WO2014092059A1 - Sensor element and composite sensor - Google Patents

Sensor element and composite sensor Download PDF

Info

Publication number
WO2014092059A1
WO2014092059A1 PCT/JP2013/083020 JP2013083020W WO2014092059A1 WO 2014092059 A1 WO2014092059 A1 WO 2014092059A1 JP 2013083020 W JP2013083020 W JP 2013083020W WO 2014092059 A1 WO2014092059 A1 WO 2014092059A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
movable
capacitance
detection base
acceleration
Prior art date
Application number
PCT/JP2013/083020
Other languages
French (fr)
Japanese (ja)
Inventor
米村麻里
加藤良隆
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2014092059A1 publication Critical patent/WO2014092059A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5726Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • G01C19/5747Structural details or topology the devices having two sensing masses in anti-phase motion each sensing mass being connected to a driving mass, e.g. driving frames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Definitions

  • the present invention relates to a sensor element that detects angular velocity and acceleration, and a composite sensor including the sensor element.
  • the sensor element of the composite sensor described in Patent Document 1 includes a mass portion supported by a support beam so as to have a gap with respect to the substrate.
  • the mass portion is supported so as to be displaceable in two axial directions (for example, the X-axis direction and the Y-axis direction) that are parallel to the substrate surface and orthogonal to each other.
  • This composite sensor detects the angular velocity in a state where the mass part is vibrated in the X-axis direction. In this state, when an angular velocity around the Z axis orthogonal to the X axis and the Y axis acts on the mass portion, a Coriolis force in the Y axis direction is generated. By detecting the Coriolis force electrically, the angular velocity around the Z axis is detected.
  • this composite sensor includes an acceleration detection unit that detects an acceleration in the Y-axis direction using an electric signal in a region different from the mass unit that detects the angular velocity.
  • FIG. 22 is an enlarged plan view of a part of the acceleration detection unit of the conventional composite sensor.
  • FIG. 22A shows a case where the displacement ⁇ x of the movable part in the X-axis direction due to vibration is zero.
  • FIG. 22B shows a case where the displacement ⁇ x of the movable part in the X-axis direction due to vibration is + x1.
  • the movable-side acceleration detector detection base 240P1 is disposed between the fixed-side acceleration detector detection bases 220P1 and 220P2 arranged along the Y-axis direction.
  • the detection bases 240P1, 220P1, and 220P2 have a long shape extending in the X-axis direction.
  • a protrusion 241P1 protruding in the Y-axis direction is formed on the side surface of the movable detection base 240P1 on the fixed detection base 220P1 side.
  • a protrusion 242P1 protruding in the Y-axis direction is formed on the side of the movable detection base 240P1 on the fixed detection base 220P2 side.
  • the protrusion 241P1 and the protrusion 242P1 have a shape with a length of 2W along the X axis.
  • the positions of the protrusion 241P1 and the protrusion 242P1 along the X-axis direction are shifted by W.
  • a protrusion 221P1 is formed on the side of the movable detection base 240P1 side of the fixed detection base 220P1.
  • the protruding portion 221P1 has a shape with a length of 2W along the X axis.
  • the position of the protrusion 221P1 in the X-axis direction is the same as the position of the protrusion 242P1.
  • the fixed-side protrusion 221P1 and the movable-side protrusion 241P1 face each other with a length of W in the X-axis direction.
  • the fixed-side protrusion 221P2 and the movable-side protrusion 241P1 face each other at an interval of D12 in the Y-axis direction.
  • a protrusion 221P2 is formed on the movable detection base 240P1 side of the fixed detection base 220P2.
  • the protrusion 221P2 has a shape with a length of 2W along the X axis.
  • the position of the protrusion 221P2 in the X-axis direction is the same as the position of the protrusion 241P1.
  • the fixed-side protrusion 221P2 and the movable-side protrusion 242P1 face each other with a length of W in the X-axis direction.
  • the fixed-side protrusion 221P1 and the movable-side protrusion 242P1 face each other at an interval of D12 in the Y-axis direction.
  • the acceleration detecting unit includes a capacitance C1P1 determined by a facing area S1P1 (dependent on W) and a facing distance D12 between the fixed-side protrusion 221P1 and the movable-side protrusion 241P1, and the fixed-side protrusion 221P2 and the movable side.
  • the acceleration is detected from the change of the capacitance C2P1 determined by the facing area S2P1 (depending on W) and the facing distance D12 with respect to the protrusion 242P1.
  • the movable-side detection base 240P1 moves away from the fixed-side detection base 220P1 and close to the fixed-side detection base 220P2. To do.
  • the facing distance D12 between the protrusion 221P1 on the fixed side and the protrusion 241P1 on the movable side increases, and the capacitance C1P1 decreases.
  • the facing distance D12 between the fixed-side protrusion 221P2 and the movable-side protrusion 242P1 decreases, and the capacitance C2P1 increases.
  • the capacitances C1P1 and C2P1 are determined by the reciprocal of the facing interval.
  • the combined capacitance of the capacitance C1P1 and the capacitance C2P1 decreases according to the reciprocal of the opposing distance change, and the acceleration can be detected from this decrease amount.
  • the movable-side detection base 240P1 and the protrusions 241P1 and 242P1 vibrate in the X-axis direction in order to detect the angular velocity described above. Therefore, the facing area between the movable-side protrusion 241P1 and the fixed-side protrusion 221P1 changes, and the facing area between the movable-side protrusion 242P1 and the fixed-side protrusion 221P2 also changes. For example, as shown in FIG. 21B, when moving in the positive direction of the X-axis, the facing area S1P2 between the movable protrusion 241P1 and the fixed protrusion 221P1 increases as W ′ increases.
  • the amount reduced to S2P2 is the same. Therefore, the amount of change in capacitance between the movable-side protrusion 241P1 and the fixed-side protrusion 221P1 and the amount of change in capacitance between the movable-side protrusion 242P1 and the fixed-side protrusion 221P2 are offset. To do. Therefore, the combined capacitance of the capacitances C1P2 and C2P2 is the same as the combined capacitance of the capacitances C1P1 and C2P1.
  • the opposing shape of the protrusion of the movable part and the fixed part is as described above, so that the X-axis direction vibration for detecting the angular velocity has an influence on the acceleration detection capacitance. It does not occur.
  • the acceleration detection accuracy may decrease in the following state.
  • FIG. 23 is an enlarged plan view of a part of the acceleration detection unit for explaining the problem of the conventional composite sensor.
  • FIG. 24 is a waveform diagram for explaining the problem of the conventional composite sensor.
  • FIG. 24A shows the capacitance C1P between the movable projection 241P1 and the fixed projection 221P1
  • FIG. 24B shows the capacitance between the movable projection 242P1 and the fixed projection 221P2.
  • C2P is shown.
  • FIG. 24C shows a combined capacitance of the capacitances C1P and C2P.
  • the displacement in the X-axis direction becomes large, and the following problem occurs when the movable-side protrusion 242P1 and the fixed-side protrusion 221P2 do not face each other.
  • the capacitance generated between the movable side and the fixed side is only the capacitance C1P3 due to the length Wex (opposing area S1P3) between the movable side protrusion 241P1 and the fixed side protrusion 221P1.
  • the opposing length Wex is smaller than the length 2W at which the movable-side protrusion 241P1 and the fixed-side protrusion 221P1 are opposed to each other longest. Therefore, the capacitance C1P3 is smaller than the capacitance C1Pm when the movable side protrusion 241P1 and the fixed side protrusion 221P1 face each other with a length of 2W. In this case, no capacitance is generated between the movable protrusion 242P1 and the fixed protrusion 221P2.
  • the combined capacitance generated between the movable portion and the fixed portion is more rapidly reduced than the change due to the displacement of the combined capacitance when the movable portion is opposed to the fixed portion at both ends in the Y-axis direction.
  • the linearity is broken.
  • the primary combined capacitance (C1P + C2P) cancels out the primary components C1P and C2P. 0.
  • the secondary combined capacitance (C1P + C2P) is doubled by adding the secondary components C1P and C2P together. Such a secondary component becomes noise when measuring acceleration, and deteriorates the detection performance of acceleration.
  • the present invention provides a sensor that can detect acceleration with high accuracy even when the angular velocity detection unit and the acceleration detection unit are formed using a single movable unit. It is to provide an element and a composite sensor.
  • the present invention includes a substrate, a fixed portion fixed to one surface of the substrate, a movable portion that is supported by the substrate in a state capable of vibrating in a first direction parallel to the one surface of the substrate, and faces the fixed portion, And has the following characteristics.
  • the movable part includes a movable side detection base, a movable first protrusion, and a movable second protrusion.
  • the movable side detection base portion extends along the first direction, and has a first surface and a second surface on both sides of the second direction parallel to one surface of the substrate and orthogonal to the first direction.
  • the movable first protrusion protrudes in one direction in the second direction from the first surface of the movable detection base.
  • the movable second protrusion protrudes in the other direction of the second direction from the second surface of the movable detection base.
  • the fixed portion has a first fixed side detection base, a second fixed side detection base, a fixed side first protrusion, and a fixed side second protrusion.
  • the first fixed side detection base and the second fixed side detection base are respectively disposed on both sides of the movable side detection base in the second direction, and extend along the first direction.
  • the fixed first protrusion protrudes from the first fixed detection base to the movable first protrusion side.
  • the fixed-side second protrusion protrudes from the second fixed-side detection base toward the movable-side second protrusion.
  • the sensor element includes a first capacitance between the movable first projection and the fixed first projection, and a second capacitance between the movable second projection and the fixed second projection.
  • An acceleration detection signal is output from the change in the combined electrostatic capacity.
  • a third capacitance between the movable portion and the fixed portion is generated at an end portion in the first direction of any of the movable side detection base, the first fixed side detection base, and the second fixed side detection base.
  • a capacitance forming portion is disposed.
  • the vibration becomes a predetermined value or more, and the movable side first protrusion and the fixed side first protrusion do not face each other, or the movable side second protrusion and the fixed side second protrusion face each other. If the combined capacitance of the first capacitance and the second capacitance decreases and the third capacitance increases. As a result, the decrease in the combined capacitance of the first capacitance and the second capacitance can be compensated by the increase in the third capacitance. Therefore, it is possible to substantially eliminate the change in capacitance due to vibration.
  • the movable part includes a movable side detection base, a movable first protrusion, and a movable second protrusion.
  • the movable side detection base portion extends along the first direction, and has a first surface and a second surface on both sides of the second direction parallel to one surface of the substrate and orthogonal to the first direction.
  • the movable first protrusion protrudes in one direction in the second direction from the first surface of the movable detection base.
  • the movable second protrusion protrudes in the other direction of the second direction from the second surface of the movable detection base.
  • the fixed portion includes a first fixed-side detection base, a second fixed-side detection base, a fixed-side first protrusion, and a fixed-side second protrusion.
  • the first fixed side detection base and the second fixed side detection base are respectively disposed on both sides of the movable side detection base in the second direction, and extend along the first direction.
  • the fixed first protrusion protrudes from the first fixed detection base to the movable first protrusion side.
  • the fixed-side second protrusion protrudes from the second fixed-side detection base toward the movable-side second protrusion.
  • the sensor element includes a first capacitance between the movable first projection and the fixed first projection, and a second capacitance between the movable second projection and the fixed second projection.
  • An acceleration detection signal is output from the change in the combined electrostatic capacity.
  • a capacitance forming portion is disposed at an end portion in the first direction in any of the movable side detection base, the first fixed side detection base, and the second fixed side detection base.
  • the width along the second direction of the capacitance forming portion is the same as the width of the movable side detection base, the first fixed side detection base, and the second fixed side detection base in which the capacitance formation portion is arranged. Larger than the width along two directions.
  • the capacitance of the capacitance forming portion can be increased, and the change in capacitance due to vibration can be suppressed and almost eliminated.
  • each of the movable part and the fixed part may be provided with a capacitance forming part.
  • the movable part has a movable side holding part extending along the second direction at one end of the movable side detection base in the first direction.
  • the fixed portion has a fixed-side holding portion extending along the second direction at the other end in the first direction of the first fixed-side detection base and the second fixed-side detection base.
  • the movable side detection base, the first fixed side detection base, and the second fixed side detection base are disposed between the movable side holding part and the fixed side holding part in the first direction.
  • the capacitance forming part is disposed at the other end in the first direction of the movable side detection base.
  • This configuration shows a specific structure of the capacitance forming portion in the movable portion.
  • the sensor element of the present invention preferably has the following configuration.
  • the movable part has a movable side holding part extending in the second direction at one end in the first direction of the movable side detection base.
  • the fixed portion has a fixed-side holding portion extending along the second direction at the other end in the first direction of the first fixed-side detection base and the second fixed-side detection base.
  • the movable side detection base, the first fixed side detection base, and the second fixed side detection base are arranged between the movable side holding part and the fixed side holding part in the first direction.
  • the capacitance forming part is disposed at one end of the first fixed side detection base and the second fixed side detection base in the first direction.
  • This configuration shows a specific structure of the capacitance forming portion in the fixed portion.
  • the sensor element of the present invention preferably has the following configuration.
  • the movable side detection bases are formed on both sides of the movable side holding portion in the first direction.
  • the capacitance forming part is arranged symmetrically about the second direction on both sides of the movable side holding part.
  • the sensor element of the present invention preferably has the following configuration.
  • the sensor element includes a first mass unit and a second mass unit arranged in the second direction with a gap with respect to the substrate, and the first mass unit and the second mass unit along the first direction. And a supporting beam that supports the vibration so that the vibration is in the opposite phase.
  • the first mass unit has a fixed part and a movable part, and outputs a first acceleration detection signal.
  • the second mass unit has a fixed part and a movable part, and outputs a second acceleration detection signal.
  • acceleration can be detected more reliably.
  • the sensor element of the present invention preferably has the following configuration.
  • the first mass unit outputs a first angular velocity detection signal based on an angular velocity around a third direction orthogonal to the first direction and the second direction.
  • the second mass unit outputs a second angular velocity detection signal based on an angular velocity around the third direction.
  • the sensor element is configured to output so that the phase relationship between the first angular velocity detection signal and the second angular velocity detection signal is opposite to the phase relationship between the first acceleration detection signal and the second acceleration detection signal.
  • angular velocity detection can be detected simultaneously with the acceleration detector.
  • a sensor element that can detect acceleration and angular velocity can be realized in a small size.
  • the composite sensor according to the present invention includes a sensor element that detects the acceleration and the angular velocity, a first detection signal including a first angular velocity detection signal and a first acceleration detection signal, a second angular velocity detection signal, and a second acceleration detection signal. And an addition unit that adds the second detection signal, and a subtraction unit that subtracts the first detection signal and the second detection signal.
  • This configuration shows a specific configuration of the composite sensor using the above-described sensor element. And by setting it as this structure, the composite sensor which can detect an acceleration and an angular velocity separately is realizable small.
  • the acceleration can be accurately determined without being affected by the magnitude of vibration for angular velocity detection. Can be detected.
  • FIG. 1 It is a block diagram which shows the structure of the composite sensor which concerns on embodiment of this invention. It is a figure which shows the behavior when angular velocity (omega) is applied to the sensor element which concerns on embodiment of this invention. It is a figure which shows the behavior when the acceleration a is applied to the sensor element which concerns on embodiment of this invention. It is a wave form chart of each signal when only angular velocity omega is impressed to sensor element 1 concerning an embodiment of the present invention. It is a wave form chart of each signal when only acceleration a is impressed to sensor element 1 concerning an embodiment of the present invention. It is a wave form chart of each signal when acceleration a and angular velocity omega are impressed to sensor element 1 concerning an embodiment of the present invention. FIG.
  • FIG. 5 is a partial plan view showing a more specific structure of a movable acceleration detector and a fixed acceleration detector. It is an enlarged view of the both ends of the X-axis direction of a movable-side acceleration detector (when displacement amount (DELTA) x is 0). It is an enlarged view of the both ends of the X-axis direction of the movable-side acceleration detector (when the displacement amount ⁇ x is + W).
  • FIG. 4 is an enlarged view of both ends of a movable-side acceleration sensor in the X-axis direction (when the displacement amount ⁇ x is ⁇ W). It is a graph which shows the change with respect to the amount of displacement of synthetic capacity.
  • FIG. 12 is a partial plan view showing another more specific second structure of a movable-side acceleration detector and a fixed-side acceleration detector. It is the top view which expanded a part of acceleration detection part of the conventional composite sensor. It is the top view which expanded a part of acceleration detection part for demonstrating the subject of the conventional composite sensor. It is a wave form diagram for demonstrating the subject of the conventional composite sensor.
  • FIG. 1 is a plan view showing a configuration of a sensor element according to an embodiment of the present invention.
  • the sensor element is sealed by a housing (not shown).
  • the atmosphere in the housing in which the sensor element is arranged is maintained, for example, in a reduced pressure atmosphere.
  • the sensor element 1 includes a rectangular substrate 2.
  • the substrate 2 is formed of an insulating semiconductor such as silicon.
  • the short direction of the rectangular substrate 2 is defined as the X-axis direction (corresponding to the “first direction” of the present invention), and the longitudinal direction is defined as the Y-axis direction (the “second direction” of the present invention). Will be described.
  • the sensor element 1 includes a first mass unit 10, a second mass unit 20, a third mass unit 300, and a fourth mass unit 400. These mass parts are made of a conductive semiconductor such as low-resistance silicon. Further, the parts other than the substrate 2 constituting the sensor element 1 are made of a conductive semiconductor such as low-resistance silicon, for example, in the same manner as each mass part.
  • the first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit 400 are arranged in the Y-axis direction at intervals. As a more specific arrangement order, the first mass unit 10 and the second mass unit 20 are arranged at the center along the arrangement direction (Y-axis direction).
  • the third mass unit 300 is disposed on the opposite side of the first mass unit 10 from the second mass unit 20 side.
  • the fourth mass unit 400 is disposed on the opposite side of the second mass unit 20 from the first mass unit 10 side.
  • the first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit 400 are supported by the support beams 4A and 4B with a gap from the substrate 2.
  • the support beams 4A and 4B have a long shape extending along the Y-axis direction.
  • the width (length in the X-axis direction) of the support beams 4A and 4B is set so as to be strong enough to be bent while being partially displaced in the X-axis direction due to vibration described later.
  • the support beam 4A is disposed on one end side in the X-axis direction with respect to the region where the first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit 400 are arranged.
  • the support beam 4B is disposed on the other end side in the X-axis direction with respect to the region where the first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit 400 are arranged. That is, the support beams 4A and 4B are arranged so as to sandwich the first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit 400 along the X-axis direction.
  • the first mass part 10 and the support beam 4A are connected by a connecting part 5A.
  • the second mass part 20 and the support beam 4A are connected by a connecting part 5B.
  • the third mass part 300 and the support beam 4A are connected by a connecting part 5C.
  • the fourth mass part 400 and the support beam 4A are connected by a connecting part 5D.
  • the first mass part 10 and the support beam 4B are connected by a connecting part 5E.
  • the 2nd mass part 20 and support beam 4B are connected by connecting part 5F.
  • the third mass unit 300 and the support beam 4B are coupled by a coupling unit 5G.
  • the fourth mass part 400 and the support beam 4B are connected by a connecting part 5H.
  • the connecting part 5A and the connecting part 5E pass through the center of gravity G of the arranged first mass part 10, the second mass part 20, the third mass part 300, and the fourth mass part 400, and are symmetrical about an axis parallel to the Y-axis direction. As an axis, they are arranged in line-symmetric positions.
  • the connecting part 5B and the connecting part 5F are arranged at positions symmetrical with respect to the symmetry axis.
  • the connecting portion 5C and the connecting portion 5G are arranged at positions symmetrical with respect to the symmetry axis.
  • the connecting part 5D and the connecting part 5H are arranged at positions symmetrical with respect to the symmetry axis.
  • the support beam 4A is connected to the fixing portions 3A, 3B, 3C.
  • the support beam 4B is connected to the fixing portions 3D, 3E, and 3F.
  • the positions where the fixing portions 3A to 3F are connected to the support beams 4A and 4B are points (nodes) where the displacement of the support beams 4A and 4B in the X-axis direction does not occur when each mass portion vibrates in the X-axis direction. .
  • the first mass unit 10 includes an inner frame portion 101A and an outer frame portion 102A.
  • the inner frame portion 101A is a rectangle having a long side in the X-axis direction and a short side in the Y-axis direction.
  • the outer frame portion 102A is a rectangle having a long side in the X-axis direction and a short side in the Y-axis direction.
  • the outer frame portion 102A has a shape surrounding the inner frame portion 101A.
  • the outer frame portion 102A is connected to the support beams 4A and 4B by connecting portions 5A and 5E.
  • the inner frame portion 101A is connected to the outer frame portion 102A in the vicinity of the axis along the Y-axis direction passing through the center of gravity G. More specifically, a long connecting member 103A is formed on the side on the center of gravity G side of the inner frame portion 101A.
  • the connecting member 103A has a shape extending along the X-axis direction, and is connected to the inner frame portion 101A at both ends in the X-axis direction.
  • a connecting member 104A is formed at the center of the connecting member 103A.
  • the connecting member 104A has a short shape in the Y-axis direction, one end in the Y-axis direction is connected to the outer frame portion 102A, and the other end in the Y-axis direction is connected to the connecting member 103A.
  • the connecting member 104A has a shape in which the length in the X-axis direction is longer than the length in the Y-axis direction and is sufficiently shorter than the length in the longitudinal direction (X-axis direction) of the connecting member 103A.
  • a long connecting member 103B is formed on the side opposite to the center of gravity G side of the inner frame portion 101A.
  • the connecting member 103B has a shape extending along the X-axis direction, and is connected to the inner frame portion 101A at both ends in the X-axis direction.
  • a connecting member 104B is formed at the center of the connecting member 103B in the longitudinal direction.
  • the connecting member 104B has a short shape in the Y-axis direction, one end in the Y-axis direction is connected to the outer frame portion 102A, and the other end in the Y-axis direction is connected to the connecting member 103B.
  • the connecting member 104B has a shape in which the length in the X-axis direction is longer than the length in the Y-axis direction and is sufficiently shorter than the length in the longitudinal direction (X-axis direction) of the connecting member 103B.
  • the inner frame portion 101A includes a central axis 101C.
  • the central axis 101C has a shape extending in the Y-axis direction and has a predetermined width in the X-axis direction.
  • the central axis 101C is disposed at the center in the X-axis direction of the inner frame 101A. In other words, the central axis 101C is arranged at a position where the extending axis substantially coincides with the Y axis.
  • the inner space of the inner frame portion 101A is divided into two regions in the X-axis direction by the central axis 101C. The two regions are generally line symmetric with respect to the Y axis except for the arrangement order of the conductor portions described later.
  • a fixed portion 111, an acceleration detection portion 112, and an angular velocity detection portion 113 are formed inside one of the inner frame portions 101A.
  • the fixed part 111 has substantially the same length in both the X-axis direction and the Y-axis direction.
  • the fixed portion 111 has a shape having a relatively large plane area in the sensor element 1 when viewed in plan.
  • the fixing part 111 is fixed to the substrate 2.
  • the acceleration detection unit 112 and the angular velocity detection unit 113 include a conductor part connected to the fixed part 111 and a conductor part connected to the inner frame part 101A.
  • the conductor part has shown the part of the electroconductive semiconductor which generate
  • the first detection unit 11 is configured by the fixing unit 111, the first mass unit 10, and the conductor units that constitute the acceleration detection unit 112 and the angular velocity detection unit 113.
  • a fixed part 121, an acceleration detection part 122, and an angular velocity detection part 123 are formed on the other inner side of the inner frame part 101A.
  • the fixed part 121 has substantially the same length in both the X-axis direction and the Y-axis direction.
  • the fixed part 121 has a shape having a relatively large plane area in the sensor element 1 when viewed in plan.
  • the fixing part 121 is fixed to the substrate 2.
  • the fixed part 121 has a shape symmetrical with the fixed part 111 with respect to the Y axis.
  • the acceleration detection unit 122 and the angular velocity detection unit 123 include a conductor part connected to the fixed part 121 and a conductor part connected to the inner frame part 101A.
  • the acceleration detection unit 122 is generally symmetrical with the acceleration detection unit 112 with respect to the Y axis, but a conductor connected to the inner frame 101A for acceleration detection and a conductor connected to the fixed unit 121.
  • the arrangement order with respect to the parts is not line symmetric but the same order along the X-axis direction.
  • the angular velocity detection unit 123 is symmetrical with respect to the angular velocity detection unit 113 in the extending direction of the conductor with respect to the Y axis, but the arrangement order of the conductors is different from that of the angular velocity detection unit 113.
  • the second detection unit 12 is configured by the fixing unit 121, the first mass unit 10, and the conductor units that constitute the acceleration detection unit 122 and the angular velocity detection unit 123.
  • the second mass unit 20 includes an inner frame portion 101B and an outer frame portion 102B.
  • the inner frame portion 101B is a rectangle having a long side in the X-axis direction and a short side in the Y-axis direction.
  • the outer frame portion 102B is a rectangle having a long side in the X-axis direction and a short side in the Y-axis direction.
  • the outer frame portion 102B has a shape surrounding the inner frame portion 101B.
  • the outer frame portion 102B is connected to the support beams 4A and 4B by connecting portions 5B and 5F.
  • the inner frame portion 101B is arranged in a line-symmetrical position with respect to the inner frame portion 101A of the first mass unit 10 with respect to the X axis passing through the center of gravity G, and has a line-symmetric shape.
  • the outer frame portion 102B is arranged at a line-symmetrical position with respect to the outer frame portion 102A of the first mass unit 10 with respect to the X axis passing through the center of gravity G, and has a line-symmetric shape.
  • the inner frame portion 101B is connected to the outer frame portion 102B in the vicinity of the axis along the Y-axis direction passing through the center of gravity G. More specifically, a long connecting member 103C is formed on the side of the inner frame portion 101B on the center of gravity G side.
  • the connecting member 103C has a shape extending along the X-axis direction, and is connected to the inner frame portion 101B at both ends in the X-axis direction.
  • a connecting member 104C is formed at the center of the connecting member 103C.
  • the connecting member 104C has a short shape in the Y-axis direction, one end in the Y-axis direction is connected to the outer frame portion 102B, and the other end in the Y-axis direction is connected to the connecting member 103C.
  • the connecting member 104C has a shape in which the length in the X-axis direction is longer than the length in the Y-axis direction and is sufficiently shorter than the length in the longitudinal direction (X-axis direction) of the connecting member 103C.
  • the connecting member 103C and the connecting member 104C are symmetrical with the connecting member 103A and the connecting member 104A, respectively, with respect to the X axis.
  • a long connecting member 103D is formed on the side opposite to the center of gravity G side of the inner frame portion 101B.
  • the connecting member 103D has a shape extending along the X-axis direction, and is connected to the inner frame portion 101B at both ends in the X-axis direction.
  • a connecting member 104D is formed at the center of the connecting member 103D in the longitudinal direction.
  • the connecting member 104D has a short shape in the Y-axis direction, one end in the Y-axis direction is connected to the outer frame portion 102B, and the other end in the Y-axis direction is connected to the connecting member 103D.
  • the connecting member 104D has a shape in which the length in the X-axis direction is longer than the length in the Y-axis direction and is sufficiently shorter than the length in the long direction (X-axis direction) of the connecting member 103D.
  • the connecting member 103D and the connecting member 104D are symmetrical with the connecting member 103B and the connecting member 104B, respectively, with respect to the X axis.
  • the inner frame portion 101B includes a central axis 101D.
  • the central axis 101D has a shape extending in the Y-axis direction and has a predetermined width in the X-axis direction.
  • the center axis 101D is disposed at the center of the inner frame 101B in the X-axis direction. In other words, the central axis 101D is disposed at a position where the extending axis substantially coincides with the Y axis.
  • the inner space of the inner frame portion 101B is divided into two regions in the X-axis direction by the central axis 101D. The two regions are generally line symmetric with respect to the Y axis except for the arrangement order of the conductor portions.
  • the central axis 101D has a shape symmetrical with the central axis 101C with respect to the X axis.
  • the fixed part 131, the acceleration detection part 132, and the angular velocity detection part 133 are formed inside one side of the inner frame part 101B.
  • the fixed part 131 has substantially the same length in both the X-axis direction and the Y-axis direction.
  • the fixed portion 131 has a shape having a relatively large plane area in the sensor element 1 when viewed in plan.
  • the fixing part 131 is fixed to the substrate 2.
  • the acceleration detection unit 132 and the angular velocity detection unit 133 include a conductor portion connected to the fixed portion 131 and a conductor portion connected to the inner frame portion 101B.
  • the fixed unit 131, the acceleration detection unit 132, and the angular velocity detection unit 133 are symmetrical with the fixed unit 111, the acceleration detection unit 112, and the angular velocity detection unit 113, respectively, with respect to the X axis.
  • the third detection unit 13 is configured by the fixing unit 131, the second mass unit 20, and the conductors that form the acceleration detection unit 132 and the angular velocity detection unit 133.
  • a fixed portion 141, an acceleration detection portion 142, and an angular velocity detection portion 143 are formed on the other inner side of the inner frame portion 101B.
  • the fixed portion 141 has substantially the same length in both the X-axis direction and the Y-axis direction.
  • the fixed portion 141 has a shape having a relatively large plane area in the sensor element 1 when viewed in plan.
  • the fixing part 141 is fixed to the substrate 2.
  • the fixed portion 141 has a shape symmetrical with the fixed portion 131 with respect to the Y axis, and has a shape symmetrical with the fixed portion 121 with respect to the X axis.
  • the acceleration detection unit 142 and the angular velocity detection unit 143 include a conductor part connected to the fixed part 141 and a conductor part connected to the inner frame part 101B.
  • the acceleration detection unit 142 is generally symmetrical with the acceleration detection unit 132 with respect to the Y axis, but the conductor connected to the acceleration detection inner frame 101B and the conductor connected to the fixed unit 141.
  • the arrangement order with respect to the parts is not line symmetric but the same order along the X-axis direction.
  • the angular velocity detector 143 has a conductor line extending in a line-symmetric shape with respect to the angular velocity detector 133 with respect to the Y axis, but the arrangement order of the conductors is different from that of the angular velocity detector 133.
  • 4th detection part 14 is constituted by fixed part 141, 2nd mass part 20, and a conductor part which constitutes acceleration detection part 142 and angular velocity detection part 143.
  • the third mass unit 300 is disposed away from the first mass unit 10.
  • the third mass unit 300 has a rectangular shape extending in the X-axis direction.
  • One end of the third mass part 300 in the longitudinal direction is connected to the support beam 4A by a connecting part 5C.
  • the other end in the longitudinal direction of the third mass unit 300 is connected to the support beam 4B by a connecting part 5G.
  • the fixing unit 31 is disposed between the third mass unit 300 and the first mass unit 10.
  • the fixing part 31 has a shape having a predetermined area, like the fixing parts 111, 121, 131, 141, and is fixed to the substrate 2.
  • the fixed portion 31 is disposed at the center position in the X-axis direction.
  • the support member 32 has a substantially rectangular shape extending along the X-axis direction with the fixed portion 31 as the center.
  • a plurality of comb teeth 33 ⁇ / b> A are formed on the outer frame 102 ⁇ / b> A side of the first mass unit 10 in the support member 32.
  • a plurality of comb tooth portions 34A are formed on the support member 32 side of the outer frame portion 102A.
  • the comb tooth portion 33A and the comb tooth portion 34A are arranged so as to mesh with each other.
  • a plurality of comb teeth portions 33B are formed on the third mass portion 300 side of the support member 32.
  • a plurality of comb teeth 34 ⁇ / b> B are formed on the support member 32 side of the third mass unit 300.
  • the comb tooth portion 33B and the comb tooth portion 34B are arranged so as to mesh with each other.
  • the first drive unit 30 is configured by the comb tooth portion 33A and the comb tooth portion 34A, and the comb tooth portion 33B and the comb tooth portion 34B.
  • the fixed part 500 is arranged on the opposite side of the third mass part 300 from the first mass part 10.
  • the fixing unit 500 is disposed away from the third mass unit 300.
  • the fixed part 500 has a rectangular shape extending in the X-axis direction. One end in the extending direction of the fixing portion 500 is connected to the substrate 2. As a result, the fixing unit 500 is fixed to the substrate 2 in the same manner as the fixing units 111, 121, 131, 141, and 31.
  • a plurality of comb-tooth portions 51 are formed on the fixed portion 500 side of the third mass portion 300.
  • a plurality of comb teeth portions 52 are formed on the third mass portion 300 side of the fixed portion 500.
  • the comb-tooth part 51 and the comb-tooth part 52 are arrange
  • the first monitor unit 50 is configured by the comb-tooth portion 51 and the comb-tooth portion 52.
  • the fourth mass unit 400 is disposed away from the second mass unit 20.
  • the fourth mass unit 400 has a rectangular shape extending in the X-axis direction.
  • One end of the fourth mass part 400 in the longitudinal direction is connected to the support beam 4A by a connecting part 5D.
  • the other end in the longitudinal direction of the fourth mass part 400 is connected to the support beam 4B by the connecting part 5H.
  • the fixed part 41 is disposed between the fourth mass part 400 and the second mass part 20.
  • the fixing portion 41 has a shape having a predetermined area, like the fixing portion 31, and is fixed to the substrate 2.
  • the fixed portion 41 is disposed at the center position in the X-axis direction.
  • the support member 42 has a substantially rectangular shape extending along the X-axis direction with the fixed portion 41 as the center.
  • a plurality of comb-tooth portions 43A are formed on the support member 42 on the outer frame portion 102B side of the second mass portion 20.
  • a plurality of comb teeth 44A are formed on the support member 42 side of the outer frame portion 102B.
  • the plurality of comb-tooth portions 44A are connected to the outer frame portion 102B.
  • the comb tooth portion 43A and the comb tooth portion 44A are arranged so as to mesh with each other.
  • a plurality of comb teeth 43B are formed on the support member 42 on the fourth mass portion 400 side.
  • a plurality of comb teeth portions 44B are formed on the support member 42 side of the fourth mass portion 400.
  • the comb tooth portion 43B and the comb tooth portion 44B are disposed so as to mesh with each other.
  • the second drive unit 40 is configured by the comb tooth portion 43A and the comb tooth portion 44A, and the comb tooth portion 43B and the comb tooth portion 44B.
  • the fixed part 600 is arranged on the opposite side of the fourth mass part 400 from the second mass part 20.
  • the fixed part 600 is disposed away from the fourth mass part 400.
  • One end in the extending direction of the fixing portion 600 is connected to the substrate 2.
  • the fixed part 600 has a rectangular shape extending in the X-axis direction.
  • the fixing part 600 is fixed to the substrate 2 in the same manner as the fixing part 500.
  • a plurality of comb-tooth portions 61 are formed on the fourth mass portion 400 side of the fixing portion 600.
  • a plurality of comb teeth 62 are formed on the fixed part 600 side of the fourth mass part 400.
  • the comb-tooth part 61 and the comb-tooth part 62 are arrange
  • the comb monitor 61 and the comb 62 constitute a second monitor 60.
  • FIG. 2 is an enlarged plan view showing the configuration of the first detection unit according to the embodiment of the present invention.
  • FIG. 3 is an enlarged plan view showing configurations of the acceleration detection unit and the angular velocity detection unit of the first detection unit according to the embodiment of the present invention.
  • the fixed portion 111 is disposed in one internal space divided by the central axis 101C in the internal space of the inner frame portion 101A.
  • the length of the fixed portion 111 in the X-axis direction is shorter than the length of the internal space in the X-axis direction.
  • the fixed portion 111 is located near the second mass portion 20 side (the connecting members 103A and 104A), and is shifted from the center of the internal space along the Y-axis direction so as to be separated from the third mass portion 300 side. Is arranged.
  • predetermined spaces are formed on the support beam 4A side, the central axis 101C side, and the third mass unit 300 side (the coupling portions 103B and 104B side) of the fixed portion 111.
  • Acceleration detectors 202A1, 202B1, 202C1, 202D1, 202E1, 202F1, 202G1, 202H1, 202I1, 202J1, 202K1, 202L1, 202M1, 202N1 and acceleration detectors 204A1, 204B1, 204C1, 204D1, 204E1, 204F1, 204G1, 204H1 , 204I1 and 204J1 are arranged in a space on the third mass unit 300 side of the fixed part 111 including the vicinity of the end of the fixed part 111 on the third mass unit 300 side.
  • the fixing unit 111 includes long detector holding parts 201A1 and 201B1 (corresponding to the “fixing side holding part” of the present invention) protruding toward the third mass part 300 side.
  • the detector holding part 201A1 is disposed at a corner where the end of the fixed part 111 on the support beam 4A side and the end of the third mass part 300 intersect.
  • the detector holding part 201B1 is disposed at a corner where the end of the fixed part 111 on the central axis 101C side and the end of the third mass part 300 intersect.
  • the side of the inner frame portion 101A on the third mass portion 300 side includes a long detector holding portion 2051 (corresponding to the “movable side holding portion” of the present invention) protruding toward the fixed portion 111 side.
  • the detector holding unit 2051 is arranged at an intermediate position between the detector holding units 201A1 and 201B1 along the X-axis direction.
  • the acceleration detectors 202A1, 202B1, 202C1, 202D1 are connected to the support beam 4A side of the detector holding portion 201A1 and have a shape protruding to the support beam 4A side.
  • the acceleration detector 202A1 includes a detection base 220A1 and a plurality of protrusions 222A1.
  • the detection base 220A1 has a long shape extending in the X-axis direction, and one end thereof is connected to the detector holding portion 201A1.
  • the plurality of protrusions 222A1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 222A1 are arranged on the side of the base 220A1 on the second mass unit 20 side at a predetermined interval along the direction in which the base 220A1 extends (X-axis direction).
  • the acceleration detector 202B1 includes a detection base 220B1, a plurality of protrusions 221B1, and a plurality of protrusions 222B1.
  • the detection base 220B1 has a long shape extending in the X-axis direction, and one end thereof is connected to the detector holder 201A1.
  • the plurality of protrusions 221B1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 221B1 are arranged at predetermined intervals along the direction (X axis direction) in which the detection base 220B1 extends on the side of the detection base 220B1 on the third mass unit 300 side.
  • the plurality of protrusions 222B1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 222B1 are arranged at predetermined intervals along the direction (X-axis direction) in which the detection base 220B1 extends on the side of the detection base 220B1 on the second mass unit 20 side.
  • the acceleration detector 202C1 includes a detection base 220C1, a plurality of protrusions 221C1, and a plurality of protrusions 222C1.
  • the detection base 220C1 has a long shape extending in the X-axis direction, and one end thereof is connected to the detector holding portion 201A1.
  • the plurality of protrusions 221C1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 221C1 are arranged on the side of the detection base 220C1 on the third mass unit 300 side at a predetermined interval along the direction in which the detection base 220C1 extends (X-axis direction).
  • the plurality of protrusions 222C1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 222C1 are arranged at predetermined intervals along the direction in which the detection base 220C1 extends (X-axis direction) on the side of the detection base 220C1 on the second mass unit 20 side.
  • the acceleration detector 202D1 includes a detection base 220D1 and a plurality of protrusions 221D1.
  • the detection base 220D1 has a long shape extending in the X-axis direction, and one end thereof is connected to the detector holding portion 201A1.
  • the plurality of protrusions 221D1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 221D1 are arranged at predetermined intervals along the direction in which the detection base 220D1 extends (X-axis direction) on the side of the detection base 220D1 on the third mass unit 300 side.
  • the acceleration detectors 204A1, 204B1, 204C1 are connected to the fixed portion 111 side of the inner frame 101A and have a shape protruding to the fixed portion 111 side.
  • the acceleration detector 204A1 includes a detection base 240A1, a plurality of protrusions 241A1, a plurality of protrusions 242A1, and a capacitance forming part 243A1.
  • the detection base 240A1 has a long shape extending in the X-axis direction, and one end thereof is connected to the inner frame portion 101A.
  • the plurality of protrusions 241A1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 241A1 are arranged on the side of the detection base 240A1 on the third mass unit 300 side at a predetermined interval along the direction in which the detection base 240A1 extends (X-axis direction).
  • the plurality of protrusions 242A1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 242A1 are arranged at predetermined intervals along the direction in which the detection base 240A1 extends (X-axis direction) on the side of the detection base 240A1 on the second mass unit 20 side.
  • the capacitance forming portion 243A1 is formed at the end of the detection base portion 240A1 on the detector holding portion 201A1 side.
  • the capacitance forming portion 243A1 is formed so that the area seen along the X-axis direction is wider than the area of the detection base portion 240A1.
  • the area of the electrostatic capacity forming unit 243A1 viewed along the X-axis direction is appropriately set to a value suitable for correcting a change in electrostatic capacity during vibration described later. Further, by adjusting the length of the capacitance forming portion 243A1 in the X-axis direction, the distance between the capacitance forming portion 243A1 and the inner frame portion 101A is suitable for correcting a change in capacitance during vibration described later. The value is set appropriately.
  • the acceleration detector 204B1 includes a detection base 240B1, a plurality of protrusions 241B1, a plurality of protrusions 242B1, and a capacitance forming part 243B1.
  • the detection base 240B1 has a long shape extending in the X-axis direction, and one end thereof is connected to the inner frame portion 101A.
  • the plurality of protrusions 241B1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 241B1 are arranged at predetermined intervals along the direction in which the detection base 240B1 extends (X-axis direction) on the side of the detection base 240B1 on the third mass unit 300 side.
  • the plurality of protrusions 242B1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 242B1 are arranged at predetermined intervals along the direction (X-axis direction) in which the detection base 240B1 extends on the side of the detection base 240B1 on the second mass unit 20 side.
  • the capacitance forming part 243B1 is formed at the end of the detection base part 240B1 on the detector holding part 201A1 side.
  • the capacitance forming portion 243B1 is formed so that the area viewed along the X-axis direction is wider than the area of the detection base portion 240B1.
  • the area of the electrostatic capacity forming unit 243B1 viewed along the X-axis direction is appropriately set to a value suitable for correcting a change in electrostatic capacity during vibration described later. Further, by adjusting the length of the capacitance forming portion 243B1 in the X-axis direction, the distance between the capacitance forming portion 243B1 and the inner frame portion 101A is suitable for correcting the capacitance change during vibration described later. The value is set appropriately.
  • the acceleration detector 204C1 includes a detection base 240C1, a plurality of protrusions 241C1, a plurality of protrusions 242C1, and a capacitance forming part 243C1.
  • the detection base 240C1 has a long shape extending in the X-axis direction, and one end thereof is connected to the inner frame portion 101A.
  • the plurality of protrusions 241C1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 241C1 are arranged at predetermined intervals along the direction in which the detection base 240C1 extends (X-axis direction) on the side of the detection base 240C1 on the third mass unit 300 side.
  • the plurality of protrusions 242C1 have a rectangular shape having a predetermined width in the X-axis direction.
  • the plurality of protrusions 242C1 are arranged at predetermined intervals along the direction (X-axis direction) in which the detection base 240C1 extends on the side of the detection base 240C1 on the second mass unit 20 side.
  • the capacitance forming portion 243C1 is formed at the end of the detection base portion 240C1 on the detector holding portion 201A1 side.
  • the capacitance forming portion 243C1 is formed so that the area viewed along the X-axis direction is larger than the area of the detection base portion 240C1.
  • the area of the electrostatic capacity forming unit 243C1 viewed along the X-axis direction is appropriately set to a value suitable for correcting a change in electrostatic capacity during vibration described later. Further, by adjusting the length of the capacitance forming portion 243C1 in the X-axis direction, the distance between the capacitance forming portion 243C1 and the inner frame portion 101A is suitable for correcting the capacitance change during vibration described later. The value is set appropriately.
  • the acceleration detectors 202A1, 202B1, 202C1, 202D1 and the acceleration detectors 204A1, 204B1, 204C1 are alternately arranged along the Y-axis direction. Specifically, the acceleration detector 204A1 is disposed between the acceleration detectors 202A1 and 202B1. The acceleration detector 204B1 is disposed between the acceleration detectors 202B1 and 202C1. The acceleration detector 204C1 is disposed between the acceleration detectors 202C1 and 202D1.
  • each component of one movable-side acceleration detector and each component of two fixed-side movable-side detectors sandwiching the movable-side acceleration detector are respectively components of the present invention.
  • the detection base of the movable acceleration detector sandwiched in the Y-axis direction corresponds to the “movable side detection base” of the present invention.
  • the protrusion protruding to the side opposite to the center of gravity G of the detection base of the movable acceleration detector is the present invention.
  • the protrusion protruding toward the center of gravity G of the detection base of the movable-side acceleration detector (in the case of the first mass unit 10, the positive direction in the Y-axis direction and the second mass unit 20 side) This corresponds to the “movable side second protrusion”.
  • the detection base portion of the fixed-side acceleration detector adjacent to the movable-side acceleration detector and disposed on the side opposite to the center of gravity G corresponds to the “first fixed-side detection base” of the present invention.
  • the protrusion that protrudes toward the acceleration detector on the movable portion side of the fixed-side detection main shaft corresponds to the “fixed-side first protrusion” of the present invention.
  • the detection base of the fixed-side acceleration detector arranged adjacent to the movable-side acceleration detector and located on the center of gravity G side corresponds to the “second fixed-side detection base” of the present invention.
  • the protrusion that protrudes toward the acceleration detector on the movable portion side of the fixed-side detection main shaft corresponds to the “fixed-side second protrusion” of the present invention.
  • the detection base 240A1 corresponds to the “movable-side detection base”.
  • the protrusion 241A1 corresponds to the “movable side first protrusion” of the present invention.
  • the protrusion 242A1 corresponds to the “movable side second protrusion” of the present invention.
  • the detection base 220A1 of the fixed-side acceleration detector 202A1 corresponds to a “first fixed-side detection base”.
  • the protrusion 222A1 corresponds to a “fixed-side first protrusion”.
  • the detection base 220B1 of the fixed-side acceleration detector 202B1 corresponds to a “second fixed-side detection base”.
  • the protrusion 221B1 corresponds to a “fixed-side second protrusion”.
  • the protrusions of the acceleration detectors 202A1, 202B1, 202C1, and 202D1 and the protrusions of the acceleration detectors 204A1, 204B1, and 204C1 are arranged to face each other with a predetermined area.
  • the protrusion 222A1 of the acceleration detector 202A1 and the protrusion 241A1 of the acceleration detector 204A1 face each other.
  • the protrusion 242A1 of the acceleration detector 204A1 and the protrusion 221B1 of the acceleration detector 202B1 face each other.
  • the protrusion 222B1 of the acceleration detector 202B1 and the protrusion 241B1 of the acceleration detector 204B1 face each other.
  • the protrusion 242B1 of the acceleration detector 204B1 and the protrusion 221C1 of the acceleration detector 202C1 face each other.
  • the protrusion 222C1 of the acceleration detector 202C1 and the protrusion 241C1 of the acceleration detector 204C1 face each other.
  • the protrusion 242C1 of the acceleration detector 204C1 and the protrusion 221D1 of the acceleration detector 202D1 face each other.
  • the projections of the acceleration detectors 202A1, 202B1, 202C1, and 202D1 and the projections of the acceleration detectors 204A1, 204B1, and 204C1 do not face each other, but each of the projections that face each other has an X axis. Opposite in the direction. At this time, the protrusions of the acceleration detectors 202A1, 202B1, 202C1, and 202D1 are displaced in different directions in the X-axis direction with respect to the protrusions of the acceleration detectors 204A1, 204B1, and 204C1 that are sandwiched therebetween.
  • each protrusion 222A1 of the fixed-side acceleration detector 202A1 is positioned on the detector holding portion 201A1 side along the X-axis direction with respect to each protrusion 241A1 of the movable-side acceleration detector 204A1.
  • the protrusions 221B1 of the fixed-side acceleration detector 202B1 are shifted toward the inner frame 101A adjacent to the protrusions 242A1 of the movable-side acceleration detector 204A1 along the X-axis direction.
  • each protrusion is formed so that the amount of deviation is the same. More preferably, each protrusion is formed such that the amount of deviation is half of the protrusion in the X-axis direction.
  • the acceleration sensors 204A1, 204B1, 204C1 on the movable side can be moved in the X-axis direction by adding these capacitances. Even if it vibrates, the change in capacitance due to the vibration can be prevented.
  • the acceleration detectors 202E1, 202F1, 202G1 are connected to the center axis 101C side of the detector holding portion 201A1 and have a shape projecting toward the center axis 101C side.
  • the acceleration detector 202E1 is formed symmetrically with the acceleration detector 202A1 with respect to the detector holder 201A1.
  • the acceleration detector 202F1 is formed symmetrically with the acceleration detector 202B1 with respect to the detector holder 201A1.
  • the acceleration detector 202G1 is formed at a position symmetrical to the acceleration detector 202C1 with respect to the detector holder 201A1, and the shape of the acceleration detector 202G1 is the same as that of the acceleration detector 202D1 projected in line symmetry. .
  • the acceleration detectors 204D1 and 204E1 are connected to the detector holding unit 201A1 side of the detector holding unit 2051 and have a shape protruding to the detector holding unit 201A1 side.
  • the acceleration detector 204D1 has a shape symmetrical with the acceleration detector 204A1 with respect to the detector holder 201A1.
  • the acceleration detector 204E1 has a shape symmetrical with the acceleration detector 204B1 with respect to the detector holder 201A1.
  • Acceleration detectors 202E1, 202F1, 202G1 and acceleration detectors 204D1, 204E1 are alternately arranged along the Y-axis direction. Specifically, the acceleration detector 204D1 is disposed between the acceleration detectors 202E1 and 202F1. An acceleration detector 204E1 is disposed between the acceleration detectors 202F1 and 202G1. The projections of the acceleration detectors 202E1, 202F1, 202G1 and the projections of the acceleration detectors 204D1, 204E1 are the projections of the acceleration detectors 202A1, 202B1, 202C1, 202D1, and the acceleration detectors 204A1, 204B1, 204C1. As in the projections of FIG. 2, they face each other in a state shifted in the X-axis direction, and the arrangement order thereof is the same along the X-axis direction.
  • the acceleration detectors 204F1 and 204G1 are connected to the detector holding unit 201B1 side of the detector holding unit 2051 and have a shape protruding to the detector holding unit 201B1 side.
  • the acceleration detector 204F1 has a shape symmetrical with the acceleration detector 204D1 with respect to the detector holder 2051.
  • the acceleration detector 204G1 has a shape symmetrical with the acceleration detector 204E1 with respect to the detector holder 2051.
  • the acceleration detectors 202H1, 202I1, and 202J1 are connected to the detector holding unit 2051 side of the detector holding unit 201B1 and have a shape protruding to the detector holding unit 2051 side.
  • the acceleration detector 202H1 is formed symmetrically with the acceleration detector 202E1 with respect to the detector holder 2051.
  • the acceleration detector 202I1 is formed symmetrically with the acceleration detector 202F1 with respect to the detector holder 2051.
  • the acceleration detector 202J1 is formed symmetrically with the acceleration detector 202G1 with respect to the detector holder 2051.
  • Acceleration detectors 202H1, 202I1, 202J1 and acceleration detectors 204F1, 204G1 are alternately arranged along the Y-axis direction. Specifically, the acceleration detector 204F1 is disposed between the acceleration detectors 202H1 and 202I1. An acceleration detector 204G1 is disposed between the acceleration detectors 202I1 and 202J1.
  • the projections of the acceleration detectors 202H1, 202I1, 202J1 and the projections of the acceleration detectors 204F1, 204G1 are the projections of the acceleration detectors 202A1, 202B1, 202C1, 202D1, and the acceleration detectors 204A1, 204B1, 204C1. As in the projections of FIG. 2, they face each other in a state shifted in the X-axis direction, and the arrangement order thereof is the same along the X-axis direction.
  • the acceleration detectors 202K1, 202L1, 202M1, and 202N1 are connected to the center axis 101C side of the detector holding portion 201B1 and have a shape protruding toward the center axis 101C side.
