WO2014094249A1 - 一种下行物理信道配置方法及设备 - Google Patents

一种下行物理信道配置方法及设备 Download PDF

Info

Publication number
WO2014094249A1
WO2014094249A1 PCT/CN2012/086921 CN2012086921W WO2014094249A1 WO 2014094249 A1 WO2014094249 A1 WO 2014094249A1 CN 2012086921 W CN2012086921 W CN 2012086921W WO 2014094249 A1 WO2014094249 A1 WO 2014094249A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
downlink physical
physical channel
protocol
domains
Prior art date
Application number
PCT/CN2012/086921
Other languages
English (en)
French (fr)
Inventor
田秋玲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/086921 priority Critical patent/WO2014094249A1/zh
Priority to CN201280002705.6A priority patent/CN104054270B/zh
Publication of WO2014094249A1 publication Critical patent/WO2014094249A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to the field of communications, and in particular, to a downlink physical channel configuration method and device. Background technique
  • the Universal Mobile Telecommunications System (UMTS) in the 25.211 protocol includes at least: R99 Channel, R99 common channel, High Speed Downlink Packet Access (HSDPA) channel and High Speed Uplink Packet Access (HSUPA) channel; wherein, the R99 dedicated channel includes: Dedicated Physical Channel (DPCH), Fractional Dedicated Physical Channel (F-DPCH) and Fractional Transmitted Precoding Indicator Channel (F-TPICH), R99 common channel, HSDPA channel and HSUPA
  • DPCH Dedicated Physical Channel
  • F-DPCH Fractional Dedicated Physical Channel
  • F-TPICH Fractional Transmitted Precoding Indicator Channel
  • R99 common channel HSDPA channel
  • HSUPA High Speed Uplink Packet Access
  • the channel includes multiple channels.
  • the integrated mobile broadcast (1MB) in the Multicast Broadcast Single Frequency Network (MBSFN) in the 25.221 protocol further includes multiple channels.
  • the current 3GPP protocol is still in the process of rapid evolution. In the process, a new downlink physical channel is added to the 3GPP protocol, and a slot slot format may be added to the existing downlink physical channel.
  • the embodiments of the present invention provide a method and a device for configuring a downlink physical channel, which can flexibly support a new downlink physical channel and a downlink physical channel after a new slot format appearing in the protocol evolution.
  • the first aspect provides a downlink physical channel configuration method, including:
  • a pre-configured slot model is obtained; the number of domains in the slot model is allowed to be arbitrarily configured within a preset threshold; and the parameters of each of the domains allow arbitrary configuration under the protocol;
  • a network device including: an obtaining unit, a first configuration unit, a second configuration unit, and a third configuration unit, where:
  • the acquiring unit is configured to: when a downlink physical channel needs to be configured, obtain a pre-configured slot model; the number of domains in the slot model is allowed to be arbitrarily configured within a preset threshold; parameters of each of the domains Allow any configuration under the agreement;
  • the first configuration unit in the slot model acquired by the acquiring unit, configuring h the domains, where n ⁇ k ⁇ m, where n is the downlink physical channel specified by the protocol in each slot.
  • n is the downlink physical channel specified by the protocol in each slot
  • h is an integer greater than 0;
  • the second configuration unit is configured to configure parameters of each of the domains configured by the first configuration unit according to the protocol, to obtain a new slot model
  • the third configuration unit is configured to configure the downlink physical channel on a new slot configured by the second configuration unit.
  • a network device including: a memory and a processor, where:
  • the memory is configured to store a set of program codes
  • the processor is configured to invoke program code stored in the memory to perform the following operations:
  • the pre-configured slot model is obtained; the number of the domains in the slot model is allowed to be arbitrarily configured within a preset threshold; and the parameters of each of the domains allow the protocol to be configured arbitrarily;
  • a pre-configured slot model is obtained; the number of domains in the slot model is allowed to be arbitrarily configured within a preset threshold; Configuring an arbitrary configuration; configuring h of the domains in the slot model, where w ⁇ 2 ⁇ m, where n is the number of domains of the downlink physical channel in each slot specified by the protocol, The m is the threshold, the h is an integer greater than 0; respectively configuring parameters of each of the domains according to the protocol to obtain a new slot model; configuring the downlink of the new slot model Physical channel.
  • the domain and domain parameters in the slot are flexibly configured in the slot model according to different downlink physical channels, so that the new downlink physical channel and the downlink physical channel after the new slot format appear in the protocol evolution can be flexibly supported.
  • FIG. 1 is a schematic flowchart of a method for configuring a downlink physical channel according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an optional slot according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another method for configuring a downlink physical channel according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of another optional slot according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another optional slot according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another network device according to an embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a schematic flowchart of a method for configuring a downlink physical channel according to an embodiment of the present invention. As shown in FIG. 1, the method includes:
  • the number of domains in the slot model is allowed to be arbitrarily configured within 10, that is, 1, 2, 3, 4, ..., or 9 or 10 may be configured in the slot model.
  • Domains are all ok.
  • the parameters of each of the above-mentioned domains allow the arbitrary configuration specified by the protocol to mean that the parameters of each of the domains can be arbitrarily configured with the permission of the protocol.
  • the h-th domain is configured in the slot model, where n ⁇ h ⁇ m, where n is the number of the downlink physical channel in each slot specified by the protocol, the m For the threshold, the h is an integer greater than 0;
  • step 102 may be in the slot model.
  • the step 103 may include: configuring an information type of the t domains in the h domains as a discontinuous transmission type (Discontinuous)
  • the step 103 is not limited to configuring the information types of the t domains in the h domains to be DTX, and the parameters of the other n domains in the h domains may also be configured.
  • the 1MB primary common control physical channel specifies in the 25.221 protocol that the first 256 chips and the last 256 chip of each slot of the channel do not send data information, and the remaining chips It is used to send data, that is, the slot of the PCCPCH specified in the protocol 25.221 protocol has only one domain whose data type is Data (referred to as Data domain). That is, the above n is 1, so that h in step 102 can be 3, and step 103 will be the information of the two fields before and after.
  • the type is configured as DTX
  • the pre-configured slot model is configured into three domains, which are the domain of the information type DTX (referred to as the DTX domain), the data domain, and the DTX domain, as shown in FIG.
  • the third and fourth rows in FIG. 2 represent the slot model after the configuration of the embodiment of the present invention, that is, as shown in the fourth row, each slot model is configured into three domains, which in turn are DTX domains (FieldO DTX shown in FIG. 2). , Data field (Fieldl Data shown in Figure 2) and DTX field (Field2 DTX shown in Figure 2). In this way, the first 256 chi and the last 256 chip in each slot of the PCCPCH are not sent with data information.
  • the new slot is obtained by using the slot format.
  • the downlink physical channel configured on the new slot may be a downlink physical channel configured by using the slot format mentioned above.
  • a pre-configured slot model is obtained; the number of domains in the slot model is allowed to be arbitrarily configured within a preset threshold; Configuring an arbitrary configuration; configuring h of the domains in the slot model, where w ⁇ 2 ⁇ m, where n is the number of domains of the downlink physical channel in each slot specified by the protocol, The m is the threshold, the h is an integer greater than 0; respectively configuring parameters of each of the domains according to the protocol to obtain a new slot model; configuring the downlink of the new slot model Physical channel.
  • FIG. 3 is a schematic flowchart of another method for configuring a downlink physical channel according to an embodiment of the present invention. As shown in FIG. 3, the method includes:
  • 201 Analyze a frame structure and a slot format of a downlink physical channel included in the protocol, and configure a slot model for applying a downlink physical channel included in the protocol; the number of domains in the slot model is allowed to be within a preset threshold Arbitrary configuration; the parameters of each of the domains allow for arbitrary configuration as specified by the protocol.
  • the foregoing protocol may be a 3GPP protocol, for example, a 25.211 protocol of the 3GPP R11 version, and another example: a 25.221 protocol of the 3GPP.
  • step 201 is to analyze a frame structure and a slot format of all downlink physical channels included in the foregoing protocol, and configure a slot that can apply to all downlink physical channels included in the protocol. model. That is, the slot model can be applied to all downlink physical channels included in the 3GPP protocol, including the existing downlink physical channel in the 3GPP protocol, and the downlink physical channel that may be added in the future in the 3GPP protocol evolution process, and the new slot format.
  • the downlink physical channel after the new slot format is added refers to the downlink physical channel after the existing slot format in the protocol, or the existing downlink physical channel after the slot format is modified in the protocol.
  • the existing DPCH channel in the 25.211 protocol but in the evolution process of the protocol, the slot format of the DPCH channel needs to be modified or the slot format is added, so that the DPCH channel after the slot format is modified or the slot format is added is the above-mentioned new one.
  • the downlink physical channel after the slot format is the above-mentioned new one.
  • step 201 does not need to perform step 201 every time a downlink physical channel is configured, and step 201 can be performed only once in one device. It is only necessary to start from step 202 in the subsequent configuration of the downlink physical channel.
  • the foregoing downlink physical channel may include:
  • the downlink physical channel in step 202 may be any existing downlink physical channel included in the 3GPP protocol, and a downlink physical channel added in the 3GPP protocol evolution process.
  • the h domains where n ⁇ h ⁇ m, where n is the number of the downlink physical channel in each slot specified by the protocol, where the m For the threshold, the h is an integer greater than zero.
  • the slot model obtained in step 202 may include w domains, that is, h domains are pre-configured in the slot model.
  • Step 203 may delete or add to the person domain such that the slot model includes an h-domain, and w is an integer greater than zero.
  • the foregoing parameter may be all parameters of each domain in the downlink physical channel specified by the protocol.
  • the parameter of the domain includes at least one of the following:
  • step 204 configures parameters of each of the domains, and each domain in the same slot may be configured with different parameters.
  • the length parameter that is, the length of each field in the same slot
  • the modulation symbol granularity that is, the lengths of different domains in one slot can be configured differently, and can be configured according to the modulation symbols of each domain.
  • the above information type parameter that is, the information type of each domain in the same slot can be configured with different information types; for the above information source, transmission power factor, modulation mode, spreading factor, channelization code, transmission diversity mode, etc.
  • the parameters of the domain can be configured differently in each domain in the same slot.
  • a radio frame has a period of 10 ms (ie, one radio frame, Tf-lOms shown in FIG. 4), and each radio frame includes 15 slots.
  • the downlink physical channel in step 202 is a DPCH channel, and the DPCH channel includes a Dedicated Physical Data Channel (DPDCH) and a Dedicated Physical Control Channel (DPCCH).
  • DPDCH Dedicated Physical Data Channel
  • DPCCH Dedicated Physical Control Channel
  • each slot of the DPCH channel is defined to include five domains, so that step 203 can configure five domains in the slot model; and the 3GPP protocol specifies that the DPCH channel configures the DPDCH in the first domain in each slot.
  • step 204 configures the first domain, the second domain, the third domain, the fourth domain, and the fifth domain described above according to the protocol, that is, five domains as shown in the first row of FIG. 4 can be configured. .
  • step 204 also configures parameters such as information source, transmit power factor, modulation mode, spreading factor, channelization code, and transmit diversity mode of each domain according to the protocol.
  • step 204 a slot as shown in FIG. 4 is obtained, and in step 205, the DPCH channel in the slot format shown in FIG. 4 can be configured.
  • FIG. 4 only shows one slot, and step 205 may be configured to configure multiple slots, and may also configure multiple radio frames including the slot shown in FIG. 4, and the format of each slot in each frame may be identical. That is, step 205 may be a downlink physical channel configured with multiple radio frames, and each radio frame includes a plurality of slots configured by step 204.
  • the slot model acquired in step 202 may include:
  • the slot model of the downlink physical channel before the new slot format is added is a slot model of the downlink physical channel before the slot format is added, for example, the downlink physical channel is a DPCH channel.
