所述本地小区的小区标识上报给邻基 站。
15、 如权利要求 13所述的方法, 其特征在于, 所述终端根据该终端的当前地理位置, 确定所述本地小区是否可用, 具体包括:
所述终端根据该终端的当前地理位置确定是否进入本地基站的本地小区的小区覆盖 范围, 若是, 则确定所述本地小区可用;
所述向邻基站上 ·ί艮所述本地小区可用的指示信令, 具体包括:
所述终端向邻基站上报所述本地小区的小区标识。
16、 如权利要求 14或 15所述的方法, 其特征在于, 所述本地小区的小区标识为频点 和小区物理标识 PCI的组合。
17、 一种本地基站, 其特征在于, 该本地基站包括:
确定单元, 用于确定本地小区的休眠模式; 该休眠模式是在小区休眠期间包含小区激 活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信号的休 眠模式;
休眠单元, 用于在本地小区进入休眠状态后, 根据所述休眠模式确定休眠期间的小区 激活时间段, 并在小区激活时间段内在所述本地小区发送小区发现信号或检测终端发送的 特定信号。
18、 如权利要求 17 所述的本地基站, 其特征在于, 所述确定单元用于: 釆用如下方 式之一确定本地小区的休眠模式: 方式一: 在确定本地小区需要进入休眠状态后, 根据物理层相关的小区发现信号设计 规则确定休眠模式;
方式二: 接收邻基站发送的本地小区进入休眠状态的通知以及休眠模式, 将该休眠模 式确定为本地小区的休眠模式;
方式三:在确定本地小区需要进入休眠状态后,根据协议约定或操作与维护实体 OAM 下发的配置信息确定休眠模式;
方式四: 接收邻基站发送的本地小区进入休眠状态的通知后, 根据协议约定或 OAM 下发的配置信息确定休眠模式。
19、 如权利要求 18所述的本地基站, 其特征在于, 该本地基站还包括:
第一发送单元,用于在釆用所述方式一或方式三时,在确定本地小区的休眠模式之后、 且在本地小区进入休眠状态之前, 将确定的本地小区的休眠模式的信息发送给所述本地小 区的邻小区所属的邻基站。
20、 如权利要求 17所述的本地基站, 其特征在于, 该本地基站还包括:
第二发送单元, 用于在确定本地小区的休眠模式之后、 且在本地小区进入休眠状态之 前, 将确定的本地小区的休眠模式的信息下发给所述本地小区下的终端;
在所述休眠模式指示的小区激活时间段内在所述本地小区发送小区发现信号时, 进一 步在所述休眠模式指示的小区激活时间段内与所述本地小区下的终端进行业务数据传输。
21、 如权利要求 17所述的本地基站, 其特征在于, 该本地基站还包括:
第一激活单元, 用于接收邻基站通过基站间接口发送的对所述本地小区的激活信令, 根据该激活信令结束所述本地小区的休眠状态, 使该本地小区进入激活状态; 或者,
接收邻基站通过基站间接口发送的切换请求或承载分离请求后, 结束所述本地小区的 休眠状态, 使该本地小区进入激活状态, 并根据所述切换请求或承载分离请求完成终端到 所述本地小区的切换或承载分离。
22、 如权利要求 17所述的本地基站, 其特征在于, 该本地基站还包括:
第二激活单元, 用于在所述小区激活时间段内检测到终端发送的特定信号后, 结束所 述本地小区的休眠状态, 使该本地小区进入激活状态, 并通知邻基站所述本地小区进入激 活状态。
23、 如权利要求 18、 19、 21、 22 中任一所述的本地基站, 其特征在于, 所述邻基站 为宏基站或其他本地基站。
24、 一种本地基站, 其特征在于, 该本地基站包括处理器和射频单元:
所述处理器被配置为, 确定本地小区的休眠模式; 该休眠模式是在小区休眠期间包含 小区激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特定信 号的休眠模式; 在本地小区进入休眠状态后, 根据所述休眠模式确定休眠期间的小区激活 时间段;
所述射频单元被配置为, 在小区激活时间段内在所述本地小区发送小区发现信号或检 测终端发送的特定信号。
25、 一种邻基站, 其特征在于, 该邻基站包括:
确定单元, 用于确定本地基站的本地小区的休眠模式; 该休眠模式是在小区休眠期间 包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发送的特 定信号的休眠模式;