  • the acceleration detector 202K1 is formed symmetrically with the acceleration detector 202A1 with reference to an axis passing through the center in the width direction of the detector holder 2051 and extending in the Y-axis direction.
  • the acceleration detector 202L1 is formed in line symmetry with the acceleration detector 202B1 with reference to an axis that passes through the center in the width direction of the detector holder 2051 and extends in the Y-axis direction.
  • the acceleration detector 202M1 is formed in line symmetry with the acceleration detector 202C1 with reference to an axis that passes through the center in the width direction of the detector holder 2051 and extends in the Y-axis direction.
  • the acceleration detector 202N1 is formed in line symmetry with the acceleration detector 202D1 with reference to an axis passing through the center in the width direction of the detector holder 2051 and extending in the Y-axis direction.
  • the acceleration detectors 204H1, 204I1, and 204J1 are connected to the fixed portion 111 side of the central axis 101C and have a shape that protrudes toward the fixed portion 111 side.
  • the acceleration detector 204H1 is formed in line symmetry with the acceleration detector 204A1 with reference to an axis passing through the center in the width direction of the detector holder 2051 and extending in the Y-axis direction.
  • the acceleration detector 204I1 is formed in line symmetry with the acceleration detector 204B1 with reference to an axis that passes through the center in the width direction of the detector holder 2051 and extends in the Y-axis direction.
  • the acceleration detector 204J1 is formed in line symmetry with the acceleration detector 204C1 with reference to an axis that passes through the center in the width direction of the detector holder 2051 and extends in the Y-axis direction.
  • Acceleration detectors 202K1, 202L1, 202M1, 202N1 and acceleration detectors 204H1, 204I1, 204J1 are alternately arranged along the Y-axis direction. Specifically, the acceleration detector 204H1 is disposed between the acceleration detectors 202K1 and 202L1. An acceleration detector 204I1 is disposed between the acceleration detectors 202L1 and 202M1. An acceleration detector 204J1 is disposed between the acceleration detectors 202M1 and 202N1.
  • the projections of the acceleration detectors 202K1, 202L1, 202M1, and 202N1 and the projections of the acceleration detectors 204H1, 204I1, and 204J1 are the projections of the acceleration detectors 202A1, 202B1, 202C1, and 202D1, and the acceleration detector 204A1.
  • 204B1 and 204C1 are opposed to each other while being displaced in the X-axis direction, and the arrangement order thereof is the same along the X-axis direction.
  • the acceleration detectors 202A1 to 202N1 and 204A1 to 204J1 are vibrated.
  • the opposing distance of the protrusions of the slab changes. Since the capacitance changes corresponding to the change in the facing distance, the acceleration can be detected by detecting the amount of change. Since the direction of change in capacitance (capacitance from large to small, or from small to large) varies depending on the direction of acceleration, the direction of acceleration can also be detected.
  • a plurality of angular velocity detectors 3011 and 3021 are formed in the space on the support beam 4A side and the space on the central axis 101C side of the fixed portion 111.
  • the angular velocity detector 3011 has a long shape with one end connected to the fixed portion 111.
  • the angular velocity detector 3021 has a long shape with one end connected to the central axis 101C.
  • the angular velocity detector 3011 on the support beam 4 ⁇ / b> A side and the angular velocity detector 3011 on the central axis 101 ⁇ / b> C side are arranged at symmetrical positions via the fixing portion 111.
  • the angular velocity detectors 3011 and 3021 are alternately arranged along the Y-axis direction. At this time, the distance to the angular velocity detector 3021 on the second mass unit 20 side is set wider than the interval to the angular velocity detector 3021 on the third mass unit 300 side based on one angular velocity detector 3011. .
  • the angular velocity detectors 3011 and 3021 By configuring the angular velocity detectors 3011 and 3021 in such a structure, the angular velocity ⁇ with the Z-axis direction (the direction orthogonal to the X-axis and the Y-axis) as an axis is applied to the sensor element 1 in a state of vibrating in the X-axis direction.
  • the Coriolis force in the Y-axis direction is applied to the inner frame portion 101A of the first mass unit 10, and the capacitance between the angular velocity detectors 3011 and 3021 changes. By detecting this amount of change, the angular velocity ⁇ can be detected.
  • the Y axis If Coriolis force is applied in the negative direction of the direction, the capacitance decreases, and if Coriolis force is applied in the positive direction in the Y-axis direction, the capacitance increases. Therefore, the direction of the angular velocity ⁇ can also be detected.
  • the angular velocity detectors 3011 and 3021 are elongated in the X-axis direction, have a large area with respect to the Y-axis direction, and have a large area facing each other, so that the mechanical Q value in the acceleration application direction is reduced. be able to. Thereby, the damping effect with respect to acceleration detection can be obtained.
  • FIG. 4 is an enlarged plan view showing the configuration of the second detection unit according to the embodiment of the present invention.
  • the second detector 12 includes a fixed part 121, acceleration detectors 202A2, 202B2, 202C2, 202D2, 202E2, 202F2, 202G2, 202H2, 202I2, 202J2, 202K2, 202L2, 202M2, 202N2, and acceleration detectors 204A2, 204B2.
  • the fixing part 121 is arranged in the other internal space divided by the central axis 101C in the internal space of the inner frame part 101A.
  • the fixed part 121 has a shape symmetrical with the fixed part 111 with respect to the Y axis passing through the center of gravity G.
  • the detector holders 201A2 and 201B2 connected to the fixed part 121 are symmetrical with the detector holders 201A1 and 201B1, respectively, with respect to the Y axis.
  • the detector holding unit 2052 connected to the inner frame 103B has a shape symmetrical with the detector holding unit 2051 with respect to the Y axis.
  • the acceleration detectors 202A2 to 202N2 are roughly symmetrical with the acceleration detectors 202A1 to 202N1 with respect to the Y axis, respectively.
  • the acceleration detectors 204A2 to 204J2 are roughly The acceleration detectors 204A1 to 204J1 are symmetrical with respect to the acceleration detectors 204A1 to 204J1, but the order of arrangement of the protrusions of the acceleration detectors 202A2 to 202N2 and the protrusions of the acceleration detectors 204A2 to 204J2 is the acceleration detection.
  • the order of arrangement of the projections of the children 202A1 to 202N1 and the projections of the acceleration detectors 204A1 to J1 is not symmetrical with respect to the arrangement order, but is in the same order along the X-axis direction.
  • acceleration detection signals having the same amplitude and the same phase as the acceleration detectors 202A1 to 202N1 and 204A1 to 204J1 can be obtained.
  • the arrangement group of the plurality of angular velocity detectors 3012 and 3022 is substantially symmetrical with the arrangement group of the plurality of angular velocity detectors 3011 and 3021 with respect to the Y axis, but the arrangement order along the arrangement direction is reversed. It is.
  • an angular velocity detection signal having the same amplitude as that of the angular velocity detectors 3011 and 3021 can be obtained.
  • FIG. 5 is an enlarged plan view showing the configuration of the third detection unit according to the embodiment of the present invention.
  • the third detector 13 includes a fixed portion 131, acceleration detectors 202A3, 202B3, 202C3, 202D3, 202E3, 202F3, 202G3, 202H3, 202I3, 202J3, 202K3, 202L3, 202M3, 202N3 and acceleration detectors 204A3, 204B3.
  • 204C3, 204D3, 204E3, 204F3, 204G3, 204H3, 204I3, 204J3 are provided.
  • the fixed portion 131 is disposed in one internal space divided by the central axis 101D in the internal space of the inner frame portion 101B.
  • the fixed portion 131 has a shape symmetrical with the fixed portion 111 with respect to the X axis passing through the center of gravity G.
  • the detector holders 201A3 and 201B3 connected to the fixed part 131 are symmetrical with the detector holders 201A1 and 201B1, respectively, with respect to the X axis.
  • the detector holding unit 2053 connected to the inner frame portion 103D has a shape symmetrical with the detector holding unit 2051 with respect to the X axis.
  • the acceleration detectors 202A3 to 202N3 have a shape symmetrical with the acceleration detectors 202A1 to 202N1 with respect to the X axis.
  • the acceleration detectors 204A3 to 204J3 have line-symmetric shapes with respect to the acceleration detectors 204A1 to 204J1, respectively, with respect to the X axis.
  • the projections of the acceleration detectors 202A3 to 202N3 and the projections of the acceleration detectors 204A3 to 204J3 are the same as the projections of the acceleration detectors 202A1 to 202N1 and the projections of the acceleration detectors 204A1 to J1, respectively. Opposing in a state shifted in the X-axis direction.
  • acceleration detection signals having the same amplitude and the same phase as the acceleration detectors 202A1 to 202N1 and 204A1 to 204J1 can be obtained.
  • the plurality of angular velocity detectors 3013 and 3023 have line-symmetric shapes with the plurality of angular velocity detectors 3011 and 3021, respectively, with respect to the X axis.
  • an angular velocity detection signal having the same amplitude and the same phase as the angular velocity detectors 3011 and 3021 can be obtained.
  • FIG. 6 is an enlarged plan view showing the configuration of the fourth detection unit according to the embodiment of the present invention.
  • the fourth detector 14 includes a fixed portion 141, acceleration detectors 202A4, 202B4, 202C4, 202D4, 202E4, 202F4, 202G4, 202H4, 202I4, 202J4, 202K4, 202L4, 202M4, 202N4 and acceleration detectors 204A4, 204B4.
  • 204C4, 204D4, 204E4, 204F4, 204G4, 204H4, 204I4, 204J4 are provided.
  • the fixed portion 141 is disposed in the other internal space divided by the central axis 101D in the internal space of the inner frame portion 101B.
  • the fixed portion 141 has a shape symmetrical to the fixed portion 113 with respect to the Y axis passing through the center of gravity G.
  • the detector holders 201A4 and 201B4 connected to the fixed part 141 have line-symmetric shapes with respect to the detector holders 201A3 and 201B3, respectively, with respect to the Y axis.
  • the detector holding unit 2054 connected to the inner frame portion 103D has a shape symmetrical with the detector holding unit 2053 with respect to the Y axis.
  • the acceleration detectors 202A4 to 202N4 generally have a shape symmetrical with the acceleration detectors 202A3 to 202N3 with respect to the Y axis.
  • the acceleration detectors 204A4 to 204J4 generally have a shape symmetrical to the acceleration detectors 204A3 to 204J3 with respect to the Y axis, but the protrusions of the acceleration detectors 202A4 to 202N4 and the acceleration detectors.
  • the arrangement order of the projections 204A4 to 204J4 is not symmetrical with the arrangement order of the projections of the acceleration detectors 202A3 to 202N3 and the projections of the acceleration detectors 204A3 to J3, but along the X-axis direction. The order is the same.
  • acceleration detection signal having the same amplitude and the same phase as the acceleration detectors 202A3 to 202N3 and 204A3 to 204J3 can be obtained.
  • the arrangement group of the plurality of angular velocity detectors 3014 and 3024 is substantially symmetrical to the arrangement group of the plurality of angular velocity detectors 3013 and 3023 with respect to the Y axis, but the arrangement order along the arrangement direction is reversed. It is. By configuring the plurality of angular velocity detectors 3014 and 3024 in such a configuration, an angular velocity detection signal having the same amplitude as that of the angular velocity detectors 3013 and 3023 can be obtained.
  • FIG. 7 is an enlarged plan view showing the configuration of the drive unit and the monitor unit according to the embodiment of the present invention.
  • FIG. 7 only the portions of the second drive unit 40 and the second monitor unit 60 that are close to the third detection unit 13 are enlarged and displayed.
  • the structure of a drive part and a monitor part is demonstrated to this part as an example.
  • the basic detailed structure of each of the comb teeth adjacent to the other detectors (the first detector 11, the second detector 12, and the fourth detector 14) is comb teeth 43A, 44A, 43B described below. 44B, the description is omitted.
  • the plurality of comb teeth 43A are connected to the support member 42.
  • the comb tooth portion 43A includes a shaft portion 431A and a plurality of tooth portions 432A.
  • the shaft portion 431A has a long shape extending in the Y-axis direction.
  • the plurality of tooth portions 432A are arranged at intervals along the axial direction of the shaft portion 431A.
  • the plurality of tooth portions 432A are formed on the shaft portion 431A so as to protrude toward the comb tooth portion 44A.
  • the plurality of comb tooth portions 44A are connected to the outer frame portion 102B.
  • the comb tooth portion 44A includes a shaft portion 441A and a plurality of tooth portions 442A.
  • the shaft portion 441A has a long shape extending in the Y-axis direction.
  • the plurality of tooth portions 442A are arranged at intervals along the axial direction of the shaft portion 441A.
  • the plurality of tooth portions 442A are formed on the shaft portion 441A so as to protrude toward the comb tooth portion 43A.
  • the plurality of tooth portions 432A and the plurality of tooth portions 442A are alternately arranged in the Y-axis direction at intervals. At this time, the plurality of tooth portions 432A and the plurality of tooth portions 442A are arranged so that the surfaces orthogonal to the Y-axis direction face each other.
  • the plurality of comb teeth 43B are connected to the support member 42.
  • the comb tooth portion 43B includes a shaft portion 431B and a plurality of tooth portions 432B.
  • the shaft portion 431B has a long shape extending in the Y-axis direction.
  • the plurality of tooth portions 432B are arranged at intervals along the axial direction of the shaft portion 431B.
  • the plurality of tooth portions 432B are formed on the shaft portion 431B so as to protrude toward the comb tooth portion 44B.
  • the plurality of comb teeth portions 44B are connected to the fourth mass portion 400.
  • the comb tooth portion 44B includes a shaft portion 441B and a plurality of tooth portions 442B.
  • the shaft portion 441B has a long shape extending in the Y-axis direction.
  • the plurality of tooth portions 442B are arranged at intervals along the axial direction of the shaft portion 441B.
  • the plurality of tooth portions 442B are formed on the shaft portion 441B so as to protrude toward the comb tooth portion 43B.
  • the plurality of tooth portions 432B and the plurality of tooth portions 442B are alternately arranged in the Y-axis direction at intervals. At this time, the plurality of tooth portions 432B and the plurality of tooth portions 442B are arranged so that the surfaces orthogonal to the Y-axis direction face each other.
  • the comb-tooth portions 43A and 44A are attracted or separated along the X-axis direction according to the amplitude of the drive signal, and the comb-tooth portion 43B. 44B are attracted or separated along the X-axis direction.
  • the movement between the comb teeth 43A and 44A and the movement between the comb teeth 43B and 44B are the same.
  • the fourth mass unit 400 and the second mass unit 20 vibrate in the opposite phases in the X-axis direction.
  • the same operation also occurs in the third mass unit 300 and the first mass unit 10.
  • the support beams 4A and 4B are distorted by setting the vibration of the third mass unit 300, the vibration of the fourth mass unit 400, and the vibration of the first mass unit 10 and the vibration of the second mass unit 20 to opposite phases.
  • the first mass unit 10 vibrates in phase with the fourth mass unit 400
  • the second mass unit 20 vibrates in phase with the third mass unit 300. In this way, vibration along the X-axis direction can be applied to the first mass unit 10 and the second mass unit 20.
  • the plurality of comb tooth portions 61 are connected to the fourth mass portion 400.
  • the comb tooth portion 61 includes a shaft portion 611 and a plurality of tooth portions 612.
  • the shaft portion 611 has a long shape extending in the Y-axis direction.
  • the plurality of tooth portions 612 are arranged at intervals along the axial direction of the shaft portion 611.
  • the plurality of tooth portions 612 are formed on the shaft portion 611 so as to protrude toward the comb tooth portion 62 side.
  • the plurality of comb teeth portions 62 are connected to the fixed portion 600.
  • the comb tooth portion 62 includes a shaft portion 621 and a plurality of tooth portions 622.
  • the shaft portion 621 has a long shape extending in the Y-axis direction.
  • the plurality of tooth portions 622 are arranged at intervals along the axial direction of the shaft portion 621.
  • the plurality of tooth portions 622 are formed on the shaft portion 621 so as to protrude toward the comb tooth portion 61 side.
  • the plurality of tooth portions 612 and the plurality of tooth portions 622 are arranged alternately at intervals in the Y-axis direction. At this time, the plurality of tooth portions 612 and the plurality of tooth portions 622 are arranged so that the surfaces orthogonal to the Y-axis direction face each other.
  • the sensor element 1 having the above configuration functions as a composite sensor when combined with a detection IC 8 shown below, and detects angular velocity and acceleration separately.
  • FIG. 8 is a block diagram showing the configuration of the composite sensor according to the embodiment of the present invention.
  • the composite sensor includes a sensor element 1 and a detection IC 8.
  • the circuit includes the first detection unit 11, the second detection unit 12, the third detection unit 13, the fourth detection unit 14, the first drive unit 30, the first 2 drive part 40, the 1st monitor part 50, and the 2nd monitor part 60 are comprised.
  • the first detection unit 11, the second detection unit 12, the third detection unit 13, the fourth detection unit 14, the first drive unit 30, the second drive unit 40, the first and second monitor units 50 and 60 are variable. It consists of a capacitive element.
  • the first detection unit 11, the second detection unit 12, the third detection unit 13, the fourth detection unit 14, the first drive unit 30, the second drive unit 40, and the first and second monitor units 50 and 60 are connected in common.
  • the terminal to be connected is connected to the ground. This ground is also connected to the ground of the detection IC 8.
  • the detection IC 8 includes a control unit 80, a filter 81, a driving non-inverting amplifier 82A, a driving inverting amplifier 82B, monitoring amplifiers 83A and 83B, a differential amplifier 840, a filter 84, a phase shifter 85, amplifiers 91A and 91B, and addition. And a subtractor 93, filters 94A and 94B, detectors 95A and 95B, output circuits 96A and 96B, and output terminals OUTa and OUT ⁇ .
  • a drive voltage Vcc is applied to the detection IC 8.
  • the control unit 80 generates an alternating drive voltage signal and outputs it to the filter 81. At this time, the control unit 80 drives the drive voltage signal so that the vibration amplitude of each mass part of the sensor element 1 becomes a specified value according to the voltage value of the monitor voltage signal output from the filter 84 formed of a high-pass filter. Set the voltage value of.
  • the filter 81 is formed of, for example, a low-pass filter, and in combination with the high-pass filter 84, functions as a band-pass filter that selectively passes the element vibration frequency (for example, noise cut), and the phase of the monitor output is approximately 90.
  • the output is output to the driving non-inverting amplifier 82A and the driving inverting amplifier 82B with a delay.
  • the driving non-inverting amplifier 82A amplifies the driving voltage signal with a predetermined gain and outputs the amplified signal to the driving unit 30.
  • the drive inverting amplifier 82B amplifies the drive voltage signal with a predetermined gain (the same gain as that of the drive non-inverting amplifier 82B), and outputs the amplified signal to the drive unit 40.
  • the gain of the driving non-inverting amplifier 82A and the driving inverting amplifier 82B may be 1, and in this case, the driving non-inverting amplifier 82A and the driving inverting amplifier 82B are synchronized with the driving units 30 and 40. Functions as a buffer circuit for inputting a driving voltage signal having a reverse phase.
  • the electrostatic capacity of the first and second monitor units 50 and 60 changes due to this vibration. At this time, the polarities of the two capacitance changes are different from each other.
  • the capacitance changes of the first and second monitor units 50 and 60 are input to the amplifiers 83A and 83B.
  • the amplifiers 83A and 83B are capacitance / voltage conversion circuits (so-called C / V circuits) and output monitor voltage signals corresponding to the capacitance.
  • the two monitor voltage signals are added by the differential amplifier 840. Thereby, the amplitude of the monitor signal can be increased.
  • the monitor signal that is added to form one signal is input to the filter 84.
  • the monitor signal filtered by the filter 84 is fed back to the control unit 80 and output to the detector 95A and the phase shifter 85.
  • the phase shifter 85 delays the phase of the monitor voltage signal by 90 ° and outputs it to the detector 95B.
  • each acceleration of the first detection unit 11, the second detection unit 12, the third detection unit 13, and the fourth detection unit 14 changes.
  • the capacitance changes of the first detection unit 11 and the third detection unit 13 due to application of angular velocity or acceleration are the same.
  • the first detection unit 11 and the third detection unit 13 are connected by electrodes outside the sensor element. Therefore, the capacitance change obtained by adding the capacitance change of the first detection unit 11 and the capacitance change of the third detection unit 13 is twice that of the first or third detection unit 11 or 13. A change in capacitance can be obtained.
  • the capacitance changes of the first and third detectors 11 and 13 are input to the amplifier 91A.
  • the amplifier 91A is a capacitance / voltage conversion circuit (so-called C / V circuit) and outputs a first detection signal corresponding to the capacitance.
  • the first detection signal is output to the adder 92 and the subtracter 93.
  • the capacitance changes of the second detection unit 12 and the fourth detection unit 14 due to application of angular velocity or acceleration are the same.
  • the second detection unit 12 and the fourth detection unit 14 are connected by electrodes outside the sensor element. Therefore, the capacitance change obtained by adding the capacitance change of the second detection unit 12 and the capacitance change of the fourth detection unit 14 is 2 of either the second or fourth detection unit 12 or 14. Double capacitance change is obtained.
  • the capacitance changes of the second and fourth detection units 12 and 14 are input to the amplifier 91B.
  • the amplifier 91B is a capacitance / voltage conversion circuit (so-called C / V circuit) and outputs a second detection signal corresponding to the capacitance.
  • the second detection signal is output to the adder 92 and the subtracter 93.
  • the adder 92 adds the first detection signal and the second detection signal, and outputs the result to the filter 94A.
  • the subtractor 93 calculates the difference between the first detection signal and the second detection signal and outputs the difference to the filter 94B.
  • the filter 94A is composed of, for example, a high-pass filter, filters the added signal, and outputs it to the detector 95A.
  • the filter 94B is composed of, for example, a high-pass filter, filters the difference signal (subtraction signal), and outputs the filtered signal to the detector 95B.
  • the detector 95A synchronously detects the addition signal with the monitor voltage signal and outputs the first detection signal to the output circuit 96A.
  • the output circuit 96A includes an amplitude adjustment circuit and a low-pass filter, performs predetermined processing on the first detection signal, and outputs it to the output terminal OUTa.
  • the detector 95B synchronously detects the addition signal with the monitor voltage signal and outputs the second detection signal to the output circuit 96B.
  • the output circuit 96B has the same circuit configuration as the output circuit 96A and includes an amplitude adjustment circuit and a low-pass filter.
  • the output circuit 96B performs predetermined processing on the second detection signal and outputs the second detection signal to the output terminal OUT ⁇ .
  • FIG. 9 is a diagram showing the behavior when the angular velocity ⁇ is applied to the sensor element according to the embodiment of the present invention.
  • FIG. 9A shows a state in which the drive voltage signal is not applied
  • FIGS. 9B and 9C show a state in which the drive voltage signal is applied.
  • FIG. 9B shows that the first mass unit 10 and the fourth mass unit 400 move in the positive direction of the X-axis direction, and the second mass unit 20 and the third mass unit 300 move in the negative direction of the X-axis direction.
  • FIG. 9C shows that the first mass unit 10 and the fourth mass unit 400 move in the negative direction of the X-axis direction, and the second mass unit 20 and the third mass unit 300 move in the positive direction of the X-axis direction.
  • each angular velocity detecting unit 113, 133 is electrically connected outside the sensor element before circuit input.
  • the angular velocity detection units 123 and 143 are also electrically connected outside the sensor element before circuit input.
  • the capacitance change of the angular velocity detection units 113 and 133 in the first and second mass units 10 and 20 and the capacitance change of the angular velocity detection units 123 and 143 are added.
  • the change in capacitance between the two is opposite to each other and cancels out, so that the change in capacitance due to the angular velocity ⁇ becomes zero.
  • the difference in capacitance between the angular velocity detectors 113 and 133 in the first and second mass units 10 and 20 is different from the capacitance change in the angular velocity detectors 123 and 143.
  • the capacitance change between the two is added, so that the capacitance change due to the angular velocity ⁇ is doubled.
  • FIG. 11 is a waveform diagram of each signal when only the angular velocity ⁇ is applied to the sensor element 1 according to the embodiment of the present invention.
  • the 1st output of FIG. 11 converts into a voltage the electrostatic capacitance change of each angular velocity detection part 113,133 in the 1st, 2nd mass parts 10 and 20.
  • FIG. The second output is obtained by voltage-converting the capacitance change of the angular velocity detection units 123 and 143 in the first and second mass units 10 and 20. As shown in FIG. 11, the first output and the second output are always in reverse phase.
  • a signal obtained by adding the first output and the second output that is, the first detection signal is a signal obtained by canceling the first output and the second output, and OUT1 (addition output) becomes 0 (or a reference potential).
  • a signal obtained by subtracting the first output and the second output that is, the second detection signal is a signal obtained by adding the first output and the second output, and OUT2 (addition output) is the first output or the second output. Doubled. Thereby, the angular velocity ⁇ can be detected by the second detection signal. At this time, since the amplitude increases, the angular velocity ⁇ can be detected reliably and accurately.
  • FIG. 10 is a diagram showing the behavior when the acceleration a is applied to the sensor element according to the embodiment of the present invention.
  • FIG. 10A shows a state in which the drive voltage signal is not applied
  • FIGS. 10B and 10C show a state in which the drive voltage signal is applied.
  • FIG. 10B shows that the first mass unit 10 and the fourth mass unit 400 move in the positive direction of the X-axis direction, and the second mass unit 20 and the third mass unit 300 move in the negative direction of the X-axis direction. Indicates the moved state.
  • FIG. 10C shows that the first mass unit 10 and the fourth mass unit 400 move in the negative direction of the X-axis direction, and the second mass unit 20 and the third mass unit 300 move in the positive direction of the X-axis direction. Indicates the moved state.
  • each acceleration detection part 112,122,132,142 in the 1st, 2nd mass parts 10 and 20 the space
  • the capacitance changes in synchronization with the monitor signal.
  • the phases of the acceleration detectors 112, 122, 132, 142 are all equal.
  • Each acceleration detector 112, 132 is electrically connected outside the sensor element before circuit input.
  • the acceleration detection units 122 and 142 are also electrically connected outside the sensor element before circuit input.
  • the capacitance change of the acceleration detection units 112 and 132 in the first and second mass units 10 and 20 and the capacitance change of the acceleration detection units 122 and 142 are added.
  • the phase of both is equal, and the capacitance change due to the acceleration a is doubled by adding the capacitance change.
  • the difference in capacitance between the acceleration detection units 112 and 132 in the first and second mass units 10 and 20 is different from the capacitance change in the acceleration detection units 122 and 142.
  • the change in capacitance between the two cancels out, and the change in capacitance due to acceleration a becomes zero.
  • FIG. 12 is a waveform diagram of each signal when only the acceleration a is applied to the sensor element 1 according to the embodiment of the present invention. Note that the first output in FIG. 12 is obtained by voltage-converting the capacitance change of each acceleration detection unit 112, 132 in the first and second mass units 10, 20, and the second output is the first, The capacitance change of each acceleration detection part 122,142 in the 2nd mass part 10,20 is voltage-converted.
  • the first output and the second output are always in phase. Therefore, a signal obtained by adding the first output and the second output, that is, the first detection signal is a signal obtained by adding the first output and the second output, and OUT1 (addition output) is the first output or the second output. Twice as much.
  • a signal obtained by subtracting the first output and the second output that is, the second detection signal is a signal obtained by canceling the first output and the second output, and OUT2 (addition output) is 0 (or reference potential). Become. Thereby, the acceleration a can be detected by the first detection signal. At this time, since the amplitude increases, the acceleration a can be detected reliably and accurately.
  • the capacitance change obtained from the first detection unit 11 and the third detection unit 13 and the capacitance change obtained from the second detection unit 12 and the fourth detection unit 14 are both accelerations.
  • the component due to a and the component due to angular velocity ⁇ are mixed.
  • the adder 92 and subtracter 93 the component caused by the acceleration a and the component caused by the angular velocity ⁇ can be reliably separated and output.
  • the signal due to the acceleration a and the angular velocity can be detected and output more reliably.
  • FIG. 13 is a waveform diagram of each signal when acceleration a and angular velocity ⁇ are applied to the sensor element 1 according to the embodiment of the present invention.
  • the 1st output of FIG. 13 converts the electrostatic capacitance change of each acceleration detection part 112,132 and each angular velocity detection part 113,133 in the 1st, 2nd mass parts 10 and 20, into voltage
  • the second output is obtained by voltage-converting the capacitance changes of the acceleration detection units 122 and 142 and the angular velocity detection units 123 and 143 in the first and second mass units 10 and 20.
  • the capacitance change due to the acceleration a and the capacitance change due to the angular velocity ⁇ are the same is shown.
  • the first output and the second output have a predetermined phase shift with respect to the drive voltage signal according to the ratio of the capacitance change due to the acceleration a and the capacitance change due to the angular velocity ⁇ . .
  • OUT1 additional output
  • OUT2 difference output
  • the influence on the acceleration detection capacitance that occurs when the vibration amount (displacement) in the X-axis direction becomes excessive is suppressed by the following principle. can do.
  • FIG. 14 is a partial plan view showing a more specific structure of the movable-side acceleration detector and the fixed-side acceleration detector.
  • 15, 16, and 17 are enlarged views of both ends of the movable-side acceleration detector in the X-axis direction.
  • FIG. 15 shows a case where the amount of displacement ⁇ x in the X-axis direction is zero.
  • FIG. 16 shows when the displacement amount ⁇ x in the X-axis direction is + W.
  • FIG. 17 shows the time when the amount of displacement ⁇ x in the X-axis direction is ⁇ W.
  • a detection base portion 240D1 of the movable acceleration detector 204D1 is formed on one side ( ⁇ X axis direction) along the X axis direction of the movable detector holding portion 2051 extending in the Y axis direction.
  • the detection base 240D1 has a long shape extending in the X-axis direction.
  • the detection base 240D1 corresponds to the “movable side detection base” of the present invention.
  • a plurality of protrusions 241D1 projecting in the direction of the detection base 220E1 are formed on the side of the detection base 220E1 side of the movable detection base 240D1.
  • the plurality of protrusions 241D1 correspond to “movable-side first protrusions”.
  • the plurality of protrusions 241D1 have a length (width) in the X-axis direction of 2W.
  • the plurality of protrusions 241D1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 240D1. This interval is set longer than the width 2W of the protrusion 241D1.
  • a plurality of protrusions 242D1 protruding in the direction of the detection base 220F1 are formed on the side of the movable detection base 240D1 on the detection base 220F1 side.
  • the plurality of protrusions 242D1 correspond to “movable side second protrusions”.
  • the plurality of protrusions 242D1 have a length (width) in the X-axis direction of 2W.
  • the plurality of protrusions 242D1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 240D1. This interval is set longer than the width 2W of the protrusion 242D1, and is the same as the arrangement interval of the protrusions 241D1.
  • the plurality of protrusions 242D1 are arranged so as to be shifted in the X-axis direction by a length that is half the width of the protrusions 241D1242D2 with respect to the plurality of protrusions 241D1.
  • the protrusions 241D1 and 242D1 that partially face each other via the detection base 240D1 have a center position in the X-axis direction that is half the width of the protrusions 241D1 and 242D2 in the X-axis direction. They are offset.
  • a capacitance forming portion 243D1 is formed at the end of the movable side detection base 240D1 opposite to the detector holding portion 2051 in the longitudinal direction.
  • the capacitance forming portion 243D1 faces the inner frame 101A at a distance D34D.
  • the capacitance forming portion 243D1 is formed so that the area (opposed area) S3D viewed in the X-axis direction is wider than the detection base portion 240D1. More specifically, the length of the capacitance forming portion 243D1 in the Y-axis direction is longer than the length of the detection base portion 240D1 in the Y-axis direction.
  • the thickness of the capacitance forming portion 243D1 (the length in the direction orthogonal to the X-axis direction and the Y-axis direction) is the same as the thickness of the detection base portion 240D1.
  • the capacitance forming portion 243D1 is integrally formed with the detection base portion 240D1.
  • the detection base 220E1 of the fixed-side acceleration detector 202E1 is disposed on one side (negative direction in the Y-axis direction) in the Y-axis direction of the detection base 240D1.
  • the detection base 220E1 also has a long shape extending in the X-axis direction.
  • the fixed-side detection base 220E1 is disposed away from the movable-side detection base 240D1.
  • a plurality of protrusions 222E1 protruding in the direction of the detection base 240D1 are formed on the side of the detection base 240D1 side of the detection base 220E1 on the fixed side.
  • the plurality of protrusions 222E1 correspond to “fixed-side first protrusions”.
  • the plurality of protrusions 222E1 have a length (width) in the X-axis direction of 2W.
  • the plurality of protrusions 222E1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 220E1. This interval is set longer than the width 2W of the protrusion 222E1, and is the same as the arrangement interval of the protrusions 241D1.
  • the plurality of protrusions 222E1 are arranged so that only the width W faces the plurality of protrusions 241D1 in the X-axis direction.
  • the protrusion 222E1 and the protrusion 241D1 facing each other are arranged such that the center position in the X-axis direction is shifted in the X-axis direction by a length that is half the width of the protrusions 241D1 and 222E1.
  • the positions of the plurality of protrusions 222E1 and the protrusions 242D1 in the X-axis direction are the same.
  • the plurality of protrusions 222E1 are arranged so as to have a distance D12 along the Y-axis direction with respect to the plurality of protrusions 241D1.
  • the detection base 220F1 of the fixed-side acceleration detector 202F1 is disposed on the other side in the Y-axis direction (positive direction in the Y-axis direction) of the detection base 240D1.
  • the detection base 220F1 also has a long shape extending in the X-axis direction.
  • the stationary-side detection base 220F1 is disposed away from the movable-side detection base 240D1.
  • a plurality of protrusions 221F1 projecting in the direction of the detection base 240D1 are formed on the detection base 240D1 side of the fixed detection base 220F1.
  • the plurality of protrusions 221F1 correspond to “fixed-side second protrusions”.
  • the plurality of protrusions 221F1 have a length (width) in the X-axis direction of 2W.
  • the plurality of protrusions 221F1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 220F1. This interval is set longer than the width 2W of the protruding portion 221F1, and is the same as the arrangement interval of the protruding portion 242D1.
  • the plurality of protrusions 221F1 are arranged so that only the width W faces the plurality of protrusions 242D1 in the X-axis direction.
  • the protruding portion 221F1 and the protruding portion 242D1 facing each other are arranged such that the center position in the X-axis direction is shifted in the X-axis direction by a length that is half the width of the protruding portions 242D1 and 222F1.
  • the positions of the plurality of protrusions 221F1 and the protrusions 241D1 in the X-axis direction are the same.
  • the plurality of protrusions 222F1 are arranged so as to have a distance D12 along the Y-axis direction with respect to the plurality of protrusions 242D1.
  • the width of the facing surface between the movable-side protrusion 241D1 and the fixed-side protrusion 222E1 is W
  • the facing area is S1D1
  • the facing distance is D12.
  • a capacitance C1D1 is formed.
  • the width of the facing surface between the movable-side protrusion 242D1 and the fixed-side protrusion 221F1 is W
  • the facing distance is D12.
  • the area of the facing surface between the capacitance forming portion 243D1 and the inner frame 101A is S3D
  • the distance between the facing surfaces is D34D, thereby forming a capacitance C3D1.
  • the capacitance C1D1 is interposed between the movable acceleration detector 204D1 and the fixed acceleration detectors 220E1 and 220F1. , C2D1 and C3D1 are combined to generate a combined capacitance (synthetic capacitance).
  • a detection base 240F1 of the movable-side acceleration detector 204F1 is formed on the other side (positive direction in the X-axis direction) along the X-axis direction of the movable-side detector holding part 2051 extending in the Y-axis direction. Yes.
  • the detection base 240F1 has a long shape extending in the X-axis direction.
  • the detection base 240F1 corresponds to the “movable side detection base” of the present invention.
  • a plurality of projections 241F1 projecting in the direction of the detection base 220H1 are formed on the side of the detection base 220H1 side of the movable detection base 240F1.
  • the plurality of protrusions 241F1 correspond to “movable-side first protrusions”.
  • the plurality of protrusions 241F1 have a length (width) in the X-axis direction of 2W.
  • the plurality of protrusions 241F1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 240F1. This interval is set longer than the width 2W of the protrusion 241F1.
  • a plurality of protrusions 242F1 projecting in the direction of the detection base 220I1 are formed on the side of the detection base 220I1 side of the movable detection base 240F1.
  • the plurality of protrusions 242F1 correspond to “movable side second protrusions”.
  • the plurality of protrusions 242F1 have a length (width) in the X-axis direction of 2W.
  • the plurality of protrusions 242F1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 240F1. This interval is set longer than the width 2W of the protrusion 242F1, and is the same as the arrangement interval of the protrusions 241F1.
  • the plurality of protrusions 242F1 are arranged so as to be shifted in the X-axis direction by a length that is half the width of the protrusions 241F1 and 242F2 with respect to the plurality of protrusions 241F1.
  • the protrusions 241F1 and 242F1 that partially face each other via the detection base 240F1 have a center position in the X-axis direction that is half the width of the protrusions 241F1 and 242F2 in the X-axis direction. They are offset.
  • a capacitance forming portion 243F1 is formed at the end of the movable detection base 240F1 on the opposite side to the detector holding portion 2051 in the longitudinal direction.
  • the capacitance forming portion 243F1 is opposed to the inner frame 101A at a distance D34F.
  • the interval D34F is the same as the interval D34D.
  • the capacitance forming portion 243F1 is formed so that the area S3F viewed in the X-axis direction is wider than the detection base portion 240F1.
  • the area S3F is the same as the area S3D. More specifically, the length of the capacitance forming portion 243F1 in the Y-axis direction is longer than the length of the detection base portion 240F1 in the Y-axis direction.
  • the thickness of the capacitance forming portion 243F1 (the length in the direction orthogonal to the X-axis direction and the Y-axis direction) is the same as the thickness of the detection base portion 240F1.
  • the capacitance forming portion 243F1 is integrally formed with the detection base portion 240F1.
  • the detection base 220H1 of the fixed-side acceleration detector 202H1 is disposed on one side in the Y-axis direction of the detection base 240F1 (negative direction in the Y-axis direction).
  • the detection base 220H1 also has a long shape extending in the X-axis direction.
  • the fixed-side detection base 220H1 is disposed away from the movable-side detection base 240F1.
  • a plurality of protrusions 222H1 projecting in the direction of the detection base 240F1 are formed on the detection base 240F1 side of the fixed detection base 220H1.
  • the plurality of protrusions 222H1 correspond to “fixed-side first protrusions”.
  • the plurality of protrusions 222H1 has a length (width) in the X-axis direction of 2W.
  • the plurality of protrusions 222H1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 220H1. This interval is set longer than the width 2W of the protrusion 222H1, and is the same as the arrangement interval of the protrusions 241F1.
  • the plurality of protrusions 222H1 are arranged so that only the width W faces the plurality of protrusions 241F1 in the X-axis direction.
  • the protrusion 222H1 and the protrusion 241F1 facing each other are arranged such that the center position in the X-axis direction is shifted in the X-axis direction by a length that is half the width of the protrusions 241F1 and 222H1.
  • the positions of the plurality of protrusions 222H1 and the protrusions 242F1 in the X-axis direction are the same.
  • the plurality of protrusions 222H1 are arranged so as to have a distance D12 along the Y-axis direction with respect to the plurality of protrusions 241F1.
  • the detection base 220I1 of the fixed-side acceleration detector 202I1 is disposed on the other side (positive direction in the Y-axis direction) in the Y-axis direction of the detection base 240F1.
  • the detection base 220I1 also has a long shape extending in the X-axis direction.
  • the fixed-side detection base 220I1 is disposed away from the movable-side detection base 240F1.
  • a plurality of protrusions 221I1 projecting in the direction of the detection base 240F1 are formed on the side of the detection base 220F1 on the fixed side on the detection base 240F1 side.
  • the plurality of protrusions 221I1 correspond to “fixed-side second protrusions”.
  • the plurality of protrusions 221I1 have a length (width) in the X-axis direction of 2W.
  • the plurality of protrusions 221I1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 220I1. This interval is set to be longer than the width 2W of the protrusion 221I1, and is the same as the arrangement interval of the protrusions 242F1.
  • the plurality of protrusions 221I1 are arranged so that only the width W faces the plurality of protrusions 242F1 in the X-axis direction.
  • the protruding portion 221I1 and the protruding portion 242F1 facing each other are arranged such that the center position in the X-axis direction is shifted in the X-axis direction by half the width of the protruding portions 242F1 and 222I1.
  • the positions of the plurality of protrusions 221I1 and the protrusion 241F1 in the X-axis direction are the same.
  • the plurality of protrusions 222I1 are arranged so as to have a distance D12 along the Y-axis direction with respect to the plurality of protrusions 242F1.
  • the width of the facing surface between the movable-side protrusion 241F1 and the fixed-side protrusion 222H1 is W
  • the facing area is S1F1
  • the facing distance is D12.
  • the width of the facing surface between the movable protrusion 242F1 and the fixed protrusion 221I1 is W
  • the facing distance is D12
  • the electrostatic capacitance C1F1 is interposed between the movable acceleration detector 204F1 and the fixed acceleration detectors 220H1 and 220I1. , C2F1 and C3F1 are combined to generate a combined capacitance (synthetic capacitance).
  • the combined capacitances of the capacitances C1F1, C2F1, and C3F1 and the combined capacitances of the above-described capacitances C1D1, C2D1, and C3D1 are also added to obtain a further combined capacitance.
  • the acceleration detectors 240D1 and 240F1 are displaced in the positive direction of the X-axis direction, so that the opposing area between the protrusion 241D1 and the protrusion 222E1 increases, so that the capacitance between the protrusions 241D1222E1 is To increase.
  • the facing area between the protrusion 242D1 and the protrusion 221F1 decreases, and the capacitance between the protrusion 242D1 and the protrusion 221F1 decreases.
  • the acceleration detector 240D1240F1 when the acceleration detector 240D1240F1 is displaced in the positive direction of the X-axis direction, the opposing area between the protrusion 241F1 and the protrusion 222H1 increases, so that the capacitance between the protrusions 241F1 and 222H1 is increased. Will increase.
  • the facing area between the protrusion 242F1 and the protrusion 221I1 decreases, and the capacitance between the protrusion 242F1 and the protrusion 221I1 decreases. And the change of the synthetic
  • the protrusion 241D1 and the protrusion 222E1 face each other with a full width of 2W.
  • the opposing area becomes the maximum value S1D1 ′
  • the electrostatic capacitance becomes the maximum value C1D1 ′
  • the protruding portion 242D1 and the protruding portion 221F1 do not face each other, and no electrostatic capacitance is generated.
  • the protrusion 241F1 and the protrusion 222H1 face each other with a full width of 2W, and the facing area is the maximum value.
  • the capacitance becomes S1F1 ′
  • the electrostatic capacitance becomes the maximum value C1F1 ′
  • the protruding portion 242F1 and the protruding portion 221I1 are not opposed to each other, and the electrostatic capacitance is not generated.
  • the protrusion 242F1 and the protrusion 221I1 face each other with a total width of 2W and the facing area is the maximum value. S2F1 "is reached, and the electrostatic capacitance reaches the maximum value C2F1", and the protruding portion 241F1 and the protruding portion 222H1 do not face each other, so that no electrostatic capacitance is generated.
  • the acceleration detectors 240D1 and 240F1 are further displaced in the negative direction of the X-axis and the displacement amount exceeds W, the electrostatic capacitance by the protrusion 242D1 and the protrusion 221F1, and the protrusion 242F1 and the protrusion
  • the capacitance due to the portion 221I1 decreases, and the combined capacitance due to the protrusions of the acceleration detectors 240D1 and 240F1 also decreases.
  • the capacitance forming portions 243D1 and 243F1 have their capacitances C3D1 and C3F1 sufficiently higher than the capacitance due to the above-described protrusions. It is set to be smaller. Further, when the absolute value of the displacement in the X-axis direction becomes larger than W, a change can be given to the combined capacitance with the capacitance due to the above-described protrusions by the capacitances C3D1 and C3F1.
  • the amount of change in the capacitances C3D1 and C3F1 that increases when the absolute value of the displacement in the X-axis direction becomes larger than W is the acceleration detector when the displacement amount exceeds W.
  • the shapes and positions of the capacitance forming portions 243D1 and 243F1 are set so as to coincide with the amount of decrease in the combined capacitance due to the protrusions 240D1 and 240F1.
  • FIG. 18 is a graph showing the change of the synthetic capacitance with respect to the displacement amount.
  • FIG. 18A shows the combined capacitance due to the protrusions.
  • FIG. 18B shows the capacitance by the capacitance forming portion.
  • FIG. 18C shows the combined capacitance of the adjacent movable-side acceleration detector and the fixed-side acceleration detector.
  • the synthetic capacitance due to the protrusion is obtained from the following equation.
  • the thickness of each part is B.
  • the mathematical formula indicates a theoretical value.
  • the capacitance C1 generated between the protrusion of the movable part and the protrusion of the fixed part on one side is expressed by the following equation.
  • the capacitance C1 corresponds to, for example, the capacitance due to the above-described protrusion 242D1 and protrusion 221F1.
  • the synthetic capacitance C12 due to the protrusion has characteristics as shown in FIG. Specifically, as shown by the broken line in FIG. 18A, the combined capacitance is a constant value when the displacement amount ⁇ x is between ⁇ W and + W.
  • the displacement amount ⁇ x is smaller than ⁇ W and larger than + W (the absolute value of the displacement amount ⁇ x is larger than W)
  • the combined capacitance monotonously decreases as the displacement amount ⁇ x moves away from zero.
  • the displacement amount ⁇ x as shown in FIG. 18 is set to a maximum value (maximum value).
  • the capacitance decreases in a curve.
  • the synthetic capacitance by the capacitance forming portion is obtained from the following equation.
  • the thickness of each part is B.
  • the mathematical formula indicates a theoretical value. Since the electrostatic capacitance formed by the electrostatic capacitance forming portion changes in the distance from the inner frame due to vibration in the X-axis direction, the mathematical formula need not be divided into cases.
  • the capacitance C31 by the capacitance forming part formed on one of the detection bases via the detector holding part is expressed by the following equation.
  • the capacitance C31 corresponds to, for example, the capacitance due to the above-described capacitance forming portion 243F1 and the inner frame 101A.
  • S31 is an opposing area between the capacitance forming portion and the inner frame.
  • the electrostatic capacity C32 by the electrostatic capacity forming part formed on one of the detection bases via the detector holding part is expressed by the following equation.
  • the capacitance C32 corresponds to, for example, the capacitance due to the above-described capacitance forming portion 243D1 and the inner frame 101A.
  • Equation 14 can be approximated by
  • the synthetic capacitance C30 by the capacitance forming portion has characteristics as shown in FIG. Specifically, as shown in FIG. 18B, the combined capacitance has a minimum value (minimum value) when the displacement amount ⁇ x is 0, and monotonously increases as the displacement amount ⁇ x is farther from 0.
  • the combined capacitance Cc as an acceleration detector obtained by adding the combined capacitance C30 by the capacitance forming unit to the combined capacitance C12 by the protruding portion is expressed by the following equation.
  • the rate of increase of the combined capacitance C30 by the capacitance forming portion and the rate of decrease of the combined capacitance C12 by the protrusions are set. Match approximately. This calculation may be performed using, for example, the above-described (Expression 17), (Expression 18), and (Expression 19).
  • the amount of decrease in the combined capacitance C12 caused by the protrusion caused by vibration can be supplemented by the amount of increase in the combined capacitance C30 by the capacitance forming unit.
  • the combined capacitance Cc of the acceleration detector formed by adding the combined capacitance C12 by the protrusion and the combined capacitance C30 by the capacitance forming unit is It becomes constant without depending on the displacement amount ⁇ x.
  • FIG. 19A is a diagram showing temporal changes of the displacement amount ⁇ x, the primary and secondary components of the capacitances C1 and C2 due to the vibration of the protrusions, and the capacitance C30 due to the capacitance forming unit. It is.
  • FIG. 19B is a diagram illustrating a change over time in the displacement amount ⁇ x and the combined capacitance Cc.
  • the primary components of the capacitances C1 and C2 have the same frequency and are in reverse phase. Therefore, they are canceled out by adding and synthesizing them.
  • the secondary component of the combined capacitance of the capacitances C1 and C2 and the capacitance C30 by the capacitance forming unit have the same frequency and are in opposite phases. Therefore, they are canceled out by adding and synthesizing them.
  • the combined capacitance Cc of the acceleration detector becomes constant without depending on the displacement amount ⁇ x.
  • the configuration of the present embodiment it is possible to prevent a change in the capacitance of the acceleration detection unit due to vibration for angular velocity detection. As a result, the acceleration can be reliably and accurately detected without being affected by the vibration.
  • the capacitance forming portion is formed in line symmetry with respect to an axis in the Y-axis direction passing through the center of the detector holding portion.
  • the above-described composite sensor can be manufactured, for example, by the following method. First, for example, a low resistance silicon substrate is formed as a thin film on the surface of an insulating silicon substrate. Next, the composite silicon substrate is dry-etched from the low resistance silicon substrate side, and the fixed portion, the support beam, the first and second mass portions, the connecting portion, the first to fourth detection portions, the first, The functional unit such as the second driving unit is formed with the above-described pattern. At this time, a frame-like body is formed on the outer edge of the composite silicon substrate so as to surround the entire functional portion.
  • a lid made of a glass material or the like is joined to the frame-like body in a reduced pressure atmosphere, and the entire functional unit is hermetically sealed. Thereafter, a conductive via hole for connecting a necessary portion of the functional unit to the outside is formed on the lid. Then, an external connection conductor connected to the conductive via hole is formed on the lid.
  • FIG. 20 is a partial plan view showing another more specific structure of the movable-side acceleration detector and the fixed-side acceleration detector.
  • the structures of the acceleration detectors 202E1 ', 202F1' ?, 202H1 '?, 202I1' on the fixed side are different from the structure shown in FIG. 14 described above, and the other structures are the same. Therefore, description of the same part is abbreviate
  • the acceleration detector 202E1 ' is obtained by adding a capacitance forming unit 223E1 to the acceleration detector 202E1 described above.
  • the capacitance forming part 223E1 is formed at the end of the detection base 220E1 on the detection holding part 2051 side.
  • the electrostatic capacity forming unit 223E1 is opposed to the detection holding unit 2051 with a predetermined area and has a predetermined interval.
  • the capacitance forming part 223E1 is formed so that the area viewed along the X-axis direction is wider than the area of the first fixed side detection base or the second fixed side detection base. As a result, a capacitance C4D1 is formed between the capacitance forming unit 223E1 and the detection holding unit 2051.
  • the acceleration detector 202F1 ' is obtained by adding a capacitance forming unit 223F1 to the acceleration detector 202F1 described above.
  • the capacitance forming unit 223F1 is formed at the end of the detection base 220F1 on the detection holding unit 2051 side.
  • the capacitance forming unit 223F1 is opposed to the detection holding unit 2051 with a predetermined area, and is spaced by a predetermined interval.
  • the capacitance forming part 223F1 is formed so that the area seen along the X-axis direction is wider than the area of the first fixed side detection base or the second fixed side detection base. As a result, a capacitance C4D2 is formed between the capacitance forming unit 223F1 and the detection holding unit 2051.
  • the acceleration detector 202H1 ' is obtained by adding a capacitance forming unit 223H1 to the above-described acceleration detector 202H1.
  • the capacitance forming part 223H1 is formed at the end of the detection base 220H1 on the detection holding part 2051 side.
  • the electrostatic capacity forming unit 223H1 is opposed to the detection holding unit 2051 with a predetermined area and has a predetermined interval.
  • the capacitance forming part 223H1 is formed so that the area seen along the X-axis direction is larger than the area of the first fixed side detection base or the second fixed side detection base. As a result, a capacitance C4F1 is formed between the capacitance forming unit 223H1 and the detection holding unit 2051.
  • the acceleration detector 202I1 ' is obtained by adding a capacitance forming unit 223I1 to the above-described acceleration detector 202I1.
  • the capacitance forming portion 223I1 is formed at the end of the detection base 220I1 on the detection holding portion 2051 side.
  • the capacitance forming unit 223I1 faces the detection holding unit 2051 with a predetermined area and has a predetermined interval.
  • the capacitance forming part 223I1 is formed so that the area seen along the X-axis direction is larger than the area of the first fixed side detection base or the second fixed side detection base. As a result, a capacitance C4F2 is formed between the capacitance forming unit 223I1 and the detection holding unit 2051.
  • the capacitance C3D1 formed by the capacitance forming unit 243D1 and the inner frame 101A, and the capacitances C4D1 and C4D2 formed by the capacitance forming units 223E1 and 223F1 and the detection holding unit 2051 are used.
  • the capacitance between the protrusions 241D1 and 222E1 and between the protrusions 242D1 and 221F1 is suppressed due to vibration.
  • the capacitance C3F1 formed by the capacitance forming unit 243F1 and the inner frame 101A described above, and the capacitances C4F1 and C4F2 formed by the capacitance forming units 223H1 and 223I1 and the detection holding unit 2051 are used. It can suppress that the electrostatic capacitance between the part 241F1 and 222H1 and between the projection part 242F1 and 221I1 decreases by vibration.
  • Such a protrusion on the fixed side is also formed on other acceleration detectors. Thereby, the change of the electrostatic capacitance of the acceleration detection part by vibration can be suppressed. Then, by using the structure of FIG. 20, the electrostatic capacity formed by the movable-side capacitance forming portion and the inner frame is reduced by the vibration due to the shape limitation on the movable side and the detection performance of acceleration and angular velocity. Even if it is not possible to sufficiently compensate for the decrease in capacitance, it is possible to reliably compensate with the capacitance by the capacitance forming portion on the fixed side.
  • FIG. 21 is a partial plan view showing another more specific second structure of the movable-side acceleration detector and the fixed-side acceleration detector.
  • the acceleration detectors 202E1 'and 202H1' on the fixed part side have the same structure as that shown in FIG.
  • the acceleration detector 204D1 'on the movable portion side is obtained by omitting the capacitance forming portion 243D1 from the acceleration detector 204D1 of FIG.
  • the acceleration detector 204F1 'on the movable portion side is obtained by omitting the capacitance forming portion 243F1 from the acceleration detector 204F1 of FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Pressure Sensors (AREA)