  • the slot model of the DPCH before the slot is added is the slot model 1, and the slot model obtained in step 202 can be the slot model 1.
  • the present invention can configure the slot model 1 as the slot model 2 through the subsequent steps.
  • the slot model acquired in step 202 may be a slot model configured by the slot model configured in step 201 by the method described in the present disclosure.
  • Step 201 The configured slot model is slot model 0.
  • step 202 acquires slot model 0, configures slot model 1 through steps 203, 204, and 205, and configures the DPCH channel.
  • the DPCH channel is added with a slot format, so that the present invention can perform step 202 again to obtain the previously configured slot model 1, and then configure the slot model 1 into the slot model 2 through the following steps 203 and 204. And configuring the DPCH channel of slot model 2 through step 205.
  • step 203 may include:
  • the slot model includes h domains, where n ⁇ h ⁇ m, and the n is a downlink physics after the newly added slot format specified by the protocol The number of domains in the channel in each slot;
  • step 204 may include:
  • the parameters of each of the domains are modified according to the protocol, respectively.
  • modifying the parameters of each of the foregoing domains may include:
  • the slot model of the downlink physical channel before the new slot format is applied may be configured as the slot model of the downlink physical channel after the slot format is added.
  • the difference between the slot model of the downlink physical channel before the slot format and the slot model of the downlink physical channel after the slot format is added is relatively small, so that the configuration process is easier to implement.
  • the slot model obtained in step 202 may further include:
  • the slot model configured in step 201 The corresponding configuration is completed through steps 203, 204 and 205.
  • step 204 may further include:
  • step 204 can separately configure each domain in the slot model separately.
  • TPCs and Transmitted Precoding Indicators may be configured in different domains in the slot model.
  • Different TPCs and different TPIs are available for different users, for example: TPC1 for User 1, TPC2 for User 2, TPC3 for User 3, TPI1 for User 4, TPI2 for User 5, TPI3 for User 6.
  • different domains in the slot model can be configured with different TPCs or different TPIs for the information types, so that different domains in the same slot can be applied to different users, that is, different users are in the same Get downlink data from different domains within a slot. This allows multiple users to obtain downstream data at different times.
  • step 203 may configure 10 domains in the slot model, and step 204 may be configured to configure the information type of the 10 domain as shown in FIG.
  • the domain information type where UserO of the second row in Figure 5 represents user 0, Userl represents user 1, etc., and each small format in the second row represents a domain (for example, TPC UserO in FIG. 5 represents the first domain).
  • step 204 may further include configuring other parameters of each domain, such as information source, transmit power factor, modulation mode, spreading factor, channelization code, transmit diversity mode, and the like.
  • the F-DPCH or F-TPICH configured in step 205 can be applied to 10 users, and the time for each user to obtain downlink data is different.
  • the embodiment of the present invention can be applied to a network device, for example, a base station device.
  • the foregoing steps 201, 202, 203, and 204 may all be implemented by software in the network device, and the step 205 may be implemented by a modulator in the network device.
  • the configured new slot may be sent to the modulator by the software, and the configuration of the downlink physical channel is completed by the modulator.
  • the configuration of the configuration domain and the parameters of each domain are described in detail, so as to use the new downlink physical channel and the new downlink physical channel that appear in the evolution of the flexible support protocol. It is applicable to different scenarios on the premise of adding a downlink physical channel after the slot format.
  • the following is an apparatus embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a network device according to an embodiment of the present invention. As shown in FIG. 6, the method includes: an obtaining unit 31, a first configuration unit 32, a second configuration unit 33, and a third configuration unit 34, where:
  • the obtaining unit 31 is configured to: when the downlink physical channel needs to be configured, obtain a pre-configured slot model; the number of domains in the slot model is allowed to be arbitrarily configured within a preset threshold; each parameter of the domain allows protocol provision Any configuration;
  • the first configuration unit 32 is configured to configure h the domains in the slot model acquired by the obtaining unit 31, where n ⁇ h ⁇ m, where n is the downlink physical channel specified by the protocol in each slot domain
  • n is the downlink physical channel specified by the protocol in each slot domain
  • the first configuration unit 32 can be located in the The 5, 6, 7, 8, 9 or 10 fields can be described in the slot model.
  • the second configuration unit 33 is configured to configure parameters of each of the domains configured by the first configuration unit 32 according to the protocol, to obtain a new slot model.
  • the second configuration unit 33 is not limited to configuring the information types of the t domains in the h domains to be DTX, and is also configured to configure parameters of the other n domains in the h domains.
  • the third configuration unit 34 is configured to configure the downlink physical channel on a new slot configured by the second configuration unit 33.
  • the above new slot can be obtained in the slot format, and the above configuration is configured on the new slot.
  • the downlink physical channel may be a downlink physical channel configured by using the slot format mentioned above.
  • a pre-configured slot model is obtained; the number of domains in the slot model is allowed to be arbitrarily configured within a preset threshold; Configuring an arbitrary configuration; configuring h of the domains in the slot model, where w ⁇ 2 ⁇ m, where n is the number of domains of the downlink physical channel in each slot specified by the protocol, The m is the threshold, the h is an integer greater than 0; respectively configuring parameters of each of the domains according to the protocol to obtain a new slot model; configuring the downlink of the new slot model Physical channel.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present invention. As shown in FIG. 6, the method includes: a fourth configuration unit 41, an obtaining unit 42, a first configuration unit 43, a second configuration unit 44, and a third configuration. Unit 45, where:
  • the fourth configuration unit 41 is configured to analyze a frame structure and a slot format of the downlink physical channel included in the protocol, and configure a slot model for applying a downlink physical channel included in the protocol.
  • the foregoing protocol may be a 3GPP protocol, for example, a 25.211 protocol of the 3GPP R11 version, and another example: a 25.221 protocol of the 3GPP.
  • the fourth configuration unit 41 may analyze the frame structure and the slot format of all downlink physical channels included in the foregoing protocol, and configure a slot model that can apply to all downlink physical channels included in the protocol. That is, the slot model can be applied to all downlink physical channels included in the 3GPP protocol, including the existing downlink physical channel in the 3GPP protocol, and the downlink physical channel that may be added in the future in the 3GPP protocol evolution process, and the new slot format.
  • the downlink physical channel after the new slot format is added refers to the downlink physical channel after the existing slot format is added in the protocol, or the downlink physical channel after the existing slot format is modified in the protocol.
  • the existing DPCH channel in the 25.211 protocol but in the evolution process of the protocol, the slot format of the DPCH channel needs to be modified or the slot format is added, so that the PDCH after the slot format is modified or the slot format is added is the above-mentioned new slot.
  • the downlink physical channel after the format is the above-mentioned new slot.
  • the fourth configuration unit 41 does not need to execute each time a downlink physical channel is configured, and the fourth configuration unit 41 may only need to be executed once in one device. Downstream of subsequent configurations It is only necessary to start execution from the acquisition unit 42 in the physical channel process.
  • the obtaining unit 42 is configured to: when the downlink physical channel needs to be configured, obtain a pre-configured slot model; the number of domains in the slot model is allowed to be arbitrarily configured within a preset threshold; each parameter of the domain allows protocol provision Any configuration below.
  • the foregoing downlink physical channel may include:
  • the downlink physical channel in the obtaining unit 42 may be any existing downlink physical channel included in the 3GPP protocol, and a downlink physical channel added in the 3GPP protocol evolution process.
  • the first configuration unit 43 is configured to configure h the domains in the slot model acquired by the obtaining unit 41, where n ⁇ h ⁇ m, where n is the downlink physical channel specified by the protocol in each slot domain
  • n is the downlink physical channel specified by the protocol in each slot domain
  • the number of the m, the m is the threshold, and the h is an integer greater than 0.
  • the slot model acquired by the obtaining unit 42 may include w domains, that is, h domains are pre-configured in the slot model.
  • the first configuration unit 43 can delete or add to the person domain such that the slot model includes the h domain, and the w is an integer greater than zero.
  • the second configuration unit 44 is configured to configure parameters of each of the domains configured by the first configuration unit 43 according to the protocol, to obtain a new slot model.
  • the foregoing parameter may be all parameters of each domain in the downlink physical channel specified by the protocol.
  • the parameter of the domain includes at least one of the following:
  • Length type of information, source of information, transmit power factor, modulation scheme, spreading factor, channelization code, transmit diversity.
  • the second configuration unit 44 configures parameters of each of the domains, and may be configured to configure different parameters for each domain in the same slot.
  • the length parameter that is, the length of each field in the same slot
  • the modulation symbol granularity that is, the lengths of different domains in one slot can be configured differently, and can be configured according to the modulation symbols of each domain.
  • the above information type parameter that is, the information type of each domain in the same slot can be configured with different information types; for the above information source, transmission power factor, modulation mode, spreading factor, channelization code, transmission diversity mode, etc.
  • the parameters of the domain can be configured differently in each domain in the same slot.
  • the period of one radio frame is 10 ms (ie, one radio frame, Tf-lOms shown in FIG. 4), and each radio frame includes 15 slots.
  • the downlink physical channel in the obtaining unit 42 is a DPCH channel, and the DPCH channel includes a DPDCH and a DPCCH.
  • the DPCH channel is defined to contain five domains per slot, so that the first configuration unit 43 can configure five domains in the above slot model; and the 3GPP protocol specifies the first of the DPCH channels in each slot.
  • the DPDCH is configured in the domain, and the information type is Data.
  • the DPCCH is configured in the second domain and the third domain, and the information types are TPC and TFCI respectively.
  • the fourth domain is configured with DPDCH, and the information type is Data.
  • the fifth domain is configured with DPCCH. And the information type is Pilot; of course, the length of each field is also specified.
  • the second configuration unit 44 configures the first domain, the second domain, the third domain, the fourth domain, and the fifth domain described above according to the protocol, that is, the first row shown in FIG. 4 can be configured. Five domains.
  • step 204 also configures parameters such as information source, transmit power factor, modulation mode, spreading factor, channelization code, and transmit diversity mode of each domain according to the protocol.
  • the third configuration unit 45 is configured to configure the downlink physical channel on a new slot configured by the second configuration unit 45.
  • the second configuration unit 44 is configured to have a slot as shown in FIG. 4, and the third configuration unit 45 can configure the DPCH channel in the slot format shown in FIG. 4.
  • FIG. 4 only shows one slot
  • the third configuration unit 45 may be configured with multiple slots, and may also configure multiple radio frames including the slot shown in FIG. 4, and each slot in each frame.
  • the format can be the same. That is, the third configuration unit 45 may be a downlink physical channel configured with a plurality of radio frames, and each of the wireless frames includes a plurality of slots configured by the second configuration unit 44.
  • the slot model acquired by the obtaining unit 42 may include:
  • the slot model of the downlink physical channel before the new slot format is added is a slot model of the downlink physical channel before the slot format is added, and the downlink physical channel is the DPCH.
  • the slot model of the DPCH before the slot is added is the slot model 1
  • the slot model acquired by the obtaining unit 42 may be the slot model 1.
  • the present invention can configure the slot model 1 as the slot model 2 through subsequent steps.
  • the slot model acquired by the obtaining unit 42 may be a slot model configured by the slot model configured by the fourth configuration unit 41 by the method described in the present invention.
  • the slot model configured by the fourth configuration unit 41 is a slot model 0.
