WO2014092345A1 - Fusaricidin-producing strain, and method for mass producing fusaricidin using same - Google Patents

Fusaricidin-producing strain, and method for mass producing fusaricidin using same Download PDF

Info

Publication number
WO2014092345A1
WO2014092345A1 PCT/KR2013/010231 KR2013010231W WO2014092345A1 WO 2014092345 A1 WO2014092345 A1 WO 2014092345A1 KR 2013010231 W KR2013010231 W KR 2013010231W WO 2014092345 A1 WO2014092345 A1 WO 2014092345A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
producing
seq
gene
recombinant
Prior art date
Application number
PCT/KR2013/010231
Other languages
French (fr)
Korean (ko)
Inventor
박승환
최수근
박수영
김성빈
김창진
김하림
박동진
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2014092345A1 publication Critical patent/WO2014092345A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/02Phosphotransferases (phosphomutases) (5.4.2)
    • C12Y504/02002Phosphoglucomutase (5.4.2.2)

Definitions

  • the present invention relates to the mass production of fuzacidin, specifically, other antibiotics of the polylipinide family (polymyxin and tride) that may act as inhibitors in increasing the production yield in fuzacidine-producing strains.
  • Captin A method for preparing fuzacidin high productivity mutants through inactivation of biosynthetic enzyme genes and inactivation of phosphoglucomutase genes involved in enhancing the production efficiency of a target substance.
  • the present invention relates to a strain produced by the method and a mass production of fuzacidine using the same.
  • the inventors of the present invention the volatile metabolites produced by the E681 bacteria, 3-acetyl-1-propanol, 3-methyl-1-butanol, indole isoamyl acetate and butyl acetate to promote plant growth and resistance to plant diseases
  • the patent was registered for the method of promoting plant growth and plant protection using the induction effect (Reg. No. 10-0946633, registration date March 3, 2010).
  • the present invention relates to fuzacidine among the metabolites produced by the E681 bacterium.
  • the conventionally known information on fuzacidine is as follows.
  • Fuzacidin is a lipopeptide antibiotic and has antimicrobial activity against various phytopathogenic fungi and Gram-positive bacteria (Kajimura Y and Kaneda MJ Antibiotics 49: 129-135, 1996). Six amino acid residues form a ring structure and contain guanidino-3-hydroxypentadecanoic acid (15-guanid i ⁇ -3-hydroxypent adecanoic ac id). So far, fujarycidin LI-F03, LI-F04, LI-F05, LI-F07 and LI-F08 have been identified and reported from Penivacillus polymix (Kurusu K, Ohba, Arai T and Fukushima KJ Antibiotics 40).
  • fuzisidine A, B, C and D have also been reported (Kajimura Y and Kaneda MJ Antibiotics 49: 129-135, 1996; Kajimura Y and Kaneda MJ Antibiotics 50: 220-228, 1997).
  • the amino acid chains of fuzacidin are not encoded by genes and synthesized by ribosomes like conventional polypeptides, but by non-ribosomal peptide synthetase (NRPS) (Marahiel MA, Stachelhaus T and Mootz HD). Chew. Rev. 97: 2651-2673, 1997; Doekel S and Marahiel MA. Metab. Eng. 6: 64-77, 2001).
  • the present inventors have discovered and discovered the function of fuzacidin biosynthesis gene through the genome detoxification study of the bacterium F. E681 genome. (Coi S.-K. et al. 2007. Biochem. And Biophys.Res. Camun. 365: 89-95).
  • a patent was registered for the fuzacidine biosynthesis and gene (registration number 10-0762316, registration date September 20, 2007).
  • the present inventors produced six kinds of Fusacidin (LI-F04a, LI-F04b, LI-F05a, LI-F05b, LI-F08a and LI-F08b) by the F.
  • the present inventors are trying to develop a strain for mass production of fuzacidine and mass production technology using the same, lipopeptide that can act as an inhibitory factor to increase the production yield in the fusicidin-producing strain Fuzacidin is more effective than the parent by inactivating other antibiotics (polymyxin and tridecaptin) biosynthetic enzyme genes in the family and by inactivating the phosphoglucomutase gene, which is involved in improving the production efficiency of the target substance.
  • New strains were produced and selected to exhibit 50 times or more productivity, and the present invention was completed by completing a technique for mass-producing fuzacidin using the strains.
  • the present invention aims to inactivate polymyxin and tridegatin biosynthetic enzyme genes, which may be inhibitors in increasing the production yield of a substance, thereby fundamentally blocking their production. , Inactivating the gene of phosphoglucomutase that acts as an inhibitor in fuzacidin biosynthesis, and using three mutation induction methods (NTG treatment, UV irradiation and gamma irradiation) High to fusaricidin It is to provide a method for producing a strain produced in yield.
  • Another object of the present invention is to provide a strain produced by this method. Another object of the present invention to provide a method for mass production of fuzacidine using the strain.
  • Pgm gene as set forth in SEQ ID NO: 1 in a Panibacillus polymyxa 03 ⁇ 4e /? 71 ⁇ 2c / 7 / i / s ploymyxa strain; Or high production of fusaricidin which inactivates at least one of the pgm gene of SEQ ID NO: 1, the polymyxin biosynthesis gene of SEQ ID NO: 14, and the tritecaptin biosynthesis gene of SEQ ID NO: 15.
  • a recombinant Penicillaceae polymyx strain Provided is a recombinant Penicillaceae polymyx strain.
  • the polymyxin biosynthesis gene of SEQ ID NO: 14 and the tritecaptin biosynthesis gene of SEQ ID NO: 15 are inactivated, and the mutant pgm gene of SEQ ID NO: 3 is introduced into the F. Fuzacidine high-producing recombinant Panibacillus polymyxa strains are provided.
  • the present invention provides a fusicidin high production Fanibacillus polymixsa strain prepared by the above method.
  • the present invention provides a fusicidin high production Fanibacillus polymixsa strain prepared by the above method.
  • the present invention provides a fusicidin high production Fanibacillus polymixsa strain prepared by the above method.
  • the present invention is directed to the production of other antibiotics of the lipopeptide family (purimicin and tridecaptin) that may act as inhibitors in increasing production yield in fuzacidin-producing strains.
  • purimicin and tridecaptin antibiotics of the lipopeptide family
  • 1 is a view showing a strain development process for the enhancement of the fusicidin productivity of F.
  • Figure 2 is a diagram showing the selection process of fuzacidin high productivity mutant strains.
  • Figure 3 is a diagram showing a method for comparing fuzacidin productivity by the antimicrobial activity assay of the culture extract of Panibacillus bacteria.
  • Figure 4 is a comparison of the antimicrobial activity of strains NU177 and NUR1776 against E681-PT.
  • 5 is a calibration line for fuzacidine quantification
  • Figure 6 is a comparison of M. luteus bacteria growth inhibitory ring at each concentration of fuzacidin standard sample
  • Fig. 7 is a diagram showing the reduction of fuzacidin productivity due to the cloning of pgm gene and the introduction into F. bacterium NUR1776.
  • FIG. 8 is a diagram confirming the increase in fuzacidin productivity by the introduction of the pgm gene in which the point mutation occurs in the Panibacillus bacteria.
  • FIG. 9 is a diagram confirming the increase in productivity of fuzacidin by inactivation of the F. genus pgm gene.
  • FIG. 10 is a diagram showing the effect of the mutation of the pgm gene on the viscosity of the culture.
  • Fig. 11 is a diagram showing the results of a 5-liter scale culture test of F. NUR1776, F.
  • Fig. 12 is a diagram showing the results of fuzacidin extraction from the F. bacterium culture supernatant cells.
  • Figure 13 is a diagram showing the fusicidin extraction efficiency using butane and ethane from the fungus Bacillus cells.
  • 14 is a diagram showing the results of a 500-liter scale culture experiment of F. NUR1776 bacteria of the Penivacillus polymix.
  • the present invention relates to a pgm gene as set forth in SEQ ID NO: 1 in a strain of Panibacillus polymix (/ 3 ⁇ 4e2 / bac /// s ploymyxa); Or high production of fusaricidin which inactivates at least one of the pgm gene of SEQ ID NO: 1, the polymyxin biosynthesis gene of SEQ ID NO: 14, and the tritecaptin biosynthesis gene of SEQ ID NO: 15.
  • a recombinant Penicillaceae polymyx strain is provided.
  • the present invention is a polymyxin biosynthesis gene of SEQ ID NO: 14 and the tritecaptin biosynthesis gene of SEQ ID NO: 15 is inactivated in the Pannibacillus polymixa strain, mutant pgm gene described in SEQ ID NO: 3 is introduced Fuzacidine high-producing recombinant Panibacillus polymyxa strains are provided.
  • the Fanibacilli polymixa strain is preferably a strain deposited with accession number KCTC 8801P, but is not limited thereto.
  • the gene inactivation is preferably a deletion or mutation of the gene, but is not limited thereto.
  • the fuzacidin high-producing recombinant Fanibacillus polymyx strains are deposited
  • Deposited with KCTC 12068BP or KCTC 12323BP is preferred but not limited thereto.
  • the present inventors have found that the mutation has been revealed through the analysis of genome sequences of the fusicidin high productivity mutant bacterium NUR1776 and comparative analysis with the genome sequence of the bacterium Fanibacillus polymyx E681 (GenBank Accession No. CP000154).
  • a protein consisting of a bp length of phosphoglu ⁇ mutase gene SEQ ID NO: 1) and a 572 amino acid sequence (SEQ ID NO: 2) encoded by this gene, ie, a phosphoglumutase enzyme, was identified.
  • a point mutation occurs at the 509 bp position of the pgn] gene, which causes the 170th amino acid of the phosphoglucomatase enzyme protein to be changed from glutamine to proline (SEQ ID NO: 4)
  • SEQ ID NO: 4 As a result, it was confirmed that fuzacidin productivity was increased (see FIG. 7).
  • fuzacidin productivity was increased (see FIG. 7).
  • a result of confirming the productivity of fuzacidin by transferring the pgm gene point mutation on the NUR1776 bacterial chromosome DNA to the F. chromosome as it is or by inactivating the Pgm gene of the F. phylbacillus polymyx bacterium.
  • the F. bacterium PGM4441 of the F. Panycillus polymix was deposited with the Korea Institute of Bioscience and Biotechnology (KCTC) on November 27, 2012 and received the accession number KCTC 12323BP.
  • the present invention provides a fusicidine high production Fanibacilli polymix "strain prepared by the above method.
  • the Fanibacilli polymixa strain is preferably a strain deposited with accession number KCTC 8801P, but is not limited thereto.
  • the radiation is preferably any one selected from the group consisting of gamma rays, infrared rays, ultraviolet rays, X-rays and protons, and more preferably gamma acid, but is not limited thereto.
  • the present invention is preferably any one selected from the group consisting of gamma rays, infrared rays, ultraviolet rays, X-rays and protons, and more preferably gamma acid, but is not limited thereto.
  • the present invention is preferably any one selected from the group consisting of gamma rays, infrared rays, ultraviolet rays, X-rays and protons, and more preferably gamma acid, but is not limited thereto.
  • the small-scale (less than 1L) seed culture of the fuzacidin-producing F. genus Bacillus was used to add 30 g / L of glucose to TSB or TSBG TSB. II) using but not limited to medium (TSB, 8 g; glucose,; (NH 4 ) 2 S0 4 , 2 g; K2HPO4, 0.1 g; MgS0 4 , 0.01 g; yeast extract, 1 g / L).
  • the initial ⁇ of the medium is thick (6.5 ⁇ 7.0), the cultivation degree is 30- 32 ° C, 200 rpm shaking for small scale culture for smooth oxygen supply, 300 rpm stirring for fermenter culture and 1 wm aeration condition.
  • the time is 18 to 72 hours depending on the culture environment such as fermenter scale.
  • the cells are recovered first by centrifugation or the like, or the culture supernatant is removed after standing.
  • An appropriate solvent may be added thereto, and methanol, ethanol, butanol, and the like may be used as the extraction solvent, of which ethanol is most preferred.
  • the present invention will be described in detail by way of examples.
  • Example 1 Production of high-productivity Fanibacilli strain for mass production of fuzacidine ⁇ 1-1> Preparation of polymyxin and tridecaptin gene inactivated strain
  • polymyxa E681 was used as a plant-use bacterium (Patent No. 0220402, deposited strain No .: KCTC 8801P) provided by Professor Chang-Seok Park. When the strain was deposited, it was named Bacillus polymyx 3 ⁇ 4 c / 7 / i / s polymyxa) E681, but was newly introduced by Ash C. et al. (Ash, C. et al., 1993.
  • Antonie van Leeuwenhoek 64: 253-260 was applied to the genus of Panibacillus (/ 3 ⁇ 4 //) ac / "s), and it was referred to as the current strain name, 'Panibacillus polymyxa E681'. It was analyzed to produce various kinds of peptide antibiotics such as polymyxin and tridecaptin in addition to fuzacidine, which is a target of the present invention.
  • the strain P. polymyxa E681-PT which is inactivated polymacxin and tridecaptin biosynthesis gene, was used in the prior art (Korean Patent Registration No. 10-1165247).
  • the chloramphenicol-resistant and kanamycin-resistant gene cassette cassettes inside the pmxE gene using fosmid clones with the pmx gene cluster (including / M ?, pmxB, pmxC, pmxD and pmxE) ) Pi was inactivated by inserting the gene, and in the case of the trdA gene, a phosphid clone containing the same was inactivated by inserting a spectinomycin (3 6 101 11) antibiotic resistance gene into the trdA gene.
  • a phosmid clone DNA carrying each inactivated gene was isolated from E. coli transformants, and then introduced into the F.
  • polymyxa E681 strain by electroporation, so that the mutant strains of which each gene was deleted, namely P. polymyxa E681 ( pmxE) and P. polymyxa ⁇ l (trdA) mutants were prepared.
  • the chromosomal DNA of P. polymyxa E681 (r 4) was isolated and added to the P. polymyxa E681 (pmxE) mutant by electroporation to prepare P. polymyxa E681-PT.
  • the process of constructing xE mutants is described in detail in a previous study (J. Bacteriol. 2009. 191: 3350-3358).
  • TSA-ML medium about 2000 colonies
  • strains for which growth inhibition rings against ML were larger than the parent were selected first. The same process was repeated again for the first selected strains, and the second selection was performed.
  • the secondary cells were incubated for 24 to 36 hours in 3 ml of TSBG medium (addition of 3% glucose to TSB medium), and 0.5 ml of the culture was extracted with the same amount of butanol and used as a sample.
  • the extraction was performed by mixing butanol thoroughly with the culture solution (about 30 seconds vortexing) and taking the supernatant after centrifugation (11,000 rpm with a small centrifuge for 3 minutes).
  • Butanol extract of each strain was added to 10 ⁇ by 6 mm paper disk, dried, and then placed on TSA-ML medium and cultured for 24 hours, the excellent activity strain was selected through the comparison of the size of the growth inhibitory ring third.
  • the third selected strains obtained pure culture through a single colony isolation process to extract butane and reconfirmed antimicrobial activity (fourth). The entire process described above was repeated three times, thereby securing the best-acting strain N17. As shown in FIG.
  • N17 bacteria showed more than 10 times the productivity of fuzacidin compared to the parent strain, that is, the F. bacterium E681-PT. It was confirmed (FIG. 3).
  • the culture solution was centrifuged at 4 ° C. and 6500 rpm for 15 minutes to recover the cells, washed with the same amount of sterile saline, and the recovered cells were suspended in 20 sterile saline.
  • the NU177 bacterial cell suspension thus obtained was dispensed into 6 plastic tubes (15 ml, Falcon tube) at 3 ra «.
  • the five tubes were irradiated with gamma rays at the actual diameter (about 25 ° C), but the treatment strengths of the various ribs were varied to 1, 2, 3, 4 and 5 kGy.
  • Fuzacidin standard samples were prepared as follows. Penibacilli polymyx E681 was incubated for 3 days at 32C using 8 L of TSBG medium, and the culture medium was gray bear (b rys / sc / nerea) and gram-positive bacteria Micrococcus luteus (/ c /? C Ca / 5 / ews) was confirmed to exhibit excellent antimicrobial activity from this culture medium was purified and purified fuzacidin. First, the culture solution was extracted using butanol (n-BuOH), butanol was removed by evaporation under reduced pressure to obtain a sample, and then silica gel chromatography (chloroform and methanol mixture ratio was changed from 4: 1 to 1: 1).
  • the concentration was determined by substituting the fuzacidin quantitative assay line.
  • NUR1776 bacteria selected in Example ⁇ 1>4> were incubated for 24 hours at 32 ° C and 200 rpm shaking conditions using TSBG (II) medium (see Example ⁇ 4-3>), and then the culture medium was extracted with butanol and completely After evaporation, the solution was dissolved in methanol and quantified by the method described above, and showed a productivity of 6.97 g / L, which was confirmed that the productivity of fuzacidin was improved by 50 times or more compared with the Phenyl Bacillus plymic company E681.
  • a comparison method with M. luteus bacterium growth inhibitory ring according to the concentration of fuzacidin (standard sample) was used.
  • Genomic sequence translation was performed by whole-genome shotgun method using Illumina HiSeq 2000.
  • the obtained sequencing was submitted to RAST server (http: // r ast.nmpdr.org/) for automatic annotation of the genome sequence, and the nucleotide sequence of the annotated contigs was converted to Fanibacillus polymix E681.
  • the site where the mutation occurred was compared to the standard sequence of bacteria (GenBank accession number CP000154).
  • the mutation of the 509 bp position of the PPE M441 gene (SEQ ID NO: 3) in the NUR1776 strain revealed that the 170th amino acid of the enzyme protein was changed from glutamine to proline (SEQ ID NO: 4).
  • the PPE 34441 gene and the protein produced by the PPE_04441 gene are referred to as PGM.
  • the gene was cloned by PCR using forward primer 4441F (5-CGGGATCCGCTCTGC CGACATAAGC-3: SEQ ID NO: 5) containing BamHI and reverse primer 4441R (5-TCCCCGGGCGTTGCC GGAATAAGCC-3: SEQ ID NO: 6) containing Stnal.
  • PCR was followed by a 3 min predenaturation at 95 ° C followed by 30 seconds at 95 ° C for denaturation, 30 seconds at 50 ° C for annealing step and 72 ° C at extension step 72 ° C. The reaction was performed 30 times for 2 minutes and finally carried out under the condition of 5 minutes of termination reaction at 72 ° C.
  • NUR1776 (pHR4441) was confirmed that the antimicrobial activity is significantly reduced compared to the parental NUR1776 (pHPspac) having only a vector. Therefore, it was confirmed that the point mutation of the pgm gene is one of the factors that increase the productivity of fusaricidin.
  • the analysis of the productivity of the fusarisid was induced by inducing the mutation of the pgm gene on the chromosome of the parent strain, ie, E681-PT.
  • the high productivity of fuzacidin in NUR1776 may be the result of a combination of several genetic variations, so it is intended to see the effects of mutations in the pgm gene alone.
  • two types of mutations were introduced into the parent strain, first of which introduced a point mutation identical to that of the NUR1776 strain (FIG.
  • the point mutation introduction process is as follows. To obtain the point mutation of NUR1776, the mutant DNA of NUR1776 was used as a template, and forward primer 4441F (SEQ ID NO: 5) and reverse primer 4441R-em (5-CACACTCTTAAGmGCTTCctUgccgtgagaggtcacc-3: SEQ ID NO: 7) were obtained. PCR was performed.
  • the erythromycin (em) resistance gene was then plasmid pDG1664 [Bacillus Genetic Stock Center (BGSCID: ECE117)] with a template of forward primer emF (5-GMGC ACTTMGAGTGTG-3: SEQ ID NO: 8) and reverse primer emR (5).
  • -TCCTTGGMGCTGTCAGTAG-3 Amplified by PCR using SEQ ID NO: 9) and then mixed with the pgm e PCR product, followed by fusion PCR method (Horton RM et al., Gene 77: 61-68 1989) to P gm 177 (r em cassette).
  • Fusion PCR was followed by a 3 minute predenaturation step at 94 ° C, followed by 20 seconds at 94 ° C denaturation ion and 20 seconds at 45 ° C annealing step (0.3 per time). Upwards), extension step 15 times at 68 ° C for 4 minutes, 20 seconds at 94 ° C, 20 seconds at 501 :, 20 times for 4 minutes at 68 ° C, and last was run under conditions of 5 minutes termination reaction at 68 ° C. Pgm subpart 2 kbOW ⁇ i?) By forward primer 4440F-era (5-
  • PGM1776 bacteria were obtained from Fanibacilli polymix. The inoculated strains were inoculated in TSBG medium and incubated for 48 hours. Butane in the culture was compared with the parent strain for M. // i «/ s growth inhibition. It was confirmed (FIG. 8).
  • the next step was to prepare a 1.4 kb PCR fragment (fc) containing the N-terminal part of the pgm gene by forward fusion PCR method as described above in order to construct a mutant lacking the pgm gene.
  • Forward primer 4441FF (5-GMMGAGCAGTAGGCATTA- 3: SEQ ID NO: 12) and reverse primer 4441FR-em (5-
  • PCR amplification was performed using CACACTOTAAGTTTGOTCcggt cagcat cagggt ctg-3 SEQ ID NO: 13). This Npgm PCR fragment was linked with the em-N4440 PCR fragment to obtain 4.2 kb of Npgm to em-N4440 fragments, which were TA cloned into a pGEM T-easy vector (Pr omega) to pHR4441 D. Plasmids were prepared.
  • the strains of pgm gene were examined after incubating the parent strain E681-PT and the fusicidin high-producing strains, ie, PUR1776, PGM1776 and PGM4441, in TSBG medium for 24 hours. Viscosity was significantly reduced for the strains that occurred (FIG. 10). This may be due to the decrease in the production of viscous substances such as extracellular polysaccharides due to the mutation of the pgm gene, thereby facilitating cell recovery by centrifugation.
  • the E681-PT sample shows a high AU value of 303.7 (Arbitrary Unit), whereas the point mutation has an AU value of 7.7 in the culture of PGM1776 bacteria.
  • a value of 2.0 AU was shown.
  • the ⁇ (PPE_04441) gene encodes phosphoglucomutase as predicted.
  • Example 4 mass culture and production of fuzacidin of the fungus Bacillus polymix NUR1776
  • a culture test using a 5 L fermenter was performed to produce fuzacidine using the fuzacidin high-producing strain Fanibacillus polymyx NUR1776.
  • Colonies obtained by culturing 1-2 days in TSA solid medium were inoculated in 10 TSB medium and shaken at 32 ° C for 15 hours at 200 rpm, and then the culture medium was added to 350 mi TBSG medium (added 3% glucose to TSB medium). Was inoculated to 1%. It was incubated for 48 hours at 32 ° C, 300rpm stirring, 1 vvm aeration conditions. 0.5 hours of culture was sampled and extracted with the same amount of butanol, and 10 ⁇ extracts were placed on paper discs to track M.
  • Example ⁇ -2> Extract with fuzacidin from the culture medium of Panibacillus After culturing NUR1776 bacteria in the same manner as in Example ⁇ 4-1>, the culture medium 0.5 was sampled at 2 hours or at appropriate time intervals to obtain the cells and the culture supernatant by centrifugation (11,000 rpm, 1 minute). As a result of preparing the sample by extracting butane by the method described in Example ⁇ 1-2> and examining the antibacterial activity, as shown in FIG.
  • TSBG (II) medium (TSB, 8g; glucose, 3g; (NH 4 ) 2 S04, 2g; K 2 HP0 4 , 0.1 g; MgS0 4 , 0.01 g; yeast extract, 1 gl L ) was used.
  • Colonies of NUR1776 were inoculated in 10 ml of TSBG medium and shaken at 32 rpm for 15 hours at 200 rpm, and then inoculated in 500 ml of TSBG medium and incubated for 10 hours under the same conditions.
  • the culture was inoculated 13 ⁇ 4 in 35 L TBSG (II) medium and incubated for 6 hours at 32 ° C, 300 rpm stirring, 1 vvm aeration conditions. It was confirmed that the well grown and inoculated 10% in 350 L TBSG (II) medium and incubated for 20 hours at 32 ° C, 300rpm stirring, 1 wm aeration conditions.
  • fuzacidin production was actively carried out from 9 hours after the start of cultivation (Fig. 14). It was. An equal amount of ethanol was added to the cell suspension, and the mixture was left to stand overnight, followed by extraction. The supernatant was collected by centrifugation, concentrated by evaporation under reduced pressure, and finally, fuzacidine was obtained by lyophilization.
  • the analysis of fuzacidine in the culture by the method described in Example ⁇ 1-5> resulted in a level of 7 g / L.
  • microorganism identifi ⁇ ! under! above was accompanied by:
  • microorganism identified under I above was received by this International Depositary Authority on md a request to convert the originai deposit Co a deposit under the Budapest Treaty was received by it on

