WO2014094092A1 - Method for producing a composite material consisting of a polymer of vegetable origin, a mineral filler and an abrasive material, and use of the resulting composition for polishing stone - Google Patents

Method for producing a composite material consisting of a polymer of vegetable origin, a mineral filler and an abrasive material, and use of the resulting composition for polishing stone Download PDF

Info

Publication number
WO2014094092A1
WO2014094092A1 PCT/BR2013/000568 BR2013000568W WO2014094092A1 WO 2014094092 A1 WO2014094092 A1 WO 2014094092A1 BR 2013000568 W BR2013000568 W BR 2013000568W WO 2014094092 A1 WO2014094092 A1 WO 2014094092A1
Authority
WO
WIPO (PCT)
Prior art keywords
abrasive
composite material
polyol
obtaining
material according
Prior art date
Application number
PCT/BR2013/000568
Other languages
French (fr)
Portuguese (pt)
Inventor
Leonardo Luiz LYRIO DA SILVEIRA
Original Assignee
Centro De Tecnologia Mineral - Cetem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Tecnologia Mineral - Cetem filed Critical Centro De Tecnologia Mineral - Cetem
Publication of WO2014094092A1 publication Critical patent/WO2014094092A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/06Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor with inserted abrasive blocks, e.g. segmental
    • B24D7/066Grinding blocks; their mountings or supports

Definitions

  • the present patent application relates to the obtaining of composite material whose composition consists of polymers of vegetal origin, mineral filler and abrasive material, and its use for the polishing of rocks with abrasive wheels.
  • the ornamental stone sector is of great importance to the country's economy in view of its accelerated growth, boosted by the abundance of mineable exportable rock sources, reaching in 2011 the mark of 2,188,929.59 t of exported coverings, capitalizing about US $ 999.65 million (ABIROCHAS, 2012).
  • Esp ⁇ rito Santo is the main producer of ornamental stones in the country. It has about 900 looms in operation, which represents 57% of all looms installed in Brazil (INFOROCHAS, 2006). In the state, there are approximately 1,250 companies with a number of 25,000 direct jobs and 105,000 indirect jobs, with this segment accounting for 7% of Esp ⁇ rito Santo GDP.
  • Cachoeira de Itapemirim which is the most outstanding municipality in this area, has the largest marble reserve and the largest industrial park of ornamental stones in the country, which accounts for 70% of the municipal GDP (SEDES, 2011).
  • FIGURE 1 - Shows a device in which the abrasive wheels are placed to polish ornamental rocks.
  • FIGURE 2A and FIGURE 2B - Displays types of magnesian abrasive wheels.
  • FIGURE 3 - Shows types of resin abrasive wheels.
  • FIGURE 4 - Shows types of metallic abrasive wheels.
  • FIGURE 5 Photograph showing the good distribution of 24 mesh abrasive grains throughout the specimen (note white arrow indicating abrasive particles).
  • FIGURE 6 Photograph showing the good distribution of 36 mesh abrasive grains throughout the specimen (note white arrow indicating abrasive particles).
  • FIGURE 7 Photograph showing the good distribution of 60 mesh abrasive grains throughout the specimen (note white arrow indicating abrasive particles).
  • FIGURE 8 Photograph showing the good distribution of 120 mesh abrasive grains throughout the specimen (note white arrow indicating abrasive particles).
  • FIGURES 9A, 9B, 9C, 9D and 9E Photographs showing specimens with good abrasive homogeneity in the composite.
  • FIGURE 10 Photograph showing the placement of mixing in containers with the specific dimensions for making abrasive wheels.
  • FIGURE 11 - Shows an example of abrasive wheels made of castor oil polyurethane resin.
  • Vegetable oils have gained prominence in obtaining polymers with wide applications in various areas of human activities and can be used the oils of: castor, cashew, cashew, corn, coconut, babassu, carnauba, olive, palm, soybean, sunflower, canola and peanuts, whether or not combined.
  • One of the types of polymers of these vegetable oils are known as polyurethanes, which have a biodegradable character, a fact that drew attention to their application as proposed below.
  • the loads adopted together with the polymers are sources of homogenization of the constituents, increase of the strength of the composites among other advantages, and may be applicable in this process as load: calcite, dolomite, quartz, silicon carbide, limestone in general, phyllite, minerals of the group mica, talc, pyrophyllite, gypsum, barite, wolastonite, smectite, illite, metakaolin, kaolinite, iron powder, among others.
  • the abrasive element disclosed in the present invention is of high hardness and may consist of either alone or any combination of the following elements: diamond, corundum, quartz, garnet, volcanic powder, diatomite, feldspar, dolomite, metal oxides, dia- industrial, cubic boron nitride, boron carbide, silicon carbide, tungsten carbide, aluminum oxide, among others.
