WO2014092169A1 - Inductance component, magnetic-bias-applying member, and method for manufacturing magnetic-bias-applying member - Google Patents

Inductance component, magnetic-bias-applying member, and method for manufacturing magnetic-bias-applying member Download PDF

Info

Publication number
WO2014092169A1
WO2014092169A1 PCT/JP2013/083384 JP2013083384W WO2014092169A1 WO 2014092169 A1 WO2014092169 A1 WO 2014092169A1 JP 2013083384 W JP2013083384 W JP 2013083384W WO 2014092169 A1 WO2014092169 A1 WO 2014092169A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
inductance component
magnetic material
applying member
inductance
Prior art date
Application number
PCT/JP2013/083384
Other languages
French (fr)
Japanese (ja)
Inventor
七郎 船越
元 大學
由郎 佐藤
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to JP2014552095A priority Critical patent/JP6013509B2/en
Publication of WO2014092169A1 publication Critical patent/WO2014092169A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials

Definitions

  • the present invention relates to an inductance component, a magnetic bias applying member, and a method of manufacturing a magnetic bias applying member.
  • the inductance component is a choke coil or a transformer used for a switching power supply or the like.
  • an inductance component 800 including a magnetic core having a gap (gap) for preventing magnetic saturation in at least one location of a magnetic path, and a conductive wire attached to the magnetic core.
  • FIG. 11 is a diagram for explaining a conventional inductance component 800.
  • FIG. 11A is a cross-sectional view of the inductance component 800
  • FIG. 11B is a perspective view of the magnetic core 810.
  • FIG. 12 is a view for explaining a conventional inductance component 800.
  • FIG. 12A is a diagram showing a state of magnetic flux generated in the magnetic core 810 when a DC superimposed current flows through the conducting wire
  • FIG. 12B is a graph schematically showing a BH curve of the inductance component 800. It is.
  • symbol D ⁇ b> 1 indicates the direction of the magnetic field generated in the magnetic path of the magnetic core 810 when a DC superimposed current flows through the conductor 820.
  • a conventional inductance component 800 includes a magnetic core 810 (magnetic core body 812) having a magnetic saturation prevention gap 816 at one position of a magnetic path, and a conductor (coil 820) mounted on the magnetic core. ).
  • the conventional magnetic core 810 is formed, for example, by compression molding a soft magnetic material powder and a binder.
  • the magnetic core 810 is configured by combining two E cores, and a magnetic core 818 having a gap 816 is formed at the center. In the magnetic core 810, two magnetic paths having the magnetic core 818 as a common part are formed.
  • the gap length L of the air gap 816 is set within a range of several tens to several hundreds of ⁇ m in order to obtain desired magnetic characteristics (for example, DC superimposition characteristics and effective magnetic permeability). It is common.
  • DC superimposition means that a DC current is superimposed on an AC current flowing through a lead wire of an inductance component.
  • DC superimposed current refers to a DC current superimposed on an AC current flowing in the lead wire of the inductance component.
  • the “DC superposition characteristic” means a characteristic that the magnetic core is hard to be magnetically saturated even when the DC superposition current becomes large. Therefore, “the DC superimposition characteristic is good” means that the magnetic core is hardly magnetically saturated even when the DC superimposition current is increased.
  • the effective magnetic permeability of the magnetic core 810 is lower than that of the magnetic core having no air gap.
  • the slope of the BH curve (solid line) in the case of the conventional magnetic core 810 having a gap is larger than the slope of the BH curve (dotted line) in the case of the magnetic core having no gap in FIG. It can be understood from the fact that is smaller. For this reason, compared with the case of an inductance component having a magnetic core without a gap, the magnetic core is less likely to be magnetically saturated even when the DC superimposed current becomes large, and the inductance component has good DC superimposed characteristics.
  • the magnetic core 810 having the magnetic saturation prevention gap 816 since the magnetic core 810 having the magnetic saturation prevention gap 816 is provided, the effective permeability of the magnetic core 810 can be adjusted by adjusting the gap length L of the gap 816. It becomes possible. Therefore, an inductance component having desired magnetic characteristics can be obtained without changing the number of turns of the coil 820 and the material of the magnetic core 810.
  • a magnetic core having a high saturation magnetization is formed by changing the type and composition of the magnetic core material.
  • due to various problems such as limitations in changing the type and composition of the magnetic core material, it cannot be increased unnecessarily.
  • FIG. 13 is a view for explaining another conventional inductance component 900.
  • 13A is a cross-sectional view of the inductance component 900
  • FIG. 13B is a perspective view of the magnetic core 910.
  • FIG. 14 is a view for explaining another conventional inductance component 900.
  • FIG. 14A is a diagram showing a state of magnetic flux generated in the magnetic core 910 when a DC superimposed current flows through the conductor 920
  • FIG. 14B schematically shows a BH curve of the inductance component 900. It is a graph.
  • another conventional inductance component 900 includes a magnetic core body 912 having a magnetic saturation prevention gap 916 at one position of the magnetic path, and a material different from the magnetic core body 912 provided in the gap 916.
  • the magnetic bias applying member 914 is formed by compression molding a hard magnetic material powder and an insulator into a flat plate shape.
  • the direction D2 of the magnetic field by the magnetic bias applying member 914 is changed to the magnetic path of the magnetic core 910 by the DC superimposed current flowing through the conducting wire 920.
  • a member 914 for applying a magnetic bias so that the direction D1 of the generated magnetic field is opposite that is, a magnetic bias is applied in the direction opposite to the magnetic field generated by the DC superimposed current flowing through the conducting wire 920). Is arranged.
  • the magnetic core 910 having the magnetic bias applying member 914 since the magnetic core 910 having the magnetic bias applying member 914 is provided, the magnetic field generated in the magnetic path of the magnetic core 910 by the DC superimposed current flowing through the conducting wire 920 is changed to the magnetic bias. It becomes possible to cancel by the magnetic field generated by the applying member 914. Accordingly, as shown in FIG. 14B, the other conventional magnetic core 910 has a magnetic flux density range ⁇ B (a usable magnetic flux density range) that does not reach the saturation magnetic flux density as compared with the conventional magnetic core 810. A large magnetic core. As a result, the magnetic core is less likely to be magnetically saturated even when the DC superimposed current is increased, resulting in an inductance component with good DC superimposed characteristics.
  • ⁇ B a usable magnetic flux density range
  • the other conventional magnetic bias applying member 914 is formed of a hard magnetic material powder and an insulator, the relative permeability of the magnetic bias applying member 914 is approximately 1, and the conventional magnetic core 810 is provided.
  • the relative permeability of the substance (air) existing between the air gaps 816 is substantially the same. Therefore, in order to make the magnetic characteristics (inductance, etc.) of another conventional inductance component 900 the same as that of the conventional inductance component 800, the gap length L of the air gap 916 in the magnetic core body 912 is changed to the conventional inductance. It is necessary to make the length approximately the same as the gap length L of the component 800.
  • the magnetic bias applying member 914 having a thickness corresponding to the gap length L of the air gap 916 in the magnetic core body 912 with a small thickness variation. It may become.
  • a relatively thin magnetic bias application member having a thickness of about 300 ⁇ m or less by a press molding method using a relatively large magnetic material powder having an average particle size of about 150 ⁇ m as a raw material
  • a magnetic bias application with a small thickness variation Since it is difficult to manufacture a member for use, a member for applying a magnetic bias having a large thickness variation is produced.
  • another conventional inductance component 900 has a problem that it is difficult to make an inductance component with small variations in magnetic characteristics.
  • the present invention has been made to solve such a problem, and an object thereof is to provide an inductance component having good direct current superposition characteristics and small variations in magnetic characteristics. Another object of the present invention is to provide a magnetic bias applying member used for such an inductance component. Furthermore, it aims at providing the manufacturing method of the member for magnetic bias application which manufactures such a member for magnetic bias application.
  • An inductance component includes a magnetic core body having a magnetic saturation prevention gap at least at one location of a magnetic path, and a magnetic bias application made of a material different from the magnetic core body disposed in the gap.
  • a conducting wire should just be a wire used as the conductor for flowing an electric current, and does not ask
  • the effective relative permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is 10 or more.
  • the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is a magnetic path through which the magnetic flux generated from the magnetic bias applying member penetrates the magnetic core body. In this case, magnetic flux does not penetrate the magnetic bias applying member.
  • the effective relative permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is “the magnetic force when a current is passed through the conducting wire”. It is preferably 1.5 times or more the effective relative permeability of the magnetic core constituting the “magnetic path of magnetic flux generated in the core”.
  • the magnetic path of the magnetic flux generated in the magnetic core when a current is passed through the conducting wire is a magnetic path through which the magnetic flux generated by using the conducting wire as a magnetomotive force penetrates the magnetic core, As well as a magnetic path through which the magnetic flux passes through the magnetic bias applying member.
  • the ratio of the soft magnetic material powder to the total of the hard magnetic material powder and the soft magnetic material powder is in the range of 5 wt% to 80 wt%. It is preferable that it exists in.
  • a curve indicating the relationship between the DC superimposed current and the inductance value indicates a plateau shape, and the plateau portion of the plateau shape is downwardly inclined.
  • the “mountain shape” of the above curve is a first region in which the DC superimposed current value is formed in a negative region and a positive region and the inductance value is substantially constant at a relatively low inductance value, and the first region.
  • “the plateau part is falling to the right” is not only when the plateau monotonously decreases from the left end, but also has a peak inductance value on the left end side of the plateau, and the right end side of the plateau part from the peak. Including the case of monotonically decreasing toward.
  • the magnetization measured while changing the external magnetic field is plotted on the graph in which the horizontal axis represents the external magnetic field and the vertical axis represents the magnetization.
  • the demagnetization curve of the JH curve indicating the relationship between the external magnetic field and the magnetization becomes a curve that gradually becomes gentler. Is preferable (see FIG. 9 described later).
  • the soft magnetic material powder in the composite magnetic material, preferably has an average particle size in the range of 1 ⁇ m to 900 ⁇ m.
  • the magnetic bias applying member has a relative magnetic permeability within a range of 1.2 to 5.0 when the external magnetic field is not applied. It is preferable that it is comprised so that it may become.
  • the magnetic bias applying member is preferably made of a bonded magnet.
  • the magnetic bias applying member is preferably made of a permanent magnet.
  • the soft magnetic material powder is preferably subjected to an insulation treatment.
  • the magnetic bias applying member is formed by pressing the composite magnetic material, injection molding the composite magnetic material, or forming the composite magnetic material by a green sheet method. It is preferably formed by any one of the methods.
  • the magnetic core body is formed of ferrite or formed by molding a magnetic material containing a soft magnetic material powder and a binder. Preferably there is.
  • a magnetic bias applying member according to the present invention is a magnetic bias applying member used for the inductance component according to any one of [1] to [14] above, a hard magnetic material powder for applying a magnetic bias, It is formed by molding a composite magnetic material containing a soft magnetic material powder for improving the relative magnetic permeability and a binder for binding them into a flat plate shape.
  • a method of manufacturing a magnetic bias applying member according to the present invention is a method of manufacturing a magnetic bias applying member used for an inductance component according to any one of [1] to [14], wherein the magnetic bias applying member is used.
  • a composite magnetic material preparation step for preparing a composite magnetic material by kneading a hard magnetic material powder, a soft magnetic material powder for improving relative permeability, and a binder for binding them in a predetermined ratio;
  • the inductance component of the present invention since the magnetic core having the magnetic bias applying member is provided, the direct current superimposed current flows through the conducting wire in the magnetic path of the magnetic core as in the case of the other conventional inductance component 900.
  • the generated magnetic field can be canceled out by the magnetic field of the magnetic bias applying member.
  • a magnetic core having a magnetic flux density range ⁇ B (a usable magnetic flux density range) that does not reach the saturation magnetic flux density is larger than that of the conventional magnetic core.
  • the magnetic core is less likely to be magnetically saturated even when the DC superimposed current is increased, resulting in an inductance component with good DC superimposed characteristics.
  • the ratio of the magnetic bias applying member is The permeability can be made higher than 1.
  • the ratio between the relative permeability and the gap length of the air gap in the magnetic core body needs to be a constant ratio. If the relative permeability can be increased, the gap length is increased. It becomes possible to do. Therefore, the magnetic bias applying member having a thickness corresponding to the gap length can be manufactured with a small thickness variation. As a result, it is possible to reduce the variation in magnetic characteristics of the inductance component manufactured using the magnetic bias applying member having a small thickness variation.
  • the magnetic bias applying member is formed of a composite magnetic material containing a hard magnetic material powder and a soft magnetic material powder, the hard magnetic material and the soft magnetic material are used. It is possible to manufacture a member for applying a magnetic bias having desired magnetic characteristics by adjusting the ratio. As a result, the inductance component of the present invention becomes an inductance component having desired magnetic characteristics.
  • the magnetic bias applying member is formed of a composite magnetic material containing a soft magnetic material powder for improving the relative permeability. It is possible to increase the magnetic permeability. For this reason, since the effective magnetic permeability of the entire magnetic core is increased, the number of turns of the coil (conductor) for obtaining a desired magnetic field strength can be reduced, and as a result, a high-performance inductance component with less core loss can be obtained. It becomes possible.
  • the relative permeability of the magnetic bias applying member can be increased, the magnetic field strength required to obtain a predetermined magnetic flux density in the air gap is higher than that of the other conventional inductance component 900. Therefore, it is possible to obtain a high-performance inductance component with little core loss.
  • the magnetic bias applying member comprises a hard magnetic material powder for applying a magnetic bias, a soft magnetic material powder for improving the relative permeability, and a composite magnetic material containing a binder for binding them. Since it is formed by forming the material into a flat plate shape, it becomes a magnetic bias applying member having the above-described effects. As a result, it is possible to manufacture an inductance component having the effects described above.
  • the hard magnetic material powder for applying the magnetic bias in the composite magnetic material manufacturing step, the hard magnetic material powder for applying the magnetic bias, the soft magnetic material powder for improving the relative magnetic permeability, and the binder for binding these are predetermined. Since the composite magnetic material is produced by kneading at a ratio of 1 to 5, it is possible to produce a member for applying a magnetic bias having the above-described effects. As a result, it is possible to manufacture an inductance component having the effects described above.
  • FIG. 1 is a figure shown in order to demonstrate the inductance component 1 which concerns on Embodiment 1.
  • FIG. is a figure shown in order to demonstrate the inductance component 1 which concerns on Embodiment 1.
  • FIG. 3 is a flowchart shown for explaining a method for manufacturing a magnetic bias applying member according to the first embodiment. It is a figure shown in order to demonstrate the inductance component 2 which concerns on Embodiment 2.
  • FIG. It is a figure shown in order to demonstrate the inductance component 3 which concerns on Embodiment 3.
  • FIG. 6 is a graph showing the DC superposition characteristics of Samples 1 to 3. 6 is a graph showing DC superposition characteristics of Samples 4 to 9.
  • 6 is a graph showing DC superposition characteristics of samples 10 to 15; 10 is a graph showing JH curves of Sample 16 and Sample 17. 24 is a graph showing demagnetization curves of samples 18 to 23. It is a figure shown in order to demonstrate the conventional inductance component 800. It is a figure shown in order to demonstrate the conventional inductance component 800. It is a figure shown in order to demonstrate other conventional inductance components 900. It is a figure shown in order to demonstrate other conventional inductance components 900.
  • FIG. 1 is a diagram for explaining the inductance component 1 according to the first embodiment.
  • 1A is a perspective view of the inductance component 1
  • FIG. 1B is a cross-sectional view taken along the line AA of FIG. 1A
  • FIG. 1C is a perspective view of the magnetic core 10.
  • the inductance component 1 includes a magnetic core 10 and a conductive wire 20 attached to the magnetic core 10.
  • the magnetic core 10 includes a magnetic core body 12 having a magnetic saturation prevention gap 16 at least at one location of a magnetic path, and a magnetic core body 12 disposed in the gap 16.
  • the magnetic bias applying member 14 is made of a different material.
  • the effective relative permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is 10 or more (for example, 630).
  • the effective relative permeability of the magnetic core main body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is “the magnetic path of the magnetic flux generated in the magnetic core 10 when a current is passed through the conducting wire 20”. It is 1.5 times or more of the effective relative magnetic permeability (for example, 80) of the magnetic core which comprises.
  • the magnetic core body 12 is composed of two E cores combined so that the magnetic core 18 is formed at the center, and the magnetic core 818 is a common part. Two magnetic paths are formed.
  • the magnetic core main body 12 for example, a powder made of iron oxide as a main component is compressed and molded, and then formed from a sintered ceramic ferrite, or a soft magnetic material powder and a binder are molded. The formed one can be used.
  • the soft magnetic material powder an appropriate one such as FeSiCr powder, FeSi powder, carbonyl iron powder, sendust powder, permalloy powder, MnZn ferrite powder, or amorphous material powder can be used, or a combination of these materials. It can also be used.
  • the air gap 16 is formed in the magnetic core 18 which is one place of the magnetic path.
  • the gap length of the air gap 16 (the air gap 16 of the magnetic core body 12) is the effective magnetic path length (for example, 7.5 cm) of the magnetic path (the magnetic path of the magnetic flux generated in the magnetic core when a current is passed through the conducting wire). 5% or less, for example, 500 ⁇ m.
  • the gap 16 has a gap length L of the magnetic core body 12 of L, and a larger average particle diameter of hard magnetic material powder and soft magnetic material powder of the magnetic bias applying member 14 described later is D.
  • the following formula (1) is satisfied.
  • the magnetic bias applying member 14 is disposed in the gap 16 of the magnetic core body 12. Specifically, the direction D2 of the magnetic field generated by the magnetic bias applying member 14 is opposite to the direction D1 of the magnetic field generated in the magnetic core 10 when a DC superimposed current flows through the conductive wire 20 (that is, the conductive wire). 20 is arranged so that a magnetic bias is applied in the direction opposite to the magnetic field generated in the magnetic core 10 by the direct current superimposed current flowing in the magnetic core 10.
  • the magnetic bias applying member 14 is made of a material different from that of the magnetic core body 12 and is formed by molding a composite magnetic material, which will be described later, into a flat plate shape (specifically, by pressing the composite magnetic material). It has been done.
  • the magnetic bias applying member 14 is a permanent magnet and a bonded magnet.
  • the thickness of the magnetic bias applying member 14 has a thickness corresponding to the gap length L of the air gap 16 in the magnetic core body 12, and is, for example, 500 ⁇ m in the first embodiment.
  • the magnetic bias applying member 14 is configured so that the relative permeability of the magnetic bias applying member 14 when an external magnetic field is not applied is in the range of 1.2 to 5.0.
  • the relative permeability of the magnetic bias applying member 14 satisfies the following expression (2).
  • represents the relative permeability of the magnetic bias applying member 14
  • Bs represents the saturation magnetic flux density of the magnetic core body 12
  • J represents the magnetization of the magnetic core body 12
  • ⁇ 0 Indicates the magnetic permeability of vacuum
  • Hc indicates the coercive force of the magnetic bias applying member 14.
  • the composite magnetic material contains a hard magnetic material powder for applying a magnetic bias, a soft magnetic material powder for improving the relative magnetic permeability, and a binder for binding them.
  • alumina (Al 2 O 3 ) powder, aluminum nitride (AlN) powder, or the like may be further included.
  • Soft magnetic material powder is soft magnetic material powder whose surface is covered with a silica film (insulated).
  • the soft magnetic material powder may be any magnetic material powder having a high magnetic permeability, for example, FeSiCr powder, FeSi powder, ferrite powder, carbonyl iron powder, sendust powder, permalloy powder, or amorphous material powder should be used. Can do.
  • FeSiCr powder is used.
  • the average particle diameter of the soft magnetic material powder is in the range of 1 ⁇ m to 900 ⁇ m, preferably in the range of 1 ⁇ m to 100 ⁇ m, and more preferably in the range of 1 ⁇ m to 50 ⁇ m.
  • the ratio of the soft magnetic material powder to the total of the hard magnetic material powder and the soft magnetic material powder is in the range of 5 wt% to 80 wt%, preferably in the range of 10 wt% to 20 wt%. Yes, for example, 20 wt%.
  • the hard magnetic material powder is a hard magnetic material powder whose surface is covered with a silica film (insulated).
  • the hard magnetic material powder may be any magnetic material powder having a high coercive force, such as samarium cobalt (SmCo) powder, samarium iron nitrogen (SmFeN) powder, neodymium iron boron (NdFeB) powder, or ferrite powder.
  • the hard magnetic material powder can be used.
  • samarium cobalt (SmCo) powder is used.
  • the average particle size of the hard magnetic material powder is in the range of 1 ⁇ m to 900 ⁇ m, preferably in the range of 1 ⁇ m to 100 ⁇ m, and more preferably in the range of 1 ⁇ m to 50 ⁇ m.
  • the ratio of the hard magnetic material powder to the total of the hard magnetic material powder and the soft magnetic material powder is in the range of 20 wt% to 95 wt%, and preferably in the range of 80 wt% to 90 wt%. Yes, for example, 75 wt%.
  • the binder is made of a polymer and binds the hard magnetic material powder and the soft magnetic material powder.
  • the binder for example, an appropriate one can be used as long as it is a thermosetting resin or a thermoplastic resin such as an epoxy resin, a polyimide resin, a polyamideimide resin, a silicone resin, or a phenol resin.
  • the content of the binder in the composite magnetic material varies depending on the method for manufacturing the magnetic bias applying member and the like, but when the magnetic bias applying member 14 is manufactured by pressing the composite magnetic material, for example, 1 wt% to 5 wt. % Is preferably in the range of%.
  • the magnetic bias applying member 14 is formed by press molding the composite magnetic material
  • the binder content in the composite magnetic material is less than 1 wt%, the ratio of the binder is too small and hard magnetic It is difficult to join between the material powder and the soft magnetic material powder.
  • the content of the binder in the composite magnetic material exceeds 5 wt%, the content of the hard magnetic material powder and the soft magnetic material powder is decreased, so that the relative permeability of the magnetic bias applying member 14 is reduced,
  • the magnetic flux density range ⁇ B that does not reach the saturation magnetic flux density may be smaller than other conventional magnetic cores.
  • the magnetic bias applying member 14 when the magnetization measured while changing the external magnetic field H is plotted on the graph with the external magnetic field H on the horizontal axis and the magnetization J on the vertical axis, the external magnetic field H and the magnetization J are plotted.
  • the demagnetization curve of the JH curve showing the relationship with the curve is such that the slope gradually decreases when the external magnetic field H is changed from 0 to a negative direction (see FIG. 9 described later). . That is, the magnetic bias applying member 14 has a property that the relative magnetic permeability gradually decreases when the external magnetic field H is changed from 0 to a negative direction.
  • FIG. 2 is a diagram for explaining the inductance component 1 according to the first embodiment.
  • 2A is a diagram showing a state of magnetic flux generated in the magnetic core 10 when a current is passed through the conductor 20
  • FIG. 2B is a graph schematically showing a BH curve of the inductance component 1.
  • FIG. 2A the symbol D1 indicates the direction of the magnetic field generated in the magnetic core 10 when a DC superimposed current flows through the conductor 20, and the symbol D2 indicates the direction of the magnetic field by the magnetic bias applying member 14. .
  • the inductance component 1 when a DC superimposed current is passed through the conducting wire 20, a magnetic field is generated in the magnetic path of the magnetic core 10 as shown in FIG.
  • the DC superimposed current when the DC superimposed current is out of a predetermined DC superimposed current value range (about -2A to about + 14A in the sample 1 of FIG. 6 described later), magnetic saturation occurs, and the inductance decreases rapidly. .
  • FIG. 3 is a flowchart for explaining the method for manufacturing the magnetic bias applying member according to the first embodiment.
  • a magnetic core body 12 having a magnetic saturation prevention gap 16 at one location of a magnetic path is prepared.
  • the air gap 16 may be formed after forming the magnetic core body without the air gap, or the E core considering the air gap 16 is formed in advance, and the air gap 16 is also formed by combining the E core. You may be made to do.
  • a method of manufacturing a magnetic bias application member includes a “composite magnetic material manufacturing process”, a “forming process”, a “curing process”, and a “magnetizing process” as shown in FIG. And in this order.
  • Composite magnetic material production process First, a hard magnetic material powder for applying a magnetic bias, a soft magnetic material powder for improving relative permeability, and a binder for binding them are kneaded at a predetermined ratio to produce a composite magnetic material. To do. Next, the composite magnetic material is dried to volatilize the solvent component in the binder. Next, the composite magnetic material is sieved, and only the composite magnetic material having a particle size suitable for molding (within a range of several tens to several hundreds of ⁇ m) is recovered.
  • a compact is produced by molding the composite magnetic material into a flat plate shape. Specifically, a composite magnetic material is deposited in a molding space and press-molded to produce a molded body.
  • the pressing pressure in the press molding is, for example, in the range of 3 ton / cm 2 to 10 ton / cm 2 .
  • the temperature at the time of press molding shall be room temperature.
  • the molded body is heated to cure the binder.
  • the temperature and time which heat a molded object are based also on the kind of binder, it shall be 1 hour at 150 degreeC, for example.
  • the molded body in which the binder is cured is magnetized to obtain a magnetic bias applying member 14.
  • the compact is magnetized using a pulse magnetizer. In this way, the magnetic bias applying member 14 can be manufactured.
  • the magnetic core 10 is manufactured by disposing the magnetic bias application member 14 in the gap 16 in the magnetic core body 12.
  • the conducting wire 20 is attached to the magnetic core 10.
  • the inductance component 1 according to the first embodiment can be manufactured.
  • the inductance component 1 according to the first embodiment may be manufactured by assembling the E core with the magnetic bias applying member 14 interposed therebetween.
  • the magnetic core 10 having the magnetic bias applying member 14 since the magnetic core 10 having the magnetic bias applying member 14 is provided, a DC superposed current flows through the conductive wire 20 as in the case of other conventional inductance components 900.
  • the magnetic field generated in the magnetic path of the magnetic core 10 can be canceled by the magnetic field of the magnetic bias applying member 14.
  • a magnetic core having a magnetic flux density range ⁇ B (a usable magnetic flux density range) that does not reach the saturation magnetic flux density is larger than that of the conventional magnetic core.
  • the magnetic core 10 is less likely to be magnetically saturated even when the DC superimposed current becomes large, and the inductance component has good DC superimposed characteristics.
  • the magnetic bias applying member 14 is formed of a composite magnetic material containing a soft magnetic material powder for improving the relative permeability.
  • the relative permeability of the working member 14 can be made higher than 1.
  • the ratio between the relative permeability and the gap length L of the air gap 16 in the magnetic core body 12 needs to be a constant ratio, and if the relative permeability can be increased, the gap The length L can be increased. Therefore, the magnetic bias applying member 14 having a thickness corresponding to the gap length L can be manufactured with a small thickness variation. As a result, it is possible to reduce the variation in magnetic characteristics of the inductance component manufactured using the magnetic bias applying member having a small thickness variation.
  • the magnetic bias applying member 14 is formed of a composite magnetic material containing a hard magnetic material powder and a soft magnetic material powder. It is possible to manufacture a magnetic bias applying member having desired magnetic characteristics by adjusting the ratio between the magnetic material and the soft magnetic material. As a result, the inductance component 1 becomes an inductance component having desired magnetic characteristics.
  • the magnetic bias applying member 14 is formed of a composite magnetic material containing a soft magnetic material powder for improving the relative permeability. It is possible to increase the relative permeability of the working member 14. For this reason, since the effective magnetic permeability of the entire magnetic core 10 is increased, the number of turns of the conducting wire 20 (coil) for obtaining a desired magnetic field strength can be reduced, and as a result, a high-performance inductance component with less core loss is obtained. It becomes possible. In addition, since the relative permeability of the magnetic bias applying member 14 can be increased, the magnetic field strength necessary for obtaining a predetermined magnetic flux density in the air gap 16 is different from that in the case of the other conventional inductance component 900. Compared with this, it is possible to obtain a high-performance inductance component with little core loss.
  • the effective relative permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is 10 or more, a desired DC superposition characteristic is obtained. It becomes an inductance component having.
  • the effective relative permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member 14” is less than 10, the demagnetizing field becomes stronger, and the magnetic bias is applied. The effect of the magnetic bias by the working member becomes weak, and it becomes difficult to obtain an inductance component having a desired DC superposition characteristic.
  • the effective relative permeability of the “magnetic path of the magnetic flux generated from the magnetic bias applying member 14” is preferably 100 or more, and more preferably 500 or more.
  • the effective relative permeability of the magnetic core body 12 constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member 14” is “when a current is passed through the conducting wire 20”. Since the effective relative permeability of the magnetic core 10 constituting the “magnetic path of the magnetic flux generated in the magnetic core 10” is 1.5 times or more, the inductance component having a better DC superposition characteristic is obtained. Note that the effective relative permeability of the magnetic core body 12 constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member 14” is the magnetic path of the magnetic flux generated in the magnetic core 10 when a current is passed through the conducting wire 20.
  • the effective relative permeability of the magnetic core 10 constituting the magnetic field Is less than 1.5 times the effective relative permeability of the magnetic core 10 constituting the magnetic field, the effect of the magnetic bias by the magnetic bias applying member is weakened due to the strong demagnetizing field, and the DC superposition characteristics However, it is difficult to obtain a good inductance component. From this point of view, the magnetic core constituting the magnetic path of the magnetic flux generated in the magnetic core 10 when the effective relative permeability of the “magnetic path of the magnetic flux generated from the magnetic bias applying member 14” is passed through the conductor 20.
  • the effective relative permeability of 10 is preferably 2 times or more, and more preferably 3 times or more.
  • the ratio of the soft magnetic material powder to the total of the hard magnetic material powder and the soft magnetic material powder is within the range of 5 wt% to 80 wt%. Therefore, it becomes an inductance component having the above-described effect, and a magnetic core having the magnetic bias applying member 14 with sufficient magnetic field strength.
  • the ratio of the soft magnetic material powder to the total of the hard magnetic material powder and the soft magnetic material powder is “within the range of 5 wt% to 80 wt%”. This is because when the amount is less than 5 wt%, the amount of soft magnetic material powder is too small to obtain the above-mentioned effect. When the proportion of soft magnetic material powder exceeds 80 wt%, the proportion of hard magnetic material powder This is because the magnetic bias applying member 14 cannot obtain a sufficient magnetic field strength.
  • the measurement is performed while changing the DC superimposed current flowing in the conductor 20 in a graph in which the horizontal axis represents the DC superimposed current value and the vertical axis represents the inductance value of the inductance component.
  • the curve indicating the relationship between the DC superimposed current and the inductance value indicates the plateau shape, and the plateau portion of the plateau is downwardly inclined.
  • the ripple current of the conducting wire 20 is reduced and the power supply efficiency is improved.
  • the inductance value is smaller at the time of heavy load than at the time of light load, the responsiveness is improved when the current flowing through the conducting wire changes abruptly. As a result, the power supply efficiency can be improved at light loads, and the inductance component can improve responsiveness when the current flowing through the conductor changes suddenly at heavy loads.
  • under light load means a time when a relatively light load is applied such that the DC superimposed current value is close to 0 (about ⁇ 3 to 3 A), and “under heavy load” , When the load is applied so that the DC superimposed current value is larger than the light load, specifically, out of the plateau part of the curve showing the relationship between the DC superimposed current and the inductance value It means that a load is applied to the extent that the DC superposition current value is in the range of about 1/3 of the right end side of the plateau in the range of 0 A or more.
  • the demagnetization curve of the JH curve indicating the relationship between the external magnetic field H and the magnetization J has a negative external magnetic field from zero. Therefore, when the external magnetic field is close to 0 (that is, the DC superimposed current in the inductance component is 0). When the external magnetic field increases in the negative direction (that is, the DC superimposed current in the inductance component increases in the positive direction), the relative magnetic permeability gradually decreases. For this reason, when the external magnetic field is close to 0, the inductance value is large, and the inductance component gradually decreases. As a result, the power supply efficiency can be improved at light loads, and the inductance component can improve responsiveness when the current flowing through the conductor changes suddenly at heavy loads.
  • the inductance component 1 in the composite magnetic material, since the average particle diameter of the soft magnetic material powder is in the range of 1 ⁇ m to 900 ⁇ m, it is possible to prevent a decrease in magnetization.
  • the magnetic bias applying member 14 can be manufactured with a small thickness variation.
  • the soft magnetic material powder has an average particle size in the range of 1 ⁇ m to 900 ⁇ m.
  • the average particle size is less than 1 ⁇ m, the soft magnetic material powder and the binder are kneaded. This is because the soft magnetic material powder is oxidized and the decrease in magnetization becomes remarkable.
  • the average particle diameter exceeds 900 ⁇ m, the particle diameter with respect to the gap length L of the air gap 16 in the magnetic core body 12 is large. This is because it is difficult to manufacture the magnetic bias applying member 14 with a small thickness variation.
  • the magnetic bias applying member 14 since the relative permeability of the magnetic bias applying member 14 when no external magnetic field is applied is in the range of 1.2 to 5.0, the magnetic bias The applying member 14 can be manufactured with a small thickness variation, and the magnetic bias applying member 14 is an inductance component that can obtain a sufficient magnetic field strength.
  • the relative permeability of the magnetic bias applying member 14 when no external magnetic field is applied is in the range of 1.2 to 5.0.
  • the magnetic bias applying member 14 having a thickness corresponding to the gap length L of the air gap 16 in the magnetic core body 12 is increased as in the case of the other conventional inductance component 900. This is because it is difficult to manufacture in a state where the variation in the thickness is small.
  • the relative permeability of the magnetic bias applying member 14 exceeds 5.0, the inductance value of the inductance component becomes too small, so that the power supply efficiency This is because of the decrease.
  • the relative magnetic permeability of the magnetic bias applying member 14 is preferably in the range of 1.2 to 3.0, and more preferably in the range of 1.4 to 2.0.
  • the gap length of the air gap 16 in the magnetic core body 12 is L, and the larger average particle diameter of the hard magnetic material powder and the soft magnetic material powder is D.
  • a magnetic bias applying member having a thickness corresponding to the gap length L can be manufactured with a small thickness variation. As a result, it is possible to reduce variations in magnetic characteristics of manufactured inductance components.
  • the reason why the gap length L of the air gap 16 in the magnetic core body 12 is not less than the value on the right side of the equation (1) is as follows. That is, when a structure is formed by arranging particles in three or more rows in a close-packed hexagonal structure, the thickness variation of the structure can be made relatively small. Even when the magnetic bias applying members are arranged in rows or more (the magnetic bias applying members are equal to or larger than the value on the right side of the equation (1) at this time), the thickness variation of the magnetic bias applying members is relatively small. it can. Therefore, in order for the magnetic bias applying member to be equal to or greater than the value on the right side of Equation (1), the gap length L may be equal to or greater than the value on the right side of Equation (1).
  • the magnetic bias applying member is made of a bond magnet, so that the magnetic bias applying member 14 has flexibility. As a result, it is possible to prevent the end of the magnetic core main body 12 and the end of the magnetic bias applying member 14 from being chipped when the magnetic bias applying member 14 is disposed in the gap 16.
  • the magnetic bias applying member 14 is a permanent magnet, the magnetic bias applying member 14 that can keep a magnetic field for a relatively long period of time is obtained. For this reason, it is possible to manufacture an inductance component having a long life.
  • the magnetic bias applying member 14 is less likely to generate eddy current and less eddy current loss. As a result, an inductance component with low core loss is obtained.
  • the magnetic bias applying member 14 is formed by press-molding a composite magnetic material, and thus depends on the type of material included in the composite magnetic material. It is possible to easily form the magnetic bias applying member 14 without the need.
  • the magnetic bias applying member 14 combines the hard magnetic material powder for applying the magnetic bias, the soft magnetic material powder for improving the relative permeability, and these. Since it is formed by molding a composite magnetic material containing a binder into a flat plate shape, it is possible to manufacture an inductance component with good DC superposition characteristics, and the gap 16 in the magnetic core body 12 can be produced. It is possible to manufacture a magnetic bias applying member having a thickness corresponding to the gap length with a small variation in thickness, and to manufacture a magnetic bias applying member having desired magnetic characteristics, and Thus, the magnetic bias applying member can be made into a high-performance inductance component with little core loss.
  • the hard magnetic material powder for applying the magnetic bias in the composite magnetic material manufacturing step S10, the hard magnetic material powder for applying the magnetic bias, the soft magnetic material powder for improving the relative magnetic permeability, and these are combined. Since the composite magnetic material is produced by kneading the binder at a predetermined ratio, the magnetic bias applying member 14 having the above-described effect can be produced.
  • FIG. 4 is a diagram for explaining the inductance component 2 according to the second embodiment.
  • 4A is a perspective view of the inductance component 2
  • FIG. 4B is a perspective view of the magnetic core 10a.
  • the inductance component 2 according to the second embodiment is an inductance component 1 according to the first embodiment in that the magnetic core has a member for applying a magnetic bias formed of a composite magnetic material containing a hard magnetic material powder and a soft magnetic material powder.
  • the configuration of the magnetic core body is different from that of the inductance component 1 according to the first embodiment. That is, in the inductance component 2 according to the second embodiment, the magnetic core body 12a is a ring core as shown in FIG.
  • the inductance component 2 when a DC superimposed current flows through the conducting wire 20a, a magnetic field is generated so as to go around the magnetic core 10a. That is, the magnetic core 10a has one closed magnetic path.
  • the conductor 20a is attached to the magnetic core 10a by being spirally wound around the magnetic core 10a as shown in FIG.
  • the inductance component 2 according to the second embodiment is different from the inductance component 1 according to the first embodiment in the configuration of the magnetic core body, but similarly to the inductance component 1 according to the first embodiment, the magnetic component is magnetic.
  • the bias applying member 14 is formed of a composite magnetic material containing a hard magnetic material powder for applying a magnetic bias and a soft magnetic material powder for improving relative permeability, the direct current superposition characteristics are good, In addition, the inductance component has a small variation in magnetic characteristics.
  • the inductance component 2 according to the second embodiment has the same configuration as the inductance component 1 according to the first embodiment except for the configuration of the magnetic core body. Of which, it has a corresponding effect.
  • FIG. 5 is a diagram for explaining the inductance component 3 according to the third embodiment.
  • FIG. 5A is a perspective view of the inductance component 3
  • FIG. 5B is a perspective view of the magnetic core 10b.
  • the inductance component 3 according to the third embodiment is an inductance component 2 according to the second embodiment in that the magnetic core has a member for applying a magnetic bias formed of a composite magnetic material containing a hard magnetic material powder and a soft magnetic material powder.
  • the configuration of the magnetic core body and the configuration of the conducting wire are different from those of the inductance component 2 according to the second embodiment. That is, in the inductance component 3 according to the third embodiment, the magnetic core 10b is composed of two U cores combined in a ring shape as shown in FIG. 5, and the conductive wire 20b has an elongated flat plate shape. It is attached to the magnetic core 10b so as to penetrate straight through the center of the magnetic core 10b.
  • the two air gaps 16b are provided at positions corresponding to the joint portions of the two U cores, and the magnetic bias applying member 14b is also located one by one at a position between the two U cores. It is arranged.
  • the inductance component 3 according to the third embodiment is different from the inductance component 2 according to the second embodiment in the configuration of the magnetic core body and the configuration of the conductive wire, but the inductance component 2 according to the second embodiment.
  • the magnetic bias applying member 14 is formed of a composite magnetic material containing a hard magnetic material powder for applying a magnetic bias and a soft magnetic material powder for improving relative permeability, the DC superposition characteristics And an inductance component with small variations in magnetic characteristics.
  • the inductance component 3 according to the third embodiment has the same configuration as that of the inductance component 2 according to the second embodiment except for the configuration of the magnetic core main body and the configuration of the conductive wire, and thus the inductance component 2 according to the second embodiment. Has the corresponding effect among the effects of
  • the inductance component of the present invention is “the inductance component having good DC superimposition characteristics” and “the curve indicating the relationship between the DC superimposition current and the inductance value indicates the plateau shape, and the plateau shape This is a test example showing that the plateau part of the plate is downwardly inclined to the right.
  • the entire composite magnetic material is 100 wt%
  • SmCo as the hard magnetic material powder is 80 wt%
  • FeSiCr as the soft magnetic material powder is 17 wt%
  • the binder is 3 wt%.
  • a composite magnetic material was used.
  • Sample 3 (comparative example) For magnetic bias application formed by compression molding a composite magnetic material containing a hard magnetic material powder and a binder as a magnetic bias application member at the point and gap where the gap length L of the air gap in the ring core is 0.3 mm Except for the point of disposing the member, the same inductance component as that of the sample 1 was prepared as Sample 3.
  • the magnetic bias applying member of Sample 3 was a composite magnetic material in which SmCo as the hard magnetic material powder was 97 wt% and the binder was 3 wt% when the entire composite magnetic material was 100 wt%.
  • Evaluation method Obtained by plotting the inductance value measured while changing the DC superimposed current flowing in the lead wire of each sample on the graph with the DC superimposed current value on the horizontal axis and the inductance value of the inductance component on the vertical axis.
  • the DC superposition characteristics were evaluated from the curved shape and inductance value.
  • FIG. 6 is a graph showing the DC superposition characteristics of Samples 1 to 3.
  • the DC superimposed current value is approximately constant at an inductance value of about 5 ⁇ H or less until the DC superimposed current value is about ⁇ 6 A, and the inductance value is between about ⁇ 6 A and ⁇ 2 A. From about 5 ⁇ H or less to about 42 ⁇ H, the DC superimposed current gradually increases from about ⁇ 2 A to +1 A, the inductance value gradually increases from about 42 ⁇ H to about 46 ⁇ H, and the DC superimposed current ranges from about +1 A to +14 A.
  • the inductance value gradually decreases from about 46 ⁇ H to about 38 ⁇ H, the DC superimposed current decreases rapidly from about +14 A to +18 A, and the inductance value decreases rapidly from about 38 ⁇ H to about 8 ⁇ H, and the DC superimposed current is about +18 A or more and about 8 ⁇ H or less.
  • the inductance value was almost constant.
  • the peak of the inductance value was about 46 ⁇ H when the DC superimposed current was about + 1A.
  • the inductance value of 5 ⁇ H or less is substantially constant until the DC superimposed current value is about ⁇ 12.5 A, and the inductance is between about ⁇ 12.5 A to ⁇ 8 A.
  • the value suddenly increases from about 5 ⁇ H or less to about 42 ⁇ H, the inductance value slightly increases from about 43 ⁇ H to about 46 ⁇ H while the DC superimposed current is about ⁇ 8 A to 0 A, and the DC superimposed current is about 0 A to +8 A.
  • the inductance value decreases slightly from about 46 ⁇ H to about 42 ⁇ H, the DC superimposed current decreases rapidly from about +8 A to +14 A, and the inductance value decreases rapidly from about 42 ⁇ H to about 8 ⁇ H. It became almost constant at an inductance value of 5 ⁇ H or less.
  • the peak of the inductance value was about 46 ⁇ H when the DC superimposed current was about 0A.
  • the DC superimposed current value is substantially constant at an inductance value of about 5 ⁇ H or less up to about ⁇ 6 A, and the inductance value suddenly increases from about 5 ⁇ H to about 42 ⁇ H when the DC superimposed current is about ⁇ 6 A to 0 A.
  • the inductance value increases slightly from about 42 ⁇ H to about 46 ⁇ H when the DC superimposed current is about 0 A to +7 A, and the inductance value slightly increases from about 46 ⁇ H to about 38 ⁇ H when the DC superimposed current is about 7 A to +16 A.
  • the inductance value suddenly decreased from about 38 ⁇ H to about 8 ⁇ H when the DC superimposed current was between about +16 A and +18 A, and became almost constant at an inductance value of 5 ⁇ H or less when the DC superimposed current was about +18 A or more.
  • the peak of the inductance value was about 46 ⁇ H when the DC superimposed current was about +7 A.
  • Sample 1 (and 3) was an inductance component having better DC superposition characteristics than Sample 2.
  • the inductance value gently decreases from about 46 ⁇ H to about 38 ⁇ H when the DC superimposed current is between about 1 A and +14 A (that is, 13 A increases). did.
  • the magnetic bias applying member when the magnetic bias applying member was manufactured, the magnetic bias applying member having a thickness of 0.3 mm could not be manufactured only by the compression molding method. For this reason, the magnetic bias application member is once made thick (for example, about 1 mm), and the magnetic bias application member thus prepared is ground and thinned to a predetermined thickness so that the magnetic bias application according to the sample 3 is applied.
  • the member for manufacture was manufactured. However, it is not easy to grind and thin the magnetic bias applying member according to the sample 3 to a thickness of 0.3 mm, and a defective product is generated due to a crack or the like, or the thickness of the magnetic bias applying member according to the sample 3 is reduced. Since there was a large error, there was very little that could be put to practical use.
  • Test Example 2 is that “the inductance component of the present invention has an inductance value larger than that of a conventional inductance component”, “the inductance component of the present invention has the largest inductance value at a light load”, and “ The inductance component of the present invention is a test example showing that the plateau portion in the curve of the DC superimposition characteristic falls to the right, and that the inclination of the plateau portion becomes gentler as the magnetic bias applying member is strongly magnetized.
  • Sample 4 (Comparative Example) and Samples 5 to 9 (Examples) Magnetic bias application using a composite magnetic material in which SmCo as a hard magnetic material powder is 77 wt%, FeSiCr as a soft magnetic material powder is 20 wt%, and a binder is 3 wt% when the entire composite magnetic material is 100 wt%
  • Samples 4 to 9 were prepared by producing six inductance components that are the same as the inductance component 2 according to the second embodiment except that the member is used and the number of turns of the conducting wire (coil) is 10. However, samples 4 to 9 have a residual magnetization of 0%, 20%, 40%, 60%, and 80, respectively, when the residual magnetization when the magnetic bias applying member is magnetized so as to be saturated is 100%. % And 100% of the magnetic bias applying member is used.
  • Samples 10 to 15 (comparative example) When the entire composite magnetic material is 100 wt%, six inductance components are manufactured in the same manner as the sample 4 except that a magnetic material with SmCo as the hard magnetic material powder of 97 wt% and a binder of 3 wt% is used. Samples 10 to 15 were used. However, samples 10 to 15 have residual magnetizations of 0%, 20%, 40%, 60%, and 80, respectively, when the residual magnetization when the magnetic bias applying member is magnetized so as to be saturated is 100%. % And 100% of the magnetic bias applying member is used.
  • FIG. 7 is a graph showing the DC superposition characteristics of Samples 4 to 9.
  • FIG. 8 is a graph showing the DC superposition characteristics of Samples 10-15.
  • the peak values of the inductance values of samples 10 to 15 are around 17 ⁇ H.
  • the peak value of the inductance value in samples 5 to 9 is 20.5 to 22.5 ⁇ H, both of which are conventional inductance components. It was confirmed that it was larger than.
  • the inductance component of the present invention has a larger inductance value than the conventional inductance component. This means that the inductance component of the present invention is an inductance component with high power supply efficiency.
  • the curve indicating the DC superimposition characteristic of the sample 15 is a state where the DC superposition current value of the sample 10 is shifted by 8 A in the positive direction.
  • the DC superimposed current value when the inductance value in the sample 15 takes a peak is 8A, which is 8A shifted from the DC superimposed current value (0A) when the inductance value in the sample 10 takes a peak.
  • the peak of the inductance value in the sample 15 was out of the range of the DC superimposed current value corresponding to the light load.
  • FIG. 8A the DC superimposed current value when the inductance value in the sample 15 takes a peak.
  • the inductance component of the present invention it was confirmed that the inductance value was the largest at light load. This means that the inductance component of the present invention is an inductance component that can further improve the power supply efficiency when the load is light.
  • the plateau portion in the curve of the DC superimposition characteristic is lowered to the right, and the inclination of the plateau portion becomes gentler as the magnetic bias applying member is strongly magnetized.
  • the curve indicating the DC superimposition characteristic of sample 4 shows a peak (23.5 ⁇ H) inductance value when the DC superimposition current value is 0 A, and the DC superimposition current value.
  • Is 6A the right end of the plateau portion of the curve showing the DC superposition characteristics (inductance value is 20.5 ⁇ H). Therefore, the ratio of the change in the inductance value with respect to the DC superimposed current from the peak of the inductance value to the right end of the plateau is about ⁇ 0.5 (3 ⁇ H / 6A).
  • the inductance part of the present invention has a plateau portion in the DC superimposition characteristic curve that lowers to the right, and the inclination of the plateau portion becomes gentler as the magnetic bias application member is strongly magnetized. .
  • the inductance component of the present invention can improve the power supply efficiency when the load is light, and can improve the response when the current flowing through the conductor changes suddenly when the load is heavy.
  • it means a stable inductance component that is less susceptible to sudden changes in inductance.
  • Test Example 3 shows that in the magnetic bias applying member of the present invention, “the demagnetization curve of the JH curve is such that the slope gradually decreases when the external magnetic field H is changed from 0 to the negative direction. It is a test example showing that it consists of a simple curve.
  • Sample Preparation (1) Sample 16 (Example) After preparing the same magnetic bias applying member as the magnetic bias applying member 14 according to the first embodiment, the sample 16 was magnetized to 100%. However, the effective area was 48 mm 2 and the thickness was 0.5 mm. Further, a composite magnetic material was used in which the entire composite magnetic material was 100 wt%, SmCo as the hard magnetic material powder was 80 wt%, FeSiCr as the soft magnetic material powder was 17 wt%, and the binder was 3 wt%.
  • Sample 17 (comparative example) The magnetic bias is the same as that of the magnetic bias applying member used in Sample 16, except that the composite magnetic material is 100 wt%, and the composite magnetic material is 97 wt% SmCo as the hard magnetic material powder and 3 wt% binder. An application member was prepared and used as Sample 17.
  • FIG. 9 is a graph showing the JH curves of Sample 16 and Sample 17. As can be seen from FIG. 9, in the sample 17, the slope of the JH curve gradually increased when the external magnetic field was changed from 0 (kA / m) to the negative direction. On the other hand, in Sample 16, the slope of the JH curve gradually decreased when the external magnetic field was changed from 0 (kA / m) to the negative direction.
  • the demagnetization curve of the JH curve is a curve whose slope gradually decreases when the external magnetic field H is changed from 0 to the negative direction. It was.
  • the sample 16 has a large relative permeability when the external magnetic field is close to 0 (kA / m), and the relative permeability gradually decreases as the external magnetic field increases in the negative direction. Therefore, it was found that the sample 16 had a large inductance value when the external magnetic field was close to 0 (kA / m), and the inductance value gradually decreased as the external magnetic field increased in the negative direction.
  • Test Example 4 In Test Example 4, even if the content of the soft magnetic material powder in the composite magnetic material powder was changed, the “JH curve demagnetization curve reduced the external magnetic field H to 0 in the magnetic bias applying member of the present invention. It is a test example showing that the curve is such that the slope gradually becomes gentle when changing from negative to negative.
  • Sample 23 (comparative example) The configuration is the same as that of the magnetic bias applying member 14 according to the first embodiment except that the total composite magnetic material is 100 wt%, and the hard magnetic material powder is a composite magnetic material having 97 wt% SmCo and 3 wt% binder. A member for applying a magnetic bias was prepared and used as Sample 23.
  • FIG. 10 is a graph showing the demagnetization curves of the JH curves of Samples 18-23.
  • the slope gradually increased when the external magnetic field was changed from 0 (kA / m) to the negative direction.
  • the inclination gradually decreases, and the inclination gradually decreases again from around -520 (kA / m). It became bigger.
  • the inclination gradually decreased when the external magnetic field was changed from 0 (kA / m) to the negative direction.
  • the demagnetization curve of Samples 18 to 22 changes the external magnetic field H from 0 to the negative direction. It was confirmed that the curve was such that the slope gradually decreased.
  • the relative magnetic permeability increases when the external magnetic field is close to 0 (kA / m), and the external magnetic field increases in the negative direction. It was found that the relative permeability gradually decreased. Therefore, it was found that the samples 18 to 22 had a large inductance value when the external magnetic field was close to 0 (kA / m), and the inductance value gradually decreased as the external magnetic field increased in the negative direction.
  • the magnetic core body is composed of two E cores
  • the case where the magnetic core body is composed of a ring core in the second embodiment the case where the magnetic core body is composed of a ring core in the third embodiment.
  • the present invention has been described by way of examples of two U cores combined in such a manner, the present invention is not limited to this.
  • an EI core combining an E-type core and an I-type core
  • a rod-like core shaped like a bar extending in one direction, or another core is used as the magnetic core. Is applicable.
  • the present invention has been described by taking as an example the case where the magnetic bias applying member is formed by pressing a composite magnetic material.
  • the present invention is not limited to this. It is not something.
  • the present invention can be applied if the magnetic bias applying member is a construction method that can be formed into a flat plate shape even when a composite magnetic material is injection molded, when a green sheet method is used, or when other methods are used. It is. In this case, the binder content may be appropriately adjusted.
  • the present invention has been described by taking the case of an inductance component using a magnetic bias applying member having a thickness corresponding to the gap length of the gap of the magnetic core body as an example. It is not limited to.
  • the present invention can be applied even when a magnetic bias applying member thinner than the thickness corresponding to the gap length of the gap of the magnetic core body is used.
  • the gap length of the air gap is 5% or less of the effective magnetic path length of the magnetic core body constituting the magnetic path (the magnetic path of the magnetic flux generated in the magnetic core when a current is passed through the conducting wire).
  • the magnetic core is less likely to be magnetically saturated due to the shortening of the gap length of the air gap. It becomes a part.
  • the gap length of the air gap in the magnetic core body is preferably 3% or less of the effective magnetic path length of the magnetic path, and more preferably 1% or less of the effective magnetic path length of the magnetic path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

An inductance component (1) provided with the following: a magnetic core (10) that comprises a main magnetic-core body (12), said main magnetic-core body (12) having a magnetic-saturation-preventing air gap (16) in at least one place along the magnetic path thereof, and a magnetic-bias-applying member (14) that comprises a different material from the main magnetic-core body (12) and is positioned inside the aforementioned air gap (16); and a lead wire (20) attached to the magnetic core (10). This inductance component (1) is characterized in that the magnetic-bias-applying member (14) is formed by shaping a composite magnetic material into a slab, said composite magnetic material containing a powdered hard magnetic material for applying a magnetic bias, a powdered soft magnetic material for improving relative permeability, and a binder for binding said materials together. This magnetic device has good DC superimposition characteristics and low magnetic-property variability.