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a fusaricidin-producing strain and to a method for mass producing fusaricidin using same. Specifically, fusaricidin is produced at a high yield by deactivating genes of enzymes biosynthesizing polymyxin and tridecaptin in the fusaricidin-producing strain and deactivating a phosphoglucomutase gene affecting the biosynthesis yield of fusaricidin. Thus, the present invention can be effectively used in various fields such as agricultural antibiotics and plant disease resistance inducers.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
푸자리시딘 생산 균주 및 이를 이용한 푸자리시딘의 대량 생산방법 【기술분야】  Fuzacidin-producing strains and mass production method of fuzacidin using the same
본 발명은 푸자리시딘 대량생산에 관한 것으로서, 구체적으로는 푸자리시딘 을 생산하는 균주에서 생산 수율을 높아는데 저해요인으로 작용할 수 있는 리포펩 티드 계열의 다른 항생물질 (폴리믹신과 트리데캅틴) 생합성 효소 유전자들을 불활 성화 시키고, 목적 물질의 생산 효율 증진에 관련이 있는 포스포그루코뮤타아제 (phosphoglucomutase) 유전자의 불활성화를 통해 푸자리시딘 고생산성 변이주를 제 조하는 방법, 이러한 방법으로 제조된 균주 및 이를 아용하여 푸자리시딘을 대량으 로 생산하는 방법에 관한 것이다.  The present invention relates to the mass production of fuzacidin, specifically, other antibiotics of the polylipinide family (polymyxin and tride) that may act as inhibitors in increasing the production yield in fuzacidine-producing strains. Captin) A method for preparing fuzacidin high productivity mutants through inactivation of biosynthetic enzyme genes and inactivation of phosphoglucomutase genes involved in enhancing the production efficiency of a target substance. The present invention relates to a strain produced by the method and a mass production of fuzacidine using the same.
【배경기술】 Background Art
지속 가능한 친환경 농업의 발전 및 안전한 농산물 생산을 위해 환경친화적인 농약, 비료 등 농용소재의 개발 중요성이 근래 크게 증가하고 있다. 그중 하나가 작물 재배에 커다란 장애 요인인 식물병을 안전하고 효율적으로 방제할 수 있는 방법을 개발하는 것이다. 그동안 화학합성 농약을 대체 또는 보완할 수 있는 방법으로서 기능성 미생물을 이용하여 식물의 병을 방제하는 방법이 다수 개발되어 일부는 상용화 단계에 진입하였지만 현장에서의 적용효율이 화학농약에 비해 낮거나 재현성이 떨어지는 점 등의 단점이 자주 제기되어 이를 극복하기 위한 기술 개발에 많은 노력을 기울이고 있다. 그중 하나가 살아있는 유용 미생물을 이용하는 방법에서 나아가 미생물 유래 기능성 물질을 발굴하여 이용하려는 시도이다.  In order to develop sustainable eco-friendly agriculture and produce safe agricultural products, the importance of developing agricultural materials such as environmentally friendly pesticides and fertilizers is increasing greatly. One of them is developing safe and efficient ways to control plant diseases, a major obstacle to growing crops. As a method of replacing or supplementing chemical synthetic pesticides, many methods for controlling plant diseases using functional microorganisms have been developed, and some have entered the commercialization stage, but the application efficiency in the field is lower than that of chemical pesticides, or Many disadvantages such as falling points are raised, and much effort is being made to develop technologies to overcome them. One of them is an attempt to find and use functional materials derived from microorganisms, in addition to using living useful microorganisms.
본 발명자들은 이러한 배경 하에 농업에 유용한 생명자원을 확보하기 위한 노력의 일환으로 작물에 대해 생장촉진, 토양 병 제어 등 탁월한 유용성을 지닌 패니바실러스 폴리믹사 E681균의 유전체 전체 염기서열을 밝히고 유전자기능을 분석하는 연구를 통해 폴리믹신 (polymyxin), 푸자리시딘 (fusaricidin) 등의 항생물질 생산, 셀를로오스, 키ᅳ틴, 자일란, 꿰틴 및 인산의 분해효소 등 다양한 분해효소 생산 및 식물과의 상호작용에 관련된 다수의 유전자를 지니고 있음을 밝힘으로써 이 균주가 식물과 관련하여 나타내는 유용한 특성을 뒷받침하는 유전정보를 확보하였다 (Choi S.-K. et al. 2008. Biochem. and Biophys. Res. Com/nun. 365:89-95; Choi S.-K. et al. 2009. J. Bacteriol. 191:3350-3358; Kim J. F. et al. 2010. J. Bacteriol. 192:6103-6104). In an effort to secure useful life resources for agriculture under the background, the present inventors have revealed the genome-wide sequence of genome of F. Bacillus polymyx E681 which has excellent usefulness such as growth promotion and soil disease control on crops and analyzed gene function. Research has led to the production of antibiotics such as polymyxin and fusaricidin, as well as various enzymes such as cellulose, quettintin, xylan, sultin and phosphate degrading enzymes. By revealing a number of genes involved in the production of degrading enzymes and interacting with plants, genetic information was available to support the useful properties of this strain in relation to plants (Choi S.-K. et al. 2008). Biochem. And Biophys.Res. Com / nun. 365: 89-95; Choi S.-K. et al. 2009. J. Bacteriol. 191: 3350-3358; Kim JF et al. 2010. J. Bacteriol. 192 : 6103-6104).
또한, 본 발명자들은 상기 E681균이 생산하는 휘발성 대사산물 중 3- 아세틸 -1-프로파놀, 3-메틸 -1-부탄놀, 인돌 아이소아밀 아세테이트 및 부틸 아세테이트가 식물생장 촉진 및 식물병에 대한 저항성 유도효과가 았음을 밝혀 이를 이용한 식물생장 촉진과 식물보호 방법에 대해 특허를 등록하였다 (등록번호 10-0946633, 등록일 2010년 3월 3일). 본 발명은 상기 E681균이 생산하는 대사산물 중 푸자리시딘에 관한 것으로서, 우선 푸자리시딘에 대해 기존에 알려진 정보를 살펴보면 다음과 같다. 푸자리시딘은 리포펩티드 계열 항생물질로서 다양한 식물병원성 곰팡이와 그람 양성 세균에 대해 항균활성을 나타낸다 (Kajimura Y and Kaneda M. J. Antibiotics 49:129-135, 1996) . 6개의 아미노산 잔기가 링 구조를 이루고 있으며 구아니디노- 3-하이드록시펜타데카노익산 ( 15-guanid i ηο-3-hydroxypent adecano ic ac i d)을 포함하고 있다. 현재까지 패니바실러스 폴리믹사로부터 푸자리시딘 LI-F03, LI- F04, LI-F05, LI-F07 및 LI-F08이 분리동정되어 보고되었으며 (Kurusu K, Ohba , Arai T and Fukushima K. J. Antibiotics 40:1506-1514, 1987) , 푸자리시딘 A, B, C 및 D가 또한 보고되었다 (Kajimura Y and Kaneda M. J. Antibiotics 49:129-135, 1996; Kajimura Y and Kaneda M. J. Antibiotics 50:220-228, 1997) . 푸자리시딘의 아미노산 체인은 일반적인 폴리펩티드처럼 유전자에 의해 코딩되어 리보솜에 의해 합성되는 것이 아니라 비리보솜 펩티드 생합성효소 (non-ribosomal peptide synthetase; NRPS)에 의해 합성된다 (Marahiel MA, Stachelhaus T and Mootz HD. Chew. Rev. 97:2651-2673, 1997; Doekel S and Marahiel MA. Metab. Eng. 6:64-77, 2001) . 본 발명자들은 앞서 기술한 바와 같이 , 패니바실러스 폴리믹사 E681균 유전체 해독 연구를 통해 푸자리시딘 생합성효소 유전자를 발굴하고 그 기능을 밝혀 보고한 바 있다 (Choi S.-K. et al. 2007. Biochem. and Biophys. Res. Camun. 365:89-95). 또한, 상기 푸자리시딘 생합성효소 및 유전자에 대해 특허를 등록하였다 (등록번호 10-0762316, 등록일 2007년 9월 20일). 한편, 본 발명자들은 후속 연구를 통해 패니바실러스 폴리믹사 E681균이 6종의 푸자리시딘 (LI-F04a, LI-F04b, LI-F05a, LI-F05b, LI-F08a 및 LI-F08b)을 생산함을 알아냈고, 상기 6종 푸자리시딘의 흔합물이 10 ng/m£(0.01 ppm) 내지 1 β&/^1(1 ppm)의 낮은 농도에서 작물에 대해 병저항성 유도효과가 우수함을 밝혀내어 특허를 출원한바 있다 (출원 번호 10-2010-0039500). 그러나 한 가지 문제는 패니바실러스 폴리믹사 E681균의 푸자리시딘 생산성이 0.1 g/L 이하의 수준으로 낮다는 사실이며 산업적 활용을 위한 경제성을 확보하기 위해서는 이를 개선할 필요성이 있다. 이에, 본 발명자들은 푸자리시딘 대량 생산을 위한 균주 개량 및 이를 이용한 대량 생산 기술을 개발하고자 노력하던 중, 푸자리시딘을 생산하는 균주에서 생산 수율을 높이는데 저해요인으로 작용할 수 있는 리포펩티드 계열의 다른 항생물질 (폴리믹신과 트리데캅틴) 생합성 효소 유전자들을 불활성화시키고, 목적 물질의 생산 효율 증진에 관련이 있는 포스포그루코뮤타아제 유전자의 불활성화를 통해 푸자리시딘을 모균보다 50배 이상의 생산성을 나타내는 새로운 균주를 제작 및 선별하였으며, 상기 균주를 이용하여 푸자리시딘을 대량생산할 수 있는 기술을 완성함으로써, 본 발명을 완성하였다. In addition, the inventors of the present invention, the volatile metabolites produced by the E681 bacteria, 3-acetyl-1-propanol, 3-methyl-1-butanol, indole isoamyl acetate and butyl acetate to promote plant growth and resistance to plant diseases The patent was registered for the method of promoting plant growth and plant protection using the induction effect (Reg. No. 10-0946633, registration date March 3, 2010). The present invention relates to fuzacidine among the metabolites produced by the E681 bacterium. First, the conventionally known information on fuzacidine is as follows. Fuzacidin is a lipopeptide antibiotic and has antimicrobial activity against various phytopathogenic fungi and Gram-positive bacteria (Kajimura Y and Kaneda MJ Antibiotics 49: 129-135, 1996). Six amino acid residues form a ring structure and contain guanidino-3-hydroxypentadecanoic acid (15-guanid i ηο-3-hydroxypent adecanoic ac id). So far, fujarycidin LI-F03, LI-F04, LI-F05, LI-F07 and LI-F08 have been identified and reported from Penivacillus polymix (Kurusu K, Ohba, Arai T and Fukushima KJ Antibiotics 40). : 1506-1514, 1987), fuzisidine A, B, C and D have also been reported (Kajimura Y and Kaneda MJ Antibiotics 49: 129-135, 1996; Kajimura Y and Kaneda MJ Antibiotics 50: 220-228, 1997). The amino acid chains of fuzacidin are not encoded by genes and synthesized by ribosomes like conventional polypeptides, but by non-ribosomal peptide synthetase (NRPS) (Marahiel MA, Stachelhaus T and Mootz HD). Chew. Rev. 97: 2651-2673, 1997; Doekel S and Marahiel MA. Metab. Eng. 6: 64-77, 2001). As described above, the present inventors have discovered and discovered the function of fuzacidin biosynthesis gene through the genome detoxification study of the bacterium F. E681 genome. (Coi S.-K. et al. 2007. Biochem. And Biophys.Res. Camun. 365: 89-95). In addition, a patent was registered for the fuzacidine biosynthesis and gene (registration number 10-0762316, registration date September 20, 2007). On the other hand, the present inventors produced six kinds of Fusacidin (LI-F04a, LI-F04b, LI-F05a, LI-F05b, LI-F08a and LI-F08b) by the F. It was found that the combination of the six fuzzy cydins showed excellent disease resistance inducing effects on crops at low concentrations of 10 ng / m £ (0.01 ppm) to 1 β & / ^ 1 (1 ppm). A patent has been filed (Application No. 10-2010-0039500). However, one problem is the fact that the Fusacidin productivity of the F. E681 strain of Penicillus polymix is lower than 0.1 g / L, which needs to be improved in order to secure economic feasibility for industrial use. Accordingly, the present inventors are trying to develop a strain for mass production of fuzacidine and mass production technology using the same, lipopeptide that can act as an inhibitory factor to increase the production yield in the fusicidin-producing strain Fuzacidin is more effective than the parent by inactivating other antibiotics (polymyxin and tridecaptin) biosynthetic enzyme genes in the family and by inactivating the phosphoglucomutase gene, which is involved in improving the production efficiency of the target substance. New strains were produced and selected to exhibit 50 times or more productivity, and the present invention was completed by completing a technique for mass-producing fuzacidin using the strains.
【발명의 상세한 설명】 【기술적 과제】 본 발명은 목적은 물질의 생산 수율을 높이는데 저해요인이 될 수 있는 폴 리믹신 및 트리데갑틴 생합성 효소 유전자들을 불활성화하여 이들의 생산을 근원적 으로 차단하고, 푸자리시딘 생합성 과정에서 저해 요인으로 작용하는 포스포그루코 뮤타제 (phosphoglucomutase)의 유전자를 불활성화하고, 3가지 돌연변이 유도 방법 (NTG 처리, UV 조사 및 감마선 조사)을 이용하여 푸자리시딘 (fusaricidin)을 높은 수율로 생산하는 균주를 제조하는 방법을 제공하는 것이다. DETAILED DESCRIPTION OF THE INVENTION The present invention aims to inactivate polymyxin and tridegatin biosynthetic enzyme genes, which may be inhibitors in increasing the production yield of a substance, thereby fundamentally blocking their production. , Inactivating the gene of phosphoglucomutase that acts as an inhibitor in fuzacidin biosynthesis, and using three mutation induction methods (NTG treatment, UV irradiation and gamma irradiation) High to fusaricidin It is to provide a method for producing a strain produced in yield.
본 발명의 다른 목적은 이러한 방법으로 제조된 균주를 제공하는 것이다. 본 발명의 또 다른 목적은 상기 균주를 이용하여 푸자리시딘을 대량생산하 는 방법을 제공하는 것이다.  Another object of the present invention is to provide a strain produced by this method. Another object of the present invention to provide a method for mass production of fuzacidine using the strain.
【기술적 해결방법】 상기 목적을 달성하기 위하여, 본 발명은 Technical Solution In order to achieve the above object, the present invention
패니바실러스 폴리믹사 0¾e/?7 ½c/7/i/s ploymyxa) 균주에서 서열번호 1로 기재되는 pgm 유전자; 또는 서열번호 1로 기재되는 pgm유전자와 서열번호 14로 기재되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테캅틴 생합성 유전자 중 어느 하나 이상의 유전자를 불활성화시킨 푸자리시딘 (fusaricidin) 고생산 재조합 패니바실러스 폴리믹사 균주를 제공한다.  Pgm gene as set forth in SEQ ID NO: 1 in a Panibacillus polymyxa 0¾e /? 7½c / 7 / i / s ploymyxa strain; Or high production of fusaricidin which inactivates at least one of the pgm gene of SEQ ID NO: 1, the polymyxin biosynthesis gene of SEQ ID NO: 14, and the tritecaptin biosynthesis gene of SEQ ID NO: 15. Provided is a recombinant Penicillaceae polymyx strain.
또한, 본 발명은 패니바실러스 폴리믹사 균주에서 서열번호 14로 기재되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테캅틴 생합성 유전자가 불활성화되고, 서열번호 3으로 기재되는돌연변이 pgm 유전자가 도입된 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주를 제공한다.  In addition, in the present invention, the polymyxin biosynthesis gene of SEQ ID NO: 14 and the tritecaptin biosynthesis gene of SEQ ID NO: 15 are inactivated, and the mutant pgm gene of SEQ ID NO: 3 is introduced into the F. Fuzacidine high-producing recombinant Panibacillus polymyxa strains are provided.
또한, 본 발명은  In addition, the present invention