  • Extraction of rock blocks in the ornamental rock quarry is performed by rock cutting operations in which a loop of diamond wire entwined in the rock is subjected to a (circular) translational movement of the wire, which is subjected to A constant tractive force promotes the development of the cut.
  • the plates obtained by cutting the blocks (primary beneficiation) have high roughness, and should be polished to have smooth, light-reflective surfaces that enhance the texture and color properties of the rock.
  • the polishes used in this operation consist of abrasive wheels mounted on rotating heads, called satellites, which in turn are applied under pressure and in circular movements on the surface of the plates, as shown in FIGURE 1.
  • the polishing should be done. by gradually decreasing this roughness.
  • abrasive grain grinding wheels with decreasing particle size are used. Polishing is performed in the presence of constant water flow, responsible for the cooling and drainage of waste.
  • Ornamental stone polishing abrasives are basically divided into three groups, namely.
  • Magnesian abrasives with an alloy consisting of a mass called Sorel cement, containing magnesium oxide (MgO) and magnesium chloride (MgC) having as abrasive element silicon carbide (SiC), as shown in FIGURES 2A and 2B.
  • MgO magnesium oxide
  • MgC magnesium chloride
  • SiC silicon carbide
  • the second type is the diamond-shaped resinoid abrasives, as a polishing element, wrapped and fixed to the surface. Epoxy, phenolic or polyester resin grinding wheels, as shown in FIGURE 3.
  • Ornamental stone polishing operations produce many pollutant residues, especially from residual abrasives, mainly due to the composition of the binder element of these types of grinding wheels, which have in their composition epoxy, polyester or phenols.
  • Some of these products, such as epichlorohydrin and bisphenol-A, present in epoxy resins have carcinogenic potential.
  • the present patent application will be described in detail as follows.
  • the composition, object of the present patent application consists of two components, namely polyol and prepolymer, derived from polyurethane castor resin, whose combination in different proportions produces materials with physical and chemical properties that can be exploited advantageously to cutting operations (mining and sawing) and polishing of rocky materials.
  • the resin used in the products described later comes from the production of a polyurethane resin using castor oil.
  • This composite is an ecological alternative to replace the resins currently used in the processing of ornamental stones due to the fact that it is completely non-toxic, generating no form of environmental liability, as well as extinguishing the risks in the handling of this product by workers in this industrial sector.
  • castor oil polymer is used as a constituent element of inputs used in the mining sector.
  • the present patent application describes, but is not limited to the following abrasive particle size ranges shown in Table 1, both for diamond and any other abrasive element cited above, as follows:
  • Table 1 - Abrasive particle size ranges The manufacturing process of the abrasive grinding wheel is carried out in stages, where initially the components that form the castor bean polyurethane resin (polyol and prepolymer) are homogenized, manually or by mechanical mixing, between 1 to 5 minutes with variation. in dosing, using quantities between 5% and 90% for both the polyol and prepolymer ratios.
  • the resulting compound is subjected to a blister removal vacuum system and placed in a vacuum chamber and subjected to a negative pressure pump having values between 600 mmHg and 650 mmHg.
  • This step takes place during the time required for complete blister removal, typically between 1 to 9 minutes depending on the ratio of polyol to prepolymer.
  • the load (s) aggregate with proportion of 5% to 80% on the mass of the composites, the addition of the abrasive element (s) to the mixture varies between 1% to 50% of the mass according to the grain size.
  • Table 2 Best results in the distribution of the abrasive element.
  • the specimens that were made with abrasives in the 24 mesh size showed homogeneity with the addition of 43.48% mineral load, as shown in FIGURE 5.
  • the 36 mesh size achieved a uniform distribution with aggregation of 38.65% mineral load, as shown in FIGURE 6.
  • the application of Mineral load required for the 60 mesh grit abrasive was 35.81%, as shown in FIGURE 7, and the smallest grit that still required a load (120 mesh) showed good distribution with a 34.29% load increase. It is noteworthy that from the 220 mesh abrasive grain it was not necessary to add filler for homogenization purposes as per FIGURES 9A, 9B, 9C, 9D and 9E.
  • the cure time varies from 12 to 72 hours.
  • the mixture after homogenization is placed in shapes with the specific dimensions used by the industry, as shown in FIGURE 10.
  • Abrasive grinding wheels for polishing ornamental rocks made of composite materials whose castor is castor polyurethane resin can be shown in FIGURE 11.