Abstract

On the detection base section (220E1) side of a movable-side detection base section (240D1), a plurality of protruding sections (241D1) are formed by being aligned with each other in the longitudinal direction. On the detection base section (220F1) side of the detection base section (240D1), a plurality of protruding sections (242D1) are formed by being aligned with each other in the longitudinal direction. On the detection base section (240D1) side of a fixed-side detection base section (220E1), a plurality of protruding sections (221F1) are formed by being aligned with each other such that the protruding sections partially face the protruding sections (242D1). On the detection base section (240D1) side of a fixed-side detection base section (220F1), a plurality of protruding sections(221F1) are formed by being aligned with each other such that the protruding sections partially face the protruding sections (241D1). On an end section of the detection base section (240D1), said end section being on the inner frame (101A) side, a capacitance forming section (243D1) is formed.

Description

センサ素子、および複合センサSensor element and composite sensor
 本発明は、角速度および加速度を検出するセンサ素子、および当該センサ素子を備えた複合センサに関する。 The present invention relates to a sensor element that detects angular velocity and acceleration, and a composite sensor including the sensor element.
 従来、素子に加わる角速度や加速度を検出する複合センサが各種考案されている。例えば、特許文献1に記載の複合センサのセンサ素子は、基板に対して隙間を有するように支持梁によって支持された質量部を備える。質量部は、基板表面に平行な互いに直交する2軸方向(例えば、X軸方向およびY軸方向)に変位可能に支持されている。 Conventionally, various composite sensors for detecting the angular velocity and acceleration applied to the element have been devised. For example, the sensor element of the composite sensor described in Patent Document 1 includes a mass portion supported by a support beam so as to have a gap with respect to the substrate. The mass portion is supported so as to be displaceable in two axial directions (for example, the X-axis direction and the Y-axis direction) that are parallel to the substrate surface and orthogonal to each other.
 この複合センサは、質量部をX軸方向に振動させた状態で角速度を検出する。この状態で、X軸とY軸に直交するZ軸周りの角速度が質量部に作用するとY軸方向へのコリオリの力が生じる。このコリオリの力を電気的に検出することにより、前記Z軸周りの角速度を検出する。 This composite sensor detects the angular velocity in a state where the mass part is vibrated in the X-axis direction. In this state, when an angular velocity around the Z axis orthogonal to the X axis and the Y axis acts on the mass portion, a Coriolis force in the Y axis direction is generated. By detecting the Coriolis force electrically, the angular velocity around the Z axis is detected.
 さらに、この複合センサは、角速度を検出する質量部とは別の領域に、Y軸方向の加速度を電気信号で検出する加速度検出部を備えている。 Furthermore, this composite sensor includes an acceleration detection unit that detects an acceleration in the Y-axis direction using an electric signal in a region different from the mass unit that detects the angular velocity.
 図22は従来の複合センサの加速度検出部の一部を拡大した平面図である。図22(A)は振動によるX軸方向の可動部の変位Δxが0のときを表している。図22(B)は振動によるX軸方向の可動部の変位Δxが+x1のときを表している。 FIG. 22 is an enlarged plan view of a part of the acceleration detection unit of the conventional composite sensor. FIG. 22A shows a case where the displacement Δx of the movable part in the X-axis direction due to vibration is zero. FIG. 22B shows a case where the displacement Δx of the movable part in the X-axis direction due to vibration is + x1.
 図22に示すように、加速度検出部は、可動側の加速度検出子の検出用基部240P1が、Y軸方向に沿って配置された固定側の加速度検出子の検出用基部220P1,220P2間に配置されている。検出用基部240P1,220P1,220P2は、X軸方向に延びる長尺状である。可動側の検出用基部240P1における固定側の検出用基部220P1側の側面には、Y軸方向に突起する突起部241P1が形成されている。可動側の検出用基部240P1における固定側の検出用基部220P2側の辺には、Y軸方向に突起する突起部242P1が形成されている。突起部241P1、突起部242P1は、X軸に沿って長さ2Wの形状である。突起部241P1、突起部242P1は、X軸方向に沿った位置がWずれている。 As shown in FIG. 22, in the acceleration detector, the movable-side acceleration detector detection base 240P1 is disposed between the fixed-side acceleration detector detection bases 220P1 and 220P2 arranged along the Y-axis direction. Has been. The detection bases 240P1, 220P1, and 220P2 have a long shape extending in the X-axis direction. A protrusion 241P1 protruding in the Y-axis direction is formed on the side surface of the movable detection base 240P1 on the fixed detection base 220P1 side. A protrusion 242P1 protruding in the Y-axis direction is formed on the side of the movable detection base 240P1 on the fixed detection base 220P2 side. The protrusion 241P1 and the protrusion 242P1 have a shape with a length of 2W along the X axis. The positions of the protrusion 241P1 and the protrusion 242P1 along the X-axis direction are shifted by W.
 固定側の検出用基部220P1における可動側の検出用基部240P1側の辺には、突起部221P1が形成されている。突起部221P1は、X軸に沿って長さ2Wの形状である。突起部221P1のX軸方向の位置は、突起部242P1の位置と同じである。固定側の突起部221P1と可動側の突起部241P1は、X軸方向にWの長さで対向している。固定側の突起部221P2と可動側の突起部241P1は、Y軸方向にD12の間隔で対向している。 A protrusion 221P1 is formed on the side of the movable detection base 240P1 side of the fixed detection base 220P1. The protruding portion 221P1 has a shape with a length of 2W along the X axis. The position of the protrusion 221P1 in the X-axis direction is the same as the position of the protrusion 242P1. The fixed-side protrusion 221P1 and the movable-side protrusion 241P1 face each other with a length of W in the X-axis direction. The fixed-side protrusion 221P2 and the movable-side protrusion 241P1 face each other at an interval of D12 in the Y-axis direction.
 固定側の検出用基部220P2における可動側の検出用基部240P1側の辺には、突起部221P2が形成されている。突起部221P2は、X軸に沿って長さ2Wの形状である。突起部221P2のX軸方向の位置は、突起部241P1の位置と同じである。固定側の突起部221P2と可動側の突起部242P1は、X軸方向にWの長さで対向している。固定側の突起部221P1と可動側の突起部242P1は、Y軸方向にD12の間隔で対向している。 A protrusion 221P2 is formed on the movable detection base 240P1 side of the fixed detection base 220P2. The protrusion 221P2 has a shape with a length of 2W along the X axis. The position of the protrusion 221P2 in the X-axis direction is the same as the position of the protrusion 241P1. The fixed-side protrusion 221P2 and the movable-side protrusion 242P1 face each other with a length of W in the X-axis direction. The fixed-side protrusion 221P1 and the movable-side protrusion 242P1 face each other at an interval of D12 in the Y-axis direction.
 加速度検出部は、固定側の突起部221P1と可動側の突起部241P1との対向面積S1P1(Wに依存)および対向間隔D12とで決定されるキャパシタンスC1P1と、固定側の突起部221P2と可動側の突起部242P1との対向面積S2P1(Wに依存)および対向間隔D12とで決定されるキャパシタンスC2P1との変化から加速度を検出する。 The acceleration detecting unit includes a capacitance C1P1 determined by a facing area S1P1 (dependent on W) and a facing distance D12 between the fixed-side protrusion 221P1 and the movable-side protrusion 241P1, and the fixed-side protrusion 221P2 and the movable side. The acceleration is detected from the change of the capacitance C2P1 determined by the facing area S2P1 (depending on W) and the facing distance D12 with respect to the protrusion 242P1.
 センサ素子にY軸の正の方向の加速度が印加された場合、可動側の検出用基部240P1は、固定側の検出用基部220P1から離間し、固定側の検出用基部220P2に近接するように移動する。 When acceleration in the positive direction of the Y-axis is applied to the sensor element, the movable-side detection base 240P1 moves away from the fixed-side detection base 220P1 and close to the fixed-side detection base 220P2. To do.
 したがって、固定側の突起部221P1と可動側の突起部241P1との対向間隔D12が増加してキャパシタンスC1P1は減少する。固定側の突起部221P2と可動側の突起部242P1との対向間隔D12が減少してキャパシタンスC2P1は増加する。この際、対向間隔の逆数によってキャパシタンスC1P1,C2P1が決定される。これにより、キャパシタンスC1P1とキャパシタンスC2P1との合成キャパシタンスは、対向距離変化の逆数に応じて低下し、この低下量から加速度を検出することができる。 Therefore, the facing distance D12 between the protrusion 221P1 on the fixed side and the protrusion 241P1 on the movable side increases, and the capacitance C1P1 decreases. The facing distance D12 between the fixed-side protrusion 221P2 and the movable-side protrusion 242P1 decreases, and the capacitance C2P1 increases. At this time, the capacitances C1P1 and C2P1 are determined by the reciprocal of the facing interval. As a result, the combined capacitance of the capacitance C1P1 and the capacitance C2P1 decreases according to the reciprocal of the opposing distance change, and the acceleration can be detected from this decrease amount.
 ところで、この複合センサは、上述の角速度の検出のため、可動側の検出用基部240P1および突起部241P1,242P1はX軸方向に振動している。したがって、可動側の突起部241P1と固定側の突起部221P1との対向面積は変化し、可動側の突起部242P1と固定側の突起部221P2との対向面積も変化する。例えば、図21(B)に示すように、X軸の正の方向に移動した場合、可動側の突起部241P1と固定側の突起部221P1との対向面積S1P2はW’の増加に応じて増加する(対向面積S1P2>S1P1)。可動側の突起部242P1と固定側の突起部221P2との対向面積S2P2はW”の減少に応じて減少する(対向面積S2P2<S2P1)。この際、対向間隔D12は変化しない。したがって、X軸の正の方向に移動した場合、移動後のキャパシタンスC1P2は移動前のキャパシタンスC1P1よりも大きくなり、移動後のキャパシタンスC2P2は移動前のキャパシタンスC2P1よりも小さくなる。 By the way, in this composite sensor, the movable-side detection base 240P1 and the protrusions 241P1 and 242P1 vibrate in the X-axis direction in order to detect the angular velocity described above. Therefore, the facing area between the movable-side protrusion 241P1 and the fixed-side protrusion 221P1 changes, and the facing area between the movable-side protrusion 242P1 and the fixed-side protrusion 221P2 also changes. For example, as shown in FIG. 21B, when moving in the positive direction of the X-axis, the facing area S1P2 between the movable protrusion 241P1 and the fixed protrusion 221P1 increases as W ′ increases. (Opposing area S1P2> S1P1). The facing area S2P2 between the movable protrusion 242P1 and the fixed protrusion 221P2 decreases as W ″ decreases (facing area S2P2 <S2P1). At this time, the facing distance D12 does not change. , The capacitance C1P2 after the movement becomes larger than the capacitance C1P1 before the movement, and the capacitance C2P2 after the movement becomes smaller than the capacitance C2P1 before the movement.
 ここで、可動側の突起部241P1と固定側の突起部221P1と対向面積S1P1が対向面積S1P2に増加した量と、可動側の突起部242P1と固定側の突起部221P2と対向面積S2P1が対向面積S2P2に減少した量とは、同じである。このため、可動側の突起部241P1と固定側の突起部221P1と間のキャパシタンスの変化量と、可動側の突起部242P1と固定側の突起部221P2との間のキャパシタンスの変化量とは、相殺する。したがって、キャパシタンスC1P2,C2P2の合成キャパシタンスは、キャパシタンスC1P1,C2P1の合成キャパシタンスと同じになる。 Here, the amount by which the movable-side protrusion 241P1, the fixed-side protrusion 221P1, and the facing area S1P1 are increased to the facing area S1P2, and the movable-side protruding part 242P1, the fixed-side protruding part 221P2, and the facing area S2P1 are facing areas. The amount reduced to S2P2 is the same. Therefore, the amount of change in capacitance between the movable-side protrusion 241P1 and the fixed-side protrusion 221P1 and the amount of change in capacitance between the movable-side protrusion 242P1 and the fixed-side protrusion 221P2 are offset. To do. Therefore, the combined capacitance of the capacitances C1P2 and C2P2 is the same as the combined capacitance of the capacitances C1P1 and C2P1.
 このように、従来の複合センサでは、可動部と固定部の突起部の対向形状を上述のようにすることで、角速度検出のためのX軸方向の振動による加速度検出用のキャパシタンスへの影響が生じないようにしている。 In this way, in the conventional composite sensor, the opposing shape of the protrusion of the movable part and the fixed part is as described above, so that the X-axis direction vibration for detecting the angular velocity has an influence on the acceleration detection capacitance. It does not occur.
特開2010-85313号公報JP 2010-85313 A
 しかしながら、上述の従来の複合センサでは、次に示すような状態で、加速度の検出精度が低下してしまうことがある。 However, in the conventional composite sensor described above, the acceleration detection accuracy may decrease in the following state.
 図23は従来の複合センサの課題を説明するための加速度検出部の一部を拡大した平面図である。図24は従来の複合センサの課題を説明するための波形図である。図24(A)は、可動側の突起部241P1と固定側の突起部221P1とのキャパシタンスC1Pを示し、図24(B)は、可動側の突起部242P1と固定側の突起部221P2とのキャパシタンスC2Pを示す。図24(C)は、キャパシタンスC1P,C2Pの合成キャパシタンスを示す。 FIG. 23 is an enlarged plan view of a part of the acceleration detection unit for explaining the problem of the conventional composite sensor. FIG. 24 is a waveform diagram for explaining the problem of the conventional composite sensor. FIG. 24A shows the capacitance C1P between the movable projection 241P1 and the fixed projection 221P1, and FIG. 24B shows the capacitance between the movable projection 242P1 and the fixed projection 221P2. C2P is shown. FIG. 24C shows a combined capacitance of the capacitances C1P and C2P.
 従来の複合センサでは、図23に示すように、X軸方向の変位が大きくなり、可動側の突起部242P1と固定側の突起部221P2が対向しなくなった場合に次のような問題が生じる。この場合、可動側と固定側との間で生じる静電容量は、可動側の突起部241P1と固定側の突起部221P1との対向する長さWex(対向面積S1P3)によるキャパシタンスC1P3のみである。 In the conventional composite sensor, as shown in FIG. 23, the displacement in the X-axis direction becomes large, and the following problem occurs when the movable-side protrusion 242P1 and the fixed-side protrusion 221P2 do not face each other. In this case, the capacitance generated between the movable side and the fixed side is only the capacitance C1P3 due to the length Wex (opposing area S1P3) between the movable side protrusion 241P1 and the fixed side protrusion 221P1.
 ここで、この対向する長さWexは、可動側の突起部241P1と固定側の突起部221P1とが最も長く対向する長さ2Wよりも小さくなる。したがって、キャパシタンスC1P3は、可動側の突起部241P1と固定側の突起部221P1とが対向する長さ2Wの時のキャパシタンスC1Pmよりも小さくなる。そして、この場合、可動側の突起部242P1と固定側の突起部221P2間では、キャパシタンスは発生しない。したがって、可動部と固定部との間に生じる合成キャパシタンスは、可動部が固定部に対してY軸方向の両端で対向している時の合成キャパシタンスの変位による変化よりも、より急激に低下し、線形性が崩れる。 Here, the opposing length Wex is smaller than the length 2W at which the movable-side protrusion 241P1 and the fixed-side protrusion 221P1 are opposed to each other longest. Therefore, the capacitance C1P3 is smaller than the capacitance C1Pm when the movable side protrusion 241P1 and the fixed side protrusion 221P1 face each other with a length of 2W. In this case, no capacitance is generated between the movable protrusion 242P1 and the fixed protrusion 221P2. Therefore, the combined capacitance generated between the movable portion and the fixed portion is more rapidly reduced than the change due to the displacement of the combined capacitance when the movable portion is opposed to the fixed portion at both ends in the Y-axis direction. The linearity is broken.
 このような状態となると、キャパシタンスCは振動周波数と同じ基本周波数で変化する1次成分と、振動周波数に2倍の周波数で変化する二次成分とを有することになる。なお、二次以上の偶数高次成分も発生するが、2次成分と比較して十分に小さいので、ここでは考慮しない。これは、上述の状態の振動では、変位が最大となる時(Δx=+xmax,-xmax)にキャパシタンスが最小となり、変位が0となる時(Δx=0)にキャパシタンスが最大となるからである。 In this state, the capacitance C has a primary component that changes at the same fundamental frequency as the vibration frequency and a secondary component that changes at twice the vibration frequency. Note that even higher-order components of the second order or higher are also generated, but are not considered here because they are sufficiently smaller than the secondary components. This is because the vibration in the above state has the minimum capacitance when the displacement is maximum (Δx = + xmax, −xmax) and the maximum capacitance when the displacement is 0 (Δx = 0). .
 図24に示すように、キャパシタンスC1Pの1次成分とキャパシタンスC2Pの1次成分は、上述のように逆相であるので、1次の合成キャパシタンス(C1P+C2P)は1次成分C1P、C2P同士の相殺により0となる。しかしながら、キャパシタンスC1Pの2次成分とキャパシタンスC2Pの2次成分は同相となってしまうので、2次の合成キャパシタンス(C1P+C2P)は2次成分C1P、C2P同士の加算により2倍になってしまう。このような2次成分は、加速度の計測時にノイズとなり、加速度の検出性能を低下させてしまう。 As shown in FIG. 24, since the primary component of the capacitance C1P and the primary component of the capacitance C2P are in opposite phases as described above, the primary combined capacitance (C1P + C2P) cancels out the primary components C1P and C2P. 0. However, since the secondary component of the capacitance C1P and the secondary component of the capacitance C2P are in phase, the secondary combined capacitance (C1P + C2P) is doubled by adding the secondary components C1P and C2P together. Such a secondary component becomes noise when measuring acceleration, and deteriorates the detection performance of acceleration.
 このような問題を鑑みて、本願発明は、角速度検出部と加速度検出部とを単一の可動部を用いて形成するような場合であっても、加速度を高精度に検出することができるセンサ素子および複合センサを提供することにある。 In view of such problems, the present invention provides a sensor that can detect acceleration with high accuracy even when the angular velocity detection unit and the acceleration detection unit are formed using a single movable unit. It is to provide an element and a composite sensor.
 この発明は、基板と、基板の一つの面に固定された固定部と、基板の一つの面に平行な第1方向に振動可能な状態で基板に支持され固定部と対向する可動部と、を備えたセンサ素子に関するものであり、次の特徴を有する。 The present invention includes a substrate, a fixed portion fixed to one surface of the substrate, a movable portion that is supported by the substrate in a state capable of vibrating in a first direction parallel to the one surface of the substrate, and faces the fixed portion, And has the following characteristics.
 可動部は、可動側検出用基部、可動側第1突起部、および可動側第2突起部を備える。可動側検出用基部は、第1方向に沿って延び、基板の一つの面に平行で且つ第1方向と直交する第2方向の両側にそれぞれ、第1の面および第2の面を有する。可動側第1突起部は、可動側検出用基部の第1の面から第2方向の一方向に突出する。可動側第2突起部は、可動側検出用基部の第2の面から第2方向の他方向に突出する。 The movable part includes a movable side detection base, a movable first protrusion, and a movable second protrusion. The movable side detection base portion extends along the first direction, and has a first surface and a second surface on both sides of the second direction parallel to one surface of the substrate and orthogonal to the first direction. The movable first protrusion protrudes in one direction in the second direction from the first surface of the movable detection base. The movable second protrusion protrudes in the other direction of the second direction from the second surface of the movable detection base.
 固定部は、第1固定側検出用基部、第2固定側検出用基部、固定側第1突起部、および固定側第2突起部を有する。第1固定側検出用基部および第2固定側検出用基部は、可動側検出用基部における第2方向の両側にそれぞれ配置され、第1方向に沿って延びる。固定側第1突起部は、第1固定側検出用基部から可動側第1突起部側に突出する。固定側第2突起部は、第2固定側検出用基部から可動側第2突起部側に突出する。 The fixed portion has a first fixed side detection base, a second fixed side detection base, a fixed side first protrusion, and a fixed side second protrusion. The first fixed side detection base and the second fixed side detection base are respectively disposed on both sides of the movable side detection base in the second direction, and extend along the first direction. The fixed first protrusion protrudes from the first fixed detection base to the movable first protrusion side. The fixed-side second protrusion protrudes from the second fixed-side detection base toward the movable-side second protrusion.
 センサ素子は、可動側第1突起部と固定側第1突起部との間の第1静電容量と、可動側第2突起部と固定側第2突起部との間の第2静電容量との合成静電容量の変化から、加速度検出信号を出力する。 The sensor element includes a first capacitance between the movable first projection and the fixed first projection, and a second capacitance between the movable second projection and the fixed second projection. An acceleration detection signal is output from the change in the combined electrostatic capacity.
 可動側検出用基部、第1固定側検出用基部、および第2固定側検出用基部のいずれかにおける第1方向の端部に、可動部と固定部との間の第3静電容量を生じる静電容量形成部が配置されている。 A third capacitance between the movable portion and the fixed portion is generated at an end portion in the first direction of any of the movable side detection base, the first fixed side detection base, and the second fixed side detection base. A capacitance forming portion is disposed.
 この構成では、振動が所定値以上となって、可動側第1突起部と固定側第1突起部とが対向しなくなる、もしくは、可動側第2突起部と固定側第2突起部とが対向しなくなって、第1静電容量と第2静電容量の合成静電容量が低下しても、第3静電容量は増加する。これにより、第1静電容量と第2静電容量の合成静電容量が低下を、第3静電容量の増加で補完できる。したがって、振動による静電容量の変化を抑圧して、ほぼ無くすことができる。 In this configuration, the vibration becomes a predetermined value or more, and the movable side first protrusion and the fixed side first protrusion do not face each other, or the movable side second protrusion and the fixed side second protrusion face each other. If the combined capacitance of the first capacitance and the second capacitance decreases and the third capacitance increases. As a result, the decrease in the combined capacitance of the first capacitance and the second capacitance can be compensated by the increase in the third capacitance. Therefore, it is possible to substantially eliminate the change in capacitance due to vibration.
 また、この発明のセンサ素子は、次の構成であることが好ましい。可動部は、可動側検出用基部、可動側第1突起部、および可動側第2突起部を備える。可動側検出用基部は、第1方向に沿って延び、基板の一つの面に平行で且つ第1方向と直交する第2方向の両側にそれぞれ、第1の面および第2の面を有する。可動側第1突起部は、可動側検出用基部の第1の面から第2方向の一方向に突出する。可動側第2突起部は、可動側検出用基部の第2の面から第2方向の他方向に突出する。固定部は、第1固定側検出用基部、第2固定側検出用基部、固定側第1突起部、および固定側第2突起部を有する。第1固定側検出用基部および第2固定側検出用基部は、可動側検出用基部における第2方向の両側にそれぞれ配置され、第1方向に沿って延びる。固定側第1突起部は、第1固定側検出用基部から可動側第1突起部側に突出する。固定側第2突起部は、第2固定側検出用基部から可動側第2突起部側に突出する。センサ素子は、可動側第1突起部と固定側第1突起部との間の第1静電容量と、可動側第2突起部と固定側第2突起部との間の第2静電容量との合成静電容量の変化から、加速度検出信号を出力する。可動側検出用基部、第1固定側検出用基部、および第2固定側検出用基部のいずれかにおける第1方向の端部に、静電容量形成部が配置されている。静電容量形成部の第2方向に沿った幅は、可動側検出用基部、第1固定側検出用基部、および第2固定側検出用基部のうち静電容量形成部が配置されたものの第2方向に沿った幅に比べて大きい。 Further, the sensor element of the present invention preferably has the following configuration. The movable part includes a movable side detection base, a movable first protrusion, and a movable second protrusion. The movable side detection base portion extends along the first direction, and has a first surface and a second surface on both sides of the second direction parallel to one surface of the substrate and orthogonal to the first direction. The movable first protrusion protrudes in one direction in the second direction from the first surface of the movable detection base. The movable second protrusion protrudes in the other direction of the second direction from the second surface of the movable detection base. The fixed portion includes a first fixed-side detection base, a second fixed-side detection base, a fixed-side first protrusion, and a fixed-side second protrusion. The first fixed side detection base and the second fixed side detection base are respectively disposed on both sides of the movable side detection base in the second direction, and extend along the first direction. The fixed first protrusion protrudes from the first fixed detection base to the movable first protrusion side. The fixed-side second protrusion protrudes from the second fixed-side detection base toward the movable-side second protrusion. The sensor element includes a first capacitance between the movable first projection and the fixed first projection, and a second capacitance between the movable second projection and the fixed second projection. An acceleration detection signal is output from the change in the combined electrostatic capacity. A capacitance forming portion is disposed at an end portion in the first direction in any of the movable side detection base, the first fixed side detection base, and the second fixed side detection base. The width along the second direction of the capacitance forming portion is the same as the width of the movable side detection base, the first fixed side detection base, and the second fixed side detection base in which the capacitance formation portion is arranged. Larger than the width along two directions.
 この構成では、静電容量形成部の容量を大きく取ることができ、振動による静電容量の変化を抑圧して、ほぼ無くすことができる。 In this configuration, the capacitance of the capacitance forming portion can be increased, and the change in capacitance due to vibration can be suppressed and almost eliminated.
 また、この発明のセンサ素子では、可動部および固定部それぞれに、静電容量形成部を備えてもよい。 In the sensor element of the present invention, each of the movable part and the fixed part may be provided with a capacitance forming part.
 この構成では、振動による静電容量の変化を、さらに抑圧し易くでき、ほぼ無くすことができる。 In this configuration, the change in capacitance due to vibration can be more easily suppressed and can be almost eliminated.
 また、この発明のセンサ素子では、次の構成であることが好ましい。可動部は、可動側検出用基部の第1方向の一方端に、第2方向に沿って延びる可動側保持部を有する。固定部は、第1固定側検出用基部および第2固定側検出用基部の第1方向の他方端に、第2方向に沿って延びる固定側保持部を有する。可動側検出用基部、第1固定側検出用基部、および第2固定側検出用基部は、第1方向において可動側保持部と固定側保持部との間に配置されている。静電容量形成部は、可動側検出用基部における第1方向の他方端に配置されている。 Further, the sensor element of the present invention preferably has the following configuration. The movable part has a movable side holding part extending along the second direction at one end of the movable side detection base in the first direction. The fixed portion has a fixed-side holding portion extending along the second direction at the other end in the first direction of the first fixed-side detection base and the second fixed-side detection base. The movable side detection base, the first fixed side detection base, and the second fixed side detection base are disposed between the movable side holding part and the fixed side holding part in the first direction. The capacitance forming part is disposed at the other end in the first direction of the movable side detection base.
 この構成では、可動部における静電容量形成部の具体的な構造を示している。 This configuration shows a specific structure of the capacitance forming portion in the movable portion.
 また、この発明のセンサ素子では、次の構成であることが好ましい。 Further, the sensor element of the present invention preferably has the following configuration.
可動部は、可動側検出用基部の第1方向の一方端に、第2方向に延びる可動側保持部を有する。固定部は、第1固定側検出用基部および第2固定側検出用基部の第1方向の他方端に、第2方向に沿って延びる固定側保持部を有する。可動側検出用基部、第1固定側検出用基部および第2固定側検出用基部は、第1方向において可動側保持部と固定側保持部との間に配置されている。静電容量形成部は、第1固定側検出用基部および第2固定側検出用基部における第1方向の一方端に配置されている。 The movable part has a movable side holding part extending in the second direction at one end in the first direction of the movable side detection base. The fixed portion has a fixed-side holding portion extending along the second direction at the other end in the first direction of the first fixed-side detection base and the second fixed-side detection base. The movable side detection base, the first fixed side detection base, and the second fixed side detection base are arranged between the movable side holding part and the fixed side holding part in the first direction. The capacitance forming part is disposed at one end of the first fixed side detection base and the second fixed side detection base in the first direction.
 この構成では、固定部における静電容量形成部の具体的な構造を示している。 This configuration shows a specific structure of the capacitance forming portion in the fixed portion.
 また、この発明のセンサ素子では、次の構成であることが好ましい。可動側検出用基部は、可動側保持部における第1方向の両側に形成されている。静電容量形成部は、可動側保持部の両側に、第2方向を軸として線対称に配置されている。 Further, the sensor element of the present invention preferably has the following configuration. The movable side detection bases are formed on both sides of the movable side holding portion in the first direction. The capacitance forming part is arranged symmetrically about the second direction on both sides of the movable side holding part.
 この構成では、振動による静電容量の変化を、さらに効果的に抑圧することができる。 In this configuration, the change in capacitance due to vibration can be suppressed more effectively.
 また、この発明のセンサ素子では、次の構成であることが好ましい。センサ素子は、基板に対して隙間を有した状態で第2方向に配列された第1質量部および第2質量部と、第1方向に沿って第1質量部と第2質量部を互いの振動が逆相になるように振動可能に支持する支持梁と、を備える。第1質量部は、固定部および可動部を有し、第1加速度検出信号を出力する。第2質量部は、固定部および可動部を有し、第2加速度検出信号を出力する。 Further, the sensor element of the present invention preferably has the following configuration. The sensor element includes a first mass unit and a second mass unit arranged in the second direction with a gap with respect to the substrate, and the first mass unit and the second mass unit along the first direction. And a supporting beam that supports the vibration so that the vibration is in the opposite phase. The first mass unit has a fixed part and a movable part, and outputs a first acceleration detection signal. The second mass unit has a fixed part and a movable part, and outputs a second acceleration detection signal.
 この構成では、加速度を、より確実に検出することができる。 In this configuration, acceleration can be detected more reliably.
 また、この発明のセンサ素子では、次の構成であることが好ましい。第1質量部は、第1方向および第2方向に直交する第3方向周りの角速度による第1角速度検出信号を出力する。第2質量部は、第3方向周りの角速度による第2角速度検出信号を出力する。センサ素子は、第1角速度検出信号および第2角速度検出信号の位相関係と、第1加速度検出信号および第2加速度検出信号の位相関係が逆になるように出力する構造からなる。 Further, the sensor element of the present invention preferably has the following configuration. The first mass unit outputs a first angular velocity detection signal based on an angular velocity around a third direction orthogonal to the first direction and the second direction. The second mass unit outputs a second angular velocity detection signal based on an angular velocity around the third direction. The sensor element is configured to output so that the phase relationship between the first angular velocity detection signal and the second angular velocity detection signal is opposite to the phase relationship between the first acceleration detection signal and the second acceleration detection signal.
 この構成では、加速度検出部とともに角速度検出を同時に検出することができる。そして、加速度検出と角速度検出を行えるセンサ素子を小型に実現できる。 In this configuration, angular velocity detection can be detected simultaneously with the acceleration detector. A sensor element that can detect acceleration and angular velocity can be realized in a small size.
 この発明の複合センサは、上述の加速度と角速度を検出するセンサ素子と、第1角速度検出信号および第1加速度検出信号を含む第1検出信号と、第2角速度検出信号および第2加速度検出信号を含む第2検出信号とを加算する加算部と、第1検出信号と第2検出信号とを減算する減算部と、を備えたことを特徴としている。 The composite sensor according to the present invention includes a sensor element that detects the acceleration and the angular velocity, a first detection signal including a first angular velocity detection signal and a first acceleration detection signal, a second angular velocity detection signal, and a second acceleration detection signal. And an addition unit that adds the second detection signal, and a subtraction unit that subtracts the first detection signal and the second detection signal.
 この構成では、上述のセンサ素子を用いた複合センサの具体的な構成を示している。そして、この構成とすることで、加速度と角速度を個別に検出できる複合センサを小型に実現できる。 This configuration shows a specific configuration of the composite sensor using the above-described sensor element. And by setting it as this structure, the composite sensor which can detect an acceleration and an angular velocity separately is realizable small.
 この発明によれば、角速度検出部と加速度検出部とを単一の可動部を用いて形成するような場合に、角速度検出用の振動の大きさに影響されることなく、加速度を高精度に検出することができる。 According to the present invention, when the angular velocity detection unit and the acceleration detection unit are formed using a single movable unit, the acceleration can be accurately determined without being affected by the magnitude of vibration for angular velocity detection. Can be detected.
本発明の実施形態に係るセンサ素子の構成を示す平面図である。It is a top view which shows the structure of the sensor element which concerns on embodiment of this invention. 本発明の実施形態に係る第1検出部の構成を示す拡大平面図である。It is an enlarged plan view which shows the structure of the 1st detection part which concerns on embodiment of this invention. 本発明の実施形態に係る第1検出部の加速度検出部および角速度検出部の構成を示す拡大平面図である。It is an enlarged plan view which shows the structure of the acceleration detection part of the 1st detection part and angular velocity detection part which concern on embodiment of this invention. 本発明の実施形態に係る第2検出部の構成を示す拡大平面図である。It is an enlarged plan view which shows the structure of the 2nd detection part which concerns on embodiment of this invention. 本発明の実施形態に係る第3検出部の構成を示す拡大平面図である。It is an enlarged plan view which shows the structure of the 3rd detection part which concerns on embodiment of this invention. 本発明の実施形態に係る第4検出部の構成を示す拡大平面図である。It is an enlarged plan view which shows the structure of the 4th detection part which concerns on embodiment of this invention. 本発明の実施形態に係る駆動部およびモニタ部の構成を示す拡大平面図である。It is an enlarged plan view which shows the structure of the drive part and monitor part which concern on embodiment of this invention. 本発明の実施形態に係る複合センサの構成を示すブロック図である。It is a block diagram which shows the structure of the composite sensor which concerns on embodiment of this invention. 本発明の実施形態に係るセンサ素子に角速度ωが印加された場合の挙動を示す図である。It is a figure which shows the behavior when angular velocity (omega) is applied to the sensor element which concerns on embodiment of this invention. 本発明の実施形態に係るセンサ素子に加速度aが印加された場合の挙動を示す図である。It is a figure which shows the behavior when the acceleration a is applied to the sensor element which concerns on embodiment of this invention. 本発明の実施形態に係るセンサ素子1に角速度ωのみが印加された場合の各信号の波形図である。It is a wave form chart of each signal when only angular velocity omega is impressed to sensor element 1 concerning an embodiment of the present invention. 本発明の実施形態に係るセンサ素子1に加速度aのみが印加された場合の各信号の波形図である。It is a wave form chart of each signal when only acceleration a is impressed to sensor element 1 concerning an embodiment of the present invention. 本発明の実施形態に係るセンサ素子1に加速度aと角速度ωが印加された場合の各信号の波形図である。It is a wave form chart of each signal when acceleration a and angular velocity omega are impressed to sensor element 1 concerning an embodiment of the present invention. 可動側の加速度検出子と固定側の加速度検出子とのより具体的な構造を示す部分平面図である。FIG. 5 is a partial plan view showing a more specific structure of a movable acceleration detector and a fixed acceleration detector. 可動側の加速度検出子のX軸方向の両端の拡大図である(変位量Δxが0の時)。It is an enlarged view of the both ends of the X-axis direction of a movable-side acceleration detector (when displacement amount (DELTA) x is 0). 可動側の加速度検出子のX軸方向の両端の拡大図である(変位量Δxが+Wの時)。It is an enlarged view of the both ends of the X-axis direction of the movable-side acceleration detector (when the displacement amount Δx is + W). 可動側の加速度検出子のX軸方向の両端の拡大図である(変位量Δxが-Wの時)。FIG. 4 is an enlarged view of both ends of a movable-side acceleration sensor in the X-axis direction (when the displacement amount Δx is −W). 合成静電容量の変位量に対する変化を示すグラフである。It is a graph which shows the change with respect to the amount of displacement of synthetic capacity. 変位量Δxと、突起部の振動による静電容量C1,C2の1次成分および2次成分と、静電容量形成部による静電容量C30と、合成静電容量Ccとの時間変化を示す図である。The figure which shows the time change of displacement amount (DELTA) x, the primary component and secondary component of electrostatic capacitance C1, C2 by the vibration of a projection part, electrostatic capacitance C30 by an electrostatic capacitance formation part, and synthetic electrostatic capacitance Cc. It is. 可動側の加速度検出子と固定側の加速度検出子とのより具体的なその他の構造を示す部分平面図である。It is a partial top view which shows the more concrete other structure of the acceleration sensor on a movable side and the acceleration sensor on a fixed side. 可動側の加速度検出子と固定側の加速度検出子とのより具体的なその他の第2の構造を示す部分平面図である。FIG. 12 is a partial plan view showing another more specific second structure of a movable-side acceleration detector and a fixed-side acceleration detector. 従来の複合センサの加速度検出部の一部を拡大した平面図である。It is the top view which expanded a part of acceleration detection part of the conventional composite sensor. 従来の複合センサの課題を説明するための加速度検出部の一部を拡大した平面図である。It is the top view which expanded a part of acceleration detection part for demonstrating the subject of the conventional composite sensor. 従来の複合センサの課題を説明するための波形図である。It is a wave form diagram for demonstrating the subject of the conventional composite sensor.
 本発明の実施形態に係るセンサ素子および複合センサについて、図を参照して説明する。図1は、本発明の実施形態に係るセンサ素子の構成を示す平面図である。なお、当該センサ素子は、例えば、図示しない筐体によって密閉されている。センサ素子が配置される筐体内の雰囲気は、例えば減圧雰囲気に保たれている。 A sensor element and a composite sensor according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view showing a configuration of a sensor element according to an embodiment of the present invention. For example, the sensor element is sealed by a housing (not shown). The atmosphere in the housing in which the sensor element is arranged is maintained, for example, in a reduced pressure atmosphere.
 センサ素子1は、矩形状の基板2を備える。基板2は、例えばシリコン等の絶縁性半導体によって形成されている。なお、以下では、矩形状の基板2の短手方向をX軸方向(本発明の「第1方向」に相当する。)とし、長手方向をY軸方向(本発明の「第2方向」に相当する。)として説明する。 The sensor element 1 includes a rectangular substrate 2. The substrate 2 is formed of an insulating semiconductor such as silicon. In the following, the short direction of the rectangular substrate 2 is defined as the X-axis direction (corresponding to the “first direction” of the present invention), and the longitudinal direction is defined as the Y-axis direction (the “second direction” of the present invention). Will be described.
 センサ素子1は、第1質量部10、第2質量部20、第3質量部300、第4質量部400を備える。これらの質量部は、例えば低抵抗シリコン等の導電性半導体からなる。また、センサ素子1を構成する基板2以外の部分は、各質量部と同様に、例えば低抵抗シリコン等の導電性半導体からなる。 The sensor element 1 includes a first mass unit 10, a second mass unit 20, a third mass unit 300, and a fourth mass unit 400. These mass parts are made of a conductive semiconductor such as low-resistance silicon. Further, the parts other than the substrate 2 constituting the sensor element 1 are made of a conductive semiconductor such as low-resistance silicon, for example, in the same manner as each mass part.
 第1質量部10、第2質量部20、第3質量部300、および第4質量部400は、互いに間隔をあけて、Y軸方向に配列されている。より具体的な配置順としては、第1質量部10、第2質量部20は、配列方向(Y軸方向)に沿った中央に配置されている。第3質量部300は、第1質量部10の第2質量部20側と反対側に配置されている。第4質量部400は、第2質量部20の第1質量部10側と反対側に配置されている。 The first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit 400 are arranged in the Y-axis direction at intervals. As a more specific arrangement order, the first mass unit 10 and the second mass unit 20 are arranged at the center along the arrangement direction (Y-axis direction). The third mass unit 300 is disposed on the opposite side of the first mass unit 10 from the second mass unit 20 side. The fourth mass unit 400 is disposed on the opposite side of the second mass unit 20 from the first mass unit 10 side.
 第1質量部10、第2質量部20、第3質量部300、および第4質量部400は、支持梁4A,4Bによって、基板2から隙間を空けた状態で支持されている。 The first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit 400 are supported by the support beams 4A and 4B with a gap from the substrate 2.
 支持梁4A,4Bは、Y軸方向に沿って延びる長尺状である。支持梁4A,4Bの幅(X軸方向の長さ)は、後述する振動により、X軸方向に部分的に変位しながら湾曲する程度の強度となるように設定されている。 The support beams 4A and 4B have a long shape extending along the Y-axis direction. The width (length in the X-axis direction) of the support beams 4A and 4B is set so as to be strong enough to be bent while being partially displaced in the X-axis direction due to vibration described later.
 支持梁4Aは、第1質量部10、第2質量部20、第3質量部300、および第4質量部400が配列された領域に対してX軸方向の一方端側に配置されている。支持梁4Bは、第1質量部10、第2質量部20、第3質量部300、および第4質量部400が配列された領域に対してX軸方向の他方端側に配置されている。すなわち、支持梁4A,4Bは、X軸方向に沿って、第1質量部10、第2質量部20、第3質量部300、および第4質量部400を挟むように配置されている。 The support beam 4A is disposed on one end side in the X-axis direction with respect to the region where the first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit 400 are arranged. The support beam 4B is disposed on the other end side in the X-axis direction with respect to the region where the first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit 400 are arranged. That is, the support beams 4A and 4B are arranged so as to sandwich the first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit 400 along the X-axis direction.
 第1質量部10と支持梁4Aは、連結部5Aによって連結されている。第2質量部20と支持梁4Aは、連結部5Bによって連結されている。第3質量部300と支持梁4Aは、連結部5Cによって連結されている。第4質量部400と支持梁4Aは、連結部5Dによって連結されている。 The first mass part 10 and the support beam 4A are connected by a connecting part 5A. The second mass part 20 and the support beam 4A are connected by a connecting part 5B. The third mass part 300 and the support beam 4A are connected by a connecting part 5C. The fourth mass part 400 and the support beam 4A are connected by a connecting part 5D.
 第1質量部10と支持梁4Bは、連結部5Eによって連結されている。第2質量部20と支持梁4Bは、連結部5Fによって連結されている。第3質量部300と支持梁4Bは、連結部5Gによって連結されている。第4質量部400と支持梁4Bは、連結部5Hによって連結されている。 The first mass part 10 and the support beam 4B are connected by a connecting part 5E. The 2nd mass part 20 and support beam 4B are connected by connecting part 5F. The third mass unit 300 and the support beam 4B are coupled by a coupling unit 5G. The fourth mass part 400 and the support beam 4B are connected by a connecting part 5H.
 連結部5Aと連結部5Eは、配列された第1質量部10、第2質量部20、第3質量部300、第4質量部400の重心Gを通り、Y軸方向に平行な軸を対称軸として、線対称の位置に配置されている。連結部5Bと連結部5Fは、当該対称軸に対して線対称の位置に配置されている。連結部5Cと連結部5Gは、当該対称軸に対して線対称の位置に配置されている。連結部5Dと連結部5Hは、当該対称軸に対して線対称の位置に配置されている。 The connecting part 5A and the connecting part 5E pass through the center of gravity G of the arranged first mass part 10, the second mass part 20, the third mass part 300, and the fourth mass part 400, and are symmetrical about an axis parallel to the Y-axis direction. As an axis, they are arranged in line-symmetric positions. The connecting part 5B and the connecting part 5F are arranged at positions symmetrical with respect to the symmetry axis. The connecting portion 5C and the connecting portion 5G are arranged at positions symmetrical with respect to the symmetry axis. The connecting part 5D and the connecting part 5H are arranged at positions symmetrical with respect to the symmetry axis.
 支持梁4Aは、固定部3A,3B,3Cに接続されている。支持梁4Bは、固定部3D,3E,3Fに接続されている。支持梁4A,4Bに固定部3A~3Fが接続する位置は、各質量部がX軸方向に振動する際に、支持梁4A,4BのX軸方向の変位が生じない点(節)となる。 The support beam 4A is connected to the fixing portions 3A, 3B, 3C. The support beam 4B is connected to the fixing portions 3D, 3E, and 3F. The positions where the fixing portions 3A to 3F are connected to the support beams 4A and 4B are points (nodes) where the displacement of the support beams 4A and 4B in the X-axis direction does not occur when each mass portion vibrates in the X-axis direction. .