1) 패니바실러스 폴리믹사 균주에서 서열번호 1로 기재되는 pgm 유전자; 또는 서열번호 1로 기재되는 pgm 유전자와 서열번호 14로 기재되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테갑틴 생합성 유전자 중 어느 하나 이상의 유전자를 불활성화시키는 단계 ; 및  1) the pgm gene as set forth in SEQ ID NO: 1 in a Fanibacilli polymyxa strain; Or inactivating a gene of any one or more of the pgm gene of SEQ ID NO: 1, the polymyxin biosynthesis gene of SEQ ID NO: 14, and the tritegatin biosynthesis gene of SEQ ID NO: 15; And
2) 상기 단계 1)의 균주에서 푸자리시딘 고생산 균주를 선별하는 단계를 포함하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제조 방법을 제공한다.  2) It provides a method for producing a fuzzy cydin high-producing recombinant Fanibacillus polymixa strain comprising the step of selecting the high fuzzy cydin high production strain in the strain of step 1).
또한, 본 발명은  In addition, the present invention
1) 패니바실러스 폴리믹사 균주에서 서열번호 14로 기재되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테캅틴 생합성 유전자를 불활성화시키는 단계 ; 2) 상기 단계 1의 균주에 NTG hnethyl- -nitro- nitrosoguanidine)를 처리하여 돌연변이를 유도하는 단계; 및 1) inactivating the polymyxin biosynthesis gene as set out in SEQ ID NO: 14 and the tritecaptin biosynthesis gene as set out in SEQ ID NO: 15 in a F. 2) inducing a mutation by treating the strain of step 1 with NTG hnethyl- -nitro-nitrosoguanidine); And
3) 상기 단계 2)의 돌연변이된 균주에서 푸자리시딘 대량 생산 균주를 선별하는 단계를 포함하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제조 방법을 제공한다.  3) It provides a method for producing a fuzzy cydin high-producing recombinant Panibacillus polymixa strain comprising the step of selecting the fuzacidine mass-producing strain from the mutated strain of step 2).
또한, 본 발명은  In addition, the present invention
1) 상기 선별한 균주에 NTG 및 UV를 처리하여 돌연변이를 유도하는 단계;  1) inducing mutations by treating the selected strains with NTG and UV;
2) 상기 단계 1)의 돌연변이된 균주에서 푸자리시딘 대량 생산 균주를 선별하는 단계를 포함하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제조 방법을 제공한다. 2) It provides a method for producing a fuzzy cydin high-producing recombinant Fanibacillus polymixa strain comprising the step of selecting the fuzacidine mass-producing strain from the mutated strain of step 1).
또한, 본 발명은  In addition, the present invention
1) 상기 선별한 균주에 방사선을 조사하는 단계; 및  1) irradiating the selected strains with radiation; And
2) 상기 단계 1)의 돌연변이된 균주에서 푸자리시딘 대량 생산 균주를 선별하는 단계를 포함하는 푸자리시딘 고생산 패니바실러스 폴리믹사 균주의 제조 방법을 제공한다.  2) It provides a method for producing a fuzzy cydine high-producing Panicibacillus polymixa strain comprising the step of selecting a fuzzy cydine mass-producing strain from the mutated strain of step 1).
또한, 본 발명은 상기 제조방법으로 제조된, 푸자리시딘 고생산 패니바실러스 폴리믹사 균주를 제공한다. 아울러 , 본 발명은  In another aspect, the present invention provides a fusicidin high production Fanibacillus polymixsa strain prepared by the above method. In addition, the present invention
1) 본 발명의 푸자리시딘 고생산 패니바실러스 폴리믹사 균주를 배양하는 단계; 및 ' 1) culturing the fuzacidin high-producing Pannibacillus polymyxa strain of the present invention; And '
2) 상기 단계 1)의 배양액에서 푸자리시딘을 회수하는 단계를 포함하는 푸자리시딘 대량 생산방법을 제공한다. 2) provides a method for mass production of fuzisidine comprising the step of recovering the fusicidine in the culture medium of step 1).
【유리한 효과】 본 발명은 푸자리시딘을 생산하는 균주에서 생산 수율을 높이는데 저해요인 으로 작용할 수 있는 리포펩티드 계열의 다른 항생물질 (풀리믹신과 트리데캅틴) 생 합성 효소 유전자들을 불활성화시키고, 목적 물질의 생산 효율 증진에 관련이 있는 포스포그루코뮤타아제 유전자의 불활성화를 통해 푸자리시딘을 고수율로 생산함으 로써 농업용 항생제, 식물의 병저항성 유도제 등의 다양한 분야에 유용하게 사용될 수 있다. Advantageous Effects of the Invention The present invention is directed to the production of other antibiotics of the lipopeptide family (purimicin and tridecaptin) that may act as inhibitors in increasing production yield in fuzacidin-producing strains. By inactivating synthetic enzyme genes and inducing high yields of fuzacidin through inactivation of phosphoglucomutase genes, which are involved in improving the production efficiency of target substances, antibiotics for agriculture, inducers of plant disease resistance, etc. It can be usefully used in various fields.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 패니바실러스 폴리믹사균의 푸자리시딘 생산성 증진을 위한 균주 개발 과정을 나타내는 도이다.  1 is a view showing a strain development process for the enhancement of the fusicidin productivity of F.
도 2는 푸자리시딘 고생산성 변이주의 선별 과정을 나타내는 도이다.  Figure 2 is a diagram showing the selection process of fuzacidin high productivity mutant strains.
도 3은 패니바실러스균 배양 추출물의 항균활성 검정에 의해 푸자리시딘 생산성을 비교하는 방법을 나타내는 도이다.  Figure 3 is a diagram showing a method for comparing fuzacidin productivity by the antimicrobial activity assay of the culture extract of Panibacillus bacteria.
도 4는 E681-PT균에 대한 NU177균주와 NUR1776균주의 항균활성 비교도이다. 도 5는 푸자리시딘 정량을 위한 검정선이다  Figure 4 is a comparison of the antimicrobial activity of strains NU177 and NUR1776 against E681-PT. 5 is a calibration line for fuzacidine quantification
도 6은 푸자리시딘 표준시료 각 농도에서의 M. luteus균 성장 저해환 비교도이다  Figure 6 is a comparison of M. luteus bacteria growth inhibitory ring at each concentration of fuzacidin standard sample
도 7은 pgm 유전자의 클로닝 및 패니바실러스 폴리믹사 NUR1776균 내로의 도입에 의한 푸자리시딘 생산성 감소를 나타내는 도이다.  Fig. 7 is a diagram showing the reduction of fuzacidin productivity due to the cloning of pgm gene and the introduction into F. bacterium NUR1776.
도 8은 점돌연변이가 일어난 pgm유전자의 패니바실러스균 내 도입에 의한 푸자리시딘 생산성 증가를 확인한 도이다.  8 is a diagram confirming the increase in fuzacidin productivity by the introduction of the pgm gene in which the point mutation occurs in the Panibacillus bacteria.
도 9는 패니바실러스 폴리믹사균 pgm 유전자의 불활성화에 의한 푸자리시딘의 생산성 증가를 확인한 도이다.  9 is a diagram confirming the increase in productivity of fuzacidin by inactivation of the F. genus pgm gene.
도 10은 pgm 유전자의 변이가 배양액의 점성에 미치는 영향을 나타내는 도이다.  10 is a diagram showing the effect of the mutation of the pgm gene on the viscosity of the culture.
도 11은 패니바실러스 폴리믹사 NUR1776균의 5 리터 규모 배양시험 결과를 나타내는 도이다.  Fig. 11 is a diagram showing the results of a 5-liter scale culture test of F. NUR1776, F.
도 12는 패니바실러스균 배양 상둥액 균체로부터의 푸자리시딘 추출 결과를 나타내는 도이다.  Fig. 12 is a diagram showing the results of fuzacidin extraction from the F. bacterium culture supernatant cells.
도 13은 패니바실러스균 균체로부터 부탄을과 에탄을을 이용한 푸자리시딘 추출 효율을 나타내는 도이다. 도 14는 패니바실러스 폴리믹사 NUR1776균의 500 리터 규모 배양실험 결과를 나타내는 도이다. Figure 13 is a diagram showing the fusicidin extraction efficiency using butane and ethane from the fungus Bacillus cells. 14 is a diagram showing the results of a 500-liter scale culture experiment of F. NUR1776 bacteria of the Penivacillus polymix.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
이하, 본 발명을 상세히 설명한다. 본 발명은 패니바실러스 폴리믹사 (/¾e2/bac////s ploymyxa) 균주에서 서열번호 1로 기재되는 pgm 유전자; 또는 서열번호 1로 기재되는 pgm유전자와 서열번호 14로 기재되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테캅틴 생합성 유전자 중 어느 하나 이상의 유전자를 불활성화시킨 푸자리시딘 (fusaricidin) 고생산 재조합 패니바실러스 폴리믹사 균주를 제공한다. 또한, 본 발명은 패니바실러스 폴리믹사 균주에서 서열번호 14로 기재되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테캅틴 생합성 유전자가 불활성화되고, 서열번호 3으로 기재되는 돌연변이 pgm 유전자가 도입된 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주를 제공한다.  Hereinafter, the present invention will be described in detail. The present invention relates to a pgm gene as set forth in SEQ ID NO: 1 in a strain of Panibacillus polymix (/ ¾e2 / bac /// s ploymyxa); Or high production of fusaricidin which inactivates at least one of the pgm gene of SEQ ID NO: 1, the polymyxin biosynthesis gene of SEQ ID NO: 14, and the tritecaptin biosynthesis gene of SEQ ID NO: 15. Provided is a recombinant Penicillaceae polymyx strain. In addition, the present invention is a polymyxin biosynthesis gene of SEQ ID NO: 14 and the tritecaptin biosynthesis gene of SEQ ID NO: 15 is inactivated in the Pannibacillus polymixa strain, mutant pgm gene described in SEQ ID NO: 3 is introduced Fuzacidine high-producing recombinant Panibacillus polymyxa strains are provided.
상기 패니바실러스 폴리믹사 균주는 기탁번호 KCTC 8801P로 기탁된 균주인 것이 바람직하나 이에 한정되지 않는다.  The Fanibacilli polymixa strain is preferably a strain deposited with accession number KCTC 8801P, but is not limited thereto.
상기 유전자 불활성화는 상기 유전자의 결실 또는 변이인 것이 바람직하나 이에 한정되지 않는다.  The gene inactivation is preferably a deletion or mutation of the gene, but is not limited thereto.
상기 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주는 기탁번호 The fuzacidin high-producing recombinant Fanibacillus polymyx strains are deposited
KCTC 12068BP또는 KCTC 12323BP로 기탁된 것이 바람직하나 이에 한정되지 않는다. Deposited with KCTC 12068BP or KCTC 12323BP is preferred but not limited thereto.
본 발명의 구체적인 실시예에서, 본. 발명자들은 모균인 패니바실러스 폴리믹사 E681균은 유전체 정보를 분석한 결과 5종 이상의 항생물질을 생산하는 것으로 나타났으며 (Kim J. F. et al. 2010. J. Bacteriol. 192:6103-6104) 푸자리시딘 생산에 저해 요인으로 작용할 가능성이 있는 폴리믹신과 트리데캅틴의 생산을 차단하기 위해 PI E 유전자 (GenBank 접근번호: EU371992)와 trdA 유전자 (특허 제 10—1165247호)를 항생제 저항성 유전자 도입에 의해 불활성화하여 제작한 균주 패니바실러스 폴리믹사 Ε681(/ υ/" 4)을 제작한 다음, 이 균주를 모체로 하여 NTG(A½iethyl-iV'-nitro-i\Lni1:rosoguani(iine) 처리 (도 3 참조), 자외선 조사 (ultraviolet irradiation) (도 4 참조) 및 감마선 조사 (gamma ray irradiation) (도 5 참조)에 의해 변이를 유도하였으며, 상기 선별한 균주의 푸자리시딘 생산량을 확인한 결과, 모균에 비하여 푸자리시딘을 50 배 이상 고생산하는 것을 확인하였다. 또한, 상기 선별한 NUR1776 균주는 한국생명공학연구원 생명자원센터 acre)에 2011년 11월 11일자로 기탁하였다 (기탁번호 KCTC 12068BP) . In a specific embodiment of the invention, see. The inventors have found that the parent strain, F. Bacillus polymixes E681, produces five or more antibiotics after analyzing genome information (Kim JF et al. 2010. J. Bacteriol. 192: 6103-6104). In order to block the production of polymyxin and tridecaptin that may act as inhibitors of din production, the PI E gene (GenBank Accession Number: EU371992) and the trdA gene (Patent No. 10—1165247) were introduced by antibiotic resistance genes. After inactivating the strain Penivacillus polymyxa Ε681 (/ υ / " 4), the strain was prepared. NTG (A½iethyl-iV'-nitro-i \ L ni1: rosoguani (iine) treatment (see FIG. 3), ultraviolet irradiation (see FIG. 4) and gamma ray irradiation (FIG. 5) as parent Mutation) was induced, and as a result of confirming the fusicidin production of the selected strains, it was confirmed that the fusicidin is produced at least 50 times higher than that of the parent strain. It was deposited on November 11, 2011 (Acre) of the Biotechnology Research Institute (ARC) (Accession No. KCTC 12068BP).
또한, 본 발명자들은 푸자리시딘 고생산성 변이균 NUR1776균의 유전체 염기서열 해독 및 모균인 패니바실러스 폴리믹사 E681균 유전체 염기서열 (GenBank 접속번호 CP000154)과의 비교분석을 통해 돌연변이가 발생한 것으로 드러난 1,716 bp 길이의 포스포그루^뮤타제 유전자 서열번호 1) 및 이 유전자에 의해 코딩되는 572개 아미노산 서열 (서열번호 2)로 이루어진 단백질, 즉 포스포그루코뮤타제 효소를 확인하였다. 또한, pgn] 유전자의 509 bp 위치에 점돌연변이 (서열번호 3)가 발생되어 이로 인해 포스포그루코뮤타제 효소 단백질의 170번째 아미노산이 글루타민 (glutamine)에서 프를린 (proline)으로 바뀌고 (서열번호 4) 그 결과로 푸자리시딘 생산성이 증가하는 것을 확인하였다 (도 7 참조). 또한, NUR1776균 염색체 DNA 상의 pgm 유전자 점돌연변이를 패니바실러스 폴리믹사균 염색체에 그대로 옮기거나 패니바실러스 폴리믹사균의 Pgm 유전자를 결손시켜 불활성화함으로써 푸자리시딘의 생산성올 확인한 결과, 상기 두 가지 방법에 의해 제작한 푸자리시딘 고생산성 변이주 패니바실러스 폴리믹사 E681 ^, ^)균 (이하 PGM1776으로 칭한다)과 패니바실러스 폴리믹사 E581 p 'E, trdA,pgm균 (이하 PGM4441로 칭한다)은 모두 푸자리시딘을 유의적으로 고생산하는 것을 확인하였다 (도 8 및 도 9 참조). 또한, 상기 패니바실러스 폴리믹사 PGM4441균은 2012년 11월 27일자로 한국생명공학연구원 생명자원센터 (KCTC)에 기탁하여 기탁번호 KCTC 12323BP를 부여받았다.  In addition, the present inventors have found that the mutation has been revealed through the analysis of genome sequences of the fusicidin high productivity mutant bacterium NUR1776 and comparative analysis with the genome sequence of the bacterium Fanibacillus polymyx E681 (GenBank Accession No. CP000154). A protein consisting of a bp length of phosphoglu ^ mutase gene SEQ ID NO: 1) and a 572 amino acid sequence (SEQ ID NO: 2) encoded by this gene, ie, a phosphoglumutase enzyme, was identified. In addition, a point mutation (SEQ ID NO: 3) occurs at the 509 bp position of the pgn] gene, which causes the 170th amino acid of the phosphoglucomatase enzyme protein to be changed from glutamine to proline (SEQ ID NO: 4) As a result, it was confirmed that fuzacidin productivity was increased (see FIG. 7). In addition, as a result of confirming the productivity of fuzacidin by transferring the pgm gene point mutation on the NUR1776 bacterial chromosome DNA to the F. chromosome as it is or by inactivating the Pgm gene of the F. phylbacillus polymyx bacterium. Fusisidine high-productivity mutant strain Fanibacillus polymixe E681 ^, ^) (hereinafter referred to as PGM1776) and panivacillus polymixe E581 p 'E, trdA, pgm (hereinafter referred to as PGM4441) produced by It was confirmed that significant production of zarycidine was significant (see FIGS. 8 and 9). In addition, the F. bacterium PGM4441 of the F. Panycillus polymix was deposited with the Korea Institute of Bioscience and Biotechnology (KCTC) on November 27, 2012 and received the accession number KCTC 12323BP.