Abstract

Patent relating to a method for producing a composite material consisting of a polymer of vegetable origin, a mineral filler and an abrasive material, and use of the resulting composition for polishing stone. The present application relates to a composite material consisting of compounds of vegetable origin, a mineral filler and an abrasive material, and to the use thereof for polishing stone by means of abrasive grindstones.

Description

Relatório Descritivo da Patente de Invenção para "PROCESSO PARA OBTENÇÃO DE MATERIAL COMPÓSITO CONSTITUÍDO POR POLÍMERO DE ORIGEM VEGETAL , CARGA MINERAL E MATERIAL ABRASIVO E USO DA COMPOSIÇÃO OBTIDA PARA O POLIMENTO DE RO- CHAS"  Report of the Invention Patent for "PROCESS FOR OBTAINING COMPOSITE MATERIALS CONSIDERED BY VEGETABLE POLYMER, MINERAL AND ABRASIVE MATERIAL LOADING AND USE OF ROCK POLISHING COMPOSITION"
Campo da Invenção Field of the Invention
O presente pedido de patente se refere a obtenção de material compósito cuja composição é constituída por polímeros de origem vegetal , carga mineral e material abrasivo, e seu uso para o polimento de rochas com rebolos abrasivos. The present patent application relates to the obtaining of composite material whose composition consists of polymers of vegetal origin, mineral filler and abrasive material, and its use for the polishing of rocks with abrasive wheels.
Estado da Técnica State of the Art
O setor de rochas ornamentais tem grande importância para economia do país diante de seu crescimento acelerado, potencializado pela abundância de fontes lavráveis de rochas para exportação, alcançado no ano de 2011 a marca de 2.188.929,59 t de materiais de revestimentos exportadas, capitalizando cerca de US$ 999,65 milhões (ABIROCHAS, 2012). O Espírito Santo é o principal pólo produtor de rochas ornamentais do país. Possui cerca de 900 teares em operação, o que representa 57% de todos os teares instalados no Brasil (INFOROCHAS, 2006). No Estado, exis- tem aproximadamente 1.250 empresas com um número de 25 mil empregos diretos e 105 mil empregos indiretos, sendo este segmento responsável por 7% do PIB capixaba. Cachoeira de Itapemirim, que é o município que mais se destaca nesse âmbito, possui a maior reserva de mármore e o maior parque industrial de rochas ornamentais do país, que responde por 70% do PIB muni- cipal (SEDES, 2011). The ornamental stone sector is of great importance to the country's economy in view of its accelerated growth, boosted by the abundance of mineable exportable rock sources, reaching in 2011 the mark of 2,188,929.59 t of exported coverings, capitalizing about US $ 999.65 million (ABIROCHAS, 2012). Espírito Santo is the main producer of ornamental stones in the country. It has about 900 looms in operation, which represents 57% of all looms installed in Brazil (INFOROCHAS, 2006). In the state, there are approximately 1,250 companies with a number of 25,000 direct jobs and 105,000 indirect jobs, with this segment accounting for 7% of Espírito Santo GDP. Cachoeira de Itapemirim, which is the most outstanding municipality in this area, has the largest marble reserve and the largest industrial park of ornamental stones in the country, which accounts for 70% of the municipal GDP (SEDES, 2011).
Sumário da Invenção Summary of the Invention
É um objetivo do presente pedido de patente revelar uma composição de material compósito constituído por polímeros de origem vegetal ,carga mineral e material abrasivo, a ser utilizada no processo de polimento de rochas ornamentais em ferramenta denominada rebolo abrasivo. It is an object of the present patent application to disclose a composite material composition comprised of polymers of plant origin , mineral filler and abrasive material, to be used in the ornamental stone polishing process in a tool called abrasive grinding wheel.
Descrição dos Desenhos Description of Drawings
As figuras mostram: The figures show:
FIGURA 1 - Mostra um dispositivo no qual são colocados os rebolos abrasivos para polir rochas ornamentais.  FIGURE 1 - Shows a device in which the abrasive wheels are placed to polish ornamental rocks.
FIGURA 2A e FIGURA 2B - Apresenta tipos de rebolos abrasivos magnesianos.  FIGURE 2A and FIGURE 2B - Displays types of magnesian abrasive wheels.
FIGURA 3 - Mostra tipos de rebolos abrasivos resinói- des.  FIGURE 3 - Shows types of resin abrasive wheels.
FIGURA 4 - Apresenta tipos de rebolos abrasivos metálicos.  FIGURE 4 - Shows types of metallic abrasive wheels.
FIGURA 5 - Fotografia mostrando a boa distribuição dos grãos abrasivos de 24 mesh ao longo de todo corpo de prova (notar flecha branca indicando partículas abrasivas).  FIGURE 5 - Photograph showing the good distribution of 24 mesh abrasive grains throughout the specimen (note white arrow indicating abrasive particles).
FIGURA 6 - Fotografia mostrando a boa distribuição dos grãos abrasivos de 36 mesh ao longo de todo corpo de prova (notar flecha branca indicando partículas abrasivas). FIGURE 6 - Photograph showing the good distribution of 36 mesh abrasive grains throughout the specimen (note white arrow indicating abrasive particles).
FIGURA 7 - Fotografia mostrando a boa distribuição dos grãos abrasivos de 60 mesh ao longo de todo corpo de prova (notar flecha branca indicando partículas abrasivas). FIGURE 7 - Photograph showing the good distribution of 60 mesh abrasive grains throughout the specimen (note white arrow indicating abrasive particles).
FIGURA 8 - Fotografia mostrando a boa distribuição dos grãos abrasivos de 120 mesh ao longo de todo corpo de prova (notar flecha branca indicando partículas abrasivas). FIGURAS 9A , 9B, 9C, 9D e 9E - Fotografias mostrando corpos de prova com boa homogeneidade do abrasivo no compósito. FIGURE 8 - Photograph showing the good distribution of 120 mesh abrasive grains throughout the specimen (note white arrow indicating abrasive particles). FIGURES 9A, 9B, 9C, 9D and 9E - Photographs showing specimens with good abrasive homogeneity in the composite.
FIGURA 10 - Fotografia mostrando a colocação da mistura em recipientes com as dimensões específicas para a confecção de rebolos abrasivos. FIGURE 10 - Photograph showing the placement of mixing in containers with the specific dimensions for making abrasive wheels.
FIGURA 11 - Apresenta exemplo de rebolos abrasivos confeccionados com resina poliuretana de mamona.  FIGURE 11 - Shows an example of abrasive wheels made of castor oil polyurethane resin.
Fundamentos da Invenção  Background of the Invention