 第1質量部10は、内枠部101A、および外枠部102Aを備える。内枠部101Aは、X軸方向の長辺、Y軸方向の短辺からなる長方形である。外枠部102Aは、X軸方向の長辺、Y軸方向の短辺からなる長方形である。外枠部102Aは、内枠部101Aを囲む形状である。外枠部102Aは、連結部5A,5Eによって、支持梁4A,4Bに連結されている。 The first mass unit 10 includes an inner frame portion 101A and an outer frame portion 102A. The inner frame portion 101A is a rectangle having a long side in the X-axis direction and a short side in the Y-axis direction. The outer frame portion 102A is a rectangle having a long side in the X-axis direction and a short side in the Y-axis direction. The outer frame portion 102A has a shape surrounding the inner frame portion 101A. The outer frame portion 102A is connected to the support beams 4A and 4B by connecting portions 5A and 5E.
 内枠部101Aは、重心Gを通るY軸方向に沿った軸付近において、外枠部102Aと接続している。より具体的には、内枠部101Aの重心G側の辺には、長尺状の連結部材103Aが形成されている。連結部材103Aは、X軸方向に沿って延びる形状であり、当該X軸方向の両端で内枠部101Aに連結している。連結部材103Aの中心には、連結部材104Aが形成されている。連結部材104Aは、Y軸方向に短い形状であり、Y軸方向の一方端が外枠部102Aに連結されており、当該Y軸方向の他方端が連結部材103Aに連結されている。連結部材104Aは、X軸方向の長さがY軸方向の長さよりも長く、連結部材103Aの長尺方向(X軸方向)の長さよりも十分に短い形状からなる。 The inner frame portion 101A is connected to the outer frame portion 102A in the vicinity of the axis along the Y-axis direction passing through the center of gravity G. More specifically, a long connecting member 103A is formed on the side on the center of gravity G side of the inner frame portion 101A. The connecting member 103A has a shape extending along the X-axis direction, and is connected to the inner frame portion 101A at both ends in the X-axis direction. A connecting member 104A is formed at the center of the connecting member 103A. The connecting member 104A has a short shape in the Y-axis direction, one end in the Y-axis direction is connected to the outer frame portion 102A, and the other end in the Y-axis direction is connected to the connecting member 103A. The connecting member 104A has a shape in which the length in the X-axis direction is longer than the length in the Y-axis direction and is sufficiently shorter than the length in the longitudinal direction (X-axis direction) of the connecting member 103A.
 内枠部101Aの重心G側と反対側の辺には、長尺状の連結部材103Bが形成されている。連結部材103Bは、X軸方向に沿って延びる形状であり、当該X軸方向の両端で内枠部101Aに連結している。連結部材103Bの長尺方向の中心には、連結部材104Bが形成されている。連結部材104Bは、Y軸方向に短い形状であり、当該Y軸方向の一方端が外枠部102Aに連結されており、当該Y軸方向の他方端が連結部材103Bに連結されている。連結部材104Bは、X軸方向の長さがY軸方向の長さよりも長く、連結部材103Bの長尺方向(X軸方向)の長さよりも十分に短い形状からなる。 A long connecting member 103B is formed on the side opposite to the center of gravity G side of the inner frame portion 101A. The connecting member 103B has a shape extending along the X-axis direction, and is connected to the inner frame portion 101A at both ends in the X-axis direction. A connecting member 104B is formed at the center of the connecting member 103B in the longitudinal direction. The connecting member 104B has a short shape in the Y-axis direction, one end in the Y-axis direction is connected to the outer frame portion 102A, and the other end in the Y-axis direction is connected to the connecting member 103B. The connecting member 104B has a shape in which the length in the X-axis direction is longer than the length in the Y-axis direction and is sufficiently shorter than the length in the longitudinal direction (X-axis direction) of the connecting member 103B.
 内枠部101Aは、中心軸101Cを備える。中心軸101Cは、Y軸方向に延びる形状であり、X軸方向に所定の幅を有する。中心軸101Cは、内側枠101AのX軸方向の中心に配置されている。言い換えれば、中心軸101Cは、延びる方向の軸がY軸に略一致する位置に配置されている。内枠部101Aの内側空間は、中心軸101Cによって、X軸方向に二つの領域に分割されている。二つの領域は、後述する導体部の配列順を除き、概ねY軸を基準に線対称である。 The inner frame portion 101A includes a central axis 101C. The central axis 101C has a shape extending in the Y-axis direction and has a predetermined width in the X-axis direction. The central axis 101C is disposed at the center in the X-axis direction of the inner frame 101A. In other words, the central axis 101C is arranged at a position where the extending axis substantially coincides with the Y axis. The inner space of the inner frame portion 101A is divided into two regions in the X-axis direction by the central axis 101C. The two regions are generally line symmetric with respect to the Y axis except for the arrangement order of the conductor portions described later.
 内枠部101Aの一方の内側には、固定部111、加速度検出部112、および角速度検出部113が形成されている。固定部111は、X軸方向にもY軸方向にも略同等の長さからなる。固定部111は、平面視した場合に、センサ素子1内においては比較的大きな平面積を有する形状からなる。固定部111は、基板2に固定されている。 A fixed portion 111, an acceleration detection portion 112, and an angular velocity detection portion 113 are formed inside one of the inner frame portions 101A. The fixed part 111 has substantially the same length in both the X-axis direction and the Y-axis direction. The fixed portion 111 has a shape having a relatively large plane area in the sensor element 1 when viewed in plan. The fixing part 111 is fixed to the substrate 2.
 また、具体的な構成は後述するが、加速度検出部112および角速度検出部113は、固定部111に接続する導体部と、内枠部101Aに接続する導体部とからなる。なお、導体部とは、角速度や加速度に応じて、実質的に静電容量を発生する導電性半導体の部分のことを示している。 Further, although a specific configuration will be described later, the acceleration detection unit 112 and the angular velocity detection unit 113 include a conductor part connected to the fixed part 111 and a conductor part connected to the inner frame part 101A. In addition, the conductor part has shown the part of the electroconductive semiconductor which generate | occur | produces an electrostatic capacitance substantially according to angular velocity and acceleration.
 固定部111と、第1質量部10と、加速度検出部112および角速度検出部113を構成する導体部とにより、第1検出部11が構成される。 The first detection unit 11 is configured by the fixing unit 111, the first mass unit 10, and the conductor units that constitute the acceleration detection unit 112 and the angular velocity detection unit 113.
 内枠部101Aの他方の内側には、固定部121、加速度検出部122、および角速度検出部123が形成されている。固定部121は、X軸方向にもY軸方向にも略同等の長さからなる。固定部121は、平面視した場合に、センサ素子1内においては比較的大きな平面積を有する形状からなる。固定部121は、基板2に固定されている。固定部121は、Y軸を基準として固定部111と線対称の形状からなる。 A fixed part 121, an acceleration detection part 122, and an angular velocity detection part 123 are formed on the other inner side of the inner frame part 101A. The fixed part 121 has substantially the same length in both the X-axis direction and the Y-axis direction. The fixed part 121 has a shape having a relatively large plane area in the sensor element 1 when viewed in plan. The fixing part 121 is fixed to the substrate 2. The fixed part 121 has a shape symmetrical with the fixed part 111 with respect to the Y axis.
 また、具体的な構成は後述するが、加速度検出部122および角速度検出部123は、固定部121に接続する導体部と、内枠部101Aに接続する導体部とからなる。加速度検出部122は、概略的には、Y軸を基準として加速度検出部112と線対称の形状であるが、加速度検出用の内枠部101Aに接続する導体部と固定部121に接続する導体部との配列順が、線対称ではなく、X軸方向に沿って同じ順になっている。角速度検出部123は、Y軸を基準として、導体部の延びる方向が角速度検出部113と線対称の形状であるが、導体部の配列順が角速度検出部113と異なっている。 Further, although a specific configuration will be described later, the acceleration detection unit 122 and the angular velocity detection unit 123 include a conductor part connected to the fixed part 121 and a conductor part connected to the inner frame part 101A. The acceleration detection unit 122 is generally symmetrical with the acceleration detection unit 112 with respect to the Y axis, but a conductor connected to the inner frame 101A for acceleration detection and a conductor connected to the fixed unit 121. The arrangement order with respect to the parts is not line symmetric but the same order along the X-axis direction. The angular velocity detection unit 123 is symmetrical with respect to the angular velocity detection unit 113 in the extending direction of the conductor with respect to the Y axis, but the arrangement order of the conductors is different from that of the angular velocity detection unit 113.
 固定部121と、第1質量部10と、加速度検出部122および角速度検出部123を構成する導体部とにより、第2検出部12が構成される。 The second detection unit 12 is configured by the fixing unit 121, the first mass unit 10, and the conductor units that constitute the acceleration detection unit 122 and the angular velocity detection unit 123.
 第2質量部20は、内枠部101B、および外枠部102Bを備える。内枠部101Bは、X軸方向の長辺、Y軸方向の短辺からなる長方形である。外枠部102Bは、X軸方向の長辺、Y軸方向の短辺からなる長方形である。外枠部102Bは、内枠部101Bを囲む形状である。外枠部102Bは、連結部5B,5Fによって、支持梁4A,4Bに連結されている。 The second mass unit 20 includes an inner frame portion 101B and an outer frame portion 102B. The inner frame portion 101B is a rectangle having a long side in the X-axis direction and a short side in the Y-axis direction. The outer frame portion 102B is a rectangle having a long side in the X-axis direction and a short side in the Y-axis direction. The outer frame portion 102B has a shape surrounding the inner frame portion 101B. The outer frame portion 102B is connected to the support beams 4A and 4B by connecting portions 5B and 5F.
 内枠部101Bは、重心Gを通るX軸を基準として、第1質量部10の内枠部101Aと線対称の位置に配置され、線対称の形状からなる。外枠部102Bは、重心Gを通るX軸を基準として、第1質量部10の外枠部102Aと線対称の位置に配置され、線対称の形状からなる。 The inner frame portion 101B is arranged in a line-symmetrical position with respect to the inner frame portion 101A of the first mass unit 10 with respect to the X axis passing through the center of gravity G, and has a line-symmetric shape. The outer frame portion 102B is arranged at a line-symmetrical position with respect to the outer frame portion 102A of the first mass unit 10 with respect to the X axis passing through the center of gravity G, and has a line-symmetric shape.
 内枠部101Bは、重心Gを通るY軸方向に沿った軸付近において、外枠部102Bと接続している。より具体的には、内枠部101Bの重心G側の辺には、長尺状の連結部材103Cが形成されている。連結部材103Cは、X軸方向に沿って延びる形状であり、当該X軸方向の両端で内枠部101Bに連結している。連結部材103Cの中心には、連結部材104Cが形成されている。連結部材104Cは、Y軸方向に短い形状であり、当該Y軸方向の一方端が外枠部102Bに連結されており、当該Y軸方向の他方端が連結部材103Cに連結されている。連結部材104Cは、X軸方向の長さがY軸方向の長さよりも長く、連結部材103Cの長尺方向(X軸方向)の長さよりも十分に短い形状からなる。連結部材103C、連結部材104Cは、それぞれX軸を基準にして、連結部材103A、連結部材104Aと線対称の形状である。 The inner frame portion 101B is connected to the outer frame portion 102B in the vicinity of the axis along the Y-axis direction passing through the center of gravity G. More specifically, a long connecting member 103C is formed on the side of the inner frame portion 101B on the center of gravity G side. The connecting member 103C has a shape extending along the X-axis direction, and is connected to the inner frame portion 101B at both ends in the X-axis direction. A connecting member 104C is formed at the center of the connecting member 103C. The connecting member 104C has a short shape in the Y-axis direction, one end in the Y-axis direction is connected to the outer frame portion 102B, and the other end in the Y-axis direction is connected to the connecting member 103C. The connecting member 104C has a shape in which the length in the X-axis direction is longer than the length in the Y-axis direction and is sufficiently shorter than the length in the longitudinal direction (X-axis direction) of the connecting member 103C. The connecting member 103C and the connecting member 104C are symmetrical with the connecting member 103A and the connecting member 104A, respectively, with respect to the X axis.
 内枠部101Bの重心G側と反対側の辺には、長尺状の連結部材103Dが形成されている。連結部材103Dは、X軸方向に沿って延びる形状であり、当該X軸方向の両端で内枠部101Bに連結している。連結部材103Dの長尺方向の中心には、連結部材104Dが形成されている。連結部材104Dは、Y軸方向に短い形状であり、当該Y軸方向の一方端が外枠部102Bに連結されており、当該Y軸方向の他方端が連結部材103Dに連結されている。連結部材104Dは、X軸方向の長さがY軸方向の長さよりも長く、連結部材103Dの長尺方向(X軸方向)の長さよりも十分に短い形状からなる。連結部材103D、連結部材104Dは、それぞれX軸を基準にして、連結部材103B、連結部材104Bと線対称の形状である。 A long connecting member 103D is formed on the side opposite to the center of gravity G side of the inner frame portion 101B. The connecting member 103D has a shape extending along the X-axis direction, and is connected to the inner frame portion 101B at both ends in the X-axis direction. A connecting member 104D is formed at the center of the connecting member 103D in the longitudinal direction. The connecting member 104D has a short shape in the Y-axis direction, one end in the Y-axis direction is connected to the outer frame portion 102B, and the other end in the Y-axis direction is connected to the connecting member 103D. The connecting member 104D has a shape in which the length in the X-axis direction is longer than the length in the Y-axis direction and is sufficiently shorter than the length in the long direction (X-axis direction) of the connecting member 103D. The connecting member 103D and the connecting member 104D are symmetrical with the connecting member 103B and the connecting member 104B, respectively, with respect to the X axis.
 内枠部101Bは、中心軸101Dを備える。中心軸101Dは、Y軸方向に延びる形状であり、X軸方向に所定の幅を有する。中心軸101Dは、内側枠101BのX軸方向の中心に配置されている。言い換えれば、中心軸101Dは、延びる方向の軸がY軸に略一致する位置に配置されている。内枠部101Bの内側空間は、中心軸101Dによって、X軸方向に二つの領域に分割されている。二つの領域は、導体部の配列順を除き、概ねY軸を基準に線対称である。また、中心軸101Dは、X軸を基準にして中心軸101Cと線対称の形状である。 The inner frame portion 101B includes a central axis 101D. The central axis 101D has a shape extending in the Y-axis direction and has a predetermined width in the X-axis direction. The center axis 101D is disposed at the center of the inner frame 101B in the X-axis direction. In other words, the central axis 101D is disposed at a position where the extending axis substantially coincides with the Y axis. The inner space of the inner frame portion 101B is divided into two regions in the X-axis direction by the central axis 101D. The two regions are generally line symmetric with respect to the Y axis except for the arrangement order of the conductor portions. The central axis 101D has a shape symmetrical with the central axis 101C with respect to the X axis.
 内枠部101Bの一方の内側には、固定部131、加速度検出部132、および角速度検出部133が形成されている。固定部131は、X軸方向にもY軸方向にも略同等の長さからなる。固定部131は、平面視した場合に、センサ素子1内においては比較的大きな平面積を有する形状からなる。固定部131は、基板2に固定されている。 The fixed part 131, the acceleration detection part 132, and the angular velocity detection part 133 are formed inside one side of the inner frame part 101B. The fixed part 131 has substantially the same length in both the X-axis direction and the Y-axis direction. The fixed portion 131 has a shape having a relatively large plane area in the sensor element 1 when viewed in plan. The fixing part 131 is fixed to the substrate 2.
 また、具体的な構成は後述するが、加速度検出部132および角速度検出部133は、固定部131に接続する導体部と、内枠部101Bに接続する導体部とからなる。固定部131、加速度検出部132、角速度検出部133は、X軸を基準として、それぞれ固定部111、加速度検出部112、角速度検出部113と線対称の形状からなる。 Further, although a specific configuration will be described later, the acceleration detection unit 132 and the angular velocity detection unit 133 include a conductor portion connected to the fixed portion 131 and a conductor portion connected to the inner frame portion 101B. The fixed unit 131, the acceleration detection unit 132, and the angular velocity detection unit 133 are symmetrical with the fixed unit 111, the acceleration detection unit 112, and the angular velocity detection unit 113, respectively, with respect to the X axis.
 固定部131と、第2質量部20と、加速度検出部132および角速度検出部133を構成する導体部とにより、第3検出部13が構成される。 The third detection unit 13 is configured by the fixing unit 131, the second mass unit 20, and the conductors that form the acceleration detection unit 132 and the angular velocity detection unit 133.
 内枠部101Bの他方の内側には、固定部141、加速度検出部142、および角速度検出部143が形成されている。固定部141は、X軸方向にもY軸方向にも略同等の長さからなる。固定部141は、平面視した場合に、センサ素子1内においては比較的大きな平面積を有する形状からなる。固定部141は、基板2に固定されている。固定部141は、Y軸を基準として固定部131と線対称の形状からなり、X軸を基準として固定部121と線対称の形状からなる。 A fixed portion 141, an acceleration detection portion 142, and an angular velocity detection portion 143 are formed on the other inner side of the inner frame portion 101B. The fixed portion 141 has substantially the same length in both the X-axis direction and the Y-axis direction. The fixed portion 141 has a shape having a relatively large plane area in the sensor element 1 when viewed in plan. The fixing part 141 is fixed to the substrate 2. The fixed portion 141 has a shape symmetrical with the fixed portion 131 with respect to the Y axis, and has a shape symmetrical with the fixed portion 121 with respect to the X axis.
 また、具体的な構成は後述するが、加速度検出部142および角速度検出部143は、固定部141に接続する導体部と、内枠部101Bに接続する導体部とからなる。加速度検出部142は、概略的には、Y軸を基準として加速度検出部132と線対称の形状であるが、加速度検出用の内枠部101Bに接続する導体部と固定部141に接続する導体部との配列順が、線対称ではなく、X軸方向に沿って同じ順になっている。角速度検出部143は、Y軸を基準として、導体部の延びる方向が角速度検出部133と線対称の形状であるが、導体部の配列順が角速度検出部133と異なっている。 Further, although a specific configuration will be described later, the acceleration detection unit 142 and the angular velocity detection unit 143 include a conductor part connected to the fixed part 141 and a conductor part connected to the inner frame part 101B. The acceleration detection unit 142 is generally symmetrical with the acceleration detection unit 132 with respect to the Y axis, but the conductor connected to the acceleration detection inner frame 101B and the conductor connected to the fixed unit 141. The arrangement order with respect to the parts is not line symmetric but the same order along the X-axis direction. The angular velocity detector 143 has a conductor line extending in a line-symmetric shape with respect to the angular velocity detector 133 with respect to the Y axis, but the arrangement order of the conductors is different from that of the angular velocity detector 133.
 固定部141と、第2質量部20と、加速度検出部142および角速度検出部143を構成する導体部とにより、第4検出部14が構成される。 4th detection part 14 is constituted by fixed part 141, 2nd mass part 20, and a conductor part which constitutes acceleration detection part 142 and angular velocity detection part 143.
 第3質量部300は、第1質量部10から離間して配置されている。第3質量部300は、X軸方向に延びる矩形状からなる。第3質量部300の長手方向の一方端は、連結部5Cによって支持梁4Aに連結されている。第3質量部300の長手方向の他方端は、連結部5Gによって支持梁4Bに連結されている。 The third mass unit 300 is disposed away from the first mass unit 10. The third mass unit 300 has a rectangular shape extending in the X-axis direction. One end of the third mass part 300 in the longitudinal direction is connected to the support beam 4A by a connecting part 5C. The other end in the longitudinal direction of the third mass unit 300 is connected to the support beam 4B by a connecting part 5G.
 第3質量部300と第1質量部10との間には、固定部31が配置されている。固定部31は、固定部111,121,131,141と同様に所定の面積を有する形状からなり基板2に固定されている。固定部31は、X軸方向の中心の位置に配置されている。支持部材32は、固定部31を中心としてX軸方向に沿って延びる略矩形状である。 The fixing unit 31 is disposed between the third mass unit 300 and the first mass unit 10. The fixing part 31 has a shape having a predetermined area, like the fixing parts 111, 121, 131, 141, and is fixed to the substrate 2. The fixed portion 31 is disposed at the center position in the X-axis direction. The support member 32 has a substantially rectangular shape extending along the X-axis direction with the fixed portion 31 as the center.
 支持部材32における第1質量部10の外枠部102A側には、複数の櫛歯部33Aが形成されている。外枠部102Aの支持部材32側には、複数の櫛歯部34Aが形成されている。櫛歯部33Aと櫛歯部34Aは、噛合するように配置されている。 A plurality of comb teeth 33 </ b> A are formed on the outer frame 102 </ b> A side of the first mass unit 10 in the support member 32. A plurality of comb tooth portions 34A are formed on the support member 32 side of the outer frame portion 102A. The comb tooth portion 33A and the comb tooth portion 34A are arranged so as to mesh with each other.
 支持部材32における第3質量部300側には、複数の櫛歯部33Bが形成されている。第3質量部300の支持部材32側には、複数の櫛歯部34Bが形成されている。櫛歯部33Bと櫛歯部34Bは、噛合するように配置されている。 A plurality of comb teeth portions 33B are formed on the third mass portion 300 side of the support member 32. A plurality of comb teeth 34 </ b> B are formed on the support member 32 side of the third mass unit 300. The comb tooth portion 33B and the comb tooth portion 34B are arranged so as to mesh with each other.
 櫛歯部33Aと櫛歯部34A、および、櫛歯部33Bと櫛歯部34Bによって第1駆動部30が構成される。 The first drive unit 30 is configured by the comb tooth portion 33A and the comb tooth portion 34A, and the comb tooth portion 33B and the comb tooth portion 34B.
 第3質量部300における第1質量部10と反対側には、固定部500が配置されている。固定部500は、第3質量部300から離間して配置されている。固定部500は、X軸方向に延びる矩形状からなる。固定部500の延びる方向の一方端は、基板2に接続されている。これにより、固定部500は、固定部111,121,131,141,31と同様に、基板2に固定されている。 The fixed part 500 is arranged on the opposite side of the third mass part 300 from the first mass part 10. The fixing unit 500 is disposed away from the third mass unit 300. The fixed part 500 has a rectangular shape extending in the X-axis direction. One end in the extending direction of the fixing portion 500 is connected to the substrate 2. As a result, the fixing unit 500 is fixed to the substrate 2 in the same manner as the fixing units 111, 121, 131, 141, and 31.
 第3質量部300における固定部500側には、複数の櫛歯部51が形成されている。固定部500における第3質量部300側には、複数の櫛歯部52が形成されている。櫛歯部51と櫛歯部52は、噛合するように配置されている。櫛歯部51と櫛歯部52によって第1モニタ部50が構成される。 A plurality of comb-tooth portions 51 are formed on the fixed portion 500 side of the third mass portion 300. A plurality of comb teeth portions 52 are formed on the third mass portion 300 side of the fixed portion 500. The comb-tooth part 51 and the comb-tooth part 52 are arrange | positioned so that it may mesh | engage. The first monitor unit 50 is configured by the comb-tooth portion 51 and the comb-tooth portion 52.
 第4質量部400は、第2質量部20から離間して配置されている。第4質量部400は、X軸方向に延びる矩形状からなる。第4質量部400の長手方向の一方端は、連結部5Dによって支持梁4Aに連結されている。第4質量部400の長手方向の他方端は、連結部5Hによって支持梁4Bに連結されている。 The fourth mass unit 400 is disposed away from the second mass unit 20. The fourth mass unit 400 has a rectangular shape extending in the X-axis direction. One end of the fourth mass part 400 in the longitudinal direction is connected to the support beam 4A by a connecting part 5D. The other end in the longitudinal direction of the fourth mass part 400 is connected to the support beam 4B by the connecting part 5H.
 第4質量部400と第2質量部20との間には、固定部41が配置されている。固定部41は、固定部31と同様に所定の面積を有する形状からなり基板2に固定されている。固定部41は、X軸方向の中心の位置に配置されている。支持部材42は、固定部41を中心としてX軸方向に沿って延びる略矩形状である。 The fixed part 41 is disposed between the fourth mass part 400 and the second mass part 20. The fixing portion 41 has a shape having a predetermined area, like the fixing portion 31, and is fixed to the substrate 2. The fixed portion 41 is disposed at the center position in the X-axis direction. The support member 42 has a substantially rectangular shape extending along the X-axis direction with the fixed portion 41 as the center.
 支持部材42における第2質量部20の外枠部102B側には、複数の櫛歯部43Aが形成されている。外枠部102Bにおける支持部材42側には、複数の櫛歯部44Aが形成されている。複数の櫛歯部44Aは外枠部102Bに接続している。櫛歯部43Aと櫛歯部44Aは、噛合するように配置されている。 A plurality of comb-tooth portions 43A are formed on the support member 42 on the outer frame portion 102B side of the second mass portion 20. A plurality of comb teeth 44A are formed on the support member 42 side of the outer frame portion 102B. The plurality of comb-tooth portions 44A are connected to the outer frame portion 102B. The comb tooth portion 43A and the comb tooth portion 44A are arranged so as to mesh with each other.
 支持部材42における第4質量部400側には、複数の櫛歯部43Bが形成されている。第4質量部400における支持部材42側には、複数の櫛歯部44Bが形成されている。櫛歯部43Bと櫛歯部44Bは、噛合するように配置されている。 A plurality of comb teeth 43B are formed on the support member 42 on the fourth mass portion 400 side. A plurality of comb teeth portions 44B are formed on the support member 42 side of the fourth mass portion 400. The comb tooth portion 43B and the comb tooth portion 44B are disposed so as to mesh with each other.
 櫛歯部43Aと櫛歯部44A、および、櫛歯部43Bと櫛歯部44Bによって第2駆動部40が構成される。 The second drive unit 40 is configured by the comb tooth portion 43A and the comb tooth portion 44A, and the comb tooth portion 43B and the comb tooth portion 44B.
 第4質量部400における第2質量部20と反対側には、固定部600が配置されている。固定部600は、第4質量部400から離間して配置されている。固定部600の延びる方向の一方端は、基板2に接続されている。これにより、固定部600は、X軸方向に延びる矩形状からなる。固定部600は、固定部500と同様に、基板2に固定されている。 The fixed part 600 is arranged on the opposite side of the fourth mass part 400 from the second mass part 20. The fixed part 600 is disposed away from the fourth mass part 400. One end in the extending direction of the fixing portion 600 is connected to the substrate 2. Thereby, the fixed part 600 has a rectangular shape extending in the X-axis direction. The fixing part 600 is fixed to the substrate 2 in the same manner as the fixing part 500.
 固定部600における第4質量部400側には、複数の櫛歯部61が形成されている。第4質量部400における固定部600側には、複数の櫛歯部62が形成されている。櫛歯部61と櫛歯部62は、噛合するように配置されている。櫛歯部61と櫛歯部62によって第2モニタ部60が構成される。 A plurality of comb-tooth portions 61 are formed on the fourth mass portion 400 side of the fixing portion 600. A plurality of comb teeth 62 are formed on the fixed part 600 side of the fourth mass part 400. The comb-tooth part 61 and the comb-tooth part 62 are arrange | positioned so that it may mesh | engage. The comb monitor 61 and the comb 62 constitute a second monitor 60.
 次に、第1検出部11の具体的構成について、図を参照して説明する。図2は、本発明の実施形態に係る第1検出部の構成を示す拡大平面図である。図3は、本発明の実施形態に係る第1検出部の加速度検出部および角速度検出部の構成を示す拡大平面図である。 Next, a specific configuration of the first detection unit 11 will be described with reference to the drawings. FIG. 2 is an enlarged plan view showing the configuration of the first detection unit according to the embodiment of the present invention. FIG. 3 is an enlarged plan view showing configurations of the acceleration detection unit and the angular velocity detection unit of the first detection unit according to the embodiment of the present invention.
 固定部111は、内枠部101Aの内部空間における中心軸101Cで分割される一方の内部空間内に配置されている。固定部111のX軸方向の長さは、当該内部空間のX軸方向の長さよりも短い。固定部111は、第2質量部20側(連結部材103A,104A)側に近接し、第3質量部300側から離間するように、この内部空間の中心からY軸方向に沿ってずれた位置に配置されている。これにより、固定部111の支持梁4A側、中心軸101C側と、第3質量部300側(連結部103B,104B側)に所定の空間が形成される。 The fixed portion 111 is disposed in one internal space divided by the central axis 101C in the internal space of the inner frame portion 101A. The length of the fixed portion 111 in the X-axis direction is shorter than the length of the internal space in the X-axis direction. The fixed portion 111 is located near the second mass portion 20 side (the connecting members 103A and 104A), and is shifted from the center of the internal space along the Y-axis direction so as to be separated from the third mass portion 300 side. Is arranged. As a result, predetermined spaces are formed on the support beam 4A side, the central axis 101C side, and the third mass unit 300 side (the coupling portions 103B and 104B side) of the fixed portion 111.
 加速度検出子202A1,202B1,202C1,202D1,202E1,202F1,202G1,202H1,202I1,202J1,202K1,202L1,202M1,202N1および、加速度検出子204A1,204B1,204C1,204D1,204E1,204F1,204G1,204H1,204I1,204J1は、固定部111の第3質量部300側の端部付近を含み、固定部111の第3質量部300側の空間に配置されている。 Acceleration detectors 202A1, 202B1, 202C1, 202D1, 202E1, 202F1, 202G1, 202H1, 202I1, 202J1, 202K1, 202L1, 202M1, 202N1 and acceleration detectors 204A1, 204B1, 204C1, 204D1, 204E1, 204F1, 204G1, 204H1 , 204I1 and 204J1 are arranged in a space on the third mass unit 300 side of the fixed part 111 including the vicinity of the end of the fixed part 111 on the third mass unit 300 side.
 固定部111は、第3質量部300側に突出する長尺状の検出子保持部201A1,201B1(本発明の「固定側保持部」に相当する。)を備える。検出子保持部201A1は、固定部111の支持梁4A側の端辺と第3質量部300側の端辺が交わる角部に配置されている。検出子保持部201B1は、固定部111の中心軸101C側の端辺と第3質量部300側の端辺が交わる角部に配置されている。 The fixing unit 111 includes long detector holding parts 201A1 and 201B1 (corresponding to the “fixing side holding part” of the present invention) protruding toward the third mass part 300 side. The detector holding part 201A1 is disposed at a corner where the end of the fixed part 111 on the support beam 4A side and the end of the third mass part 300 intersect. The detector holding part 201B1 is disposed at a corner where the end of the fixed part 111 on the central axis 101C side and the end of the third mass part 300 intersect.
 内枠部101Aの第3質量部300側の辺は、固定部111側に突出する長尺状の検出子保持部2051(本発明の「可動側保持部」に相当する。)を備える。検出子保持部2051は、X軸方向に沿って検出子保持部201A1,201B1との中間位置に配置されている。 The side of the inner frame portion 101A on the third mass portion 300 side includes a long detector holding portion 2051 (corresponding to the “movable side holding portion” of the present invention) protruding toward the fixed portion 111 side. The detector holding unit 2051 is arranged at an intermediate position between the detector holding units 201A1 and 201B1 along the X-axis direction.
 加速度検出子202A1,202B1,202C1,202D1は、検出子保持部201A1の支持梁4A側に接続し、当該支持梁4A側に突出する形状からなる。 The acceleration detectors 202A1, 202B1, 202C1, 202D1 are connected to the support beam 4A side of the detector holding portion 201A1 and have a shape protruding to the support beam 4A side.
 加速度検出子202A1は、検出用基部220A1と複数の突起部222A1とを備える。検出用基部220A1は、X軸方向に延びる長尺状からなり、一方端が検出子保持部201A1に接続されている。複数の突起部222A1は、X軸方向に所定の幅を有する矩形状である。複数の突起部222A1は、基部220A1の第2質量部20側の辺に、基部220A1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。 The acceleration detector 202A1 includes a detection base 220A1 and a plurality of protrusions 222A1. The detection base 220A1 has a long shape extending in the X-axis direction, and one end thereof is connected to the detector holding portion 201A1. The plurality of protrusions 222A1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 222A1 are arranged on the side of the base 220A1 on the second mass unit 20 side at a predetermined interval along the direction in which the base 220A1 extends (X-axis direction).
 加速度検出子202B1は、検出用基部220B1と複数の突起部221B1と複数の突起部222B1を備える。検出用基部220B1は、X軸方向に延びる長尺状からなり、一方端が検出子保持部201A1に接続されている。複数の突起部221B1は、X軸方向に所定の幅を有する矩形状である。複数の突起部221B1は、検出用基部220B1の第3質量部300側の辺に、検出用基部220B1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。複数の突起部222B1は、X軸方向に所定の幅を有する矩形状である。複数の突起部222B1は、検出用基部220B1の第2質量部20側の辺に、検出用基部220B1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。 The acceleration detector 202B1 includes a detection base 220B1, a plurality of protrusions 221B1, and a plurality of protrusions 222B1. The detection base 220B1 has a long shape extending in the X-axis direction, and one end thereof is connected to the detector holder 201A1. The plurality of protrusions 221B1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 221B1 are arranged at predetermined intervals along the direction (X axis direction) in which the detection base 220B1 extends on the side of the detection base 220B1 on the third mass unit 300 side. The plurality of protrusions 222B1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 222B1 are arranged at predetermined intervals along the direction (X-axis direction) in which the detection base 220B1 extends on the side of the detection base 220B1 on the second mass unit 20 side.
 加速度検出子202C1は、検出用基部220C1と複数の突起部221C1と複数の突起部222C1とを備える。検出用基部220C1は、X軸方向に延びる長尺状からなり、一方端が検出子保持部201A1に接続されている。複数の突起部221C1は、X軸方向に所定の幅を有する矩形状である。複数の突起部221C1は、検出用基部220C1の第3質量部300側の辺に、検出用基部220C1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。複数の突起部222C1は、X軸方向に所定の幅を有する矩形状である。複数の突起部222C1は、検出用基部220C1の第2質量部20側の辺に、検出用基部220C1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。 The acceleration detector 202C1 includes a detection base 220C1, a plurality of protrusions 221C1, and a plurality of protrusions 222C1. The detection base 220C1 has a long shape extending in the X-axis direction, and one end thereof is connected to the detector holding portion 201A1. The plurality of protrusions 221C1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 221C1 are arranged on the side of the detection base 220C1 on the third mass unit 300 side at a predetermined interval along the direction in which the detection base 220C1 extends (X-axis direction). The plurality of protrusions 222C1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 222C1 are arranged at predetermined intervals along the direction in which the detection base 220C1 extends (X-axis direction) on the side of the detection base 220C1 on the second mass unit 20 side.
 加速度検出子202D1は、検出用基部220D1と複数の突起部221D1とを備える。検出用基部220D1は、X軸方向に延びる長尺状からなり、一方端が検出子保持部201A1に接続されている。複数の突起部221D1は、X軸方向に所定の幅を有する矩形状である。複数の突起部221D1は、検出用基部220D1の第3質量部300側の辺に、検出用基部220D1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。 The acceleration detector 202D1 includes a detection base 220D1 and a plurality of protrusions 221D1. The detection base 220D1 has a long shape extending in the X-axis direction, and one end thereof is connected to the detector holding portion 201A1. The plurality of protrusions 221D1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 221D1 are arranged at predetermined intervals along the direction in which the detection base 220D1 extends (X-axis direction) on the side of the detection base 220D1 on the third mass unit 300 side.
 加速度検出子204A1,204B1,204C1は、内側枠101Aの固定部111側に接続し、当該固定部111側に突出する形状からなる。 The acceleration detectors 204A1, 204B1, 204C1 are connected to the fixed portion 111 side of the inner frame 101A and have a shape protruding to the fixed portion 111 side.
 加速度検出子204A1は、検出用基部240A1と、複数の突起部241A1と、複数の突起部242A1と、静電容量形成部243A1を備える。検出用基部240A1は、X軸方向に延びる長尺状からなり、一方端が内枠部101Aに接続されている。複数の突起部241A1は、X軸方向に所定の幅を有する矩形状である。複数の突起部241A1は、検出用基部240A1の第3質量部300側の辺に、検出用基部240A1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。複数の突起部242A1は、X軸方向に所定の幅を有する矩形状である。複数の突起部242A1は、検出用基部240A1の第2質量部20側の辺に、検出用基部240A1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。静電容量形成部243A1は、検出用基部240A1の検出子保持部201A1側の端部に形成されている。静電容量形成部243A1は、X軸方向に沿って見た面積が検出用基部240A1の面積よりも広くなるように形成されている。静電容量形成部243A1のX軸方向に沿って見た面積は、後述する振動時の静電容量変化の補正に適する値に適宜設定されている。また、静電容量形成部243A1のX軸方向の長さを調整することで、静電容量形成部243A1と内枠部101Aとの距離が、後述する振動時の静電容量変化の補正に適する値に適宜設定されている。 The acceleration detector 204A1 includes a detection base 240A1, a plurality of protrusions 241A1, a plurality of protrusions 242A1, and a capacitance forming part 243A1. The detection base 240A1 has a long shape extending in the X-axis direction, and one end thereof is connected to the inner frame portion 101A. The plurality of protrusions 241A1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 241A1 are arranged on the side of the detection base 240A1 on the third mass unit 300 side at a predetermined interval along the direction in which the detection base 240A1 extends (X-axis direction). The plurality of protrusions 242A1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 242A1 are arranged at predetermined intervals along the direction in which the detection base 240A1 extends (X-axis direction) on the side of the detection base 240A1 on the second mass unit 20 side. The capacitance forming portion 243A1 is formed at the end of the detection base portion 240A1 on the detector holding portion 201A1 side. The capacitance forming portion 243A1 is formed so that the area seen along the X-axis direction is wider than the area of the detection base portion 240A1. The area of the electrostatic capacity forming unit 243A1 viewed along the X-axis direction is appropriately set to a value suitable for correcting a change in electrostatic capacity during vibration described later. Further, by adjusting the length of the capacitance forming portion 243A1 in the X-axis direction, the distance between the capacitance forming portion 243A1 and the inner frame portion 101A is suitable for correcting a change in capacitance during vibration described later. The value is set appropriately.
 加速度検出子204B1は、検出用基部240B1と、複数の突起部241B1と、複数の突起部242B1と、静電容量形成部243B1を備える。検出用基部240B1は、X軸方向に延びる長尺状からなり、一方端が内枠部101Aに接続されている。複数の突起部241B1は、X軸方向に所定の幅を有する矩形状である。複数の突起部241B1は、検出用基部240B1の第3質量部300側の辺に、検出用基部240B1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。複数の突起部242B1は、X軸方向に所定の幅を有する矩形状である。複数の突起部242B1は、検出用基部240B1の第2質量部20側の辺に、検出用基部240B1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。静電容量形成部243B1は、検出用基部240B1の検出子保持部201A1側の端部に形成されている。静電容量形成部243B1は、X軸方向に沿って見た面積が検出用基部240B1の面積よりも広くなるように形成されている。静電容量形成部243B1のX軸方向に沿って見た面積は、後述する振動時の静電容量変化の補正に適する値に適宜設定されている。また、静電容量形成部243B1のX軸方向の長さを調整することで、静電容量形成部243B1と内枠部101Aとの距離が、後述する振動時の静電容量変化の補正に適する値に適宜設定されている。 The acceleration detector 204B1 includes a detection base 240B1, a plurality of protrusions 241B1, a plurality of protrusions 242B1, and a capacitance forming part 243B1. The detection base 240B1 has a long shape extending in the X-axis direction, and one end thereof is connected to the inner frame portion 101A. The plurality of protrusions 241B1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 241B1 are arranged at predetermined intervals along the direction in which the detection base 240B1 extends (X-axis direction) on the side of the detection base 240B1 on the third mass unit 300 side. The plurality of protrusions 242B1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 242B1 are arranged at predetermined intervals along the direction (X-axis direction) in which the detection base 240B1 extends on the side of the detection base 240B1 on the second mass unit 20 side. The capacitance forming part 243B1 is formed at the end of the detection base part 240B1 on the detector holding part 201A1 side. The capacitance forming portion 243B1 is formed so that the area viewed along the X-axis direction is wider than the area of the detection base portion 240B1. The area of the electrostatic capacity forming unit 243B1 viewed along the X-axis direction is appropriately set to a value suitable for correcting a change in electrostatic capacity during vibration described later. Further, by adjusting the length of the capacitance forming portion 243B1 in the X-axis direction, the distance between the capacitance forming portion 243B1 and the inner frame portion 101A is suitable for correcting the capacitance change during vibration described later. The value is set appropriately.
 加速度検出子204C1は、検出用基部240C1と、複数の突起部241C1と、複数の突起部242C1と静電容量形成部243C1を備える。検出用基部240C1は、X軸方向に延びる長尺状からなり、一方端が内枠部101Aに接続されている。複数の突起部241C1は、X軸方向に所定の幅を有する矩形状である。複数の突起部241C1は、検出用基部240C1の第3質量部300側の辺に、検出用基部240C1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。複数の突起部242C1は、X軸方向に所定の幅を有する矩形状である。複数の突起部242C1は、検出用基部240C1の第2質量部20側の辺に、検出用基部240C1の延びる方向(X軸方向)に沿って所定の間隔で配置されている。静電容量形成部243C1は、検出用基部240C1の検出子保持部201A1側の端部に形成されている。静電容量形成部243C1は、X軸方向に沿って見た面積が検出用基部240C1の面積よりも広くなるように形成されている。静電容量形成部243C1のX軸方向に沿って見た面積は、後述する振動時の静電容量変化の補正に適する値に適宜設定されている。また、静電容量形成部243C1のX軸方向の長さを調整することで、静電容量形成部243C1と内枠部101Aとの距離が、後述する振動時の静電容量変化の補正に適する値に適宜設定されている。 The acceleration detector 204C1 includes a detection base 240C1, a plurality of protrusions 241C1, a plurality of protrusions 242C1, and a capacitance forming part 243C1. The detection base 240C1 has a long shape extending in the X-axis direction, and one end thereof is connected to the inner frame portion 101A. The plurality of protrusions 241C1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 241C1 are arranged at predetermined intervals along the direction in which the detection base 240C1 extends (X-axis direction) on the side of the detection base 240C1 on the third mass unit 300 side. The plurality of protrusions 242C1 have a rectangular shape having a predetermined width in the X-axis direction. The plurality of protrusions 242C1 are arranged at predetermined intervals along the direction (X-axis direction) in which the detection base 240C1 extends on the side of the detection base 240C1 on the second mass unit 20 side. The capacitance forming portion 243C1 is formed at the end of the detection base portion 240C1 on the detector holding portion 201A1 side. The capacitance forming portion 243C1 is formed so that the area viewed along the X-axis direction is larger than the area of the detection base portion 240C1. The area of the electrostatic capacity forming unit 243C1 viewed along the X-axis direction is appropriately set to a value suitable for correcting a change in electrostatic capacity during vibration described later. Further, by adjusting the length of the capacitance forming portion 243C1 in the X-axis direction, the distance between the capacitance forming portion 243C1 and the inner frame portion 101A is suitable for correcting the capacitance change during vibration described later. The value is set appropriately.
 加速度検出子202A1,202B1,202C1,202D1と、加速度検出子204A1,204B1,204C1は、Y軸方向に沿って、交互に配置されている。具体的には、加速度検出子202A1,202B1間に、加速度検出子204A1が配置される。加速度検出子202B1,202C1間に、加速度検出子204B1が配置される。加速度検出子202C1,202D1間に、加速度検出子204C1が配置される。 The acceleration detectors 202A1, 202B1, 202C1, 202D1 and the acceleration detectors 204A1, 204B1, 204C1 are alternately arranged along the Y-axis direction. Specifically, the acceleration detector 204A1 is disposed between the acceleration detectors 202A1 and 202B1. The acceleration detector 204B1 is disposed between the acceleration detectors 202B1 and 202C1. The acceleration detector 204C1 is disposed between the acceleration detectors 202C1 and 202D1.
 このような構成において、1つの可動側の加速度検出子の各構成要素と、当該可動側の加速度検出子を挟む2つの固定側の可動側検出子の各構成要素が、それぞれ本発明の各構成要素と次に示すように対応する。 In such a configuration, each component of one movable-side acceleration detector and each component of two fixed-side movable-side detectors sandwiching the movable-side acceleration detector are respectively components of the present invention. Corresponds to the element as shown below.