따라서, 푸자리시딘을 생산하는 균주에서 생산 수율을 높이는데 저해요인으로 작용할 수 있는 리포펩티드 계열의 다른 항생물질 (폴리믹신과 트리데갑틴) 생합성 효소 유전자들을 불활성화시키고, 목적 물질의 생산 효율 증진에 관련이 있는 포스포그루코뮤타아제 (phosphogkicomutase) 유전자의 불활성화를 통해 제조된 푸자리시딘 고생산 균주는 푸자리시딘을 고수율로 생산함으로써 농업용 항생제, 식물의 병저항성 유도제 등의 다양한 분야에 유용하게 사용될 수 있다. 또한, 본 발명은 Therefore, inactivation of other biolipase genes (polymyxin and tridegatin) of the lipopeptide family, which may act as inhibitors in increasing the production yield in fuzacidin-producing strains, and the production efficiency of the target substance Of phosphogkicomutase genes involved in enhancement Fuzacidine high production strain prepared by inactivation can be useful in a variety of fields, such as agricultural antibiotics, plant disease resistance inducer by producing fuzacidin in high yield. In addition, the present invention
1) 패니바실러스 폴리믹사 균주에서 서열번호 1로 기재되는 pgm 유전자; 또는 서열번호 1로 기재되는 pgm 유전자와 서열번호 14로 기재되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테캅틴 생합성 유전자 중 어느 하나 이상의 유전자를 불활성화시키는 단계; 및  1) the pgm gene as set forth in SEQ ID NO: 1 in a Fanibacilli polymyxa strain; Or inactivating a gene of any one or more of the pgm gene of SEQ ID NO: 1, the polymyxin biosynthesis gene of SEQ ID NO: 14, and the tritecaptin biosynthesis gene of SEQ ID NO: 15; And
2) 상기 단계 1)의 균주에서 푸자리시딘 고생산 균주를 선별하는 단계를 포함하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제조 방법올 제공한다.  2) provides a method for producing a fuzzy cydin high-producing recombinant Fanibacillus polymixa strain comprising the step of selecting a high fuzisidine-producing strain from the strain of step 1).
또한, 본 발명은  In addition, the present invention
1) 패니바실러스 폴리믹사 균주에서 서열번호 14로 기재되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테캅틴 생합성 유전자를 불활성화시키는 단계 ;  1) inactivating the polymyxin biosynthesis gene as set out in SEQ ID NO: 14 and the tritecaptin biosynthesis gene as set out in SEQ ID NO: 15 in a F.
2) 상기 단계 1의 균주에 NTG methy卜r-nitro-^nitrosoguanidine)를 처리하여 돌연변이를 유도하는 단계; 및  2) inducing a mutation by treating the strain of step 1 with NTG methy 卜 r-nitro- ^ nitrosoguanidine); And
3) 상기 단계 2)의 돌연변이된 균주에서 푸자리시딘 대량 생산 균주를 선별하는 단계를 포함하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제조 방법을 제공한다.  3) It provides a method for producing a fuzzy cydin high-producing recombinant Panibacillus polymixa strain comprising the step of selecting the fuzacidine mass-producing strain from the mutated strain of step 2).
또한, 본 발명은  In addition, the present invention
1) 상기 선별한 균주에 NTG 및 UV를 처리하여 돌연변이를 유도하는 단계; 2) 상기 단계 1)의 돌연변이된 균주에서 푸자리시딘 대량 생산 균주를 선별하는 단계를 포함하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제조 방법을 제공한다.  1) inducing mutations by treating the selected strains with NTG and UV; 2) It provides a method for producing a fuzzy cydin high-producing recombinant Fanibacillus polymixa strain comprising the step of selecting the fuzacidine mass-producing strain from the mutated strain of step 1).
또한, 본 발명은  In addition, the present invention
1) 상기 선별한 균주에 방사선을 조사하는 단계; 및 2) 상기 단계 1)의 돌연변이된 균주에서 푸자리시딘 대량 생산 균주를 선별하는 단계를 포함하는 푸자리시딘 고생산 패니바실러스 풀리믹사 균주의 제조 방법을 제공한다. 1) irradiating the selected strains with radiation; And 2) It provides a method for producing a fujarysidine high production Fanibacillus pulleymic strain comprising the step of screening the fuzacidin mass-producing strain in the mutated strain of step 1).
또한, 본 발명은 상기 제조방법으로 제조된, 푸자리시딘 고생산 패니바실러스 폴리믹시" 균주를 제공한다.  In addition, the present invention provides a fusicidine high production Fanibacilli polymix "strain prepared by the above method.
상기 패니바실러스 폴리믹사 균주는 기탁번호 KCTC 8801P로 기탁된 균주인 것이 바람직하나 이에 한정되지 않는다.  The Fanibacilli polymixa strain is preferably a strain deposited with accession number KCTC 8801P, but is not limited thereto.
상기 방사선은 감마선, 적외선, 자외선, X 선 및 양성자 범으로 구성된 군으로부터 선택되는 어느 하나인 것이 바람직하고, 감마산인 것이 보다 바람직하나 이에 한정되지 않는다. 또한, 본 발명은  The radiation is preferably any one selected from the group consisting of gamma rays, infrared rays, ultraviolet rays, X-rays and protons, and more preferably gamma acid, but is not limited thereto. In addition, the present invention
1) 본 발명의 푸자리시딘 고생산 패니바실러스 폴리믹사 균주를 배양하는 단계; 및  1) culturing the fuzacidin high-producing Pannibacillus polymyxa strain of the present invention; And
2) 상기 단계 1)의 배양액에서 푸자리시딘을 회수하는 단계를 포함하는 푸자리시딘 대량 생산방법을 제공한다.  2) provides a method for mass production of fuzisidine comprising the step of recovering the fusicidine in the culture medium of step 1).
상기 푸자리시딘 고생산 패니바실러스 균의 소규모 (1L 이하) 종 (seed) 배양은 TSB 또는 TSBG TSB에 포도당을 30 g/L 되도록 첨가)를 이용하고 30 L 이상의 종 배양 및 본 배양에서는 TSBG(II) 배지 (TSB, 8g; 포도당, ; (NH4)2S04, 2g; K2HPO4, 0.1 g; MgS04, 0.01 g; yeast extract, 1 g/ L)를 이용하되 이에 국한되지 아니한다. 배지의 초기 ρΗ는 증성 (6.5~7.0)으로 하고, 배양 은도는 30- 32°C, 원활한 산소공급올 위해 소규모 배양 시 200 rpm 진탕, 발효조 배양 시 300 rpm 교반과 1 wm aeration 조건을 이용하며 배양시간은 발효조 규모 등 배양 환경에 따라 18~72 시간으로 한다. The small-scale (less than 1L) seed culture of the fuzacidin-producing F. genus Bacillus was used to add 30 g / L of glucose to TSB or TSBG TSB. II) using but not limited to medium (TSB, 8 g; glucose,; (NH 4 ) 2 S0 4 , 2 g; K2HPO4, 0.1 g; MgS0 4 , 0.01 g; yeast extract, 1 g / L). The initial ρΗ of the medium is thick (6.5 ~ 7.0), the cultivation degree is 30- 32 ° C, 200 rpm shaking for small scale culture for smooth oxygen supply, 300 rpm stirring for fermenter culture and 1 wm aeration condition. The time is 18 to 72 hours depending on the culture environment such as fermenter scale.
배양 후 푸자리시딘의 추출은 생산된 푸자리시딘이 배양액으로 분비되지 않고 대부분 균체에 붙어있는 상태로 존재하므로 원심분리 등의 방법에 의해 먼저 균체를 회수하거나 또는 정치 후 배양 상등액을 제거한 후 여기에 적절한 용매를 가하여 진행할 수 있으며, 추출 용매로는 메탄올, 에탄올, 부탄올 등이 이용 가능하나, 그중 에탄올이 가장 바람직하다. 회수한 균체를 적당량의 물에 현탁하고 여기에 동량 (v/v)의 에탄올을 가하여 추출한 후 원심분리 등의 방법으로 상등액을 얻어 감압증발과 동결건조 또는 스프레이 건조 등의 과정을 거쳐 분말형태의 푸자리시딘을 수득할 수 있다. 이하, 본 발명을 실시예에 의해 상세히 설명한다. Since the extraction of fuzacidin after cultivation exists in the state in which the produced fuzacidin is not secreted into the culture medium but is mostly attached to the cells, the cells are recovered first by centrifugation or the like, or the culture supernatant is removed after standing. An appropriate solvent may be added thereto, and methanol, ethanol, butanol, and the like may be used as the extraction solvent, of which ethanol is most preferred. Collect the recovered cells in an appropriate amount Suspended in water and extracted by adding the same amount (v / v) of ethanol to the supernatant by centrifugation, etc. to obtain fujarycidin in the form of powder through a process such as evaporation under reduced pressure, lyophilization or spray drying. Can be. Hereinafter, the present invention will be described in detail by way of examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.  However, the following examples are merely to illustrate the present invention, and the content of the present invention is not limited to the following examples.
<실시예 1>푸자리시딘 대량생산을 위한고생산성 패니바실러스균주제작 <1-1>폴리믹신과트리데캅틴 유전자불활성화균주 제작 <Example 1> Production of high-productivity Fanibacilli strain for mass production of fuzacidine <1-1> Preparation of polymyxin and tridecaptin gene inactivated strain
본 발명자들이 사용한 패니바실러스 폴리믹사 E68 5. polymyxa E681) 균은 식물유용 세균으로서 (특허 제 0220402호, 기탁 균주번호: KCTC 8801P) 발명자 박창석 교수로부터 제공을 받아 사용하였다. 균주를 기탁할 당시에는 바실러스 폴리믹사 ¾c/7/i/s polymyxa) E681 균으로 명명하였으나 그 후 Ash C. 등에 의해 새로 도입된 분류체계 (Ash, C. et al. , 1993. Antonie van Leeuwenhoek. 64: 253- 260)에 의해 패니바실러스 (/¾ //)ac /"s) 속명을 적용하여 현재의 균주명 즉 '패니바실러스 폴리믹사 E681'로 칭하게 되었다. 이 균은 유전체 정보 분석에 의하여 본 발명의 대상 물질인 푸자리시딘 외에 폴리믹신과 트리데캅틴 등 여러 종류의 펩티드 항생물질을 생산하는 것으로 분석되었다. 따라서 푸자리시딘 고생산 균주를 개발함에 있어서 저해 가능 요인을 제거하는 차원에서 폴리막신과 트리데캅틴 생합성 유전자가 불활성화된 변이주 P. polymyxa E681-PT균을 사용하였는데 이 균주는 선행 발명 (대한민국 특허등록 제 10-1165247 호)에 제작과정이 기술되어 있다. 변이주 제작 과정을 간략히 기술하면 pmx 유전자 클러스터 (/M? , pmxB, pmxC, pmxD 및 pmxE 포함)를 지니는 포스미드 (fosmid) 클론을 이용하여 pmxE 유전자 내부에 클로람페니콜 (chloramphenicol) 저항성 유전자와 카나마이신 (kanamycin) 저항성 유전자 카세트 cassette)를 삽입하여 pi E 유전자를 불활성화하였고, trdA 유전자의 경우 마찬가지로 이를 포함하는 포스미드 클론을 이용하여 trdA 유전자 내부로 스펙티노마이신(3 6 101 11) 항생제 내성 유전자를 삽입하여 불활성화하였다. 불활성화된 각각의 유전자를 지니는 포스미드 클론 DNA를 대장균 형질전환체로부터 분리 한 후 이를 패니바실러스 폴리믹사 E681균으로 전기천공법에 의해 도입하여 각각의 유전자가 결손된 변이주, 즉 P. polymyxa E681(pmxE) 및 P. polymyxa ^l( trdA) 변이주를 제작하였다. P. polymyxa E681( r 4)균의 염색체 DNA를 분리하여 P. polymyxa E681(pmxE) 변이주에 전기천공법으로 추가 도입하여 두 가지 유전자가 모두 불활성화된 P. polymyxa E681-PT균을 제작하였다. xE 변이주를 제작하는 과정은 선행 연구 논문 (J. Bacteriol. 2009. 191: 3350-3358)에 자세히 기술되어 있다. 상기와 같은 과정으로 제작된 패니바실러스 풀리믹사 E681-PT균을 모체로 하여 푸자리시딘의 생산성이 향상된 균주를 제작할 목적으로 NTG \½ethyl- '-ni tro-y^ni trosoguanidine) 처리, 자외선 조사 (Ultraviolet irradiation) 및 감마선 조사 (Ga麵 a ray irradiation) 3가지 방법을 모두 적용하여 돌연변이를 유도하였다 (도 1). Fannybacillus polymix yarn E68 used by the inventors 5 . polymyxa E681) was used as a plant-use bacterium (Patent No. 0220402, deposited strain No .: KCTC 8801P) provided by Professor Chang-Seok Park. When the strain was deposited, it was named Bacillus polymyx ¾ c / 7 / i / s polymyxa) E681, but was newly introduced by Ash C. et al. (Ash, C. et al., 1993. Antonie van Leeuwenhoek 64: 253-260) was applied to the genus of Panibacillus (/ ¾ //) ac / "s), and it was referred to as the current strain name, 'Panibacillus polymyxa E681'. It was analyzed to produce various kinds of peptide antibiotics such as polymyxin and tridecaptin in addition to fuzacidine, which is a target of the present invention. The strain P. polymyxa E681-PT, which is inactivated polymacxin and tridecaptin biosynthesis gene, was used in the prior art (Korean Patent Registration No. 10-1165247). Briefly, the chloramphenicol-resistant and kanamycin-resistant gene cassette cassettes inside the pmxE gene using fosmid clones with the pmx gene cluster (including / M ?, pmxB, pmxC, pmxD and pmxE) ) Pi was inactivated by inserting the gene, and in the case of the trdA gene, a phosphid clone containing the same was inactivated by inserting a spectinomycin (3 6 101 11) antibiotic resistance gene into the trdA gene. A phosmid clone DNA carrying each inactivated gene was isolated from E. coli transformants, and then introduced into the F. polymyxa E681 strain by electroporation, so that the mutant strains of which each gene was deleted, namely P. polymyxa E681 ( pmxE) and P. polymyxa ^ l (trdA) mutants were prepared. The chromosomal DNA of P. polymyxa E681 (r 4) was isolated and added to the P. polymyxa E681 (pmxE) mutant by electroporation to prepare P. polymyxa E681-PT. The process of constructing xE mutants is described in detail in a previous study (J. Bacteriol. 2009. 191: 3350-3358). NTG \ ½ethyl- '-ni tro-y ^ ni trosoguanidine) treatment, UV irradiation for the purpose of producing strains with improved productivity of fuzacidin using the parent strain of E.ni.E681-PT produced by the above process Mutation was induced by applying all three methods (Ultraviolet irradiation) and gamma-ray irradiation (Ga 麵 a ray irradiation) (FIG. 1).
<1-2> G(A½ethyl-V'-ni tro-vV-ni trosoguanidine) 이용 돌연변이에 의한 푸자리시딘 고생산성 패니바실러스균주 개발 (1단계 개발) <1-2> Development of Fusacidin high-productive Fanibacilli strain by mutation using G (A½ethyl-V'-ni tro-vV-ni trosoguanidine)
NTG(^methyl-^'-nitro-y^nitrosoguanidine) 처리에 의한 돌연변이 유도 및 생산성이 증가된 균주의 선발은 다음과 같이 진행하였다.  Selection of strains with increased mutation induction and productivity by treatment with NTG (^ methyl-^ '-nitro-y ^ nitrosoguanidine) proceeded as follows.