Description

インダクタンス部品、磁気バイアス印加用部材及び磁気バイアス印加用部材の製造方法Inductance component, magnetic bias applying member, and method of manufacturing magnetic bias applying member
 本発明は、インダクタンス部品、磁気バイアス印加用部材及び磁気バイアス印加用部材の製造方法に関する。なお、本発明において、インダクタンス部品とは、スイッチング電源等に用いられるチョークコイル、トランスのことである。 The present invention relates to an inductance component, a magnetic bias applying member, and a method of manufacturing a magnetic bias applying member. In the present invention, the inductance component is a choke coil or a transformer used for a switching power supply or the like.
 従来、磁路の少なくとも一箇所に磁気飽和防止用の空隙(ギャップ)を有する磁気コアと、磁気コアに装着された導線とを備えるインダクタンス部品800が知られている。 Conventionally, there is known an inductance component 800 including a magnetic core having a gap (gap) for preventing magnetic saturation in at least one location of a magnetic path, and a conductive wire attached to the magnetic core.
 図11は、従来のインダクタンス部品800を説明するために示す図である。図11(a)はインダクタンス部品800の断面図であり、図11(b)は磁気コア810の斜視図である。 FIG. 11 is a diagram for explaining a conventional inductance component 800. FIG. 11A is a cross-sectional view of the inductance component 800, and FIG. 11B is a perspective view of the magnetic core 810.
 図12は、従来のインダクタンス部品800を説明するために示す図である。図12(a)は導線に直流重畳電流が流れることによって磁気コア810に発生する磁束の様子を示す図であり、図12(b)はインダクタンス部品800のB-H曲線を模式的に示すグラフである。なお、図12(a)中、符号D1は導線820に直流重畳電流が流れることによって磁気コア810の磁路に発生する磁界の向きを示す。 FIG. 12 is a view for explaining a conventional inductance component 800. FIG. 12A is a diagram showing a state of magnetic flux generated in the magnetic core 810 when a DC superimposed current flows through the conducting wire, and FIG. 12B is a graph schematically showing a BH curve of the inductance component 800. It is. In FIG. 12A, symbol D <b> 1 indicates the direction of the magnetic field generated in the magnetic path of the magnetic core 810 when a DC superimposed current flows through the conductor 820.
 従来のインダクタンス部品800は、図11に示すように、磁路の一箇所に磁気飽和防止用の空隙816を有する磁気コア810(磁気コア本体812)と、磁気コアに装着された導線(コイル820)とを備える。従来の磁気コア810は、例えば、軟磁性材料粉末とバインダーとを圧縮成形することにより形成されている。 As shown in FIG. 11, a conventional inductance component 800 includes a magnetic core 810 (magnetic core body 812) having a magnetic saturation prevention gap 816 at one position of a magnetic path, and a conductor (coil 820) mounted on the magnetic core. ). The conventional magnetic core 810 is formed, for example, by compression molding a soft magnetic material powder and a binder.
 磁気コア810は、2つのEコアを組み合わせて構成されており、中心部には空隙816を有する磁芯818が形成されている。磁気コア810においては、磁芯818を共通部分とした2つの磁路が形成されている。 The magnetic core 810 is configured by combining two E cores, and a magnetic core 818 having a gap 816 is formed at the center. In the magnetic core 810, two magnetic paths having the magnetic core 818 as a common part are formed.
 従来のインダクタンス部品800においては、所望の磁気特性(例えば、直流重畳特性や実効透磁率等)を得るために、空隙816のギャップ長Lを数十μm~数百μm程度の範囲内に設定するのが一般的である。 In the conventional inductance component 800, the gap length L of the air gap 816 is set within a range of several tens to several hundreds of μm in order to obtain desired magnetic characteristics (for example, DC superimposition characteristics and effective magnetic permeability). It is common.
 なお、本明細書中、「直流重畳」とは、インダクタンス部品の導線に流れる交流電流に直流電流を重畳することをいう。また、「直流重畳電流」とは、インダクタンス部品の導線に流れる交流電流に重畳された直流電流のことをいう。また、「直流重畳特性」とは、直流重畳電流が大きくなったときでも磁気コアが磁気飽和し難い特性をいう。従って、「直流重畳特性が良好である」とは、直流重畳電流が大きくなったときでも磁気コアが磁気飽和し難いことをいう。 In the present specification, “DC superimposition” means that a DC current is superimposed on an AC current flowing through a lead wire of an inductance component. Further, the “DC superimposed current” refers to a DC current superimposed on an AC current flowing in the lead wire of the inductance component. The “DC superposition characteristic” means a characteristic that the magnetic core is hard to be magnetically saturated even when the DC superposition current becomes large. Therefore, “the DC superimposition characteristic is good” means that the magnetic core is hardly magnetically saturated even when the DC superimposition current is increased.
 従来のインダクタンス部品800によれば、磁気飽和防止用の空隙816を有する磁気コア810を備えるため、空隙がない磁気コアの場合と比較して、磁気コア810の実効透磁率が低くなる。このことは、図12(b)において空隙がない磁気コアの場合のB-H曲線(点線)の傾きよりも、空隙がある従来の磁気コア810の場合のB-H曲線(実線)の傾きの方が小さいことからも理解することができる。このため、空隙がない磁気コアを備えるインダクタンス部品の場合と比較して、直流重畳電流が大きくなったときでも磁気コアが磁気飽和し難く、直流重畳特性が良好なインダクタンス部品となる。 According to the conventional inductance component 800, since the magnetic core 810 having the magnetic saturation prevention air gap 816 is provided, the effective magnetic permeability of the magnetic core 810 is lower than that of the magnetic core having no air gap. This is because the slope of the BH curve (solid line) in the case of the conventional magnetic core 810 having a gap is larger than the slope of the BH curve (dotted line) in the case of the magnetic core having no gap in FIG. It can be understood from the fact that is smaller. For this reason, compared with the case of an inductance component having a magnetic core without a gap, the magnetic core is less likely to be magnetically saturated even when the DC superimposed current becomes large, and the inductance component has good DC superimposed characteristics.
 また、従来のインダクタンス部品800によれば、磁気飽和防止用の空隙816を有する磁気コア810を備えるため、空隙816のギャップ長Lを調整することによって磁気コア810の実効透磁率を調整することが可能となる。よって、コイル820の巻数や磁性コア810の材質を変更することなく所望の磁気特性を有するインダクタンス部品となる。 Further, according to the conventional inductance component 800, since the magnetic core 810 having the magnetic saturation prevention gap 816 is provided, the effective permeability of the magnetic core 810 can be adjusted by adjusting the gap length L of the gap 816. It becomes possible. Therefore, an inductance component having desired magnetic characteristics can be obtained without changing the number of turns of the coil 820 and the material of the magnetic core 810.
 ところで、近年のインダクタンス部品の技術の分野においては、電子機器の小型化の要請に伴って、小型化されたインダクタンス部品が求められている。しかしながら、インダクタンス部品をそのまま小型化した場合には、磁気コアの空隙のギャップ長Lも小さくなることに起因して磁気コアの実効透磁率が高くなり、小さな直流重畳電流であっても磁気コアが磁気飽和し易くなってしまうという問題がある。このため、小型化されても、直流重畳特性が良好なインダクタンス部品に対する要求が高まっている。 By the way, in the field of technology of inductance parts in recent years, miniaturized inductance parts have been demanded with the demand for downsizing of electronic devices. However, when the inductance component is downsized as it is, the effective permeability of the magnetic core increases because the gap length L of the gap of the magnetic core also decreases. There is a problem that magnetic saturation easily occurs. For this reason, there is an increasing demand for an inductance component having a good direct current superposition characteristic even if it is downsized.
 上記した要求に対しては、一般的に、飽和磁化の高い磁気コアを用いることで直流重畳特性が良好なインダクタンス部品を製造することが試みられてきた。飽和磁化の高い磁気コアは、磁気コアの材料の種類や組成を変更することによって形成される。しかしながら、磁気コアの材料の種類や組成を変更することには限度がある等の種々の問題により、むやみに高くできるものではない。 In response to the above-described requirements, it has been attempted to manufacture an inductance component having a good DC superposition characteristic by using a magnetic core having a high saturation magnetization. A magnetic core having a high saturation magnetization is formed by changing the type and composition of the magnetic core material. However, due to various problems such as limitations in changing the type and composition of the magnetic core material, it cannot be increased unnecessarily.
 そこで、上記した要求を満たすために、いわゆるマグネットバイアス方式を利用した従来の他のインダクタンス部品900が知られている(例えば、特許文献1参照。)。 Therefore, in order to satisfy the above-described requirements, another conventional inductance component 900 using a so-called magnet bias method is known (for example, see Patent Document 1).
 図13は、従来の他のインダクタンス部品900を説明するために示す図である。図13(a)はインダクタンス部品900の断面図であり、図13(b)は磁気コア910の斜視図である。
 図14は、従来の他のインダクタンス部品900を説明するために示す図である。図14(a)は導線920に直流重畳電流が流れることによって磁気コア910に発生する磁束の様子を示す図であり、図14(b)はインダクタンス部品900のB-H曲線を模式的に示すグラフである。
FIG. 13 is a view for explaining another conventional inductance component 900. 13A is a cross-sectional view of the inductance component 900, and FIG. 13B is a perspective view of the magnetic core 910.
FIG. 14 is a view for explaining another conventional inductance component 900. FIG. 14A is a diagram showing a state of magnetic flux generated in the magnetic core 910 when a DC superimposed current flows through the conductor 920, and FIG. 14B schematically shows a BH curve of the inductance component 900. It is a graph.
 従来の他のインダクタンス部品900は、図13に示すように、磁路の一箇所に磁気飽和防止用の空隙916を有する磁気コア本体912及び空隙916に配設され磁気コア本体912とは異なる材料からなる磁気バイアス印加用部材914を有する磁気コア910と、磁気コア910に装着された導線920とを備える。磁気バイアス印加用部材914は、硬磁性材料粉末及び絶縁物を平板状に圧縮成形することにより形成されたものである。 As shown in FIG. 13, another conventional inductance component 900 includes a magnetic core body 912 having a magnetic saturation prevention gap 916 at one position of the magnetic path, and a material different from the magnetic core body 912 provided in the gap 916. A magnetic core 910 having a magnetic bias applying member 914 and a conductive wire 920 attached to the magnetic core 910. The magnetic bias applying member 914 is formed by compression molding a hard magnetic material powder and an insulator into a flat plate shape.
 従来の他のインダクタンス部品900においては、図14(a)に示すように、磁気バイアス印加用部材914による磁界の向きD2が、導線920に直流重畳電流が流れることによって磁気コア910の磁路に発生する磁界の向きD1とは逆向きになるように(すなわち、導線920に直流重畳電流が流れることによって発生する磁界とは逆方向に磁気バイアスを印加するように)、磁気バイアス印加用部材914が配置されている。 In another conventional inductance component 900, as shown in FIG. 14A, the direction D2 of the magnetic field by the magnetic bias applying member 914 is changed to the magnetic path of the magnetic core 910 by the DC superimposed current flowing through the conducting wire 920. A member 914 for applying a magnetic bias so that the direction D1 of the generated magnetic field is opposite (that is, a magnetic bias is applied in the direction opposite to the magnetic field generated by the DC superimposed current flowing through the conducting wire 920). Is arranged.
 従来の他のインダクタンス部品900によれば、磁気バイアス印加用部材914を有する磁気コア910を備えるため、導線920に直流重畳電流が流れることによって磁気コア910の磁路に発生する磁界を、磁気バイアス印加用部材914による磁界によって打ち消すことが可能となる。従って、従来の他の磁気コア910は、図14(b)に示すように、飽和磁束密度に達しない磁束密度の範囲△B(活用可能な磁束密度の範囲)が従来の磁気コア810よりも大きい磁気コアとなる。その結果、直流重畳電流が大きくなったときでも磁気コアが磁気飽和し難くなり、直流重畳特性が良好なインダクタンス部品となる。 According to another conventional inductance component 900, since the magnetic core 910 having the magnetic bias applying member 914 is provided, the magnetic field generated in the magnetic path of the magnetic core 910 by the DC superimposed current flowing through the conducting wire 920 is changed to the magnetic bias. It becomes possible to cancel by the magnetic field generated by the applying member 914. Accordingly, as shown in FIG. 14B, the other conventional magnetic core 910 has a magnetic flux density range ΔB (a usable magnetic flux density range) that does not reach the saturation magnetic flux density as compared with the conventional magnetic core 810. A large magnetic core. As a result, the magnetic core is less likely to be magnetically saturated even when the DC superimposed current is increased, resulting in an inductance component with good DC superimposed characteristics.
特開昭50-133453号公報JP 50-133453 A
 ところで、従来の他の磁気バイアス印加用部材914は、硬磁性材料粉末及び絶縁物より形成されたものであるため、磁気バイアス印加用部材914の比透磁率はおよそ1となり、従来の磁気コア810の空隙816間に存在する物質(空気)の比透磁率とほぼ同じになる。このため、従来の他のインダクタンス部品900の磁気特性(インダクタンス等)を、従来のインダクタンス部品800と同様の磁気特性とするためには、磁気コア本体912における空隙916のギャップ長Lを従来のインダクタンス部品800のギャップ長Lとほぼ同じ長さにする必要がある。 Meanwhile, since the other conventional magnetic bias applying member 914 is formed of a hard magnetic material powder and an insulator, the relative permeability of the magnetic bias applying member 914 is approximately 1, and the conventional magnetic core 810 is provided. The relative permeability of the substance (air) existing between the air gaps 816 is substantially the same. Therefore, in order to make the magnetic characteristics (inductance, etc.) of another conventional inductance component 900 the same as that of the conventional inductance component 800, the gap length L of the air gap 916 in the magnetic core body 912 is changed to the conventional inductance. It is necessary to make the length approximately the same as the gap length L of the component 800.
 しかしながら、従来の他のインダクタンス部品900においては、上記した磁気コア本体912における空隙916のギャップ長Lに対応した厚さの磁気バイアス印加用部材914を厚さばらつきの小さい状態で製造することが困難となる場合がある。例えば、平均粒径150μm程度の比較的大きな磁性材料粉末を原料として押圧成形法で厚さ300μm程度以下の比較的薄い磁気バイアス印加用部材を製造しようとした場合、厚さばらつきの小さい磁気バイアス印加用部材を製造することが困難であることから、厚さばらつきの大きい磁気バイアス印加用部材が製造されることとなる。 However, in another conventional inductance component 900, it is difficult to manufacture the magnetic bias applying member 914 having a thickness corresponding to the gap length L of the air gap 916 in the magnetic core body 912 with a small thickness variation. It may become. For example, when an attempt is made to produce a relatively thin magnetic bias application member having a thickness of about 300 μm or less by a press molding method using a relatively large magnetic material powder having an average particle size of about 150 μm as a raw material, a magnetic bias application with a small thickness variation Since it is difficult to manufacture a member for use, a member for applying a magnetic bias having a large thickness variation is produced.
 その結果、そのように厚さばらつきの大きい磁気バイアス印加用部材を用いて製造されるインダクタンス部品の磁気特性のばらつきを小さくすることが困難となる。言い換えると、従来の他のインダクタンス部品900においては、磁気特性のばらつきが小さいインダクタンス部品とすることが困難であるという問題がある。 As a result, it is difficult to reduce the variation in the magnetic characteristics of the inductance component manufactured using the magnetic bias applying member having such a large thickness variation. In other words, another conventional inductance component 900 has a problem that it is difficult to make an inductance component with small variations in magnetic characteristics.
 そこで、本発明は、このような問題を解決するためになされたもので、直流重畳特性が良好で、かつ、磁気特性のばらつきが小さいインダクタンス部品を提供することを目的とする。また、このようなインダクタンス部品に用いる磁気バイアス印加用部材を提供することを目的とする。さらに、このような磁気バイアス印加用部材を製造する磁気バイアス印加用部材の製造方法を提供することを目的とする。 Therefore, the present invention has been made to solve such a problem, and an object thereof is to provide an inductance component having good direct current superposition characteristics and small variations in magnetic characteristics. Another object of the present invention is to provide a magnetic bias applying member used for such an inductance component. Furthermore, it aims at providing the manufacturing method of the member for magnetic bias application which manufactures such a member for magnetic bias application.
[1]本発明のインダクタンス部品は、磁路の少なくとも一箇所に磁気飽和防止用の空隙を有する磁気コア本体、及び、前記空隙に配設され前記磁気コア本体とは異なる材料からなる磁気バイアス印加用部材を有する磁気コアと、前記磁気コアに装着された導線とを備え、前記磁気バイアス印加用部材は、磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを含有する複合磁性材料を平板状に成形することにより形成されたものであることを特徴とする。 [1] An inductance component according to the present invention includes a magnetic core body having a magnetic saturation prevention gap at least at one location of a magnetic path, and a magnetic bias application made of a material different from the magnetic core body disposed in the gap. A magnetic core having a magnetic member and a conductive wire attached to the magnetic core, the magnetic bias applying member comprising: a hard magnetic material powder for applying a magnetic bias; a soft magnetic material powder for improving a relative permeability; and It is formed by forming a composite magnetic material containing a binder that binds to a flat plate shape.
 なお、導線は、電流を流すための導体となる線であればよく、組成、形状及び太さを問わない。よって、導線は、電流が流れるコイル形状のもののみならず、例えば、直線形状のものも含む。 In addition, a conducting wire should just be a wire used as the conductor for flowing an electric current, and does not ask | require a composition, a shape, and thickness. Therefore, the conducting wire includes not only a coil shape in which a current flows, but also a linear shape, for example.
[2]本発明のインダクタンス部品においては、「磁気バイアス印加用部材から発生する磁束の磁路」を構成する磁気コア本体の実効比透磁率が10以上であることが好ましい。 [2] In the inductance component of the present invention, it is preferable that the effective relative permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is 10 or more.
 ここで、「磁気バイアス印加用部材から発生する磁束の磁路」は、磁気バイアス印加用部材から発生する磁束が磁気コア本体を貫通する磁路のことである。なお、この場合、磁気バイアス印加用部材には磁束が貫通しない。 Here, the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is a magnetic path through which the magnetic flux generated from the magnetic bias applying member penetrates the magnetic core body. In this case, magnetic flux does not penetrate the magnetic bias applying member.
[3]本発明のインダクタンス部品においては、前記「磁気バイアス印加用部材から発生する磁束の磁路」を構成する磁気コア本体の実効比透磁率が、「導線に電流を流したときに前記磁気コアに発生する磁束の磁路」を構成する前記磁気コアの実効比透磁率の1.5倍以上であることが好ましい。 [3] In the inductance component of the present invention, the effective relative permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is “the magnetic force when a current is passed through the conducting wire”. It is preferably 1.5 times or more the effective relative permeability of the magnetic core constituting the “magnetic path of magnetic flux generated in the core”.
 ここで、「導線に電流を流したときに磁気コアに発生する磁束の磁路」は、導線を起磁力として発生する磁束が磁気コアを貫通する磁路のことであり、磁気コア本体を磁束が貫通する磁路だけでなく、磁気バイアス印加用部材を磁束が貫通する磁路も含まれる。 Here, “the magnetic path of the magnetic flux generated in the magnetic core when a current is passed through the conducting wire” is a magnetic path through which the magnetic flux generated by using the conducting wire as a magnetomotive force penetrates the magnetic core, As well as a magnetic path through which the magnetic flux passes through the magnetic bias applying member.
[4]本発明のインダクタンス部品においては、前記複合磁性材料においては、前記硬磁性材料粉末及び前記軟磁性材料粉末を合計したものに対する前記軟磁性材料粉末の割合が5wt%~80wt%の範囲内にあることが好ましい。 [4] In the inductance component of the present invention, in the composite magnetic material, the ratio of the soft magnetic material powder to the total of the hard magnetic material powder and the soft magnetic material powder is in the range of 5 wt% to 80 wt%. It is preferable that it exists in.
[5]本発明のインダクタンス部品においては、横軸に直流重畳電流値をとり、縦軸にインダクタンス部品のインダクタンス値をとったグラフに、前記導線に流れる直流重畳電流を変化させながら測定した前記インダクタンス値をプロットしたとき、前記直流重畳電流と前記インダクタンス値との関係を示す曲線が、台地形状を示し、かつ、前記台地形状の台地部が右下がりになっていることが好ましい。 [5] In the inductance component of the present invention, the inductance measured by changing the DC superimposed current flowing in the conductor in a graph in which the horizontal axis represents the DC superimposed current value and the vertical axis represents the inductance value of the inductance component. When the values are plotted, it is preferable that a curve indicating the relationship between the DC superimposed current and the inductance value indicates a plateau shape, and the plateau portion of the plateau shape is downwardly inclined.
 ここで、上記曲線の「台地形状」とは、直流重畳電流値が負の領域及び正の領域に形成され相対的に低いインダクタンス値でインダクタンス値がほぼ一定となる第1領域と、当該第1領域に挟まれた領域に形成され相対的に高いインダクタンス値でインダクタンス値が緩やかに変動する第2領域(台地部)とから構成されている形状のことをいう(後述する図6参照。)。また、「台地部が右下がりになっている」とは、台地部が左端から単調減少する場合のみならず、台地部の左端側にインダクタンス値のピークがあり、当該ピークから台地部の右端側に向かって単調減少する場合を含む。 Here, the “mountain shape” of the above curve is a first region in which the DC superimposed current value is formed in a negative region and a positive region and the inductance value is substantially constant at a relatively low inductance value, and the first region. A shape formed of a second region (a plateau portion) formed in a region sandwiched between the regions and having a relatively high inductance value and the inductance value gradually changing (see FIG. 6 described later). In addition, “the plateau part is falling to the right” is not only when the plateau monotonously decreases from the left end, but also has a peak inductance value on the left end side of the plateau, and the right end side of the plateau part from the peak. Including the case of monotonically decreasing toward.
[6]本発明のインダクタンス部品においては、前記磁気バイアス印加用部材においては、横軸に外部磁場をとり、縦軸に磁化をとったグラフに、外部磁場を変化させながら測定した磁化をプロットしたとき、前記外部磁場と前記磁化との関係を示すJ-H曲線の減磁曲線が、外部磁場を0から負の方向に変化させたときに傾きが徐々に緩やかになるような曲線となることが好ましい(後述する図9参照。)。 [6] In the inductance component of the present invention, in the magnetic bias applying member, the magnetization measured while changing the external magnetic field is plotted on the graph in which the horizontal axis represents the external magnetic field and the vertical axis represents the magnetization. When the external magnetic field is changed from 0 to the negative direction, the demagnetization curve of the JH curve indicating the relationship between the external magnetic field and the magnetization becomes a curve that gradually becomes gentler. Is preferable (see FIG. 9 described later).
[7]本発明のインダクタンス部品においては、前記複合磁性材料においては、前記軟磁性材料粉末の平均粒径が、1μm~900μmの範囲内にあることが好ましい。 [7] In the inductance component of the present invention, in the composite magnetic material, the soft magnetic material powder preferably has an average particle size in the range of 1 μm to 900 μm.
[8]本発明のインダクタンス部品においては、前記磁気バイアス印加用部材は、外部磁場を印加していないときの前記磁気バイアス印加用部材の比透磁率が1.2~5.0の範囲内となるように構成されていることが好ましい。 [8] In the inductance component of the present invention, the magnetic bias applying member has a relative magnetic permeability within a range of 1.2 to 5.0 when the external magnetic field is not applied. It is preferable that it is comprised so that it may become.
[9]本発明のインダクタンス部品においては、前記磁気コア本体における前記空隙のギャップ長をLとし、前記硬磁性材料粉末及び前記軟磁性材料粉末のうち,大きいほうの平均粒径をDとしたとき、以下に示す式(1)を満たすことを特徴とするインダクタンス部品。
Figure JPOXMLDOC01-appb-M000002
[9] In the inductance component of the present invention, when the gap length of the gap in the magnetic core body is L, and the larger average particle diameter of the hard magnetic material powder and the soft magnetic material powder is D An inductance component that satisfies the following expression (1).
Figure JPOXMLDOC01-appb-M000002
[10]本発明のインダクタンス部品においては、前記磁気バイアス印加用部材は、ボンド磁石からなることが好ましい。 [10] In the inductance component of the present invention, the magnetic bias applying member is preferably made of a bonded magnet.
[11]本発明のインダクタンス部品においては、前記磁気バイアス印加用部材は、永久磁石からなることが好ましい。 [11] In the inductance component of the present invention, the magnetic bias applying member is preferably made of a permanent magnet.
[12]本発明のインダクタンス部品においては、前記軟磁性材料粉末は、絶縁処理が施されていることが好ましい。 [12] In the inductance component of the present invention, the soft magnetic material powder is preferably subjected to an insulation treatment.
[13]本発明のインダクタンス部品においては、前記磁気バイアス印加用部材は、前記複合磁性材料を押圧成形する方法、前記複合磁性材料を射出成形する方法又は前記複合磁性材料をグリーンシート法により成形する方法のいずれかの方法によって形成されたものであることが好ましい。 [13] In the inductance component of the present invention, the magnetic bias applying member is formed by pressing the composite magnetic material, injection molding the composite magnetic material, or forming the composite magnetic material by a green sheet method. It is preferably formed by any one of the methods.
[14]本発明のインダクタンス部品においては、前記磁気コア本体は、フェライトによって形成されたものであるか、又は、軟磁性材料粉末及びバインダーを含有する磁性材料を成形することにより形成されたものであることが好ましい。 [14] In the inductance component of the present invention, the magnetic core body is formed of ferrite or formed by molding a magnetic material containing a soft magnetic material powder and a binder. Preferably there is.
[15]本発明の磁気バイアス印加用部材は、上記[1]~[14]のいずれかに記載のインダクタンス部品に用いる磁気バイアス印加用部材であって、磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを含有する複合磁性材料を平板状に成形することにより形成されたものであることを特徴とする。 [15] A magnetic bias applying member according to the present invention is a magnetic bias applying member used for the inductance component according to any one of [1] to [14] above, a hard magnetic material powder for applying a magnetic bias, It is formed by molding a composite magnetic material containing a soft magnetic material powder for improving the relative magnetic permeability and a binder for binding them into a flat plate shape.