Diante dos efeitos poluentes gerados nas indústrias, os governos mundiais têm grande motivação em incentivar a criação de novas tecnologias que empreguem materiais com menor impacto negativo ao meio ambiente. A utilização de materiais biodegradáveis, tais como polímeros (resi- nas) de origem vegetal, é sempre oportuna. Existe uma necessidade no setor de beneficiamento de rochas ornamentais, de minimizar os impactos ambientais gerados por esta atividade. Faced with the pollutant effects generated by industries, world governments are strongly motivated to encourage the creation of new technologies that use materials with less negative impact on the environment. The use of biodegradable materials such as polymers (resins) of plant origin is always timely. There is a need in the ornamental stone processing sector to minimize the environmental impacts generated by this activity.
Os óleos vegetais vêm obtendo destaque na obtenção de polímeros com amplas aplicações em várias áreas das atividades humanas podendo ser utilizado os óleos de: mamona, castanha, caju, milho, coco, babaçu, carnaúba, oliva, dendê, soja, girassol, canola e amendoim, combinados ou não. Um dos tipos de polímeros desses óleos vegetais são conhecidos como poliuretanas, as quais possuem caráter biodegradável, fato que chamou a atenção para sua aplicação conforme proposto a seguir. As cargas adotadas juntamente com os polímeros são fontes de homogeneização dos constituintes, elevação da resistência dos compósito entre outras vantagens, podendo ser aplicável nesse processo como carga: calcita, dolomita, quartzo, carbeto de silício, calcários em geral, filito, minerais do grupo das micas, talco, pirofilita, gipsita, barita, wolastonita, esmectita, ilita, metacaulinita, caulinita, pó de ferro, entre outros. Vegetable oils have gained prominence in obtaining polymers with wide applications in various areas of human activities and can be used the oils of: castor, cashew, cashew, corn, coconut, babassu, carnauba, olive, palm, soybean, sunflower, canola and peanuts, whether or not combined. One of the types of polymers of these vegetable oils are known as polyurethanes, which have a biodegradable character, a fact that drew attention to their application as proposed below. The loads adopted together with the polymers are sources of homogenization of the constituents, increase of the strength of the composites among other advantages, and may be applicable in this process as load: calcite, dolomite, quartz, silicon carbide, limestone in general, phyllite, minerals of the group mica, talc, pyrophyllite, gypsum, barite, wolastonite, smectite, illite, metakaolin, kaolinite, iron powder, among others.
O elemento abrasivo apresentado na presente patente de invenção possui dureza elevada e pode ser constituído, isoladamente ou por qualquer combinação dos seguintes elementos: diamante, coríndon, quartzo, granada, pó vulcânico, diatomita, feldspato, dolomita, óxidos metálicos, dia- mante industrial, nitreto cúbico de boro, carbeto de boro, carbeto de silício, carbeto de tungsténio, óxido de alumínio, entre outros. The abrasive element disclosed in the present invention is of high hardness and may consist of either alone or any combination of the following elements: diamond, corundum, quartz, garnet, volcanic powder, diatomite, feldspar, dolomite, metal oxides, dia- industrial, cubic boron nitride, boron carbide, silicon carbide, tungsten carbide, aluminum oxide, among others.
A extração de blocos de rochas na pedreira de rochas ornamental é realizada por meio de operações de corte da rocha, em que, uma alça de fio diamantado enlaçada na rocha é submetida a um movimento de translação (circular) do fio, o qual submetido a uma força constante de tração promove-se o desenvolvimento do corte. Extraction of rock blocks in the ornamental rock quarry is performed by rock cutting operations in which a loop of diamond wire entwined in the rock is subjected to a (circular) translational movement of the wire, which is subjected to A constant tractive force promotes the development of the cut.
As chapas obtidas pelo corte dos blocos (beneficiamento primário) apresentam rugosidade elevada, e devem ser submetidas a polimen- to para que apresentem superfícies lisas, reflexivas à luz e que realcem as propriedades de textura e cor da rocha. As politrizes utilizadas nessa operação são constituídas por rebolos abrasivos fixados em cabeçotes rotativos, denominados de satélites, que por sua vez, são aplicados sob pressão e em movimentos circulares sobre a superfície das placas, conforme a FIGURA 1. O po- limento deve ser realizado através da diminuição gradual dessa rugosidade. Para tal, utilizam-se rebolos de grãos abrasivos com granulometrias em sequência decrescente. O polimento é realizado na presença de fluxo constante de água, responsável pelo resfriamento e escoamento dos resíduos. The plates obtained by cutting the blocks (primary beneficiation) have high roughness, and should be polished to have smooth, light-reflective surfaces that enhance the texture and color properties of the rock. The polishes used in this operation consist of abrasive wheels mounted on rotating heads, called satellites, which in turn are applied under pressure and in circular movements on the surface of the plates, as shown in FIGURE 1. The polishing should be done. by gradually decreasing this roughness. For this purpose abrasive grain grinding wheels with decreasing particle size are used. Polishing is performed in the presence of constant water flow, responsible for the cooling and drainage of waste.
Os abrasivos para polimento de rochas ornamentais são divididos, basicamente, em três grupos, a saber. Abrasivos Magnesianos, com liga constituída por uma massa denominada cimento Sorel, que contém de ó- xido de magnésio (MgO) e cloreto de magnésio (MgC ) tendo como elemento abrasivo o carbeto de silício (SiC), conforme as FIGURAS 2A e 2B. Estes a- brasivos são fabricados em todas as granulometrias necessárias ao beneficia- mento de chapas, variando, geralmente, de #16 ao #1500 mesh.O segundo tipo são os abrasivos resinóides compostos por diamante, como elemento de polimento, envolvidos e fixados ao rebolo por resina epoxídica, fenólica ou poliéster, conforme a FIGURA 3. Estes abrasivos são os que representam a maior evolução tecnológica dos últimos anos referente a polimento de rocha. Existem ainda, os denominados rebolos abrasivos metálicos, que possuem diamante como elemento abrasivo em meio a uma liga metálica, formando um material compósito de matriz metálica(FIGURA 4). Ornamental stone polishing abrasives are basically divided into three groups, namely. Magnesian abrasives, with an alloy consisting of a mass called Sorel cement, containing magnesium oxide (MgO) and magnesium chloride (MgC) having as abrasive element silicon carbide (SiC), as shown in FIGURES 2A and 2B. These abrasives are manufactured in all the grit sizes required for the processing of plates, generally ranging from # 16 to # 1500 mesh. The second type is the diamond-shaped resinoid abrasives, as a polishing element, wrapped and fixed to the surface. Epoxy, phenolic or polyester resin grinding wheels, as shown in FIGURE 3. These abrasives represent the largest technological evolution in recent years regarding rock polishing. There are also the so-called metallic abrasive wheels, which have diamond as an abrasive element in the middle of a metal alloy forming a metal matrix composite material (FIGURE 4).