상기 실시예 <1-1>에서 제작한 패니바실러스 폴리믹사 E681-PT 균을 TSB 3 mi 배지에 접종하여 30°C에서 15시간 진탕 배양 (200 rpm) 후, 다시 TSB 3 m£ 배지에 2% 접종하여 OD600 값이 0.7~1.0 되도록 추가 배양한 후 1 을 취해 NTG 용액을 가하되 최종 농도가 400 g/n 되도록 하였다. 실은에서 10분 정치한 후 소형 원심분리기를 이용하여 11,000 rpm으로 90초 동안 원심분리 하여 상등액을 제거하고 균체를 얻었다. 신선한 TSB 1 m£을 가해 균체를 씻어주고 다시 원심분리하여 균체를 얻은 후 1 TSB에 현탁하였다. 이 현탁액을 10— ^ICT5 농도로 순차적으로 희석 한 후 100 씩 TSA 고체배지에 도말하여 30°C에서 24-48 시간 배양하여 자라난 콜로니를 대상으로 항균 활성을 모균과 비교하여 활성이 증가된 균주를 선발하였다. 균주 선발 과정은 도 2에 나타내었으며 간단하게 설명하면 다음과 같다. Micrococcus / «/s(ML)균을 TSB 배지에 접종하여 30°C에서 15시간 진탕배양 후 이를 TSA 배지 (멸균 후 약 50°C로 유지한 상태)에 1% 흔합하여 고체배지 (TSA-ML)를 만들었다. NTG 처리 후 TSA배지에서 자란 콜로니들을 TSA-ML 배지에 다수 (약 2000 콜로니) 접종 (toothpicking)하여 24시간 배양 후 ML균에 대한 성장 저해환이 모균에 비해 커진 균주들을 1차 선별하였다. 1차 선발한 균주들을 대상으로 다시 같은 과정을 반복하여 2차 선발하였다. 2차 선발한 균들을 TSBG 배지 (TSB 배지에 포도당 3% 첨가) 3 ml에 24~36시간 배양 후 배양액 0.5 ml을 동량의 부탄올 (butanol)로 추출하여 시료로 사용하였다. 추출은 부탄올을 배양액과 철저히 흔합하여 (약 30초 vortexing) 원심분리 (소형 원심분리기로 11,000 rpm, 3분) 후 상등액을 취하는 것으로 하였다. 각 균주의 부탄올 추출액올 6 mm 종이 디스크에 10 ^씩 가하여 건조시킨 후, 이를 TSA-ML 배지에 올려 24시간 배양 후 성장 저해환의 크기 비교를 통해 우수 활성 균주를 3차 선발하였다. 3차 선발된 균주는 단일 콜로니 분리 (single colony isolation) 과정을 통해 순수 배양물 (pure culture)을 얻어 부탄을 추출 후 항균활성을 재확인 (4차) 하였다. 이상에서 기술한 전 과정을 3회 반복하였으며 이를 통해 활성이 가장 우수한 균주 N17균을 확보하였다. 도 3에 나타낸 바와 같이 시료를 1/2씩 순차적으로 희석하여 희석액의 활성을 비교한 결과 N17균은 모균, 즉 패니바실러스 폴리믹사 E681-PT 균에 비해 10배 이상의 푸자리시딘 생산성을 보이는 것을 확인하였다 (도 3). Inoculated with the F. Bacillus polymix E681-PT bacteria prepared in Example <1-1> in TSB 3 mi medium and shake culture (200 rpm) for 15 hours at 30 ° C, 2% in TSB 3 m £ medium again After inoculation, the OD 600 was further cultured to 0.7-1.0, and then 1 was added to add NTG solution, but the final concentration was 400 g / n. In fact, after standing for 10 minutes in a silver centrifuge at 11,000 rpm for 90 seconds using a small centrifuge to remove the supernatant to obtain the cells. 1 m £ of fresh TSB was added to wash the cells and centrifuged to obtain the cells and suspended in 1 TSB. After diluting this suspension sequentially to 10— ^ ICT 5 concentration, it was plated in 100 TSA solid medium and incubated for 24 to 48 hours at 30 ° C. Strains were selected. The strain selection process is shown in Figure 2 and briefly described as follows. Micrococcus / «/ s (ML) bacteria were inoculated in TSB medium and shaken at 30 ° C for 15 hours, and then 1% in TSA medium (maintained at about 50 ° C after sterilization). The mixture was made to a solid medium (TSA-ML). After NTG treatment, colonies grown in TSA medium were inoculated (toothpicked) in TSA-ML medium (about 2000 colonies), and after 24 hours of cultivation, strains for which growth inhibition rings against ML were larger than the parent were selected first. The same process was repeated again for the first selected strains, and the second selection was performed. The secondary cells were incubated for 24 to 36 hours in 3 ml of TSBG medium (addition of 3% glucose to TSB medium), and 0.5 ml of the culture was extracted with the same amount of butanol and used as a sample. The extraction was performed by mixing butanol thoroughly with the culture solution (about 30 seconds vortexing) and taking the supernatant after centrifugation (11,000 rpm with a small centrifuge for 3 minutes). Butanol extract of each strain was added to 10 ^ by 6 mm paper disk, dried, and then placed on TSA-ML medium and cultured for 24 hours, the excellent activity strain was selected through the comparison of the size of the growth inhibitory ring third. The third selected strains obtained pure culture through a single colony isolation process to extract butane and reconfirmed antimicrobial activity (fourth). The entire process described above was repeated three times, thereby securing the best-acting strain N17. As shown in FIG. 3, the samples were diluted sequentially by 1/2 to compare the activity of the diluents. As a result, N17 bacteria showed more than 10 times the productivity of fuzacidin compared to the parent strain, that is, the F. bacterium E681-PT. It was confirmed (FIG. 3).
<1-3> UV와 NTG 반복처리에 의한 푸자리시딘의 고생산성 균주 개발 (2단계 개발) <1-3> Development of high productivity strains of fuzacidin by repeated UV and NTG treatment (2nd stage development)
상기 실시예 <1-2>에서 선발한 N17 균주에 대해 푸자리시딘 생산성이 더욱 증진된 변이주를 얻기 위해 2단계 개발을 수행하였다. 이번에는 UV와 NTG를 복합하여 처리하되 NTG 처리에 의한 방법은 상기 실시예 <1-2>에 기술된 바와 같고 UV처리에 의한 돌연변이 유도 및 생산성 향상 균주 선별은 다음과 같다. N17 변이주를 TSB 3 ml 배지에 접종하여 3C C에서 15시간 진탕배양 (200 rpm) 후 다시 TSB 3 ml 배지에 2¾ 접종하여 0D600 값이 0.7~1.0 되도록 추가 배양한 후 0.1 ^을 취해 0.1M MgS04 용액을 이용하여 10— 5~10—6으로 희석하였다. 이를 TSA 배지에 도말한 후 UV 램프를 이용하여 UV를 조사하되 사멸율이 90% 정도 되도록 하였다. 3(TC에서 24-48 시간 배양하여 자라난 콜로니 (약 2000개)를 대상으로 항균 활성을 N17균과 비교하여 활성이 증가된 균주를 선발하였다. 우수 활성 균주 선발 과정은 도 2에 나타낸 순서를 따랐으며 자세한 내용은 실시예 <1_2>에서 기술한 바와 같다. 이상의 방법으로 UV와 NTG를 각각 5회 및 3회 처리하였고, 그 결과 항균 활성이 모균ᅳ 즉 E681-PT 균에 비해 약 20배 이상 증가된 변이주 NU177올 수득하였다. TSA-ML 고체배지에 모균과 NU177균을 직접 접종하여 36시간 배양하였을 때의 항균활성 차이를 도 4에 나타내었다. Two-stage development was performed to obtain mutant strains that further enhanced fuzacidin productivity for the N17 strain selected in Example <1-2>. This time, a combination of UV and NTG treatment, but the method by NTG treatment is as described in Example <1-2> and mutation selection and productivity improvement strain selection by UV treatment is as follows. After inoculating N17 mutant strain in TSB 3 ml medium for 15 hours shaking culture (200 rpm) at 3C C, inoculated 2¾ in TSB 3 ml medium again to further incubate 0D 600 value of 0.7 ~ 1.0, and then took 0.1 ^ 0.1M MgS0 4, the solution was diluted to 10-5 - 10-6 used. After the coating on the TSA medium was irradiated with UV using a UV lamp, but the mortality was about 90%. Antimicrobial activity of 3 colonies (approximately 2000) Strains with increased activity were selected as compared to N17. The excellent active strain selection process was followed the sequence shown in Figure 2 and the details are as described in Example <1_2>. UV and NTG were treated five times and three times by the above method, and as a result, the mutant strain NU177ol having an antimicrobial activity increased about 20 times or more compared to the parent strain ie E681-PT. 4 shows the difference in the antimicrobial activity when 36 hours of direct inoculation of the mother and NU177 bacteria in the TSA-ML solid medium.
<1-4>감마선 (γ-ray) 조사를 이용한푸자리시딘 고생산성 균주 개발 (3단계) 상기 실시예 <1-3>에서 선발한 NU177 균주에 대해 푸자리시딘 생산성이 보다 더 증진된 변이주를 얻기 위해 3단계 개발을 수행하였다. 이번에는 감마선 조사 방법을 이용하되 한국원자력연구원 정읍방사선과학연구소 시설을 이용하여 수행하였다. NU177 변이주를 TSB 2.5 배지에 접종하여 30°C에서 15시간 진탕배양 (200 rpm) 후 이 배양액을 모두 TSB 200 mi 배지에 접종하여 다시 30°C, 160 rpm 조건으로 11시간 진탕배양 하였고 이때 OD600 값이 2.6에 도달하였다. 배양액을 4°C, 6500 rpm 조건으로 15 분 원심분리하여 균체를 회수한 후 동량의 멸균 생리식염수로 세척하였고 다시 회수한 균체를 20 멸균 생리식염수에 현탁하였다. 이렇게 얻은 NU177 균 세포 현탁액을 3 ra«씩 6개의 플라스틱 튜브 (15 ml, Falcon tube)에 분주하였다. 이중 5개의 튜브에 대해 실은 (약 25°C)에서 감마선을 조사하되 각 류브의 처리강도는 1, 2, 3, 4 및 5 kGy로 다르게 하였다. 각 류브의 균체 현탁액을 10―1〜 ΚΓ4농도로 순차적으로 회석 한 후 100 ^씩 TSA 고체배지에 도말하여 30°C에서 24-48 시간 배양하여 자라난 콜로니 (약 2000개)를 대상으로 항균 활성을 NU177균과 비교하여 활성이 증가된 균주를 선발하였다. 우수 활성 균주 선발 과정은 도 2에 나타낸 순서를 따랐으며 자세한 내용은 실시예 <1- 2>에서 기술한 바와 같다. 이상의 방법으로 감마선 조사를 1회 실시하여 약 4000 균주를 대상으로 우수 활성 균주를 선발한 결과 활성이 모균, 즉 패니바실러스 폴리믹사 E681-PT 균에 비해 약 50배 이상 증진된 고생산성 변이주 NUR1776을 얻었다 (도 4). NUR1776 균주는 한국생명공학연구원 생명자원센터 (KCTC)에 2011년 11월 11일자로 기탁하여 기탁번호 KCTC 12068BP를 부여받았다. <l-5>푸자리시딘의 정량분석 <1-4> Development of fuzacidine high productivity strain using gamma ray (γ-ray) (step 3) Fuzacidin productivity is further enhanced for NU177 strain selected in Example <1-3>. Three stages of development were performed to obtain the mutated strains. This time, the gamma irradiation method was used, but it was carried out using the facility of Jeongeup Radiation Science Research Institute of Korea Atomic Energy Research Institute. The NU177 mutants at 30 ° C was inoculated in TSB 2.5 medium 15 hours with shaking culture (200 rpm) after all of the culture medium TSB 200 mi was inoculated to the medium was 11 hours with shaking culture back to 30 ° C, 160 rpm condition wherein OD 600 The value reached 2.6. The culture solution was centrifuged at 4 ° C. and 6500 rpm for 15 minutes to recover the cells, washed with the same amount of sterile saline, and the recovered cells were suspended in 20 sterile saline. The NU177 bacterial cell suspension thus obtained was dispensed into 6 plastic tubes (15 ml, Falcon tube) at 3 ra «. The five tubes were irradiated with gamma rays at the actual diameter (about 25 ° C), but the treatment strengths of the various ribs were varied to 1, 2, 3, 4 and 5 kGy. Antibacterial a cell suspension of each ryubeu targeting 10- 1 ~ ΚΓ after sequentially with dilution to a concentration of 100 ^ 4 by TSA 24-48 hours incubation with grown colony in 30 ° C and plated on solid medium (about 2000) A strain with increased activity was selected by comparing the activity with NU177. The excellent active strain selection process was followed the sequence shown in Figure 2 and the details are as described in Examples <1-2>. As a result of performing gamma-irradiation once with the selection of excellent active strains from about 4000 strains, NUR1776, a highly productive mutant strain NUR1776, had about 50 times more activity than the parent strain, ie, F. poly68 E681-PT. (FIG. 4). The NUR1776 strain was deposited with the Korea Biotechnology Research Institute (KCTC) on November 11, 2011 and was given accession number KCTC 12068BP. <l-5> Quantitative analysis of fuzacidin
푸자리시딘 표준시료를 다음과 같이 준비하였다. 패니바실러스 폴리믹사 E681균을 TSBG 배지 8 L를 이용하여 32C에서 3일간 배양하였고 배양액이 식물병원성 곰광이인 회색 곰광이 ( b rys/s c/nerea)와 그람양성 세균 마이크로코쿠스 루테우스 ( /c/ ?C Ca/5 / ews)에 대해 우수한 항균활성을 나타냄을 확인한 후 이 배양액으로부터 푸자리시딘을 분리정제하였다. 먼저, 배양액을 부탄올 (n-BuOH)을 이용하여 추출하였고 감압증발에 의해 부탄올을 제거하여 시료를 확보한 후, 실리카젤 크로마토그라피 (클로로포름과 메탄올 흔합비를 4:1부터 1:1까지 변화시키며 용출)와 세파텍스 컬럼크로마토그라피 (Sephadex LH-20 column,메탄을로 용출)의 방법을 이용하여 정제하였고 마지막단계로서 preparative HPLC(YMC-pack pro C18 250*20 mm column, 메탄을을 50~8 농도구배로 이용하여 용출)에 의해 정제를 완료하였다. 이와 같은 정제과정을 통해 확보한 푸자리시딘을 표준시료로 사용하였다. 푸자리시딘 시료를 메탄올을 이용하여 0.1-50 jug/n 농도로 용해시킨 후 5 가지 농도의 시료를 HPLC로 분석하여 푸자리시딘 피크의 면적올 구해 도 5의 푸자리시딘 정량 검정선을 구하였고 이를 바탕으로 푸자리시딘 시료의 농도를 구하였다. 즉 미지의 시료를 메탄올에 용해시키고 적절히 희석 한 후 HPLC로 분석하여 피크 면적을 구한 후 이를 푸자리시딘 정량 검정선에 대입하여 농도를 구하였다. 실시예 <1ᅳ4〉에서 선발한 NUR1776균을 TSBG(II) 배지 (실시예 <4-3> 참조)를 이용하여 32 °C, 200 rpm 진탕 조건으로 24 시간 배양 후 배양액을 부탄올 추출하고 완전 증발시킨 후 메탄올에 용해하여 위에 기술한 방법으로 정량한 결과 6.97 g/L의 생산성을 나타내었으며, 이는 페닐바실러스 플리믹사 E681균에 비하여 푸자리시딘 생산성이 50배 이상 향상된 것을 확인하 ^다. 대략의 농도를 알고자 할 경우에는 도 6에 나타낸 바와 같이 푸자리시딘 (표준시료) 농도에 따른 M. luteus균 성장 저해환과의 비교 방법을 이용하였다. Fuzacidin standard samples were prepared as follows. Penibacilli polymyx E681 was incubated for 3 days at 32C using 8 L of TSBG medium, and the culture medium was gray bear (b rys / sc / nerea) and gram-positive bacteria Micrococcus luteus (/ c /? C Ca / 5 / ews) was confirmed to exhibit excellent antimicrobial activity from this culture medium was purified and purified fuzacidin. First, the culture solution was extracted using butanol (n-BuOH), butanol was removed by evaporation under reduced pressure to obtain a sample, and then silica gel chromatography (chloroform and methanol mixture ratio was changed from 4: 1 to 1: 1). Eluting) and Sepatex column chromatography (Sephadex LH-20 column, eluting with methane). The final step was preparative HPLC (YMC-pack pro C18 250 * 20 mm column, methane 50 ~ 8). Purification by elution using a concentration gradient). Fuzacidine obtained through this purification process was used as a standard sample. Fuzacidine samples were dissolved in methanol at a concentration of 0.1-50 jug / n, and then 5 samples were analyzed by HPLC to obtain the area of the fuzacidin peak. The concentration of fuzacidin sample was determined based on the results. In other words, an unknown sample was dissolved in methanol, diluted appropriately, analyzed by HPLC, and the peak area was determined. Then, the concentration was determined by substituting the fuzacidin quantitative assay line. NUR1776 bacteria selected in Example <1>4> were incubated for 24 hours at 32 ° C and 200 rpm shaking conditions using TSBG (II) medium (see Example <4-3>), and then the culture medium was extracted with butanol and completely After evaporation, the solution was dissolved in methanol and quantified by the method described above, and showed a productivity of 6.97 g / L, which was confirmed that the productivity of fuzacidin was improved by 50 times or more compared with the Phenyl Bacillus plymic company E681. In order to know the approximate concentration, as shown in FIG. 6, a comparison method with M. luteus bacterium growth inhibitory ring according to the concentration of fuzacidin (standard sample) was used.
<실시예 2>패니바실러스 폴리믹사 NUR1776균의 유전체 염기서열 해득 및 분석을 통한 변이 유전자 탐색 <Example 2> Mutation gene search through analysis and analysis of the genome sequence of NUR1776 bacteria of Panibacillus polymix