[16]本発明の磁気バイアス印加用部材の製造方法は、上記[1]~[14]のいずれかに記載のインダクタンス部品に用いる磁気バイアス印加用部材の製造方法であって、磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを所定の割合で混錬して複合磁性材料を作製する複合磁性材料作製工程と、前記複合磁性材料を平板状に成形することにより成形体を作製する成形工程と、前記成形体に含まれるバインダーを硬化する硬化工程と、前記成形体を着磁して磁気バイアス印加用部材とする着磁工程とをこの順序で含むことを特徴とする。 [16] A method of manufacturing a magnetic bias applying member according to the present invention is a method of manufacturing a magnetic bias applying member used for an inductance component according to any one of [1] to [14], wherein the magnetic bias applying member is used. A composite magnetic material preparation step for preparing a composite magnetic material by kneading a hard magnetic material powder, a soft magnetic material powder for improving relative permeability, and a binder for binding them in a predetermined ratio; A molding process for producing a molded body by molding into a shape, a curing process for curing the binder contained in the molded body, and a magnetization process for magnetizing the molded body to form a magnetic bias applying member. It is characterized by including in order.
 本発明のインダクタンス部品によれば、磁気バイアス印加用部材を有する磁気コアを備えるため、従来の他のインダクタンス部品900の場合と同様に、導線に直流重畳電流が流れることによって磁気コアの磁路に発生する磁界を、磁気バイアス印加用部材の磁界によって打ち消すことが可能となる。このため、飽和磁束密度に達しない磁束密度の範囲△B(活用可能な磁束密度の範囲)が従来の磁気コアよりも大きい磁気コアとなる。その結果、直流重畳電流が大きくなったときでも磁気コアが磁気飽和し難くなり、直流重畳特性が良好なインダクタンス部品となる。 According to the inductance component of the present invention, since the magnetic core having the magnetic bias applying member is provided, the direct current superimposed current flows through the conducting wire in the magnetic path of the magnetic core as in the case of the other conventional inductance component 900. The generated magnetic field can be canceled out by the magnetic field of the magnetic bias applying member. For this reason, a magnetic core having a magnetic flux density range ΔB (a usable magnetic flux density range) that does not reach the saturation magnetic flux density is larger than that of the conventional magnetic core. As a result, the magnetic core is less likely to be magnetically saturated even when the DC superimposed current is increased, resulting in an inductance component with good DC superimposed characteristics.
 また、本発明のインダクタンス部品によれば、磁気バイアス印加用部材が比透磁率向上用の軟磁性材料粉末を含有する複合磁性材料より形成されたものであることから、磁気バイアス印加用部材の比透磁率を1より高くすることが可能となる。ここで、所定のインダクタンス値を得るためには比透磁率と磁気コア本体における空隙のギャップ長との比率が一定比となることが必要であり、比透磁率を高くできると当該ギャップ長を長くすることが可能となる。従って、当該ギャップ長に対応した厚さの磁気バイアス印加用部材を厚さばらつきの小さい状態で製造することが可能となる。その結果、厚さばらつきの小さい磁気バイアス印加用部材を用いて製造されるインダクタンス部品の磁気特性のばらつきを小さくすることが可能となる。 Further, according to the inductance component of the present invention, since the magnetic bias applying member is formed of a composite magnetic material containing a soft magnetic material powder for improving the relative permeability, the ratio of the magnetic bias applying member is The permeability can be made higher than 1. Here, in order to obtain a predetermined inductance value, the ratio between the relative permeability and the gap length of the air gap in the magnetic core body needs to be a constant ratio. If the relative permeability can be increased, the gap length is increased. It becomes possible to do. Therefore, the magnetic bias applying member having a thickness corresponding to the gap length can be manufactured with a small thickness variation. As a result, it is possible to reduce the variation in magnetic characteristics of the inductance component manufactured using the magnetic bias applying member having a small thickness variation.
 また、本発明のインダクタンス部品によれば、磁気バイアス印加用部材が、硬磁性材料粉末及び軟磁性材料粉末を含有する複合磁性材料より形成されたものであることから、硬磁性材料と軟磁性材料との割合を調整して所望の磁気特性を有する磁気バイアス印加用部材を製造することが可能となる。その結果、本発明のインダクタンス部品は、所望の磁気特性を有するインダクタンス部品となる。 Further, according to the inductance component of the present invention, since the magnetic bias applying member is formed of a composite magnetic material containing a hard magnetic material powder and a soft magnetic material powder, the hard magnetic material and the soft magnetic material are used. It is possible to manufacture a member for applying a magnetic bias having desired magnetic characteristics by adjusting the ratio. As a result, the inductance component of the present invention becomes an inductance component having desired magnetic characteristics.
 また、本発明のインダクタンス部品によれば、磁気バイアス印加用部材が、比透磁率向上用の軟磁性材料粉末を含有する複合磁性材料より形成されたものであるため、磁気バイアス印加用部材の比透磁率を高くすることが可能となる。このため、磁気コア全体の実効透磁率が高くなることから、所望の磁界強度とするためのコイル(導線)の巻数が少なくてすみ、その結果、コアロスの少ない高性能のインダクタンス部品とすることが可能となる。また、磁気バイアス印加用部材の比透磁率を高くすることが可能となるため、空隙中において所定の磁束密度を得るために必要な磁界強度は、従来の他のインダクタンス部品900の場合と比較して、小さくなるため、このことからもコアロスの少ない高性能のインダクタンス部品とすることが可能となる。 Further, according to the inductance component of the present invention, the magnetic bias applying member is formed of a composite magnetic material containing a soft magnetic material powder for improving the relative permeability. It is possible to increase the magnetic permeability. For this reason, since the effective magnetic permeability of the entire magnetic core is increased, the number of turns of the coil (conductor) for obtaining a desired magnetic field strength can be reduced, and as a result, a high-performance inductance component with less core loss can be obtained. It becomes possible. In addition, since the relative permeability of the magnetic bias applying member can be increased, the magnetic field strength required to obtain a predetermined magnetic flux density in the air gap is higher than that of the other conventional inductance component 900. Therefore, it is possible to obtain a high-performance inductance component with little core loss.
 本発明の磁気バイアス印加用部材によれば、磁気バイアス印加用部材が、磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを含有する複合磁性材料を平板状に成形することにより形成されたことから、上記した効果を有する磁気バイアス印加用部材となる。その結果、上記した効果を有するインダクタンス部品を製造することが可能となる。 According to the magnetic bias applying member of the present invention, the magnetic bias applying member comprises a hard magnetic material powder for applying a magnetic bias, a soft magnetic material powder for improving the relative permeability, and a composite magnetic material containing a binder for binding them. Since it is formed by forming the material into a flat plate shape, it becomes a magnetic bias applying member having the above-described effects. As a result, it is possible to manufacture an inductance component having the effects described above.
 本発明の磁気バイアス印加用部材の製造方法によれば、複合磁性材料作製工程において、磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを所定の割合で混錬して複合磁性材料を作製するため、上記した効果を有する磁気バイアス印加用部材を製造することが可能となる。その結果、上記した効果を有するインダクタンス部品を製造することが可能となる。 According to the method for manufacturing a magnetic bias applying member of the present invention, in the composite magnetic material manufacturing step, the hard magnetic material powder for applying the magnetic bias, the soft magnetic material powder for improving the relative magnetic permeability, and the binder for binding these are predetermined. Since the composite magnetic material is produced by kneading at a ratio of 1 to 5, it is possible to produce a member for applying a magnetic bias having the above-described effects. As a result, it is possible to manufacture an inductance component having the effects described above.
実施形態1に係るインダクタンス部品1を説明するために示す図である。It is a figure shown in order to demonstrate the inductance component 1 which concerns on Embodiment 1. FIG. 実施形態1に係るインダクタンス部品1を説明するために示す図である。It is a figure shown in order to demonstrate the inductance component 1 which concerns on Embodiment 1. FIG. 実施形態1に係る磁気バイアス印加用部材の製造方法を説明するために示すフローチャートである。3 is a flowchart shown for explaining a method for manufacturing a magnetic bias applying member according to the first embodiment. 実施形態2に係るインダクタンス部品2を説明するために示す図である。It is a figure shown in order to demonstrate the inductance component 2 which concerns on Embodiment 2. FIG. 実施形態3に係るインダクタンス部品3を説明するために示す図である。It is a figure shown in order to demonstrate the inductance component 3 which concerns on Embodiment 3. FIG. 試料1~3の直流重畳特性を示すグラフである。6 is a graph showing the DC superposition characteristics of Samples 1 to 3. 試料4~9の直流重畳特性を示すグラフである。6 is a graph showing DC superposition characteristics of Samples 4 to 9. 試料10~15の直流重畳特性を示すグラフである。6 is a graph showing DC superposition characteristics of samples 10 to 15; 試料16及び試料17のJ-H曲線を示すグラフである。10 is a graph showing JH curves of Sample 16 and Sample 17. 試料18~23の減磁曲線を示すグラフである。24 is a graph showing demagnetization curves of samples 18 to 23. 従来のインダクタンス部品800を説明するために示す図である。It is a figure shown in order to demonstrate the conventional inductance component 800. 従来のインダクタンス部品800を説明するために示す図である。It is a figure shown in order to demonstrate the conventional inductance component 800. 従来の他のインダクタンス部品900を説明するために示す図である。It is a figure shown in order to demonstrate other conventional inductance components 900. 従来の他のインダクタンス部品900を説明するために示す図である。It is a figure shown in order to demonstrate other conventional inductance components 900.
 以下、本発明のインダクタンス部品、磁気バイアス印加用部材及び磁気バイアス印加用部材の製造方法について、図に示す実施形態に基づいて説明する。 Hereinafter, an inductance component, a magnetic bias applying member, and a method of manufacturing the magnetic bias applying member of the present invention will be described based on the embodiments shown in the drawings.
[実施形態1]
 まず、実施形態1に係るインダクタンス部品1の構成を、実施形態1に係る磁気バイアス印加用部材14の構成とともに説明する。
 図1は、実施形態1に係るインダクタンス部品1を説明するために示す図である。図1(a)はインダクタンス部品1の斜視図であり、図1(b)は図1(a)のA-A断面図であり、図1(c)は磁気コア10の斜視図である。
[Embodiment 1]
First, the configuration of the inductance component 1 according to the first embodiment will be described together with the configuration of the magnetic bias applying member 14 according to the first embodiment.
FIG. 1 is a diagram for explaining the inductance component 1 according to the first embodiment. 1A is a perspective view of the inductance component 1, FIG. 1B is a cross-sectional view taken along the line AA of FIG. 1A, and FIG. 1C is a perspective view of the magnetic core 10.
 実施形態1に係るインダクタンス部品1は、図1(a)及び図1(b)に示すように、磁気コア10と、磁気コア10に装着された導線20とを備える。 As shown in FIGS. 1A and 1B, the inductance component 1 according to the first embodiment includes a magnetic core 10 and a conductive wire 20 attached to the magnetic core 10.
 磁気コア10は、図1(c)に示すように、磁路の少なくとも一箇所に磁気飽和防止用の空隙16を有する磁気コア本体12、及び、空隙16に配設され磁気コア本体12とは異なる材料からなる磁気バイアス印加用部材14を有する。 As shown in FIG. 1C, the magnetic core 10 includes a magnetic core body 12 having a magnetic saturation prevention gap 16 at least at one location of a magnetic path, and a magnetic core body 12 disposed in the gap 16. The magnetic bias applying member 14 is made of a different material.
 実施形態1に係るインダクタンス部品1においては、「磁気バイアス印加用部材から発生する磁束の磁路」を構成する磁気コア本体の実効比透磁率が10以上(例えば、630)である。また、「磁気バイアス印加用部材から発生する磁束の磁路」を構成する磁気コア本体の実効比透磁率は、「導線20に電流を流したときに磁気コア10に発生する磁束の磁路」を構成する磁気コアの実効比透磁率(例えば、80)の1.5倍以上である。 In the inductance component 1 according to the first embodiment, the effective relative permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is 10 or more (for example, 630). The effective relative permeability of the magnetic core main body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is “the magnetic path of the magnetic flux generated in the magnetic core 10 when a current is passed through the conducting wire 20”. It is 1.5 times or more of the effective relative magnetic permeability (for example, 80) of the magnetic core which comprises.
 磁気コア本体12は、後述する図2(a)に示すように、中心部に磁芯18が形成されるように組み合わされた2つのEコアから構成され、磁芯818を共通部分とした2つの磁路が形成されている。 As shown in FIG. 2A, which will be described later, the magnetic core body 12 is composed of two E cores combined so that the magnetic core 18 is formed at the center, and the magnetic core 818 is a common part. Two magnetic paths are formed.
 磁気コア本体12としては、例えば、酸化鉄を主成分とした粉末を圧縮して成形した後に、焼成したセラミック状のフェライトから形成されたものや、軟磁性材料粉末とバインダーとを成形することにより形成されたものを用いることができる。
 軟磁性材料粉末としては、FeSiCr粉末、FeSi粉末、カルボニル鉄粉末、センダスト粉末、パーマロイ粉末、MnZnフェライト粉末又はアモルファス材粉末等、適宜のものを用いることができるし、これらの材料を組み合わせたものを用いることもできる。
As the magnetic core main body 12, for example, a powder made of iron oxide as a main component is compressed and molded, and then formed from a sintered ceramic ferrite, or a soft magnetic material powder and a binder are molded. The formed one can be used.
As the soft magnetic material powder, an appropriate one such as FeSiCr powder, FeSi powder, carbonyl iron powder, sendust powder, permalloy powder, MnZn ferrite powder, or amorphous material powder can be used, or a combination of these materials. It can also be used.
 空隙16は、磁路の一箇所である磁芯18に形成されている。空隙16(磁気コア本体12の空隙16)のギャップ長は、磁路(導線に電流を流したときに磁気コアに発生する磁束の磁路)の実効磁路長(例えば、7.5cm)の5%以下であり、例えば、500μmである。 The air gap 16 is formed in the magnetic core 18 which is one place of the magnetic path. The gap length of the air gap 16 (the air gap 16 of the magnetic core body 12) is the effective magnetic path length (for example, 7.5 cm) of the magnetic path (the magnetic path of the magnetic flux generated in the magnetic core when a current is passed through the conducting wire). 5% or less, for example, 500 μm.
 空隙16は、磁気コア本体12における空隙16のギャップ長をLとし、後述する磁気バイアス印加用部材14の硬磁性材料粉末及び軟磁性材料粉末のうち,大きいほうの平均粒径をDとしたとき、以下に示す式(1)を満たしている。
Figure JPOXMLDOC01-appb-M000003
The gap 16 has a gap length L of the magnetic core body 12 of L, and a larger average particle diameter of hard magnetic material powder and soft magnetic material powder of the magnetic bias applying member 14 described later is D. The following formula (1) is satisfied.
Figure JPOXMLDOC01-appb-M000003
 磁気バイアス印加用部材14は、磁気コア本体12の空隙16に配設されている。具体的には、磁気バイアス印加用部材14による磁界の向きD2を、導線20に直流重畳電流が流れることによって磁気コア10に発生する磁界の向きD1とは逆向きになるように(すなわち、導線20に直流重畳電流が流れることによって磁気コア10に発生する磁界とは逆方向に磁気バイアスを印加するように)配置されている。 The magnetic bias applying member 14 is disposed in the gap 16 of the magnetic core body 12. Specifically, the direction D2 of the magnetic field generated by the magnetic bias applying member 14 is opposite to the direction D1 of the magnetic field generated in the magnetic core 10 when a DC superimposed current flows through the conductive wire 20 (that is, the conductive wire). 20 is arranged so that a magnetic bias is applied in the direction opposite to the magnetic field generated in the magnetic core 10 by the direct current superimposed current flowing in the magnetic core 10.
 また、磁気バイアス印加用部材14は、磁気コア本体12とは異なる材料からなり、後述する複合磁性材料を平板状に成形することによって(具体的には複合磁性材料を押圧成形する方法によって)形成されたものである。磁気バイアス印加用部材14は、永久磁石、かつ、ボンド磁石である。 The magnetic bias applying member 14 is made of a material different from that of the magnetic core body 12 and is formed by molding a composite magnetic material, which will be described later, into a flat plate shape (specifically, by pressing the composite magnetic material). It has been done. The magnetic bias applying member 14 is a permanent magnet and a bonded magnet.
 磁気バイアス印加用部材14の厚さは、磁気コア本体12における空隙16のギャップ長Lに対応した厚みを有しており、実施形態1においては例えば、500μmである。 The thickness of the magnetic bias applying member 14 has a thickness corresponding to the gap length L of the air gap 16 in the magnetic core body 12, and is, for example, 500 μm in the first embodiment.
 磁気バイアス印加用部材14は、外部磁場を印加していないときの磁気バイアス印加用部材14の比透磁率が1.2~5.0の範囲内となるように構成されている。 The magnetic bias applying member 14 is configured so that the relative permeability of the magnetic bias applying member 14 when an external magnetic field is not applied is in the range of 1.2 to 5.0.
 磁気バイアス印加用部材14は、磁気バイアス印加用部材14の比透磁率が下記(2)の式を満たす。このような構成とすることにより、磁気バイアス印加用部材14は、逆向きのパルス電流によって減磁されてしまうことを防ぐことが可能となる。
Figure JPOXMLDOC01-appb-M000004
 なお、式(2)において、μは、磁気バイアス印加用部材14の比透磁率を示し、Bsは磁気コア本体12の飽和磁束密度を示し、Jは磁気コア本体12の磁化を示し、μは真空の透磁率を示し、Hcは磁気バイアス印加用部材14の保磁力を示す。
In the magnetic bias applying member 14, the relative permeability of the magnetic bias applying member 14 satisfies the following expression (2). With this configuration, the magnetic bias applying member 14 can be prevented from being demagnetized by a reverse pulse current.
Figure JPOXMLDOC01-appb-M000004
In Expression (2), μ represents the relative permeability of the magnetic bias applying member 14, Bs represents the saturation magnetic flux density of the magnetic core body 12, J represents the magnetization of the magnetic core body 12, and μ 0 Indicates the magnetic permeability of vacuum, and Hc indicates the coercive force of the magnetic bias applying member 14.
 複合磁性材料は、磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを含有する。放熱のための添加剤としてアルミナ(Al)粉末や窒化アルミニウム(AlN)粉末等をさらに含んでもよい。 The composite magnetic material contains a hard magnetic material powder for applying a magnetic bias, a soft magnetic material powder for improving the relative magnetic permeability, and a binder for binding them. As an additive for heat dissipation, alumina (Al 2 O 3 ) powder, aluminum nitride (AlN) powder, or the like may be further included.
 軟磁性材料粉末は、表面がシリカ膜で覆われた(絶縁処理が施された)軟磁性材料粉末である。軟磁性材料粉末としては、透磁率が大きい性質を有する磁性材料粉末であればよく、例えば、FeSiCr粉末、FeSi粉末、フェライト粉末、カルボニル鉄粉末、センダスト粉末、パーマロイ粉末又はアモルファス材粉末等を用いることができる。実施形態1においては、FeSiCr粉末を用いる。軟磁性材料粉末の平均粒径は、1μm~900μmの範囲内の範囲内にあり、好ましくは1μm~100μmの範囲内にあり、1μm~50μmの範囲内であることが一層好ましい。 Soft magnetic material powder is soft magnetic material powder whose surface is covered with a silica film (insulated). The soft magnetic material powder may be any magnetic material powder having a high magnetic permeability, for example, FeSiCr powder, FeSi powder, ferrite powder, carbonyl iron powder, sendust powder, permalloy powder, or amorphous material powder should be used. Can do. In the first embodiment, FeSiCr powder is used. The average particle diameter of the soft magnetic material powder is in the range of 1 μm to 900 μm, preferably in the range of 1 μm to 100 μm, and more preferably in the range of 1 μm to 50 μm.
 複合磁性材料においては、硬磁性材料粉末及び軟磁性材料粉末を合計したものに対する軟磁性材料粉末の割合が5wt%~80wt%の範囲内にあり、好ましくは、10wt%~20wt%の範囲内にあり、例えば、20wt%である。 In the composite magnetic material, the ratio of the soft magnetic material powder to the total of the hard magnetic material powder and the soft magnetic material powder is in the range of 5 wt% to 80 wt%, preferably in the range of 10 wt% to 20 wt%. Yes, for example, 20 wt%.
 硬磁性材料粉末は、表面がシリカ膜で覆われた(絶縁処理が施された)硬磁性材料粉末である。硬磁性材料粉末としては、保磁力の大きい性質を有する磁性材料粉末であればよく、例えば、サマリウムコバルト(SmCo)粉末、サマリウム鉄窒素(SmFeN)粉末、ネオジム鉄ボロン(NdFeB)粉末又はフェライト粉末等の硬磁性材料粉末を用いることができる。実施形態1においては、サマリウムコバルト(SmCo)粉末を用いる。硬磁性材料粉末の平均粒径は、1μm~900μmの範囲内にあり、好ましくは1μm~100μmの範囲内にあり、1μm~50μmの範囲内であることが一層好ましい。 The hard magnetic material powder is a hard magnetic material powder whose surface is covered with a silica film (insulated). The hard magnetic material powder may be any magnetic material powder having a high coercive force, such as samarium cobalt (SmCo) powder, samarium iron nitrogen (SmFeN) powder, neodymium iron boron (NdFeB) powder, or ferrite powder. The hard magnetic material powder can be used. In Embodiment 1, samarium cobalt (SmCo) powder is used. The average particle size of the hard magnetic material powder is in the range of 1 μm to 900 μm, preferably in the range of 1 μm to 100 μm, and more preferably in the range of 1 μm to 50 μm.
 複合磁性材料においては、硬磁性材料粉末及び軟磁性材料粉末を合計したものに対する硬磁性材料粉末の割合が20wt%~95wt%の範囲内にあり、好ましくは、80wt%~90wt%の範囲内にあり、例えば、75wt%である。 In the composite magnetic material, the ratio of the hard magnetic material powder to the total of the hard magnetic material powder and the soft magnetic material powder is in the range of 20 wt% to 95 wt%, and preferably in the range of 80 wt% to 90 wt%. Yes, for example, 75 wt%.
 バインダーは、ポリマーからなり、硬磁性材料粉末及び軟磁性材料粉末を結合する。バインダーとしては、例えば、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーン樹脂又はフェノール樹脂等、熱硬化性樹脂又は熱可塑性樹脂であれば適宜のものを用いることができる。
 複合磁性材料におけるバインダーの含有量は、磁気バイアス印加用部材の製造方法等によって異なるが、複合磁性材料を押圧成形することによって磁気バイアス印加用部材14を製造する場合には、例えば1wt%~5wt%の範囲内にあることが好ましい。
The binder is made of a polymer and binds the hard magnetic material powder and the soft magnetic material powder. As the binder, for example, an appropriate one can be used as long as it is a thermosetting resin or a thermoplastic resin such as an epoxy resin, a polyimide resin, a polyamideimide resin, a silicone resin, or a phenol resin.
The content of the binder in the composite magnetic material varies depending on the method for manufacturing the magnetic bias applying member and the like, but when the magnetic bias applying member 14 is manufactured by pressing the composite magnetic material, for example, 1 wt% to 5 wt. % Is preferably in the range of%.
 なお、複合磁性材料を押圧成形することによって磁気バイアス印加用部材14を形成する場合において、複合磁性材料におけるバインダーの含有量が1wt%未満である場合には、バインダーの割合が小さすぎて硬磁性材料粉末及び軟磁性材料粉末の間を接合することが難しい。また、複合磁性材料におけるバインダーの含有量が5wt%を超える場合には、硬磁性材料粉末及び軟磁性材料粉末の含有量が少なくなるため、磁気バイアス印加用部材14の比透磁率が低くなり、飽和磁束密度に達しない磁束密度の範囲△Bが他の従来の磁気コアよりも小さくなるおそれがある。 In the case where the magnetic bias applying member 14 is formed by press molding the composite magnetic material, if the binder content in the composite magnetic material is less than 1 wt%, the ratio of the binder is too small and hard magnetic It is difficult to join between the material powder and the soft magnetic material powder. Further, when the content of the binder in the composite magnetic material exceeds 5 wt%, the content of the hard magnetic material powder and the soft magnetic material powder is decreased, so that the relative permeability of the magnetic bias applying member 14 is reduced, The magnetic flux density range ΔB that does not reach the saturation magnetic flux density may be smaller than other conventional magnetic cores.
 磁気バイアス印加用部材14においては、横軸に外部磁場Hをとり、縦軸に磁化Jをとったグラフに、外部磁場Hを変化させながら測定した磁化をプロットしたとき、外部磁場Hと磁化Jとの関係を示すJ-H曲線の減磁曲線が、外部磁場Hを0から負の方向に変化させたときに傾きが徐々に緩やかになるような曲線となる(後述する図9参照。)。つまり、磁気バイアス印加用部材14は、外部磁場Hを0から負の方向に変化させたときに比透磁率が徐々に小さくなるという性質を有する。 In the magnetic bias applying member 14, when the magnetization measured while changing the external magnetic field H is plotted on the graph with the external magnetic field H on the horizontal axis and the magnetization J on the vertical axis, the external magnetic field H and the magnetization J are plotted. The demagnetization curve of the JH curve showing the relationship with the curve is such that the slope gradually decreases when the external magnetic field H is changed from 0 to a negative direction (see FIG. 9 described later). . That is, the magnetic bias applying member 14 has a property that the relative magnetic permeability gradually decreases when the external magnetic field H is changed from 0 to a negative direction.
 次に、実施形態1に係るインダクタンス部品1の動作について説明する。
 図2は、実施形態1に係るインダクタンス部品1を説明するために示す図である。図2(a)は導線20に電流を流したときの磁気コア10に発生する磁束の様子を示す図であり、図2(b)はインダクタンス部品1のB-H曲線を模式的に示すグラフである。なお、図2(a)中、符号D1は導線20に直流重畳電流が流れることによって磁気コア10に発生する磁界の向きを示し、符号D2は、磁気バイアス印加用部材14による磁界の向きを示す。
Next, the operation of the inductance component 1 according to the first embodiment will be described.
FIG. 2 is a diagram for explaining the inductance component 1 according to the first embodiment. 2A is a diagram showing a state of magnetic flux generated in the magnetic core 10 when a current is passed through the conductor 20, and FIG. 2B is a graph schematically showing a BH curve of the inductance component 1. FIG. It is. In FIG. 2A, the symbol D1 indicates the direction of the magnetic field generated in the magnetic core 10 when a DC superimposed current flows through the conductor 20, and the symbol D2 indicates the direction of the magnetic field by the magnetic bias applying member 14. .