  • the acquiring unit 42 acquires a slot model 0, and configures a slot model through the first configuration unit 43, the second configuration unit 44, and the third configuration unit 45. 1 and configure the DPCH channel.
  • the DPCH channel is added with a slot format, so that the present invention can perform step 202 again to obtain the previously configured slot model 1 and then use the first configuration unit 43 and the second configuration unit 44 to slot.
  • the model 1 is configured as a slot model 2
  • the DPCH channel of the slot model 2 is configured via the third configuration unit 45.
  • the first configuration unit 43 is further configured to delete or add a domain in the slot model, so that the slot model includes h domains, where n ⁇ h ⁇ m, The number of the downlink physical channels in each slot after the new slot format specified by the protocol is n;
  • the second configuration unit 44 is further configured to modify parameters of each of the domains according to the protocol.
  • modifying the parameters of each of the foregoing domains may include:
  • the slot model of the downlink physical channel before the new slot format is applied may be configured as the slot model of the downlink physical channel after the slot format is added.
  • the difference between the slot model of the downlink physical channel before the slot format and the slot model of the downlink physical channel after the slot format is added is relatively small, so that the configuration process is easier to implement.
  • the slot model acquired by the obtaining unit 42 may further include:
  • the fourth configuration unit 41 configures the slot model.
  • the corresponding configuration is completed through the first configuration unit 43, the second configuration unit 44, and the third configuration unit 45.
  • the second configuration unit 44 may be further configured to configure a length of the domain, configure an information type of the domain, configure an information source of the domain, and configure the domain for each domain in the slot.
  • the second configuration unit 44 can separately configure each domain in the slot model separately.
  • the second configuration unit 44 may configure different TPCs and TPIs in different domains in the slot model in the configuration process.
  • different TPCs and different ⁇ apply to Different users, for example: TPC1 is for User 1, TPC2 is for User 2, TPC3 is for User 3, TPI1 is for User 4, TPI2 is for User 5, TPI3 is for User 6, so when the second configuration unit 44 is Different domains in the above slot model can be configured with different TPCs or different TPIs for the information types, so that different domains in the same slot can be applied to different users, that is, different users in different domains in the same slot. Get the downlink data. This allows multiple users to obtain downstream data at different times.
  • the network device may include:
  • FIG. 8 is a schematic structural diagram of another network device according to an embodiment of the present invention. As shown in FIG. 8, the method includes: a memory 51 and a processor 52, where:
  • the memory 51 is used to store a set of program codes, and the processor 52 is configured to call the program code stored in the memory for performing the following operations:
  • the pre-configured slot model is obtained; the number of the domains in the slot model is allowed to be arbitrarily configured within a preset threshold; and the parameters of each of the domains allow the protocol to be configured arbitrarily;
  • the number of domains in the slot model is allowed to be arbitrarily configured within 10, that is, 1, 2, 3, 4, ..., or 9 or 10 may be configured in the slot model.
  • Domains are all ok.
  • the parameters of each of the above-mentioned domains allow the arbitrary configuration specified by the protocol to mean that the parameters of each of the domains can be arbitrarily configured with the permission of the protocol.
  • step 102 may be in the slot model.
  • Medium Can be 5, 6, 7, 8, 9 or 10 domains.
  • the operations performed by the processor 52 to separately configure parameters of each of the domains according to the protocol may include:
  • DTX Discontinuous Transmission
  • the step 103 is not limited to configuring the information types of the t domains in the h domains to be DTX, and the parameters of the other n domains in the h domains may also be configured.
  • the 1MB primary common control physical channel specifies in the 25.221 protocol that the first 256 chips and the last 256 chip of each slot of the channel do not send data information, and the remaining chips It is used to send data, that is, the slot of the PCCPCH specified in the protocol 25.221 protocol has only one domain whose data type is Data (referred to as Data domain). That is, the above n is 1, so that h in step 102 can be 3.
  • the information types of the two fields are configured as DTX, and the pre-configured slot model is configured into three domains, and the information type is DTX.
  • the domain (referred to as the DTX domain), the Data domain, and the DTX domain, as shown in FIG.
  • each slot model is configured into three domains, which in turn are DTX domains (FieldO DTX shown in FIG. 2). , Data field (Fieldl Data shown in Figure 2) and DTX field (Field2 DTX shown in Figure 2). In this way, the first 256 chi and the last 256 chip in each slot of the PCCPCH do not send data information.
  • the new slot is obtained by using the slot format.
  • the downlink physical channel configured on the new slot may be a downlink physical channel configured by using the slot format mentioned above.
  • a pre-configured slot model is obtained; the number of domains in the slot model is allowed to be arbitrarily configured within a preset threshold; Configuring an arbitrary configuration; configuring h of the domains in the slot model, where w ⁇ 2 ⁇ m, where n is the number of domains of the downlink physical channel in each slot specified by the protocol, The m is the threshold, the h is an integer greater than 0; respectively configuring parameters of each of the domains according to the protocol to obtain a new slot model; configuring the downlink of the new slot model Physical channel.
  • FIG. 9 is a schematic structural diagram of another network device according to an embodiment of the present invention. As shown in FIG. 9, the method includes: a memory 61 and a processor 62, where:
  • the storage memory 61 is used to store a set of program codes, and the processor 62 is configured to call the program code stored in the memory for performing the following operations:
  • the foregoing protocol may be a 3GPP protocol, for example, a 25.211 protocol of the 3GPP R11 version, and another example: a 25.221 protocol of the 3GPP.
  • the processor 62 may analyze the frame structure and the slot format of all downlink physical channels included in the foregoing protocol, and configure a slot model that can apply to all downlink physical channels included in the protocol. That is, the slot model can be applied to all downlink physical channels included in the 3GPP protocol, including the existing downlink physical channel in the 3GPP protocol, and the downlink physical channel that may be added in the future in the 3GPP protocol evolution process, and the new slot format.
  • the downlink physical channel after the new slot format is added is the downlink physical channel after the existing slot format is added in the protocol, or the downlink physical channel after the slot format is modified.
  • the existing DPCH channel in the 25.211 protocol but in the evolution process of the protocol, the slot format of the DPCH channel needs to be modified or the slot format is added, so that the DPCH channel after the slot format is modified or the slot format is added is the above-mentioned new one.
  • the downlink physical channel after the slot format is the above-mentioned new one.
  • the processor 62 does not need to perform the analysis of the frame structure and the slot format of the downlink physical channel included in the protocol, and configures a slot model for applying the downlink physical channel included in the protocol. Operation, frame structure of the downlink physical channel included in the protocol The analysis is performed with the slot format, and the operation of configuring the slot model for the downlink physical channel included in the protocol may be performed only once in one device. In the subsequent configuration of the downlink physical channel, it is only necessary to start the operation of acquiring the slot model when the downlink physical channel needs to be configured.
  • the foregoing downlink physical channel may include:
  • the downlink physical channel in step 202 may be any existing downlink physical channel included in the 3GPP protocol, and a downlink physical channel added in the 3GPP protocol evolution process.
  • the slot model acquired by the processor 62 may include w domains, that is, the h domains are pre-configured in the slot model.
  • the processor 62 can delete or add to the person domain such that the slot model contains the h field, and the w is an integer greater than zero.
  • the foregoing parameter may be all parameters of each domain in the downlink physical channel specified by the protocol.
  • the parameter of the domain includes at least one of the following:
  • Length type of information, source of information, transmit power factor, modulation scheme, spreading factor, channelization code, transmit diversity.
  • the processor 62 configures parameters of each of the domains, and each domain in the same slot may be configured with different parameters.
  • the length parameter that is, the length of each field in the same slot
  • the lengths of different domains in a slot can be configured differently, and can be configured according to the modulation symbols of each domain.
  • the above information type parameter that is, the information type of each domain in the same slot can be configured with different information types; for the above information source, transmission power factor, modulation mode, spreading factor, channelization code, transmission diversity mode, etc.
  • the parameters of the domain can be configured differently in each domain in the same slot.
  • the processor 62 obtains a slot as shown in FIG. 4 by performing a parameter for configuring each of the domains according to the protocol to obtain a new slot model, and the processor 62 can perform configuration by performing the configuration.
  • the operation of the downlink physical channel of the new slot model configures a DPCH channel of the slot format shown in FIG.
  • the processor 62 when the downlink physical channel acquired by the processor 62 is a downlink physical channel after the slot format is added, the processor 62 performs the following when the downlink physical channel needs to be configured.
  • the operation of the slot model may include:
  • the slot model of the downlink physical channel before the new slot format is added that is, the slot model acquired by the processor 62 is a slot model of the downlink physical channel before the slot format is added, and the downlink physical channel is the DPCH.
  • the slot model of the DPCH before the slot is added is the slot model 1
  • the slot model acquired by the processor 62 can be the slot model 1.
  • the present invention can configure the slot model 1 as the slot model 2 through the subsequent steps.
  • the operations performed by the processor 62 to configure the h domains in the slot model may include:
  • the slot model includes h domains, where n ⁇ h ⁇ m, and the n is a downlink physics after the newly added slot format specified by the protocol The number of domains in the channel in each slot;
  • the operations performed by the processor 62 to configure parameters of each of the domains according to the protocol may include:
  • the parameters of each of the domains are modified according to the protocol, respectively.
  • modifying the parameters of each of the foregoing domains may include:
  • the slot model of the downlink physical channel before the new slot format is applied may be configured as the slot model of the downlink physical channel after the slot format is added.
  • the difference between the slot model of the downlink physical channel before the slot format and the slot model of the downlink physical channel after the slot format is added is relatively small, so that the configuration process is easier to implement.
  • the operations performed by the processor 62 to configure parameters of each of the domains according to the protocol may further include:
  • the processor 62 can separately configure each domain in the slot model separately.
  • the processor 62 may configure different TPCs and Transmitted Precoding Indicators (TPIs) in different domains in the slot model in the configuration process.
  • TPIs Transmitted Precoding Indicators
  • Different TPCs and different TPIs are available for different users, for example: TPC1 for User 1, TPC2 for User 2, TPC3 for User 3, TPI1 for User 4, TPI2 for User 5, TPI3 for User 6.
  • TPCs and different TPIs are available for different users, for example: TPC1 for User 1, TPC2 for User 2, TPC3 for User 3, TPI1 for User 4, TPI2 for User 5, TPI3 for User 6.
  • the processor 62 can configure different TPCs or different TPIs for different types of information in the slot model, the different domains in the same slot can be applied to different users, that is, different users are in the same manner. Get downlink data from different domains in the same slot. This allows multiple users to obtain downstream data at different times.
  • the network device may include:
  • the configuration of the configuration domain and the parameters of each domain are described in detail, so as to use the new downlink physical channel and the new downlink physical channel that appear in the evolution of the flexible support protocol. It is applicable to different scenarios on the premise of adding a downlink physical channel after the slot format.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • the computer readable medium can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used to carry or store an instruction or data structure.
  • any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种下行物理信道配置方法,包括:当需要配置下行物理信道时,获取预先配置的slot模型;所述slot模型中域的个数允许在预置阈值内任意配置;每个所述域的参数允许协议规定下任意配置;在所述slot模型中配置h个所述域,其中,n≤h≤m,所述n为所述协议规定的所述下行物理信道在每个slot中域的个数,所述m为所述阈值,所述h为大于0的整数;分别根据所述协议配置每个所述域的参数,以得到新的slot模型;配置所述新的slot模型的所述下行物理信道。相应地本发明实施例还提供了一种网络设备。本发明实施例可以灵活支持协议演进中出现的新增下行物理信道和新增slot格式后的下行物理信道。