상기 <실시예 1>에서 최종 선발한 NUR1776 균주의 변이 유전자 탐색 및 기능 규명을 목적으로 전체 유전체 서열의 해독을 수행하였다. 유전체 서열 해독은 Illumina HiSeq 2000를 이용한 whole-genome shotgun 방식에 의하여 수행하였다. 확보된 염기서열을 RAST server (http://r ast.nmpdr.org/)에 제출하여 유전체 서열에 대한 자동 주석화를 실시하였고 주석화가 완료된 콘티그 (contig)들의 염기서열을 패니바실러스 폴리믹사 E681균의 표준 염기서열 (GenBank 접근번호 CP000154)과 비교하여 변이가 발생된 부위를 탐색하였다. 그 결과 염기서열 중에서 4,871,643 bp 위치의 염기서열 하나에 변이 (점돌연변이)가 있음을 발견하였는데 thymine(T)이 guanine(G)으로 치환된 변이였으며 이 변이가 일어난 부위를 살펴본 결과 PPE 04441로 표시된 유전자로서 1,716 bp 길이의 염기서열 (서열번호 1)을 가지며 아미노산 572개 (서열번호 2)의 단백질을 코딩하는 유전자로 밝혀졌다. 이 572개의 아미노산 서열에 대해서 유사성을 갖는 단백잘 그룹을 탐색한 결과 포스포핵소뮤타제 수퍼 패밀리 (phosphohexomutase super family)에 속하는 단백질들과 높은 상동성을 나타내었고 포스포그루코뮤타아제 (phosphoglucomutase)의 기능을 지니는 것으로 예측되었다. 또한, NUR1776 균주에서 PPE M441 유전자의 509 bp 위치의 점돌연변이 (서열번호 3)에 의해 효소 단백질의 170번째 아미노산이 글루타민 (glutamine)에서 프를린 (proline)으로 바뀌게 됨 (서열번호 4)을 밝혀냈다. 이하 PPE 34441 유전자를 으로, 그리고 PPE_04441 유전자에 의해 만들어지는 단백질 (포스포그루코뮤타제로 예상)을 PGM으로 칭한다. Search for the mutant gene of the NUR1776 strain finally selected in <Example 1> and The translation of the entire genome sequence was performed for the purpose of characterization. Genomic sequence translation was performed by whole-genome shotgun method using Illumina HiSeq 2000. The obtained sequencing was submitted to RAST server (http: // r ast.nmpdr.org/) for automatic annotation of the genome sequence, and the nucleotide sequence of the annotated contigs was converted to Fanibacillus polymix E681. The site where the mutation occurred was compared to the standard sequence of bacteria (GenBank accession number CP000154). As a result, it was found that there was a mutation (point mutation) in one nucleotide sequence at the 4,871,643 bp position, and thymine (T) was substituted with guanine (G). As a gene having a base sequence of 1,716 bp (SEQ ID NO: 1) and encoding a protein of 572 amino acids (SEQ ID NO: 2). Searching for protein groups with similarity to these 572 amino acid sequences showed high homology with proteins belonging to the phosphohexomutase super family and the function of phosphoglucomutase. It was expected to have. In addition, the mutation of the 509 bp position of the PPE M441 gene (SEQ ID NO: 3) in the NUR1776 strain revealed that the 170th amino acid of the enzyme protein was changed from glutamine to proline (SEQ ID NO: 4). . Hereinafter, the PPE 34441 gene and the protein produced by the PPE_04441 gene (expected to be phosphoglucomatase) are referred to as PGM.
<실시예 3> pgm유전자불활성화에 의한푸자리시딘 고생산균주 개발 <3-1> ; 2»유전자의 과발현이 푸자리시딘 생산성에 미치는 영향분석 <Example 3> Development of fuzacidin high production strain by pgm gene inactivation <3-1>; Analysis of the Effect of Gene Overexpression on Fusacisidine Productivity
NUR1776 균주의 푸자리시딘 생산성 증가가 <실시예 2〉에서 밝힌 pgm 유전자의 점돌연변이와 관련이 있는지 확인하기 위해 상보성 실험 (complementation test)을 수행하였다. 점돌연변이의 결과로 아미노산 1개가 글루타민에서 프를린으로 바뀌게 되었는데 이것이 푸자리시딘 생산성 증가의 요인이라면 NUR1776 균에 정상적인 pgm 유전자를 도입할 경우 푸자리시딘 생산성이 저하될 것이다. 구체적 방법으로 프로모터 Pspac에 의해 발현이 이루어지는 pHPspac 플라스미드 백터의 BamHI과 Smal 제한효소 위치에 모균주로부터 변이가 발생되지 않은 pgm 유전자를 BamHI를 포함하는 정방향 프라이머 4441F(5-CGGGATCCGCTCTGC CGACATAAGC- 3 : 서열번호 5)와 Stnal을 포함하는 역방향 프라이머 4441R(5-TCCCCGGGCGTTGCC GGAATAAGCC-3 : 서열번호 6)를 이용하여 PCR 방법으로 클로닝하였다. PCR은 95°C에서 3분 예비변성 단계 (predenaturation)를 가진 후 변성단계 (denaturation) 95°C에서 30초, 어닐링 (annealing) 단계 50°C에서 30초, 연장 (extension) 단계 72°C에서 2분 반웅을 30 회 진행하고 마지막으로 72°C에서 5분 종결반웅의 조건으로 실행하였다. 같은 제한효소로 양 말단올 잘라내고 백터와 재조합하여 PHR4441 플라스미드를 제작한 후 NUR1776에 도입하였고 erythromycin 저항성에 의해 형질전환체를 선별하였다 (도 7). 형질전환체 ( polymyxa NUR1776(pHR4441)) 콜로니를 TSBG 배지에서 48 시간 진탕 배양하였다. 배양액 0.5 에 동량의 부탄올을 가하여 푸사리시딘 추출물 시료를 얻었으며 10 ^의 추출물을 종이 디스크에 올려 Micrococcus luteus^ 생장 저해능을 비교하였다. Complementation tests were performed to determine whether the increase in fuzacidin productivity of the NUR1776 strain is related to the point mutation of the pgm gene identified in <Example 2>. As a result of the point mutation, one amino acid was changed from glutamine to plinine. If this is the factor that increases the productivity of fuzacidin, the introduction of normal pgm gene into NUR1776 will reduce the productivity of fuzacidin. Specifically, pgm was not generated from the parent strain at the BamHI and Smal restriction enzyme positions of the pHPspac plasmid vector expressed by the promoter Pspac. The gene was cloned by PCR using forward primer 4441F (5-CGGGATCCGCTCTGC CGACATAAGC-3: SEQ ID NO: 5) containing BamHI and reverse primer 4441R (5-TCCCCGGGCGTTGCC GGAATAAGCC-3: SEQ ID NO: 6) containing Stnal. PCR was followed by a 3 min predenaturation at 95 ° C followed by 30 seconds at 95 ° C for denaturation, 30 seconds at 50 ° C for annealing step and 72 ° C at extension step 72 ° C. The reaction was performed 30 times for 2 minutes and finally carried out under the condition of 5 minutes of termination reaction at 72 ° C. Both ends were cut with the same restriction enzyme and recombinant with the vector to prepare a PHR4441 plasmid, which was then introduced into NUR1776, and transformants were selected by erythromycin resistance (FIG. 7). Transformants (polymyxa NUR1776 (pHR4441)) colonies were shaken for 48 hours in TSBG medium. The same amount of butanol was added to the culture solution to obtain a fusarisidine extract sample, and 10 ^ extracts were placed on a paper disk to compare the inhibition of micrococcus luteus ^ growth.
그 결과, 도 7에 나타난 바와 같이, NUR1776(pHR4441)균은 백터만을 지닌 모균 NUR1776(pHPspac)에 비하여 항균 활성이 현저히 감소됨을 확인하였다. 따라서 예측한 대로 pgm유전자의 점돌연변이가 푸사리시딘 생산성 증가의 요인 중 하나인 것을 확인하였다.  As a result, as shown in Figure 7, NUR1776 (pHR4441) was confirmed that the antimicrobial activity is significantly reduced compared to the parental NUR1776 (pHPspac) having only a vector. Therefore, it was confirmed that the point mutation of the pgm gene is one of the factors that increase the productivity of fusaricidin.
<3-2> pgm유전자의 변이가푸자리시딘 생산성에 미치는 영향분석 <3-2> Analysis of Effect of Mutation of pgm Gene on Productivity of Fuzarizidine
NUR1776균의 pgm 유전자의 점돌연변이가 푸사리시딘 생산성을 증가 시키는 요인임을 확인하기 위하여 모균, 즉 E681-PT균의 염색체상에서 pgm 유전자의 변이를 유도하여 푸사리시딘 생산성을 분석하였다. NUR1776균의 푸자리시딘 고생산성은 여러 유전적 변이가 복합적으로 작용하여 나타난 결과 일 수 있으므로 pgm 유전자에만 변이를 일으켜 그 효과를 보고자한 것이다. 이를 위해 두 가지 형태의 변이를 모균주에 도입하였는데 첫째는 NUR1776균에서 발생된 것과 동일한 점돌연변이를 도입한 경우 (도 8)이고 둘째는 pgm유전자의 일부를 제거하여 완전히 불활성화한 경우 (도 9)이다. 먼저, 점돌연변이 도입과정은 다음과 같다. NUR1776균의 점돌연변이 pgm 유전자 으로 명명)를 얻기 위하여 NUR1776균의 염색체 DNA를 주형으로 하여 정방향 프라이머 4441F (서열번호 5)와 역방향 프라이머 4441R-em(5-CACACTCTTAAGmGCTTCctUgccgtgagaggtcacc-3: 서열번호 7)을 이용하여 PCR을 수행하였다. 이어서 에리쓰로마이신 (erythromycin, em) 저항성 유전자는 플라스미드 pDG1664[Bacillus Genetic Stock Center(BGSCID: ECE117)]를 주형으로 정방향 프라이머 emF(5-GMGC ACTTMGAGTGTG-3: 서열번호 8)와 역방향 프라이머 emR(5-TCCTTGGMGCTGTCAGTAG-3: 서열번호 9)을 사용하여 PCR로 증폭한 후 pgm e PCR산물과 흔합하여 fusion PCR 방법 (Horton R. M. et al. , Gene 77:61-68 1989)으로 Pgm177(rem카세트를 제작하였다. Fusion PCR은 94°C에서 3분 예비변성 단계 (predenaturation)를 가진 후 변성단계 (denaturat ion) 94°C에서 20초, 어닐링 (annealing) 단계 45°C에서 20초 (1회당 0.3씩 상향 조정), 연장 (extension) 단계 68°C에서 4분 조건으로 15 회 진행하고 다시 94°C에서 20초, 501:에서 20초, 68°C에서 4분 조건으로 20 회 진행한 후 마지막으로 68°C에서 5분 종결반웅의 조건으로 실행하였다. 모균의 pgm 유전자와 치환하기 위하여 pgm 하위 부분 2 kbOW^i?)를 정방향 프라이머 4440F-era(5-In order to confirm that the point mutation of the pgm gene of NUR1776 is a factor that increases the productivity of fusaricidin, the analysis of the productivity of the fusarisid was induced by inducing the mutation of the pgm gene on the chromosome of the parent strain, ie, E681-PT. The high productivity of fuzacidin in NUR1776 may be the result of a combination of several genetic variations, so it is intended to see the effects of mutations in the pgm gene alone. To this end, two types of mutations were introduced into the parent strain, first of which introduced a point mutation identical to that of the NUR1776 strain (FIG. 8) and second of completely inactivating by removing a part of the pgm gene (FIG. 9). )to be. First, the point mutation introduction process is as follows. To obtain the point mutation of NUR1776, the mutant DNA of NUR1776 was used as a template, and forward primer 4441F (SEQ ID NO: 5) and reverse primer 4441R-em (5-CACACTCTTAAGmGCTTCctUgccgtgagaggtcacc-3: SEQ ID NO: 7) were obtained. PCR was performed. The erythromycin (em) resistance gene was then plasmid pDG1664 [Bacillus Genetic Stock Center (BGSCID: ECE117)] with a template of forward primer emF (5-GMGC ACTTMGAGTGTG-3: SEQ ID NO: 8) and reverse primer emR (5). -TCCTTGGMGCTGTCAGTAG-3: Amplified by PCR using SEQ ID NO: 9) and then mixed with the pgm e PCR product, followed by fusion PCR method (Horton RM et al., Gene 77: 61-68 1989) to P gm 177 (r em cassette). Fusion PCR was followed by a 3 minute predenaturation step at 94 ° C, followed by 20 seconds at 94 ° C denaturation ion and 20 seconds at 45 ° C annealing step (0.3 per time). Upwards), extension step 15 times at 68 ° C for 4 minutes, 20 seconds at 94 ° C, 20 seconds at 501 :, 20 times for 4 minutes at 68 ° C, and last Was run under conditions of 5 minutes termination reaction at 68 ° C. Pgm subpart 2 kbOW ^ i?) By forward primer 4440F-era (5-
CTACTGACAGCTTCCAAGGAggcagt acgccgt ggaggt c-3 : 서열번호 10)과 역방향 프라이머 4440R( 5-GATAATAGCCGTGCGATAA-3 : 서열번호 11)을 이용하여 PCR로 증폭한 후 pgm e- em카세트와 다시 fusion PCR 방법에 의해 연결하여 4.85kb 크기의 pgmn em-N4440단편을 확보하였다. 이 4.85kb 단편을 pGEM T-easy 백터 (Promega사)에 TA 클로녕 하여 pHR4441P 플라스미드를 제작하고 이를 패니바실러스 폴리믹사 E681- PT균에 도입, 염색체상에서의 재조합을 통해 유전자에 점돌연변이를 갖게된 패니바실러스 폴리믹사 PGM1776균올 확보하였다. 이렇게 제작한 균주를 TSBG 배지에 접종하여 48 시간 배양하여 배양액의 부탄을 추출물의 M. //i«/s의 성장 저해능을 모균주와 비교 한 결과 모균주에 비해 6배 이상 높은 생장 저해 활성을 확인하였다 (도 8). CTACTGACAGCTTCCAAGGAggcagt acgccgt ggaggt c-3: SEQ ID NO: 10 and amplified by PCR using reverse primer 4440R (5-GATAATAGCCGTGCGATAA-3: SEQ ID NO: 11), and then linked to pgm e-emcassette by fusion PCR again to 4.85kb A pgmn em-N4440 fragment of size was obtained. This 4.85kb fragment was cloned into pGEM T-easy vector (Promega) to make pHR4441 P plasmid, which was introduced into F. E681-PT strain of F. polymycosa, and point mutations in the gene through recombination on chromosomes. PGM1776 bacteria were obtained from Fanibacilli polymix. The inoculated strains were inoculated in TSBG medium and incubated for 48 hours. Butane in the culture was compared with the parent strain for M. // i «/ s growth inhibition. It was confirmed (FIG. 8).
다음 단계로는 pgm 유전가 결손된 변이주를 제작하기 위해 위에 서술한 바와 같은 fusion PCR 방법에 의해 pgm 유전자의 N-말단 일부를 포함하는 1.4kb의 PCR 단편 (fc)을 정방향 프라이머 4441FF(5-GMMGAGCAGTAGGCATTA-3 : 서열번호 12)와 역방향 프라이머 4441FR-em(5- The next step was to prepare a 1.4 kb PCR fragment (fc) containing the N-terminal part of the pgm gene by forward fusion PCR method as described above in order to construct a mutant lacking the pgm gene. Forward primer 4441FF (5-GMMGAGCAGTAGGCATTA- 3: SEQ ID NO: 12) and reverse primer 4441FR-em (5-
CACACTOTAAGTTTGOTCcggt cagcat cagggt ctg-3 서열번호 13)로 PCR 증폭하였다. 이 Npgm PCR 단편을 em-N4440 PCR 단편과 연결하여 4.2kb의 Npgm~em-N4440 단편을 얻었고 이를 pGEM T-easy 백터 (Pr omega사)에 TA 클로닝 하여 pHR4441D 플라스미드를 제작하였다. 이를 패니바실러스 폴리믹사 E681-P 균에 도입, 염색체상에서의 재조합을 통해 Pgm 유전자가 완전히 불활성화된 변이주 패니바실러스 폴리믹사 PGM4441균을 제작하였으며, PGM4441 균주는 한국생명공학연구원 생명자원센터 (KCTC)에 2012년 11월 27일자로 기탁하여 기탁번호 KCTC 12323BP를 부여받았다. 아울러 상기 PGM4441균주를 TSBG 배지에 접종하여 48 시간 배양하여 배양액의 부탄올 추출물의 M. luteu 성장 저해능을 모균주와 비교 한 결과 모균주에 비해 10배 이상 높은 생장 저해 활성을 확인하였다 (도 9). <3-3> »유전자의 변이가 배양액의 점성에 미치는 영향 분석 PCR amplification was performed using CACACTOTAAGTTTGOTCcggt cagcat cagggt ctg-3 SEQ ID NO: 13). This Npgm PCR fragment was linked with the em-N4440 PCR fragment to obtain 4.2 kb of Npgm to em-N4440 fragments, which were TA cloned into a pGEM T-easy vector (Pr omega) to pHR4441 D. Plasmids were prepared. This Fannie Bacillus poly miksa introduced in the E681-P bacteria was produced P gm gene is completely inactivated the mutant Fannie Bacillus poly miksa PGM4441 bacteria through recombination on the chromosomes, PGM4441 strains Life Resource Center, Korea Research Institute of Bioscience and Biotechnology (KCTC) Was deposited on November 27, 2012 and was granted the accession number KCTC 12323BP. In addition, the PGM4441 strain was inoculated in TSBG medium and cultured for 48 hours, and the growth inhibition activity of M. luteu growth of butanol extract of the culture medium was compared with the parent strain, and the growth inhibition activity was confirmed 10 times higher than that of the parent strain (FIG. 9). <3-3> Analysis of the Effect of Gene Mutations on the Viscosity of Culture Media