 実施形態1に係るインダクタンス部品1においては、導線20に直流重畳電流を流すと、図2(a)に示すように、磁気コア10の磁路に磁界が発生する。インダクタンス部品1においては、直流重畳電流が所定の直流重畳電流値の範囲(後述する図6の試料1においては、約-2A~約+14A)を外れると磁気飽和が起こり、インダクタンスが急激に減少する。 In the inductance component 1 according to the first embodiment, when a DC superimposed current is passed through the conducting wire 20, a magnetic field is generated in the magnetic path of the magnetic core 10 as shown in FIG. In the inductance component 1, when the DC superimposed current is out of a predetermined DC superimposed current value range (about -2A to about + 14A in the sample 1 of FIG. 6 described later), magnetic saturation occurs, and the inductance decreases rapidly. .
 実施形態1に係るインダクタンス部品1においては、横軸に直流重畳電流値をとり、縦軸にインダクタンス部品のインダクタンス値をとったグラフに、導線20に流れる直流重畳電流を変化させながら測定したインダクタンス値をプロットしたとき、直流重畳電流とインダクタンス値との関係を示す曲線が、台地形状を示し、かつ、台地形状の台地部が右下がりになっている。 In the inductance component 1 according to the first embodiment, the inductance value measured while changing the DC superimposed current flowing in the conductor 20 in a graph in which the horizontal axis represents the DC superimposed current value and the vertical axis represents the inductance value of the inductance component. Is plotted, the curve indicating the relationship between the DC superimposition current and the inductance value indicates the plateau shape, and the plateau portion of the plateau shape is lowered to the right.
 このことは、外部磁場を0から負の方向に変化させたときに磁気バイアス印加用部材14の比透磁率が徐々に小さくなっていくことが原因であると考えられる。 This is considered to be because the relative permeability of the magnetic bias applying member 14 gradually decreases when the external magnetic field is changed from 0 to a negative direction.
 次に、実施形態1に係るインダクタンス部品の製造方法を、「磁気コア本体の準備」、「磁気バイアス印加用部材の製造」及び「磁気バイアス印加用部材の装着」に分けて説明する。
 図3は、実施形態1に係る磁気バイアス印加用部材の製造方法を説明するために示すフローチャートである。
Next, the manufacturing method of the inductance component according to the first embodiment will be described by being divided into “preparation of magnetic core body”, “manufacture of magnetic bias applying member”, and “mounting of magnetic bias applying member”.
FIG. 3 is a flowchart for explaining the method for manufacturing the magnetic bias applying member according to the first embodiment.
2-1.磁気コア本体の準備
 まず、磁路の一箇所に磁気飽和防止用の空隙16を有する磁気コア本体12を準備する。磁気コア本体12においては、空隙のない磁気コア本体を形成した後に空隙16を形成しても良いし、あらかじめ空隙16を考慮したEコアを成形し、当該Eコアを組み合わせることで空隙16も形成されるようにしてもよい。
2-1. Preparation of Magnetic Core Body First, a magnetic core body 12 having a magnetic saturation prevention gap 16 at one location of a magnetic path is prepared. In the magnetic core body 12, the air gap 16 may be formed after forming the magnetic core body without the air gap, or the E core considering the air gap 16 is formed in advance, and the air gap 16 is also formed by combining the E core. You may be made to do.
2-2.磁気バイアス印加用部材の製造
 磁気バイアス印加用部材の製造方法は、図3に示すように、「複合磁性材料作製工程」と、「成形工程」と、「硬化工程」と、「着磁工程」とをこの順序で含む。
2-2. Manufacture of Magnetic Bias Application Member A method of manufacturing a magnetic bias application member includes a “composite magnetic material manufacturing process”, a “forming process”, a “curing process”, and a “magnetizing process” as shown in FIG. And in this order.
(1)複合磁性材料作製工程
 まず、磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを所定の割合で混錬して複合磁性材料を作製する。次に、バインダー中の溶媒成分を揮発させるために複合磁性材料を乾燥させる。次に、複合磁性材料をふるいにかけ、成形に適した粒度(数十μm~数百μmの範囲内)の複合磁性材料のみを回収する。
(1) Composite magnetic material production process First, a hard magnetic material powder for applying a magnetic bias, a soft magnetic material powder for improving relative permeability, and a binder for binding them are kneaded at a predetermined ratio to produce a composite magnetic material. To do. Next, the composite magnetic material is dried to volatilize the solvent component in the binder. Next, the composite magnetic material is sieved, and only the composite magnetic material having a particle size suitable for molding (within a range of several tens to several hundreds of μm) is recovered.
(2)成形工程
 次に、複合磁性材料を平板状に成形することにより成形体を作製する。具体的には、複合磁性材料を成形空間に堆積させて押圧成形することにより成形体を作製する。押圧成形における押圧圧力は、例えば3ton/cm~10ton/cmの範囲内とする。押圧成形の際の温度は、常温とする。
(2) Molding process Next, a compact is produced by molding the composite magnetic material into a flat plate shape. Specifically, a composite magnetic material is deposited in a molding space and press-molded to produce a molded body. The pressing pressure in the press molding is, for example, in the range of 3 ton / cm 2 to 10 ton / cm 2 . The temperature at the time of press molding shall be room temperature.
(3)硬化工程
 次に、成形体を加熱してバインダーを硬化させる。成形体を加熱する温度及び時間は、バインダーの種類にもよるが、例えば、150℃で1時間とする。
(3) Curing step Next, the molded body is heated to cure the binder. Although the temperature and time which heat a molded object are based also on the kind of binder, it shall be 1 hour at 150 degreeC, for example.
(4)着磁工程
 次に、バインダーを硬化させた成形体を着磁して磁気バイアス印加用部材14とする。具体的には、パルス着磁装置を用いて成形体を着磁する。
 このようにして磁気バイアス印加用部材14を製造することができる。
(4) Magnetization Step Next, the molded body in which the binder is cured is magnetized to obtain a magnetic bias applying member 14. Specifically, the compact is magnetized using a pulse magnetizer.
In this way, the magnetic bias applying member 14 can be manufactured.
2-3.磁気バイアス印加用部材の装着
 次に、磁気バイアス印加用部材14を磁気コア本体12における空隙16に配設することで磁気コア10を作製する。次に、磁気コア10に導線20を装着する。
 このことにより、実施形態1に係るインダクタンス部品1を製造することができる。
 なお、Eコアを組み立てる際に、磁気バイアス印加用部材14を挟んだ状態でEコアを組み立てることで実施形態1に係るインダクタンス部品1を製造することとしてもよい。
2-3. Mounting of Magnetic Bias Application Member Next, the magnetic core 10 is manufactured by disposing the magnetic bias application member 14 in the gap 16 in the magnetic core body 12. Next, the conducting wire 20 is attached to the magnetic core 10.
As a result, the inductance component 1 according to the first embodiment can be manufactured.
When assembling the E core, the inductance component 1 according to the first embodiment may be manufactured by assembling the E core with the magnetic bias applying member 14 interposed therebetween.
 次に、実施形態1に係るインダクタンス部品1、実施形態1に係る磁気バイアス印加用部材14及び実施形態1に係る磁気バイアス印加用部材の製造方法の効果を説明する。 Next, effects of the inductance component 1 according to the first embodiment, the magnetic bias applying member 14 according to the first embodiment, and the manufacturing method of the magnetic bias applying member according to the first embodiment will be described.
 実施形態1に係るインダクタンス部品1によれば、磁気バイアス印加用部材14を有する磁気コア10を備えるため、従来の他のインダクタンス部品900の場合と同様に、導線20に直流重畳電流が流れることによって磁気コア10の磁路に発生する磁界を、磁気バイアス印加用部材14の磁界によって打ち消すことが可能となる。このため、飽和磁束密度に達しない磁束密度の範囲△B(活用可能な磁束密度の範囲)が従来の磁気コアよりも大きい磁気コアとなる。その結果、直流重畳電流が大きくなったときでも磁気コア10が磁気飽和し難くなり、直流重畳特性が良好なインダクタンス部品となる。 According to the inductance component 1 according to the first embodiment, since the magnetic core 10 having the magnetic bias applying member 14 is provided, a DC superposed current flows through the conductive wire 20 as in the case of other conventional inductance components 900. The magnetic field generated in the magnetic path of the magnetic core 10 can be canceled by the magnetic field of the magnetic bias applying member 14. For this reason, a magnetic core having a magnetic flux density range ΔB (a usable magnetic flux density range) that does not reach the saturation magnetic flux density is larger than that of the conventional magnetic core. As a result, the magnetic core 10 is less likely to be magnetically saturated even when the DC superimposed current becomes large, and the inductance component has good DC superimposed characteristics.
 また、実施形態1に係るインダクタンス部品1によれば、磁気バイアス印加用部材14が比透磁率向上用の軟磁性材料粉末を含有する複合磁性材料より形成されたものであることから、磁気バイアス印加用部材14の比透磁率を1より高くすることが可能となる。ここで、所定のインダクタンス値を得るためには比透磁率と磁気コア本体12における空隙16のギャップ長Lとの比率が一定比となることが必要であり、比透磁率を高くできると当該ギャップ長Lを長くすることが可能となる。従って、当該ギャップ長Lに対応した厚さの磁気バイアス印加用部材14を厚さばらつきの小さい状態で製造することが可能となる。その結果、厚さばらつきの小さい磁気バイアス印加用部材を用いて製造されるインダクタンス部品の磁気特性のばらつきを小さくすることが可能となる。 Further, according to the inductance component 1 according to the first embodiment, the magnetic bias applying member 14 is formed of a composite magnetic material containing a soft magnetic material powder for improving the relative permeability. The relative permeability of the working member 14 can be made higher than 1. Here, in order to obtain a predetermined inductance value, the ratio between the relative permeability and the gap length L of the air gap 16 in the magnetic core body 12 needs to be a constant ratio, and if the relative permeability can be increased, the gap The length L can be increased. Therefore, the magnetic bias applying member 14 having a thickness corresponding to the gap length L can be manufactured with a small thickness variation. As a result, it is possible to reduce the variation in magnetic characteristics of the inductance component manufactured using the magnetic bias applying member having a small thickness variation.
 また、実施形態1に係るインダクタンス部品1によれば、磁気バイアス印加用部材14が、硬磁性材料粉末及び軟磁性材料粉末を含有する複合磁性材料より形成されたものであることから、硬磁性材料と軟磁性材料との割合を調整して所望の磁気特性を有する磁気バイアス印加用部材を製造することが可能となる。その結果、インダクタンス部品1は、所望の磁気特性を有するインダクタンス部品となる。 Further, according to the inductance component 1 according to the first embodiment, the magnetic bias applying member 14 is formed of a composite magnetic material containing a hard magnetic material powder and a soft magnetic material powder. It is possible to manufacture a magnetic bias applying member having desired magnetic characteristics by adjusting the ratio between the magnetic material and the soft magnetic material. As a result, the inductance component 1 becomes an inductance component having desired magnetic characteristics.
 また、実施形態1に係るインダクタンス部品1によれば、磁気バイアス印加用部材14が、比透磁率向上用の軟磁性材料粉末を含有する複合磁性材料より形成されたものであるため、磁気バイアス印加用部材14の比透磁率を高くすることが可能となる。このため、磁気コア10全体の実効透磁率が高くなることから、所望の磁界強度とするための導線20(コイル)の巻数が少なくてすみ、その結果、コアロスの少ない高性能のインダクタンス部品とすることが可能となる。また、磁気バイアス印加用部材14の比透磁率を高くすることが可能となるため、空隙16中において所定の磁束密度を得るために必要な磁界強度が、従来の他のインダクタンス部品900の場合と比較して、小さくなるため、このことからもコアロスの少ない高性能のインダクタンス部品とすることが可能となる。 In addition, according to the inductance component 1 according to the first embodiment, the magnetic bias applying member 14 is formed of a composite magnetic material containing a soft magnetic material powder for improving the relative permeability. It is possible to increase the relative permeability of the working member 14. For this reason, since the effective magnetic permeability of the entire magnetic core 10 is increased, the number of turns of the conducting wire 20 (coil) for obtaining a desired magnetic field strength can be reduced, and as a result, a high-performance inductance component with less core loss is obtained. It becomes possible. In addition, since the relative permeability of the magnetic bias applying member 14 can be increased, the magnetic field strength necessary for obtaining a predetermined magnetic flux density in the air gap 16 is different from that in the case of the other conventional inductance component 900. Compared with this, it is possible to obtain a high-performance inductance component with little core loss.
 実施形態1に係るインダクタンス部品1によれば、「磁気バイアス印加用部材から発生する磁束の磁路」を構成する磁気コア本体の実効比透磁率が10以上であるため、所望の直流重畳特性を有するインダクタンス部品となる。なお、「磁気バイアス印加用部材14から発生する磁束の磁路」を構成する磁気コア本体の実効比透磁率が10未満である場合には、反磁界が強くなることに起因して磁気バイアス印加用部材による磁気バイアスの効果が弱くなり、所望の直流重畳特性を有するインダクタンス部品とすることが困難となる。この観点からすると、「磁気バイアス印加用部材14から発生する磁束の磁路」の実効比透磁率が100以上であることが好ましく、500以上であることが一層好ましい。 According to the inductance component 1 according to the first embodiment, since the effective relative permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” is 10 or more, a desired DC superposition characteristic is obtained. It becomes an inductance component having. When the effective relative permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member 14” is less than 10, the demagnetizing field becomes stronger, and the magnetic bias is applied. The effect of the magnetic bias by the working member becomes weak, and it becomes difficult to obtain an inductance component having a desired DC superposition characteristic. From this point of view, the effective relative permeability of the “magnetic path of the magnetic flux generated from the magnetic bias applying member 14” is preferably 100 or more, and more preferably 500 or more.
 実施形態1に係るインダクタンス部品1によれば、「磁気バイアス印加用部材14から発生する磁束の磁路」を構成する磁気コア本体12の実効比透磁率が、「導線20に電流を流したときに磁気コア10に発生する磁束の磁路」を構成する磁気コア10の実効比透磁率の1.5倍以上であるため、直流重畳特性がより一層良好なインダクタンス部品となる。なお、「磁気バイアス印加用部材14から発生する磁束の磁路」を構成する磁気コア本体12の実効比透磁率が、導線20に電流を流したときに磁気コア10に発生する磁束の磁路を構成する磁気コア10の実効比透磁率の1.5倍未満である場合には、反磁界が強くなることに起因して磁気バイアス印加用部材による磁気バイアスの効果が弱くなり、直流重畳特性が良好なインダクタンス部品とすることが困難となる。この観点からすると、「磁気バイアス印加用部材14から発生する磁束の磁路」の実効比透磁率が導線20に電流を流したときに磁気コア10に発生する磁束の磁路を構成する磁気コア10の実効比透磁率の2倍以上であることが好ましく、3倍以上であることが一層好ましい。 According to the inductance component 1 according to the first embodiment, the effective relative permeability of the magnetic core body 12 constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member 14” is “when a current is passed through the conducting wire 20”. Since the effective relative permeability of the magnetic core 10 constituting the “magnetic path of the magnetic flux generated in the magnetic core 10” is 1.5 times or more, the inductance component having a better DC superposition characteristic is obtained. Note that the effective relative permeability of the magnetic core body 12 constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member 14” is the magnetic path of the magnetic flux generated in the magnetic core 10 when a current is passed through the conducting wire 20. Is less than 1.5 times the effective relative permeability of the magnetic core 10 constituting the magnetic field, the effect of the magnetic bias by the magnetic bias applying member is weakened due to the strong demagnetizing field, and the DC superposition characteristics However, it is difficult to obtain a good inductance component. From this point of view, the magnetic core constituting the magnetic path of the magnetic flux generated in the magnetic core 10 when the effective relative permeability of the “magnetic path of the magnetic flux generated from the magnetic bias applying member 14” is passed through the conductor 20. The effective relative permeability of 10 is preferably 2 times or more, and more preferably 3 times or more.
 また、実施形態1に係るインダクタンス部品1によれば、複合磁性材料においては、硬磁性材料粉末及び軟磁性材料粉末を合計したものに対する軟磁性材料粉末の割合が5wt%~80wt%の範囲内にあるため、上記した効果を有するインダクタンス部品となり、かつ、十分な磁界強度を得た磁気バイアス印加用部材14を有する磁気コアとなる。 Further, according to the inductance component 1 according to the first embodiment, in the composite magnetic material, the ratio of the soft magnetic material powder to the total of the hard magnetic material powder and the soft magnetic material powder is within the range of 5 wt% to 80 wt%. Therefore, it becomes an inductance component having the above-described effect, and a magnetic core having the magnetic bias applying member 14 with sufficient magnetic field strength.
 なお、複合磁性材料において、硬磁性材料粉末及び軟磁性材料粉末を合計したものに対する軟磁性材料粉末の割合が「5wt%~80wt%の範囲内」としたのは、軟磁性材料粉末の割合が5wt%未満の場合には、軟磁性材料粉末が少なすぎて、上記した効果を得ることができないからであり、軟磁性材料粉末の割合が80wt%を超える場合には、硬磁性材料粉末の割合が少なすぎて、磁気バイアス印加用部材14が十分な磁界強度を得ることができないからである。 In the composite magnetic material, the ratio of the soft magnetic material powder to the total of the hard magnetic material powder and the soft magnetic material powder is “within the range of 5 wt% to 80 wt%”. This is because when the amount is less than 5 wt%, the amount of soft magnetic material powder is too small to obtain the above-mentioned effect. When the proportion of soft magnetic material powder exceeds 80 wt%, the proportion of hard magnetic material powder This is because the magnetic bias applying member 14 cannot obtain a sufficient magnetic field strength.
 また、実施形態1に係るインダクタンス部品1によれば、横軸に直流重畳電流値をとり、縦軸にインダクタンス部品のインダクタンス値をとったグラフに、導線20に流れる直流重畳電流を変化させながら測定したインダクタンス値をプロットしたとき、直流重畳電流とインダクタンス値との関係を示す曲線が、台地形状を示し、かつ、台地形状の台地部が右下がりになっていることから、軽負荷時には、インダクタンス値が大きいことに起因して導線20のリップル電流が小さくなり、電源効率が向上する。また、重負荷時には、軽負荷時の場合と比較してインダクタンス値が小さくなっているため、導線を流れる電流が急激に変化した場合等の応答性が向上する。その結果、軽負荷時には、電源効率を向上させることが可能で、重負荷時には、導線を流れる電流が急激に変化した場合等の応答性を向上させることが可能なインダクタンス部品となる。 Further, according to the inductance component 1 according to the first embodiment, the measurement is performed while changing the DC superimposed current flowing in the conductor 20 in a graph in which the horizontal axis represents the DC superimposed current value and the vertical axis represents the inductance value of the inductance component. When the measured inductance value is plotted, the curve indicating the relationship between the DC superimposed current and the inductance value indicates the plateau shape, and the plateau portion of the plateau is downwardly inclined. As a result, the ripple current of the conducting wire 20 is reduced and the power supply efficiency is improved. In addition, since the inductance value is smaller at the time of heavy load than at the time of light load, the responsiveness is improved when the current flowing through the conducting wire changes abruptly. As a result, the power supply efficiency can be improved at light loads, and the inductance component can improve responsiveness when the current flowing through the conductor changes suddenly at heavy loads.
 ここで、「軽負荷時」とは直流重畳電流値が0に近く(-3~3A程度)なる程度の比較的軽い負荷が掛けられている時のことをいい、「重負荷時」とは、軽負荷時と比較して、直流重畳電流値が大きくなるような負荷が掛けられている時をいい、具体的には、直流重畳電流とインダクタンス値との関係を示す曲線の台地部のうち、直流重畳電流値が0A以上の範囲において台地部の右端側1/3程度の範囲となる程度の負荷が掛けられている時のことをいう。 Here, “under light load” means a time when a relatively light load is applied such that the DC superimposed current value is close to 0 (about −3 to 3 A), and “under heavy load” , When the load is applied so that the DC superimposed current value is larger than the light load, specifically, out of the plateau part of the curve showing the relationship between the DC superimposed current and the inductance value It means that a load is applied to the extent that the DC superposition current value is in the range of about 1/3 of the right end side of the plateau in the range of 0 A or more.
 なお、重負荷時においては、インダクタンス値が小さくなることに起因して導線20のリップル電流が大きくなるため、電源効率が低下するようにも思える。しかしながら、重負荷時においては、リップル電流と比較して直流重畳電流が極めて大きいため、リップル電流が大きくなることが電源効率に与える影響は小さい。 It should be noted that when the load is heavy, the ripple current of the conductor 20 is increased due to a decrease in the inductance value, so that it seems that the power supply efficiency is lowered. However, when the load is heavy, the DC superimposed current is extremely large compared to the ripple current, so that the influence of the large ripple current on the power supply efficiency is small.
 また、実施形態1に係るインダクタンス部品1によれば、磁気バイアス印加用部材14においては、外部磁場Hと磁化Jとの関係を示すJ-H曲線の減磁曲線が、外部磁場が0から負の方向に変化させたときに傾きが徐々に緩やかになるような曲線からなる(後述する図9及び10参照。)ため、外部磁場が0に近いとき(すなわち、インダクタンス部品における直流重畳電流が0に近いとき)に比透磁率が大きく、外部磁場が負の方向に大きくなる(すなわち、インダクタンス部品における直流重畳電流が正の方向に大きくなる)のに従って徐々に減少する。このため、外部磁場が0に近いときにおいてはインダクタンス値が大きく、徐々にインダクタンス値が小さくなるインダクタンス部品となる。その結果、軽負荷時には、電源効率を向上させることが可能で、重負荷時には、導線を流れる電流が急激に変化した場合等の応答性を向上させることが可能なインダクタンス部品となる。 In addition, according to the inductance component 1 according to the first embodiment, in the magnetic bias applying member 14, the demagnetization curve of the JH curve indicating the relationship between the external magnetic field H and the magnetization J has a negative external magnetic field from zero. Therefore, when the external magnetic field is close to 0 (that is, the DC superimposed current in the inductance component is 0). When the external magnetic field increases in the negative direction (that is, the DC superimposed current in the inductance component increases in the positive direction), the relative magnetic permeability gradually decreases. For this reason, when the external magnetic field is close to 0, the inductance value is large, and the inductance component gradually decreases. As a result, the power supply efficiency can be improved at light loads, and the inductance component can improve responsiveness when the current flowing through the conductor changes suddenly at heavy loads.
 また、実施形態1に係るインダクタンス部品1によれば、複合磁性材料においては、軟磁性材料粉末の平均粒径が、1μm~900μmの範囲内にあるため、磁化の減少を防ぐことが可能で、かつ、磁気バイアス印加用部材14を厚さばらつきの小さい状態で製造することが可能となる。 Further, according to the inductance component 1 according to the first embodiment, in the composite magnetic material, since the average particle diameter of the soft magnetic material powder is in the range of 1 μm to 900 μm, it is possible to prevent a decrease in magnetization. In addition, the magnetic bias applying member 14 can be manufactured with a small thickness variation.
 なお、複合磁性材料において、軟磁性材料粉末の平均粒径が1μm~900μmの範囲内の範囲内としたのは、平均粒径が1μm未満の場合には、軟磁性材料粉末とバインダーとを混練するときに、軟磁性材料粉末が酸化して磁化の減少が顕著になるためであり、平均粒径が900μmを超える場合には、磁気コア本体12における空隙16のギャップ長Lに対する粒径が大きすぎて磁気バイアス印加用部材14を厚さばらつきの小さい状態で製造することが困難となるからである。 In the composite magnetic material, the soft magnetic material powder has an average particle size in the range of 1 μm to 900 μm. When the average particle size is less than 1 μm, the soft magnetic material powder and the binder are kneaded. This is because the soft magnetic material powder is oxidized and the decrease in magnetization becomes remarkable. When the average particle diameter exceeds 900 μm, the particle diameter with respect to the gap length L of the air gap 16 in the magnetic core body 12 is large. This is because it is difficult to manufacture the magnetic bias applying member 14 with a small thickness variation.
 また、実施形態1に係るインダクタンス部品1によれば、外部磁場を印加していないときの磁気バイアス印加用部材14の比透磁率が1.2~5.0の範囲内となるため、磁気バイアス印加用部材14を厚さばらつきの小さい状態で製造することが可能となり、かつ、磁気バイアス印加用部材14が十分な磁界強度を得ることが可能なインダクタンス部品となる。 Further, according to the inductance component 1 according to the first embodiment, since the relative permeability of the magnetic bias applying member 14 when no external magnetic field is applied is in the range of 1.2 to 5.0, the magnetic bias The applying member 14 can be manufactured with a small thickness variation, and the magnetic bias applying member 14 is an inductance component that can obtain a sufficient magnetic field strength.
 なお、複合磁性材料において、外部磁場を印加していないときの磁気バイアス印加用部材14の比透磁率を1.2~5.0の範囲内としたのは、磁気バイアス印加用部材14の比透磁率が1.2未満の場合には、従来の他のインダクタンス部品900の場合と同様に、磁気コア本体12における空隙16のギャップ長Lに対応した厚さの磁気バイアス印加用部材14を厚さばらつきの小さい状態で製造することが困難となるためであり、磁気バイアス印加用部材14の比透磁率が5.0を超える場合には、インダクタンス部品のインダクタンス値が小さくなりすぎるため、電源効率が低下してしまうためである。この観点からすると、磁気バイアス印加用部材14の比透磁率が1.2~3.0の範囲内であることが好ましく、1.4~2.0の範囲内であることが一層好ましい。 In the composite magnetic material, the relative permeability of the magnetic bias applying member 14 when no external magnetic field is applied is in the range of 1.2 to 5.0. When the magnetic permeability is less than 1.2, the magnetic bias applying member 14 having a thickness corresponding to the gap length L of the air gap 16 in the magnetic core body 12 is increased as in the case of the other conventional inductance component 900. This is because it is difficult to manufacture in a state where the variation in the thickness is small. When the relative permeability of the magnetic bias applying member 14 exceeds 5.0, the inductance value of the inductance component becomes too small, so that the power supply efficiency This is because of the decrease. From this point of view, the relative magnetic permeability of the magnetic bias applying member 14 is preferably in the range of 1.2 to 3.0, and more preferably in the range of 1.4 to 2.0.
 また、実施形態1に係るインダクタンス部品1によれば、磁気コア本体12における空隙16のギャップ長をLとし、硬磁性材料粉末及び軟磁性材料粉末のうち,大きいほうの平均粒径をDとしたとき、以下に示す式(1)を満たすことから、当該ギャップ長Lに対応した厚さの磁気バイアス印加用部材を厚さばらつきの小さい状態で製造することが可能となる。その結果、製造されるインダクタンス部品の磁気特性のばらつきを小さくすることが可能となる。
Figure JPOXMLDOC01-appb-M000005
Further, according to the inductance component 1 according to the first embodiment, the gap length of the air gap 16 in the magnetic core body 12 is L, and the larger average particle diameter of the hard magnetic material powder and the soft magnetic material powder is D. When the following equation (1) is satisfied, a magnetic bias applying member having a thickness corresponding to the gap length L can be manufactured with a small thickness variation. As a result, it is possible to reduce variations in magnetic characteristics of manufactured inductance components.