Description

一种下行物理信道配置方法及设备 技术领域
本发明涉及通信领域, 尤其涉及一种下行物理信道配置方法及设备。 背景技术
目前第三代合作伙伴项目 ( The 3rd Generation Partnerchip Project, 3 GPP ) 的协议中下行物理信道的种类^ l多, 如 25.211 协议中通用移动通信系统 ( Universal Mobile Telecommunications System, UMTS )至少包括: R99专用信 道、 R99公共信道、 高速下行分组接入 ( High Speed Downlink Packet Access, HSDPA )信道和高速上行链路分组接入(High Speed Uplink Packet Access, HSUPA )信道; 其中, R99专用信道又包括: 专用物理信道(Dedicated Physical Channel, DPCH )、 分数专用物理信道 ( Fractional Dedicated Physical Channel, F-DPCH )和分数传输预编码指示信道( Fractional Transmitted Precoding Indicator Channel, F-TPICH ), R99公共信道、 HSDPA信道和 HSUPA信道都包含多个信 道; 25.221 协议中组播广播单频网络(Multicast Broadcast Single Frequency Network, MBSFN ) 中的集成移动广播 ( Integrated Mobile Broadcast, 1MB ) 下 行物理信道又包含多个信道。 且目前的 3GPP协议仍然处于快速演进的过程中, 在该过程中 3GPP协议中会增加新增下行物理信道,以及可能会对现有的下行物 理信道新增时隙 slot格式。
目前都是釆用硬件来实现下行物理信道的配置, 将协议中现有的各下行物 理信道的时隙 (slot )格式表格固化在硬件中, 当配置某个下行物理信道时, 通 过软件配置的信道类型和 slot格式索引在上述表格中进行查表, 以查找到该下 行物理信道的 slot格式信息, 然后配置查找得到的 slot格式的下行物理信道。
由于上述技术各下行物理信道的 slot格式表格固化在硬件中,当 3GPP协议 中新增下行物理信道或新增 slot格式后的下行物理信道时, 上述技术就只能对 硬件进行改变, 从而无法灵活支持协议演进中出现的新增下行物理信道和新增 slot格式后的下行物理信道。 发明内容 本发明实施例提供了一种下行物理信道配置方法及设备, 可以灵活支持协 议演进中出现的新增下行物理信道和新增 slot格式后的下行物理信道。
第一方面, 提供一种下行物理信道配置方法, 包括:
当需要配置下行物理信道时,获取预先配置的 slot模型; 所述 slot模型中域 的个数允许在预置阈值内任意配置; 每个所述域的参数允许协议规定下任意配 置;
在所述 slot模型中配置 h个所述域, 其中, n≤h≤m , 所述 n为所述协议规 定的所述下行物理信道在每个 slot中域的个数, 所述 m为所述阔值, 所述 h为 大于 0的整数;
分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型; 配置所述新的 slot模型的所述下行物理信道。
第二方面, 提供一种网络设备, 包括: 获取单元、 第一配置单元、 第二配 置单元和第三配置单元, 其中:
所述获取单元, 用于当需要配置下行物理信道时, 获取预先配置的时隙 slot 模型; 所述 slot模型中域的个数允许在预置阔值内任意配置; 每个所述域的参 数允许协议规定下任意配置;
所述第一配置单元, 在所述获取单元获取的 slot模型中配置 h个所述域, 其中, n < k≤m ,所述 n为所述协议规定的所述下行物理信道在每个 slot中域的 个数, 所述 m为所述阔值, 所述 h为大于 0的整数;
所述第二配置单元, 用于分别根据所述协议配置所述第一配置单元配置的 每个所述域的参数, 以得到新的 slot模型;
所述第三配置单元, 用于在所述第二配置单元配置的新的 slot上配置所述 下行物理信道。
第三方面, 提供一种网络设备, 包括: 存储器和处理器, 其中:
所述存储器用于存储一组程序代码, 且所述处理器用于调用所述存储器中 存储的程序代码, 用于执行以下操作:
当需要配置下行物理信道时,获取预先配置的时隙 slot模型; 所述 slot模型 中域的个数允许在预置阈值内任意配置; 每个所述域的参数允许协议规定下任 意配置;
在所述 slot模型中配置 h个所述域, 其中, n < h≤m , 所述 n为所述协议规 定的所述下行物理信道在每个 slot中域的个数, 所述 m为所述阔值, 所述 h为 大于 0的整数;
分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型; 配置所述新的 slot模型的所述下行物理信道。
上述技术方案中, 当需要配置下行物理信道时, 获取预先配置的时隙 slot 模型; 所述 slot模型中域的个数允许在预置阔值内任意配置; 每个所述域的参 数允许协议规定下任意配置;在所述 slot模型中配置 h个所述域,其中, w≤ 2≤ m , 所述 n为所述协议规定的所述下行物理信道在每个 slot中域的个数, 所述 m为 所述阔值, 所述 h为大于 0的整数; 分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型; 配置所述新的 slot模型的所述下行物理信道。这样就根据 不同的下行物理信道在上述 slot模型中灵活配置 slot中的域以及域的参数,从而 可以灵活支持协议演进中出现的新增下行物理信道和新增 slot格式后的下行物 理信道。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的一种下行物理信道配置方法的流程示意图; 图 2是本发明实施例提供的一种可选的 slot结构示意图;
图 3是本发明实施例提供的另一种下行物理信道配置方法的流程示意图; 图 4是本发明实施例提供的另一种可选的 slot结构示意图;
图 5是本发明实施例提供的另一种可选的 slot结构示意图;
图 6是本发明实施例提供的一种网络设备的结构示意图;
图 7是本发明实施例提供的另一种网络设备的结构示意图;
图 8是本发明实施例提供的另一种网络设备的结构示意图;
图 9是本发明实施例提供的另一种网络设备的结构示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1 是本发明实施例提供的一种下行物理信道配置方法的流程示意图, 如 图 1所示, 包括:
101、 当需要配置下行物理信道时,获取预先配置的时隙 slot模型; 所述 slot 模型中域的个数允许在预置阔值内任意配置; 每个所述域的参数允许协议规定 下任意配置。
可选的, 当上述预置阔值为 10时, 上述 slot模型中域的个数允许 10以内 任意配置, 即可以在上述 slot模型内配置 1、 2、 3、 4、 …或者 9或者 10个域都 是可以的。 上述每个所述域的参数允许协议规定下任意配置可以是指在协议的 允许下可以对每个所述域的参数随意配置。
102、 在所述 slot模型中配置 h个所述域, 其中, n≤h≤m , 所述 n为所述 协议规定的所述下行物理信道在每个 slot中域的个数, 所述 m为所述阔值, 所 述 h为大于 0的整数;
作为一种可选的实施方式中, 例如: 协议规定的所述下行物理信道在每个 slot中域的个数为 5 , 而所述阔值为 10 , 那么步骤 102就可以在所述 slot模型中 可以 5、 6、 7、 8、 9或者 10个域。
103、 分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型。 作为一种可选的实施方式, 当上述 h大于 n时, 步骤 103可以包括: 将所述 h个域中的 t个域的信息类型配置为不连续发送类型( Discontinuous
Transmission, DTX ), 其中, t=h-n; 这样就得到 n个有效域。 当然该实施方式 中, 步骤 103不仅限于将所述 h个域中的 t个域的信息类型配置为 DTX, 还可 以配置所述 h个域中另 n个域的参数。
例 ^口: 1MB 的主公共控制物理信道 Primary Common Control Physical Channel, PCCPCH )在 25.221协议中规定,该信道的每个 slot的前 256码片( chip ) 和最后 256chip都不发送数据信息, 其余 chip用于发送数据, 即协议 25.221协 议中规定 PCCPCH的 slot中只有一个信息类型为 Data的域(简称 Data域)。 即 上述 n为 1 , 这样步骤 102中的 h就可以为 3 , 步骤 103就将前后两个域的信息 类型配置为 DTX, 即将预先配置的 slot模型配置成 3个域, 依次为信息类型为 DTX的域(简称 DTX域)、 Data域和 DTX域, 如图 2所示, 其中, 图 2中第 一和第二行为协议规定的 slot格式, 即第一行中的两个 TxOFF表示前 256 chip 和最后 256chip都不发送数据信息。图 2中第三和第四行表示本发明实施例配置 后的 slot模型, 即第四行所示,每个 slot模型配置成 3个域,依次为 DTX域(图 2所示的 FieldO DTX )、 Data域(图 2所示的 Fieldl Data )和 DTX域(图 2所 示的 Field2 DTX )。 这样就可以实现 PCCPCH的每个 slot中前 256 chi 和最后 256chip都不发送数据信息。
104、 配置所述新的 slot模型的所述下行物理信道。
可选的,上述得到新的 slot可以是得到 slot格式,上述在新的 slot上配置所 述下行物理信道可以是配置上述提到的 slot格式的下行物理信道。
上述技术方案中, 当需要配置下行物理信道时, 获取预先配置的时隙 slot 模型; 所述 slot模型中域的个数允许在预置阔值内任意配置; 每个所述域的参 数允许协议规定下任意配置;在所述 slot模型中配置 h个所述域,其中, w≤ 2≤ m , 所述 n为所述协议规定的所述下行物理信道在每个 slot中域的个数, 所述 m为 所述阔值, 所述 h为大于 0的整数; 分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型; 配置所述新的 slot模型的所述下行物理信道。这样就根据 不同的下行物理信道在上述 slot模型中灵活配置 slot中的域以及域的参数,从而 可以灵活支持协议演进中出现的新增下行物理信道和新增 slot格式后的下行物 理信道。 图 3 是本发明实施例提供的另一种下行物理信道配置方法的流程示意图, 如图 3所示, 包括:
201、 对协议包含的下行物理信道的帧结构和 slot格式进行分析, 配置用于 适用所述协议包含的下行物理信道的 slot模型;所述 slot模型中域的个数允许在 预置阔值内任意配置; 每个所述域的参数允许协议规定下任意配置。
可选的, 上述协议可以 3GPP协议, 例如: 3GPP R11版的 25.211协议, 又 如: 3GPP的 25.221协议等。
可选的, 步骤 201 可以是对上述协议包含的所有下行物理信道的帧结构和 slot格式进行分析, 配置一个可以适用所述协议包含的所有下行物理信道的 slot 模型。 即该 slot模型可以应用于 3GPP协议包含的所有下行物理信道, 当然包括 3GPP协议中现有的下行物理信道, 和 3GPP协议演进过程中在未来可能新增的 下行物理信道, 以及新增 slot格式后的下行物理信道。上述新增 slot格式后的下 行物理信道是指协议中现有的新增 slot格式后的下行物理信道, 或者协议中现 有的修改 slot格式后的下行物理信道。 如 25.211协议中现有的 DPCH信道, 但 在协议的演进过程中需要对 DPCH信道的 slot格式进行修改或者新增 slot格式, 这样修改 slot格式后或者新增 slot格式后的 DPCH信道就是上述新增 slot格式 后的下行物理信道。
需要说明的, 步骤 201 并不是每次配置一个下行物理信道都需要执行步骤 201 , 步骤 201在一个设备中可以只需要执行一次就行。 在后续配置下行物理信 道过程中只需要从步骤 202开始执行就行。
202、 当需要配置下行物理信道时, 获取所述 slot模型。
可选的, 上述下行物理信道可以包括:
所述协议(例如: 3GPP ) 中新增的下行物理信道或所述协议中现有的下行 物理信道; 所述现有的下行物理信道包含新增 slot格式后的下行物理信道或未 新增 slot格式的下行物理信道。即步骤 202中的下行物理信道可以是 3GPP协议 包含的现有的任何下行物理信道,以及在 3GPP协议演进过程中新增的下行物理 信道。
203、 在所述 slot模型中配置 h个所述域, 其中, n≤h≤m , 所述 n为所述 协议规定的所述下行物理信道在每个 slot中域的个数, 所述 m为所述阔值, 所 述 h为大于 0的整数。
作为一种可选的实施方式, 步骤 202获取的 slot模型中可以包含 w个域, 即在该 slot模型中就预先配置好 h个域。 步骤 203就可以对这个人个域进行删 除或增加, 以使该 slot模型包含 h域, 所述 w为大于 0的整数。
204、 分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型。 作为一种可选的实施方式, 上述参数可以是协议规定的下行物理信道中每 个域的所有参数。
可选的, 所述域的参数至少包括如下任一项:
长度、 信息类型、 信息来源、 发射功率因子、 调制方式、 扩频因子、 信道 可选的, 步骤 204配置每个所述域的参数, 可以是同一个 slot内每个域可 以配置不同的参数。 例如: 上述长度参数, 即同一个 slot 内每个域的长度可以 按照调制符号粒度独立配置, 即一个 slot 中不同的域的长度可以配置不同, 具 体可以根据每个域的调制符号而配置。 又如: 上述信息类型参数, 即同一个 slot 内每个域的信息类型可以配置不同的信息类型; 对于上述信息来源、 发射功率 因子、 调制方式、 扩频因子、 信道化码、 发射分集方式等域的参数, 在同一个 slot内每个域都可以配置不同。