모균인 E681-PT균과 pgm 유전자에 변이가 일어난 푸자리시딘 고생산성 균주들, 즉 PUR1776균, PGM1776균 및 PGM4441균을 TSBG 배지에 24시간 배양 후 배양액의 점성을 살펴본 결과 pgm유전자에 변이가 일어난 균주들의 경우 점성이 크게 줄어들었다 (도 10). 이는 pgm 유전자의 변이에 의해 세포외 다당류 등 점성물질의 생산이 감소되었가 때문으로 판단되며 이로 인해 원심분리에 의한 균체 회수를 용이하게 할 수 있었다. The strains of pgm gene were examined after incubating the parent strain E681-PT and the fusicidin high-producing strains, ie, PUR1776, PGM1776 and PGM4441, in TSBG medium for 24 hours. Viscosity was significantly reduced for the strains that occurred (FIG. 10). This may be due to the decrease in the production of viscous substances such as extracellular polysaccharides due to the mutation of the pgm gene, thereby facilitating cell recovery by centrifugation.
<3-4> 패니바실러스 폴리믹사 E681균 pgm (PPE-04441) 유전자의 기능 분석 상기 <실시예 2>에서 PPE 04441 유전자가 코딩하는 단백질의 기능이 포스포그루코뮤타제 (PGM)일 것으로 예측하였는데 예측한 기능이 맞는지 확인하기 위해 모균, 즉 패니바실러스 폴리믹사 E681-PT균과 점돌연변이주 PGM1776균을 TSB 3ml에 30°C에서 15 시간 배양한 후 균체를 원심분리에 의해 회수하였고 동량의 0.1M 인산 완충용액 (phosphate buffer )(pH 7.0)에 현탁한 후, 초음파 파쇄 (Branson 450 Sonifier, output 3.0, duty cycle 30¾)하여 이를 효소 시료로 사용하였다. 포스포그루코뮤타제 역가 측정은 Rick 등에 의해 보고된 방법 (J. Bacteriol. 176:4851-4857, 1994)을 이용하였는데 효소작용에 의해 glucose-1-phosphate 기질이 glucose— 6一 phosphate로 변환되고 다시 glucose— 6一: phosphate dehydrogenase에 의해 산화되는 과정에서 생성되는 NADPH를 340 nm 에서의 absorbance로서 측정하는 것이다. 340nm 에서의 흡광도 (absorbance) 측정값을 균주 배양액의 0¾00 값으로 나누고 여기에 1000을 곱하여 얻은 값을 표 1에 나타내었는데 E681-PT균 시료는 303.7의 높은 AU 값 (Arbitrary Unit)을 나타내는데 비해 점돌연변이 PGM1776균의 배양체에서는 7.7의 AU값을 나타냈고 pgm 유전자가 완전히 불활성화된 PGM4441균의 경우 2.0 AU의 값을 나타냈다. 이상의 결과로 ^(PPE_04441) 유전자는 예측한 바와 같이 포스포그루코뮤타제를 코딩하는 것이 확인되었다. <3-4> Analysis of the function of the genome P68 (PPE-04441) gene of E.ni. p68 (PPE-04441) of Pannibacilli polymyxa It was predicted that the function of the protein encoded by the PPE 04441 gene is phosphoglucomutase (PGM) In order to confirm that the predicted function is correct, the incubated fungi, ie, F. bacterium E681-PT and point mutation PGM1776, were incubated in TSB 3ml at 30 ° C for 15 hours, and the cells were recovered by centrifugation. After suspension in phosphate buffer (pH 7.0), ultrasonic disruption (Branson 450 Sonifier, output 3.0, duty cycle 30¾) was used as an enzyme sample. The phosphoglucomatase titer was measured by Rick et al. (J. Bacteriol. 176: 4851-4857, 1994), and the enzyme was converted to glucose-1-phosphate substrate by glucose and then converted into glucose-6 phosphate. glucose-6 一: NADPH produced during oxidation by phosphate dehydrogenase is measured as absorbance at 340 nm. Absorbance measurements at 340 nm The result obtained by dividing by 0¾ 00 value of the strain culture medium and multiplying by 1000 is shown in Table 1. The E681-PT sample shows a high AU value of 303.7 (Arbitrary Unit), whereas the point mutation has an AU value of 7.7 in the culture of PGM1776 bacteria. In the case of PGM4441 bacteria in which the pgm gene was completely inactivated, a value of 2.0 AU was shown. As a result, it was confirmed that the ^ (PPE_04441) gene encodes phosphoglucomutase as predicted.
【표 1】  Table 1
패니바실러스 폴리믹사 PGM1776균 및 PGM4441균의 포스포그루코뮤타제 활성 분석  Analysis of Phosphoglucomatase Activity by PGM1776 and PGM4441
Figure imgf000022_0001
Figure imgf000022_0001
<실시예 4> 패니바실러스 폴리믹사 NUR1776 균의 대량배양 및 푸자리시딘 생산 <Example 4> mass culture and production of fuzacidin of the fungus Bacillus polymix NUR1776
<4-1> 5L규모배양실험  <4-1> 5L culture experiment
푸자리시딘 고생산 균주 패니바실러스 폴리믹사 NUR1776균을 이용하여 푸자리시딘을 생산하기 위해 5L 발효조를 이용한 배양 시험올 실시하였다. TSA 고체배지에 1-2일 배양하여 얻은 콜로니를 10 의 TSB 배지에 접종하여 32°C에서 15 시간 200 rpm으로 진탕배양 후, 이 종배양액을 350 mi TBSG 배지 (TSB 배지에 포도당 3% 첨가)에 1% 되도록 접종하였다. 32 °C, 300rpm 교반, 1 vvm aeration 조건으로 48시간 배양하였다. 3 시간 간격으로 배양액 0.5 을 샘플링하여 동량의 부탄올을 이용하여 추출하고 10 ^의 추출물을 종이 디스크에 올려 M. lutein 성장 저해환을 살펴봄으로써 푸자리시딘 생산을 추적하였다. 그 결과 도 11 에 나타난 바와 같이 배양 9시간 이후 생산이 크게 증가되어 27시간에 최대치에 도달하였다. < -2>패니바실러스균의 배양액으로부터 푸자리시딘와추출 상기 실시예 <4-1>에서와 같은 방법으로 NUR1776균을 배양하면서 2시간 또는 적절한 시간 간격으로 배양액 0.5 을 샘플링하여 원심분리 (11,000 rpm, 1분)에 의해 균체와 배양 상등액을 얻은 후 각각을 실시예 <1-2>에 기술된 방법으로 부탄을 추출하여 시료를 준비하고 항균력을 살펴본 결과 도 12에 나타난 바와 같이 항균력이 거의 대부분 균체에 존재함을 확인하였다. 한편, 푸자리시딘을 추출함에 있어서 적절한 용매를 선별하기 위해 균체를 두 가지 용매, 즉 부탄을과 에탄올 (ethanol)로 추출하여 비교한 결과 도 13에 나타난 바와 같이 에탄을에 의한 추출 효율이 우수하였다. 따라서 패니바실러스균 균체로부터의 푸자리시딘의 추출은 에탄올을 이용하는 것이 바람직함을 확인하였다. A culture test using a 5 L fermenter was performed to produce fuzacidine using the fuzacidin high-producing strain Fanibacillus polymyx NUR1776. Colonies obtained by culturing 1-2 days in TSA solid medium were inoculated in 10 TSB medium and shaken at 32 ° C for 15 hours at 200 rpm, and then the culture medium was added to 350 mi TBSG medium (added 3% glucose to TSB medium). Was inoculated to 1%. It was incubated for 48 hours at 32 ° C, 300rpm stirring, 1 vvm aeration conditions. 0.5 hours of culture was sampled and extracted with the same amount of butanol, and 10 ^ extracts were placed on paper discs to track M. lutein growth inhibition. As a result, as shown in FIG. 11, the production was greatly increased after 9 hours of culture, reaching a maximum at 27 hours. <-2> Extract with fuzacidin from the culture medium of Panibacillus After culturing NUR1776 bacteria in the same manner as in Example <4-1>, the culture medium 0.5 was sampled at 2 hours or at appropriate time intervals to obtain the cells and the culture supernatant by centrifugation (11,000 rpm, 1 minute). As a result of preparing the sample by extracting butane by the method described in Example <1-2> and examining the antibacterial activity, as shown in FIG. On the other hand, in extracting fuzacidine, in order to select an appropriate solvent, the cells were extracted with two solvents, ie, butane and ethanol, and as a result, the extraction efficiency by ethane was excellent as shown in FIG. It was. Therefore, it was confirmed that it is preferable to use fuethanidine for extracting fuzacidin from the fungus Bacillus cells.
<4-3> 500L 규모 배양에 의한푸자리시딘 생산 <4-3> Fuzacidin Production by 500 L Scale Culture
NUR1776균주의 대량배양을 위해서는 TSBG(II) 배지 (TSB, 8g; 포도당, 3g; (NH4)2S04, 2g; K2HP04, 0.1 g; MgS04, 0.01 g; yeast extract, 1 gl L)를 이용하였다. For mass culture of NUR1776 strain, TSBG (II) medium (TSB, 8g; glucose, 3g; (NH 4 ) 2 S04, 2g; K 2 HP0 4 , 0.1 g; MgS0 4 , 0.01 g; yeast extract, 1 gl L ) Was used.
NUR1776균의 콜로니를 10 ml의 TSBG 배지에 접종하여 32에서 15 시간 200 rpm으로 진탕배양 후 이를 500 ml의 TSBG 배지에 접종하여 동일 조건으로 10시간 배양하였다. 이 배양액을 35 L TBSG(II) 배지에 1¾ 접종하여 32°C , 300rpm 교반, 1 vvm aeration 조건으로 6시간 배양하였다. 정상적으로 잘 자란 것을 확인하고 350 L TBSG(II) 배지에 10% 접종하여 32°C, 300rpm 교반, 1 wm aeration 조건으로 20시간 배양하였다. 배양 12시간 후 균체 성장이 최대치에 도달하였고 푸자리시딘 생산은 배양시작 후 9시간부터 활발히 이루어졌다 (도 14) · 연속원심분리 방법으로 균체를 회수한 후 총량이 10 리터가 되도록 가수하여 현탁하였다. 균체 현탁액에 동량의 에탄올을 가하고 하룻밤 정치시켜 추출한 후 원심분리하여 상등액을 취하고, 감압증발에 의해 농축하고, 마지막으로 동결건조에 의해 푸자리시딘을 확보하였다. 실시예 <1-5>에 기술된 방법으로 배양액의 푸자리시딘을 분석한 결과 7g/L 수준이었다. Colonies of NUR1776 were inoculated in 10 ml of TSBG medium and shaken at 32 rpm for 15 hours at 200 rpm, and then inoculated in 500 ml of TSBG medium and incubated for 10 hours under the same conditions. The culture was inoculated 1¾ in 35 L TBSG (II) medium and incubated for 6 hours at 32 ° C, 300 rpm stirring, 1 vvm aeration conditions. It was confirmed that the well grown and inoculated 10% in 350 L TBSG (II) medium and incubated for 20 hours at 32 ° C, 300rpm stirring, 1 wm aeration conditions. After 12 hours of cultivation, the cell growth reached a maximum, and fuzacidin production was actively carried out from 9 hours after the start of cultivation (Fig. 14). It was. An equal amount of ethanol was added to the cell suspension, and the mixture was left to stand overnight, followed by extraction. The supernatant was collected by centrifugation, concentrated by evaporation under reduced pressure, and finally, fuzacidine was obtained by lyophilization. The analysis of fuzacidine in the culture by the method described in Example <1-5> resulted in a level of 7 g / L.
【수탁번호】 [Accession number]
기탁기관명 : 한국생명공학연구원 수탁번호 : KCTC12068BP 수탁일자 : 20111111 기 탁기관명 : 한국생명공학연구원 수탁번호 : KCTC12323BP 수탁일자 : 20121127 Depositary Name : Korea Research Institute of Bioscience and Biotechnology Accession number : KCTC12068BP Accession date : 20111111 Depositary name : Korea Research Institute of Bioscience and Biotechnology Accession number : KCTC12323BP Accession date : 20121127
Figure imgf000025_0001
Figure imgf000025_0001
f3 e s_a2To?. oSsnSAlvr£..... , . ¾ 억 문
Figure imgf000026_0001
서석
f3 e s_a2To ?. oSsnSA l vr £. . ... , . ¾ billion doors
Figure imgf000026_0001
Preface
?. 의 · 원기 p탁에대한수 ί증  ?. Number of recurrences
TO:박승 TO: Park Seung
국 공푸시 ¾¾¾ S48-1B Guk Gong Fu ¾¾¾ S48-1B
31 -92E 31 -92E
Figure imgf000026_0002
BUOAMiST TREATY ON THE I TERNATiONAL MSXXJNITK OF THE DEPOSIT
Figure imgf000026_0002
BUOAMiST TREATY ON THE I TERNATiONAL MSXXJNITK OF THE DEPOSIT
OF MICROORGANISMS OIi THE PURPOSE OF PATENT PHOCGPUliE  OF MICROORGANISMS OIi THE PURPOSE OF PATENT PHOCGPUliE
IMTERNATIO AL FOiiM IMTERNATIO AL FOiiM
RECEIPT I THE CASE OF AN ORIGINAL DEPOSIT  RECEIPT I THE CASE OF AN ORIGINAL DEPOSIT
issued pursuant to Rule 7.1 O : PARK Setmg*H 5  issued pursuant to Rule 7.1 O : PARK Setmg * H 5
Korea Research Institute of Bioscience and Biotechnology  Korea Research Institute of Bioscience and Biotechnology
548-16 Wonbong— ri, Geumnam-m eon, Sejong-si 339-837 548-16 Wonbong— ri, Geumnam-m eon, Sejong-si 339-837
epub!ic of Korea  epub! ic of Korea
Figure imgf000027_0002
Figure imgf000027_0002
Π , SCIENTIFIC DESCRIPTION AKD/OR PROPOSED TAXONOMIC DESIGNATION Π, SCIENTIFIC DESCRIPTION AKD / OR PROPOSED TAXONOMIC DESIGNATION
The microorganism identifi^! under ! above was accompanied by: The microorganism identifi ^! under! above was accompanied by:
ί x ] a scientific description  ί x] a scientific description
[ 】 a proposed ta難麵 ic designation  [] A proposed ta 難 麵 ic designation
(Mark with cross where applicable)  (Mark with cross where applicable)
EL RECEIPT AND ACCEPTANCE EL RECEIPT AND ACCEPTANCE
This International Depositary Authority accepts the microorganism identified under I above, which was received by it on November 27, 2012* This International Depositary Authority accepts the microorganism identified under I above, which was received by it on November 27, 2012 *
{V, RECEIPT OF REQUEST FOR CONVERSIO  {V, RECEIPT OF REQUEST FOR CONVERSIO
The microorganism identified under I above was received by this International Depositary Authority on md a request to convert the originai deposit Co a deposit under the Budapest Treaty was received by it on  The microorganism identified under I above was received by this International Depositary Authority on md a request to convert the originai deposit Co a deposit under the Budapest Treaty was received by it on
V . INTERNATIONAL DEPOSITARY AUTHORITY  V. INTERNATIONAL DEPOSITARY AUTHORITY
Signatured s) of person(s) having the power Signatured s) of person (s) having the power
Name: Korean Collection lor Type Cultures to represent the Internationa! Depositary Name: Korean Collection lor Type Cultures to represent the Internationa! Depositary
Address- Korea Research Institute of Address- Korea Research Institute of
Bioscience and Biotechnology ( R1BB)  Bioscience and Biotechnology (R1BB)
125 Gwahak-ro, Yuseong-gu,
Figure imgf000027_0001
125 Gwahak-ro, Yuseong-gu,
Figure imgf000027_0001
Daejeon 3(»ᅳ 806 BAE, Kyung Sook, Director Republic of Korea Date: December 05 2012  Daejeon 3 (»ᅳ 806 BAE, Kyung Sook, Director Republic of Korea Date: December 05 2012
Fom BP/4 < C C Foiw Ϊ.7) sole page
Figure imgf000028_0003
Fom BP / 4 <CC Foiw Ϊ.7) sole page
Figure imgf000028_0003
Figure imgf000028_0001
Figure imgf000028_0001
4o« ay KilnT 4o «ay KilnT
H*- r fete-fc- *&ia ι ί¾^·¾
Figure imgf000028_0002
H *-r fete-fc- * & ia ι ί¾ ^ · ¾
Figure imgf000028_0002
92 92
TCZ0l0/Cl0ZaM/X3d S Z60/ 0Z OAV  TCZ0l0 / Cl0ZaM / X3d S Z60 / 0Z OAV