Figure JPOXMLDOC01-appb-M000005
 なお、磁気コア本体12における空隙16のギャップ長Lを式(1)の右辺の値以上としたのは以下の理由による。すなわち、粒子を最密六方構造で3列以上配列させて構造物を構成した場合には当該構造物の厚さばらつきを比較的小さくできることから、平均粒径Dの粒子を最密六方構造で3列以上配列させて磁気バイアス印加用部材を構成した場合(このとき磁気バイアス印加用部材は式(1)の右辺の値以上になる)にも磁気バイアス印加用部材の厚さばらつきを比較的小さくできる。従って、磁気バイアス印加用部材が式(1)の右辺の値以上となるためには、当該ギャップ長Lを式(1)の右辺の値以上とすればよいからである。 The reason why the gap length L of the air gap 16 in the magnetic core body 12 is not less than the value on the right side of the equation (1) is as follows. That is, when a structure is formed by arranging particles in three or more rows in a close-packed hexagonal structure, the thickness variation of the structure can be made relatively small. Even when the magnetic bias applying members are arranged in rows or more (the magnetic bias applying members are equal to or larger than the value on the right side of the equation (1) at this time), the thickness variation of the magnetic bias applying members is relatively small. it can. Therefore, in order for the magnetic bias applying member to be equal to or greater than the value on the right side of Equation (1), the gap length L may be equal to or greater than the value on the right side of Equation (1).
 また、実施形態1に係るインダクタンス部品1によれば、磁気バイアス印加用部材が、ボンド磁石からなるため、磁気バイアス印加用部材14が柔軟性を有することとなる。その結果、空隙16に磁気バイアス印加用部材14を配設する際に、磁気コア本体12の端部や磁気バイアス印加用部材14の端部が欠けてしまうことを防ぐことが可能となる。 In addition, according to the inductance component 1 according to the first embodiment, the magnetic bias applying member is made of a bond magnet, so that the magnetic bias applying member 14 has flexibility. As a result, it is possible to prevent the end of the magnetic core main body 12 and the end of the magnetic bias applying member 14 from being chipped when the magnetic bias applying member 14 is disposed in the gap 16.
 また、実施形態1に係るインダクタンス部品1によれば、磁気バイアス印加用部材14が永久磁石であるため、比較的長期間にわたって磁界を保持し続けることが可能な磁気バイアス印加用部材14となる。このため、寿命の長いインダクタンス部品を製造することが可能となる。 Further, according to the inductance component 1 according to the first embodiment, since the magnetic bias applying member 14 is a permanent magnet, the magnetic bias applying member 14 that can keep a magnetic field for a relatively long period of time is obtained. For this reason, it is possible to manufacture an inductance component having a long life.
 また、実施形態1に係るインダクタンス部品1によれば、軟磁性材料粉末が、絶縁処理が施されているため、渦電流が発生しにくく渦電流損が少ない磁気バイアス印加用部材14となる。その結果、コアロスが少ないインダクタンス部品となる。 In addition, according to the inductance component 1 according to the first embodiment, since the soft magnetic material powder is subjected to the insulation treatment, the magnetic bias applying member 14 is less likely to generate eddy current and less eddy current loss. As a result, an inductance component with low core loss is obtained.
 また、実施形態1に係るインダクタンス部品1によれば、磁気バイアス印加用部材14が、複合磁性材料を押圧成形することにより形成されたものであるため、複合磁性材料に含まれる材料の種類によらないで容易に磁気バイアス印加用部材14を形成することが可能となる。 In addition, according to the inductance component 1 according to the first embodiment, the magnetic bias applying member 14 is formed by press-molding a composite magnetic material, and thus depends on the type of material included in the composite magnetic material. It is possible to easily form the magnetic bias applying member 14 without the need.
 また、実施形態1に係る磁気バイアス印加用部材14によれば、磁気バイアス印加用部材14が、磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを含有する複合磁性材料を平板状に成形することにより形成されたものであることから、直流重畳特性が良好なインダクタンス部品を製造することが可能で、かつ、磁気コア本体12における空隙16のギャップ長に対応した厚さの磁気バイアス印加用部材を厚さばらつきの小さい状態で製造することが可能で、かつ、所望の磁気特性を有する磁気バイアス印加用部材を製造することが可能で、かつ、コアロスの少ない高性能のインダクタンス部品とすることが可能な磁気バイアス印加用部材となる。 Further, according to the magnetic bias applying member 14 according to the first embodiment, the magnetic bias applying member 14 combines the hard magnetic material powder for applying the magnetic bias, the soft magnetic material powder for improving the relative permeability, and these. Since it is formed by molding a composite magnetic material containing a binder into a flat plate shape, it is possible to manufacture an inductance component with good DC superposition characteristics, and the gap 16 in the magnetic core body 12 can be produced. It is possible to manufacture a magnetic bias applying member having a thickness corresponding to the gap length with a small variation in thickness, and to manufacture a magnetic bias applying member having desired magnetic characteristics, and Thus, the magnetic bias applying member can be made into a high-performance inductance component with little core loss.
 実施形態1に係る磁気バイアス印加用部材の製造方法によれば、複合磁性材料作製工程S10において、磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを所定の割合で混錬して複合磁性材料を作製するため、上記した効果を有する磁気バイアス印加用部材14を製造することが可能となる。 According to the method for manufacturing a magnetic bias applying member according to the first embodiment, in the composite magnetic material manufacturing step S10, the hard magnetic material powder for applying the magnetic bias, the soft magnetic material powder for improving the relative magnetic permeability, and these are combined. Since the composite magnetic material is produced by kneading the binder at a predetermined ratio, the magnetic bias applying member 14 having the above-described effect can be produced.
[実施形態2]
 図4は、実施形態2に係るインダクタンス部品2を説明するために示す図である。図4(a)はインダクタンス部品2の斜視図であり、図4(b)は磁気コア10aの斜視図である。
[Embodiment 2]
FIG. 4 is a diagram for explaining the inductance component 2 according to the second embodiment. 4A is a perspective view of the inductance component 2, and FIG. 4B is a perspective view of the magnetic core 10a.
 実施形態2に係るインダクタンス部品2は、磁気コアが、硬磁性材料粉末及び軟磁性材料粉末を含有する複合磁性材料より形成された磁気バイアス印加用部材を有する点で実施形態1に係るインダクタンス部品1と同様の構成を有するが、磁気コア本体の構成が実施形態1に係るインダクタンス部品1の場合とは異なる。すなわち、実施形態2に係るインダクタンス部品2において、磁気コア本体12aは、図4に示すように、リングコアである。 The inductance component 2 according to the second embodiment is an inductance component 1 according to the first embodiment in that the magnetic core has a member for applying a magnetic bias formed of a composite magnetic material containing a hard magnetic material powder and a soft magnetic material powder. The configuration of the magnetic core body is different from that of the inductance component 1 according to the first embodiment. That is, in the inductance component 2 according to the second embodiment, the magnetic core body 12a is a ring core as shown in FIG.
 実施形態2に係るインダクタンス部品2においては、導線20aに直流重畳電流が流れると、磁気コア10aを1周するように磁界が発生する。すなわち、磁気コア10aには、1つの閉じた磁路を有する。 In the inductance component 2 according to the second embodiment, when a DC superimposed current flows through the conducting wire 20a, a magnetic field is generated so as to go around the magnetic core 10a. That is, the magnetic core 10a has one closed magnetic path.
 実施形態2に係るインダクタンス部品2において、導線20aは、図4(a)に示すように、磁気コア10aを中心にらせん状に巻回されることで磁気コア10aに装着されている。 In the inductance component 2 according to the second embodiment, the conductor 20a is attached to the magnetic core 10a by being spirally wound around the magnetic core 10a as shown in FIG.
 このように、実施形態2に係るインダクタンス部品2は、磁気コア本体の構成が実施形態1に係るインダクタンス部品1の場合とは異なるが、実施形態1に係るインダクタンス部品1の場合と同様に、磁気バイアス印加用部材14が、磁気バイアス印加用の硬磁性材料粉末及び比透磁率向上用の軟磁性材料粉末を含有する複合磁性材料より形成されたものであることから、直流重畳特性が良好で、かつ、磁気特性のばらつきが小さいインダクタンス部品となる。 As described above, the inductance component 2 according to the second embodiment is different from the inductance component 1 according to the first embodiment in the configuration of the magnetic core body, but similarly to the inductance component 1 according to the first embodiment, the magnetic component is magnetic. Since the bias applying member 14 is formed of a composite magnetic material containing a hard magnetic material powder for applying a magnetic bias and a soft magnetic material powder for improving relative permeability, the direct current superposition characteristics are good, In addition, the inductance component has a small variation in magnetic characteristics.
 なお、実施形態2に係るインダクタンス部品2は、磁気コア本体の構成以外の点においては実施形態1に係るインダクタンス部品1と同様の構成を有するため、実施形態1に係るインダクタンス部品1が有する効果のうち該当する効果を有する。 The inductance component 2 according to the second embodiment has the same configuration as the inductance component 1 according to the first embodiment except for the configuration of the magnetic core body. Of which, it has a corresponding effect.
[実施形態3]
 図5は、実施形態3に係るインダクタンス部品3を説明するために示す図である。図5(a)はインダクタンス部品3の斜視図であり、図5(b)は磁気コア10bの斜視図である。
[Embodiment 3]
FIG. 5 is a diagram for explaining the inductance component 3 according to the third embodiment. FIG. 5A is a perspective view of the inductance component 3, and FIG. 5B is a perspective view of the magnetic core 10b.
 実施形態3に係るインダクタンス部品3は、磁気コアが、硬磁性材料粉末及び軟磁性材料粉末を含有する複合磁性材料より形成された磁気バイアス印加用部材を有する点で実施形態2に係るインダクタンス部品2と同様の構成を有するが、磁気コア本体の構成及び導線の構成が実施形態2に係るインダクタンス部品2の場合とは異なる。すなわち、実施形態3に係るインダクタンス部品3において、磁気コア10bは、図5に示すように、リング形状となるように組み合わされた2つのUコアから構成されており、導線20bは、細長い平板形状の銅線からなり、磁気コア10bの中心をまっすぐに貫くように磁気コア10bに装着されている。 The inductance component 3 according to the third embodiment is an inductance component 2 according to the second embodiment in that the magnetic core has a member for applying a magnetic bias formed of a composite magnetic material containing a hard magnetic material powder and a soft magnetic material powder. However, the configuration of the magnetic core body and the configuration of the conducting wire are different from those of the inductance component 2 according to the second embodiment. That is, in the inductance component 3 according to the third embodiment, the magnetic core 10b is composed of two U cores combined in a ring shape as shown in FIG. 5, and the conductive wire 20b has an elongated flat plate shape. It is attached to the magnetic core 10b so as to penetrate straight through the center of the magnetic core 10b.
 磁気コア本体12bにおいて、2つの空隙16bは2つのUコアの接合部分に相当する位置に設けられており、磁気バイアス印加用部材14bも、2つのUコアに挟まれるような位置に1つずつ配設されている。 In the magnetic core body 12b, the two air gaps 16b are provided at positions corresponding to the joint portions of the two U cores, and the magnetic bias applying member 14b is also located one by one at a position between the two U cores. It is arranged.
 このように、実施形態3に係るインダクタンス部品3は、磁気コア本体の構成及び導線の構成が実施形態2に係るインダクタンス部品2の場合とは異なるが、実施形態2に係るインダクタンス部品2の場合と同様に、磁気バイアス印加用部材14が、磁気バイアス印加用の硬磁性材料粉末及び比透磁率向上用の軟磁性材料粉末を含有する複合磁性材料より形成されたものであることから、直流重畳特性が良好で、かつ、磁気特性のばらつきが小さいインダクタンス部品となる。 As described above, the inductance component 3 according to the third embodiment is different from the inductance component 2 according to the second embodiment in the configuration of the magnetic core body and the configuration of the conductive wire, but the inductance component 2 according to the second embodiment. Similarly, since the magnetic bias applying member 14 is formed of a composite magnetic material containing a hard magnetic material powder for applying a magnetic bias and a soft magnetic material powder for improving relative permeability, the DC superposition characteristics And an inductance component with small variations in magnetic characteristics.
 なお、実施形態3に係るインダクタンス部品3は、磁気コア本体の構成及び導線の構成以外の点においては実施形態2に係るインダクタンス部品2と同様の構成を有するため、実施形態2に係るインダクタンス部品2が有する効果のうち該当する効果を有する。 The inductance component 3 according to the third embodiment has the same configuration as that of the inductance component 2 according to the second embodiment except for the configuration of the magnetic core main body and the configuration of the conductive wire, and thus the inductance component 2 according to the second embodiment. Has the corresponding effect among the effects of
[試験例1]
 試験例1は、本発明のインダクタンス部品が、「直流重畳特性が良好なインダクタンス部品であること」及び「直流重畳電流とインダクタンス値との関係を示す曲線が、台地形状を示し、かつ、台地形状の台地部が右下がりになっていること」を示す試験例である。
[Test Example 1]
In Test Example 1, the inductance component of the present invention is “the inductance component having good DC superimposition characteristics” and “the curve indicating the relationship between the DC superimposition current and the inductance value indicates the plateau shape, and the plateau shape This is a test example showing that the plateau part of the plate is downwardly inclined to the right.
1.試料の調製
(1)試料1(実施例)
 2箇所に空隙を有する点以外の構成が実施形態2に係るインダクタンス部品2と同じインダクタンス部品を作製して試料1とした。但し、試料1においては、リングコアの外径を31mmとし、リングコアの内径を19mmとし、リングコアの高さを8mmとし、リングコアの平均実効磁路長を78.5mmとし、実効断面積を48mmとし、実効体積は3769.9mmとした。また、リングコアにおける対称となる位置に2か所の空隙を設け、当該空隙のギャップ長Lをそれぞれ0.5mmとした。さらにまた、試料1の磁気バイアス印加用部材においては、複合磁性材料全体を100wt%として、硬磁性材料粉末としてのSmCoが80wt%、軟磁性材料粉末としてのFeSiCrが17wt%及びバインダーが3wt%の複合磁性材料を用いた。
1. Sample Preparation (1) Sample 1 (Example)
A sample having the same inductance component as that of the inductance component 2 according to the second embodiment except for having a gap in two places was prepared as a sample 1. However, in Sample 1, the outer diameter of the ring core is 31 mm, the inner diameter of the ring core is 19 mm, the height of the ring core is 8 mm, the average effective magnetic path length of the ring core is 78.5 mm, and the effective cross-sectional area is 48 mm 2. The effective volume was 3769.9 mm 3 . Further, two gaps were provided at symmetrical positions in the ring core, and the gap length L of each gap was 0.5 mm. Furthermore, in the magnetic bias applying member of Sample 1, the entire composite magnetic material is 100 wt%, SmCo as the hard magnetic material powder is 80 wt%, FeSiCr as the soft magnetic material powder is 17 wt%, and the binder is 3 wt%. A composite magnetic material was used.
(2)試料2(比較例)
 リングコアにおける空隙のギャップ長Lを0.3mmとした点及び空隙には磁気バイアス印加用部材を配設しない点以外の構成は試料1に係るインダクタンス部品と同じインダクタンス部品を作製し、試料2とした。
(2) Sample 2 (comparative example)
Except for the point that the gap length L of the gap in the ring core is 0.3 mm and the configuration that the magnetic bias applying member is not provided in the gap, the same inductance component as that of the sample 1 is produced, and the sample 2 is obtained. .
(3)試料3(比較例)
 リングコアにおける空隙のギャップ長Lを0.3mmとした点及び空隙には磁気バイアス印加用部材として、硬磁性材料粉末及びバインダーを含有する複合磁性材料を圧縮成形することにより形成された磁気バイアス印加用部材を配設する点以外の構成は試料1に係るインダクタンス部品と同じインダクタンス部品を作製して試料3とした。なお、試料3の磁気バイアス印加用部材においては、複合磁性材料全体を100wt%としたとき、硬磁性材料粉末としてのSmCoを97wt%とし、バインダーを3wt%とした複合磁性材料を用いた。
(3) Sample 3 (comparative example)
For magnetic bias application formed by compression molding a composite magnetic material containing a hard magnetic material powder and a binder as a magnetic bias application member at the point and gap where the gap length L of the air gap in the ring core is 0.3 mm Except for the point of disposing the member, the same inductance component as that of the sample 1 was prepared as Sample 3. The magnetic bias applying member of Sample 3 was a composite magnetic material in which SmCo as the hard magnetic material powder was 97 wt% and the binder was 3 wt% when the entire composite magnetic material was 100 wt%.
2.評価方法
 横軸に直流重畳電流値をとり、縦軸にインダクタンス部品のインダクタンス値をとったグラフに、各試料の導線に流れる直流重畳電流を変化させながら測定したインダクタンス値をプロットすることによって得られた曲線形状及びインダクタンス値から直流重畳特性を評価した。
2. Evaluation method Obtained by plotting the inductance value measured while changing the DC superimposed current flowing in the lead wire of each sample on the graph with the DC superimposed current value on the horizontal axis and the inductance value of the inductance component on the vertical axis. The DC superposition characteristics were evaluated from the curved shape and inductance value.
3.評価結果
 図6は、試料1~3の直流重畳特性を示すグラフである。
(1)図6の説明
 試料1においては、直流重畳電流値が約-6Aまでは約5μH以下のインダクタンス値でほぼ一定であり、直流重畳電流が約-6A~-2Aの間でインダクタンス値が約5μH以下から約42μHまで急激に増加し、直流重畳電流が約-2A~+1Aの間でインダクタンス値が約42μHから約46μHまで緩やかに増加し、直流重畳電流が約+1A~+14Aまでの間でインダクタンス値が約46μHから約38μHまで緩やかに減少し、直流重畳電流が約+14A~+18Aの間でインダクタンス値が約38μHから約8μHまで急激に減少し、直流重畳電流が約+18A以上で約8μH以下のインダクタンス値でほぼ一定となった。インダクタンス値のピークは、直流重畳電流が約+1Aのときに約46μHであった。
3. Evaluation Results FIG. 6 is a graph showing the DC superposition characteristics of Samples 1 to 3.
(1) Description of FIG. 6 In sample 1, the DC superimposed current value is approximately constant at an inductance value of about 5 μH or less until the DC superimposed current value is about −6 A, and the inductance value is between about −6 A and −2 A. From about 5 μH or less to about 42 μH, the DC superimposed current gradually increases from about −2 A to +1 A, the inductance value gradually increases from about 42 μH to about 46 μH, and the DC superimposed current ranges from about +1 A to +14 A. The inductance value gradually decreases from about 46 μH to about 38 μH, the DC superimposed current decreases rapidly from about +14 A to +18 A, and the inductance value decreases rapidly from about 38 μH to about 8 μH, and the DC superimposed current is about +18 A or more and about 8 μH or less. The inductance value was almost constant. The peak of the inductance value was about 46 μH when the DC superimposed current was about + 1A.
 試料2においては、図示は省略するが直流重畳電流値が約-12.5Aまでは5μH以下のインダクタンス値でほぼ一定であり、直流重畳電流が約-12.5A~-8Aまでの間でインダクタンス値が約5μH以下から約42μHまで急激に増加し、直流重畳電流が約-8A~0Aまでの間でインダクタンス値が約43μHから約46μHまでわずかに増加し、直流重畳電流が約0A~+8Aの間でインダクタンス値が約46μHから約42μHまでわずかに減少し、直流重畳電流が約+8A~+14Aの間でインダクタンス値が約42μHから約8μHまで急激に減少し、直流重畳電流が約+14A以上では約5μH以下のインダクタンス値でほぼ一定となった。インダクタンス値のピークは、直流重畳電流が約0Aのときに約46μHであった。 In sample 2, although illustration is omitted, the inductance value of 5 μH or less is substantially constant until the DC superimposed current value is about −12.5 A, and the inductance is between about −12.5 A to −8 A. The value suddenly increases from about 5 μH or less to about 42 μH, the inductance value slightly increases from about 43 μH to about 46 μH while the DC superimposed current is about −8 A to 0 A, and the DC superimposed current is about 0 A to +8 A. The inductance value decreases slightly from about 46 μH to about 42 μH, the DC superimposed current decreases rapidly from about +8 A to +14 A, and the inductance value decreases rapidly from about 42 μH to about 8 μH. It became almost constant at an inductance value of 5 μH or less. The peak of the inductance value was about 46 μH when the DC superimposed current was about 0A.
 試料3においては、直流重畳電流値が約-6Aまでは約5μH以下のインダクタンス値でほぼ一定であり、直流重畳電流が約-6A~0Aの間でインダクタンス値が約5μHから約42μHまで急激に増加し、直流重畳電流が約0A~+7Aの間でインダクタンス値が約42μHから約46μHまでわずかに増加し、直流重畳電流が約7A~+16Aの間でインダクタンス値が約46μHから約38μHまでわずかに減少し、直流重畳電流が約+16A~+18Aの間でインダクタンス値が約38μHから約8μHまで急激に減少し、直流重畳電流が約+18A以上では5μH以下のインダクタンス値でほぼ一定となった。インダクタンス値のピークは、直流重畳電流が約+7Aのときに約46μHであった。 In the sample 3, the DC superimposed current value is substantially constant at an inductance value of about 5 μH or less up to about −6 A, and the inductance value suddenly increases from about 5 μH to about 42 μH when the DC superimposed current is about −6 A to 0 A. The inductance value increases slightly from about 42 μH to about 46 μH when the DC superimposed current is about 0 A to +7 A, and the inductance value slightly increases from about 46 μH to about 38 μH when the DC superimposed current is about 7 A to +16 A. The inductance value suddenly decreased from about 38 μH to about 8 μH when the DC superimposed current was between about +16 A and +18 A, and became almost constant at an inductance value of 5 μH or less when the DC superimposed current was about +18 A or more. The peak of the inductance value was about 46 μH when the DC superimposed current was about +7 A.
(2)直流重畳特性について
 試料2においては、上記したように、直流重畳電流が約+8A~+14Aの間でインダクタンス値が約38μHから5μH以下まで急激に減少したため、試料2における磁気バイアス印加用部材は、直流重畳電流が約+8A~+14Aの間で磁気飽和したと考えられる。これに対して、試料1(及び3)においては、上記したように、直流重畳電流が約+15A~+18Aまでの間(試料3においては、約+16A~+18Aの間)でインダクタンス値が38μHから急激に8μHまで減少したため、試料1(及び3)における磁気バイアス印加用部材は、直流重畳電流が約+15A~+18Aの間(試料3においては、約+17A~+18Aの間)で磁気飽和したと考えられる。従って、試料1(及び3)は、磁気飽和するときの直流重畳電流が、約+15A~+18Aまでの間(試料3においては、約+16A~+18Aの間)であり、試料2の場合(約+8Aから+14Aまでの間)と比較して大きいことが確認できた。
(2) DC superimposition characteristics In sample 2, as described above, since the inductance value drastically decreased from about 38 μH to 5 μH or less when the DC superposition current was between about +8 A and +14 A, the magnetic bias applying member in sample 2 Is considered that the DC superposition current is magnetically saturated between about +8 A and +14 A. On the other hand, in sample 1 (and 3), as described above, the inductance value suddenly increased from 38 μH when the DC superimposed current was about +15 A to +18 A (between about +16 A and +18 A in sample 3). Therefore, the magnetic bias applying member in sample 1 (and 3) is considered to be magnetically saturated when the DC superimposed current is between about +15 A and +18 A (between about +17 A and +18 A in sample 3). . Therefore, in sample 1 (and 3), the DC superposition current when magnetically saturated is between about + 15A and + 18A (in sample 3, between about + 16A and + 18A), and in the case of sample 2 (about + 8A) To + 14A), it was confirmed that it was large.
 このことから、試料1(及び3)は、試料2よりも直流重畳特性が良好なインダクタンス部品であることが確認できた。 From this, it was confirmed that Sample 1 (and 3) was an inductance component having better DC superposition characteristics than Sample 2.
(3)直流重畳電流とインダクタンス値との関係を示す曲線について
 上記「(1)図6の説明」からもわかるように、試料1~3においては、いずれも直流重畳電流とインダクタンス値との関係を示す曲線が台地形状を示している。
 また、試料3においては、上記したように、インダクタンス値がピークになった後、直流重畳電流が約7A~+14Aの間で(すなわち7A増加する間に)インダクタンス値が約46μHから約42μHまで約4μH穏やかに減少した。これに対して、試料1においては、インダクタンス値がピークになった後、直流重畳電流が約1A~+14Aの間で(すなわち13A増加する間に)インダクタンス値が約46μHから約38μHまで穏やかに減少した。
(3) Regarding the curve showing the relationship between the DC superimposed current and the inductance value As can be seen from the above “(1) Description of FIG. 6”, in each of the samples 1 to 3, the relationship between the DC superimposed current and the inductance value is used. The curve which shows has shown the plateau shape.
In the sample 3, as described above, after the inductance value reaches its peak, the inductance value is about 46 μH to about 42 μH between about 7 A and +14 A (that is, while the direct current superposition current increases by 7 A). 4 μH decreased gently. On the other hand, in the sample 1, after the inductance value reaches a peak, the inductance value gently decreases from about 46 μH to about 38 μH when the DC superimposed current is between about 1 A and +14 A (that is, 13 A increases). did.
 このことから、試料1においては、直流重畳電流とインダクタンス値との関係を示す曲線が、台地形状を示し、かつ、台地形状の台地部が右下がりになっていることが確認できた。 From this, in the sample 1, it was confirmed that the curve indicating the relationship between the DC superimposed current and the inductance value showed a plateau shape, and the plateau-shaped plateau portion was lowered to the right.
 従って、試料1は、軽負荷時には、試料3と比較してインダクタンス値が大きくなるため試料3よりも電源効率を向上させることが可能で、重負荷時には、試料3と比較してインダクタンス値が小さくなるため試料3よりも導線を流れる電流が急激に変化した場合等の応答性を向上させることが可能なインダクタンス部品であることがわかった。 Therefore, since the inductance value of Sample 1 is larger than that of Sample 3 at light load, the power supply efficiency can be improved compared to Sample 3, and the inductance value is smaller than that of Sample 3 at heavy load. Therefore, it was found that this is an inductance component capable of improving the responsiveness when the current flowing through the conductor changes more rapidly than the sample 3.
 なお、試料3においては、磁気バイアス印加用部材を製造する際、圧縮成形法のみでは0.3mmの厚さの磁気バイアス印加用部材を製造することができなかった。このため、磁気バイアス印加用部材をいったん厚く(例えば1mm程度に)作製しておき、厚く作製された磁気バイアス印加用部材を所定の厚さまで研削して薄くすることで試料3に係る磁気バイアス印加用部材を製造した。しかし、試料3に係る磁気バイアス印加用部材を0.3mmの厚さまで研削して薄くすることは容易ではなく、割れなどにより不良品が発生したり試料3に係る磁気バイアス印加用部材の厚さの誤差が大きくなったりするため、実用できるものはごく僅かであった。 In sample 3, when the magnetic bias applying member was manufactured, the magnetic bias applying member having a thickness of 0.3 mm could not be manufactured only by the compression molding method. For this reason, the magnetic bias application member is once made thick (for example, about 1 mm), and the magnetic bias application member thus prepared is ground and thinned to a predetermined thickness so that the magnetic bias application according to the sample 3 is applied. The member for manufacture was manufactured. However, it is not easy to grind and thin the magnetic bias applying member according to the sample 3 to a thickness of 0.3 mm, and a defective product is generated due to a crack or the like, or the thickness of the magnetic bias applying member according to the sample 3 is reduced. Since there was a large error, there was very little that could be put to practical use.