可选的, 如图 4所示一个无线帧的周期为 10ms (即图 4中所示的 one radio frame, Tf-lOms ),每个无线帧内包含 15slot。步骤 202中的下行物理信道为 DPCH 信道, DPCH信道包含专用物理数据信道 ( Dedicated Physical Data Channel, DPDCH )和专用物理控制信道( Dedicated Physical Control Channel, DPCCH )。 而在 3GPP协议中规定 DPCH信道每个 slot包含 5个域, 这样步骤 203就可以 在上述 slot模型中配置 5个域;而 3GPP协议中规定 DPCH信道在每个 slot中的 第一个域配置 DPDCH, 且信息类型为数据 ( Data ), 第二个域和第三域都配置 DPCCH, 且信息类型分别为传输功率控制 (Transmission Power Control, TPC ) 和传输格式组合标识符 ( Transport Format Combination Indicator, TFCI ); 第四 个域配置 DPDCH, 且信息类型为数据(Data ), 第五个域配置 DPCCH, 且信息 类型为导频(Pilot ); 当然, 还规定了每个域的长度。 这样步骤 204就根据协议 配置上述描述的第一个域、 第二个域、 第三个域、 第四个域和第五个域, 即可 以配置如图 4第一行所示的五个域。 当然步骤 204还会根据协议配置每个域的 信息来源、 发射功率因子、 调制方式、 扩频因子、 信道化码、 发射分集方式等 参数。
205、 配置所述新的 slot模型的所述下行物理信道。
可选的, 例如步骤 204配置后得到一个如图 4所示的 slot, 步骤 205就可以 配置图 4所示的 slot格式的 DPCH信道。
可选的, 图 4仅显示了一个 slot, 而步骤 205可以是配置多个 slot, 还可以 配置多个包含图 4所示的 slot的无线帧,每个帧内的每个 slot的格式可以是相同 的。 即步骤 205 可以是配置多个无线帧的下行物理信道, 每个无线帧包含多个 步骤 204配置得到的 slot。
作为一种可选的实施方式, 当步骤 202中的下行物理信道为新增 slot格式 后的下行物理信道时, 步骤 202获取的 slot模型可以包括:
适用于新增 slot格式前的所述下行物理信道的 slot模型;即步骤 202获取的 slot模型是在未新增 slot格式前的所述下行物理信道的 slot模型, 如上述下行物 理信道为 DPCH信道, 未新增 slot前 DPCH的 slot模型为 slot模型 1 , 那么步 骤 202获取的 slot模型就可以是 slot模型 1。 而新增 slot模型后的 DPCH的 slot 模型为 slot模型 2时, 本发明就可以通过后继步骤将 slot模型 1上配置为 slot 模型 2。
需要说明的是, 在上述实例中, 步骤 202获取的 slot模型可以是经过本发 明描述的方法对步骤 201配置的 slot模型配置后的 slot模型。 例如: 步骤 201 配置的 slot模型为 slot模型 0 , 当配置 DPCH信道时, 步骤 202就获取 slot模型 0 ,经过步骤 203、 204、 205配置 slot模型 1 ,并配置 DPCH信道。而在后继 3GPP 协议演进过程中 DPCH信道新增 slot格式,这样本发明就可以再次执行步骤 202 获取以前配置的上述 slot模型 1 ,再经过下述步骤 203和 204将 slot模型 1配置 成 slot模型 2 , 并经过步骤 205配置 slot模型 2的 DPCH信道。
可选的, 该实施方式中, 步骤 203可以包括:
删除或新增所述 slot模型中的域, 以使所述 slot模型包含 h个域, 其中, n < h < m ,所述 n为所述协议规定的所述新增 slot格式后的下行物理信道在每个 slot中域的个数;
可选的, 该实施方式中, 步骤 204可以包括:
分别根据所述协议修改每个所述域的参数。
可选的, 上述修改每个所述域的参数可以包括:
修改所述 h个域中至少一个域的长度、 移动所述 h个域中至少一个域的位 置等。
该实施方式中,可以实现将适用新增 slot格式前的所述下行物理信道的 slot 模型, 配置成新增 slot格式后的所述下行物理信道的 slot模型。 而新增 slot格式 前的所述下行物理信道的 slot模型和新增 slot格式后的所述下行物理信道的 slot 模型之间的差别比较小, 这样配置过程就更加容易实现。
当然, 在本发明中, 当步骤 202中的下行物理信道为新增 slot格式后的下 行物理信道时, 步骤 202获取的 slot模型还可以包括:
步骤 201配置的 slot模型。 再经过步骤 203、 204和 205完成相应的配置。
作为一种可选的实施方式, 步骤 204还可以包括:
分别针对所述 slot中每一个域, 配置该域的长度;
配置该域的信息类型;
配置该域的信息来源;
配置该域的发射功率因子;
配置该域的调制方式、 扩频因子、 信道化码、 发射分集方式等。
即, 步骤 204可以分别对所述 slot模型中每个域进行单独配置。
作为一种可选的实施方式, 步骤 204在配置过程中可以在上述 slot模型中 的不同域中配置不同的 TPC 和预编码指示 (Transmitted Precoding Indicator, TPI )。 而不同的 TPC和不同的 TPI适用于不同的用户, 例如: TPC1适用于用 户 1 , TPC2适用于用户 2, TPC3适用于用户 3 , TPI1适用于用户 4, TPI2适用 于用户 5, TPI3适用于用户 6, 这样当步骤 204就可以将上述 slot模型中不同的 域为信息类型配置不同的 TPC或不同的 TPI, 这样就可以使在同一个 slot内不 同的域适用不同的用户, 即不同用户在同一个 slot内不同的域的获取下行数据。 这样可以实现多用户在不同的时间上获取下行数据。
例如: 步骤 202中的下行信道信道为 F-DPCH或 F-TPICH时, 步骤 203可 在上述 slot模型内配置 10个域, 步骤 204可以步骤将这 10域的信息类型配置 成如图 5所示的域信息类型, 其中图 5中第二行的 UserO表示用户 0, Userl表 示用户 1等, 第二行中每个小格式表示一个域(例如图 5中 TPC UserO表示第 一个域)。 当然步骤 204还可以包括配置每个域的其它参数, 如信息来源、 发射 功率因子、 调制方式、 扩频因子、 信道化码、 发射分集方式等。 这样步骤 205 配置的 F-DPCH或 F-TPICH可以适用于 10个用户,且每个用户获取下行数据的 时间是不同的。
作为一种可选的实施方式, 本发明实施例可以应用于网络设备, 例如: 基 站设备。
可选的, 该实施方式中, 上述步骤 201、 202、 203、 204都可以由上述网络 设备中的软件来实现, 步骤 205 就可以由上述网络设备中的调制器来实现。 可 以是由上述软件将配置后的新的 slot发送至调制器, 由调制器完成下行物理信 道的配置。 上述技术方案中, 在上面实施例的基础上, 对配置域的个入以及配置每个 域的参数进行了详细说明, 以使用本发明在保证灵活支持协议演进中出现的新 增下行物理信道和新增 slot格式后的下行物理信道的前提下适用于不同的场景。 下面为本发明装置实施例, 本发明装置实施例用于执行本发明方法实施例 一至六实现的方法, 为了便于说明, 仅示出了与本发明实施例相关的部分, 具 体技术细节未揭示的, 请参照本发明实施例一、 实施例二、 实施倒三、 实施例 四、 实施例五和实施例六。 图 6是本发明实施例提供的一种网络设备的结构示意图, 如图 6所示, 包 括: 获取单元 31、 第一配置单元 32、 第二配置单元 33和第三配置单元 34 , 其 中:
获取单元 31 , 用于当需要配置下行物理信道时, 获取预先配置的 slot模型; 所述 slot模型中域的个数允许在预置阔值内任意配置; 每个所述域的参数允许 协议规定下任意配置;
第一配置单元 32 ,在获取单元 31获取的 slot模型中配置 h个所述域,其中, n < h < m , 所述 n为所述协议规定的所述下行物理信道在每个 slot中域的个数, 所述 m为所述阔值, 所述 h为大于 0的整数;
作为一种可选的实施方式中, 例如: 协议规定的所述下行物理信道在每个 slot中域的个数为 5 , 而所述阔值为 10 ,那么第一配置单元 32就可以在所述 slot 模型中可以 5、 6、 7、 8、 9或者 10个域。
第二配置单元 33 ,用于分别根据所述协议配置第一配置单元 32配置的每个 所述域的参数, 以得到新的 slot模型。
作为一种可选的实施方式, 当上述 h大于 n时, 第二配置单元 33还可以用 于将所述 h个域中的 t个域的信息类型配置为 DTX, 其中, t=h-n; 这样就得到 n个有效域。 当然该实施方式中, 第二配置单元 33不仅限于将所述 h个域中的 t个域的信息类型配置为 DTX, 还用于配置所述 h个域中另 n个域的参数。
第三配置单元 34 ,用于在第二配置单元 33配置的新的 slot上配置所述下行 物理信道。
可选的,上述得到新的 slot可以是得到 slot格式,上述在新的 slot上配置所 述下行物理信道可以是配置上述提到的 slot格式的下行物理信道。
上述技术方案中, 当需要配置下行物理信道时, 获取预先配置的时隙 slot 模型; 所述 slot模型中域的个数允许在预置阔值内任意配置; 每个所述域的参 数允许协议规定下任意配置;在所述 slot模型中配置 h个所述域,其中, w≤ 2≤ m , 所述 n为所述协议规定的所述下行物理信道在每个 slot中域的个数, 所述 m为 所述阔值, 所述 h为大于 0的整数; 分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型; 配置所述新的 slot模型的所述下行物理信道。这样就根据 不同的下行物理信道在上述 slot模型中灵活配置 slot中的域以及域的参数,从而 可以灵活支持协议演进中出现的新增下行物理信道和新增 slot格式后的下行物 理信道。 图 7是本发明实施例提供的一种网络设备的结构示意图, 如图 6所示, 包 括: 第四配置单元 41、 获取单元 42、 第一配置单元 43、 第二配置单元 44和第 三配置单元 45 , 其中:
第四配置单元 41 , 用于对所述协议包含的下行物理信道的帧结构和 slot格 式进行分析, 配置用于适用所述协议包含的下行物理信道的 slot模型。
可选的, 上述协议可以 3GPP协议, 例如: 3GPP R11版的 25.211协议, 又 如: 3GPP的 25.221协议等。
可选的, 第四配置单元 41可以是对上述协议包含的所有下行物理信道的帧 结构和 slot格式进行分析, 配置一个可以适用所述协议包含的所有下行物理信 道的 slot模型。 即该 slot模型可以应用于 3GPP协议包含的所有下行物理信道, 当然包括 3GPP协议中现有的下行物理信道,和 3GPP协议演进过程中在未来可 能新增的下行物理信道, 以及新增 slot格式后的下行物理信道。 上述新增 slot 格式后的下行物理信道是指协议中现有的新增 slot格式后的下行物理信道, 或 者协议中现有的修改 slot格式后的下行物理信道。如 25.211协议中现有的 DPCH 信道, 但在协议的演进过程中需要对 DPCH信道的 slot格式进行修改或者新增 slot格式, 这样修改 slot格式后或者新增 slot格式后的 PDCH就是上述新增 slot 格式后的下行物理信道。
需要说明的, 第四配置单元 41并不是每次配置一个下行物理信道都需要执 行, 第四配置单元 41在一个设备中可以只需要执行一次就行。 在后续配置下行 物理信道过程中只需要从获取单元 42开始执行就行。
获取单元 42 , 用于当需要配置下行物理信道时, 获取预先配置的 slot模型; 所述 slot模型中域的个数允许在预置阔值内任意配置; 每个所述域的参数允许 协议规定下任意配置。
可选的, 上述下行物理信道可以包括:
所述协议(例如: 3GPP ) 中新增的下行物理信道或所述协议中现有的下行 物理信道; 所述现有的下行物理信道包含新增 slot格式后的下行物理信道或未 新增 slot格式的下行物理信道。 即获取单元 42中的下行物理信道可以是 3GPP 协议包含的现有的任何下行物理信道,以及在 3GPP协议演进过程中新增的下行 物理信道。
第一配置单元 43 ,在获取单元 41获取的 slot模型中配置 h个所述域,其中, n < h < m , 所述 n为所述协议规定的所述下行物理信道在每个 slot中域的个数, 所述 m为所述阔值, 所述 h为大于 0的整数。
作为一种可选的实施方式,获取单元 42获取的 slot模型中可以包含 w个域, 即在该 slot模型中就预先配置好 h个域。 第一配置单元 43就可以对这个人个域 进行删除或增加, 以使该 slot模型包含 h域, 所述 w为大于 0的整数。
第二配置单元 44 ,用于分别根据所述协议配置第一配置单元 43配置的每个 所述域的参数, 以得到新的 slot模型。
作为一种可选的实施方式, 上述参数可以是协议规定的下行物理信道中每 个域的所有参数。
可选的, 所述域的参数至少包括如下任一项:
长度、 信息类型、 信息来源、 发射功率因子、 调制方式、 扩频因子、 信道 化码、 发射分集方式。