发送单元, 用于将确定的本地小区的休眠模式的信息下发给所述本地小区的邻小区下 的终端。
26、 如权利要求 25所述的邻基站, 其特征在于, 所述确定单元用于:
接收本地基站发送的本地小区的休眠模式的信息, 根据该信息确定所述本地小区的休 眠模式; 或者,
在确定本地基站的本地小区需要进入休眠状态后, 根据物理层相关的小区发现信号设 计规则确定休眠模式; 或者,
接收本地基站发送的本地小区进入休眠状态的请求以及休眠模式, 确定是否接受该请 求, 若是, 则确定该休眠模式为所述本地小区的休眠模式, 否则, 根据物理层相关的小区 发现信号设计规则重新确定所述本地小区的休眠模式。
27、 如权利要求 25所述的邻基站, 其特征在于, 该邻基站还包括:
激活单元, 用于在将确定的本地小区的休眠模式的信息下发给所述本地小区的邻小区 下的终端之后, 接收终端上报的所述本地小区可用的指示信令, 根据该指示信令确定是否 需要激活所述本地小区; 在确定需要激活所述本地小区后, 通知本地基站激活所述本地小 区。
28、 如权利要求 27所述的邻基站, 其特征在于, 所述激活单元用于:
通过基站间接口向本地基站发送的对所述本地小区的激活信令; 或者,
通过基站间接口向本地基站发送切换请求或承载分离请求。
29、 一种邻基站, 其特征在于, 该邻基站包括处理器和射频单元:
所述处理器被配置为, 确定本地基站的本地小区的休眠模式; 该休眠模式是在小区休 眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号或检测终端发 送的特定信号的休眠模式;
所述射频单元被配置为, 将确定的本地小区的休眠模式的信息下发给所述本地小区的 邻小区下的终端。
30、 一种终端, 其特征在于, 该终端包括:
接收单元, 用于接收邻基站下发的本地基站的本地小区的休眠模式的信息, 该休眠模 式是在小区休眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区发现信号 或检测终端发送的特定信号的休眠模式;
处理单元, 用于#>据所述休眠模式的信息或该终端的当前地理位置, 确定所述本地小 区是否可用, 在确定所述本地小区可用后, 向邻基站上报所述本地小区可用的指示信令; 或者, 所述终端在所述休眠模式指示的小区激活时间段内发送特定信号。
31、 如权利要求 30所述的终端, 其特征在于, 所述处理单元用于:
在所述休眠模式指示的小区激活时间段内对所述本地小区进行信号测量, 在测量到所 述本地小区的信号后, 确定本地基站的本地小区可用;
在确定所述本地小区可用后, 将对所述本地小区的信号测量结果或者所述本地小区的 小区标识上报给邻基站。
32、 如权利要求 30所述的终端, 其特征在于, 所述处理单元用于:
根据该终端的当前地理位置确定是否进入本地基站的本地小区的小区覆盖范围, 若 是, 则确定所述本地小区可用;
在确定所述本地小区可用后, 向邻基站上报所述本地小区的小区标识。
33、 如权利要求 31或 32所述的终端, 其特征在于, 所述本地小区的小区标识为频点 和小区物理标识 PCI的组合。
34、 一种终端, 其特征在于, 该终端包括射频单元和处理器:
所述射频单元被配置为, 接收邻基站下发的本地基站的本地小区的休眠模式的信息, 该休眠模式是在小区休眠期间包含小区激活时间段、 并能够在小区激活时间段内发送小区 发现信号或检测终端发送的特定信号的休眠模式;
所述处理器被配置为, 根据所述休眠模式的信息或该终端的当前地理位置, 确定所述 本地小区是否可用, 在确定所述本地小区可用后, 向邻基站上报所述本地小区可用的指示 信令; 或者, 所述终端在所述休眠模式指示的小区激活时间段内发送特定信号。
PCT/CN2013/089648 2012-12-17 2013-12-17 小区休眠、休眠信息下发及处理方法和设备 WO2014094591A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210549462.X 2012-12-17
CN201210549462.XA CN103874231A (zh) 2012-12-17 2012-12-17 小区休眠、休眠信息下发及处理方法和设备