[試験例2]
 試験例2は、「本発明のインダクタンス部品は、従来のインダクタンス部品よりもインダクタンス値が大きくなること」、「本発明のインダクタンス部品は、軽負荷時に最もインダクタンス値が大きくなること」、及び、「本発明のインダクタンス部品は、直流重畳特性の曲線における台地部が右下がりとなり、磁気バイアス印加用部材を強く磁化するに従って、台地部の傾斜がより穏やかになること」を示す試験例である。
[Test Example 2]
Test Example 2 is that “the inductance component of the present invention has an inductance value larger than that of a conventional inductance component”, “the inductance component of the present invention has the largest inductance value at a light load”, and “ The inductance component of the present invention is a test example showing that the plateau portion in the curve of the DC superimposition characteristic falls to the right, and that the inclination of the plateau portion becomes gentler as the magnetic bias applying member is strongly magnetized.
1.試料の調製 1. Sample preparation
(1)試料4(比較例)及び試料5~9(実施例)
 複合磁性材料全体を100wt%としたとき、硬磁性材料粉末としてのSmCoを77wt%とし、軟磁性材料粉末としてのFeSiCrを20wt%とし、バインダーが3wt%とした複合磁性材料を用いた磁気バイアス印加用部材を用いる点及び導線(コイル)の巻き数を10とした点以外の構成が実施形態2に係るインダクタンス部品2と同じインダクタンス部品を6つ作製し、試料4~9とした。但し、試料4~9は、磁気バイアス印加用部材を飽和磁化させるように着磁したときの残留磁化を100%としたとき、残留磁化がそれぞれ0%、20%、40%、60%、80%及び100%となるように着磁した磁気バイアス印加用部材を用いたものである。
(1) Sample 4 (Comparative Example) and Samples 5 to 9 (Examples)
Magnetic bias application using a composite magnetic material in which SmCo as a hard magnetic material powder is 77 wt%, FeSiCr as a soft magnetic material powder is 20 wt%, and a binder is 3 wt% when the entire composite magnetic material is 100 wt% Samples 4 to 9 were prepared by producing six inductance components that are the same as the inductance component 2 according to the second embodiment except that the member is used and the number of turns of the conducting wire (coil) is 10. However, samples 4 to 9 have a residual magnetization of 0%, 20%, 40%, 60%, and 80, respectively, when the residual magnetization when the magnetic bias applying member is magnetized so as to be saturated is 100%. % And 100% of the magnetic bias applying member is used.
(2)試料10~15(比較例)
 複合磁性材料全体を100wt%としたとき、硬磁性材料粉末としてのSmCoを97wt%とし、バインダーを3wt%とした磁性材料を用いた点以外の構成が試料4と同じインダクタンス部品を6つ作製し、試料10~15とした。但し、試料10~15は、磁気バイアス印加用部材を飽和磁化させるように着磁したときの残留磁化を100%としたとき、残留磁化がそれぞれ0%、20%、40%、60%、80%及び100%となるように着磁した磁気バイアス印加用部材を用いたものである。
(2) Samples 10 to 15 (comparative example)
When the entire composite magnetic material is 100 wt%, six inductance components are manufactured in the same manner as the sample 4 except that a magnetic material with SmCo as the hard magnetic material powder of 97 wt% and a binder of 3 wt% is used. Samples 10 to 15 were used. However, samples 10 to 15 have residual magnetizations of 0%, 20%, 40%, 60%, and 80, respectively, when the residual magnetization when the magnetic bias applying member is magnetized so as to be saturated is 100%. % And 100% of the magnetic bias applying member is used.
2.評価方法
 横軸に直流重畳電流値をとり、縦軸にインダクタンス値をとったグラフに、試料の導線に流れる直流重畳電流を変化させながら測定したインダクタンス値をプロットし、得られた曲線の形状及びインダクタンス値から直流重畳特性を評価した。
2. Evaluation Method On the graph with the DC superimposed current value taken on the horizontal axis and the inductance value taken on the vertical axis, the inductance value measured while changing the DC superimposed current flowing through the lead wire of the sample was plotted, and the shape of the curve obtained and The DC superposition characteristics were evaluated from the inductance value.
3.評価結果
(1)「本発明のインダクタンス部品は、従来のインダクタンス部品よりもインダクタンス値が大きくなること」について
 図7は、試料4~9の直流重畳特性を示すグラフである。
 図8は、試料10~15の直流重畳特性を示すグラフである。
3. Evaluation result (1) “Inductance value of the inductance component of the present invention is larger than that of the conventional inductance component” FIG. 7 is a graph showing the DC superposition characteristics of Samples 4 to 9.
FIG. 8 is a graph showing the DC superposition characteristics of Samples 10-15.
 図8からも分かるように、試料10~15(従来の他のインダクタンス部品900に相当。)におけるインダクタンス値のピーク値はいずれも17μHあたりとなっている。これに対して、図7からもわかるように、試料5~9(本発明のインダクタンス部品に相当)におけるインダクタンス値のピーク値は、20.5~22.5μHであり、いずれも従来のインダクタンス部品よりも大きいことが確認できた。 As can be seen from FIG. 8, the peak values of the inductance values of samples 10 to 15 (corresponding to other conventional inductance components 900) are around 17 μH. On the other hand, as can be seen from FIG. 7, the peak value of the inductance value in samples 5 to 9 (corresponding to the inductance component of the present invention) is 20.5 to 22.5 μH, both of which are conventional inductance components. It was confirmed that it was larger than.
 従って、本発明のインダクタンス部品は、従来のインダクタンス部品よりもインダクタンス値が大きくなることが確認できた。このことは、本発明のインダクタンス部品が、電源効率が高いインダクタンス部品であることを意味している。 Therefore, it was confirmed that the inductance component of the present invention has a larger inductance value than the conventional inductance component. This means that the inductance component of the present invention is an inductance component with high power supply efficiency.
(2)「本発明のインダクタンス部品は、軽負荷時に最もインダクタンス値が大きくなること」について (2) “The inductance component of the present invention has the largest inductance value at light load”
 図8からも分かるように、試料15の直流重畳特性を示す曲線は、試料10の直流重畳特性を示す曲線を直流重畳電流値が正の方向に8Aシフトした状態となっている。例えば、試料15におけるインダクタンス値がピークをとるときの直流重畳電流値は8Aであり、試料10におけるインダクタンス値がピークをとるときの直流重畳電流値(0A)から8Aシフトしている。このため、試料15におけるインダクタンス値のピークは、軽負荷時に相当する直流重畳電流値の範囲から外れていることが分かった。
 これに対して、図7からもわかるように、試料5~9(本発明のインダクタンス部品に相当。)におけるインダクタンス値がピークをとるときの直流重畳電流値は0A~1Aであり、試料5~9におけるインダクタンス値のピークは軽負荷時に相当する直流重畳電流値の範囲であることがわかった。
As can be seen from FIG. 8, the curve indicating the DC superimposition characteristic of the sample 15 is a state where the DC superposition current value of the sample 10 is shifted by 8 A in the positive direction. For example, the DC superimposed current value when the inductance value in the sample 15 takes a peak is 8A, which is 8A shifted from the DC superimposed current value (0A) when the inductance value in the sample 10 takes a peak. For this reason, it was found that the peak of the inductance value in the sample 15 was out of the range of the DC superimposed current value corresponding to the light load.
On the other hand, as can be seen from FIG. 7, the DC superposed current value when the inductance value in Samples 5 to 9 (corresponding to the inductance component of the present invention) takes a peak is 0 A to 1 A, and Sample 5 to It was found that the inductance value peak at 9 was in the range of the DC superimposed current value corresponding to the light load.
 従って、本発明のインダクタンス部品においては、軽負荷時に最もインダクタンス値が大きくなることが確認できた。このことは、本発明のインダクタンス部品が、軽負荷時には、電源効率をより一層向上させることが可能なインダクタンス部品であることを意味している。 Therefore, in the inductance component of the present invention, it was confirmed that the inductance value was the largest at light load. This means that the inductance component of the present invention is an inductance component that can further improve the power supply efficiency when the load is light.
(3)「本発明のインダクタンス部品は、直流重畳特性の曲線における台地部が右下がりとなり、磁気バイアス印加用部材を強く磁化するに従って、台地部の傾斜がより穏やかになること」について (3) Regarding the inductance component of the present invention, the plateau portion in the curve of the DC superimposition characteristic is lowered to the right, and the inclination of the plateau portion becomes gentler as the magnetic bias applying member is strongly magnetized.
 図7からも分かるように、試料5~9の直流重畳特性の曲線においては、直流重畳特性の曲線における台地部が右下がりとなることが確認できた。 As can be seen from FIG. 7, it was confirmed that the plateau portion in the DC superimposition characteristic curve of Samples 5 to 9 was lowered to the right.
 また、図7からも分かるように、試料4(比較例)の直流重畳特性を示す曲線は、直流重畳電流値が0Aのときにインダクタンス値がピーク(23.5μH)をとり、直流重畳電流値が6Aのときに直流重畳特性を示す曲線の台地部の右端(インダクタンス値は20.5μH)となる。従って、インダクタンス値のピークから台地部の右端までの間における、直流重畳電流に対するインダクタンス値の変化の割合は約-0.5(3μH/6A)である。
 これに対して、試料5~9(実施例、本発明のインダクタンス部品に相当。)の直流重畳特性の曲線においては、インダクタンス値のピークから台地部の右端までの間における、直流重畳電流に対するインダクタンス値の変化の割合は、それぞれ、-0.43(3.5μH/8A)、-0.38(3μH/8A)、-0.25(2μH/8A)、-0.20(2μH/10A)、-0.15(1μH/10A)となり、当該変化の割合の絶対値が徐々に小さくなっていることがわかった。このことから、磁気バイアス印加用部材を強く磁化するに従って、台地部の傾斜がより穏やかになることがわかった。
Further, as can be seen from FIG. 7, the curve indicating the DC superimposition characteristic of sample 4 (comparative example) shows a peak (23.5 μH) inductance value when the DC superimposition current value is 0 A, and the DC superimposition current value. Is 6A, the right end of the plateau portion of the curve showing the DC superposition characteristics (inductance value is 20.5 μH). Therefore, the ratio of the change in the inductance value with respect to the DC superimposed current from the peak of the inductance value to the right end of the plateau is about −0.5 (3 μH / 6A).
On the other hand, in the DC superposition characteristics curve of Samples 5 to 9 (examples, corresponding to the inductance component of the present invention), the inductance with respect to the DC superposition current between the peak of the inductance value and the right end of the plateau. The rate of change of the values is −0.43 (3.5 μH / 8A), −0.38 (3 μH / 8A), −0.25 (2 μH / 8A), and −0.20 (2 μH / 10A), respectively. It was found to be −0.15 (1 μH / 10 A), and the absolute value of the change ratio gradually decreased. From this, it was found that the inclination of the plateau portion becomes gentler as the magnetic bias applying member is strongly magnetized.
 従って、「本発明のインダクタンス部品は、直流重畳特性の曲線における台地部が右下がりとなり、磁気バイアス印加用部材を強く磁化するに従って、台地部の傾斜がより穏やかになること」ことが確認できた。このことは、本発明のインダクタンス部品が、軽負荷時には、電源効率を向上させることが可能で、重負荷時には、導線を流れる電流が急激に変化した場合等の応答性を向上させることが可能なインダクタンス部品となるのに加えて、インダクタンスの急激な変化が少ない安定したインダクタンス部品であることを意味している。 Therefore, it has been confirmed that the inductance part of the present invention has a plateau portion in the DC superimposition characteristic curve that lowers to the right, and the inclination of the plateau portion becomes gentler as the magnetic bias application member is strongly magnetized. . This means that the inductance component of the present invention can improve the power supply efficiency when the load is light, and can improve the response when the current flowing through the conductor changes suddenly when the load is heavy. In addition to being an inductance component, it means a stable inductance component that is less susceptible to sudden changes in inductance.
[試験例3]
 試験例3は、本発明の磁気バイアス印加用部材においては、「J-H曲線の減磁曲線が、外部磁場Hを0から負の方向に変化させたときに傾きが徐々に緩やかになるような曲線からなること」を示す試験例である。
[Test Example 3]
Test Example 3 shows that in the magnetic bias applying member of the present invention, “the demagnetization curve of the JH curve is such that the slope gradually decreases when the external magnetic field H is changed from 0 to the negative direction. It is a test example showing that it consists of a simple curve.
1.試料の調製
(1)試料16(実施例)
 実施形態1に係る磁気バイアス印加用部材14と同じ磁気バイアス印加用部材を作製した後、100%磁化して試料16とした。但し、実効断面積を48mmとし、厚さを0.5mmとした。また、複合磁性材料全体を100wt%として、硬磁性材料粉末としてのSmCoが80wt%、軟磁性材料粉末としてのFeSiCrが17wt%及びバインダーが3wt%の複合磁性材料を用いた。
(2)試料17(比較例)
 複合磁性材料全体を100wt%として、硬磁性材料粉末としてのSmCoが97wt%及びバインダーが3wt%の複合磁性材料を用いた点以外の構成は試料16で用いた磁気バイアス印加用部材と同じ磁気バイアス印加用部材を作製し、試料17とした。
1. Sample Preparation (1) Sample 16 (Example)
After preparing the same magnetic bias applying member as the magnetic bias applying member 14 according to the first embodiment, the sample 16 was magnetized to 100%. However, the effective area was 48 mm 2 and the thickness was 0.5 mm. Further, a composite magnetic material was used in which the entire composite magnetic material was 100 wt%, SmCo as the hard magnetic material powder was 80 wt%, FeSiCr as the soft magnetic material powder was 17 wt%, and the binder was 3 wt%.
(2) Sample 17 (comparative example)
The magnetic bias is the same as that of the magnetic bias applying member used in Sample 16, except that the composite magnetic material is 100 wt%, and the composite magnetic material is 97 wt% SmCo as the hard magnetic material powder and 3 wt% binder. An application member was prepared and used as Sample 17.
2.評価方法
 横軸に外部磁場Hをとり、縦軸に磁化Jをとったグラフに、各試料に対して外部磁場Hを変化させながら測定した磁化をプロットすることによって得られた曲線形状から磁気バイアス印加用部材の磁気特性を評価した。
2. Evaluation Method Magnetic bias from the curve shape obtained by plotting the magnetization measured while changing the external magnetic field H for each sample on the graph with the external magnetic field H on the horizontal axis and the magnetization J on the vertical axis The magnetic properties of the application member were evaluated.
3.評価結果
 図9は、試料16及び試料17のJ-H曲線を示すグラフである。
 図9からも分かるように、試料17においては、外部磁場が0(kA/m)から負の方向に変化させたときにJ-H曲線の傾きが徐々に大きくなった。これに対して、試料16においては、外部磁場が0(kA/m)から負の方向に変化させたときにJ-H曲線の傾きが徐々に小さくなった。
3. Evaluation Results FIG. 9 is a graph showing the JH curves of Sample 16 and Sample 17.
As can be seen from FIG. 9, in the sample 17, the slope of the JH curve gradually increased when the external magnetic field was changed from 0 (kA / m) to the negative direction. On the other hand, in Sample 16, the slope of the JH curve gradually decreased when the external magnetic field was changed from 0 (kA / m) to the negative direction.
 このことから、試料16については、J-H曲線の減磁曲線が、外部磁場Hを0から負の方向に変化させたときに傾きが徐々に緩やかになるような曲線からなることが確認できた。 From this, it can be confirmed that for the sample 16, the demagnetization curve of the JH curve is a curve whose slope gradually decreases when the external magnetic field H is changed from 0 to the negative direction. It was.
 従って、試料16は、外部磁場が0(kA/m)に近いときに比透磁率が大きく、外部磁場が負の方向に大きくなるのに従って比透磁率が徐々に減少することがわかった。このため、試料16は、外部磁場が0(kA/m)に近いときにインダクタンス値が大きく、外部磁場が負の方向に大きくなるのに従ってインダクタンス値が徐々に減少することがわかった。 Therefore, it was found that the sample 16 has a large relative permeability when the external magnetic field is close to 0 (kA / m), and the relative permeability gradually decreases as the external magnetic field increases in the negative direction. Therefore, it was found that the sample 16 had a large inductance value when the external magnetic field was close to 0 (kA / m), and the inductance value gradually decreased as the external magnetic field increased in the negative direction.
[試験例4]
 試験例4は、複合磁性材料粉末における軟磁性材料粉末の含有率を変化させても、本発明の磁気バイアス印加用部材においては、「J-H曲線の減磁曲線が、外部磁場Hを0から負の方向に変化させたときに傾きが徐々に緩やかになるような曲線からなること」を示す試験例である。
[Test Example 4]
In Test Example 4, even if the content of the soft magnetic material powder in the composite magnetic material powder was changed, the “JH curve demagnetization curve reduced the external magnetic field H to 0 in the magnetic bias applying member of the present invention. It is a test example showing that the curve is such that the slope gradually becomes gentle when changing from negative to negative.
1.試料の調製
(1)試料18~22(実施例)
 実施形態1に係る磁気バイアス印加用部材14と同じ磁気バイアス印加用部材を作製した後、100%磁化して試料18~22を作製した。ここで、複合磁性材料全体を100wt%として、硬磁性材料粉末としてのSmCoが87wt%、77wt%、67wt%、57wt%、47wt%、軟磁性材料粉末としてのFeSiCrが10wt%、20wt%、30wt%、40wt%、50wt%及びバインダーがそれぞれ3wt%の複合磁性材料を用いたものをそれぞれ、試料18、試料19、試料20、試料21及び試料22とした。但し、実効断面積を48mmとし、厚さを0.5mmとした。
(2)試料23(比較例)
 複合磁性材料全体を100wt%として、硬磁性材料粉末としてのSmCoが97wt%及びバインダーがそれぞれ3wt%の複合磁性材料を用いた点以外の構成は実施形態1に係る磁気バイアス印加用部材14と同じ磁気バイアス印加用部材を作製し、試料23とした。
1. Sample Preparation (1) Samples 18-22 (Examples)
Samples 18 to 22 were manufactured by producing the same magnetic bias applying member as the magnetic bias applying member 14 according to Embodiment 1 and then 100% magnetized. Here, assuming that the entire composite magnetic material is 100 wt%, SmCo as a hard magnetic material powder is 87 wt%, 77 wt%, 67 wt%, 57 wt%, 47 wt%, and FeSiCr as a soft magnetic material powder is 10 wt%, 20 wt%, 30 wt%. Samples 18, 19, 20, 21, and 22 were obtained using composite magnetic materials having%, 40 wt%, 50 wt%, and 3 wt% binder, respectively. However, the effective area was 48 mm 2 and the thickness was 0.5 mm.
(2) Sample 23 (comparative example)
The configuration is the same as that of the magnetic bias applying member 14 according to the first embodiment except that the total composite magnetic material is 100 wt%, and the hard magnetic material powder is a composite magnetic material having 97 wt% SmCo and 3 wt% binder. A member for applying a magnetic bias was prepared and used as Sample 23.
2.評価方法
 横軸に外部磁場Hをとり、縦軸に磁化Jをとったグラフ(但し、第2象限のみ)に、各試料に対して外部磁場Hを変化させながら測定した磁化をプロットすることによって得られた曲線形状から磁気バイアス印加用部材の磁気特性を評価した。
2. Evaluation Method By plotting the magnetization measured while changing the external magnetic field H for each sample on a graph (excluding the second quadrant) with the external magnetic field H on the horizontal axis and the magnetization J on the vertical axis. The magnetic characteristics of the magnetic bias applying member were evaluated from the obtained curve shape.
3.評価結果
 図10は、試料18~23のJ-H曲線の減磁曲線を示すグラフである。
 図10からも分かるように、試料23においては、外部磁場が0(kA/m)から負の方向に変化させたときに傾きが徐々に大きくなった。これに対して、試料18においては、外部磁場が0(kA/m)から負の方向に変化させたときに傾きが徐々に小さくなり、-520(kA/m)あたりから再び傾きが徐々に大きくなった。また、試料19~22においては、外部磁場が0(kA/m)から負の方向に変化させたときに傾きが徐々に小さくなった。
3. Evaluation Results FIG. 10 is a graph showing the demagnetization curves of the JH curves of Samples 18-23.
As can be seen from FIG. 10, in the sample 23, the slope gradually increased when the external magnetic field was changed from 0 (kA / m) to the negative direction. On the other hand, in the sample 18, when the external magnetic field is changed from 0 (kA / m) to the negative direction, the inclination gradually decreases, and the inclination gradually decreases again from around -520 (kA / m). It became bigger. In Samples 19 to 22, the inclination gradually decreased when the external magnetic field was changed from 0 (kA / m) to the negative direction.
 このことから、複合磁性材料粉末における軟磁性材料粉末の含有率を変化させても、試料18~22は、J-H曲線の減磁曲線が、外部磁場Hを0から負の方向に変化させたときに傾きが徐々に緩やかになるような曲線からなることが確認できた。 Therefore, even if the content of the soft magnetic material powder in the composite magnetic material powder is changed, the demagnetization curve of Samples 18 to 22 changes the external magnetic field H from 0 to the negative direction. It was confirmed that the curve was such that the slope gradually decreased.
 従って、複合磁性材料粉末における軟磁性材料粉末の含有率を変化させても、外部磁場が0(kA/m)に近いときに比透磁率が大きく、外部磁場が負の方向に大きくなるのに従って比透磁率が徐々に減少することがわかった。このため、試料18~22は、外部磁場が0(kA/m)に近いときにインダクタンス値が大きく、外部磁場が負の方向に大きくなるのに従ってインダクタンス値が徐々に減少することがわかった。 Therefore, even when the content of the soft magnetic material powder in the composite magnetic material powder is changed, the relative magnetic permeability increases when the external magnetic field is close to 0 (kA / m), and the external magnetic field increases in the negative direction. It was found that the relative permeability gradually decreased. Therefore, it was found that the samples 18 to 22 had a large inductance value when the external magnetic field was close to 0 (kA / m), and the inductance value gradually decreased as the external magnetic field increased in the negative direction.
 以上、本発明を上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではない。その趣旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば、次のような変形も可能である。 As mentioned above, although this invention was demonstrated based on said embodiment, this invention is not limited to said embodiment. The present invention can be implemented in various modes without departing from the spirit thereof, and for example, the following modifications are possible.
(1)上記各実施形態における各構成要素の数、位置関係、大きさは例示であり、本発明はこれに限定されるものではない。 (1) The number, positional relationship, and size of each component in each of the above embodiments are examples, and the present invention is not limited to this.
(2)上記実施形態1においては、磁気コア本体が2つのEコアから構成された場合を、実施形態2においては磁気コア本体がリングコアから構成された場合を、実施形態3においてはリング形状となるように組み合わされた2つのUコアから構成されている場合を例にとってそれぞれ本発明を説明したが、本発明はこれに限定されるものではない。例えば、磁気コアとして、E型コアとI型コアを組み合わせたEIコアや、一方向に延在している棒のような形状をした棒状コアその他のコアを用いた場合であっても本発明を適用可能である。 (2) In the first embodiment, the case where the magnetic core body is composed of two E cores, the case where the magnetic core body is composed of a ring core in the second embodiment, and the ring shape in the third embodiment. Although the present invention has been described by way of examples of two U cores combined in such a manner, the present invention is not limited to this. For example, even when an EI core combining an E-type core and an I-type core, a rod-like core shaped like a bar extending in one direction, or another core is used as the magnetic core. Is applicable.
(3)上記各実施形態においては、磁気バイアス印加用部材が、複合磁性材料を押圧成形することにより形成されたものである場合を例にとって本発明を説明したが、本発明はこれに限定されるものではない。例えば、磁気バイアス印加用部材が、複合磁性材料を射出成形する場合やグリーンシート法を用いる場合及びその他の方法を用いる場合であっても平板状に形成可能な工法であれば本発明を適用可能である。なお、この場合、バインダーの含有量を適宜調整しても良い。 (3) In each of the above embodiments, the present invention has been described by taking as an example the case where the magnetic bias applying member is formed by pressing a composite magnetic material. However, the present invention is not limited to this. It is not something. For example, the present invention can be applied if the magnetic bias applying member is a construction method that can be formed into a flat plate shape even when a composite magnetic material is injection molded, when a green sheet method is used, or when other methods are used. It is. In this case, the binder content may be appropriately adjusted.
(4)上記各実施形態においては、磁気コア本体の空隙のギャップ長に対応した厚さの磁気バイアス印加用部材を用いたインダクタンス部品の場合を例にとって本発明を説明したが、本発明はこれに限定されるものではない。例えば、磁気コア本体の空隙のギャップ長に対応した厚さよりも薄い磁気バイアス印加用部材を用いる場合であっても本発明を適用可能である。 (4) In each of the above embodiments, the present invention has been described by taking the case of an inductance component using a magnetic bias applying member having a thickness corresponding to the gap length of the gap of the magnetic core body as an example. It is not limited to. For example, the present invention can be applied even when a magnetic bias applying member thinner than the thickness corresponding to the gap length of the gap of the magnetic core body is used.
 なお、この場合、空隙内には磁気バイアス印加用部材とエアギャップとが存在することになる。そして、このエアギャップのギャップ長は、磁路(導線に電流を流したときに磁気コアに発生する磁束の磁路)を構成する磁気コア本体の実効磁路長の5%以下であることが好ましい。このような構成とすることにより、エアギャップのギャップ長が短くなることに起因して磁気コアが磁気飽和し難くなり、従って、磁気バイアスの効果が低下し難くなり、直流重畳特性が良好なインダクタンス部品となる。この観点からすると、磁気コア本体におけるエアギャップのギャップ長は、磁路の実効磁路長の3%以下が好ましく、磁路の実効磁路長の1%以下がさらに好ましい。 In this case, a magnetic bias applying member and an air gap exist in the gap. The gap length of the air gap is 5% or less of the effective magnetic path length of the magnetic core body constituting the magnetic path (the magnetic path of the magnetic flux generated in the magnetic core when a current is passed through the conducting wire). preferable. By adopting such a configuration, the magnetic core is less likely to be magnetically saturated due to the shortening of the gap length of the air gap. It becomes a part. From this point of view, the gap length of the air gap in the magnetic core body is preferably 3% or less of the effective magnetic path length of the magnetic path, and more preferably 1% or less of the effective magnetic path length of the magnetic path.
 1,2,3…インダクタンス部品、10,10a,10b…磁気コア、12,12a、12b…磁気コア本体、14,14a,14b…磁気バイアス印加用部材、16,16a,16b…空隙、18…磁芯、20,20a,20b…導線 1, 2, 3... Inductance parts 10, 10a, 10b ... Magnetic core, 12, 12a, 12b ... Magnetic core body, 14, 14a, 14b ... Magnetic bias applying member, 16, 16a, 16b ... Air gap, 18 ... Magnetic core, 20, 20a, 20b ... conducting wire