Claims

【청구의 범위】 [Range of request]
【청구항 1】  [Claim 1]
패니바실러스 폴리믹사 (/¾e/2/0ac///i/s ploymyxa) 균주에서 서열번호 1로 기 재되는 pgm 유전자; 또는 서열번호 1로 기재되는 pgm유전자와 서열번호 14로 기재 되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테캅틴 생합성 유전 자 중 어느 하나 이상의 유전자를 불활성화시킨 푸자리시딘 (iusaricidin) 고생산 재조합 패니바실러스 폴리믹사 균주.  A pgm gene as set forth in SEQ ID NO: 1 in a F. paniscillus polymyx (/ ¾e / 2 / 0ac /// i / s ploymyxa) strain; Or a fuzisidine inactivating at least one of the pgm gene of SEQ ID NO: 1, the polymyxin biosynthesis gene of SEQ ID NO: 14, and the tritecaptin biosynthesis gene of SEQ ID NO: 15; Producing Recombinant Penicillaceae Polymyx Strains.
【청구항 2】 [Claim 2]
제 1항에 있어서, 상기 패니바실러스 폴리믹사 균주는 기탁번호 KCTC 8801P 로 기탁된 균주인 것올 특징으로 하는 푸자리시딘 고생산 재조합 패니바실러스 폴 리믹사 균주.  According to claim 1, wherein the Fanibacillus polymixa strain is fuzisidine high production recombinant Favaibacillus polymixa strain, characterized in that the strain deposited with the accession number KCTC 8801P.
【청구항 3] [Claim 3]
제 1항에 있어서, 상기 유전자 불활성화는 결실 또는 변이시키는 것을 특징 으로 하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주.  According to claim 1, wherein the gene inactivation is fusicidin high production recombinant Favacillus polymyxa strain, characterized in that for deletion or mutation.
【청구항 4】 [Claim 4]
제 1항에 있어서, 상기 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주는 기탁번호 KCTC 12068BP 또는 KCTC 12323BP로 기탁된 것을 특징으로 하는 푸 자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주.  According to claim 1, wherein the fuzacidin high production recombinant panic Bacillus polymixa strain is characterized in that deposited with the deposit No. KCTC 12068BP or KCTC 12323BP fuzacidin high production recombinant Panic Bacillus polymixa strain.
【청구항 5】 [Claim 5]
패니바실러스 폴리믹사 균주에서 서열번호 14로 기재되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테갑틴 생합성 유전자가 불활성화되고, 서 열번호 3으로 기재되는 돌연변이 pgm 유전자가 도입된 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주.  Fuzacidin, in which the polymyxin biosynthesis gene as shown in SEQ ID NO: 14 and the tritetaptin biosynthesis gene as shown in SEQ ID NO: 15 are inactivated and the mutant pgm gene as shown in SEQ ID NO: 3 is introduced in the F. High Production Recombinant Penivacillus Polymyx Strains.
【청구항 6] 제 5항에 있어서, 상기 패니바실러스 폴리믹사 균주는 기탁번호 KCTC 8801P 로 기탁된 균주인 것을 특징으로 하는 푸자리시딘 고생산 재조합 패니바실러스 폴 리믹사 균주. [Claim 6] According to claim 5, wherein the Fanibacillus polymixa strain is a fuzzy cydin high production recombinant Favabacillus polymixa strain, characterized in that the strain deposited with the accession number KCTC 8801P.
【청구항 7】 [Claim 7]
1) 패니바실러스 폴리믹사 균주에서 서열번호 1로 기재되는 pgm 유전자; 또 는 서열번호 1로 기재되는 pgm 유전자와 서열번호 14로 기재되는 폴리믹신 생합성 유전자 및 서열번호 15로 기재되는 트리테캅틴 생합성 유전자 중 어느 하나 이상의 유전자를 불활성화시키는 단계 ; 및  1) the pgm gene as set forth in SEQ ID NO: 1 in a Fanibacilli polymyxa strain; Or inactivating a gene of any one or more of the pgm gene of SEQ ID NO: 1, the polymyxin biosynthesis gene of SEQ ID NO: 14, and the tritecaptin biosynthesis gene of SEQ ID NO: 15; And
2) 상기 단계 1)의 균주에서 푸자리시딘 고생산 균주를 선별하는 단계를 포 함하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제조 방법 .  2) A method for producing a fuzzy cydin high-producing recombinant F. ni. Polymyxa strain, comprising the step of selecting the high fuzisidine-producing strain from the strain of step 1).
【청구항 8】 [Claim 8]
제 7항에 있어서, 상기 단계 1)의 패니바실러스 폴리믹시" 균주는 기탁번호 KCTC 8801P로 기탁된 균주인 것을 특징으로 하는 푸자리시딘 고생산 재조합 패니바 실러스 폴리믹사 균주의 제조 방법.  The method of claim 7, wherein the strain of the Panibacillus polymix "of step 1) is a strain deposited with accession number KCTC 8801P.
【청구항 9】 [Claim 9]
1) 패니바실러스 폴리믹사 균주에서 서열번호 14로 기재되는 폴리믹신 생합 성 유전자 및 서열번호 15로 기재되는 트리테캅틴 생합성 유전자를 불활성화시키는 단계;  1) inactivating the polymyxin biosynthesis gene as set out in SEQ ID NO: 14 and the tritecaptin biosynthesis gene as set out in SEQ ID NO: 15 in a F.
2) 상기 단계 1의 균주에 NTGO methyl— -nitro-^nitrosoguanidine)를 처 리하여 돌연변이를 유도하는 단계; 및  2) inducing mutations by treating NTGO methyl— —nitro— ^ nitrosoguanidine) to the strain of step 1; And
3) 상기 단계 2)의 돌연변이된 균주에서 푸자리시딘 대량 생산 균주를 선별 하는 단계를 포함하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제 조 방법ᅳ  3) a method for producing a fuzzy cydin high-producing recombinant panibacillus polymixsa strain comprising the step of selecting the fuzacidine mass-producing strain from the mutated strain of step 2)
【청구항 101 [Claim 101]
제 9항에 있어서, 상기 단계 1)의 패니바실러스 폴리믹사 균주는 기탁번호 KCTC 8801P로 기탁된 균주인 것을 특징으로 하는 푸자리시딘 고생산 재조합 패니바 실러스 폴리믹사 균주의 제조 방법. 10. The method according to claim 9, wherein the strain of Panicibacillus polymixsa of step 1) is deposited No. Method for producing a fujarysidine high production recombinant paniva silus polymyxa strain, characterized in that the strain deposited with KCTC 8801P.
【청구항 11】 [Claim 11]
1) 제 9항의 균주에 NTG 및 UV를 처리하여 돌연변이를 유도하는 단계; 및 1) treating the strain of claim 9 with NTG and UV to induce mutations; And
2) 상기 단계 1)의 돌연변이된 균주에서 푸자리시딘 대량 생산 균주를 선별 하는 단계를 포함하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제 조 방법ᅳ 2) a method for producing a fuzzy cydin high-producing recombinant panibacillus polymixsa strain comprising the step of selecting the fuzacidine mass-producing strain from the mutated strain of step 1)
【청구항 12】 [Claim 12]
1) 제 11항의 균주에 방사선을 조사하는 단계; 및  1) irradiating the strain of claim 11; And
2) 상기 단계 1)와돌연변이된 균주에서 푸자리시딘 대량 생산 균주를 선별 하는 단계를 포함하는 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제 조 방법 .  2) a method for producing a fuzzy cydin high-producing recombinant F. ni. Polymyxa strain comprising the step 1) and the step of selecting a fuzacidine mass-producing strain from the mutated strain.
【청구항 13】 [Claim 13]
제 12항에 있어서, 상기 단계 1)의 방사선은 감마선, 적외선, 자외선, X 선 및 양성자범으로 구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 푸 자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주의 제조 방법.  13. The method according to claim 12, wherein the radiation of step 1) is any one selected from the group consisting of gamma rays, infrared rays, ultraviolet rays, X-rays, and protons. Manufacturing method.
【청구항 14] [Claim 14]
제 7항 내지 제 13항 중 어느 한 항의 방법으로 제조된, 푸자리시딘 고생산 재조합 패니바실러스 폴리믹사 균주.  A fusicidine high-producing recombinant Fanibacillus polymyxa strain prepared by the method of any one of claims 7 to 13.
【청구항 15】 [Claim 15]
1) 제 1항 내지 제 6항의 균주를 배양하는 단계; 및  1) culturing the strain of claims 1 to 6; And
2) 상기 단계 1)의 배양액에서 푸자리시딘을 회수하는 단계를 포함하는 푸 자리시딘 대량 생산방법. 2) a method for mass production of fuzacidine comprising recovering fuzacidine from the culture medium of step 1).
【청구항 16】 [Claim 16]
1) 제 14항의 균주를 배양하는 단계 ; 및  1) culturing the strain of claim 14; And
2) 상기 단계 1)의 배양액에서 푸자리시딘을 회수하는 단계를 포함하는 푸 자리시딘 대량 생산방법 .  2) a method for mass production of fuzacidine, comprising recovering fuzacidine from the culture solution of step 1).
【청구항 17】 [Claim 17]
푸자리시딘 대량 생산을 위해 사용하는 제 1항 내지 제 6항의 재조합 패니 바실러스 폴리믹사 균주.  The recombinant Fanny Bacillus polymyxa strain of claims 1 to 6 used for mass production of fuzacidine.
【청구항 18] [Claim 18]
푸자리시딘 대량 생산을 위해 사용하는 제 7항 내지 제 13항 중 어느 한 항 의 방법으로 제조된 재조합 패니바실러스 폴리믹사 균주.  Recombinant Fenbacillus polymyxa strain prepared by the method of any one of claims 7 to 13 used for mass production of fuzacidine.
PCT/KR2013/010231 2012-12-11 2013-11-12 Fusaricidin-producing strain, and method for mass producing fusaricidin using same WO2014092345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0143233 2012-12-11
KR1020120143233A KR101541446B1 (en) 2012-12-11 2012-12-11 A strain producing high level of fusaricidin and the method for mass production of fusaricidin using the strain

Publications (1)

Publication Number Publication Date
WO2014092345A1 true WO2014092345A1 (en) 2014-06-19

Family

ID=50934584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010231 WO2014092345A1 (en) 2012-12-11 2013-11-12 Fusaricidin-producing strain, and method for mass producing fusaricidin using same

Country Status (2)

Country Link
KR (1) KR101541446B1 (en)
WO (1) WO2014092345A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9883676B2 (en) 2015-03-26 2018-02-06 Bayer Cropscience Lp Paenibacillus strain, antifungal compounds, and methods for their use
WO2019221988A1 (en) * 2018-05-14 2019-11-21 Bayer Cropscience Lp Mutants of paenibacillus and methods for their use
WO2022023109A1 (en) 2020-07-31 2022-02-03 Basf Se New agrochemical formulations for fusaricidin producing bacteria

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6621803B2 (en) * 2014-08-04 2019-12-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Antibacterial Paenibacillus strain, fusaricidin type compound and use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762315B1 (en) * 2006-01-24 2007-10-04 한국생명공학연구원 Fusaricidin synthetase and gene thereof
US20070248583A1 (en) * 2004-08-09 2007-10-25 Kaken Pharmaceutical Co., Ltd. Novel Strains Belonging to the Genus Paenibacillus and Method of Controlling Plant Disease by Using These Strains or Culture Thereof
KR20120018027A (en) * 2010-08-20 2012-02-29 고려대학교 산학협력단 Penibacillus polymyxa dbb1709 mutant strain for the increased production of fusaricidin derivative li-f07 and preparation method thereof
KR101165247B1 (en) * 2010-02-09 2012-07-16 한국생명공학연구원 Tridecaptin synthetase and gene thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070248583A1 (en) * 2004-08-09 2007-10-25 Kaken Pharmaceutical Co., Ltd. Novel Strains Belonging to the Genus Paenibacillus and Method of Controlling Plant Disease by Using These Strains or Culture Thereof
KR100762315B1 (en) * 2006-01-24 2007-10-04 한국생명공학연구원 Fusaricidin synthetase and gene thereof
KR101165247B1 (en) * 2010-02-09 2012-07-16 한국생명공학연구원 Tridecaptin synthetase and gene thereof
KR20120018027A (en) * 2010-08-20 2012-02-29 고려대학교 산학협력단 Penibacillus polymyxa dbb1709 mutant strain for the increased production of fusaricidin derivative li-f07 and preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOI, SOO-KEUN ET AL.: "Identification and functional analysis of the fusaricidin biosynthetic gene of paenibacillus polymyxa E681", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATION, vol. 365, no. 1, 31 October 2007 (2007-10-31), pages 89 - 95 *
HAN, JAE WOO ET AL.: "Site-directed modification of the adenylation domain of the fusaricidin nonribosomal peptide synthetase for enhanced production of fusaricidin analogs", BIOTECHNOLOGY LETTERS, vol. 34, no. 7, 27 March 2012 (2012-03-27), pages 1327 - 1434 *
KIM, HA-RIM ET AL.: "Effects of null mutations in a putative phosphoglucomutase gene on Fusaricidin production in Paenibacillus polymyxa", KMB'S 40TH ANNIVERSARY 2013 INTERNATIONAL SYMPOSIUM & ANNUAL MEETING, vol. D D24, 3 July 2013 (2013-07-03), APLENSIA, PYEONGCHANG, KOREA, pages 363 *
LI, JINGRU ET AL.: "Nonribosomal biosynthesis of fusaricidin by paenibacillus polymyxa PKB1 involves direct activation of a D-amino acid", CHEMISTRY & BIOLOGY, vol. 15, no. 2, 22 February 2008 (2008-02-22), pages 118 - 127 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9883676B2 (en) 2015-03-26 2018-02-06 Bayer Cropscience Lp Paenibacillus strain, antifungal compounds, and methods for their use
WO2019221988A1 (en) * 2018-05-14 2019-11-21 Bayer Cropscience Lp Mutants of paenibacillus and methods for their use
CN112739815A (en) * 2018-05-14 2021-04-30 拜耳作物科学有限合伙公司 Paenibacillus mutants and methods of use thereof
JP2021522833A (en) * 2018-05-14 2021-09-02 バイエル クロップサイエンス エルピーBayer Cropscience Lp Paenibacillus mutants and how to use them
CN112739815B (en) * 2018-05-14 2024-04-26 拜耳作物科学有限合伙公司 Mutants of Paenibacillus and methods of use thereof
WO2022023109A1 (en) 2020-07-31 2022-02-03 Basf Se New agrochemical formulations for fusaricidin producing bacteria

Also Published As

Publication number Publication date
KR20140075165A (en) 2014-06-19
KR101541446B1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
JP6648345B1 (en) Novel polypeptide and method for producing IMP using the same
CN110343709B (en) Nocardiopsis arctica lasso peptide gene cluster and cloning and expression method thereof
JP7544351B2 (en) A novel strain of Pseudozyma antarctica
CN110951667B (en) Fenogen element high-yield strain LPB-18N and breeding and application thereof
WO2014092345A1 (en) Fusaricidin-producing strain, and method for mass producing fusaricidin using same
KR102006904B1 (en) Microorganism including genetic modification that increase productivity of deoxyviolacein and method for producing deoxyviolacein using the same
CN104946552B (en) The engineering strain of safe and efficient production shenqinmycin and its application
CN104619852A (en) L-lysine generation method by fermenting bacteria having modified aconitase gene and/or regulatory element
CN109666617B (en) L-homoserine production strain and construction method and application thereof
CN105400801B (en) Release thrA gene mutation bodies and its application of feedback inhibition
CN111019948B (en) Fenjunsu anabolism regulation gene FenSr3 and application thereof
CN111117942B (en) Genetic engineering bacterium for producing lincomycin and construction method and application thereof
CN110592084B (en) Recombinant strain transformed by rhtA gene promoter, construction method and application thereof
CN111378673B (en) Application of mutant of transcription regulatory factor TR2 in preparation of vitamin B12
KR102473375B1 (en) Recombinant microorganisms, their preparation methods and their use in the production of coenzyme Q10
CN113481233B (en) Method for constructing ectoin producing strain
CN111041020B (en) Isocitrate lyase mutant, mutant gene and application thereof in preparation of vitamin B12In (1)
CN117625501A (en) Bacillus subtilis recombinant integration engineering strain for efficiently producing microcin Y
CN109628361B (en) Integrated double-copy functional F4 pilus operon gene pig-derived probiotic EP1 clone strain, construction method and application
CN107810269A (en) Novel promoter and application thereof
KR102683624B1 (en) Microorganisms with stabilized copy numbers of functional DNA sequences and related methods
CN112795587A (en) Escherichia coli engineering bacterium for producing surfactin and construction method and application thereof
WO2020081958A2 (en) Compositions and methods for identifying mutations of genes of multi-gene systems having improved function
CN110903358A (en) Ribosomal factor and its mutant and its use in preparing vitamin B12In (1)
CN115851632B (en) Laccase mutant and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861763

Country of ref document: EP

Kind code of ref document: A1