 Y軸方向に挟まれる可動側の加速度検出子の検出用基部は、本発明の「可動側検出用基部」に相当する。可動側の加速度検出子の検出用基部の重心Gと反対側(第1質量部10の場合、Y軸方向の負の方向であり第3質量部300側)に突出する突起部は、本発明の「可動側第1突起部」に相当する。可動側の加速度検出子の検出用基部の重心G側(第1質量部10の場合、Y軸方向の正の方向であり第2質量部20側)に突出する突起部は、本発明の「可動側第2突起部」に相当する。 The detection base of the movable acceleration detector sandwiched in the Y-axis direction corresponds to the “movable side detection base” of the present invention. The protrusion protruding to the side opposite to the center of gravity G of the detection base of the movable acceleration detector (in the case of the first mass unit 10, the negative direction in the Y-axis direction and the third mass unit 300 side) is the present invention. Corresponds to “movable side first protrusion”. The protrusion protruding toward the center of gravity G of the detection base of the movable-side acceleration detector (in the case of the first mass unit 10, the positive direction in the Y-axis direction and the second mass unit 20 side) This corresponds to the “movable side second protrusion”.
 可動側の加速度検出子に隣接し、重心Gと反対側に配置された固定側の加速度検出子の検出用基部は、本発明の「第1固定側検出用基部」に相当する。この固定側の検出用主軸における前記可動部側の加速度検出子側に突出する突起部は、本発明の「固定側第1突起部」に相当する。 The detection base portion of the fixed-side acceleration detector adjacent to the movable-side acceleration detector and disposed on the side opposite to the center of gravity G corresponds to the “first fixed-side detection base” of the present invention. The protrusion that protrudes toward the acceleration detector on the movable portion side of the fixed-side detection main shaft corresponds to the “fixed-side first protrusion” of the present invention.
 可動側の加速度検出子に隣接し、重心G側に配置された固定側の加速度検出子の検出用基部は、本発明の「第2固定側検出用基部」に相当する。この固定側の検出用主軸における前記可動部側の加速度検出子側に突出する突起部は、本発明の「固定側第2突起部」に相当する。 The detection base of the fixed-side acceleration detector arranged adjacent to the movable-side acceleration detector and located on the center of gravity G side corresponds to the “second fixed-side detection base” of the present invention. The protrusion that protrudes toward the acceleration detector on the movable portion side of the fixed-side detection main shaft corresponds to the “fixed-side second protrusion” of the present invention.
 例えば、可動側の加速度検出子204A1の場合、検出用基部240A1は「可動側検出用基部」に相当する。突起部241A1は本発明の「可動側第1突起部」に相当する。突起部242A1は本発明の「可動側第2突起部」に相当する。固定側の加速度検出子202A1の検出用基部220A1は「第1固定側検出用基部」に相当する。突起部222A1は「固定側第1突起部」に相当する。固定側の加速度検出子202B1の検出用基部220B1は「第2固定側検出用基部」に相当する。突起部221B1は「固定側第2突起部」に相当する。 For example, in the case of the movable-side acceleration detector 204A1, the detection base 240A1 corresponds to the “movable-side detection base”. The protrusion 241A1 corresponds to the “movable side first protrusion” of the present invention. The protrusion 242A1 corresponds to the “movable side second protrusion” of the present invention. The detection base 220A1 of the fixed-side acceleration detector 202A1 corresponds to a “first fixed-side detection base”. The protrusion 222A1 corresponds to a “fixed-side first protrusion”. The detection base 220B1 of the fixed-side acceleration detector 202B1 corresponds to a “second fixed-side detection base”. The protrusion 221B1 corresponds to a “fixed-side second protrusion”.
 加速度検出子202A1,202B1,202C1,202D1の各突起部と、加速度検出子204A1,204B1,204C1の各突起部とが、所定面積で対向するように配置される。 The protrusions of the acceleration detectors 202A1, 202B1, 202C1, and 202D1 and the protrusions of the acceleration detectors 204A1, 204B1, and 204C1 are arranged to face each other with a predetermined area.
 より具体的には、加速度検出子202A1の突起部222A1と、加速度検出子204A1の突起部241A1が対向する。加速度検出子204A1の突起部242A1と加速度検出子202B1の突起部221B1が対向する。加速度検出子202B1の突起部222B1と加速度検出子204B1の突起部241B1が対向する。加速度検出子204B1の突起部242B1と加速度検出子202C1の突起部221C1が対向する。加速度検出子202C1の突起部222C1と加速度検出子204C1の突起部241C1が対向する。加速度検出子204C1の突起部242C1と加速度検出子202D1の突起部221D1が対向する。 More specifically, the protrusion 222A1 of the acceleration detector 202A1 and the protrusion 241A1 of the acceleration detector 204A1 face each other. The protrusion 242A1 of the acceleration detector 204A1 and the protrusion 221B1 of the acceleration detector 202B1 face each other. The protrusion 222B1 of the acceleration detector 202B1 and the protrusion 241B1 of the acceleration detector 204B1 face each other. The protrusion 242B1 of the acceleration detector 204B1 and the protrusion 221C1 of the acceleration detector 202C1 face each other. The protrusion 222C1 of the acceleration detector 202C1 and the protrusion 241C1 of the acceleration detector 204C1 face each other. The protrusion 242C1 of the acceleration detector 204C1 and the protrusion 221D1 of the acceleration detector 202D1 face each other.
 そして、加速度検出子202A1,202B1,202C1,202D1の各突起部と、加速度検出子204A1,204B1,204C1の各突起部とは、全面が対向するのではなく、それぞれの対向する突起部がX軸方向にずれて対向している。この際、加速度検出子202A1,202B1,202C1,202D1の各突起部は、それぞれがはさみ込む加速度検出子204A1,204B1,204C1の各突起部に対して、X軸方向の異なる方向にずれている。 The projections of the acceleration detectors 202A1, 202B1, 202C1, and 202D1 and the projections of the acceleration detectors 204A1, 204B1, and 204C1 do not face each other, but each of the projections that face each other has an X axis. Opposite in the direction. At this time, the protrusions of the acceleration detectors 202A1, 202B1, 202C1, and 202D1 are displaced in different directions in the X-axis direction with respect to the protrusions of the acceleration detectors 204A1, 204B1, and 204C1 that are sandwiched therebetween.
 例えば、図3に示すように、固定側の加速度検出子202A1の各突起部222A1が、可動側の加速度検出子204A1の各突起部241A1に対してX軸方向に沿って検出子保持部201A1側にずれている場合、固定側の加速度検出子202B1の各突起部221B1は、可動側の加速度検出子204A1の各突起部242A1に対してX軸方向に沿って近接する内側枠101A側にずれている。この際、ズレ量は同じになるように各突起部が形成されている。より好ましくは、ズレ量が突起部のX軸方向の半分になるように、各突起部が形成されている。 For example, as shown in FIG. 3, each protrusion 222A1 of the fixed-side acceleration detector 202A1 is positioned on the detector holding portion 201A1 side along the X-axis direction with respect to each protrusion 241A1 of the movable-side acceleration detector 204A1. In this case, the protrusions 221B1 of the fixed-side acceleration detector 202B1 are shifted toward the inner frame 101A adjacent to the protrusions 242A1 of the movable-side acceleration detector 204A1 along the X-axis direction. Yes. At this time, each protrusion is formed so that the amount of deviation is the same. More preferably, each protrusion is formed such that the amount of deviation is half of the protrusion in the X-axis direction.
 このような構成とすることで、可動側の各加速度検出子204A1,204B1,204C1がX軸方向に振動しても、可動側の各加速度検出子204A1,204B1,204C1のY軸方向の一方側に配置された固定側の加速度検出子との間で生じる静電容量(キャパシタンス)の変化と、可動側の各加速度検出子204A1,204B1,204C1のY軸方向の他方側に配置された固定側の加速度検出子との間で生じる静電容量(キャパシタンス)の変化とが逆の変化をする。例えば、一方の静電容量が増加すれば、他方の静電容量は減少する。したがって、加速度が加わっていない状態のように、両者の突起の間隔が等しい場合には、これらの静電容量を加算すれば、可動側の各加速度検出子204A1,204B1,204C1がX軸方向に振動しても、当該振動による静電容量の変化を防ぐことができる。 With such a configuration, even if each of the movable-side acceleration detectors 204A1, 204B1, and 204C1 vibrates in the X-axis direction, one side of the movable-side acceleration detectors 204A1, 204B1, and 204C1 in the Y-axis direction. Change in capacitance between the fixed-side acceleration detectors arranged on the fixed side and the fixed side arranged on the other side in the Y-axis direction of each of the movable-side acceleration detectors 204A1, 204B1, 204C1 The change in capacitance (capacitance) that occurs between the acceleration sensor and the acceleration sensor changes in the opposite direction. For example, if one capacitance increases, the other capacitance decreases. Therefore, when the distance between the protrusions is equal as in the case where no acceleration is applied, the acceleration sensors 204A1, 204B1, 204C1 on the movable side can be moved in the X-axis direction by adding these capacitances. Even if it vibrates, the change in capacitance due to the vibration can be prevented.
 加速度検出子202E1,202F1,202G1は、検出子保持部201A1の中心軸101C側に接続し、当該中心軸101C側に突出する形状からなる。加速度検出子202E1は、検出子保持部201A1を基準として、加速度検出子202A1と線対称に形成されている。加速度検出子202F1は、検出子保持部201A1を基準として、加速度検出子202B1と線対称に形成されている。加速度検出子202G1は、検出子保持部201A1を基準として、加速度検出子202C1と対称の位置に形成され、加速度検出子202G1の形状は、加速度検出子202D1を線対称に射影したものと同じである。 The acceleration detectors 202E1, 202F1, 202G1 are connected to the center axis 101C side of the detector holding portion 201A1 and have a shape projecting toward the center axis 101C side. The acceleration detector 202E1 is formed symmetrically with the acceleration detector 202A1 with respect to the detector holder 201A1. The acceleration detector 202F1 is formed symmetrically with the acceleration detector 202B1 with respect to the detector holder 201A1. The acceleration detector 202G1 is formed at a position symmetrical to the acceleration detector 202C1 with respect to the detector holder 201A1, and the shape of the acceleration detector 202G1 is the same as that of the acceleration detector 202D1 projected in line symmetry. .
 加速度検出子204D1,204E1は、検出子保持部2051の検出子保持部201A1側に接続し、当該検出子保持部201A1側に突出する形状からなる。加速度検出子204D1は、検出子保持部201A1を基準にして、加速度検出子204A1と線対称の形状からなる。加速度検出子204E1は、検出子保持部201A1を基準にして、加速度検出子204B1と線対称の形状からなる。 The acceleration detectors 204D1 and 204E1 are connected to the detector holding unit 201A1 side of the detector holding unit 2051 and have a shape protruding to the detector holding unit 201A1 side. The acceleration detector 204D1 has a shape symmetrical with the acceleration detector 204A1 with respect to the detector holder 201A1. The acceleration detector 204E1 has a shape symmetrical with the acceleration detector 204B1 with respect to the detector holder 201A1.
 加速度検出子202E1,202F1,202G1と加速度検出子204D1,204E1はY軸方向に沿って、交互に配置されている。具体的には、加速度検出子202E1,202F1間に、加速度検出子204D1が配置されている。加速度検出子202F1,202G1間に、加速度検出子204E1が配置されている。そして、加速度検出子202E1,202F1,202G1の各突起部と加速度検出子204D1,204E1の各突起部は、加速度検出子202A1,202B1,202C1,202D1の各突起部と加速度検出子204A1,204B1,204C1の各突起部と同様に、X軸方向にずれた状態で対向しており、その配列順もX軸方向に沿って同じ順になっている。 Acceleration detectors 202E1, 202F1, 202G1 and acceleration detectors 204D1, 204E1 are alternately arranged along the Y-axis direction. Specifically, the acceleration detector 204D1 is disposed between the acceleration detectors 202E1 and 202F1. An acceleration detector 204E1 is disposed between the acceleration detectors 202F1 and 202G1. The projections of the acceleration detectors 202E1, 202F1, 202G1 and the projections of the acceleration detectors 204D1, 204E1 are the projections of the acceleration detectors 202A1, 202B1, 202C1, 202D1, and the acceleration detectors 204A1, 204B1, 204C1. As in the projections of FIG. 2, they face each other in a state shifted in the X-axis direction, and the arrangement order thereof is the same along the X-axis direction.
 加速度検出子204F1,204G1は、検出子保持部2051の検出子保持部201B1側に接続し、当該検出子保持部201B1側に突出する形状からなる。加速度検出子204F1は、検出子保持部2051を基準にして、加速度検出子204D1と線対称の形状からなる。加速度検出子204G1は、検出子保持部2051を基準にして、加速度検出子204E1と線対称の形状からなる。 The acceleration detectors 204F1 and 204G1 are connected to the detector holding unit 201B1 side of the detector holding unit 2051 and have a shape protruding to the detector holding unit 201B1 side. The acceleration detector 204F1 has a shape symmetrical with the acceleration detector 204D1 with respect to the detector holder 2051. The acceleration detector 204G1 has a shape symmetrical with the acceleration detector 204E1 with respect to the detector holder 2051.
 加速度検出子202H1,202I1,202J1は、検出子保持部201B1の検出子保持部2051側に接続し、当該検出子保持部2051側に突出する形状からなる。加速度検出子202H1は、検出子保持部2051を基準として、加速度検出子202E1と線対称に形成されている。加速度検出子202I1は、検出子保持部2051を基準として、加速度検出子202F1と線対称に形成されている。加速度検出子202J1は、検出子保持部2051を基準として、加速度検出子202G1と線対称に形成されている。 The acceleration detectors 202H1, 202I1, and 202J1 are connected to the detector holding unit 2051 side of the detector holding unit 201B1 and have a shape protruding to the detector holding unit 2051 side. The acceleration detector 202H1 is formed symmetrically with the acceleration detector 202E1 with respect to the detector holder 2051. The acceleration detector 202I1 is formed symmetrically with the acceleration detector 202F1 with respect to the detector holder 2051. The acceleration detector 202J1 is formed symmetrically with the acceleration detector 202G1 with respect to the detector holder 2051.
 加速度検出子202H1,202I1,202J1と加速度検出子204F1,204G1はY軸方向に沿って、交互に配置されている。具体的には、加速度検出子202H1,202I1間に、加速度検出子204F1が配置されている。加速度検出子202I1,202J1間に、加速度検出子204G1が配置されている。そして、加速度検出子202H1,202I1,202J1の各突起部と加速度検出子204F1,204G1の各突起部は、加速度検出子202A1,202B1,202C1,202D1の各突起部と加速度検出子204A1,204B1,204C1の各突起部と同様に、X軸方向にずれた状態で対向しており、その配列順もX軸方向に沿って同じ順になっている。 Acceleration detectors 202H1, 202I1, 202J1 and acceleration detectors 204F1, 204G1 are alternately arranged along the Y-axis direction. Specifically, the acceleration detector 204F1 is disposed between the acceleration detectors 202H1 and 202I1. An acceleration detector 204G1 is disposed between the acceleration detectors 202I1 and 202J1. The projections of the acceleration detectors 202H1, 202I1, 202J1 and the projections of the acceleration detectors 204F1, 204G1 are the projections of the acceleration detectors 202A1, 202B1, 202C1, 202D1, and the acceleration detectors 204A1, 204B1, 204C1. As in the projections of FIG. 2, they face each other in a state shifted in the X-axis direction, and the arrangement order thereof is the same along the X-axis direction.
 加速度検出子202K1,202L1,202M1,202N1は、検出子保持部201B1の中心軸101C側に接続し、当該中心軸101C側に突出する形状からなる。加速度検出子202K1は、検出子保持部2051の幅方向に中心を通りY軸方向に延びる軸を基準として、加速度検出子202A1と線対称に形成されている。加速度検出子202L1は、検出子保持部2051の幅方向に中心を通りY軸方向に延びる軸を基準として、加速度検出子202B1と線対称に形成されている。加速度検出子202M1は、検出子保持部2051の幅方向に中心を通りY軸方向に延びる軸を基準として、加速度検出子202C1と線対称に形成されている。加速度検出子202N1は、検出子保持部2051の幅方向に中心を通りY軸方向に延びる軸を基準として、加速度検出子202D1と線対称に形成されている。 The acceleration detectors 202K1, 202L1, 202M1, and 202N1 are connected to the center axis 101C side of the detector holding portion 201B1 and have a shape protruding toward the center axis 101C side. The acceleration detector 202K1 is formed symmetrically with the acceleration detector 202A1 with reference to an axis passing through the center in the width direction of the detector holder 2051 and extending in the Y-axis direction. The acceleration detector 202L1 is formed in line symmetry with the acceleration detector 202B1 with reference to an axis that passes through the center in the width direction of the detector holder 2051 and extends in the Y-axis direction. The acceleration detector 202M1 is formed in line symmetry with the acceleration detector 202C1 with reference to an axis that passes through the center in the width direction of the detector holder 2051 and extends in the Y-axis direction. The acceleration detector 202N1 is formed in line symmetry with the acceleration detector 202D1 with reference to an axis passing through the center in the width direction of the detector holder 2051 and extending in the Y-axis direction.
 加速度検出子204H1,204I1,204J1は、中心軸101Cの固定部111側に接続し、当該固定部111側に突出する形状からなる。加速度検出子204H1は、検出子保持部2051の幅方向に中心を通りY軸方向に延びる軸を基準として、加速度検出子204A1と線対称に形成されている。加速度検出子204I1は、検出子保持部2051の幅方向に中心を通りY軸方向に延びる軸を基準として、加速度検出子204B1と線対称に形成されている。加速度検出子204J1は、検出子保持部2051の幅方向に中心を通りY軸方向に延びる軸を基準として、加速度検出子204C1と線対称に形成されている。 The acceleration detectors 204H1, 204I1, and 204J1 are connected to the fixed portion 111 side of the central axis 101C and have a shape that protrudes toward the fixed portion 111 side. The acceleration detector 204H1 is formed in line symmetry with the acceleration detector 204A1 with reference to an axis passing through the center in the width direction of the detector holder 2051 and extending in the Y-axis direction. The acceleration detector 204I1 is formed in line symmetry with the acceleration detector 204B1 with reference to an axis that passes through the center in the width direction of the detector holder 2051 and extends in the Y-axis direction. The acceleration detector 204J1 is formed in line symmetry with the acceleration detector 204C1 with reference to an axis that passes through the center in the width direction of the detector holder 2051 and extends in the Y-axis direction.
 加速度検出子202K1,202L1,202M1,202N1と加速度検出子204H1,204I1,204J1はY軸方向に沿って、交互に配置されている。具体的には、加速度検出子202K1,202L1間に、加速度検出子204H1が配置されている。加速度検出子202L1,202M1間に、加速度検出子204I1が配置されている。加速度検出子202M1,202N1間に、加速度検出子204J1が配置されている。そして、加速度検出子202K1,202L1,202M1,202N1の各突起部と加速度検出子204H1,204I1,204J1の各突起部は、加速度検出子202A1,202B1,202C1,202D1の各突起部と加速度検出子204A1,204B1,204C1の各突起部と同様に、X軸方向にずれた状態で対向しており、その配列順もX軸方向に沿って同じ順になっている。 Acceleration detectors 202K1, 202L1, 202M1, 202N1 and acceleration detectors 204H1, 204I1, 204J1 are alternately arranged along the Y-axis direction. Specifically, the acceleration detector 204H1 is disposed between the acceleration detectors 202K1 and 202L1. An acceleration detector 204I1 is disposed between the acceleration detectors 202L1 and 202M1. An acceleration detector 204J1 is disposed between the acceleration detectors 202M1 and 202N1. The projections of the acceleration detectors 202K1, 202L1, 202M1, and 202N1 and the projections of the acceleration detectors 204H1, 204I1, and 204J1 are the projections of the acceleration detectors 202A1, 202B1, 202C1, and 202D1, and the acceleration detector 204A1. , 204B1 and 204C1 are opposed to each other while being displaced in the X-axis direction, and the arrangement order thereof is the same along the X-axis direction.
 加速度検出子202A1~202N1,204A1~204J1をこのような構成とすることで、X軸方向に振動した状態で、Y軸方向に加速度が加わると、隣接する加速度検出子202A1~202N1,204A1~204J1の突起部の対向距離が変化する。この対向距離の変化に対応して静電容量が変化するので、この変化量を検出することで、加速度を検出することができる。そして、加速度の方向によって静電容量の変化方向(静電容量大から小、もしくは静電容量小から大)が変わるので、加速度の方向も検出することができる。 By configuring the acceleration detectors 202A1 to 202N1 and 204A1 to 204J1 as described above, when acceleration is applied in the Y-axis direction in a state of vibrating in the X-axis direction, the adjacent acceleration detectors 202A1 to 202N1, 204A1 to 204J1 are vibrated. The opposing distance of the protrusions of the slab changes. Since the capacitance changes corresponding to the change in the facing distance, the acceleration can be detected by detecting the amount of change. Since the direction of change in capacitance (capacitance from large to small, or from small to large) varies depending on the direction of acceleration, the direction of acceleration can also be detected.
 角速度検出子3011,3021は、固定部111の支持梁4A側の空間および中心軸101C側の空間に複数形成されている。角速度検出子3011は、固定部111に一方端が接続する長尺状である。角速度検出子3021は、中心軸101Cに一方端が接続する長尺状である。支持梁4A側の角速度検出子3011と、中心軸101C側の角速度検出子3011は、固定部111を介して対称の位置に配置されている。 A plurality of angular velocity detectors 3011 and 3021 are formed in the space on the support beam 4A side and the space on the central axis 101C side of the fixed portion 111. The angular velocity detector 3011 has a long shape with one end connected to the fixed portion 111. The angular velocity detector 3021 has a long shape with one end connected to the central axis 101C. The angular velocity detector 3011 on the support beam 4 </ b> A side and the angular velocity detector 3011 on the central axis 101 </ b> C side are arranged at symmetrical positions via the fixing portion 111.
 角速度検出子3011,3021は、Y軸方向に沿って交互に配置されている。この際、一つの角速度検出子3011を基準として、第2質量部20側の角速度検出子3021までの間隔は、第3質量部300側の角速度検出子3021までの間隔よりも広く設定されている。 The angular velocity detectors 3011 and 3021 are alternately arranged along the Y-axis direction. At this time, the distance to the angular velocity detector 3021 on the second mass unit 20 side is set wider than the interval to the angular velocity detector 3021 on the third mass unit 300 side based on one angular velocity detector 3011. .
 角速度検出子3011,3021をこのような構造とすることで、X軸方向に振動した状態で、Z軸方向(X軸およびY軸に直交する方向)を軸とする角速度ωがセンサ素子1に加わると、Y軸方向のコリオリ力が第1質量部10の内枠部101Aに加わり、角速度検出子3011,3021間の静電容量が変化する。この変化量を検出することで、角速度ωを検出することができる。この際、一つの角速度検出子3011を基準とする第2質量部20側の角速度検出子3021までの間隔と第3質量部300側の角速度検出子3021までの間隔とが異なることから、Y軸方向の負の方向にコリオリ力が加われば静電容量が低下し、Y軸方向の正の方向にコリオリ力が加われば静電容量が増加するので、角速度ωの方向も検出することができる。 By configuring the angular velocity detectors 3011 and 3021 in such a structure, the angular velocity ω with the Z-axis direction (the direction orthogonal to the X-axis and the Y-axis) as an axis is applied to the sensor element 1 in a state of vibrating in the X-axis direction. When applied, the Coriolis force in the Y-axis direction is applied to the inner frame portion 101A of the first mass unit 10, and the capacitance between the angular velocity detectors 3011 and 3021 changes. By detecting this amount of change, the angular velocity ω can be detected. At this time, since the interval to the angular velocity detector 3021 on the second mass unit 20 side with respect to one angular velocity detector 3011 is different from the interval to the angular velocity detector 3021 on the third mass unit 300 side, the Y axis If Coriolis force is applied in the negative direction of the direction, the capacitance decreases, and if Coriolis force is applied in the positive direction in the Y-axis direction, the capacitance increases. Therefore, the direction of the angular velocity ω can also be detected.
 さらに、角速度検出子3011、3021は、X軸方向に長尺状であり、Y軸方向に対して大きな面積を有し、対向する面積が広いので、加速度印加方向に対する機械的Q値を低下させることができる。これにより、加速度検出に対するダンピング効果を得ることができる。 Furthermore, the angular velocity detectors 3011 and 3021 are elongated in the X-axis direction, have a large area with respect to the Y-axis direction, and have a large area facing each other, so that the mechanical Q value in the acceleration application direction is reduced. be able to. Thereby, the damping effect with respect to acceleration detection can be obtained.
 次に、第2検出部12の具体的構成については、図を参照して説明する。図4は、本発明の実施形態に係る第2検出部の構成を示す拡大平面図である。 Next, the specific configuration of the second detection unit 12 will be described with reference to the drawings. FIG. 4 is an enlarged plan view showing the configuration of the second detection unit according to the embodiment of the present invention.
 第2検出部12は、固定部121、加速度検出子202A2,202B2,202C2,202D2,202E2,202F2,202G2,202H2,202I2,202J2,202K2,202L2,202M2,202N2および、加速度検出子204A2,204B2,204C2,204D2,204E2,204F2,204G2,204H2,204I2,204J2を備える。 The second detector 12 includes a fixed part 121, acceleration detectors 202A2, 202B2, 202C2, 202D2, 202E2, 202F2, 202G2, 202H2, 202I2, 202J2, 202K2, 202L2, 202M2, 202N2, and acceleration detectors 204A2, 204B2. 204C2, 204D2, 204E2, 204F2, 204G2, 204H2, 204I2, and 204J2.
 固定部121は、内枠部101Aの内部空間における中心軸101Cで分割される他方の内部空間内に配置されている。固定部121は、重心Gを通るY軸を基準にして、固定部111と線対称の形状からなる。 The fixing part 121 is arranged in the other internal space divided by the central axis 101C in the internal space of the inner frame part 101A. The fixed part 121 has a shape symmetrical with the fixed part 111 with respect to the Y axis passing through the center of gravity G.
 固定部121に接続する検出子保持部201A2,201B2は、Y軸を基準にして、それぞれ検出子保持部201A1,201B1と線対称の形状からなる。内枠部103Bに接続する検出子保持部2052は、Y軸を基準にして、検出子保持部2051と線対称の形状からなる。 The detector holders 201A2 and 201B2 connected to the fixed part 121 are symmetrical with the detector holders 201A1 and 201B1, respectively, with respect to the Y axis. The detector holding unit 2052 connected to the inner frame 103B has a shape symmetrical with the detector holding unit 2051 with respect to the Y axis.
 加速度検出子202A2~202N2は、概略的には、Y軸を基準にして、それぞれ加速度検出子202A1~202N1と線対称の形状からなり、加速度検出子204A2~204J2は、概略的には、Y軸を基準にして、それぞれ加速度検出子204A1~204J1と線対称の形状からなるが、加速度検出子202A2~202N2の各突起部と加速度検出子204A2~204J2の各突起部との配列順が、加速度検出子202A1~202N1の各突起部と加速度検出子204A1~J1の各突起部との配列順と線対称ではなく、X軸方向に沿って同じ順になっている。 The acceleration detectors 202A2 to 202N2 are roughly symmetrical with the acceleration detectors 202A1 to 202N1 with respect to the Y axis, respectively. The acceleration detectors 204A2 to 204J2 are roughly The acceleration detectors 204A1 to 204J1 are symmetrical with respect to the acceleration detectors 204A1 to 204J1, but the order of arrangement of the protrusions of the acceleration detectors 202A2 to 202N2 and the protrusions of the acceleration detectors 204A2 to 204J2 is the acceleration detection. The order of arrangement of the projections of the children 202A1 to 202N1 and the projections of the acceleration detectors 204A1 to J1 is not symmetrical with respect to the arrangement order, but is in the same order along the X-axis direction.
 加速度検出子202A2~202N2,204A2~204J2をこのような構成とすることで、加速度検出子202A1~202N1,204A1~204J1と同じ振幅で同じ位相の加速度検出信号を得ることができる。 By configuring the acceleration detectors 202A2 to 202N2 and 204A2 to 204J2 as described above, acceleration detection signals having the same amplitude and the same phase as the acceleration detectors 202A1 to 202N1 and 204A1 to 204J1 can be obtained.
 複数の角速度検出子3012、3022の配列群は、Y軸を基準にして、複数の角速度検出子3011、3021の配列群と略対称な位置関係にあるが、配列方向に沿った配置順は逆である。複数の角速度検出子3012,3022をこのような構成とすることで、角速度検出子3011、3021と同じ振幅で逆位相の角速度検出信号を得ることができる。 The arrangement group of the plurality of angular velocity detectors 3012 and 3022 is substantially symmetrical with the arrangement group of the plurality of angular velocity detectors 3011 and 3021 with respect to the Y axis, but the arrangement order along the arrangement direction is reversed. It is. By configuring the plurality of angular velocity detectors 3012 and 3022 as described above, an angular velocity detection signal having the same amplitude as that of the angular velocity detectors 3011 and 3021 can be obtained.
 次に、第3検出部13の具体的構成については、図を参照して説明する。図5は、本発明の実施形態に係る第3検出部の構成を示す拡大平面図である。 Next, a specific configuration of the third detection unit 13 will be described with reference to the drawings. FIG. 5 is an enlarged plan view showing the configuration of the third detection unit according to the embodiment of the present invention.
 第3検出部13は、固定部131、加速度検出子202A3,202B3,202C3,202D3,202E3,202F3,202G3,202H3,202I3,202J3,202K3,202L3,202M3,202N3および、加速度検出子204A3,204B3,204C3,204D3,204E3,204F3,204G3,204H3,204I3,204J3を備える。 The third detector 13 includes a fixed portion 131, acceleration detectors 202A3, 202B3, 202C3, 202D3, 202E3, 202F3, 202G3, 202H3, 202I3, 202J3, 202K3, 202L3, 202M3, 202N3 and acceleration detectors 204A3, 204B3. 204C3, 204D3, 204E3, 204F3, 204G3, 204H3, 204I3, 204J3 are provided.
 固定部131は、内枠部101Bの内部空間における中心軸101Dで分割される一方の内部空間内に配置されている。固定部131は、重心Gを通るX軸を基準にして、固定部111と線対称の形状からなる。 The fixed portion 131 is disposed in one internal space divided by the central axis 101D in the internal space of the inner frame portion 101B. The fixed portion 131 has a shape symmetrical with the fixed portion 111 with respect to the X axis passing through the center of gravity G.
 固定部131に接続する検出子保持部201A3,201B3は、X軸を基準にして、それぞれ検出子保持部201A1,201B1と線対称の形状からなる。内枠部103Dに接続する検出子保持部2053は、X軸を基準にして、検出子保持部2051と線対称の形状からなる。 The detector holders 201A3 and 201B3 connected to the fixed part 131 are symmetrical with the detector holders 201A1 and 201B1, respectively, with respect to the X axis. The detector holding unit 2053 connected to the inner frame portion 103D has a shape symmetrical with the detector holding unit 2051 with respect to the X axis.
 加速度検出子202A3~202N3は、X軸を基準にして、それぞれ加速度検出子202A1~202N1と線対称の形状からなる。加速度検出子204A3~204J3は、X軸を基準にして、それぞれ加速度検出子204A1~204J1と線対称の形状からなる。そして、加速度検出子202A3~202N3の各突起部と加速度検出子204A3~204J3の各突起部は、加速度検出子202A1~202N1の各突起部と加速度検出子204A1~J1の各突起部と同様に、X軸方向にずれた状態で対向している。 The acceleration detectors 202A3 to 202N3 have a shape symmetrical with the acceleration detectors 202A1 to 202N1 with respect to the X axis. The acceleration detectors 204A3 to 204J3 have line-symmetric shapes with respect to the acceleration detectors 204A1 to 204J1, respectively, with respect to the X axis. The projections of the acceleration detectors 202A3 to 202N3 and the projections of the acceleration detectors 204A3 to 204J3 are the same as the projections of the acceleration detectors 202A1 to 202N1 and the projections of the acceleration detectors 204A1 to J1, respectively. Opposing in a state shifted in the X-axis direction.
 加速度検出子202A3~202N3,204A3~204J3をこのような構成とすることで、加速度検出子202A1~202N1,204A1~204J1と同じ振幅で同位相の加速度検出信号を得ることができる。 By configuring the acceleration detectors 202A3 to 202N3 and 204A3 to 204J3 as described above, acceleration detection signals having the same amplitude and the same phase as the acceleration detectors 202A1 to 202N1 and 204A1 to 204J1 can be obtained.
 複数の角速度検出子3013,3023は、X軸を基準にして、それぞれ複数の角速度検出子3011、3021と線対称の形状からなる。複数の角速度検出子3013,3023をこのような構成とすることで、角速度検出子3011、3021と同じ振幅で同位相の角速度検出信号を得ることができる。 The plurality of angular velocity detectors 3013 and 3023 have line-symmetric shapes with the plurality of angular velocity detectors 3011 and 3021, respectively, with respect to the X axis. By configuring the plurality of angular velocity detectors 3013 and 3023 as described above, an angular velocity detection signal having the same amplitude and the same phase as the angular velocity detectors 3011 and 3021 can be obtained.
 次に、第4検出部14の具体的構成については、図を参照して説明する。図6は、本発明の実施形態に係る第4検出部の構成を示す拡大平面図である。 Next, a specific configuration of the fourth detection unit 14 will be described with reference to the drawings. FIG. 6 is an enlarged plan view showing the configuration of the fourth detection unit according to the embodiment of the present invention.
 第4検出部14は、固定部141、加速度検出子202A4,202B4,202C4,202D4,202E4,202F4,202G4,202H4,202I4,202J4,202K4,202L4,202M4,202N4および、加速度検出子204A4,204B4,204C4,204D4,204E4,204F4,204G4,204H4,204I4,204J4を備える。 The fourth detector 14 includes a fixed portion 141, acceleration detectors 202A4, 202B4, 202C4, 202D4, 202E4, 202F4, 202G4, 202H4, 202I4, 202J4, 202K4, 202L4, 202M4, 202N4 and acceleration detectors 204A4, 204B4. 204C4, 204D4, 204E4, 204F4, 204G4, 204H4, 204I4, 204J4 are provided.
 固定部141は、内枠部101Bの内部空間における中心軸101Dで分割される他方の内部空間内に配置されている。固定部141は、重心Gを通るY軸を基準にして、固定部113と線対称の形状からなる。 The fixed portion 141 is disposed in the other internal space divided by the central axis 101D in the internal space of the inner frame portion 101B. The fixed portion 141 has a shape symmetrical to the fixed portion 113 with respect to the Y axis passing through the center of gravity G.
 固定部141に接続する検出子保持部201A4,201B4は、Y軸を基準にして、それぞれ検出子保持部201A3,201B3と線対称の形状からなる。内枠部103Dに接続する検出子保持部2054は、Y軸を基準にして、検出子保持部2053と線対称の形状からなる。 The detector holders 201A4 and 201B4 connected to the fixed part 141 have line-symmetric shapes with respect to the detector holders 201A3 and 201B3, respectively, with respect to the Y axis. The detector holding unit 2054 connected to the inner frame portion 103D has a shape symmetrical with the detector holding unit 2053 with respect to the Y axis.
 加速度検出子202A4~202N4は、概略的には、Y軸を基準にして、それぞれ加速度検出子202A3~202N3と線対称の形状からなる。加速度検出子204A4~204J4は、概略的には、Y軸を基準にして、それぞれ加速度検出子204A3~204J3と線対称の形状からなるが、加速度検出子202A4~202N4の各突起部と加速度検出子204A4~204J4の各突起部との配列順が、加速度検出子202A3~202N3の各突起部と加速度検出子204A3~J3の各突起部との配列順と線対称ではなく、X軸方向に沿って同じ順になっている。 The acceleration detectors 202A4 to 202N4 generally have a shape symmetrical with the acceleration detectors 202A3 to 202N3 with respect to the Y axis. The acceleration detectors 204A4 to 204J4 generally have a shape symmetrical to the acceleration detectors 204A3 to 204J3 with respect to the Y axis, but the protrusions of the acceleration detectors 202A4 to 202N4 and the acceleration detectors. The arrangement order of the projections 204A4 to 204J4 is not symmetrical with the arrangement order of the projections of the acceleration detectors 202A3 to 202N3 and the projections of the acceleration detectors 204A3 to J3, but along the X-axis direction. The order is the same.
 加速度検出子202A4~202N4,204A4~204J4をこのような構成とすることで、加速度検出子202A3~202N3,204A3~204J3と同じ振幅で同位相の加速度検出信号を得ることができる。 By configuring the acceleration detectors 202A4 to 202N4 and 204A4 to 204J4 as described above, an acceleration detection signal having the same amplitude and the same phase as the acceleration detectors 202A3 to 202N3 and 204A3 to 204J3 can be obtained.
 複数の角速度検出子3014,3024の配列群は、Y軸を基準にして、複数の角速度検出子3013、3023の配列群と略対称な位置関係にあるが、配列方向に沿った配置順は逆である。複数の角速度検出子3014,3024をこのような構成とすることで、角速度検出子3013,3023と同じ振幅で逆位相の角速度検出信号を得ることができる。 The arrangement group of the plurality of angular velocity detectors 3014 and 3024 is substantially symmetrical to the arrangement group of the plurality of angular velocity detectors 3013 and 3023 with respect to the Y axis, but the arrangement order along the arrangement direction is reversed. It is. By configuring the plurality of angular velocity detectors 3014 and 3024 in such a configuration, an angular velocity detection signal having the same amplitude as that of the angular velocity detectors 3013 and 3023 can be obtained.
 次に、駆動部40およびモニタ部60の具体的構成については、図を参照して説明する。図7は、本発明の実施形態に係る駆動部およびモニタ部の構成を示す拡大平面図である。なお、図7では、第3検出部13に近接する第2駆動部40および第2モニタ部60の部分のみを拡大して表示している。そして、この部分を例に駆動部およびモニタ部の構成を説明する。他の検出部(第1検出部11、第2検出部12、第4検出部14)に近接する各櫛歯部の基本的な詳細構造は、以下に説明する櫛歯部43A,44A,43B,44Bと同じであるので、説明は省略する。 Next, specific configurations of the drive unit 40 and the monitor unit 60 will be described with reference to the drawings. FIG. 7 is an enlarged plan view showing the configuration of the drive unit and the monitor unit according to the embodiment of the present invention. In FIG. 7, only the portions of the second drive unit 40 and the second monitor unit 60 that are close to the third detection unit 13 are enlarged and displayed. And the structure of a drive part and a monitor part is demonstrated to this part as an example. The basic detailed structure of each of the comb teeth adjacent to the other detectors (the first detector 11, the second detector 12, and the fourth detector 14) is comb teeth 43A, 44A, 43B described below. 44B, the description is omitted.
 複数の櫛歯部43Aは、支持部材42に接続されている。櫛歯部43Aは、軸部431Aと、複数の歯部432Aとを備える。軸部431Aは、Y軸方向に延びる長尺状である。複数の歯部432Aは、軸部431Aの軸方向に沿って間隔をおいて配置されている。複数の歯部432Aは、櫛歯部44A側に突出するように、軸部431Aに形成されている。 The plurality of comb teeth 43A are connected to the support member 42. The comb tooth portion 43A includes a shaft portion 431A and a plurality of tooth portions 432A. The shaft portion 431A has a long shape extending in the Y-axis direction. The plurality of tooth portions 432A are arranged at intervals along the axial direction of the shaft portion 431A. The plurality of tooth portions 432A are formed on the shaft portion 431A so as to protrude toward the comb tooth portion 44A.
 複数の櫛歯部44Aは、外枠部102Bに接続されている。櫛歯部44Aは、軸部441Aと、複数の歯部442Aとを備える。軸部441Aは、Y軸方向に延びる長尺状である。複数の歯部442Aは、軸部441Aの軸方向に沿って間隔をおいて配置されている。複数の歯部442Aは、櫛歯部43A側に突出するように、軸部441Aに形成されている。 The plurality of comb tooth portions 44A are connected to the outer frame portion 102B. The comb tooth portion 44A includes a shaft portion 441A and a plurality of tooth portions 442A. The shaft portion 441A has a long shape extending in the Y-axis direction. The plurality of tooth portions 442A are arranged at intervals along the axial direction of the shaft portion 441A. The plurality of tooth portions 442A are formed on the shaft portion 441A so as to protrude toward the comb tooth portion 43A.
 この構成において、複数の歯部432Aと複数の歯部442AとがY軸方向にそれぞれ間隔をおいて交互に並ぶようにして配置されている。この際、複数の歯部432Aと複数の歯部442Aは、Y軸方向に直交する面が対向するように配置されている。 In this configuration, the plurality of tooth portions 432A and the plurality of tooth portions 442A are alternately arranged in the Y-axis direction at intervals. At this time, the plurality of tooth portions 432A and the plurality of tooth portions 442A are arranged so that the surfaces orthogonal to the Y-axis direction face each other.
 複数の櫛歯部43Bは、支持部材42に接続されている。櫛歯部43Bは、軸部431Bと、複数の歯部432Bとを備える。軸部431Bは、Y軸方向に延びる長尺状である。複数の歯部432Bは、軸部431Bの軸方向に沿って間隔をおいて配置されている。複数の歯部432Bは、櫛歯部44B側に突出するように、軸部431Bに形成されている。 The plurality of comb teeth 43B are connected to the support member 42. The comb tooth portion 43B includes a shaft portion 431B and a plurality of tooth portions 432B. The shaft portion 431B has a long shape extending in the Y-axis direction. The plurality of tooth portions 432B are arranged at intervals along the axial direction of the shaft portion 431B. The plurality of tooth portions 432B are formed on the shaft portion 431B so as to protrude toward the comb tooth portion 44B.
 複数の櫛歯部44Bは、第4質量部400に接続されている。櫛歯部44Bは、軸部441Bと、複数の歯部442Bとを備える。軸部441Bは、Y軸方向に延びる長尺状である。複数の歯部442Bは、軸部441Bの軸方向に沿って間隔をおいて配置されている。複数の歯部442Bは、櫛歯部43B側に突出するように、軸部441Bに形成されている。 The plurality of comb teeth portions 44B are connected to the fourth mass portion 400. The comb tooth portion 44B includes a shaft portion 441B and a plurality of tooth portions 442B. The shaft portion 441B has a long shape extending in the Y-axis direction. The plurality of tooth portions 442B are arranged at intervals along the axial direction of the shaft portion 441B. The plurality of tooth portions 442B are formed on the shaft portion 441B so as to protrude toward the comb tooth portion 43B.
 この構成において、複数の歯部432Bと複数の歯部442BとがY軸方向にそれぞれ間隔をおいて交互に並ぶようにして配置されている。この際、複数の歯部432Bと複数の歯部442Bは、Y軸方向に直交する面が対向するように配置されている。 In this configuration, the plurality of tooth portions 432B and the plurality of tooth portions 442B are alternately arranged in the Y-axis direction at intervals. At this time, the plurality of tooth portions 432B and the plurality of tooth portions 442B are arranged so that the surfaces orthogonal to the Y-axis direction face each other.
 このような構成からなる駆動部40に対して、駆動信号を印加すると、駆動信号の振幅に応じて、櫛歯部43A,44AがX軸方向に沿って引き合ったり離れたりし、櫛歯部43B,44BがX軸方向に沿って引き合ったり離れたりする。櫛歯部43A,44A間の動きと、櫛歯部43B,44B間の動きは同じである。 When a drive signal is applied to the drive unit 40 having such a configuration, the comb- tooth portions 43A and 44A are attracted or separated along the X-axis direction according to the amplitude of the drive signal, and the comb-tooth portion 43B. 44B are attracted or separated along the X-axis direction. The movement between the comb teeth 43A and 44A and the movement between the comb teeth 43B and 44B are the same.
 これにより、第4質量部400と第2質量部20がX軸方向に互いに逆位相で振動する。これと同じ動作が第3質量部300と第1質量部10でも生じる。この際、第3質量部300の振動と第4質量部400の振動および第1質量部10の振動と第2質量部20の振動を逆位相にすることで、支持梁4A,4Bが歪み、第1質量部10が第4質量部400と同相で振動し、第2質量部20が第3質量部300と同相で振動する。このようにして、第1質量部10及び第2質量部20に、X軸方向に沿った振動を与えることができる。 Thereby, the fourth mass unit 400 and the second mass unit 20 vibrate in the opposite phases in the X-axis direction. The same operation also occurs in the third mass unit 300 and the first mass unit 10. At this time, the support beams 4A and 4B are distorted by setting the vibration of the third mass unit 300, the vibration of the fourth mass unit 400, and the vibration of the first mass unit 10 and the vibration of the second mass unit 20 to opposite phases. The first mass unit 10 vibrates in phase with the fourth mass unit 400, and the second mass unit 20 vibrates in phase with the third mass unit 300. In this way, vibration along the X-axis direction can be applied to the first mass unit 10 and the second mass unit 20.
 複数の櫛歯部61は、第4質量部400に接続されている。櫛歯部61は、軸部611と、複数の歯部612とを備える。軸部611は、Y軸方向に延びる長尺状である。複数の歯部612は、軸部611の軸方向に沿って間隔をおいて配置されている。複数の歯部612は、櫛歯部62側に突出するように、軸部611に形成されている。 The plurality of comb tooth portions 61 are connected to the fourth mass portion 400. The comb tooth portion 61 includes a shaft portion 611 and a plurality of tooth portions 612. The shaft portion 611 has a long shape extending in the Y-axis direction. The plurality of tooth portions 612 are arranged at intervals along the axial direction of the shaft portion 611. The plurality of tooth portions 612 are formed on the shaft portion 611 so as to protrude toward the comb tooth portion 62 side.
 複数の櫛歯部62は固定部600に接続されている。櫛歯部62は、軸部621と、複数の歯部622とを備える。軸部621は、Y軸方向に延びる長尺状である。複数の歯部622は、軸部621の軸方向に沿って間隔をおいて配置されている。複数の歯部622は、櫛歯部61側に突出するように、軸部621に形成されている。 The plurality of comb teeth portions 62 are connected to the fixed portion 600. The comb tooth portion 62 includes a shaft portion 621 and a plurality of tooth portions 622. The shaft portion 621 has a long shape extending in the Y-axis direction. The plurality of tooth portions 622 are arranged at intervals along the axial direction of the shaft portion 621. The plurality of tooth portions 622 are formed on the shaft portion 621 so as to protrude toward the comb tooth portion 61 side.
 この構成において、複数の歯部612と複数の歯部622とがY軸方向にそれぞれ間隔をおいて交互に並ぶようにして配置されている。この際、複数の歯部612と複数の歯部622は、Y軸方向に直交する面が対向するように配置されている。 In this configuration, the plurality of tooth portions 612 and the plurality of tooth portions 622 are arranged alternately at intervals in the Y-axis direction. At this time, the plurality of tooth portions 612 and the plurality of tooth portions 622 are arranged so that the surfaces orthogonal to the Y-axis direction face each other.
 このような構成では、駆動部40に駆動信号が印加されて第4質量部400が振動すると、櫛歯部61,62間の距離が変化し、静電容量が変化する。この静電容量の変化を検出することで、駆動信号をモニタすることができる。 In such a configuration, when a drive signal is applied to the drive unit 40 and the fourth mass unit 400 vibrates, the distance between the comb- tooth portions 61 and 62 changes, and the capacitance changes. The drive signal can be monitored by detecting this change in capacitance.
 以上のような構成からなるセンサ素子1は、次に示す検出用IC8と組み合わせることで、複合センサとして機能し、角速度と加速度を分離して検出する。図8は、本発明の実施形態に係る複合センサの構成を示すブロック図である。 The sensor element 1 having the above configuration functions as a composite sensor when combined with a detection IC 8 shown below, and detects angular velocity and acceleration separately. FIG. 8 is a block diagram showing the configuration of the composite sensor according to the embodiment of the present invention.