As operações de polimento de rochas ornamentais produzem muitos resíduos poluentes, em especial originados dos abrasivos resi- nóídes, principalmente devido a composição do elemento ligante destes tipos de rebolo que tem em sua composição epóxi, poliéster ou fenóis. Alguns desses produtos, como a epicloridrina e o bisfenol-A, presentes em resinas epoxí- dicas tem potencial carcinogênico.  Ornamental stone polishing operations produce many pollutant residues, especially from residual abrasives, mainly due to the composition of the binder element of these types of grinding wheels, which have in their composition epoxy, polyester or phenols. Some of these products, such as epichlorohydrin and bisphenol-A, present in epoxy resins have carcinogenic potential.
Diante dos efeitos poluentes e insalubres gerados nas indústrias, governos e empresas têm grande interesse em incentivar a criação de novas tecnologias que empreguem materiais com menor impacto ambiental e inócuo à saúde, sendo desejada a utilização de materiais biodegradáveis. Existe uma necessidade premente no setor de beneficiamento de rochas or- namentaisde minimizar os impactos ambientais e à saúde gerados por esta atividade. Given the pollutant and unhealthy effects generated in industries, governments and companies are keen to encourage the creation of new technologies that employ materials with less environmental impact and harm to health, and the use of biodegradable materials is desired. There is a pressing need in the rock-processing sector to minimize the environmental and health impacts generated by this activity.
Descrição Detalhada da invenção Detailed Description of the Invention
O presente pedido de patente será descrito em detalhes como segue. A composição, objeto do presente pedido de patente, é constituída por dois componentes , a saber: poliol e pré-polímero, oriundos da resina poliuretana de mamona, cuja combinação em diferentes proporções produz materiais com propriedades físicas e químicas que podem ser exploradas vantajosamente para operações de corte (lavra e serragem) e polimento de materiais rochosos. A resina utilizada nos produtos posteriormente descritos é proveniente da produção de uma resina poliuretana utilizando o óleo de mamona. Esse compósito é uma alternativa ecológica para a substituição das resinas atualmente utilizadas no beneficiamento de rochas ornamentais devido ao fato de ser completamente atóxica, não gerando nenhuma forma de passivo ambiental, bem como extinguindo os riscos no manuseio deste produto pelos trabalhadores deste setor industrial. No presente pedido de patente o polímero de óleo de mamona é utilizado como elemento constituinte de insumos utilizados no setor de mineração. O presente pedido de patente descreve, mas não se limita às seguintes faixas granulométricas de abrasivo, mostradas na Tabela 1 , tanto de diamante quanto de qualquer outro elemento abrasivo citado acima, a sa- ber: The present patent application will be described in detail as follows. The composition, object of the present patent application, consists of two components, namely polyol and prepolymer, derived from polyurethane castor resin, whose combination in different proportions produces materials with physical and chemical properties that can be exploited advantageously to cutting operations (mining and sawing) and polishing of rocky materials. The resin used in the products described later comes from the production of a polyurethane resin using castor oil. This composite is an ecological alternative to replace the resins currently used in the processing of ornamental stones due to the fact that it is completely non-toxic, generating no form of environmental liability, as well as extinguishing the risks in the handling of this product by workers in this industrial sector. In this patent application castor oil polymer is used as a constituent element of inputs used in the mining sector. The present patent application describes, but is not limited to the following abrasive particle size ranges shown in Table 1, both for diamond and any other abrasive element cited above, as follows:
Figure imgf000008_0001
Figure imgf000008_0001
Tabela 1 - Faixas granulométricas de abrasivo. O processo de fabricação do rebolo abrasivo é realizado em etapas, onde inicialmente os componentes que formam a resina poliureta- na de mamona (poliol e pré-polímero) são homogeneizados, de forma manual ou por mistura mecânica, entre 1 a 5 minutos com variação na dosagem, sen- do utilizadas grandezas entre 5% e 90% tanto para a proporção de poliol quanto a de pré-polímero. Table 1 - Abrasive particle size ranges. The manufacturing process of the abrasive grinding wheel is carried out in stages, where initially the components that form the castor bean polyurethane resin (polyol and prepolymer) are homogenized, manually or by mechanical mixing, between 1 to 5 minutes with variation. in dosing, using quantities between 5% and 90% for both the polyol and prepolymer ratios.
Após a primeira mistura o composto resultante é submetido a um sistema de vácuo para a remoção de bolhas sendo colocados em uma câmara de vácuo e submetidos à ação de uma- bomba de pressão negativa, com valores situados entre 600 mmHg e 650 mmHg. After the first mixture the resulting compound is subjected to a blister removal vacuum system and placed in a vacuum chamber and subjected to a negative pressure pump having values between 600 mmHg and 650 mmHg.