可选的, 第二配置单元 44配置每个所述域的参数, 可以是同一个 slot内每 个域可以配置不同的参数。 例如: 上述长度参数, 即同一个 slot 内每个域的长 度可以按照调制符号粒度独立配置, 即一个 slot 中不同的域的长度可以配置不 同, 具体可以根据每个域的调制符号而配置。 又如: 上述信息类型参数, 即同 一个 slot 内每个域的信息类型可以配置不同的信息类型; 对于上述信息来源、 发射功率因子、 调制方式、 扩频因子、 信道化码、 发射分集方式等域的参数, 在同一个 slot内每个域都可以配置不同。 可选的, 如图 4所示一个无线帧的周期为 10ms (即图 4中所示的 one radio frame, Tf-lOms ), 每个无线帧内包含 15slot。 获取单元 42中的下行物理信道为 DPCH信道, DPCH信道包含 DPDCH和 DPCCH。而在 3GPP协议中规定 DPCH 信道每个 slot包含 5个域, 这样第一配置单元 43就可以在上述 slot模型中配置 5个域;而 3GPP协议中规定 DPCH信道在每个 slot中的第一个域配置 DPDCH, 且信息类型为 Data, 第二个域和第三域都配置 DPCCH,且信息类型分别为 TPC 和 TFCI; 第四个域配置 DPDCH, 且信息类型为 Data, 第五个域配置 DPCCH, 且信息类型为 Pilot; 当然, 还规定了每个域的长度。 这样第二配置单元 44就根 据协议配置上述描述的第一个域、 第二个域、 第三个域、 第四个域和第五个域, 即可以配置如图 4第一行所示的五个域。 当然步骤 204还会根据协议配置每个 域的信息来源、 发射功率因子、 调制方式、 扩频因子、 信道化码、 发射分集方 式等参数。
第三配置单元 45 ,用于在第二配置单元 45配置的新的 slot上配置所述下行 物理信道。
可选的, 例如第二配置单元 44配置后得一个如图 4所示的 slot, 第三配置 单元 45就可以配置图 4所示的 slot格式的 DPCH信道。
可选的, 图 4仅显示了一个 slot, 而第三配置单元 45可以是配置多个 slot, 还可以配置多个包含图 4所示的 slot的无线帧,每个帧内的每个 slot的格式可以 是相同的。 即第三配置单元 45可以是配置多个无线帧的下行物理信道, 每个无 线帧包含多个第二配置单元 44配置得到的 slot。
作为一种可选的实施方式, 当获取单元 42中的下行物理信道为新增 slot格 式后的下行物理信道时, 获取单元 42获取的 slot模型可以包括:
适用于新增 slot格式前的所述下行物理信道的 slot模型; 即获取单元 42获 取的 slot模型是在未新增 slot格式前的所述下行物理信道的 slot模型,如上述下 行物理信道为 DPCH信道, 未新增 slot前 DPCH的 slot模型为 slot模型 1 , 那 么获取单元 42获取的 slot模型就可以是 slot模型 1。而新增 slot模型后的 DPCH 的 slot模型为 slot模型 2时,本发明就可以通过后继步骤将 slot模型 1上配置为 slot模型 2。
需要说明的是, 在上述实例中, 获取单元 42获取的 slot模型可以是经过本 发明描述的方法对第四配置单元 41配置的 slot模型配置后的 slot模型。 例如: 第四配置单元 41配置的 slot模型为 slot模型 0 , 当配置 DPCH信道时, 获取单 元 42就获取 slot模型 0 , 经过第一配置单元 43、 第二配置单元 44、 第三配置单 元 45配置 slot模型 1 ,并配置 DPCH信道。而在后继 3GPP协议演进过程中 DPCH 信道新增 slot格式, 这样本发明就可以再次执行步骤 202获取以前配置的上述 slot模型 1 , 再经过下述第一配置单元 43、 第二配置单元 44将 slot模型 1配置 成 slot模型 2 , 并经过第三配置单元 45配置 slot模型 2的 DPCH信道。
可选的, 该实施方式中, 第一配置单元 43还可以用于删除或新增所述 slot 模型中的域, 以使所述 slot模型包含 h个域, 其中, n≤h≤m , 所述 n为所述协 议规定的所述新增 slot格式后的下行物理信道在每个 slot中域的个数;
可选的, 该实施方式中, 第二配置单元 44还可以用于分别根据所述协议修 改每个所述域的参数。
可选的, 上述修改每个所述域的参数可以包括:
修改所述 h个域中至少一个域的长度、 移动所述 h个域中至少一个域的位 置等。
该实施方式中,可以实现将适用新增 slot格式前的所述下行物理信道的 slot 模型, 配置成新增 slot格式后的所述下行物理信道的 slot模型。 而新增 slot格式 前的所述下行物理信道的 slot模型和新增 slot格式后的所述下行物理信道的 slot 模型之间的差别比较小, 这样配置过程就更加容易实现。
当然, 在本发明中, 当获取单元 42中的下行物理信道为新增 slot格式后的 下行物理信道时, 获取单元 42获取的 slot模型还可以包括:
第四配置单元 41配置的 slot模型。
再经过第一配置单元 43、 第二配置单元 44、 第三配置单元 45完成相应的 配置。
作为一种可选的实施方式, 第二配置单元 44还可以用于分别针对所述 slot 中每一个域, 配置该域的长度、 配置该域的信息类型、 配置该域的信息来源、 配置该域的发射功率因子, 以及配置该域的调制方式、 扩频因子、 信道化码、 发射分集方式等。
即, 第二配置单元 44可以分别对所述 slot模型中每个域进行单独配置。 作为一种可选的实施方式, 第二配置单元 44在配置过程中可以在上述 slot 模型中的不同域中配置不同的 TPC和 TPI。 而不同的 TPC和不同的 ΤΡΙ适用于 不同的用户, 例如: TPC1适用于用户 1 , TPC2适用于用户 2 , TPC3适用于用 户 3 , TPI1适用于用户 4 , TPI2适用于用户 5 , TPI3适用于用户 6 , 这样当第二 配置单元 44就可以将上述 slot模型中不同的域为信息类型配置不同的 TPC或不 同的 TPI, 这样就可以使在同一个 slot内不同的域适用不同的用户, 即不同用户 在同一个 slot 内不同的域的获取下行数据。 这样可以实现多用户在不同的时间 上获取下行数据。
作为一种可选的实施方式, 所述网络设备可以包括:
基站设备。
上述技术方案中, 在上面实施例的基础上, 对配置域的个入以及配置每个 域的参数进行了详细说明, 以使用本发明在保证灵活支持协议演进中出现的新 增下行物理信道和新增 slot格式后的下行物理信道的前提下适用于不同的场景。 图 8是本发明实施例提供的另一种网络设备的结构示意图, 如图 8所示, 包括: 存储器 51和处理器 52 , 其中:
存储器 51用于存储一组程序代码, 且处理器 52用于调用所述存储器中存 储的程序代码, 用于执行以下操作:
当需要配置下行物理信道时,获取预先配置的时隙 slot模型; 所述 slot模型 中域的个数允许在预置阈值内任意配置; 每个所述域的参数允许协议规定下任 意配置;
在所述 slot模型中配置 h个所述域, 其中, n≤h≤m , 所述 n为所述协议规 定的所述下行物理信道在每个 slot中域的个数, 所述 m为所述阔值, 所述 h为 大于 0的整数;
分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型; 配置所述新的 slot模型的所述下行物理信道。
可选的, 当上述预置阔值为 10时, 上述 slot模型中域的个数允许 10以内 任意配置, 即可以在上述 slot模型内配置 1、 2、 3、 4、 …或者 9或者 10个域都 是可以的。 上述每个所述域的参数允许协议规定下任意配置可以是指在协议的 允许下可以对每个所述域的参数随意配置。
作为一种可选的实施方式中, 例如: 协议规定的所述下行物理信道在每个 slot中域的个数为 5 , 而所述阔值为 10 , 那么步骤 102就可以在所述 slot模型中 可以 5、 6、 7、 8、 9或者 10个域。
作为一种可选的实施方式, 当上述 h大于 n时, 处理器 52执行的分别根据 所述协议配置每个所述域的参数的操作可以包括:
将所述 h个域中的 t个域的信息类型配置为不连续发送类型( Discontinuous Transmission, DTX ), 其中, t=h-n; 这样就得到 n个有效域。 当然该实施方式 中, 步骤 103不仅限于将所述 h个域中的 t个域的信息类型配置为 DTX, 还可 以配置所述 h个域中另 n个域的参数。
例 ^口: 1MB 的主公共控制物理信道 Primary Common Control Physical Channel, PCCPCH )在 25.221协议中规定,该信道的每个 slot的前 256码片( chip ) 和最后 256chip都不发送数据信息, 其余 chip用于发送数据, 即协议 25.221协 议中规定 PCCPCH的 slot中只有一个信息类型为 Data的域(简称 Data域)。 即 上述 n为 1 , 这样步骤 102中的 h就可以为 3 , 步骤 103就将前后两个域的信息 类型配置为 DTX, 即将预先配置的 slot模型配置成 3个域, 依次为信息类型为 DTX的域(简称 DTX域)、 Data域和 DTX域, 如图 2所示, 其中, 图 2中第 一和第二行为协议规定的 slot格式, 即第一行中的两个 TxOFF表示前 256 chip 和最后 256chip都不发送数据信息。图 2中第三和第四行表示本发明实施例配置 后的 slot模型, 即第四行所示,每个 slot模型配置成 3个域,依次为 DTX域(图 2所示的 FieldO DTX )、 Data域(图 2所示的 Fieldl Data )和 DTX域(图 2所 示的 Field2 DTX )。 这样就可以实现 PCCPCH的每个 slot中前 256 chi 和最后 256chip都不发送数据信息。
可选的,上述得到新的 slot可以是得到 slot格式,上述在新的 slot上配置所 述下行物理信道可以是配置上述提到的 slot格式的下行物理信道。
上述技术方案中, 当需要配置下行物理信道时, 获取预先配置的时隙 slot 模型; 所述 slot模型中域的个数允许在预置阔值内任意配置; 每个所述域的参 数允许协议规定下任意配置;在所述 slot模型中配置 h个所述域,其中, w≤ 2≤ m , 所述 n为所述协议规定的所述下行物理信道在每个 slot中域的个数, 所述 m为 所述阔值, 所述 h为大于 0的整数; 分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型; 配置所述新的 slot模型的所述下行物理信道。这样就根据 不同的下行物理信道在上述 slot模型中灵活配置 slot中的域以及域的参数,从而 可以灵活支持协议演进中出现的新增下行物理信道和新增 slot格式后的下行物 理信道。 图 9是本发明实施例提供的另一种网络设备的结构示意图, 如图 9所示, 包括: 存储器 61和处理器 62 , 其中:
存储存储器 61用于存储一组程序代码, 且处理器 62用于调用所述存储器 中存储的程序代码, 用于执行以下操作:
对协议包含的下行物理信道的帧结构和 slot格式进行分析, 配置用于适用 所述协议包含的下行物理信道的 slot模型;所述 slot模型中域的个数允许在预置 阔值内任意配置; 每个所述域的参数允许协议规定下任意配置;
当需要配置下行物理信道时, 获取所述 slot模型;
在所述 slot模型中配置 h个所述域, 其中, n≤h≤m , 所述 n为所述协议规 定的所述下行物理信道在每个 slot中域的个数, 所述 m为所述阔值, 所述 h为 大于 0的整数;
分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型; 配置所述新的 slot模型的所述下行物理信道。
可选的, 上述协议可以 3GPP协议, 例如: 3GPP R11版的 25.211协议, 又 如: 3GPP的 25.221协议等。
可选的, 处理器 62可以是对上述协议包含的所有下行物理信道的帧结构和 slot格式进行分析, 配置一个可以适用所述协议包含的所有下行物理信道的 slot 模型。 即该 slot模型可以应用于 3GPP协议包含的所有下行物理信道, 当然包括 3GPP协议中现有的下行物理信道, 和 3GPP协议演进过程中在未来可能新增的 下行物理信道, 以及新增 slot格式后的下行物理信道。上述新增 slot格式后的下 行物理信道是指协议中现有的新增 slot格式后的下行物理信道, 或者协议中现 有的修改 slot格式后的下行物理信道。 如 25.211协议中现有的 DPCH信道, 但 在协议的演进过程中需要对 DPCH信道的 slot格式进行修改或者新增 slot格式, 这样修改 slot格式后或者新增 slot格式后的 DPCH信道就是上述新增 slot格式 后的下行物理信道。
需要说明的, 处理器 62并不是每次配置一个下行物理信道都需要执行对协 议包含的下行物理信道的帧结构和 slot格式进行分析, 配置用于适用所述协议 包含的下行物理信道的 slot模型的操作, 对协议包含的下行物理信道的帧结构 和 slot格式进行分析,配置用于适用所述协议包含的下行物理信道的 slot模型的 操作在一个设备中可以只需要执行一次就行。 在后续配置下行物理信道过程中 只需要从当需要配置下行物理信道时, 获取所述 slot模型的操作开始执行就行。
可选的, 上述下行物理信道可以包括:
所述协议(例如: 3GPP ) 中新增的下行物理信道或所述协议中现有的下行 物理信道; 所述现有的下行物理信道包含新增 slot格式后的下行物理信道或未 新增 slot格式的下行物理信道。即步骤 202中的下行物理信道可以是 3GPP协议 包含的现有的任何下行物理信道,以及在 3GPP协议演进过程中新增的下行物理 信道。
作为一种可选的实施方式, 处理器 62获取的 slot模型中可以包含 w个域, 即在该 slot模型中就预先配置好 h个域。 处理器 62就可以对这个人个域进行删 除或增加, 以使该 slot模型包含 h域, 所述 w为大于 0的整数。
作为一种可选的实施方式, 上述参数可以是协议规定的下行物理信道中每 个域的所有参数。
可选的, 所述域的参数至少包括如下任一项:
长度、 信息类型、 信息来源、 发射功率因子、 调制方式、 扩频因子、 信道 化码、 发射分集方式。
可选的, 处理器 62配置每个所述域的参数, 可以是同一个 slot内每个域可 以配置不同的参数。 例如: 上述长度参数, 即同一个 slot 内每个域的长度可以 按照调制符号粒度独立配置, 即一个 slot 中不同的域的长度可以配置不同, 具 体可以根据每个域的调制符号而配置。 又如: 上述信息类型参数, 即同一个 slot 内每个域的信息类型可以配置不同的信息类型; 对于上述信息来源、 发射功率 因子、 调制方式、 扩频因子、 信道化码、 发射分集方式等域的参数, 在同一个 slot内每个域都可以配置不同。
可选的 ,例如处理器 62通过执行分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型的操作得到一个如图 4所示的 slot, 处理器 62就可以通过 执行配置所述新的 slot模型的所述下行物理信道的操作配置图 4所示的 slot格式 的 DPCH信道。
作为一种可选的实施方式, 当处理器 62获取的的下行物理信道为新增 slot 格式后的下行物理信道时, 处理器 62执行的当需要配置下行物理信道时, 获取 所述 slot模型的操作可以包括:
适用于新增 slot格式前的所述下行物理信道的 slot模型; 即处理器 62获取 的 slot模型是在未新增 slot格式前的所述下行物理信道的 slot模型,如上述下行 物理信道为 DPCH信道, 未新增 slot前 DPCH的 slot模型为 slot模型 1 , 那么 处理器 62获取的 slot模型就可以是 slot模型 1。 而新增 slot模型后的 DPCH的 slot模型为 slot模型 2时,本发明就可以通过后继步骤将 slot模型 1上配置为 slot 模型 2。
可选的, 该实施方式中, 处理器 62执行的在所述 slot模型中配置 h个所述 域的操作可以包括:
删除或新增所述 slot模型中的域, 以使所述 slot模型包含 h个域, 其中, n < h < m ,所述 n为所述协议规定的所述新增 slot格式后的下行物理信道在每个 slot中域的个数;
可选的, 该实施方式中, 处理器 62执行的分别根据所述协议配置每个所述 域的参数的操作可以包括:
分别根据所述协议修改每个所述域的参数。
可选的, 上述修改每个所述域的参数可以包括:
修改所述 h个域中至少一个域的长度、 移动所述 h个域中至少一个域的位 置等。
该实施方式中,可以实现将适用新增 slot格式前的所述下行物理信道的 slot 模型, 配置成新增 slot格式后的所述下行物理信道的 slot模型。 而新增 slot格式 前的所述下行物理信道的 slot模型和新增 slot格式后的所述下行物理信道的 slot 模型之间的差别比较小, 这样配置过程就更加容易实现。
作为一种可选的实施方式, 处理器 62执行的分别根据所述协议配置每个所 述域的参数的操作还可以包括:
分别针对所述 slot中每一个域, 配置该域的长度;
配置该域的信息类型;
配置该域的信息来源;
配置该域的发射功率因子;
配置该域的调制方式、 扩频因子、 信道化码、 发射分集方式等。
即, 处理器 62可以分别对所述 slot模型中每个域进行单独配置。 作为一种可选的实施方式, 处理器 62在配置过程中可以在上述 slot模型中 的不同域中配置不同的 TPC 和预编码指示 (Transmitted Precoding Indicator, TPI )。 而不同的 TPC和不同的 TPI适用于不同的用户, 例如: TPC1适用于用 户 1 , TPC2适用于用户 2, TPC3适用于用户 3 , TPI1适用于用户 4, TPI2适用 于用户 5, TPI3适用于用户 6, 这样当处理器 62就可以将上述 slot模型中不同 的域为信息类型配置不同的 TPC或不同的 TPI, 这样就可以使在同一个 slot内 不同的域适用不同的用户, 即不同用户在同一个 slot 内不同的域的获取下行数 据。 这样可以实现多用户在不同的时间上获取下行数据。
作为一种可选的实施方式, 所述网络设备可以包括:
基站设备。
上述技术方案中, 在上面实施例的基础上, 对配置域的个入以及配置每个 域的参数进行了详细说明, 以使用本发明在保证灵活支持协议演进中出现的新 增下行物理信道和新增 slot格式后的下行物理信道的前提下适用于不同的场景。
通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本发 明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件实现 时, 可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个 或多个指令或代码进行传输。 计算机可读介质包括计算机存储介质和通信介质 , 其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。 存储介质可以是计算机能够存取的任何可用介质。 以此为例但不限于: 计算机 可读介质可以包括 RAM、 ROM, EEPR0M、 CD-ROM或其他光盘存储、 磁盘 存储介质或者其他磁存储设备、 或者能够用于携带或存储具有指令或数据结构 形式的期望的程序代码并能够由计算机存取的任何其他介质。 此外。 任何连接 可以适当的成为计算机可读介质。 例如, 如果软件是使用同轴电缆、 光纤光缆、 双绞线、 数字用户线(DSL )或者诸如红外线、 无线电和微波之类的无线技术从 网站、 服务器或者其他远程源传输的, 那么同轴电缆、 光纤光缆、 双绞线、 DSL 或者诸如红外线、 无线和微波之类的无线技术包括在所属介质的定影中。 如本 发明所使用的, 盘(Disk )和碟(disc ) 包括压缩光碟(CD )、 激光碟、 光碟、 数字通用光碟(DVD )、 软盘和蓝光光碟, 其中盘通常磁性的复制数据, 而碟则 用激光来光学的复制数据。 上面的组合也应当包括在计算机可读介质的保护范 围之内。 总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限定本 发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 一种下行物理信道配置方法, 其特征在于, 包括:
当需要配置下行物理信道时,获取预先配置的时隙 slot模型; 所述 slot模型 中域的个数允许在预置阈值内任意配置; 每个所述域的参数允许协议规定下任 意配置;
在所述 slot模型中配置 h个所述域, 其中, n≤h≤m , 所述 n为所述协议规 定的所述下行物理信道在每个 slot中域的个数, 所述 m为所述阔值, 所述 h为 大于 0的整数;
分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型; 配置所述新的 slot模型的所述下行物理信道。
2、 如权利要求 1所述的方法, 其特征在于, 所述获取预先配置的 slot模型 之前, 所述方法还包括:
对所述协议包含的下行物理信道的帧结构和 slot格式进行分析, 配置用于 适用所述协议包含的下行物理信道的 slot模型。
3、 如权利要求 1或 2所述的方法, 其特征在于, 所述域的参数至少包括如 下任一项:
长度、 信息类型、 信息来源、 发射功率因子、 调制方式、 扩频因子、 信道 化码、 发射分集方式。
4、 如权利要求 1或 2所述的方法, 其特征在于, 所述下行物理信道包括: 所述协议中新增的下行物理信道或所述协议中现有的下行物理信道; 所述 现有的下行物理信道包含新增 slot格式后的下行物理信道或未新增 slot格式的下 行物理信道。
5、 如权利要求 4所述的方法, 其特征在于, 当所述下行物理信道包括所述 协议包含的新增 slot格式后的下行物理信道时, 所述预先配置的 slot模型包括: 预先配置的适用于新增 slot格 前的所述下行物理信道的 slot模型; 所述在所述 slot模型中配置 h个所述域包括:
删除或新增所述 slot模型中的域, 以使所述 slot模型包含 h个域, 其中, n < h < m ,所述 n为所述协议规定的所述新增 slot格式后的下行物理信道在每个 slot中域的个数;
所述分别根据所述协议配置每个所述域的参数包括:
分别根据所述协议修改每个所述域的参数。
6、 如权利要求 5所述的方法, 其特征在于, 所述分别根据所述协议修改每 个所述域的参数包括:
修改所述 h个域中至少一个域的长度; 和 /或
移动所述 h个域中至少一个域的位置。
7、 一种网络设备, 其特征在于, 包括: 获取单元、 第一配置单元、 第二配 置单元和第三配置单元, 其中:
所述获取单元, 用于当需要配置下行物理信道时, 获取预先配置的 slot模 型; 所述 slot模型中域的个数允许在预置阔值内任意配置; 每个所述域的参数 允许协议规定下任意配置;
所述第一配置单元, 在所述获取单元获取的 slot模型中中配置 h个所述域, 其中, n < k≤m ,所述 n为所述协议规定的所述下行物理信道在每个 slot中域的 个数, 所述 m为所述阔值, 所述 h为大于 0的整数;
所述第二配置单元, 用于分别根据所述协议配置所述第一配置单元配置的 每个所述域的参数, 以得到新的 slot模型;
所述第三配置单元, 用于在所述第二配置单元配置的新的 slot上配置所述 下行物理信道。
8、 如权利要求 7所述的设备, 其特征在于, 所述设备还包括:
第四配置单元, 用于对所述协议包含的下行物理信道的帧结构和 slot格式 进行分析, 配置用于适用所述协议包含的下行物理信道的 slot模型。
9、 如权利要求 7或 8所述的设 其特征在于, 所述域的参数至少包括如 下任一项:
长度、 信息类型、 信息来源、 发射功率因子、 调制方式、 扩频因子、 信道 化码、 发射分集方式。
10、 如权利要求 7或 8所述的设备, 其特征在于, 所述下行物理信道包括: 所述协议中新增的下行物理信道或所述协议中现有的下行物理信道; 所述 现有的下行物理信道包含新增 slot格式后的下行物理信道或未新增 slot格式的下 行物理信道。
11、 如权利要求 10所述的设备, 其特征在于, 当所述下行物理信道包括所 述协议包含的新增 slot格式后的下行物理信道时,所述预先配置的 slot模型包括: 预先配置的适用于新增 slot格式前的所述下行物理信道的 slot模型; 以使所述 slot模型包含 h个域, 其中, n≤h≤m , 所述 n为所述协议规定的所述 新增 slot格式后的下行物理信道在每个 slot中域的个数;
所述第二配置单元还用于分别根据所述协议修改所述第一配置单元配置的 每个所述域的参数。
12、 如权利要求 11所述的设备, 其特征在于, 所述第二配置单元还用于修 改所述 h个域中至少一个域的长度; 和 /或
所述第二配置单元还用于移动所述 h个域中至少一个域的位置。
13、 一种网络设备, 其特征在于, 包括: 存储器和处理器, 其中: 所述存储器用于存储一组程序代码, 且所述处理器用于调用所述存储器中 存储的程序代码, 用于执行以下操作:
当需要配置下行物理信道时,获取预先配置的时隙 slot模型; 所述 slot模型 中域的个数允许在预置阈值内任意配置; 每个所述域的参数允许协议规定下任 意配置;
在所述 slot模型中配置 h个所述域, 其中, n≤h≤m , 所述 n为所述协议规 定的所述下行物理信道在每个 slot中域的个数, 所述 m为所述阔值, 所述 h为 大于 0的整数;
分别根据所述协议配置每个所述域的参数, 以得到新的 slot模型; 配置所述新的 slot模型的所述下行物理信道。
14、 如权利要求 13所述的设备, 其特征在于, 所述处理器在执行获取预先 配置的 slot模型的操作之前, 还用于执行如下操作:
对所述协议包含的下行物理信道的帧结构和 slot格式进行分析, 配置用于 适用所述协议包含的下行物理信道的 slot模型。
15、 如权利要求 13或 14所述的设备, 其特征在于, 所述下行物理信道包 括:
所述协议中新增的下行物理信道或所述协议中现有的下行物理信道; 所述 现有的下行物理信道包含新增 slot格式后的下行物理信道或未新增 slot格式的下 行物理信道。
16、 如权利要求 15所述的设备, 其特征在于, 当所述下行物理信道包括所 述协议包含的新增 slot格式后的下行物理信道时,所述预先配置的 slot模型包括: 预先配置的适用于新增 slot格式前的所述下行物理信道的 slot模型; 所述处理器执行在所述 slot模型中配置 h个所述域的操作包括:
删除或新增所述 slot模型中的域, 以使所述 slot模型包含 h个域, 其中, n < h < m ,所述 n为所述协议规定的所述新增 slot格式后的下行物理信道在每个 slot中域的个数;
所述处理器执行的分别根据所述协议配置每个所述域的参数的操作包括: 分别根据所述协议修改每个所述域的参数。
17、 如权利要求 16所述的设备, 其特征在于, 所述处理器执行的分别根据 所述协议修改每个所述域的参数的操作包括:
修改所述 h个域中至少一个域的长度; 和 /或
移动所述 h个域中至少一个域的位置。
PCT/CN2012/086921 2012-12-19 2012-12-19 一种下行物理信道配置方法及设备 WO2014094249A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/086921 WO2014094249A1 (zh) 2012-12-19 2012-12-19 一种下行物理信道配置方法及设备
CN201280002705.6A CN104054270B (zh) 2012-12-19 2012-12-19 一种下行物理信道配置方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086921 WO2014094249A1 (zh) 2012-12-19 2012-12-19 一种下行物理信道配置方法及设备