Publications (1)

Publication Number Publication Date
WO2014094591A1 true WO2014094591A1 (zh) 2014-06-26

Family

ID=50912264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089648 WO2014094591A1 (zh) 2012-12-17 2013-12-17 小区休眠、休眠信息下发及处理方法和设备

Country Status (2)

Country Link
CN (1) CN103874231A (zh)
WO (1) WO2014094591A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148142A (zh) * 2019-12-31 2020-05-12 重庆大学 移动通信网络中基于异常检测和集成学习的休眠小区检测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106411484B (zh) * 2015-07-27 2020-09-01 中兴通讯股份有限公司 一种辅载波去配置方法、装置和系统
WO2017176293A1 (en) * 2016-04-08 2017-10-12 Nokia Solutions And Networks Oy Dynamic deactivation of cells while accomodating idle user devices in a wireless network
WO2021142648A1 (zh) * 2020-01-15 2021-07-22 海能达通信股份有限公司 一种数据传输方法、基站、终端及系统
CN113067640B (zh) * 2021-03-30 2023-03-31 中国人民解放军战略支援部队信息工程大学 一种跨光区域的通信方法及装置
CN113891365B (zh) * 2021-10-15 2024-01-26 中国联合网络通信集团有限公司 中继设备的控制方法、装置、设备、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102083182A (zh) * 2010-12-31 2011-06-01 华为技术有限公司 一种实现通信系统节能的方法及设备
EP2346289A1 (en) * 2010-01-14 2011-07-20 Alcatel Lucent Reduction of power consumption of a node B
CN102598829A (zh) * 2009-11-30 2012-07-18 诺基亚公司 用于无线网元中的节电操作的方法和装置
CN102763461A (zh) * 2010-01-29 2012-10-31 阿尔卡特朗讯公司 控制小型小区基站的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102598829A (zh) * 2009-11-30 2012-07-18 诺基亚公司 用于无线网元中的节电操作的方法和装置
EP2346289A1 (en) * 2010-01-14 2011-07-20 Alcatel Lucent Reduction of power consumption of a node B
CN102763461A (zh) * 2010-01-29 2012-10-31 阿尔卡特朗讯公司 控制小型小区基站的方法
CN102083182A (zh) * 2010-12-31 2011-06-01 华为技术有限公司 一种实现通信系统节能的方法及设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148142A (zh) * 2019-12-31 2020-05-12 重庆大学 移动通信网络中基于异常检测和集成学习的休眠小区检测方法
CN111148142B (zh) * 2019-12-31 2022-07-12 重庆大学 基于异常检测和集成学习的休眠小区检测方法

Also Published As

Publication number Publication date
CN103874231A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
KR102338542B1 (ko) 이동 통신 시스템에서 복수 연결을 지원하기 위한 제어 방법 및 복수 연결 지원 장치
US10743229B2 (en) Communication control method
KR102072556B1 (ko) 헤테로지니어스 네트워크 환경에서 단말기 관리 방법
JP5813241B2 (ja) ユーザ機器及び無線ネットワークノード、並びにそれらにおけるデバイスツーデバイス通信のための方法
US10555228B2 (en) Wireless communication system, wireless base station, mobile station, and wireless communication control method
JP2016036175A (ja) 動作周波数の変更を調整する方法および装置
EP2829125A1 (en) Mode control in wireless communications
WO2014094591A1 (zh) 小区休眠、休眠信息下发及处理方法和设备
JP6423107B2 (ja) 基地局、プロセッサ、及び終端装置
WO2015109747A1 (zh) 小小区基站状态切换方法及装置、计算机存储介质
CN104185222A (zh) 异构网络中的小区切换和激活
CN103581998B (zh) 切换或承载分离的判决及测量上报方法和设备
WO2018000255A1 (zh) 接入方法、用户设备、控制设备及通信系统
JP6371008B2 (ja) 通信方法、セルラ基地局及び無線lan終端ノード
WO2016072465A1 (ja) 基地局及びプロセッサ
KR20150114890A (ko) 단말의 세컨더리 셀 동작 제어 방법 및 그 장치
WO2014079008A1 (zh) 新载波类型小区的测量方法、用户设备和基站
JP6076150B2 (ja) 基地局、移動通信システムおよび移動通信方法
KR20140016171A (ko) 단말의 무선 자원 설정 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864414

Country of ref document: EP

Kind code of ref document: A1