Essa etapa ocorre durante o tempo necessário para total remoção das bolhas, sendo normalmente entre 1 a 9 minutos dependendo da proporção entre poliol e pré-polímero. Após o processo de remoção de bolhas ocorre a agregação da(s) carga(s) com proporção de 5% a 80% sobre a massa dos compósitos, a adição do(s) elemento(s) abrasivo(s) a mistura varia entre 1% a 50% da massa de acordo com a granulometria do grão. This step takes place during the time required for complete blister removal, typically between 1 to 9 minutes depending on the ratio of polyol to prepolymer. After the process of bubble removal occurs the load (s) aggregate with proportion of 5% to 80% on the mass of the composites, the addition of the abrasive element (s) to the mixture varies between 1% to 50% of the mass according to the grain size.
Para se conhecer a proporção ideal da aplicação da carga mineral (calcita) para cada fração granulométrica de abrasivo, foi realizada a agregação da mesma em: 6 traços no abrasivo 24 mesh, 5 traços no abrasi- vo 36 mesh, 4 traços no abrasivo 60 mesh e 3 traços no abrasivo 120 mesh, resultando em 18 corpos de provas que passaram por todo processo descrito anteriormente. As proporções em peso estão destacadas na Tabela 1. In order to know the ideal proportion of the mineral load (calcite) application for each abrasive particle size, it was aggregated in: 6 traces on 24 mesh abrasive, 5 traces on 36 mesh abrasive, 4 traces on abrasive 60 mesh and 3 strokes in the 120 mesh abrasive, resulting in 18 specimens that went through the entire process described above. The weight ratios are highlighted in Table 1.
Nomenclatura Poliol {%) Pré-polímero (%) Abrasivo ( ) Carga (%)Nomenclature Polyol {%) Prepolymer (%) Abrasive () Load (%)
TC24/10 40,74 33,33 11,11 14,82TC24 / 10 40.74 33.33 11.11 14.82
TC2420 35,48 29,03 9,68 25,81TC2420 35.48 29.03 9.68 25.81
TC24/30 31,43 25,71 8,57 34,29TC24 / 30 31.43 25.71 8.57 34.29
TC24/35 29,73 24,32 8,11 37,84TC24 / 35 29.73 24.32 8.11 37.84
TC24/40 26,57 21,74 13,04 38,65TC24 / 40 26.57 21.74 13.04 38.65
TC24/50 23,91 19,57 13,04 43,48TC24 / 50 23.91 19.57 13.04 43.48
TC36/10 40,74 33,33 11,11 14,81 TC3620 35,48 29,03 9,68 25,81TC36 / 10 40.74 33.33 11.11 14.81 TC3620 35.48 29.03 9.68 25.81
TC36/30 31,43 25,71 8,57 34,29TC36 / 30 31.43 25.71 8.57 34.29
TC36/35 28,13 23,02 13,04 35,81TC36 / 35 28.13 23.02 13.04 35.81
TC36/40 26,57 21,74 13,04 38,65TC36 / 40 26.57 21.74 13.04 38.65
TC60/10 40,74 33,33 11,11 14,81TC60 / 10 40.74 33.33 11.11 14.81
TC60 20 35,48 29,03 9,68 25,81TC60 20 35.48 29.03 9.68 25.81
TC60/50 31,43 25,71 8,57 34,29TC60 / 50 31.43 25.71 8.57 34.29
TC60/35 28,13 23,02 13,04 35,81TC60 / 35 28.13 23.02 13.04 35.81
TC120A0 40,74 33,33 11,11 14,81TC120A0 40.74 33.33 11.11 14.81
TC120 20 35,48 29,03 9,68 25,81TC120 20 35.48 29.03 9.68 25.81
TC120/30 31,43 25,71 8,57 34,29 TC120 / 30 31.43 25.71 8.57 34.29
Tabela 1 - Proporções em peso testadas para verificação da distribuição do elemento abrasivo.  Table 1 - Weight ratios tested for verification of abrasive element distribution.
Finalizado o período de cura dos corpos de prova de 24 horas, os mesmos foram serrados ao meio em uma serra diamantada com vis- ta a verificar a distribuição das partículas abrasivas ao longo do corpo de prova. Todos os corpos de prova cerrados ao meio foram submetidos a análise de distribuição dos abrasivos com auxílio de uma lupa estereoscópica onde foi observado a distribuição dos grãos tendo alcançado a homogeneidade em e- tapas diferentes devido a variação granulométrica. After the curing period of the 24 hour specimens, they were cut in half on a diamond saw to check the distribution of abrasive particles along the specimen. All specimens closed in the middle were subjected to analysis of the distribution of abrasives with the aid of a stereoscopic magnifying glass where the grain distribution was observed, having reached homogeneity in different stages due to particle size variation.
Os resultados das proporções que obtiveram melhor homogeneidade do abrasivo no compósito estão especificados na Tabela 2. The results of the proportions that obtained the best abrasive homogeneity in the composite are specified in Table 2.
Figure imgf000010_0001
Figure imgf000010_0001
Tabela 2 - Melhores resultados na distribuição do elemento abrasivo. Os corpos de prova que foram confeccionados com abrasivos na granuiometria 24 mesh apresentaram homogeneidade com adição de 43,48% de carga mineral, conforme a FIGURA 5. Com o decréscimo no tamanho dos grãos abrasivos, o de granulometria 36 mesh alcançou a distribuição uniforme com agregação de 38,65% de carga mineral, conforme a FIGURA 6. A aplicação de carga mineral necessária para o abrasivo de granulometria 60 mesh foi de 35,81 %, conforme a FIGURA 7, e o de menor granulometria que ainda necessitava de carga (120 mesh) apresentou boa distribuição com a- créscimo de 34,29% de carga mineral, conforme a FIGURA 8. Cabe ressaltar que a partir do grão abrasivo 220 mesh não foi necessária a adição de carga para fins de homogeneização, conforme as FIGURAS 9A, 9B, 9C, 9D e 9E. Table 2 - Best results in the distribution of the abrasive element. The specimens that were made with abrasives in the 24 mesh size showed homogeneity with the addition of 43.48% mineral load, as shown in FIGURE 5. With the decrease in the size of the abrasive grains, the 36 mesh size achieved a uniform distribution with aggregation of 38.65% mineral load, as shown in FIGURE 6. The application of Mineral load required for the 60 mesh grit abrasive was 35.81%, as shown in FIGURE 7, and the smallest grit that still required a load (120 mesh) showed good distribution with a 34.29% load increase. It is noteworthy that from the 220 mesh abrasive grain it was not necessary to add filler for homogenization purposes as per FIGURES 9A, 9B, 9C, 9D and 9E.
Em função da proporção entre os compósitos, o tempo de cura varia de 12 a 72 horas. Para a confecção dos rebolos abrasivos, a mistura após a homogeneização, é colocada em formas com as dimensões específicas utilizadas pela indústria, conforme a FIGURA 10. Os rebolos abrasivos para polir rochas ornamentais confeccionados com materiais compósitos cuja matriz é resina poliuretana de mamona podem ser visualizados na FIGURA 11. Depending on the ratio between the composites, the cure time varies from 12 to 72 hours. For the making of abrasive grinding wheels, the mixture after homogenization is placed in shapes with the specific dimensions used by the industry, as shown in FIGURE 10. Abrasive grinding wheels for polishing ornamental rocks made of composite materials whose castor is castor polyurethane resin can be shown in FIGURE 11.