Claims (16)

  1.  磁路の少なくとも一箇所に磁気飽和防止用の空隙を有する磁気コア本体、及び、前記空隙に配設され前記磁気コア本体とは異なる材料からなる磁気バイアス印加用部材を有する磁気コアと、
     前記磁気コアに装着された導線とを備え、
     前記磁気バイアス印加用部材は、磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを含有する複合磁性材料を平板状に成形することにより形成されたものであることを特徴とするインダクタンス部品。
    A magnetic core body having a magnetic saturation prevention gap in at least one location of the magnetic path; and a magnetic core having a magnetic bias application member made of a material different from the magnetic core body disposed in the gap;
    A conductive wire mounted on the magnetic core;
    The magnetic bias applying member is formed by molding a hard magnetic material powder for applying a magnetic bias, a soft magnetic material powder for improving relative permeability, and a composite magnetic material containing a binder for binding them into a flat plate shape. Inductance component characterized by being
  2.  請求項1に記載のインダクタンス部品において、
     「磁気バイアス印加用部材から発生する磁束の磁路」を構成する磁気コア本体の実効比透磁率が10以上であることを特徴とするインダクタンス部品。
    The inductance component according to claim 1,
    An inductance component, wherein an effective relative permeability of a magnetic core body constituting a “magnetic path of a magnetic flux generated from a magnetic bias applying member” is 10 or more.
  3.  請求項2に記載のインダクタンス部品において、
     前記「磁気バイアス印加用部材から発生する磁束の磁路」を構成する磁気コア本体の実効比透磁率が、「導線に電流を流したときに前記磁気コアに発生する磁束の磁路」を構成する磁気コアの実効比透磁率の1.5倍以上であることを特徴とするインダクタンス部品。
    The inductance component according to claim 2,
    The effective relative magnetic permeability of the magnetic core body constituting the “magnetic path of the magnetic flux generated from the magnetic bias applying member” constitutes the “magnetic path of the magnetic flux generated in the magnetic core when a current is passed through the conducting wire” An inductance component characterized by being 1.5 times or more the effective relative permeability of the magnetic core.
  4.  請求項1~3のいずれかに記載のインダクタンス部品において、
     前記複合磁性材料においては、前記硬磁性材料粉末及び前記軟磁性材料粉末を合計したものに対する前記軟磁性材料粉末の割合が5wt%~80wt%の範囲内にあることを特徴とするインダクタンス部品。
    The inductance component according to any one of claims 1 to 3,
    In the composite magnetic material, an inductance component wherein a ratio of the soft magnetic material powder to a total of the hard magnetic material powder and the soft magnetic material powder is in a range of 5 wt% to 80 wt%.
  5.  請求項1~4のいずれかに記載のインダクタンス部品において、
     横軸に直流重畳電流値をとり、縦軸にインダクタンス部品のインダクタンス値をとったグラフに、前記導線に流れる直流重畳電流を変化させながら測定した前記インダクタンス値をプロットしたとき、
     前記直流重畳電流と前記インダクタンス値との関係を示す曲線が、台地形状を示し、かつ、前記台地形状の台地部が右下がりになっていることを特徴とするインダクタンス部品。
    The inductance component according to any one of claims 1 to 4,
    When plotting the inductance value measured while changing the DC superimposed current flowing in the conducting wire on the graph with the DC superimposed current value on the horizontal axis and the inductance value of the inductance component on the vertical axis,
    An inductance component, wherein a curve indicating a relationship between the DC superimposed current and the inductance value indicates a plateau shape, and a plateau portion of the plateau shape is downwardly inclined.
  6.  請求項1~5のいずれかに記載のインダクタンス部品において、
    前記磁気バイアス印加用部材においては、横軸に外部磁場をとり、縦軸に磁化をとったグラフに、外部磁場を変化させながら測定した磁化をプロットしたとき、
     前記外部磁場と前記磁化との関係を示すJ-H曲線の減磁曲線が、外部磁場を0から負の方向に変化させたときに傾きが徐々に緩やかになるような曲線となることを特徴とするインダクタンス部品。
    The inductance component according to any one of claims 1 to 5,
    In the magnetic bias application member, when the magnetization measured while changing the external magnetic field is plotted on the graph with the external magnetic field on the horizontal axis and the magnetization on the vertical axis,
    The demagnetization curve of the JH curve indicating the relationship between the external magnetic field and the magnetization is a curve whose slope gradually decreases when the external magnetic field is changed from 0 to a negative direction. Inductance parts.
  7.  請求項1~6のいずれかに記載のインダクタンス部品において、
     前記複合磁性材料においては、前記軟磁性材料粉末の平均粒径が、1μm~900μmの範囲内にあることを特徴とするインダクタンス部品。
    The inductance component according to any one of claims 1 to 6,
    In the composite magnetic material, an inductance component, wherein the soft magnetic material powder has an average particle diameter in a range of 1 μm to 900 μm.
  8.  請求項1~7のいずれかに記載のインダクタンス部品において、
     前記磁気バイアス印加用部材は、外部磁場を印加していないときの前記磁気バイアス印加用部材の比透磁率が1.2~5.0の範囲内となるように構成されていることを特徴とするインダクタンス部品。
    The inductance component according to any one of claims 1 to 7,
    The magnetic bias applying member is configured such that a relative permeability of the magnetic bias applying member when an external magnetic field is not applied is in a range of 1.2 to 5.0. Inductance parts to be used.
  9.  請求項1~8のいずれかに記載のインダクタンス部品において、
     前記磁気コア本体における前記空隙のギャップ長をLとし、前記硬磁性材料粉末及び前記軟磁性材料粉末のうち,大きいほうの平均粒径をDとしたとき、以下に示す式(1)を満たすことを特徴とするインダクタンス部品。
    Figure JPOXMLDOC01-appb-M000001
    The inductance component according to any one of claims 1 to 8,
    When the gap length of the gap in the magnetic core body is L and the larger average particle diameter of the hard magnetic material powder and the soft magnetic material powder is D, the following formula (1) is satisfied. Inductance parts characterized by
    Figure JPOXMLDOC01-appb-M000001
  10.  請求項1~9のいずれかに記載のインダクタンス部品において、
     前記磁気バイアス印加用部材は、ボンド磁石であることを特徴とするインダクタンス部品。
    The inductance component according to any one of claims 1 to 9,
    The inductance component, wherein the magnetic bias applying member is a bonded magnet.
  11.  請求項1~10のいずれかに記載のインダクタンス部品において、
     前記磁気バイアス印加用部材は、永久磁石であることを特徴とするインダクタンス部品。
    The inductance component according to any one of claims 1 to 10,
    The inductance component, wherein the magnetic bias applying member is a permanent magnet.
  12.  請求項1~11のいずれかに記載のインダクタンス部品において、
     前記軟磁性材料粉末は、絶縁処理が施されていることを特徴とするインダクタンス部品。
    The inductance component according to any one of claims 1 to 11,
    An inductance component wherein the soft magnetic material powder is subjected to insulation treatment.
  13.  請求項1~12のいずれかに記載のインダクタンス部品において、
     前記磁気バイアス印加用部材は、前記複合磁性材料を押圧成形する方法、前記複合磁性材料を射出成形する方法又は前記複合磁性材料をグリーンシート法により成形する方法のいずれかの方法によって形成されたものであることを特徴とするインダクタンス部品。
    The inductance component according to any one of claims 1 to 12,
    The magnetic bias applying member is formed by any one of a method of press molding the composite magnetic material, a method of injection molding of the composite magnetic material, or a method of molding the composite magnetic material by a green sheet method. Inductance component characterized by being.
  14.  請求項1~13のいずれかに記載のインダクタンス部品において、
     前記磁気コア本体は、フェライトによって形成されたものであるか、又は、軟磁性材料粉末及びバインダーを含有する磁性材料を成形することにより形成されたものであることを特徴とするインダクタンス部品。
    The inductance component according to any one of claims 1 to 13,
    The inductance component, wherein the magnetic core body is formed of ferrite or is formed by molding a magnetic material containing a soft magnetic material powder and a binder.
  15.  請求項1~14のいずれかに記載のインダクタンス部品に用いる磁気バイアス印加用部材であって、
     磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを含有する複合磁性材料を平板状に成形することにより形成されたものであることを特徴とする磁気バイアス印加用部材。
    A magnetic bias applying member used for the inductance component according to any one of claims 1 to 14,
    It is formed by molding a hard magnetic material powder for applying a magnetic bias, a soft magnetic material powder for improving relative permeability, and a composite magnetic material containing a binder for binding them into a flat plate shape. A magnetic bias applying member.
  16.  請求項1~14のいずれかに記載のインダクタンス部品に用いる磁気バイアス印加用部材の製造方法であって、
     磁気バイアス印加用の硬磁性材料粉末、比透磁率向上用の軟磁性材料粉末及びこれらを結合するバインダーを所定の割合で混錬して複合磁性材料を作製する複合磁性材料作製工程と、
     前記複合磁性材料を平板状に成形することにより成形体を作製する成形工程と、
     前記成形体に含まれるバインダーを硬化する硬化工程と、
     前記成形体を着磁して磁気バイアス印加用部材とする着磁工程とをこの順序で含むことを特徴とする磁気バイアス印加用部材の製造方法。
    A method for producing a magnetic bias applying member used in the inductance component according to any one of claims 1 to 14,
    A composite magnetic material preparation step of preparing a composite magnetic material by kneading a hard magnetic material powder for applying a magnetic bias, a soft magnetic material powder for improving the relative permeability, and a binder for binding them at a predetermined ratio;
    A molding step for producing a molded body by molding the composite magnetic material into a flat plate shape,
    A curing step for curing the binder contained in the molded body;
    A method of manufacturing a member for applying magnetic bias, comprising the step of magnetizing the molded body to form a member for applying magnetic bias in this order.
PCT/JP2013/083384 2012-12-12 2013-12-12 Inductance component, magnetic-bias-applying member, and method for manufacturing magnetic-bias-applying member WO2014092169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014552095A JP6013509B2 (en) 2012-12-12 2013-12-12 Inductance component, magnetic bias applying member, and method of manufacturing magnetic bias applying member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/082263 WO2014091589A1 (en) 2012-12-12 2012-12-12 Magnetic device, magnetic-bias-applying member, and method for manufacturing magnetic-bias-applying member
JPPCT/JP2012/082263 2012-12-12