 複合センサは、センサ素子1と検出用IC8とを備える。センサ素子1は機構的には上述の構成であるが、回路としては、第1検出部11、第2検出部12、第3検出部13、第4検出部14、第1駆動部30、第2駆動部40、第1モニタ部50、および第2モニタ部60から構成されている。第1検出部11、第2検出部12、第3検出部13、第4検出部14、第1駆動部30、第2駆動部40、第1、第2モニタ部50,60は、それぞれ可変容量素子からなる。第1検出部11、第2検出部12、第3検出部13、第4検出部14、第1駆動部30、第2駆動部40、第1、第2モニタ部50,60が共通に接続する端子は、グランドに接続されている。このグランドは、検出用IC8のグランドにも接続されている。 The composite sensor includes a sensor element 1 and a detection IC 8. Although the sensor element 1 is mechanically configured as described above, the circuit includes the first detection unit 11, the second detection unit 12, the third detection unit 13, the fourth detection unit 14, the first drive unit 30, the first 2 drive part 40, the 1st monitor part 50, and the 2nd monitor part 60 are comprised. The first detection unit 11, the second detection unit 12, the third detection unit 13, the fourth detection unit 14, the first drive unit 30, the second drive unit 40, the first and second monitor units 50 and 60 are variable. It consists of a capacitive element. The first detection unit 11, the second detection unit 12, the third detection unit 13, the fourth detection unit 14, the first drive unit 30, the second drive unit 40, and the first and second monitor units 50 and 60 are connected in common. The terminal to be connected is connected to the ground. This ground is also connected to the ground of the detection IC 8.
 検出用IC8は、制御部80、フィルタ81、駆動用非反転増幅器82A、駆動用反転増幅器82B、モニタ用増幅器83A,83B、差動増幅器840、フィルタ84、位相シフタ85、増幅器91A,91B、加算器92、減算器93、フィルタ94A,94B、検波器95A,95B、出力回路96A,96Bおよび出力端子OUTa,OUTωを備える。検出用IC8には、駆動電圧Vccが印加されている。 The detection IC 8 includes a control unit 80, a filter 81, a driving non-inverting amplifier 82A, a driving inverting amplifier 82B, monitoring amplifiers 83A and 83B, a differential amplifier 840, a filter 84, a phase shifter 85, amplifiers 91A and 91B, and addition. And a subtractor 93, filters 94A and 94B, detectors 95A and 95B, output circuits 96A and 96B, and output terminals OUTa and OUTω. A drive voltage Vcc is applied to the detection IC 8.
 制御部80は、交流の駆動電圧信号を発生し、フィルタ81へ出力する。この際、制御部80は、ハイパスフィルタからなるフィルタ84から出力されるモニタ電圧信号の電圧値に応じて、センサ素子1の各質量部の振動振幅が規定した値になるように、駆動電圧信号の電圧値を設定する。 The control unit 80 generates an alternating drive voltage signal and outputs it to the filter 81. At this time, the control unit 80 drives the drive voltage signal so that the vibration amplitude of each mass part of the sensor element 1 becomes a specified value according to the voltage value of the monitor voltage signal output from the filter 84 formed of a high-pass filter. Set the voltage value of.
 フィルタ81は、例えばローパスフィルタからなり、ハイパスフィルタのフィルタ84と組み合わせて、素子振動周波数を選択的に通過させるバンドパスフィルタとしての機能(例えばノイズカット)を果たすとともに、モニタ出力の位相をおおよそ90°遅延させて、駆動用非反転増幅器82Aおよび駆動用反転増幅器82Bに出力する。 The filter 81 is formed of, for example, a low-pass filter, and in combination with the high-pass filter 84, functions as a band-pass filter that selectively passes the element vibration frequency (for example, noise cut), and the phase of the monitor output is approximately 90. The output is output to the driving non-inverting amplifier 82A and the driving inverting amplifier 82B with a delay.
 駆動用非反転増幅器82Aは、駆動電圧信号を所定ゲインで増幅して、駆動部30に出力する。駆動用反転増幅器82Bは、駆動電圧信号を所定ゲイン(駆動用非反転増幅器82Bと同じゲイン)で増幅して反転出力することで、駆動部40に出力する。なお、駆動用非反転増幅器82Aおよび駆動用反転増幅器82Bのゲインは1であってよく、この場合、これらの駆動用非反転増幅器82Aおよび駆動用反転増幅器82Bは、同期して駆動部30,40に逆相の駆動電圧信号を入力するバッファ回路として機能する。 The driving non-inverting amplifier 82A amplifies the driving voltage signal with a predetermined gain and outputs the amplified signal to the driving unit 30. The drive inverting amplifier 82B amplifies the drive voltage signal with a predetermined gain (the same gain as that of the drive non-inverting amplifier 82B), and outputs the amplified signal to the drive unit 40. Note that the gain of the driving non-inverting amplifier 82A and the driving inverting amplifier 82B may be 1, and in this case, the driving non-inverting amplifier 82A and the driving inverting amplifier 82B are synchronized with the driving units 30 and 40. Functions as a buffer circuit for inputting a driving voltage signal having a reverse phase.
 駆動部30と駆動部40に、互いに逆相となる駆動電圧信号が印加されると、上述のように、第1質量部10、第2質量部20、第3質量部300、および第4質量部400は、X軸方向に振動する。 When drive voltage signals having phases opposite to each other are applied to the drive unit 30 and the drive unit 40, as described above, the first mass unit 10, the second mass unit 20, the third mass unit 300, and the fourth mass unit. The part 400 vibrates in the X axis direction.
 この振動により、第1、第2モニタ部50,60の静電容量が変化する。この時、二つの静電容量の変化の極性は互いに異なる。この第1、第2モニタ部50,60の静電容量変化は、増幅器83A,83Bに入力される。増幅器83A,83Bは、静電容量/電圧変換回路(所謂C/V回路)であり、静電容量に応じたモニタ電圧信号を出力する。二つのモニタ電圧信号は、差動増幅器840で加算される。これにより、モニタ信号の振幅を増大させることができる。加算され一つの信号になったモニタ信号は、フィルタ84に入力される。フィルタ84によりフィルタ処理されたモニタ信号は、制御部80にフィードバックされるとともに、検波器95Aおよび位相シフタ85に出力される。 The electrostatic capacity of the first and second monitor units 50 and 60 changes due to this vibration. At this time, the polarities of the two capacitance changes are different from each other. The capacitance changes of the first and second monitor units 50 and 60 are input to the amplifiers 83A and 83B. The amplifiers 83A and 83B are capacitance / voltage conversion circuits (so-called C / V circuits) and output monitor voltage signals corresponding to the capacitance. The two monitor voltage signals are added by the differential amplifier 840. Thereby, the amplitude of the monitor signal can be increased. The monitor signal that is added to form one signal is input to the filter 84. The monitor signal filtered by the filter 84 is fed back to the control unit 80 and output to the detector 95A and the phase shifter 85.
 位相シフタ85は、モニタ電圧信号の位相を90°遅延させて、検波器95Bに出力する。 The phase shifter 85 delays the phase of the monitor voltage signal by 90 ° and outputs it to the detector 95B.
 ここで、Z軸周りの角速度やY軸方向の加速度がセンサ素子1に印加されると、第1検出部11、第2検出部12、第3検出部13、第4検出部14の各加速度検出部と各角速度検出部の静電容量が変化する。 Here, when an angular velocity around the Z-axis or acceleration in the Y-axis direction is applied to the sensor element 1, each acceleration of the first detection unit 11, the second detection unit 12, the third detection unit 13, and the fourth detection unit 14. The capacitances of the detection unit and each angular velocity detection unit change.
 上述の構成により、角速度または加速度の印加による第1検出部11、第3検出部13の静電容量変化は同じである。これらの第1検出部11、第3検出部13は、センサ素子外部の電極で接続されている。したがって、第1検出部11の静電容量変化と第3検出部13の静電容量変化とを加算した静電容量変化としては、第1、第3検出部11,13いずれか一方の2倍の静電容量変化が得られる。この第1、第3検出部11,13の静電容量変化は、増幅器91Aに入力される。増幅器91Aは、静電容量/電圧変換回路(所謂C/V回路)であり、静電容量に応じた第1検出信号を出力する。第1検出信号は、加算器92および減算器93に出力される。 With the above-described configuration, the capacitance changes of the first detection unit 11 and the third detection unit 13 due to application of angular velocity or acceleration are the same. The first detection unit 11 and the third detection unit 13 are connected by electrodes outside the sensor element. Therefore, the capacitance change obtained by adding the capacitance change of the first detection unit 11 and the capacitance change of the third detection unit 13 is twice that of the first or third detection unit 11 or 13. A change in capacitance can be obtained. The capacitance changes of the first and third detectors 11 and 13 are input to the amplifier 91A. The amplifier 91A is a capacitance / voltage conversion circuit (so-called C / V circuit) and outputs a first detection signal corresponding to the capacitance. The first detection signal is output to the adder 92 and the subtracter 93.
 上述の構成により、角速度または加速度の印加による第2検出部12、第4検出部14の静電容量変化は同じである。これらの第2検出部12、第4検出部14は、センサ素子外部の電極で接続されている。したがって、第2検出部12の静電容量変化と、第4検出部14の静電容量変化とを加算した静電容量変化としては、第2、第4検出部12,14いずれか一方の2倍の静電容量変化が得られる。この第2、第4検出部12,14の静電容量変化は、増幅器91Bに入力される。増幅器91Bは、静電容量/電圧変換回路(所謂C/V回路)であり、静電容量に応じた第2検出信号を出力する。第2検出信号は、加算器92および減算器93に出力される。 With the above-described configuration, the capacitance changes of the second detection unit 12 and the fourth detection unit 14 due to application of angular velocity or acceleration are the same. The second detection unit 12 and the fourth detection unit 14 are connected by electrodes outside the sensor element. Therefore, the capacitance change obtained by adding the capacitance change of the second detection unit 12 and the capacitance change of the fourth detection unit 14 is 2 of either the second or fourth detection unit 12 or 14. Double capacitance change is obtained. The capacitance changes of the second and fourth detection units 12 and 14 are input to the amplifier 91B. The amplifier 91B is a capacitance / voltage conversion circuit (so-called C / V circuit) and outputs a second detection signal corresponding to the capacitance. The second detection signal is output to the adder 92 and the subtracter 93.
 加算器92は、第1検出信号と第2検出信号とを加算して、フィルタ94Aに出力する。減算器93は、第1検出信号と第2検出信号との差分を算出して、フィルタ94Bに出力する。 The adder 92 adds the first detection signal and the second detection signal, and outputs the result to the filter 94A. The subtractor 93 calculates the difference between the first detection signal and the second detection signal and outputs the difference to the filter 94B.
 フィルタ94Aは、例えばハイパスフィルタからなり、加算信号をフィルタ処理して、検波器95Aに出力する。フィルタ94Bは、例えばハイパスフィルタからなり、差分信号(減算信号)をフィルタ処理して、検波器95Bに出力する。 The filter 94A is composed of, for example, a high-pass filter, filters the added signal, and outputs it to the detector 95A. The filter 94B is composed of, for example, a high-pass filter, filters the difference signal (subtraction signal), and outputs the filtered signal to the detector 95B.
 検波器95Aは、加算信号をモニタ電圧信号で同期検波して、第1検波信号を出力回路96Aに出力する。出力回路96Aは、振幅調整回路やローパスフィルタを備えており、第1検波信号に所定の処理を施して、出力端子OUTaに出力する。 The detector 95A synchronously detects the addition signal with the monitor voltage signal and outputs the first detection signal to the output circuit 96A. The output circuit 96A includes an amplitude adjustment circuit and a low-pass filter, performs predetermined processing on the first detection signal, and outputs it to the output terminal OUTa.
 検波器95Bは、加算信号をモニタ電圧信号で同期検波して、第2検波信号を出力回路96Bに出力する。出力回路96Bは、出力回路96Aと同じ回路構成であって、振幅調整回路やローパスフィルタを備えており、第2検波信号に所定の処理を施して、出力端子OUTωに出力する。 The detector 95B synchronously detects the addition signal with the monitor voltage signal and outputs the second detection signal to the output circuit 96B. The output circuit 96B has the same circuit configuration as the output circuit 96A and includes an amplitude adjustment circuit and a low-pass filter. The output circuit 96B performs predetermined processing on the second detection signal and outputs the second detection signal to the output terminal OUTω.
 このような構成からなる複合センサのセンサ素子1がX軸方向に振動中に、Z軸周りの角速度ωやY軸方向の加速度aが印加されると、次のように作用する。 When the sensor element 1 of the composite sensor having such a configuration vibrates in the X-axis direction, when the angular velocity ω around the Z-axis or the acceleration a in the Y-axis direction is applied, the following effect is obtained.
 図9は、本発明の実施形態に係るセンサ素子に角速度ωが印加された場合の挙動を示す図である。図9(A)は駆動電圧信号が印加されていない状態を示し、図9(B),(C)は駆動電圧信号が印加された状態を示す。図9(B)は、第1質量部10と第4質量部400がX軸方向の正の方向に運動し、第2質量部20と第3質量部300がX軸方向の負の方向に運動している状態を示す。図9(C)は、第1質量部10と第4質量部400がX軸方向の負の方向に運動し、第2質量部20と第3質量部300がX軸方向の正の方向に運動している状態を示す。 FIG. 9 is a diagram showing the behavior when the angular velocity ω is applied to the sensor element according to the embodiment of the present invention. FIG. 9A shows a state in which the drive voltage signal is not applied, and FIGS. 9B and 9C show a state in which the drive voltage signal is applied. FIG. 9B shows that the first mass unit 10 and the fourth mass unit 400 move in the positive direction of the X-axis direction, and the second mass unit 20 and the third mass unit 300 move in the negative direction of the X-axis direction. Indicates the state of exercising. FIG. 9C shows that the first mass unit 10 and the fourth mass unit 400 move in the negative direction of the X-axis direction, and the second mass unit 20 and the third mass unit 300 move in the positive direction of the X-axis direction. Indicates the state of exercising.
 上述のように、駆動部30と駆動部40に逆相の駆動電圧信号を印加すると、図9(B)に示すように、隣り合う質量部が常時X軸の逆方向に移動するように振動する。このような状態において、Z軸周りの角速度ωが印加されると、図9(B)の第1質量部10および第2質量部20に示すように、X軸方向の負の方向に移動中の質量部には、Y軸方向の正の方向のコリオリ力が加わり、Y軸方向の正の方向に変位して、X軸方向の正の方向に移動中の質量部には、Y軸方向の負の方向のコリオリ力が加わり、Y軸方向の負の方向に変位する。これにより、第1、第2質量部10,20内の各角速度検出部113,133では、静電容量が減少し、各角速度検出部123,143では、静電容量が増加する。なお、各角速度検出部113,133は、回路入力前にセンサ素子外部で電気的に接続される。同じく、各角速度検出部123,143も、回路入力前にセンサ素子外部で電気的に接続される。 As described above, when a driving voltage signal having a reverse phase is applied to the driving unit 30 and the driving unit 40, as shown in FIG. 9B, the adjacent mass units constantly vibrate so as to move in the opposite direction of the X axis. To do. In such a state, when an angular velocity ω around the Z axis is applied, as shown in the first mass unit 10 and the second mass unit 20 in FIG. A positive Coriolis force in the Y-axis direction is applied to the mass part, and the mass part is displaced in the positive direction in the Y-axis direction and moved in the positive direction in the X-axis direction. The negative direction Coriolis force is applied, and the negative direction of the Y-axis is displaced. As a result, the electrostatic capacity decreases in the angular velocity detectors 113 and 133 in the first and second mass units 10 and 20, and the electrostatic capacity increases in the angular velocity detectors 123 and 143. Each angular velocity detecting unit 113, 133 is electrically connected outside the sensor element before circuit input. Similarly, the angular velocity detection units 123 and 143 are also electrically connected outside the sensor element before circuit input.
 したがって、振動状態によらず、第1、第2質量部10,20内の各角速度検出部113,133の静電容量変化と各角速度検出部123,143の静電容量変化とを加算してなる第1検出信号では、両者の静電容量変化が互いに逆の変位であって相殺されることにより、角速度ωによる静電容量変化分は0となる。 Therefore, regardless of the vibration state, the capacitance change of the angular velocity detection units 113 and 133 in the first and second mass units 10 and 20 and the capacitance change of the angular velocity detection units 123 and 143 are added. In the first detection signal, the change in capacitance between the two is opposite to each other and cancels out, so that the change in capacitance due to the angular velocity ω becomes zero.
 一方、振動状態によらず、第1、第2質量部10,20内の各角速度検出部113,133の静電容量変化と各角速度検出部123,143の静電容量変化とを差分してなる第2検出信号では、両者の静電容量変化が加算されることにより、角速度ωによる静電容量変化分は、2倍となる。 On the other hand, regardless of the vibration state, the difference in capacitance between the angular velocity detectors 113 and 133 in the first and second mass units 10 and 20 is different from the capacitance change in the angular velocity detectors 123 and 143. In the second detection signal, the capacitance change between the two is added, so that the capacitance change due to the angular velocity ω is doubled.
 図11は、本発明の実施形態に係るセンサ素子1に角速度ωのみが印加された場合の各信号の波形図である。なお、図11の第1出力は、第1、第2質量部10,20内の各角速度検出部113,133の静電容量変化を電圧変換したものである。第2出力は、第1、第2質量部10,20内の各角速度検出部123,143の静電容量変化を電圧変換したものである。図11に示すように、第1出力と第2出力は常時逆相となる。したがって、第1出力と第2出力を加算した信号、すなわち第1検出信号は、第1出力と第2出力とが相殺された信号となり、OUT1(加算出力)は0(もしくは基準電位)となる。一方、第1出力と第2出力を差分した信号、すなわち第2検出信号は、第1出力と第2出力とが加算された信号となり、OUT2(加算出力)は第1出力や第2出力の2倍となる。これにより、第2検出信号によって角速度ωを検出することができる。この際、振幅が大きくなるので、確実且つ正確に角速度ωを検出することができる。 FIG. 11 is a waveform diagram of each signal when only the angular velocity ω is applied to the sensor element 1 according to the embodiment of the present invention. In addition, the 1st output of FIG. 11 converts into a voltage the electrostatic capacitance change of each angular velocity detection part 113,133 in the 1st, 2nd mass parts 10 and 20. FIG. The second output is obtained by voltage-converting the capacitance change of the angular velocity detection units 123 and 143 in the first and second mass units 10 and 20. As shown in FIG. 11, the first output and the second output are always in reverse phase. Therefore, a signal obtained by adding the first output and the second output, that is, the first detection signal is a signal obtained by canceling the first output and the second output, and OUT1 (addition output) becomes 0 (or a reference potential). . On the other hand, a signal obtained by subtracting the first output and the second output, that is, the second detection signal is a signal obtained by adding the first output and the second output, and OUT2 (addition output) is the first output or the second output. Doubled. Thereby, the angular velocity ω can be detected by the second detection signal. At this time, since the amplitude increases, the angular velocity ω can be detected reliably and accurately.
 図10は、本発明の実施形態に係るセンサ素子に加速度aが印加された場合の挙動を示す図である。図10(A)は駆動電圧信号が印加されていない状態を示し、図10(B),(C)は駆動電圧信号が印加された状態を示す。図10(B)は、第1質量部10と第4質量部400がX軸方向の正の方向に移動し、第2質量部20と第3質量部300がX軸方向の負の方向に移動した状態を示す。図10(C)は、第1質量部10と第4質量部400がX軸方向の負の方向に移動し、第2質量部20と第3質量部300がX軸方向の正の方向に移動した状態を示す。 FIG. 10 is a diagram showing the behavior when the acceleration a is applied to the sensor element according to the embodiment of the present invention. FIG. 10A shows a state in which the drive voltage signal is not applied, and FIGS. 10B and 10C show a state in which the drive voltage signal is applied. FIG. 10B shows that the first mass unit 10 and the fourth mass unit 400 move in the positive direction of the X-axis direction, and the second mass unit 20 and the third mass unit 300 move in the negative direction of the X-axis direction. Indicates the moved state. FIG. 10C shows that the first mass unit 10 and the fourth mass unit 400 move in the negative direction of the X-axis direction, and the second mass unit 20 and the third mass unit 300 move in the positive direction of the X-axis direction. Indicates the moved state.
 上述のように、駆動部30と駆動部40に逆相の駆動電圧信号を印加すると、図10(B),図10(C)に示すように、隣り合う質量部が常時X軸の逆方向に移動するように振動する。このような状態において、Y軸方向の正の方向の加速度aが印加されると、図10(B)の第1質量部10および第2質量部20に示すように、X軸方向の正の方向に移動中の質量部もX軸方向の負の方向に移動中の質量部も、Y軸方向の正の方向に変位する。これにより、第1、第2質量部10,20内の各加速度検出部112,122,132,142では、各突起する導体部の片側の間隔が減少し、反対側の間隔が増加することで、モニタ信号に同期した静電容量の変化が発生する。この時、各加速度検出部112,122,132,142の位相は全て等しい。なお、各加速度検出部112,132は、回路入力前にセンサ素子外部で電気的に接続される。同じく、各加速度検出部122,142も、回路入力前にセンサ素子外部で電気的に接続される。 As described above, when a driving voltage signal having an opposite phase is applied to the driving unit 30 and the driving unit 40, as shown in FIGS. 10 (B) and 10 (C), the adjacent mass units are always in the reverse direction of the X axis. Vibrate to move to. In such a state, when an acceleration a in the positive direction in the Y-axis direction is applied, as shown in the first mass unit 10 and the second mass unit 20 in FIG. Both the mass part moving in the direction and the mass part moving in the negative direction of the X-axis direction are displaced in the positive direction of the Y-axis direction. Thereby, in each acceleration detection part 112,122,132,142 in the 1st, 2nd mass parts 10 and 20, the space | interval of the one side of each conductor part to protrude decreases, and the space | interval of an other side increases. The capacitance changes in synchronization with the monitor signal. At this time, the phases of the acceleration detectors 112, 122, 132, 142 are all equal. Each acceleration detector 112, 132 is electrically connected outside the sensor element before circuit input. Similarly, the acceleration detection units 122 and 142 are also electrically connected outside the sensor element before circuit input.
 一方、Y軸方向の負の方向の加速度aが印加されると、X軸方向の正の方向に移動中の質量部もX軸方向の負の方向に移動中の質量部も、Y軸方向の負の方向に変位する。これにより、第1、第2質量部10,20内の各加速度検出部112,122,132,142では、各突起する導体部の片側の間隔が増加し、反対側の間隔が減少することで、モニタ信号に同期した静電容量の変化が発生する。この時、各加速度検出部112,122,132,142の位相は全て等しい。 On the other hand, when the acceleration a in the negative direction in the Y-axis direction is applied, the mass part that is moving in the positive direction in the X-axis direction and the mass part that is moving in the negative direction in the X-axis direction are Displacement in the negative direction. Thereby, in each acceleration detection part 112,122,132,142 in the 1st, 2nd mass parts 10 and 20, the space | interval on one side of each protruding conductor part increases, and the space | interval on the opposite side decreases. The capacitance changes in synchronization with the monitor signal. At this time, the phases of the acceleration detectors 112, 122, 132, 142 are all equal.
 したがって、振動状態によらず、第1、第2質量部10,20内の各加速度検出部112,132の静電容量変化と各加速度検出部122,142の静電容量変化とを加算してなる第1検出信号では、両者の位相が等しく、静電容量変化が加算されることにより、加速度aによる静電容量変化分は、2倍となる。 Therefore, regardless of the vibration state, the capacitance change of the acceleration detection units 112 and 132 in the first and second mass units 10 and 20 and the capacitance change of the acceleration detection units 122 and 142 are added. In the first detection signal, the phase of both is equal, and the capacitance change due to the acceleration a is doubled by adding the capacitance change.
 一方、振動状態によらず、第1、第2質量部10,20内の各加速度検出部112,132の静電容量変化と各加速度検出部122,142の静電容量変化とを差分してなる第2検出信号では、両者の静電容量変化が互いに相殺されことにより、加速度aによる静電容量変化分は0となる。 On the other hand, regardless of the vibration state, the difference in capacitance between the acceleration detection units 112 and 132 in the first and second mass units 10 and 20 is different from the capacitance change in the acceleration detection units 122 and 142. In the second detection signal, the change in capacitance between the two cancels out, and the change in capacitance due to acceleration a becomes zero.
 図12は、本発明の実施形態に係るセンサ素子1に加速度aのみが印加された場合の各信号の波形図である。なお、図12の第1出力は、第1、第2質量部10,20内の各加速度検出部112,132の静電容量変化を電圧変換したものであり、第2出力は、第1、第2質量部10,20内の各加速度検出部122,142の静電容量変化を電圧変換したものである。 FIG. 12 is a waveform diagram of each signal when only the acceleration a is applied to the sensor element 1 according to the embodiment of the present invention. Note that the first output in FIG. 12 is obtained by voltage-converting the capacitance change of each acceleration detection unit 112, 132 in the first and second mass units 10, 20, and the second output is the first, The capacitance change of each acceleration detection part 122,142 in the 2nd mass part 10,20 is voltage-converted.
 図12に示すように、第1出力と第2出力は常時同相となる。したがって、これら第1出力と第2出力を加算した信号、すなわち第1検出信号は、第1出力と第2出力とが加算された信号となり、OUT1(加算出力)は第1出力や第2出力の2倍となる。一方、これら第1出力と第2出力を差分した信号、すなわち第2検出信号は、第1出力と第2出力とが相殺された信号となり、OUT2(加算出力)は0(もしくは基準電位)となる。これにより、第1検出信号によって加速度aを検出することができる。この際、振幅が大きくなるので、確実且つ正確に加速度aを検出することができる。 As shown in FIG. 12, the first output and the second output are always in phase. Therefore, a signal obtained by adding the first output and the second output, that is, the first detection signal is a signal obtained by adding the first output and the second output, and OUT1 (addition output) is the first output or the second output. Twice as much. On the other hand, a signal obtained by subtracting the first output and the second output, that is, the second detection signal is a signal obtained by canceling the first output and the second output, and OUT2 (addition output) is 0 (or reference potential). Become. Thereby, the acceleration a can be detected by the first detection signal. At this time, since the amplitude increases, the acceleration a can be detected reliably and accurately.
 なお、上述の構成では、第1検出部11および第3検出部13から得られる静電容量変化と、第2検出部12および第4検出部14から得られる静電容量変化は、いずれも加速度a起因の成分と角速度ω起因の成分が混合された状態からなる。しかしながら、上述の加算器92、減算器93を介することで、加速度a起因の成分と角速度ω起因の成分を、確実に分離して出力することができる。 In the above-described configuration, the capacitance change obtained from the first detection unit 11 and the third detection unit 13 and the capacitance change obtained from the second detection unit 12 and the fourth detection unit 14 are both accelerations. The component due to a and the component due to angular velocity ω are mixed. However, through the above-described adder 92 and subtracter 93, the component caused by the acceleration a and the component caused by the angular velocity ω can be reliably separated and output.
 さらに、角速度ωによる静電容量変化が駆動電圧信号に対して位相が90°ずれていることを利用し、上述の90°位相がずれた同期検波を行うことで、加速度aによる信号と、角速度ωによる信号とを、より確実に検出して出力することができる。 Further, by utilizing the fact that the change in capacitance due to the angular velocity ω is 90 ° out of phase with respect to the drive voltage signal, and performing the synchronous detection with the 90 ° out of phase, the signal due to the acceleration a and the angular velocity The signal by ω can be detected and output more reliably.
 図13は、本発明の実施形態に係るセンサ素子1に加速度aと角速度ωが印加された場合の各信号の波形図である。なお、図13の第1出力は、第1、第2質量部10,20内の各加速度検出部112,132と各角速度検出部113,133の静電容量変化を電圧変換したものであり、第2出力は、第1、第2質量部10,20内の各加速度検出部122,142と各角速度検出部123,143の静電容量変化を電圧変換したものである。なお、ここでは、加速度aによる静電容量変化と角速度ωによる静電容量変化が同じ場合を示している。 FIG. 13 is a waveform diagram of each signal when acceleration a and angular velocity ω are applied to the sensor element 1 according to the embodiment of the present invention. In addition, the 1st output of FIG. 13 converts the electrostatic capacitance change of each acceleration detection part 112,132 and each angular velocity detection part 113,133 in the 1st, 2nd mass parts 10 and 20, into voltage, The second output is obtained by voltage-converting the capacitance changes of the acceleration detection units 122 and 142 and the angular velocity detection units 123 and 143 in the first and second mass units 10 and 20. Here, the case where the capacitance change due to the acceleration a and the capacitance change due to the angular velocity ω are the same is shown.
 図13に示すように、第1出力および第2出力は、加速度aによる静電容量変化と角速度ωによる静電容量変化との比に応じて、駆動電圧信号に対して所定の位相ずれが生じる。しかしながら、OUT1(加算出力)には加速度aによる成分しか残らず、OUT2(差分出力)には角速度ωによる成分しか残らない。 As shown in FIG. 13, the first output and the second output have a predetermined phase shift with respect to the drive voltage signal according to the ratio of the capacitance change due to the acceleration a and the capacitance change due to the angular velocity ω. . However, only a component due to acceleration a remains in OUT1 (addition output), and only a component due to angular velocity ω remains in OUT2 (difference output).
 そして、本実施形態の複合センサのセンサ素子1では、次のような原理により、X軸方向の振動量(変位)が大きくなりすぎた際に生じる加速度検出用の静電容量への影響を抑圧することができる。 In the sensor element 1 of the composite sensor of the present embodiment, the influence on the acceleration detection capacitance that occurs when the vibration amount (displacement) in the X-axis direction becomes excessive is suppressed by the following principle. can do.
 図14は、可動側の加速度検出子と固定側の加速度検出子とのより具体的な構造を示す部分平面図である。図15、図16、図17は、可動側の加速度検出子のX軸方向の両端の拡大図である。図15は、X軸方向の変位量Δxが0の時を示す。図16は、X軸方向の変位量Δxが+Wの時を示す。図17は、X軸方向の変位量Δxが-Wの時を示す。 FIG. 14 is a partial plan view showing a more specific structure of the movable-side acceleration detector and the fixed-side acceleration detector. 15, 16, and 17 are enlarged views of both ends of the movable-side acceleration detector in the X-axis direction. FIG. 15 shows a case where the amount of displacement Δx in the X-axis direction is zero. FIG. 16 shows when the displacement amount Δx in the X-axis direction is + W. FIG. 17 shows the time when the amount of displacement Δx in the X-axis direction is −W.
 なお、図14、図15、図16、図17は、可動側の加速度検出子204D1と加速度検出子204F1との組、および、固定側の加速度検出子202E1,202F1と加速度検出子202H1,202I1の組を示すが、他の組も同様の原理で動作する。 14, 15, 16, and 17 show a set of the movable-side acceleration detector 204D1 and the acceleration detector 204F1, and the fixed-side acceleration detectors 202E1, 202F1 and the acceleration detectors 202H1, 202I1. Although a set is shown, other sets operate on a similar principle.
 Y軸方向に延びる可動側の検出子保持部2051のX軸方向に沿った一方側(-X軸方向)には、可動側の加速度検出子204D1の検出用基部240D1が形成されている。検出用基部240D1は、X軸方向に延びる長尺状である。検出用基部240D1は、本発明の「可動側検出用基部」に相当する。 A detection base portion 240D1 of the movable acceleration detector 204D1 is formed on one side (−X axis direction) along the X axis direction of the movable detector holding portion 2051 extending in the Y axis direction. The detection base 240D1 has a long shape extending in the X-axis direction. The detection base 240D1 corresponds to the “movable side detection base” of the present invention.
 可動側の検出用基部240D1の検出用基部220E1側の辺には、検出用基部220E1方向へ突出する複数の突起部241D1が形成されている。複数の突起部241D1は「可動側第1突起部」に相当する。複数の突起部241D1は、X軸方向の長さ(幅)が2Wである。複数の突起部241D1は、検出用基部240D1の長尺方向(X軸方向)に沿って所定の間隔で配置されている。この間隔は、突起部241D1の幅2Wよりも長く設定されている。 A plurality of protrusions 241D1 projecting in the direction of the detection base 220E1 are formed on the side of the detection base 220E1 side of the movable detection base 240D1. The plurality of protrusions 241D1 correspond to “movable-side first protrusions”. The plurality of protrusions 241D1 have a length (width) in the X-axis direction of 2W. The plurality of protrusions 241D1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 240D1. This interval is set longer than the width 2W of the protrusion 241D1.
 可動側の検出用基部240D1の検出用基部220F1側の辺には、検出用基部220F1方向へ突出する複数の突起部242D1が形成されている。複数の突起部242D1は「可動側第2突起部」に相当する。複数の突起部242D1は、X軸方向の長さ(幅)が2Wである。複数の突起部242D1は、検出用基部240D1の長尺方向(X軸方向)に沿って所定の間隔で配置されている。この間隔は、突起部242D1の幅2Wよりも長く設定されており、突起部241D1の配置間隔と同じである。さらに、複数の突起部242D1は、複数の突起部241D1に対して、突起部241D1242D2の幅の半分の長さだけ、X軸方向にずれて配置されている。言い換えれば、検出用基部240D1を介して部分的に対向する突起部241D1と突起部242D1は、そのX軸方向の中心位置が突起部241D1,242D2の幅の半分の長さだけ、X軸方向にずれて配置されている。 A plurality of protrusions 242D1 protruding in the direction of the detection base 220F1 are formed on the side of the movable detection base 240D1 on the detection base 220F1 side. The plurality of protrusions 242D1 correspond to “movable side second protrusions”. The plurality of protrusions 242D1 have a length (width) in the X-axis direction of 2W. The plurality of protrusions 242D1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 240D1. This interval is set longer than the width 2W of the protrusion 242D1, and is the same as the arrangement interval of the protrusions 241D1. Further, the plurality of protrusions 242D1 are arranged so as to be shifted in the X-axis direction by a length that is half the width of the protrusions 241D1242D2 with respect to the plurality of protrusions 241D1. In other words, the protrusions 241D1 and 242D1 that partially face each other via the detection base 240D1 have a center position in the X-axis direction that is half the width of the protrusions 241D1 and 242D2 in the X-axis direction. They are offset.
 可動側の検出用基部240D1の長尺方向における検出子保持部2051と反対側の端部には、静電容量形成部243D1が形成されている。静電容量形成部243D1は、内側枠101Aに対して間隔D34Dで対向している。また、静電容量形成部243D1は、X軸方向に見た面積(対向面積)S3Dが検出用基部240D1よりも広くなるように形成されている。より具体的には、静電容量形成部243D1のY軸方向の長さは、検出用基部240D1のY軸方向の長さよりも長い。静電容量形成部243D1の厚み(X軸方向とY軸方向に直交する方向の長さ)は検出用基部240D1の厚みと同じである。そして、静電容量形成部243D1は、検出用基部240D1に一体形成されている。 A capacitance forming portion 243D1 is formed at the end of the movable side detection base 240D1 opposite to the detector holding portion 2051 in the longitudinal direction. The capacitance forming portion 243D1 faces the inner frame 101A at a distance D34D. Further, the capacitance forming portion 243D1 is formed so that the area (opposed area) S3D viewed in the X-axis direction is wider than the detection base portion 240D1. More specifically, the length of the capacitance forming portion 243D1 in the Y-axis direction is longer than the length of the detection base portion 240D1 in the Y-axis direction. The thickness of the capacitance forming portion 243D1 (the length in the direction orthogonal to the X-axis direction and the Y-axis direction) is the same as the thickness of the detection base portion 240D1. The capacitance forming portion 243D1 is integrally formed with the detection base portion 240D1.
 検出用基部240D1におけるY軸方向に一方側(Y軸方向の負の方向)には、固定側の加速度検出子202E1の検出用基部220E1が配置されている。検出用基部220E1もX軸方向に延びる長尺状である。固定側の検出用基部220E1は、可動側の検出用基部240D1から離間して配置されている。 The detection base 220E1 of the fixed-side acceleration detector 202E1 is disposed on one side (negative direction in the Y-axis direction) in the Y-axis direction of the detection base 240D1. The detection base 220E1 also has a long shape extending in the X-axis direction. The fixed-side detection base 220E1 is disposed away from the movable-side detection base 240D1.
 固定側の検出用基部220E1の検出用基部240D1側の辺には、検出用基部240D1方向へ突出する複数の突起部222E1が形成されている。複数の突起部222E1は「固定側第1突起部」に相当する。複数の突起部222E1は、X軸方向の長さ(幅)が2Wである。複数の突起部222E1は、検出用基部220E1の長尺方向(X軸方向)に沿って所定の間隔で配置されている。この間隔は、突起部222E1の幅2Wよりも長く設定されており、突起部241D1の配置間隔と同じである。 A plurality of protrusions 222E1 protruding in the direction of the detection base 240D1 are formed on the side of the detection base 240D1 side of the detection base 220E1 on the fixed side. The plurality of protrusions 222E1 correspond to “fixed-side first protrusions”. The plurality of protrusions 222E1 have a length (width) in the X-axis direction of 2W. The plurality of protrusions 222E1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 220E1. This interval is set longer than the width 2W of the protrusion 222E1, and is the same as the arrangement interval of the protrusions 241D1.
 複数の突起部222E1は、複数の突起部241D1に対してX軸方向に幅Wだけが対向するように配置されている。言い換えれば、互いに対向する突起部222E1と突起部241D1は、そのX軸方向の中心位置が突起部241D1,222E1の幅の半分の長さだけ、X軸方向にずれて配置されている。また、複数の突起部222E1と突起部242D1のX軸方向の位置は同じである。さらに、複数の突起部222E1は、複数の突起部241D1に対して、Y軸方向に沿った間隔D12になるように配置されている。 The plurality of protrusions 222E1 are arranged so that only the width W faces the plurality of protrusions 241D1 in the X-axis direction. In other words, the protrusion 222E1 and the protrusion 241D1 facing each other are arranged such that the center position in the X-axis direction is shifted in the X-axis direction by a length that is half the width of the protrusions 241D1 and 222E1. Further, the positions of the plurality of protrusions 222E1 and the protrusions 242D1 in the X-axis direction are the same. Further, the plurality of protrusions 222E1 are arranged so as to have a distance D12 along the Y-axis direction with respect to the plurality of protrusions 241D1.
 検出用基部240D1におけるY軸方向に他方側(Y軸方向の正の方向)には、固定側の加速度検出子202F1の検出用基部220F1が配置されている。検出用基部220F1もX軸方向に延びる長尺状である。固定側の検出用基部220F1は、可動側の検出用基部240D1から離間して配置されている。 The detection base 220F1 of the fixed-side acceleration detector 202F1 is disposed on the other side in the Y-axis direction (positive direction in the Y-axis direction) of the detection base 240D1. The detection base 220F1 also has a long shape extending in the X-axis direction. The stationary-side detection base 220F1 is disposed away from the movable-side detection base 240D1.
 固定側の検出用基部220F1の検出用基部240D1側の辺には、検出用基部240D1方向へ突出する複数の突起部221F1が形成されている。複数の突起部221F1は「固定側第2突起部」に相当する。複数の突起部221F1は、X軸方向の長さ(幅)が2Wである。複数の突起部221F1は、検出用基部220F1の長尺方向(X軸方向)に沿って所定の間隔で配置されている。この間隔は、突起部221F1の幅2Wよりも長く設定されており、突起部242D1の配置間隔と同じである。 A plurality of protrusions 221F1 projecting in the direction of the detection base 240D1 are formed on the detection base 240D1 side of the fixed detection base 220F1. The plurality of protrusions 221F1 correspond to “fixed-side second protrusions”. The plurality of protrusions 221F1 have a length (width) in the X-axis direction of 2W. The plurality of protrusions 221F1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 220F1. This interval is set longer than the width 2W of the protruding portion 221F1, and is the same as the arrangement interval of the protruding portion 242D1.
 複数の突起部221F1は、複数の突起部242D1に対してX軸方向に幅Wだけが対向するように配置されている。言い換えれば、互いに対向する突起部221F1と突起部242D1は、そのX軸方向の中心位置が突起部242D1,222F1の幅の半分の長さだけ、X軸方向にずれて配置されている。また、複数の突起部221F1と突起部241D1のX軸方向の位置は同じである。さらに、複数の突起部222F1は、複数の突起部242D1に対して、Y軸方向に沿った間隔D12になるように配置されている。 The plurality of protrusions 221F1 are arranged so that only the width W faces the plurality of protrusions 242D1 in the X-axis direction. In other words, the protruding portion 221F1 and the protruding portion 242D1 facing each other are arranged such that the center position in the X-axis direction is shifted in the X-axis direction by a length that is half the width of the protruding portions 242D1 and 222F1. Further, the positions of the plurality of protrusions 221F1 and the protrusions 241D1 in the X-axis direction are the same. Further, the plurality of protrusions 222F1 are arranged so as to have a distance D12 along the Y-axis direction with respect to the plurality of protrusions 242D1.
 このような構成とすることで、可動側の突起部241D1と固定側の突起部222E1との対向面の幅がWであり対向面積がS1D1となって、対向距離がD12であることから、静電容量(キャパシタンス)C1D1が形成される。また、可動側の突起部242D1と固定側の突起部221F1との対向面の幅がWであり対向面積がS2D1(=S1D1)となって、対向距離がD12であることから、静電容量(キャパシタンス)C2D1(=C1D1)が形成される。また、静電容量形成部243D1と内側枠101Aとの対向面の面積がS3Dとなり、対向面の間隔がD34Dとなって静電容量(キャパシタンス)C3D1が形成される。 With such a configuration, the width of the facing surface between the movable-side protrusion 241D1 and the fixed-side protrusion 222E1 is W, the facing area is S1D1, and the facing distance is D12. A capacitance C1D1 is formed. Further, the width of the facing surface between the movable-side protrusion 242D1 and the fixed-side protrusion 221F1 is W, the facing area is S2D1 (= S1D1), and the facing distance is D12. Capacitance) C2D1 (= C1D1) is formed. Further, the area of the facing surface between the capacitance forming portion 243D1 and the inner frame 101A is S3D, and the distance between the facing surfaces is D34D, thereby forming a capacitance C3D1.
 これら静電容量C1D1,C2D1,C3D1は、内側枠101Aで導通しているので、可動側の加速度検出子204D1と固定側の加速度検出子220E1,220F1との間には、これらの静電容量C1D1,C2D1,C3D1を加算した合成静電容量(合成キャパシタンス)が生じることになる。 Since these capacitances C1D1, C2D1, and C3D1 are electrically connected by the inner frame 101A, the capacitance C1D1 is interposed between the movable acceleration detector 204D1 and the fixed acceleration detectors 220E1 and 220F1. , C2D1 and C3D1 are combined to generate a combined capacitance (synthetic capacitance).
 Y軸方向に延びる可動側の検出子保持部2051のX軸方向に沿った他方側(X軸方向の正の方向)には、可動側の加速度検出子204F1の検出用基部240F1が形成されている。検出用基部240F1は、X軸方向に延びる長尺状である。検出用基部240F1は、本発明の「可動側検出用基部」に相当する。 On the other side (positive direction in the X-axis direction) along the X-axis direction of the movable-side detector holding part 2051 extending in the Y-axis direction, a detection base 240F1 of the movable-side acceleration detector 204F1 is formed. Yes. The detection base 240F1 has a long shape extending in the X-axis direction. The detection base 240F1 corresponds to the “movable side detection base” of the present invention.
 可動側の検出用基部240F1の検出用基部220H1側の辺には、検出用基部220H1方向へ突出する複数の突起部241F1が形成されている。複数の突起部241F1は「可動側第1突起部」に相当する。複数の突起部241F1は、X軸方向の長さ(幅)が2Wである。複数の突起部241F1は、検出用基部240F1の長尺方向(X軸方向)に沿って所定の間隔で配置されている。この間隔は、突起部241F1の幅2Wよりも長く設定されている。 A plurality of projections 241F1 projecting in the direction of the detection base 220H1 are formed on the side of the detection base 220H1 side of the movable detection base 240F1. The plurality of protrusions 241F1 correspond to “movable-side first protrusions”. The plurality of protrusions 241F1 have a length (width) in the X-axis direction of 2W. The plurality of protrusions 241F1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 240F1. This interval is set longer than the width 2W of the protrusion 241F1.
 可動側の検出用基部240F1の検出用基部220I1側の辺には、検出用基部220I1方向へ突出する複数の突起部242F1が形成されている。複数の突起部242F1は「可動側第2突起部」に相当する。複数の突起部242F1は、X軸方向の長さ(幅)が2Wである。複数の突起部242F1は、検出用基部240F1の長尺方向(X軸方向)に沿って所定の間隔で配置されている。この間隔は、突起部242F1の幅2Wよりも長く設定されており、突起部241F1の配置間隔と同じである。さらに、複数の突起部242F1は、複数の突起部241F1に対して、突起部241F1,242F2の幅の半分の長さだけ、X軸方向にずれて配置されている。言い換えれば、検出用基部240F1を介して部分的に対向する突起部241F1と突起部242F1は、そのX軸方向の中心位置が突起部241F1,242F2の幅の半分の長さだけ、X軸方向にずれて配置されている。 A plurality of protrusions 242F1 projecting in the direction of the detection base 220I1 are formed on the side of the detection base 220I1 side of the movable detection base 240F1. The plurality of protrusions 242F1 correspond to “movable side second protrusions”. The plurality of protrusions 242F1 have a length (width) in the X-axis direction of 2W. The plurality of protrusions 242F1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 240F1. This interval is set longer than the width 2W of the protrusion 242F1, and is the same as the arrangement interval of the protrusions 241F1. Furthermore, the plurality of protrusions 242F1 are arranged so as to be shifted in the X-axis direction by a length that is half the width of the protrusions 241F1 and 242F2 with respect to the plurality of protrusions 241F1. In other words, the protrusions 241F1 and 242F1 that partially face each other via the detection base 240F1 have a center position in the X-axis direction that is half the width of the protrusions 241F1 and 242F2 in the X-axis direction. They are offset.