Claims

REIVINDICAÇÕES
1 - "PROCESSO PARA OBTENÇÃO DE MATERIAL COMPÓSITO CONSTITUÍDO POR POLÍMERO DE ORIGEM VEGETAL, CARGA MINERAL E MATERIAL ABRASIVO E USO DA COMPOSIÇÃO OBTIDA PARA O POLIMENTO DE ROCHAS" Processo para obtenção de material compósito constituído por polímeros de origem vegetal, carga mineral e material abrasivo em que os referidos polímeros são constituídos por um poliol e um pré-polímero obtidos da produção de uma resina poliuretana utilizando óleos vegetais caracterizado pelo fato de que: 1 - "PROCESS FOR OBTAINING COMPOSITE MATERIAL CONSISTENT BY PLANT POLYMER, MINERAL LOAD AND ABRASIVE MATERIAL AND USE OF COMPOSITION FOR ROCK POLISHING" Process for obtaining composite material consisting of polymers of vegetable origin, mineral load and abrasive material wherein said polymers are comprised of a polyol and a prepolymer obtained from the production of a polyurethane resin using vegetable oils characterized in that:
- os polímeros de origem vegetal empregados são oriundos de : mamona, castanha, caju, milho, coco, babaçu, carnaúba, oliva, dendê, soja, girassol, canola e amendoim, combinados ou não;  - the polymers of vegetable origin are derived from: castor, cashew, cashew, maize, coconut, babassu, carnauba, olive, palm, soybean, sunflower, canola and peanut, whether or not combined;
2 - Processo para obtenção de material compósito, conforme a reivindicação 1 , caracterizado pelo fato de que a carga mineral pode ser constituída, isoladamente ou por qualquer combinação dos seguintes elementos: calcita, dolomita, quartzo, Carbeto de Silício, calcários em geral, filito, minerais do grupo das micas, talco, pirofilita, gipsita, barita, wolastonita, esmectita, ilita, metacaulinita, caulinita, pó de ferro, entre outros.  Process for obtaining composite material according to claim 1, characterized in that the mineral filler can be constituted alone or by any combination of the following elements: calcite, dolomite, quartz, silicon carbide, limestone in general, phyllite , mica group minerals, talc, pyrophyllite, gypsum, barite, wolastonite, smectite, illite, metakaolin, kaolinite, iron powder, among others.
3 - Processo para obtenção de material compósito, conforme a reivindicação 1 , caracterizado pelo fato de que o componente abrasivo pode ser constituído, isoladamente ou por qualquer combinação dos seguintes elementos: diamante, coríndon, quartzo, granada, .pó vulcânico, diatomita, feldspato, dolomita, óxidos metálicos, diamante industrial, Nitreto Cúbico de Boro, Carbeto de Boro, Carbeto de Silício, Carbeto de Tungsténio, Óxido de Alumínio, entre outros. Process for obtaining a composite material according to claim 1, characterized in that the abrasive component may consist of itself or any combination of the following elements: diamond, corundum, quartz, grenade, volcanic powder, diatomite, feldspar , dolomite, metal oxides, industrial diamond, Cubic Boron Nitride, Boron Carbide, Silicon Carbide, Tungsten Carbide, Aluminum Oxide, among others.
4 - Processo para obtenção de material compósito, conforme a reivindicação 1 , caracterizado pelo fato de que, preferencialmente, utiliza o poliol oriundo do óleo de mamona, sob as seguintes nomenclaturas: 471 , 442, 2.2 e 178M. 5 - Processo para obtenção de material compósito, conforme as reivindicações 3 e 4, caracterizado pelo fato de que, as proporções do poliol e do pré-polímero variam entre 5% e 90% tanto para a proporção de poliol quanto para a proporção de pré-polímero, preferencialmente a proporção de poliol é de aproximadamente 40% e a de pré polímero é de aproximadamente 60%. Method for obtaining composite material according to claim 1, characterized in that it preferably uses castor oil polyol under the following nomenclatures: 471, 442, 2.2 and 178M. Process for obtaining composite material according to claims 3 and 4, characterized in that the proportions of polyol and prepolymer vary between 5% and 90% for both the proportion of polyol and the proportion of pre-polymer. -polymer, preferably the polyol ratio is approximately 40% and that of prepolymer is approximately 60%.
6 - Processo para obtenção de material compósito conforme as reivindicações 3, 4 e 5 caracterizado pelo fato de que os compósitos são homogeneizados, de forma manual ou mecânica , por um período de 1 a 5 minutos, preferencialmente, o tempo de homogeneização é aproximadamente 1 minuto.  Process for obtaining composite material according to claims 3, 4 and 5, characterized in that the composites are homogenized manually or mechanically for a period of 1 to 5 minutes, preferably the homogenization time is approximately 1 minute.
7 - Processo para obtenção de uma material compósito, de acordo com as reivindicações 3, 4, 5 e 6 caracterizado pelo fato de que os componentes homogeneizados são submetidos a um sistema de vácuo em que a pressão negativa varia de 600 mmHg a 650 mmHg, por um período de 1 a 9 minutos, preferencialmente, o período no sistema de vácuo é de 3 minutos.  Method for obtaining a composite material according to claims 3, 4, 5 and 6 characterized in that the homogenized components are subjected to a vacuum system in which the negative pressure ranges from 600 mmHg to 650 mmHg, for a period of 1 to 9 minutes, preferably the period in the vacuum system is 3 minutes.
8 - Processo para obtenção de um material compósito, de acordo com a reivindicações 7, caracterizado pelo fato de que após o processo de remoção de bolhas ocorre a agregação da(s) carga(s) com proporção de 5% a 80% sobre a massa dos componentes poliol e pré-polímero, e adição do(s) elemento(s) abrasivo(s) na proporção entre 1 % a 50% da massa dos componentes poliol e pré-polímero.  Process for obtaining a composite material according to claim 7, characterized in that after the process of bubble removal occurs the aggregate of the load (s) with a proportion of 5% to 80% over the mass of the polyol and prepolymer components, and addition of the abrasive element (s) in the ratio of 1% to 50% of the mass of the polyol and prepolymer components.
9 - Processo para obtenção de material compósito, de acordo com qualquer das reivindicações anteriores, caracterizado pelo fato de que a fração granulométrica de material abrasivo, é obtida em qualquer uma das seguintes proporções: 6 traços no abrasivo 24 mesh, 5 traços no abrasivo 36 mesh, 4 traços no abrasivo 60 mesh e 3 traços no abrasivo 120 mesh, conforme a Tabela 2. Method for obtaining composite material according to any of the preceding claims, characterized in that the particle size fraction of abrasive material is obtained in any of the following proportions: 6 traces on abrasive 24 mesh, 5 traces on abrasive 36 mesh, 4 traces on the 60 mesh abrasive and 3 traces on the 120 mesh abrasive, according to Table 2.
10 - Uso do material compósito obtido por Processo para obtenção de uma composição constituída por componentes de origem vegetal, carga mineral e material abrasivo, caracterizado por ser utilizado para o polimento de rochas ornamentais. 10 - Use of composite material obtained by Process to obtain a composition consisting of components of vegetal origin, mineral filler and abrasive material, characterized for being used for the polishing of ornamental rocks.
PCT/BR2013/000568 2012-12-17 2013-12-17 Method for producing a composite material consisting of a polymer of vegetable origin, a mineral filler and an abrasive material, and use of the resulting composition for polishing stone WO2014094092A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102012032157-2A BR102012032157A2 (en) 2012-12-17 2012-12-17 Process for obtaining composite material consisting of polymers of plant origin, mineral filler and abrasive material and use of the composition obtained for polishing rocks
BRBR1020120321572 2012-12-17