Publications (1)

Publication Number Publication Date
WO2014094249A1 true WO2014094249A1 (zh) 2014-06-26

Family

ID=50977544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086921 WO2014094249A1 (zh) 2012-12-19 2012-12-19 一种下行物理信道配置方法及设备

Country Status (2)

Country Link
CN (1) CN104054270B (zh)
WO (1) WO2014094249A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901748A (zh) * 2006-07-25 2007-01-24 华为技术有限公司 一种基于物理随机接入信道帧的时隙格式配置方法
JP2010074613A (ja) * 2008-09-19 2010-04-02 Fujitsu Ltd 無線通信装置および無線通信方法
CN102056238A (zh) * 2009-11-10 2011-05-11 中兴通讯股份有限公司 专用物理控制信道时隙格式的确定方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050207373A1 (en) * 2004-03-16 2005-09-22 Interdigital Technology Corporation Method and system for allocating time slots for a common control channel
CN100417286C (zh) * 2005-09-04 2008-09-03 华为技术有限公司 一种高速下行共享信道服务小区更新的方法及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901748A (zh) * 2006-07-25 2007-01-24 华为技术有限公司 一种基于物理随机接入信道帧的时隙格式配置方法
JP2010074613A (ja) * 2008-09-19 2010-04-02 Fujitsu Ltd 無線通信装置および無線通信方法
CN102056238A (zh) * 2009-11-10 2011-05-11 中兴通讯股份有限公司 专用物理控制信道时隙格式的确定方法及系统

Also Published As

Publication number Publication date
CN104054270B (zh) 2017-02-22
CN104054270A (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
US11452047B2 (en) Method and apparatus for transmitting an uplink transmission based on a pathloss estimate
EP3879879B1 (en) Time sensitive networking communication method and apparatus thereof
CN110417633A (zh) 一种通信方法及设备
JP6231044B2 (ja) 電子的加入者識別モジュール(eSIM)のアプリケーション識別情報の取り扱い
CN103797828A (zh) 用于多sim环境的应用选择
US20150350879A1 (en) Electronic subscriber identity module application identifier handling
CN105531958A (zh) 使用未许可频谱的发射机管理
WO2019095575A1 (zh) 一种时间同步方法及装置
CN115244966A (zh) 无线通信系统中支持upf事件开放服务的装置和方法
JP7393428B2 (ja) パラメータ設定のための方法および装置
JP2022536665A (ja) ロジカルtsnブリッジの方法および装置
WO2010149101A1 (zh) 一种实现下行控制信令传输的方法及系统
WO2021008515A1 (zh) 网络切片架构下的数据传输的方法和装置
JP2023089219A (ja) ユーザ機器、コアネットワークノード、ユーザ機器の制御方法及びコアネットワークノードの制御方法
WO2022068474A1 (zh) ProSe通信组的通信方法、装置及存储介质
CA3208630A1 (en) Determining the resource elements for transport block size determination for a transport block spanning multiple slots
WO2013107228A1 (zh) 探测参考信号虚拟信令组的发送和选取方法及装置
WO2023011107A1 (zh) 会话策略控制方法、网元、存储介质和电子设备
EP4037368A1 (en) Communication method and communication device
WO2014094249A1 (zh) 一种下行物理信道配置方法及设备
CN110149217A (zh) 一种设备之间的交互方法和系统
CN115022936A (zh) 一种数据转发方法及相关设备
JP2023531011A (ja) データ送信方法および装置
WO2023216032A1 (en) Security communication in prose u2n relay
WO2022237650A1 (zh) Dci大小对齐方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890535

Country of ref document: EP

Kind code of ref document: A1