 可動側の検出用基部240F1の長尺方向における検出子保持部2051と反対側の端部には、静電容量形成部243F1が形成されている。静電容量形成部243F1は、内側枠101Aに対して間隔D34Fで対向している。間隔D34Fは間隔D34Dと同じである。また、静電容量形成部243F1は、X軸方向に見た面積S3Fが検出用基部240F1よりも広くなるように形成されている。面積S3Fは、面積S3Dと同じである。より具体的には、静電容量形成部243F1のY軸方向の長さは、検出用基部240F1のY軸方向の長さよりも長い。静電容量形成部243F1の厚み(X軸方向とY軸方向に直交する方向の長さ)は検出用基部240F1の厚みと同じである。そして、静電容量形成部243F1は、検出用基部240F1に一体形成されている。 A capacitance forming portion 243F1 is formed at the end of the movable detection base 240F1 on the opposite side to the detector holding portion 2051 in the longitudinal direction. The capacitance forming portion 243F1 is opposed to the inner frame 101A at a distance D34F. The interval D34F is the same as the interval D34D. The capacitance forming portion 243F1 is formed so that the area S3F viewed in the X-axis direction is wider than the detection base portion 240F1. The area S3F is the same as the area S3D. More specifically, the length of the capacitance forming portion 243F1 in the Y-axis direction is longer than the length of the detection base portion 240F1 in the Y-axis direction. The thickness of the capacitance forming portion 243F1 (the length in the direction orthogonal to the X-axis direction and the Y-axis direction) is the same as the thickness of the detection base portion 240F1. The capacitance forming portion 243F1 is integrally formed with the detection base portion 240F1.
 検出用基部240F1におけるY軸方向に一方側(Y軸方向の負の方向)には、固定側の加速度検出子202H1の検出用基部220H1が配置されている。検出用基部220H1もX軸方向に延びる長尺状である。固定側の検出用基部220H1は、可動側の検出用基部240F1から離間して配置されている。 The detection base 220H1 of the fixed-side acceleration detector 202H1 is disposed on one side in the Y-axis direction of the detection base 240F1 (negative direction in the Y-axis direction). The detection base 220H1 also has a long shape extending in the X-axis direction. The fixed-side detection base 220H1 is disposed away from the movable-side detection base 240F1.
 固定側の検出用基部220H1の検出用基部240F1側の辺には、検出用基部240F1方向へ突出する複数の突起部222H1が形成されている。複数の突起部222H1は「固定側第1突起部」に相当する。複数の突起部222H1は、X軸方向の長さ(幅)が2Wである。複数の突起部222H1は、検出用基部220H1の長尺方向(X軸方向)に沿って所定の間隔で配置されている。この間隔は、突起部222H1の幅2Wよりも長く設定されており、突起部241F1の配置間隔と同じである。 A plurality of protrusions 222H1 projecting in the direction of the detection base 240F1 are formed on the detection base 240F1 side of the fixed detection base 220H1. The plurality of protrusions 222H1 correspond to “fixed-side first protrusions”. The plurality of protrusions 222H1 has a length (width) in the X-axis direction of 2W. The plurality of protrusions 222H1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 220H1. This interval is set longer than the width 2W of the protrusion 222H1, and is the same as the arrangement interval of the protrusions 241F1.
 複数の突起部222H1は、複数の突起部241F1に対してX軸方向に幅Wだけが対向するように配置されている。言い換えれば、互いに対向する突起部222H1と突起部241F1は、そのX軸方向の中心位置が突起部241F1,222H1の幅の半分の長さだけ、X軸方向にずれて配置されている。また、複数の突起部222H1と突起部242F1のX軸方向の位置は同じである。さらに、複数の突起部222H1は、複数の突起部241F1に対して、Y軸方向に沿った間隔D12になるように配置されている。 The plurality of protrusions 222H1 are arranged so that only the width W faces the plurality of protrusions 241F1 in the X-axis direction. In other words, the protrusion 222H1 and the protrusion 241F1 facing each other are arranged such that the center position in the X-axis direction is shifted in the X-axis direction by a length that is half the width of the protrusions 241F1 and 222H1. Further, the positions of the plurality of protrusions 222H1 and the protrusions 242F1 in the X-axis direction are the same. Further, the plurality of protrusions 222H1 are arranged so as to have a distance D12 along the Y-axis direction with respect to the plurality of protrusions 241F1.
 検出用基部240F1におけるY軸方向に他方側(Y軸方向の正の方向)には、固定側の加速度検出子202I1の検出用基部220I1が配置されている。検出用基部220I1もX軸方向に延びる長尺状である。固定側の検出用基部220I1は、可動側の検出用基部240F1から離間して配置されている。 The detection base 220I1 of the fixed-side acceleration detector 202I1 is disposed on the other side (positive direction in the Y-axis direction) in the Y-axis direction of the detection base 240F1. The detection base 220I1 also has a long shape extending in the X-axis direction. The fixed-side detection base 220I1 is disposed away from the movable-side detection base 240F1.
 固定側の検出用基部220I1の検出用基部240F1側の辺には、検出用基部240F1方向へ突出する複数の突起部221I1が形成されている。複数の突起部221I1は「固定側第2突起部」に相当する。複数の突起部221I1は、X軸方向の長さ(幅)が2Wである。複数の突起部221I1は、検出用基部220I1の長尺方向(X軸方向)に沿って所定の間隔で配置されている。この間隔は、突起部221I1の幅2Wよりも長く設定されており、突起部242F1の配置間隔と同じである。 A plurality of protrusions 221I1 projecting in the direction of the detection base 240F1 are formed on the side of the detection base 220F1 on the fixed side on the detection base 240F1 side. The plurality of protrusions 221I1 correspond to “fixed-side second protrusions”. The plurality of protrusions 221I1 have a length (width) in the X-axis direction of 2W. The plurality of protrusions 221I1 are arranged at predetermined intervals along the longitudinal direction (X-axis direction) of the detection base 220I1. This interval is set to be longer than the width 2W of the protrusion 221I1, and is the same as the arrangement interval of the protrusions 242F1.
 複数の突起部221I1は、複数の突起部242F1に対してX軸方向に幅Wだけが対向するように配置されている。言い換えれば、互いに対向する突起部221I1と突起部242F1は、そのX軸方向の中心位置が突起部242F1,222I1の幅の半分の長さだけ、X軸方向にずれて配置されている。また、複数の突起部221I1と突起部241F1のX軸方向の位置は同じである。さらに、複数の突起部222I1は、複数の突起部242F1に対して、Y軸方向に沿った間隔D12になるように配置されている。 The plurality of protrusions 221I1 are arranged so that only the width W faces the plurality of protrusions 242F1 in the X-axis direction. In other words, the protruding portion 221I1 and the protruding portion 242F1 facing each other are arranged such that the center position in the X-axis direction is shifted in the X-axis direction by half the width of the protruding portions 242F1 and 222I1. Further, the positions of the plurality of protrusions 221I1 and the protrusion 241F1 in the X-axis direction are the same. Further, the plurality of protrusions 222I1 are arranged so as to have a distance D12 along the Y-axis direction with respect to the plurality of protrusions 242F1.
 このような構成とすることで、可動側の突起部241F1と固定側の突起部222H1との対向面の幅がWであり対向面積がS1F1となって、対向距離がD12であることから、静電容量(キャパシタンス)C1F1が形成される。また、可動側の突起部242F1と固定側の突起部221I1との対向面の幅がWであり対向面積がS2F1(=S1F1)となって、対向距離がD12であることから、静電容量(キャパシタンス)C2F1(=C1F1)が形成される。また、静電容量形成部243F1と内側枠101Aとの対向面の面積がS3Fとなり、対向面の間隔がD34F(=D34D)となって静電容量(キャパシタンス)C3F1が形成される。 With such a configuration, the width of the facing surface between the movable-side protrusion 241F1 and the fixed-side protrusion 222H1 is W, the facing area is S1F1, and the facing distance is D12. A capacitance C1F1 is formed. Further, since the width of the facing surface between the movable protrusion 242F1 and the fixed protrusion 221I1 is W, the facing area is S2F1 (= S1F1), and the facing distance is D12, the capacitance ( Capacitance) C2F1 (= C1F1) is formed. Further, the area of the facing surface between the capacitance forming portion 243F1 and the inner frame 101A is S3F, and the distance between the facing surfaces is D34F (= D34D), thereby forming a capacitance (capacitance) C3F1.
 これら静電容量C1F1,C2F1,C3F1は、内側枠101Aで導通しているので、可動側の加速度検出子204F1と固定側の加速度検出子220H1,220I1との間には、これらの静電容量C1F1,C2F1,C3F1を加算した合成静電容量(合成キャパシタンス)が生じることになる。そして、この静電容量C1F1,C2F1,C3F1の合成静電容量と、上述の静電容量C1D1,C2D1,C3D1の合成静電容量も加算されて更なる合成静電容量となる。 Since these electrostatic capacitances C1F1, C2F1, and C3F1 are conducted by the inner frame 101A, the electrostatic capacitance C1F1 is interposed between the movable acceleration detector 204F1 and the fixed acceleration detectors 220H1 and 220I1. , C2F1 and C3F1 are combined to generate a combined capacitance (synthetic capacitance). The combined capacitances of the capacitances C1F1, C2F1, and C3F1 and the combined capacitances of the above-described capacitances C1D1, C2D1, and C3D1 are also added to obtain a further combined capacitance.
 このような構成とすることで、X軸方向に振動が加わった場合に、次のように合成静電容量が変化する。 With such a configuration, when vibration is applied in the X-axis direction, the combined capacitance changes as follows.
 まず、加速度検出子240D1,240F1がX軸方向の正の方向に変位している時、突起部241D1と突起部222E1との対向面積が増加することで、この突起部241D1222E1間の静電容量は増加する。一方、突起部242D1と突起部221F1との対向面積が減少し、この突起部242D1と突起部221F1との間の静電容量は減少する。同様に、加速度検出子240D1240F1がX軸方向の正の方向に変位している時、突起部241F1と突起部222H1との対向面積が増加することで、この突起部241F1,222H1間の静電容量は増加する。一方、突起部242F1と突起部221I1との対向面積が減少し、この突起部242F1と突起部221I1との間の静電容量は減少する。そして、これらの静電容量の合成により、振動による合成静電容量の変化は相殺される。 First, when the acceleration detectors 240D1 and 240F1 are displaced in the positive direction of the X-axis direction, the opposing area between the protrusion 241D1 and the protrusion 222E1 increases, so that the capacitance between the protrusions 241D1222E1 is To increase. On the other hand, the facing area between the protrusion 242D1 and the protrusion 221F1 decreases, and the capacitance between the protrusion 242D1 and the protrusion 221F1 decreases. Similarly, when the acceleration detector 240D1240F1 is displaced in the positive direction of the X-axis direction, the opposing area between the protrusion 241F1 and the protrusion 222H1 increases, so that the capacitance between the protrusions 241F1 and 222H1 is increased. Will increase. On the other hand, the facing area between the protrusion 242F1 and the protrusion 221I1 decreases, and the capacitance between the protrusion 242F1 and the protrusion 221I1 decreases. And the change of the synthetic | combination electrostatic capacitance by vibration is canceled by the synthesis | combination of these electrostatic capacitances.
 ここで、図16に示すように、加速度検出子240D1,240F1がX軸方向の正の方向に変位して、その変位量がWの時には、突起部241D1と突起部222E1とが全幅2Wで対向して対向面積が最大値S1D1’になり、静電容量は最大値C1D1’になり、突起部242D1と突起部221F1とが対向しなくなり静電容量が生じなくなる。同様に、加速度検出子240D1,240F1がX軸方向の正の方向に変位して、その変位量がWの時には、突起部241F1と突起部222H1とが全幅2Wで対向して対向面積が最大値S1F1’になり、静電容量は最大値C1F1’になり、突起部242F1と突起部221I1とが対向しなくなり静電容量が生じなくなる。 Here, as shown in FIG. 16, when the acceleration detectors 240D1 and 240F1 are displaced in the positive direction of the X axis and the displacement amount is W, the protrusion 241D1 and the protrusion 222E1 face each other with a full width of 2W. Thus, the opposing area becomes the maximum value S1D1 ′, the electrostatic capacitance becomes the maximum value C1D1 ′, and the protruding portion 242D1 and the protruding portion 221F1 do not face each other, and no electrostatic capacitance is generated. Similarly, when the acceleration detectors 240D1 and 240F1 are displaced in the positive direction of the X axis and the displacement amount is W, the protrusion 241F1 and the protrusion 222H1 face each other with a full width of 2W, and the facing area is the maximum value. The capacitance becomes S1F1 ′, and the electrostatic capacitance becomes the maximum value C1F1 ′, and the protruding portion 242F1 and the protruding portion 221I1 are not opposed to each other, and the electrostatic capacitance is not generated.
 この時点まで、加速度検出子240D1,240F1の突起部による合成静電容量は変化しない。 Up to this point, the combined capacitance due to the protrusions of the acceleration detectors 240D1 and 240F1 does not change.
 そして、加速度検出子240D1,240F1がX軸方向の正の方向にさらに変位して、その変位量がWを超えると、突起部241D1と突起部222E1とによる静電容量、および突起部241F1と突起部222H1とによる静電容量が減少し、加速度検出子240D1,240F1の突起部による合成静電容量も低下していってしまう。 Then, when the acceleration detectors 240D1 and 240F1 are further displaced in the positive direction of the X-axis and the displacement amount exceeds W, the capacitance by the protrusion 241D1 and the protrusion 222E1, and the protrusion 241F1 and protrusion The capacitance due to the portion 222H1 decreases, and the combined capacitance due to the protrusions of the acceleration detectors 240D1 and 240F1 also decreases.
 一方、図17に示すように、加速度検出子240D1,240F1がX軸方向の負の方向に変位して、その変位量がWの時には、突起部242D1と突起部221F1とが全幅2Wで対向して対向面積が最大値S2D1”になり、静電容量は最大値C2D1”になり、突起部241D1と突起部222E1とが対向しなくなり静電容量が生じなくなる。同様に、加速度検出子240D1,240F1がX軸方向の負の方向に変位して、その変位量がWの時には、突起部242F1と突起部221I1とが全幅2Wで対向して対向面積が最大値S2F1”になり、静電容量は最大値C2F1”になり、突起部241F1と突起部222H1とが対向しなくなり静電容量が生じなくなる。 On the other hand, as shown in FIG. 17, when the acceleration detectors 240D1 and 240F1 are displaced in the negative direction of the X axis and the displacement amount is W, the protrusion 242D1 and the protrusion 221F1 face each other with a full width of 2W. Thus, the opposing area becomes the maximum value S2D1 ″, the electrostatic capacitance becomes the maximum value C2D1 ″, and the protruding portion 241D1 and the protruding portion 222E1 do not face each other, so that no electrostatic capacitance is generated. Similarly, when the acceleration detectors 240D1 and 240F1 are displaced in the negative direction in the X-axis direction and the displacement amount is W, the protrusion 242F1 and the protrusion 221I1 face each other with a total width of 2W and the facing area is the maximum value. S2F1 "is reached, and the electrostatic capacitance reaches the maximum value C2F1", and the protruding portion 241F1 and the protruding portion 222H1 do not face each other, so that no electrostatic capacitance is generated.
 この時点まで、加速度検出子240D1,240F1の突起部による合成静電容量は変化しない。 Up to this point, the combined capacitance due to the protrusions of the acceleration detectors 240D1 and 240F1 does not change.
 そして、加速度検出子240D1,240F1がX軸方向の負の方向にさらに変位して、その変位量がWを超えると、突起部242D1と突起部221F1とによる静電容量、および突起部242F1と突起部221I1とによる静電容量が減少し、加速度検出子240D1,240F1の突起部による合成静電容量も低下していってしまう。 If the acceleration detectors 240D1 and 240F1 are further displaced in the negative direction of the X-axis and the displacement amount exceeds W, the electrostatic capacitance by the protrusion 242D1 and the protrusion 221F1, and the protrusion 242F1 and the protrusion The capacitance due to the portion 221I1 decreases, and the combined capacitance due to the protrusions of the acceleration detectors 240D1 and 240F1 also decreases.
 ここで、静電容量形成部243D1,243F1は、X軸方向の変位の絶対値がW内である時は、その静電容量C3D1,C3F1が、上述の突起部による静電容量よりも十分に小さくなるように設定されている。さらに、X軸方向の変位の絶対値がWよりも大きくなった時は、その静電容量C3D1,C3F1によって、上述の突起部による静電容量との合成静電容量に変化を与えることができるように設定されている。より具体的には、X軸方向の変位の絶対値がWよりも大きくなった場合に増加する静電容量C3D1,C3F1の変化量を、上述の変位量がWを超えた場合の加速度検出子240D1,240F1の突起部による合成静電容量の低下量と一致するように、静電容量形成部243D1,243F1の形状および位置を設定する。 Here, when the absolute value of the displacement in the X-axis direction is within W, the capacitance forming portions 243D1 and 243F1 have their capacitances C3D1 and C3F1 sufficiently higher than the capacitance due to the above-described protrusions. It is set to be smaller. Further, when the absolute value of the displacement in the X-axis direction becomes larger than W, a change can be given to the combined capacitance with the capacitance due to the above-described protrusions by the capacitances C3D1 and C3F1. Is set to More specifically, the amount of change in the capacitances C3D1 and C3F1 that increases when the absolute value of the displacement in the X-axis direction becomes larger than W is the acceleration detector when the displacement amount exceeds W. The shapes and positions of the capacitance forming portions 243D1 and 243F1 are set so as to coincide with the amount of decrease in the combined capacitance due to the protrusions 240D1 and 240F1.
 この設定を、より具体的に数式とグラフで示すと、次のようになる。図18は、合成静電容量の変位量に対する変化を示すグラフである。図18(A)は突起部による合成静電容量を示す。図18(B)は静電容量形成部による静電容量を示す。図18(C)は隣接する可動側の加速度検出子と固定側の加速度検出子との合成静電容量を示す。 こ の This setting can be expressed more specifically with mathematical formulas and graphs as follows. FIG. 18 is a graph showing the change of the synthetic capacitance with respect to the displacement amount. FIG. 18A shows the combined capacitance due to the protrusions. FIG. 18B shows the capacitance by the capacitance forming portion. FIG. 18C shows the combined capacitance of the adjacent movable-side acceleration detector and the fixed-side acceleration detector.
 まず、突起部による合成静電容量は、次式から得られる。なお、以下の数式では、各部の厚みをBとする。また、数式では理論値を示している。 First, the synthetic capacitance due to the protrusion is obtained from the following equation. In the following formula, the thickness of each part is B. In addition, the mathematical formula indicates a theoretical value.
(i)変位量ΔxがW内である場合(-W≦Δx≦+Wの場合)
 可動部の突起部と一方側の固定部の突起部との間で生じる静電容量C1は、次式になる。この静電容量C1は、例えば上述の突起部241D1と突起部222E1とによる静電容量等に相当する。
(I) When the displacement amount Δx is within W (when −W ≦ Δx ≦ + W)
The electrostatic capacitance C1 generated between the protrusion of the movable part and the protrusion of the fixed part on one side is expressed by the following equation. This capacitance C1 corresponds to, for example, the capacitance due to the above-described protrusion 241D1 and protrusion 222E1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、可動部の突起部と一方側の固定部の突起部との間で生じる静電容量C1は、次式になる。この静電容量C1は、例えば上述の突起部242D1と突起部221F1とによる静電容量等に相当する。 Also, the capacitance C1 generated between the protrusion of the movable part and the protrusion of the fixed part on one side is expressed by the following equation. The capacitance C1 corresponds to, for example, the capacitance due to the above-described protrusion 242D1 and protrusion 221F1.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 したがって、突起部による合成静電容量C12は、次式となる。 Therefore, the synthetic capacitance C12 due to the protrusion is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
(ii)変位量ΔxがWより大きく、X軸方向の正の方向に移動する場合(Δx≧+Wの場合、図16参照) (Ii) When the displacement amount Δx is larger than W and moves in the positive direction of the X-axis direction (when Δx ≧ + W, see FIG. 16)
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
(iii)変位量ΔxがWより大きく、X軸方向の負の方向に移動する場合(Δx≦-Wの場合、
図17参照)
(Iii) When the displacement amount Δx is larger than W and moves in the negative direction of the X axis direction (when Δx ≦ −W,
(See Figure 17)
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 これにより、突起部による合成静電容量C12は、図18(A)に示すような特性となる。具体的には、図18(A)の破線に示すように、変位量Δxが-Wから+Wの間では、合成静電容量は、一定値となる。変位量Δxが-Wよりも小さく+Wよりも大きい(変位量Δxの絶対値がWより大きい)と、合成静電容量は、変位量Δxが0から遠ざかるほど単調減少する。 Thereby, the synthetic capacitance C12 due to the protrusion has characteristics as shown in FIG. Specifically, as shown by the broken line in FIG. 18A, the combined capacitance is a constant value when the displacement amount Δx is between −W and + W. When the displacement amount Δx is smaller than −W and larger than + W (the absolute value of the displacement amount Δx is larger than W), the combined capacitance monotonously decreases as the displacement amount Δx moves away from zero.
 なお、現実には、可動部と固定部の隣接する突起部同士が対向していなくても、静電容量は発生するので、図18に示すような変位量Δxを極大値(最大値)とし、変位量Δxの絶対値が増加するほど曲線的に静電容量が低下する特性となる。 In reality, electrostatic capacity is generated even if the adjacent protrusions of the movable part and the fixed part do not face each other, so the displacement amount Δx as shown in FIG. 18 is set to a maximum value (maximum value). As the absolute value of the displacement amount Δx increases, the capacitance decreases in a curve.
 一方、静電容量形成部による合成静電容量は、次式から得られる。なお、以下の数式では、各部の厚みをBとする。また、数式では理論値を示している。静電容量形成部による静電容量は、X軸方向の振動により、内側枠との間隔が変化するものであるので、数式は場合分けする必要はない。 On the other hand, the synthetic capacitance by the capacitance forming portion is obtained from the following equation. In the following formula, the thickness of each part is B. In addition, the mathematical formula indicates a theoretical value. Since the electrostatic capacitance formed by the electrostatic capacitance forming portion changes in the distance from the inner frame due to vibration in the X-axis direction, the mathematical formula need not be divided into cases.
 検出子保持部を介して一方の検出用基部に形成された静電容量形成部による静電容量C31は、次式になる。この静電容量C31は、例えば上述の静電容量形成部243F1と内側枠101Aとによる静電容量等に相当する。なお、S31は、静電容量形成部と内側枠との対向面積である。また、D34は、変位量Δx=0の時の静電容量形成部と内側枠との間隔である。 The capacitance C31 by the capacitance forming part formed on one of the detection bases via the detector holding part is expressed by the following equation. The capacitance C31 corresponds to, for example, the capacitance due to the above-described capacitance forming portion 243F1 and the inner frame 101A. Note that S31 is an opposing area between the capacitance forming portion and the inner frame. D34 is the distance between the capacitance forming portion and the inner frame when the displacement amount Δx = 0.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、静電容量C31をテイラー展開すると、次式となる。 Here, when the capacitance C31 is expanded by Taylor, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 検出子保持部を介して一方の検出用基部に形成された静電容量形成部による静電容量C32は、次式になる。この静電容量C32は、例えば上述の静電容量形成部243D1と内側枠101Aとによる静電容量等に相当する。なお、S32は、静電容量形成部と内側枠との対向面積であり、S32=S31である。 The electrostatic capacity C32 by the electrostatic capacity forming part formed on one of the detection bases via the detector holding part is expressed by the following equation. The capacitance C32 corresponds to, for example, the capacitance due to the above-described capacitance forming portion 243D1 and the inner frame 101A. Note that S32 is a facing area between the capacitance forming portion and the inner frame, and S32 = S31.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、静電容量C32をテイラー展開すると、次式となる。 Here, when the capacitance C32 is expanded by Taylor, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、S32=S31であるので、合成静電容量C30=(C31+C32)は、次式となる。 Here, since S32 = S31, the combined capacitance C30 = (C31 + C32) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 したがって、合成静電容量C30=(C31+C32)は、極小値を持つ偶関数となり、4次の項よりも高次項は、十分小さいとして無視できるので、式14は次式に近似することができる。 Therefore, the combined capacitance C30 = (C31 + C32) is an even function having a minimum value, and the higher-order term than the fourth-order term can be ignored as being sufficiently small. Therefore, Equation 14 can be approximated by
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 これにより、静電容量形成部による合成静電容量C30は、図18(B)に示すような特性となる。具体的には、図18(B)に示すように、合成静電容量は、変位量Δxが0の時に極小値(最小値)となり、変位量Δxが0から遠ざかるほど単調増加する。 Thereby, the synthetic capacitance C30 by the capacitance forming portion has characteristics as shown in FIG. Specifically, as shown in FIG. 18B, the combined capacitance has a minimum value (minimum value) when the displacement amount Δx is 0, and monotonously increases as the displacement amount Δx is farther from 0.
 したがって、突起部による合成静電容量C12に静電容量形成部による合成静電容量C30を加算した加速度検出子としての合成静電容量Ccは、次式となる。 Therefore, the combined capacitance Cc as an acceleration detector obtained by adding the combined capacitance C30 by the capacitance forming unit to the combined capacitance C12 by the protruding portion is expressed by the following equation.
 (i)変位量ΔxがW内である場合(-W≦Δx≦+Wの場合)
Figure JPOXMLDOC01-appb-M000012
(I) When the displacement amount Δx is within W (when −W ≦ Δx ≦ + W)
Figure JPOXMLDOC01-appb-M000012
 (ii)変位量ΔxがWより大きく、X軸方向の正の方向に移動する場合(Δx≧+Wの場合、図16参照)
Figure JPOXMLDOC01-appb-M000013
(Ii) When the displacement amount Δx is larger than W and moves in the positive direction of the X-axis direction (when Δx ≧ + W, see FIG. 16)
Figure JPOXMLDOC01-appb-M000013
 (iii)変位量ΔxがWより大きく、X軸方向の負の方向に移動する場合(Δx≦-Wの場合、図17参照)
Figure JPOXMLDOC01-appb-M000014
(Iii) When the displacement amount Δx is larger than W and moves in the negative direction of the X-axis direction (when Δx ≦ −W, refer to FIG. 17)
Figure JPOXMLDOC01-appb-M000014
 ここで、上述のように、静電容量形成部の形状を適宜設定することで、静電容量形成部による合成静電容量C30の増加率と、突起部による合成静電容量C12の減少率を略一致させる。この計算は、例えば、上述の(式17)、(式18)、(式19)を用いて行えばよい。 Here, as described above, by appropriately setting the shape of the capacitance forming portion, the rate of increase of the combined capacitance C30 by the capacitance forming portion and the rate of decrease of the combined capacitance C12 by the protrusions are set. Match approximately. This calculation may be performed using, for example, the above-described (Expression 17), (Expression 18), and (Expression 19).
 これのような設定を行うことで、振動によって生じる突起部による合成静電容量C12の減少量を、静電容量形成部による合成静電容量C30の増加量で補完することができる。これにより、図18(C)に示すように、突起部による合成静電容量C12と、静電容量形成部による合成静電容量C30とを加算してなる加速度検出子の合成静電容量Ccは、変位量Δxに依存することなく一定となる。 By performing such a setting, the amount of decrease in the combined capacitance C12 caused by the protrusion caused by vibration can be supplemented by the amount of increase in the combined capacitance C30 by the capacitance forming unit. As a result, as shown in FIG. 18C, the combined capacitance Cc of the acceleration detector formed by adding the combined capacitance C12 by the protrusion and the combined capacitance C30 by the capacitance forming unit is It becomes constant without depending on the displacement amount Δx.
 この際、静電容量形成部による合成静電容量C30は、変位量Δxの絶対値が最大の時に最大値となり、変位量Δxが最小(Δx=0)の時に最小値になるので、突起部の振動による静電容量C1,C2の2次成分と同じ周波数(同じ周期)となる。 At this time, the combined capacitance C30 by the capacitance forming portion becomes the maximum value when the absolute value of the displacement amount Δx is maximum, and becomes the minimum value when the displacement amount Δx is minimum (Δx = 0). The same frequency (same cycle) as the secondary components of the capacitances C1 and C2 due to the vibrations of.
 図19(A)は、変位量Δxと、突起部の振動による静電容量C1,C2の1次成分および2次成分と、静電容量形成部による静電容量C30との時間変化を示す図である。図19(B)は、変位量Δxと、合成静電容量Ccとの時間変化を示す図である。 FIG. 19A is a diagram showing temporal changes of the displacement amount Δx, the primary and secondary components of the capacitances C1 and C2 due to the vibration of the protrusions, and the capacitance C30 due to the capacitance forming unit. It is. FIG. 19B is a diagram illustrating a change over time in the displacement amount Δx and the combined capacitance Cc.
 図19(A)に示すように、静電容量C1,C2の1次成分は周波数が同じであって逆相である。したがって、これらを加算合成することで相殺される。また、静電容量C1,C2の合成静電容量の2次成分と、静電容量形成部による静電容量C30は周波数が同じであって逆相である。したがって、これらを加算合成することで相殺される。 As shown in FIG. 19A, the primary components of the capacitances C1 and C2 have the same frequency and are in reverse phase. Therefore, they are canceled out by adding and synthesizing them. The secondary component of the combined capacitance of the capacitances C1 and C2 and the capacitance C30 by the capacitance forming unit have the same frequency and are in opposite phases. Therefore, they are canceled out by adding and synthesizing them.
 これにより、図19(B)に示すように、加速度検出子の合成静電容量Ccは、変位量Δxに依存することなく一定となる。 Thus, as shown in FIG. 19B, the combined capacitance Cc of the acceleration detector becomes constant without depending on the displacement amount Δx.
 なお、このような原理は、可動側の加速度検出子とこれを挟む固定側の加速度検出子との全ての組に共通で生じる。したがって、センサ素子全体として、加速度検出子の合成静電容量Ccは、変位量Δxに依存することなく一定となる。 It should be noted that such a principle is common to all sets of the movable-side acceleration detector and the fixed-side acceleration detector sandwiching the movable-side acceleration detector. Therefore, as a whole of the sensor element, the combined capacitance Cc of the acceleration detector is constant without depending on the displacement amount Δx.
 以上のように、本実施形態の構成を用いることで、角速度検出用の振動による加速度検出部の静電容量の変化を防止できる。これにより、振動に影響されることなく、加速度を確実且つ正確に検出することができる。 As described above, by using the configuration of the present embodiment, it is possible to prevent a change in the capacitance of the acceleration detection unit due to vibration for angular velocity detection. As a result, the acceleration can be reliably and accurately detected without being affected by the vibration.
 また、検出子保持部の中心を通るY軸方向の軸に線対称に、静電容量形成部を形成していることが好ましい。中心線に対して対称の静電容量形成部を形成することにより、加速度検出部での容量変化による不要な奇数次高調波成分を発生させることなく、検出感度を高めることができる。 Further, it is preferable that the capacitance forming portion is formed in line symmetry with respect to an axis in the Y-axis direction passing through the center of the detector holding portion. By forming the capacitance forming portion symmetrical with respect to the center line, the detection sensitivity can be increased without generating unnecessary odd-order harmonic components due to capacitance changes in the acceleration detection portion.
 上述の複合センサは、例えば、概略的に次に示すような方法によって製造することができる。まず、例えば、絶縁性のシリコン基板の表面に低抵抗シリコン基板を薄膜で形成する。次に、この複合シリコン基板に対して、低抵抗シリコン基板側からドライエッチングを施し、固定部、支持梁、第1、第2質量部、連結部、第1~第4検出部、第1、第2駆動部等の機能部を、上述のパターンで形成する。この時、機能部の全体を囲むように、複合シリコン基板の外縁には枠状体を形成する。 The above-described composite sensor can be manufactured, for example, by the following method. First, for example, a low resistance silicon substrate is formed as a thin film on the surface of an insulating silicon substrate. Next, the composite silicon substrate is dry-etched from the low resistance silicon substrate side, and the fixed portion, the support beam, the first and second mass portions, the connecting portion, the first to fourth detection portions, the first, The functional unit such as the second driving unit is formed with the above-described pattern. At this time, a frame-like body is formed on the outer edge of the composite silicon substrate so as to surround the entire functional portion.
 次に、減圧雰囲気中で、ガラス材料等からなる蓋体を枠状体に接合し、機能部全体を気密封止する。その後、蓋体に対して、機能部の必要箇所を外部に接続するための導電性ビアホールを形成する。そして、蓋体に、導電性ビアホールに接続する外部接続導体を形成する。 Next, a lid made of a glass material or the like is joined to the frame-like body in a reduced pressure atmosphere, and the entire functional unit is hermetically sealed. Thereafter, a conductive via hole for connecting a necessary portion of the functional unit to the outside is formed on the lid. Then, an external connection conductor connected to the conductive via hole is formed on the lid.
 なお、上述の説明では、可動側の加速度検出子に静電容量形成部を形成する例を示したが、さらに、固定側の加速度検出子に静電容量形成部を形成してもよい。図20は、可動側の加速度検出子と固定側の加速度検出子とのより具体的なその他の構造を示す部分平面図である。 In the above description, the example in which the capacitance forming portion is formed on the movable acceleration detector is shown. However, the capacitance forming portion may be formed on the fixed acceleration detector. FIG. 20 is a partial plan view showing another more specific structure of the movable-side acceleration detector and the fixed-side acceleration detector.
 図20に示す構造では、固定側の加速度検出子202E1’,202F1’ ,202H1’ ,202I1’の構造が、上述の図14に示した構造と異なるものであり、他の構成は同じである。したがって、同じ箇所の説明は省略し、異なる箇所のみを説明する。 In the structure shown in FIG. 20, the structures of the acceleration detectors 202E1 ', 202F1' ?, 202H1 '?, 202I1' on the fixed side are different from the structure shown in FIG. 14 described above, and the other structures are the same. Therefore, description of the same part is abbreviate | omitted and only a different part is demonstrated.
 加速度検出子202E1’は、上述の加速度検出子202E1に対して、静電容量形成部223E1を追加したものである。静電容量形成部223E1は、検出用基部220E1における検出用保持部2051側の端部に形成されている。静電容量形成部223E1は、検出用保持部2051に対して所定面積で対向し、所定の間隔を置いている。静電容量形成部223E1は、X軸方向に沿って見た面積が、第1固定側検出用基部の面積もしくは第2固定側検出用基部の面積よりも広くなるように形成されている。これにより、静電容量形成部223E1と検出用保持部2051との間で静電容量C4D1が形成される。 The acceleration detector 202E1 'is obtained by adding a capacitance forming unit 223E1 to the acceleration detector 202E1 described above. The capacitance forming part 223E1 is formed at the end of the detection base 220E1 on the detection holding part 2051 side. The electrostatic capacity forming unit 223E1 is opposed to the detection holding unit 2051 with a predetermined area and has a predetermined interval. The capacitance forming part 223E1 is formed so that the area viewed along the X-axis direction is wider than the area of the first fixed side detection base or the second fixed side detection base. As a result, a capacitance C4D1 is formed between the capacitance forming unit 223E1 and the detection holding unit 2051.
 加速度検出子202F1’は、上述の加速度検出子202F1に対して、静電容量形成部223F1を追加したものである。静電容量形成部223F1は、検出用基部220F1における検出用保持部2051側の端部に形成されている。静電容量形成部223F1は、検出用保持部2051に対して所定面積で対向し、所定の間隔を置いている。静電容量形成部223F1は、X軸方向に沿って見た面積が、第1固定側検出用基部の面積もしくは第2固定側検出用基部の面積よりも広くなるように形成されている。これにより、静電容量形成部223F1と検出用保持部2051との間で静電容量C4D2が形成される。 The acceleration detector 202F1 'is obtained by adding a capacitance forming unit 223F1 to the acceleration detector 202F1 described above. The capacitance forming unit 223F1 is formed at the end of the detection base 220F1 on the detection holding unit 2051 side. The capacitance forming unit 223F1 is opposed to the detection holding unit 2051 with a predetermined area, and is spaced by a predetermined interval. The capacitance forming part 223F1 is formed so that the area seen along the X-axis direction is wider than the area of the first fixed side detection base or the second fixed side detection base. As a result, a capacitance C4D2 is formed between the capacitance forming unit 223F1 and the detection holding unit 2051.
 加速度検出子202H1’は、上述の加速度検出子202H1に対して、静電容量形成部223H1を追加したものである。静電容量形成部223H1は、検出用基部220H1における検出用保持部2051側の端部に形成されている。静電容量形成部223H1は、検出用保持部2051に対して所定面積で対向し、所定の間隔を置いている。静電容量形成部223H1は、X軸方向に沿って見た面積が、第1固定側検出用基部の面積もしくは第2固定側検出用基部の面積よりも広くなるように形成されている。これにより、静電容量形成部223H1と検出用保持部2051との間で静電容量C4F1が形成される。 The acceleration detector 202H1 'is obtained by adding a capacitance forming unit 223H1 to the above-described acceleration detector 202H1. The capacitance forming part 223H1 is formed at the end of the detection base 220H1 on the detection holding part 2051 side. The electrostatic capacity forming unit 223H1 is opposed to the detection holding unit 2051 with a predetermined area and has a predetermined interval. The capacitance forming part 223H1 is formed so that the area seen along the X-axis direction is larger than the area of the first fixed side detection base or the second fixed side detection base. As a result, a capacitance C4F1 is formed between the capacitance forming unit 223H1 and the detection holding unit 2051.
 加速度検出子202I1’は、上述の加速度検出子202I1に対して、静電容量形成部223I1を追加したものである。静電容量形成部223I1は、検出用基部220I1における検出用保持部2051側の端部に形成されている。静電容量形成部223I1は、検出用保持部2051に対して所定面積で対向し、所定の間隔を置いている。静電容量形成部223I1は、X軸方向に沿って見た面積が、第1固定側検出用基部の面積もしくは第2固定側検出用基部の面積よりも広くなるように形成されている。これにより、静電容量形成部223I1と検出用保持部2051との間で静電容量C4F2が形成される。 The acceleration detector 202I1 'is obtained by adding a capacitance forming unit 223I1 to the above-described acceleration detector 202I1. The capacitance forming portion 223I1 is formed at the end of the detection base 220I1 on the detection holding portion 2051 side. The capacitance forming unit 223I1 faces the detection holding unit 2051 with a predetermined area and has a predetermined interval. The capacitance forming part 223I1 is formed so that the area seen along the X-axis direction is larger than the area of the first fixed side detection base or the second fixed side detection base. As a result, a capacitance C4F2 is formed between the capacitance forming unit 223I1 and the detection holding unit 2051.
 このような構成では、上述の静電容量形成部243D1と内側枠101Aによる静電容量C3D1と、静電容量形成部223E1,223F1と検出用保持部2051とによる静電容量C4D1,C4D2とを用いて、突起部241D1,222E1との間および突起部242D1,221F1との間の静電容量が振動によって減少することを抑制できる。 In such a configuration, the capacitance C3D1 formed by the capacitance forming unit 243D1 and the inner frame 101A, and the capacitances C4D1 and C4D2 formed by the capacitance forming units 223E1 and 223F1 and the detection holding unit 2051 are used. Thus, it is possible to suppress the capacitance between the protrusions 241D1 and 222E1 and between the protrusions 242D1 and 221F1 from decreasing due to vibration.
 同様に、上述の静電容量形成部243F1と内側枠101Aによる静電容量C3F1と、静電容量形成部223H1,223I1と検出用保持部2051とによる静電容量C4F1,C4F2とを用いて、突起部241F1,222H1との間および突起部242F1,221I1との間の静電容量が振動によって減少することを抑制できる。 Similarly, using the capacitance C3F1 formed by the capacitance forming unit 243F1 and the inner frame 101A described above, and the capacitances C4F1 and C4F2 formed by the capacitance forming units 223H1 and 223I1 and the detection holding unit 2051 are used. It can suppress that the electrostatic capacitance between the part 241F1 and 222H1 and between the projection part 242F1 and 221I1 decreases by vibration.
 このような固定側の突起部は、他の加速度検出子にも形成される。これにより、振動による加速度検出部の静電容量の変化を抑制できる。そして、図20の構造を用いることで、可動側の形状的な制限や加速度および角速度の検出性能等により、可動側の静電容量形成部と内側枠とよる静電容量が、振動による静電容量の減少を十分に補完できないような場合であっても、固定側の静電容量形成部による静電容量で確実に補完することができる。 Such a protrusion on the fixed side is also formed on other acceleration detectors. Thereby, the change of the electrostatic capacitance of the acceleration detection part by vibration can be suppressed. Then, by using the structure of FIG. 20, the electrostatic capacity formed by the movable-side capacitance forming portion and the inner frame is reduced by the vibration due to the shape limitation on the movable side and the detection performance of acceleration and angular velocity. Even if it is not possible to sufficiently compensate for the decrease in capacitance, it is possible to reliably compensate with the capacitance by the capacitance forming portion on the fixed side.
 また、上述の実施形態では、静電容量形成部を可動部側に形成する場合、可動部側および固定部側の双方に形成する場合を示したが、図21に示すように、固定部側のみに形成してもよい。 Further, in the above-described embodiment, when the capacitance forming part is formed on the movable part side, the case where it is formed on both the movable part side and the fixed part side is shown. However, as shown in FIG. You may form only.
 図21は可動側の加速度検出子と固定側の加速度検出子とのより具体的なその他の第2の構造を示す部分平面図である。 FIG. 21 is a partial plan view showing another more specific second structure of the movable-side acceleration detector and the fixed-side acceleration detector.
 図21に示すように、固定部側の加速度検出子202E1’,202H1’は、図20に示した構造と同じである。可動部側の加速度検出子204D1’は、図20の加速度検出子204D1に対して、静電容量形成部243D1を省略したものである。可動部側の加速度検出子204F1’は、図20の加速度検出子204F1に対して、静電容量形成部243F1を省略したものである。 As shown in FIG. 21, the acceleration detectors 202E1 'and 202H1' on the fixed part side have the same structure as that shown in FIG. The acceleration detector 204D1 'on the movable portion side is obtained by omitting the capacitance forming portion 243D1 from the acceleration detector 204D1 of FIG. The acceleration detector 204F1 'on the movable portion side is obtained by omitting the capacitance forming portion 243F1 from the acceleration detector 204F1 of FIG.
 このような構成であっても、上述の実施形態と同様の作用効果を得ることができる。 Even with such a configuration, the same operational effects as those of the above-described embodiment can be obtained.
1:センサ素子、
2:基板、
3A,3B,3C,3D,3E,3F:固定部、
4A,4B:支持梁、
5A,5B,5C,5D,5E,5F,5G,5H:連結部、
8:検出用IC、
10:第1質量部、
20:第2質量部、
11:第1検出部、
12:第2検出部、
13:第3検出部、
14:第4検出部、
30:第1駆動部、
31:固定部、
32:支持部材、
33A,33B,34A,34B,43A,43B,44A,44B,51,52,61,62:櫛歯部、
431A,431B,441A,441B,661:軸部、
432A,432B,442A,442B,662:歯部
40:第2駆動部、
41:固定部、
42:支持部材、
50,60:モニタ部、
101A,101B:内枠部、
101C,101D:中心軸、
102A,102B:外枠部、
103A,103B,104A,104B,103C,103C,104D,104D:連結部材、
111,121,131,141:固定部、
112,122,132,142:加速度検出部、
113,123,133,143:角速度検出部、
201A1,201B1,201A2,201B2,201A3,201B3,201A4,201B1,2051,2052,2053,2054:検出子保持部、
202A1~202N1,204A1~204J1,202A2~202N2,204A2~204J2,202A3~202N3,204A3~204J3,202A4~202N4,204A4~204J4,202E1’,202F1’,202H1’,202I1’,204D1’,204F1’:加速度検出子、
220A1~220D1,240A1~240C1:検出用基部、
221B1,221C1,221D1,222A1,222B1,222C1,241A1,241B1,241C1,242A1,242B1,242C1:突起部、
243A1、243B1,243C1,243D1,243F1,223E1,223F1,223H1,223I1:静電容量形成部、
300:第3質量部、
400:第4質量部、
500,600:固定部、
3011,3021,3012,3022,3013,3023,3014,3024:角速度検出子、
80:制御部、
81:フィルタ、
82A:駆動用非反転増幅器、
82B:駆動用反転増幅器、
83A,83B:モニタ用増幅器、
84:フィルタ、
840:差動増幅器、
85:位相シフタ、
91A,91B:増幅器、
92:加算器、
93:減算器、
94A,94B:フィルタ、
95A,95B:検波器、
96A,96B:出力回路、
OUTa,OUTω:出力端子
1: sensor element,
2: substrate
3A, 3B, 3C, 3D, 3E, 3F: fixed part,
4A, 4B: support beam,
5A, 5B, 5C, 5D, 5E, 5F, 5G, 5H: connecting part,
8: IC for detection,
10: 1st mass part,
20: second mass part,
11: 1st detection part,
12: 2nd detection part,
13: Third detection unit,
14: 4th detection part,
30: 1st drive part,
31: fixed part,
32: support member,
33A, 33B, 34A, 34B, 43A, 43B, 44A, 44B, 51, 52, 61, 62: comb teeth,
431A, 431B, 441A, 441B, 661: shaft portion,
432A, 432B, 442A, 442B, 662: tooth part 40: second drive part,
41: fixing part,
42: a support member,
50, 60: monitor unit,
101A, 101B: inner frame,
101C, 101D: central axis,
102A, 102B: outer frame part,
103A, 103B, 104A, 104B, 103C, 103C, 104D, 104D: connecting members,
111, 121, 131, 141: fixed part,
112, 122, 132, 142: acceleration detection unit,
113, 123, 133, 143: angular velocity detector,
201A1, 201B1, 201A2, 201B2, 201A3, 201B3, 201A4, 201B1, 2051, 2052, 2053, 2054: detector holding unit,
202A1 to 202N1, 204A1 to 204J1, 202A2 to 202N2, 204A2 to 204J2, 202A3 to 202N3, 204A3 to 204J3, 202A4 to 202N4, 204A4 to 204J4, 202E1 ', 202F1', 202H1 ', 202I1', 204D1 ', 204F1': Acceleration sensor,
220A1 to 220D1, 240A1 to 240C1: detection base,
221B1, 221C1, 221D1, 222A1, 222B1, 222C1, 241A1, 241B1, 241C1, 242A1, 242B1, 242C1: protrusions,
243A1, 243B1, 243C1, 243D1, 243F1, 223E1, 223F1, 223H1, 223I1: capacitance forming unit,
300: third mass part,
400: 4th mass part,
500,600: fixed part,
3011, 3021, 3012, 3022, 3013, 3023, 3014, 3024: angular velocity detector,
80: control unit,
81: Filter,
82A: driving non-inverting amplifier,
82B: Inverting amplifier for driving,
83A, 83B: monitor amplifier,
84: Filter,
840: differential amplifier,
85: Phase shifter,
91A, 91B: amplifiers
92: Adder,
93: subtractor,
94A, 94B: Filter,
95A, 95B: detector,
96A, 96B: output circuit,
OUTa, OUTω: Output terminals