Publications (1)

Publication Number Publication Date
WO2014094092A1 true WO2014094092A1 (en) 2014-06-26

Family

ID=50977433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2013/000568 WO2014094092A1 (en) 2012-12-17 2013-12-17 Method for producing a composite material consisting of a polymer of vegetable origin, a mineral filler and an abrasive material, and use of the resulting composition for polishing stone

Country Status (2)

Country Link
BR (1) BR102012032157A2 (en)
WO (1) WO2014094092A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821744A (en) * 2018-07-23 2018-11-16 湖州星星研磨有限公司 It is a kind of to cut polishing chip and preparation method thereof fastly
CN110293485A (en) * 2019-07-24 2019-10-01 盐城市锐金磨料磨具有限公司 A kind of polishing wheat tail portion batting special grinding wheel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106633809A (en) * 2016-10-31 2017-05-10 湖南科技大学 Method for preparing alumina-based polishing synthetic paper
CN106479159A (en) * 2016-10-31 2017-03-08 湖南科技大学 A kind of preparation method of silicon carbide-based polishing synthetic paper
CN106519644A (en) * 2016-10-31 2017-03-22 湖南科技大学 Preparation method of cerium oxide based polishing synthetic paper
CN106633810A (en) * 2016-10-31 2017-05-10 湖南科技大学 Preparation method of special activated carbon synthetic paper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB951450A (en) * 1959-05-15 1964-03-04 Osborn Mfg Co Abrasive articles
US5355636A (en) * 1992-10-01 1994-10-18 Minnesota Mining And Manufacturing Company Tear resistant coated abrasive article
US20040209554A1 (en) * 2002-06-04 2004-10-21 Akio Tsumagari Polishing material and method of polishing therewith
WO2009145132A1 (en) * 2008-05-26 2009-12-03 株式会社サクラクレパス Eraser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB951450A (en) * 1959-05-15 1964-03-04 Osborn Mfg Co Abrasive articles
US5355636A (en) * 1992-10-01 1994-10-18 Minnesota Mining And Manufacturing Company Tear resistant coated abrasive article
US20040209554A1 (en) * 2002-06-04 2004-10-21 Akio Tsumagari Polishing material and method of polishing therewith
WO2009145132A1 (en) * 2008-05-26 2009-12-03 株式会社サクラクレパス Eraser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821744A (en) * 2018-07-23 2018-11-16 湖州星星研磨有限公司 It is a kind of to cut polishing chip and preparation method thereof fastly
CN110293485A (en) * 2019-07-24 2019-10-01 盐城市锐金磨料磨具有限公司 A kind of polishing wheat tail portion batting special grinding wheel

Also Published As

Publication number Publication date
BR102012032157A2 (en) 2015-07-07

Similar Documents

Publication Publication Date Title
WO2014094092A1 (en) Method for producing a composite material consisting of a polymer of vegetable origin, a mineral filler and an abrasive material, and use of the resulting composition for polishing stone
CN102245352B (en) Bonded abrasive tool and method of forming
JP5314030B2 (en) Polishing hard and / or brittle materials
US3982359A (en) Abrasive member of bonded aggregates in an elastomeric matrix
Aydin Performance of recycling abrasives in rock cutting by abrasive water jet
RU2567165C2 (en) Grinding wheel with polymer binder
FI94320C (en) Whetstone
SHUAIB-BABATA et al. Production of abrasive sandpaper using periwinkle shells and crab shells
KR101545780B1 (en) Method for making bonded abrasive article
Ribeiro et al. Production of ornamental compound marble with marble waste and unsaturated polyester
WO2015031103A1 (en) Abrasive article and method of forming
BR102012032156A2 (en) PROCEDURE FOR OBTAINING COMPOSITE MATERIAL CONSISTED BY VEGETABLE POLYMER, MINERAL LOAD AND ABRASIVE MATERIAL AND THEIR USE FOR CUTTING ROCK MASSES AND ROCK BLOCK MILLING
CN201565836U (en) Diamond annual ring grinding block
CN107350980B (en) Abrasive article and method of forming the same
CN104400675A (en) Resin-based grinding wheel material and preparation process thereof
CN103286674A (en) Polishing plate used for polishing ceramic ball
SU75138A1 (en) The method of obtaining the associated abrasives for grinding glass
de Almeida et al. Insertion of silicon carbide as cutting element in ecological fickerts for dimension stone polishing
RU146505U1 (en) GRINDING TOOL
Embong et al. A study of geo-polymer as alternative material in automotive brake pad
US2117513A (en) Abrasive wheel and method of making the same
GB749748A (en) Improvements in and relating to abrasive elements such as wheels and discs
Rajczyk Origins and development directions of diamond abrasive tools for processing of stone materials
RU2535195C1 (en) Mixture for making diamond tool
US1081576A (en) Stone-cutting machine.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865604

Country of ref document: EP

Kind code of ref document: A1