Publications (1)

Publication Number Publication Date
WO2014092169A1 true WO2014092169A1 (en) 2014-06-19

Family

ID=50933910

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/082263 WO2014091589A1 (en) 2012-12-12 2012-12-12 Magnetic device, magnetic-bias-applying member, and method for manufacturing magnetic-bias-applying member
PCT/JP2013/083384 WO2014092169A1 (en) 2012-12-12 2013-12-12 Inductance component, magnetic-bias-applying member, and method for manufacturing magnetic-bias-applying member

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082263 WO2014091589A1 (en) 2012-12-12 2012-12-12 Magnetic device, magnetic-bias-applying member, and method for manufacturing magnetic-bias-applying member

Country Status (2)

Country Link
JP (1) JP6013509B2 (en)
WO (2) WO2014091589A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012894A (en) * 2017-06-29 2019-01-24 矢崎総業株式会社 Noise filter and noise reduction unit
JP2021106227A (en) * 2019-12-26 2021-07-26 Tdk株式会社 Orientation detection device and orientation detection method for unmagnetized magnet
JP2022074703A (en) * 2020-11-05 2022-05-18 株式会社村田製作所 Inductor component, dcdc converter, and manufacturing method of inductor parts

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318230B1 (en) * 2014-12-11 2021-10-27 엘지이노텍 주식회사 Inductor
JP2017126599A (en) * 2016-01-12 2017-07-20 株式会社デンソー Magnetic circuit component
US10840004B2 (en) 2018-08-23 2020-11-17 Hamilton Sundstrand Corporation Reducing reluctance in magnetic devices
CN117316617B (en) * 2023-11-29 2024-01-26 兰州大学 GMI sensor probe, U-shaped composite structure magnetic core thereof and preparation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222714A (en) * 2001-01-26 2002-08-09 Nec Tokin Corp Inductor
JP2003007542A (en) * 2000-10-25 2003-01-10 Nec Tokin Corp Magnetic core and inductance component using the same
JP2003124041A (en) * 2001-10-19 2003-04-25 Nec Tokin Corp Inductor part
JP2005303020A (en) * 2004-04-13 2005-10-27 Nec Tokin Corp Magnetic core having magnet for dc magnetic biasing and inductance component using the core
JP2007109705A (en) * 2005-10-11 2007-04-26 Univ Of Tsukuba Nano-composite magnet and its production process
JP2008078177A (en) * 2006-09-19 2008-04-03 Nec Tokin Corp Inductor
JP2009224759A (en) * 2008-02-18 2009-10-01 Daido Steel Co Ltd Bond magnet for direct current reactor and direct current reactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005159027A (en) * 2003-11-26 2005-06-16 Nec Tokin Corp Compound type magnetic core and coil component using it
JP5110627B2 (en) * 2007-01-31 2012-12-26 Necトーキン株式会社 Wire ring parts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007542A (en) * 2000-10-25 2003-01-10 Nec Tokin Corp Magnetic core and inductance component using the same
JP2002222714A (en) * 2001-01-26 2002-08-09 Nec Tokin Corp Inductor
JP2003124041A (en) * 2001-10-19 2003-04-25 Nec Tokin Corp Inductor part
JP2005303020A (en) * 2004-04-13 2005-10-27 Nec Tokin Corp Magnetic core having magnet for dc magnetic biasing and inductance component using the core
JP2007109705A (en) * 2005-10-11 2007-04-26 Univ Of Tsukuba Nano-composite magnet and its production process
JP2008078177A (en) * 2006-09-19 2008-04-03 Nec Tokin Corp Inductor
JP2009224759A (en) * 2008-02-18 2009-10-01 Daido Steel Co Ltd Bond magnet for direct current reactor and direct current reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012894A (en) * 2017-06-29 2019-01-24 矢崎総業株式会社 Noise filter and noise reduction unit
US11049646B2 (en) 2017-06-29 2021-06-29 Yazaki Corporation Noise filter and noise reduction unit
JP2021106227A (en) * 2019-12-26 2021-07-26 Tdk株式会社 Orientation detection device and orientation detection method for unmagnetized magnet
JP2022074703A (en) * 2020-11-05 2022-05-18 株式会社村田製作所 Inductor component, dcdc converter, and manufacturing method of inductor parts

Also Published As

Publication number Publication date
JP6013509B2 (en) 2016-10-25
WO2014091589A1 (en) 2014-06-19
JPWO2014092169A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP6013509B2 (en) Inductance component, magnetic bias applying member, and method of manufacturing magnetic bias applying member
US10204725B2 (en) Composite magnetic core and magnetic element
TWI584313B (en) Magnetic device with high saturation current and low core loss
US6753751B2 (en) Magnetic core including magnet for magnetic bias and inductor component using the same
KR101655752B1 (en) Reactor
KR20070050926A (en) Method for manufacturing magnetic core component
JP2007128951A (en) Reactor
KR20100054839A (en) High power inductors using a magnetic bias
JP2009260116A (en) Molded coil and producing method of the same
KR20020041773A (en) Magnetic core comprising a bond magnet including magnetic powder whose particle&#39;s surface is coated with oxidation-resistant metal and inductance part comprising the magnetic core
JP2002313632A (en) Magnetic element and its manufacturing method
US9406430B2 (en) Reactor
JP2006294733A (en) Inductor and its manufacturing method
US20210249176A1 (en) Magnetic composition and magnetic component including the same
JP3860456B2 (en) Magnetic core and inductance component using the same
WO2016052257A1 (en) Magnetic core component and chip inductor
JPH05326240A (en) Dust core and manufacture thereof
JP2021158148A (en) Powder magnetic core
WO2016013059A1 (en) Inductance component
JP2007042931A (en) Coil component and its manufacturing method
JP3974773B2 (en) Magnetic core having magnet for magnetic bias and inductance component using the same
JP2004063885A (en) Magnetic core and inductance components using the same
JP2009266929A (en) Powder magnetic core and its manufacturing method
JP2000235925A (en) Choke coil
JP2004103658A (en) Magnetic core and inductance component using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863401

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014552095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863401

Country of ref document: EP

Kind code of ref document: A1