Claims (9)

  1.  基板と、
     前記基板の一つの面に固定された固定部と、
     前記基板の前記一つの面に平行な第1方向に振動可能な状態で前記基板に支持され、前記固定部と対向する可動部と、を備え、
     前記可動部は、
     前記第1方向に沿って延び、前記基板の前記一つの面に平行で且つ前記第1方向と直交する第2方向の両側にそれぞれ、第1の面および第2の面を有する可動側検出用基部と、
     前記可動側検出用基部の前記第1の面から、前記第2方向の一方向に突出する、可動側第1突起部と、
     前記可動側検出用基部の前記第2の面から、前記第2方向の他方向に突出する、可動側第2突起部と、を有し、
     前記固定部は、
     前記可動側検出用基部における前記第2方向の両側にそれぞれ配置され、前記第1方向に沿って延びる、第1固定側検出用基部および第2固定側検出用基部と、
     前記第1固定側検出用基部から前記可動側第1突起部側に突出する固定側第1突起部と、
     前記第2固定側検出用基部から前記可動側第2突起部側に突出する固定側第2突起部と、を有し、
     前記可動側第1突起部と前記固定側第1突起部との間の第1静電容量と、前記可動側第2突起部と前記固定側第2突起部との間の第2静電容量との合成静電容量の変化から、加速度検出信号を出力し、
     前記可動側検出用基部、前記第1固定側検出用基部、および前記第2固定側検出用基部のいずれかにおける前記第1方向の端部に、前記可動部と前記固定部との間の第3静電容量を生じる静電容量形成部が配置されている、
     センサ素子。
    A substrate,
    A fixing part fixed to one surface of the substrate;
    A movable portion supported by the substrate in a state capable of vibrating in a first direction parallel to the one surface of the substrate, and facing the fixed portion;
    The movable part is
    A movable side detection for extending along the first direction, having a first surface and a second surface on both sides of a second direction parallel to the one surface of the substrate and perpendicular to the first direction, respectively. The base,
    A movable-side first protrusion protruding in one direction of the second direction from the first surface of the movable-side detection base;
    A movable-side second protrusion that protrudes in the other direction of the second direction from the second surface of the movable-side detection base;
    The fixing part is
    A first fixed-side detection base and a second fixed-side detection base, which are respectively arranged on both sides of the movable-side detection base in the second direction and extend along the first direction;
    A fixed-side first protrusion protruding from the first fixed-side detection base to the movable-side first protrusion;
    A fixed-side second protrusion protruding from the second fixed-side detection base toward the movable-side second protrusion,
    A first capacitance between the movable side first projection and the fixed side first projection, and a second capacitance between the movable side second projection and the fixed side second projection. From the change in the combined capacitance with
    At the end in the first direction of any one of the movable side detection base, the first fixed side detection base, and the second fixed side detection base, a first portion between the movable portion and the fixed portion is provided. 3 Capacitance forming part for generating capacitance is arranged,
    Sensor element.
  2.  基板と、
     前記基板の一つの面に固定された固定部と、
     前記基板の前記一つの面に平行な第1方向に振動可能な状態で前記基板に支持され、前記固定部と対向する可動部と、を備え、
     前記可動部は、
     前記第1方向に沿って延び、前記基板の前記一つの面に平行で且つ前記第1方向と直交する第2方向の両側にそれぞれ、第1の面および第2の面を有する可動側検出用基部と、
     前記可動側検出用基部の前記第1の面から、前記第2方向の一方向に突出する、可動側第1突起部と、
     前記可動側検出用基部の前記第2の面から、前記第2方向の他方向に突出する、可動側第2突起部と、を有し、
     前記固定部は、
     前記可動側検出用基部における前記第2方向の両側にそれぞれ配置され、前記第1方向に沿って延びる、第1固定側検出用基部および第2固定側検出用基部と、
     前記第1固定側検出用基部から前記可動側第1突起部側に突出する固定側第1突起部と、
     前記第2固定側検出用基部から前記可動側第2突起部側に突出する固定側第2突起部と、を有し、
     前記可動側第1突起部と前記固定側第1突起部との間の第1静電容量と、前記可動側第2突起部と前記固定側第2突起部との間の第2静電容量との合成静電容量の変化から、加速度検出信号を出力し、
     前記可動側検出用基部、前記第1固定側検出用基部、および前記第2固定側検出用基部のいずれかにおける前記第1方向の端部に、静電容量形成部が配置され、
     前記静電容量形成部の前記第2方向に沿った幅が、前記可動側検出用基部、前記第1固定側検出用基部、および前記第2固定側検出用基部のうち前記静電容量形成部が配置されたものの前記第2方向に沿った幅に比べて、大きい、
     センサ素子。
    A substrate,
    A fixing part fixed to one surface of the substrate;
    A movable portion supported by the substrate in a state capable of vibrating in a first direction parallel to the one surface of the substrate, and facing the fixed portion;
    The movable part is
    A movable side detection for extending along the first direction, having a first surface and a second surface on both sides of a second direction parallel to the one surface of the substrate and perpendicular to the first direction, respectively. The base,
    A movable-side first protrusion protruding in one direction of the second direction from the first surface of the movable-side detection base;
    A movable-side second protrusion that protrudes in the other direction of the second direction from the second surface of the movable-side detection base;
    The fixing part is
    A first fixed-side detection base and a second fixed-side detection base, which are respectively arranged on both sides of the movable-side detection base in the second direction and extend along the first direction;
    A fixed-side first protrusion protruding from the first fixed-side detection base to the movable-side first protrusion;
    A fixed-side second protrusion protruding from the second fixed-side detection base to the movable-side second protrusion,
    A first capacitance between the movable side first projection and the fixed side first projection, and a second capacitance between the movable side second projection and the fixed side second projection. From the change in the combined capacitance with
    A capacitance forming portion is disposed at an end portion in the first direction in any of the movable side detection base, the first fixed side detection base, and the second fixed side detection base,
    A width of the capacitance forming portion along the second direction is the capacitance forming portion of the movable side detection base, the first fixed side detection base, and the second fixed side detection base. Is larger than the width along the second direction,
    Sensor element.
  3.  前記可動部および前記固定部それぞれに、
     前記静電容量形成部を備える、請求項1または請求項2に記載のセンサ素子。
    For each of the movable part and the fixed part,
    The sensor element of Claim 1 or Claim 2 provided with the said electrostatic capacitance formation part.
  4.  前記可動部は、前記可動側検出用基部の前記第1方向の一方端に、前記第2方向に沿って延びる可動側保持部を有し、
     前記固定部は、前記第1固定側検出用基部および前記第2固定側検出用基部の前記第1方向の他方端に、前記第2方向に沿って延びる固定側保持部を有し、
     前記可動側検出用基部、前記第1固定側検出用基部、および前記第2固定側検出用基部は、前記第1方向において前記可動側保持部と前記固定側保持部との間に配置されており、
     前記静電容量形成部は、前記可動側検出用基部における前記第1方向の他方端に配置されている、請求項1乃至請求項3のいずれか1項に記載のセンサ素子。
    The movable part has a movable side holding part extending along the second direction at one end of the movable side detection base in the first direction,
    The fixed portion has a fixed-side holding portion extending along the second direction at the other end in the first direction of the first fixed-side detection base and the second fixed-side detection base.
    The movable side detection base, the first fixed side detection base, and the second fixed side detection base are arranged between the movable side holding part and the fixed side holding part in the first direction. And
    4. The sensor element according to claim 1, wherein the capacitance forming portion is disposed at the other end in the first direction of the movable side detection base portion. 5.
  5.  前記可動部は、前記可動側検出用基部の前記第1方向の一方端に、前記第2方向に沿って延びる可動側保持部を有し、
     前記固定部は、前記第1固定側検出用基部および前記第2固定側検出用基部の前記第1方向の他方端に、前記第2方向に沿って延びる固定側保持部を有し、
     前記可動側検出用基部、前記第1固定側検出用基部および前記第2固定側検出用基部は、前記第1方向において前記可動側保持部と前記固定側保持部との間に配置されており、
     前記静電容量形成部は、前記第1固定側検出用基部および前記第2固定側検出用基部における前記第1方向の一方端に配置されている、
     請求項1乃至請求項3のいずれか1項に記載のセンサ素子。
    The movable part has a movable side holding part extending along the second direction at one end of the movable side detection base in the first direction,
    The fixed portion has a fixed-side holding portion extending along the second direction at the other end in the first direction of the first fixed-side detection base and the second fixed-side detection base.
    The movable side detection base, the first fixed side detection base, and the second fixed side detection base are arranged between the movable side holding part and the fixed side holding part in the first direction. ,
    The capacitance forming portion is disposed at one end of the first direction in the first fixed-side detection base and the second fixed-side detection base.
    The sensor element according to any one of claims 1 to 3.
  6.  前記可動側検出用基部が、前記可動側保持部における前記第1方向の両側に形成され、
     前記静電容量形成部が、前記可動側保持部の両側に、前記第2方向を軸として線対称に配置されている、
     請求項4または請求項5に記載のセンサ素子。
    The movable side detection base is formed on both sides of the movable side holding portion in the first direction,
    The capacitance forming portions are arranged symmetrically about the second direction on both sides of the movable side holding portion,
    The sensor element according to claim 4 or 5.
  7.  前記基板に対して隙間を有した状態で前記第2方向に配列された第1質量部および第2質量部と、
     前記第1方向に沿って、前記第1質量部と前記第2質量部を互いの振動が逆相になるように振動可能に支持する支持梁と、を備え、
     前記第1質量部は、前記固定部および前記可動部を有し、第1加速度検出信号を出力し、
     前記第2質量部は、前記固定部および前記可動部を有し、第2加速度検出信号を出力する、
     請求項1乃至請求項6のいずれか1項に記載のセンサ素子。
    A first mass part and a second mass part arranged in the second direction with a gap with respect to the substrate;
    A support beam that supports the first mass part and the second mass part along the first direction so as to be able to vibrate so that their vibrations are in opposite phases;
    The first mass unit includes the fixed unit and the movable unit, and outputs a first acceleration detection signal.
    The second mass unit includes the fixed unit and the movable unit, and outputs a second acceleration detection signal.
    The sensor element according to any one of claims 1 to 6.
  8.  前記第1質量部は、前記第1方向および前記第2方向に直交する第3方向周りの角速度による第1角速度検出信号を出力し、
     前記第2質量部は、前記第3方向周りの角速度による第2角速度検出信号を出力し、
     前記第1角速度検出信号および前記第2角速度検出信号の位相関係と、前記第1加速度検出信号および前記第2加速度検出信号の位相関係が逆になるように出力する構造からなる、
     請求項7に記載のセンサ素子。
    The first mass unit outputs a first angular velocity detection signal based on an angular velocity around a third direction orthogonal to the first direction and the second direction,
    The second mass unit outputs a second angular velocity detection signal based on an angular velocity around the third direction,
    The phase relationship between the first angular velocity detection signal and the second angular velocity detection signal and the phase relationship between the first acceleration detection signal and the second acceleration detection signal are output so as to be reversed.
    The sensor element according to claim 7.
  9.  請求項8に記載のセンサ素子と、
     前記第1角速度検出信号および前記第1加速度検出信号を含む第1検出信号と、前記第2角速度検出信号および前記第2加速度検出信号を含む第2検出信号とを加算する加算部と、
     前記第1検出信号と前記第2検出信号とを減算する減算部と、
     を備えた複合センサ。
    A sensor element according to claim 8;
    An adder for adding the first detection signal including the first angular velocity detection signal and the first acceleration detection signal and the second detection signal including the second angular velocity detection signal and the second acceleration detection signal;
    A subtractor for subtracting the first detection signal and the second detection signal;
    Composite sensor with
PCT/JP2013/083020 2012-12-10 2013-12-10 Sensor element and composite sensor WO2014092059A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-268932 2012-12-10
JP2012268932 2012-12-10

Publications (1)

Publication Number Publication Date
WO2014092059A1 true WO2014092059A1 (en) 2014-06-19

Family

ID=50934347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083020 WO2014092059A1 (en) 2012-12-10 2013-12-10 Sensor element and composite sensor

Country Status (1)

Country Link
WO (1) WO2014092059A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266777A (en) * 1999-03-16 2000-09-29 Ritsumeikan Electrostatic capacity type sensor
JP2004163376A (en) * 2002-01-10 2004-06-10 Murata Mfg Co Ltd Angular velocity sensor
JP2007333467A (en) * 2006-06-13 2007-12-27 Hitachi Ltd Inertial sensor
JP2008545988A (en) * 2005-06-06 2008-12-18 カスタム センサーズ アンド テクノロジーズ インコーポレイテッド Torsional velocity sensor with momentum balance and mode separation
WO2011158348A1 (en) * 2010-06-16 2011-12-22 トヨタ自動車株式会社 Composite sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266777A (en) * 1999-03-16 2000-09-29 Ritsumeikan Electrostatic capacity type sensor
JP2004163376A (en) * 2002-01-10 2004-06-10 Murata Mfg Co Ltd Angular velocity sensor
JP2008545988A (en) * 2005-06-06 2008-12-18 カスタム センサーズ アンド テクノロジーズ インコーポレイテッド Torsional velocity sensor with momentum balance and mode separation
JP2007333467A (en) * 2006-06-13 2007-12-27 Hitachi Ltd Inertial sensor
WO2011158348A1 (en) * 2010-06-16 2011-12-22 トヨタ自動車株式会社 Composite sensor

Similar Documents

Publication Publication Date Title
US7677100B2 (en) Composite sensor and acceleration sensor
JP4874067B2 (en) Angular velocity sensor
JP4075022B2 (en) Angular velocity sensor
JP5206409B2 (en) Angular velocity sensor
JP6038152B2 (en) Capacitive transducer system for detecting physical quantities
US8836348B2 (en) Electrostatic capacitance type physical quantity sensor and angular velocity sensor
US8833163B2 (en) Angular velocity sensor
JP6262629B2 (en) Inertial sensor
US11168983B2 (en) Signal processing apparatus, inertial sensor, acceleration measurement method, and electronic apparatus
US20180080954A1 (en) Signal detection method for capacitance detection type sensor, mems sensor, and system
WO2013179647A2 (en) Physical amount sensor
JP6475332B2 (en) Inertial sensor
JP2018021850A (en) Vibration type gyro having bias correction function and method for using vibration type gyro
JP2011226941A (en) Vibration-type force detection sensor and vibration-type force detector
JP2014530351A (en) A scheme for obtaining robustness against inertial sensor electromagnetic interference.
JP4911690B2 (en) Vibrating gyro vibrator
US9513309B2 (en) Inertia sensor with switching elements
JP2015230281A (en) Vibration type gyro having stabilized bias and method for using vibration type gyro
WO2014092060A1 (en) Sensor element and composite sensor
JPH11173850A (en) Angular velocity sensor
WO2014092059A1 (en) Sensor element and composite sensor
JP2013108929A (en) Vibration type gyro with high accuracy
JP4466283B2 (en) Gyro sensor
JP2021060280A (en) Voltage sensor
JP2015203627A (en) Multi-axis detection angular velocity sensor structure, multi-axis detection angular velocity sensor and sensor element base

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP