WO2014091969A1 - Single-crystal production device, single-crystal production method using said device, and single crystal produced using said method - Google Patents

Single-crystal production device, single-crystal production method using said device, and single crystal produced using said method Download PDF

Info

Publication number
WO2014091969A1
WO2014091969A1 PCT/JP2013/082495 JP2013082495W WO2014091969A1 WO 2014091969 A1 WO2014091969 A1 WO 2014091969A1 JP 2013082495 W JP2013082495 W JP 2013082495W WO 2014091969 A1 WO2014091969 A1 WO 2014091969A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
film
producing
seed substrate
zno
Prior art date
Application number
PCT/JP2013/082495
Other languages
French (fr)
Japanese (ja)
Inventor
守道 渡邊
克宏 今井
吉川 潤
潔 松島
聡太 大河内
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2014551994A priority Critical patent/JPWO2014091969A1/en
Publication of WO2014091969A1 publication Critical patent/WO2014091969A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/06Recrystallisation under a temperature gradient
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing

Definitions

  • the present invention relates to a single crystal manufacturing apparatus. More specifically, the present invention relates to a single crystal manufacturing apparatus capable of manufacturing a homogeneous single crystal with few pores with high productivity. The present invention also relates to a single crystal manufacturing method using such a single crystal manufacturing apparatus. Furthermore, the present invention also relates to a single crystal manufactured by such a single crystal manufacturing method.
  • piezoelectric materials used for piezoelectric actuators used in various applications such as piezoelectric pumps and ink-jet printer ink heads, and various semiconductor elements such as light-emitting diodes (LEDs) and laser diodes (LDs).
  • LEDs light-emitting diodes
  • LDs laser diodes
  • various inorganic materials such as ceramics are used. In order to improve the performance of such inorganic materials, it is known that it is important to increase the degree of crystal orientation in these inorganic materials.
  • polarization process a process for aligning the direction of electric dipoles in the crystal by applying an electric field to the piezoelectric ceramics (polarization process) is performed.
  • a single crystal or an oriented polycrystal to be produced is prepared.
  • a raw material melt for a film is prepared and crystallized on a seed single crystal.
  • raw materials such as oxides (such as zinc oxide (ZnO)), nitrides (such as gallium nitride (GaN)), and carbides (such as silicon carbide (SiC)) used in such a method are extremely May have a high melting point or may be easily decomposed.
  • a Na flux method has been proposed in which a raw material is dissolved using sodium (Na) as a flux and precipitated into seeds to obtain a single crystal (for example, Patent Documents). 1).
  • a GaN layer is formed on a heterogeneous substrate such as sapphire using a hydride vapor phase epitaxy, and the heterogeneous substrate is removed after the growth of the GaN layer, whereby a self-standing GaN single crystal substrate is formed.
  • a method of obtaining is proposed (see, for example, Patent Document 2).
  • these prior art methods have the problem that the crystal growth rate is slow.
  • a single crystal film and an orientation film can also be manufactured by a solid phase growth method (see, for example, Patent Document 3).
  • a single crystal or oriented polycrystal composed of an oxide having a perovskite structure and having a porosity of 0.01 to 8% by volume can exhibit excellent characteristics as a piezoelectric material or the like.
  • it includes oriented polycrystals or crystal grains that form a predetermined number of low-angle grain boundaries per unit area by heat-treating a compact or sintered body of oxide powder having a specific composition at a predetermined temperature. It has been disclosed to efficiently produce a high-quality oxide ion conductive crystal substantially composed of a single crystal (see, for example, Patent Document 4).
  • Patent Documents 3 and 4 as one method for producing a crystal, the contact portion is heated while the sintered body and the single crystal (seed substrate) are in contact with each other, and the other ends are also produced. It is disclosed that a predetermined temperature gradient is generated by performing temperature control for cooling a portion, and a polycrystalline sintered body is single-crystallized or oriented starting from a seed substrate (for example, Patent Document 3). 4 and FIG. 4 of Patent Document 4).
  • a predetermined temperature gradient is generated by heating the contact portion between the polycrystalline sintered body and the seed substrate and cooling the other end region of the sintered body. Is small, solid phase growth occurs at the interface between the sintered body and the seed substrate, but grain growth progresses separately for each individual particle within the sintered body away from the interface. As a result, as the solid phase growth proceeds, the particles taken into the seed crystal become coarse, and finally the solid phase growth stops. Further, since coarse particles are separately taken into the seed crystal, pores are likely to remain in the film. On the other hand, if the temperature gradient is excessive to prevent such a problem, the workpiece itself may be damaged.
  • the particle size of the raw material powder is increased by the aerosol deposition method (hereinafter sometimes referred to as “AD method”) so that the particle size gradually increases with distance from the seed substrate.
  • AD method aerosol deposition method
  • the manufacturing method of the single crystal film and the oriented polycrystalline film according to the above prior art is very complicated as described above and takes time.
  • it is added to the film of raw material powder to shift the solid solution impurities mixed in the raw material powder and the orientation temperature to the lower temperature side in order to control the direction of solid phase growth and control the orientation of crystal grains.
  • It is extremely difficult to accurately control the concentration distribution of the sintering aid in the film as intended, and it is difficult to obtain homogeneous crystals.
  • Patent Documents 3 and 4 since particles existing in a region away from the interface between the film and the seed substrate grow into coarse particles by heat treatment, they are very large for solid phase growth. Energy is required and eventually solid phase growth stops.
  • AD film formation a method of forming a ceramic film structure on a substrate using the AD method, and after film formation by the AD method (hereinafter sometimes referred to as “AD film formation”) or AD
  • a method for improving film quality while suppressing the influence of heat treatment on a substrate by performing heat treatment by infrared laser irradiation during film formation has been proposed (see, for example, Patent Document 6 and Non-Patent Document 1).
  • the above method is not intended to be single crystallization by the epitaxial growth method, but for the purpose of improving film quality such as crystallinity, for example.
  • a temperature gradient is generated inside the ceramic film structure so as to become a low temperature as it approaches the substrate.
  • grain growth on the surface side of the film is given priority over solid phase growth at the interface between the film and the seed substrate. Will eventually be required and solid phase growth will eventually cease.
  • coarse particles are separately taken into the seed crystal, pores are likely to remain in the film. That is, the heating mode in the above method is not necessarily suitable for single crystallization of the raw material powder.
  • heating by infrared laser irradiation can be performed during AD film formation, but when the infrared laser irradiation is performed during film formation, the film formation chamber is filled with aerosol. Since the laser light is easily scattered, there is a problem that it is difficult to effectively irradiate the raw material powder with the laser light.
  • an object of the present invention is to provide a single crystal production apparatus excellent in productivity capable of producing a high-quality single crystal having few pores even in a material system in which it is difficult to obtain a raw material melt. .
  • One object of the present invention is to A raw material powder is sprayed toward the seed substrate to deposit the powder on the surface of the seed substrate, and an injection means for forming a film, and the film deposited on the surface of the seed substrate is heated.
  • Heating means With A film forming step of forming a film by spraying the powder toward the seed substrate by the spraying means to deposit the powder on the surface of the seed substrate, and a surface of the seed substrate by the heating means A heating step for heating the film formed thereon;
  • a single crystal production apparatus for producing a single crystal from the powder by executing The spraying means and the heating means are arranged to face each other across the seed substrate; It is achieved by a single crystal manufacturing apparatus characterized by the following.
  • the single crystal manufacturing apparatus can produce a high-quality single crystal with few pores with high productivity even in a material system in which it is difficult to obtain a raw material melt.
  • an object of the present invention is to provide a single crystal production apparatus excellent in productivity capable of producing a high-quality single crystal having few pores even in a material system in which it is difficult to obtain a raw material melt. .
  • the present inventor sprays raw material powder onto the seed substrate by spraying means to deposit the powder on the surface of the seed substrate, thereby forming a film.
  • the injection means and the heating means are seeded.
  • the first embodiment of the present invention is: A raw material powder is sprayed toward the seed substrate to deposit the powder on the surface of the seed substrate, and an injection means for forming a film, and the film deposited on the surface of the seed substrate is heated.
  • Heating means With A film forming step of forming a film by spraying the powder toward the seed substrate by the spraying means to deposit the powder on the surface of the seed substrate, and a surface of the seed substrate by the heating means A heating step for heating the film formed thereon;
  • a single crystal production apparatus for producing a single crystal from the powder by executing The spraying means and the heating means are arranged to face each other across the seed substrate; Is a single crystal manufacturing apparatus.
  • the single crystal manufacturing apparatus includes a spraying unit that sprays a raw material powder toward a seed substrate, deposits the powder on the surface of the seed substrate, and forms a film. And heating means for heating the film formed on the surface of the seed substrate.
  • the powder is deposited on the surface of the seed substrate by spraying the powder toward the seed substrate by the spraying means to form a film.
  • a single crystal can be produced from the powder by performing a film forming step and a heating step of heating the film formed on the surface of the seed substrate by the heating means.
  • the main component of the substance for obtaining a single crystal by the method for producing a single crystal according to this embodiment is not particularly limited. For example, various ceramics, oxides such as zinc oxide (ZnO), gallium nitride (GaN), etc. (The details will be described later).
  • the injection means may have any configuration as long as the raw material powder can be injected toward the seed substrate to deposit the powder on the surface of the seed substrate.
  • the injection means is, for example, an injection nozzle for injecting the raw material powder toward the seed substrate in the aerosol deposition method (AD method), the powder jet deposition method (PJD method), or the like. Can be included.
  • the heating means may be a heating means having any configuration as long as the film formed on the surface of the seed substrate can be heated to grow a single crystal from the film.
  • the heating means includes, for example, an infrared lamp (for example, a near infrared lamp), various lasers (for example, a CO 2 laser, a YAG laser, an excimer laser, a semiconductor laser, etc.), a high-frequency heating device, and the like. Can be mentioned.
  • the raw material powder is sprayed toward the seed substrate by the spraying means in the film forming step to deposit the powder on the surface of the seed substrate. Then, a film is formed, and the film formed on the surface of the seed substrate in the heating step is heated by the heating means to produce a single crystal from the raw material powder.
  • the spraying unit and the heating unit are arranged to face each other with the seed substrate interposed therebetween.
  • energy for example, infrared rays, various laser beams, high-frequency electromagnetic waves, etc.
  • the film can be heated from the contact portion side between the film and the seed substrate.
  • the heating means and the injection means are not completely independent and the amount of powder injected from the injection means is extremely large, etc., the powder enters the vicinity of the heating means and becomes an energy that becomes a heat source.
  • the powder enters the vicinity of the heating means and becomes an energy that becomes a heat source.
  • heating means such as an infrared lamp, a failure may occur in the heating means.
  • the periphery of the injection unit and the route of reaching the film from the heating unit may be shielded by, for example, a porous filter.
  • the porosity and the pore diameter of the porous filter are not particularly limited, but those that allow the carrier gas to permeate while suppressing the dispersion of the powder may be selected.
  • the material of the porous filter is not particularly limited, but when the porous filter is installed near the heat source, it is necessary to apply a material having heat resistance.
  • the production of the film and the heating of the film are generally performed by separate apparatuses. Therefore, in the single crystal manufacturing method according to the prior art, the manufacturing process and the manufacturing means of the single crystal become complicated, and there is a possibility of causing problems such as an increase in manufacturing cost.
  • the single crystal manufacturing apparatus according to this embodiment as described above, the production of the film and the heating of the film can be performed by the same apparatus. As a result, according to the single crystal manufacturing apparatus according to the present embodiment, it is possible to avoid the complexity of the manufacturing process and manufacturing means of the single crystal, and to reduce problems such as an increase in manufacturing cost, for example.
  • the heating means provided in the single crystal manufacturing apparatus according to the present invention can heat the film under the conditions necessary for solid-phase growth of the single crystal from the film formed on the surface of the seed substrate. As long as it is, it is not particularly limited. However, as will be described in detail later, in order to more reliably and easily suppress the generation of pores in the process of obtaining a single crystal in the heating step and to efficiently solid-phase a good quality single crystal, for example, film formation When the step and the heating step are sequentially performed, it is desirable to employ a heating means that can realize a high temperature increase rate (that is, has a high heating efficiency).
  • an infrared lamp for example, a near infrared lamp
  • various lasers for example, a CO 2 laser, a YAG laser, Excimer laser, semiconductor laser, etc.
  • high-frequency heating device for example, an infrared lamp (for example, a near infrared lamp), various lasers (for example, a CO 2 laser, a YAG laser, Excimer laser, semiconductor laser, etc.), high-frequency heating device, and the like.
  • the second embodiment of the present invention provides: A single crystal manufacturing apparatus according to the first embodiment of the present invention,
  • the heating means is a heating means for heating the film using any heat source selected from the group consisting of an infrared lamp, a laser, and a high-frequency heating device; Is a single crystal manufacturing apparatus.
  • the heating unit heats the film using any one of heat sources selected from the group consisting of an infrared lamp, a laser, and a high-frequency heating apparatus. It is a heating means.
  • the film is formed under conditions suitable for solid-phase growth of a good quality single crystal from the film formed on the surface of the seed substrate. Can be heated.
  • the film to be single-crystallized by the single-crystal manufacturing apparatus does not necessarily efficiently absorb the energy supplied from the above-described heat source and convert it into heat, thereby efficiently increasing the temperature. It is not necessarily a material that can be used. In other words, it is assumed that the film to be single-crystallized by the single-crystal manufacturing apparatus according to this embodiment is a material that cannot efficiently absorb the energy supplied from the heat source described above and convert it into heat. Is done.
  • a member that can efficiently absorb the energy supplied from the above-described heat source and convert it into heat (hereinafter “heat generation”).
  • the heating step can be performed using a “member” in some cases.
  • a member is disposed, and a film formed on the surface of the seed substrate is heated by thermal energy generated from the heat generating member, so that a single crystal can be solid-phase grown from the film.
  • the third embodiment of the present invention A single crystal manufacturing apparatus according to the second embodiment of the present invention, A heat generating member that absorbs the energy and generates heat; and the heat generating member is disposed on the opposite side of the seed substrate from the side on which the film is formed. Is a single crystal manufacturing apparatus.
  • the heat generating member that absorbs the energy and generates heat is disposed on the opposite side of the seed substrate from the side on which the film is formed.
  • the heating member arranged on the side opposite to the side on which the seed substrate film is formed efficiently absorbs the energy supplied from the heat source described above and converts it into heat,
  • the film formed on the surface of the seed substrate can be heated by the heat generated from the heat generating member via the seed substrate, and a single crystal can be solid-phase grown from the film.
  • the material constituting the heat generating member for example, the energy supplied from the heat source described above can be efficiently absorbed and converted into heat, and the heat energy generated from the heat generating member passes through the seed substrate.
  • a material that can be uniformly and efficiently transmitted to a film formed on the surface of the seed substrate is desirable. Examples of such materials include metals and ceramics having high thermal conductivity.
  • the fourth embodiment of the present invention is A single crystal manufacturing apparatus according to the third embodiment of the present invention,
  • the heat generating member comprises metal or ceramics; Is a single crystal manufacturing apparatus.
  • the heat generating member included in the single crystal manufacturing apparatus includes metal or ceramics.
  • the metal suitable as the material included in the heat generating member include refractory metals such as platinum, niobium, tungsten, and molybdenum.
  • ceramics suitable as a material included in the heat generating member include alumina, aluminum nitride, silicon carbide, and silicon nitride. Since the heat generating member is in direct contact with the seed substrate, it is necessary that the heat generating member has no reactivity with the seed substrate, and it is desirable to use a member that can withstand a desired heat treatment temperature and has high thermal conductivity. More preferably, it is further desirable to use a heat generating member having a thermal expansion coefficient close to that of the seed substrate.
  • the present invention is not only related to a single crystal manufacturing apparatus capable of manufacturing a homogeneous single crystal with few pores with high productivity. It also relates to the single crystal production method used.
  • the fifth embodiment of the present invention provides: Using the single crystal manufacturing apparatus according to any one of the first to fourth embodiments of the present invention, the film forming step and the heating step are sequentially performed, so that the single crystal is formed from the powder. Is a method for producing a single crystal.
  • the raw material powder is deposited on the surface of the seed substrate, and the film forming method has good adhesion to the seed substrate and There is no particular limitation as long as it is possible to form a dense film on the seed substrate that does not generate pores (micron order (that is, a size of 1 ⁇ m or more)) in the film.
  • the single crystal manufacturing apparatus according to the present invention is an injection unit that forms a film by spraying raw material powder toward a seed substrate to deposit the powder on the surface of the seed substrate. Is provided.
  • the raw material powder is deposited on the surface of the seed substrate to form a film. It is desirable that the powder is deposited on the surface of the seed substrate by spraying toward the seed substrate. Specific examples of such a method include an aerosol deposition method (AD method) and a powder jet deposition method (PJD method).
  • the sixth embodiment of the present invention provides: A method for producing a single crystal according to the fifth embodiment of the present invention, comprising:
  • the method for forming the film on the surface of the seed substrate in the film forming step is any method selected from the group consisting of an aerosol deposition method (AD method) and a powder jet deposition method (PJD method). thing, Is a method for producing a single crystal.
  • AD method aerosol deposition method
  • PJD method powder jet deposition method
  • an aerosol deposition method (AD method) or a powder jet deposition is used as a method for forming the film on the surface of the seed substrate in the film forming step. Any of the methods (PJD method) is adopted.
  • a dense film having good adhesion to the seed substrate and having no pores (on the order of microns) in the film is reliably formed on the seed substrate. Can be formed.
  • the details of each of the aerosol deposition method (AD method) and the powder jet deposition method (PJD method) are well known to those skilled in the art, and thus the description thereof is omitted in this specification.
  • the contact portion between the film and the seed substrate is heated, and a temperature gradient is generated in the film so that the temperature becomes higher as it approaches the seed substrate. It is desirable to incorporate it into a single crystal for solid phase growth. That is, in the heating step included in the single crystal manufacturing method according to the present invention, it is desirable to heat the film from the seed substrate side.
  • the seventh embodiment of the present invention is A method for producing a single crystal according to the sixth embodiment of the present invention, comprising: The film is heated from the seed substrate side in the heating step; Is a method for producing a single crystal.
  • the film is heated from the seed substrate side in the heating step.
  • a temperature gradient is generated in the film so as to become a high temperature as it approaches the seed substrate.
  • the present inventors have heated a film formed on the surface of the seed substrate so as to have a thickness of a predetermined value or less from the seed substrate side at a heating rate of a predetermined value or more.
  • the inventors have found that a high-quality single crystal with few pores can be produced with high productivity. Such knowledge can also be applied to the single crystal manufacturing method according to the present embodiment.
  • the eighth embodiment of the present invention is A method for producing a single crystal according to the seventh embodiment of the present invention, comprising:
  • the film formed on the surface of the seed substrate in the film forming step has a thickness that is 100 ⁇ m or less in a direction perpendicular to the surface of the seed substrate, and the temperature of the film is increased in the heating step
  • the speed is 30 ° C./min or more, Is a method for producing a single crystal.
  • the film thickness that is the thickness in the direction perpendicular to the surface of the seed substrate of the film formed on the surface of the seed substrate in the film formation step. Is 100 ⁇ m or less, and the temperature rising rate of the film in the heating step is 30 ° C./min or more.
  • membrane formed on the surface of a seed substrate as mentioned above from the seed substrate side common stage heaters, such as a ceramic heater, can also be mentioned, for example.
  • a stage heater for example, it is difficult to realize a temperature increase rate defined in the single crystal manufacturing method according to the present embodiment.
  • an infrared lamp for example, a near infrared lamp
  • various lasers for example, a CO 2 laser, a YAG laser, Excimer laser, semiconductor laser, etc.
  • a high-frequency heating device are desirable.
  • the film thickness (which is the thickness in a direction perpendicular to the surface of the seed substrate) formed on the surface of the seed substrate in the film forming step included in the method for manufacturing a single crystal according to this embodiment is 100 ⁇ m or less. It is desirable that the thickness is 30 ⁇ m or less.
  • the temperature rising rate of the film in the heating step included in the method for producing a single crystal according to this embodiment is desirably 30 ° C./min or more, and more desirably 300 ° C./min or more.
  • the ninth embodiment of the present invention provides: A method for producing a single crystal according to the eighth embodiment of the present invention, comprising: A film thickness of the film formed on the surface of the seed substrate in the film forming step is 30 ⁇ m or less; Is a method for producing a single crystal.
  • the tenth embodiment of the present invention is A method for producing a single crystal according to any one of the eighth or ninth embodiments of the present invention,
  • the heating rate of the film in the heating step is 300 ° C./min or more, Is a method for producing a single crystal.
  • the single crystal manufacturing method according to the present invention that sequentially executes the film forming step and the heating step is performed by heating a film having a thickness of a predetermined value or less at a temperature rising rate of a predetermined value or more as described above. By generating an appropriate temperature gradient inside the film, it is possible to suppress the generation of pores in the obtained single crystal. That is, the single crystal manufacturing method according to the present invention, in which the film forming step and the heating step are sequentially performed, is particularly preferably applied when trying to obtain a single crystal mainly composed of oxide or nitride. Can do.
  • oxide or nitride for example, zinc oxide (ZnO), gallium nitride (GaN), etc.
  • the eleventh embodiment of the present invention is A method for producing a single crystal according to any one of the fifth to tenth embodiments of the present invention
  • the main component of the film is any one material selected from the group consisting of oxides and nitrides; Is a method for producing a single crystal.
  • oxides and nitrides that can be used as the main components of the film formed on the surface of the seed substrate in the method for producing a single crystal according to this embodiment include zinc oxide (ZnO) and nitridation, respectively.
  • ZnO zinc oxide
  • nitridation nitridation
  • An example is gallium (GaN).
  • the twelfth embodiment of the present invention is A method for producing a single crystal according to the eleventh embodiment of the present invention, comprising:
  • the oxide is zinc oxide (ZnO) and the nitride is gallium nitride (GaN); Is a method for producing a single crystal.
  • an upper limit is set for the maximum temperature reached in the heating step, or an upper limit is set for the holding time at the maximum temperature.
  • it is necessary to set these upper limits with due consideration of the melting point of the substance used as the main component of the film, the thickness of the film, and the like.
  • the single crystal manufacturing method according to the present invention is a method for manufacturing a single crystal by an epitaxial growth method, and the main component of the single crystal and the main component of the seed substrate manufactured by the single crystal manufacturing method are the same. Or it may be different.
  • the single crystal manufacturing method according to the present invention may be a homoepitaxial growth method or a heteroepitaxial growth method.
  • the single crystal manufacturing method according to the present invention is a homoepitaxial growth method
  • the main component of the single crystal and the main component of the seed substrate produced by the single crystal manufacturing method are the same.
  • the main component of the film formed on the surface of the seed substrate is zinc oxide (ZnO) or gallium nitride (GaN)
  • the main component of the seed substrate is also zinc oxide (ZnO) or Gallium nitride (GaN).
  • the single crystal manufacturing method according to the present invention is a heteroepitaxial growth method
  • the main component of the single crystal manufactured by the single crystal manufacturing method is different from the main component of the seed substrate.
  • the main component of the film formed on the surface of the seed substrate is zinc oxide (ZnO) or gallium nitride (GaN)
  • the main component of the seed substrate is not zinc oxide (ZnO), respectively.
  • It is a substance that is not a substance or gallium nitride (GaN).
  • a specific example of a substance that can be used as a main component of the seed substrate and is not zinc oxide (ZnO) or gallium nitride (GaN) is sapphire, for example.
  • the thirteenth embodiment of the present invention provides: A method for producing a single crystal according to any one of the fifth to twelfth embodiments of the present invention,
  • the main component of the seed substrate is any one material selected from the group consisting of zinc oxide (ZnO), gallium nitride (GaN), and sapphire, Is a method for producing a single crystal.
  • any one material selected from the group consisting of zinc oxide (ZnO), gallium nitride (GaN), and sapphire is the main component of the seed substrate. It is. Therefore, when the main component of the film formed on the surface of the seed substrate and the main component of the seed substrate are both zinc oxide (ZnO) or gallium nitride (GaN), the single crystal manufacturing according to this embodiment is performed. The method is a homoepitaxial growth method. On the other hand, when the combination of the main component of the film formed on the surface of the seed substrate and the main component of the seed substrate is other than the above, the single crystal manufacturing method according to this embodiment is a heteroepitaxial growth method.
  • the film formed on the seed substrate is not limited to the above-mentioned various main components as long as it does not adversely affect the properties of the resulting single crystal. (Dopant) may be contained.
  • a component constituting the film for example, zinc oxide (ZnO), aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), Arsenic (As), Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I), Carbon (C), Sulfur (S), Silicon (Si), Lithium (Li), Sodium (Na), At least one element selected from the group consisting of potassium (K), magnesium (Mg), cadmium (Cd), selenium (Se), tellurium (Te), silver (Ag), and copper (Cu).
  • a doped material or the like may be used.
  • the fourteenth embodiment of the present invention is A method for producing a single crystal according to any one of the fifth to thirteenth embodiments of the present invention,
  • the film is made of aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), arsenic (As), fluorine (F), chlorine (Cl), bromine.
  • the film is made of aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P).
  • the conductivity of the resulting single crystal can be adjusted to a desired level.
  • a substance containing aluminum (Al) or gallium (Ga) is used as the main component of the film formed on the surface of the seed substrate, aluminum (Al). It goes without saying that gallium (Ga) cannot be contained as an impurity (dopant).
  • the raw material powder is sprayed toward the seed substrate, and the powder is deposited on the surface of the seed substrate to form a film.
  • a heating means for heating the film formed on the surface of the seed substrate, wherein the powder is sprayed toward the seed substrate by the spraying means.
  • a single crystal is produced from the powder by executing a film forming step for forming the film thereon and a heating step for heating the film formed on the surface of the seed substrate by the heating means.
  • a single crystal is produced from the raw material powder by executing the film forming step and then the heating step, as in the conventional single crystal manufacturing method. can do.
  • the production of the film (deposition step) and the heating of the film (heating step) can be performed by the same apparatus.
  • the spraying means and the heating means are arranged so as to face each other with the seed substrate interposed therebetween. Therefore, in the single crystal manufacturing method according to the present invention using such a single crystal manufacturing apparatus, the heating step can be performed while the film forming step is performed.
  • the fifteenth embodiment of the present invention is By using the single crystal manufacturing apparatus according to any one of the first to fourth embodiments of the present invention, the film forming step and the heating step are performed in parallel, so that the single crystal is formed from the powder. Is a method for producing a single crystal.
  • the film forming step and the heating step are executed in parallel. That is, in the single crystal manufacturing method according to this embodiment, the heating step is performed while the film forming step is performed. Therefore, according to the single crystal manufacturing method according to the present embodiment, higher productivity can be achieved.
  • a film can be formed while the heating temperature by the heating means is kept constant, so that a stage heater or the like having a slow temperature rise rate can be used.
  • a stage heater or the like having a slow temperature rise rate
  • the raw material powder is deposited on the surface of the seed substrate to form a film. It is desirable that the powder is deposited on the surface of the seed substrate by spraying a body toward the seed substrate.
  • a method include an aerosol deposition method (AD method) and a powder jet deposition method (PJD method).
  • the sixteenth embodiment of the present invention provides: A method for producing a single crystal according to the fifteenth embodiment of the present invention, comprising:
  • the method for forming the film on the surface of the seed substrate in the film forming step is any method selected from the group consisting of an aerosol deposition method (AD method) and a powder jet deposition method (PJD method).
  • AD method aerosol deposition method
  • PJD method powder jet deposition method
  • solid phase growth in solid phase growth of a single crystal, solid phase growth may occur simultaneously with film formation, but the solid phase growth rate may be slower than the film formation rate. .
  • the contact portion between the film and the seed substrate is heated as in the case of sequentially performing the film formation step and the heating step, It is desirable to cause the film to be incorporated into the single crystal of the seed substrate for solid-phase growth by generating a temperature gradient in the film that increases in temperature as it approaches the seed substrate. That is, also in the single crystal manufacturing method according to this embodiment, it is desirable to heat the film from the seed substrate side.
  • the seventeenth embodiment of the present invention provides: A method for producing a single crystal according to the sixteenth embodiment of the present invention, comprising: The film is heated from the seed substrate side in the heating step; Is a method for producing a single crystal.
  • the single crystal manufacturing method according to the present invention in which the film forming step and the heating step are performed in parallel, generation of pores in the single crystal obtained by generating an appropriate temperature gradient inside the film as described above. Can be suppressed. That is, the single crystal manufacturing method according to the present invention in which the film forming step and the heating step are performed in parallel is also preferably applied to obtain a single crystal mainly composed of oxide or nitride. Can do.
  • oxide or nitride for example, zinc oxide (ZnO), gallium nitride (GaN), etc.
  • the eighteenth embodiment of the present invention provides: A method for producing a single crystal according to any one of the fifteenth to seventeenth embodiments of the present invention,
  • the main component of the film is any one material selected from the group consisting of oxides and nitrides; Is a method for producing a single crystal.
  • oxides and nitrides that can be used as the main components of the film formed on the surface of the seed substrate in the single crystal manufacturing method according to this embodiment include zinc oxide (ZnO) and nitridation, respectively.
  • ZnO zinc oxide
  • nitridation nitridation
  • An example is gallium (GaN).
  • the nineteenth embodiment of the present invention provides: A method for producing a single crystal according to the eighteenth embodiment of the present invention, comprising: The oxide is zinc oxide (ZnO) and the nitride is gallium nitride (GaN); Is a method for producing a single crystal.
  • the oxide is zinc oxide (ZnO) and the nitride is gallium nitride (GaN); Is a method for producing a single crystal.
  • the main component of the single crystal and the main component of the seed substrate manufactured by the method are the same. Or it may be different.
  • the single crystal manufacturing method according to the present invention in which the film forming step and the heating step are performed in parallel may also be a homoepitaxial growth method or a heteroepitaxial growth method. That is, the main component of the seed substrate used in the single crystal manufacturing method according to the present invention in which the film forming step and the heating step are performed in parallel also relates to the present invention in which the film forming step and the heating step are sequentially performed. Similar to the main component of the seed substrate used in the single crystal manufacturing method, it can be selected from the group consisting of zinc oxide (ZnO), gallium nitride (GaN), and sapphire.
  • the twentieth embodiment of the present invention provides: A method for producing a single crystal according to any one of the fifteenth to nineteenth embodiments of the present invention,
  • the main component of the seed substrate is any one material selected from the group consisting of zinc oxide (ZnO), gallium nitride (GaN), and sapphire, Is a method for producing a single crystal.
  • the film formed on the seed substrate also has no adverse effect on the properties of the resulting single crystal.
  • an impurity dopant
  • a component constituting the film for example, zinc oxide (ZnO), aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), Arsenic (As), Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I), Carbon (C), Sulfur (S), Silicon (Si), Lithium (Li), Sodium (Na), At least one element selected from the group consisting of potassium (K), magnesium (Mg), cadmium (Cd), selenium (Se), tellurium (Te), silver (Ag), and copper (Cu).
  • a doped material or the like may be used.
  • the twenty-first embodiment of the present invention A method for producing a single crystal according to any one of the fifteenth to twentieth embodiments of the present invention,
  • the film is made of aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), arsenic (As), fluorine (F), chlorine (Cl), bromine.
  • the seed in the film forming step of forming a film on the surface of the seed substrate, the seed In the heating step of forming a film having a thickness of 100 ⁇ m or less in a direction perpendicular to the surface of the substrate, and then heating the film formed on the surface of the seed substrate to obtain a single crystal, A high-quality single crystal having few pores even in a material system in which it is difficult to obtain a raw material melt by heating the film from the seed substrate side and raising the temperature at a temperature rising rate of 30 ° C./min or more. Can be produced with high productivity.
  • the thickness of the obtained single crystal is Generally, it is 100 ⁇ m or less, more preferably 30 ⁇ m or less. Therefore, for example, when a single crystal having a larger thickness such as a single crystal wafer is to be manufactured, it is necessary to repeatedly execute the single crystal manufacturing method over a plurality of cycles. Moreover, even in the method of performing the film forming step and the heating step in parallel in the single crystal manufacturing method according to the present invention, it may be difficult to manufacture a single crystal having a desired large thickness. Even in such a case, it is necessary to repeatedly execute the single crystal manufacturing method according to the present invention over a plurality of cycles.
  • the twenty-second embodiment of the present invention provides: Obtaining a single crystal by repeatedly executing the method for producing a single crystal according to any one of the fifth to twenty-first embodiments of the present invention, Is a method for producing a single crystal.
  • the single crystal manufacturing method according to the present invention including the various embodiments described so far is repeatedly executed over a plurality of cycles.
  • a single crystal having a desired thickness can be obtained.
  • the present invention also relates to a single crystal manufactured by the single crystal manufacturing method according to the present invention.
  • the main component of the substance for obtaining a single crystal by the single crystal manufacturing method according to the present embodiment is not particularly limited.
  • various ceramics, oxides such as zinc oxide (ZnO), gallium nitride (GaN), and the like And nitrides thereof.
  • ZnO zinc oxide
  • GaN gallium nitride
  • the twenty-third embodiment of the present invention is Obtained by the single crystal manufacturing method according to the fifth to twenty-second embodiments of the present invention, A zinc oxide (ZnO) single crystal characterized by
  • the thickness of the obtained single crystal film is generally 100 ⁇ m.
  • a single crystal having a thickness exceeding 30 ⁇ m may be desirable.
  • the twenty-fourth embodiment of the present invention provides: A zinc oxide (ZnO) single crystal according to the twenty-third embodiment of the present invention, A crystal thickness that is a thickness of the crystal in a direction orthogonal to the surface of the seed substrate of the film formed in the film forming step exceeds 30 ⁇ m; A zinc oxide (ZnO) single crystal characterized by
  • a single crystal having a thickness exceeding 100 ⁇ m may be desirable.
  • the thickness of the obtained single crystal film is generally 100 ⁇ m. It becomes as follows. Even in a method in which the film forming step and the heating step are performed in parallel, it may be difficult to produce a single crystal having a desired large thickness. Therefore, for example, when a single crystal having a larger thickness such as a single crystal wafer is to be manufactured, it is necessary to repeatedly execute the single crystal manufacturing method according to the present invention over a plurality of cycles.
  • the twenty-fifth embodiment of the present invention is A zinc oxide (ZnO) single crystal according to the twenty-fourth embodiment of the present invention, It is obtained by the single crystal manufacturing method according to claim 22, and a crystal thickness that is a thickness of the crystal in a direction orthogonal to a surface of the seed substrate of the film formed in the film forming step exceeds 100 ⁇ m.
  • a zinc oxide (ZnO) single crystal characterized by
  • the film formed on the surface of the seed substrate does not adversely affect the characteristics of the resulting single crystal.
  • impurities dopants
  • a component constituting the film for example, aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), arsenic (As), fluorine (F), chlorine (Cl), bromine (Br), iodine (I), carbon (C), silicon (Si), sulfur (S), lithium (Li), sodium (Na), potassium (K), magnesium (Mg), cadmium (Cd), selenium (Se), tellurium (Te), silver (Ag), at least one element selected from the group consisting of copper (Cu), zinc oxide (ZnO), etc.
  • a material doped with the main component may be used. By containing these dopants, for example, desired characteristics such as n-type conversion, p-type conversion, or band gap control can be imparted to the single crystal.
  • Al aluminum (Al), gallium (Ga), indium (In), boron (B), fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and n-type dopants Silicon (Si) is desirable, and aluminum (Al), gallium (Ga), and indium (In) are particularly desirable.
  • the content of these impurities (dopants) is preferably 0.02 at% or more, more preferably 0.1 at% or more. When the content of these impurities (dopants) is less than 0.02 at%, it is difficult to obtain the desired desired characteristics such as high conductivity (low electrical resistance), for example. Absent.
  • the twenty-sixth embodiment of the present invention provides: A zinc oxide (ZnO) single crystal according to any one of the twenty-third to twenty-fifth embodiments of the present invention, Containing at least one element selected from the group consisting of aluminum (Al), gallium (Ga), and indium (In) as impurities, and the impurity content is 0.02 at% or more.
  • a zinc oxide (ZnO) single crystal characterized by
  • the twenty-seventh embodiment of the present invention provides A zinc oxide (ZnO) single crystal according to the twenty-sixth embodiment of the present invention,
  • the impurity content is 0.1 at% or more,
  • examples of the characteristics that can be achieved by adding an n-type dopant to the main component constituting the single crystal according to the present invention include high conductivity (low electrical resistance) and the like. Can do.
  • a zinc oxide single crystal is used as a substrate of an electronic device using a pn junction such as an LED
  • the result is obtained when the single crystal itself is used as an electrode (cathode) on the n-type layer side.
  • the resistivity of the obtained single crystal is desirably 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less.
  • the twenty-eighth embodiment of the present invention is A zinc oxide (ZnO) single crystal according to any one of the twenty-third to twenty-seventh embodiments of the present invention, Resistivity is 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less, A zinc oxide (ZnO) single crystal characterized by
  • FIG. 1 is an example of a schematic configuration diagram showing an outline of the configuration of the single crystal manufacturing apparatus 20 according to one embodiment of the present invention as described above.
  • the single crystal manufacturing apparatus 20 according to the present embodiment injects powder (raw material powder) containing raw material components onto the surface of the seed substrate 21 in an atmosphere at atmospheric pressure lower than atmospheric pressure. It is configured as an apparatus used in an aerosol deposition method (AD method) for depositing and forming a film.
  • AD method aerosol deposition method
  • the single crystal manufacturing apparatus 20 includes an aerosol generation unit 22 that generates an aerosol of raw material powder, and a crystal generation that injects the raw material powder onto the seed substrate 21 to form a film containing the raw material component, and single crystallization of the film
  • the unit 30 includes a heating light source (heating means) 40 for heating the film formed on the seed substrate 21 with irradiation heat, and a thermocouple 35 for measuring the temperature of the seed substrate 21.
  • the aerosol generation unit 22 accommodates the raw material powder 11 and supplies the generated aerosol to the crystal generation unit 30 by the aerosol generation chamber 23 that generates the aerosol by the carrier gases 12 and 13 that are supplied from a gas cylinder (not shown).
  • the raw material supply pipe 24 is provided.
  • the crystal generation unit 30 includes a seed substrate 21, a film formation chamber 31 that sprays aerosol on the seed substrate 21 under reduced pressure conditions, and a substrate installation that is disposed inside the film formation chamber 31 and fixes the seed substrate 21.
  • a stage 34 and an XY stage 33 that moves the substrate installation stage 34 in the X-axis-Y-axis directions are provided.
  • the crystal generation unit 30 includes an injection nozzle (injection means) 36 that injects aerosol onto the seed substrate 21 through a rectangular slit 37 formed at the tip, a vacuum pump 38 that decompresses the film formation chamber 31, It has.
  • the substrate placement stage 34 and the XY stage 33 are hollow, and a heating light source 40 is disposed therein.
  • Light (for example, infrared light) from the heating light source 40 is irradiated to the heat generating member 32 installed on the lower side of the seed substrate 21 (that is, the side opposite to the film), and the heat generating member 32 generates heat.
  • the film can be heated from the back surface of the seed substrate 21.
  • the heat source for heating the film is not particularly limited.
  • a high-frequency heating device is used. Etc. may be used.
  • the heat generating member 32 may not be provided.
  • a heating step for performing single crystallization may be sequentially performed.
  • a film formation step and a heating step are performed by spraying aerosol onto the seed substrate 21 while heating the seed substrate 21 from the back surface with light from the heating light source 40 to form a film on the surface of the seed substrate 21. May be performed simultaneously in parallel.
  • the powder thus wet-mixed was fired in air at 1400 ° C. for 5 hours to synthesize zinc oxide (ZnO) powder in which aluminum (Al) was dissolved.
  • the synthetic powder thus obtained was wet-ground for 5 hours in a pot mill using zirconia balls so that the volume standard D50 was 2.6 ⁇ m.
  • the zinc oxide (ZnO) in which aluminum (Al) was dissolved in 0.2 at% obtained as described above was used as a film forming raw material powder (film forming powder) in Experimental Examples 01 and 02. .
  • Heating step the various films were heated using the single crystal manufacturing apparatus shown in FIG.
  • a near-infrared lamp was used as a light source for light heating.
  • a platinum plate is disposed as a heating member on the surface opposite to the surface on which the seed substrate film is formed, and the surface on which the seed substrate film is formed.
  • the film was heated from the seed substrate side by irradiating near infrared rays from the opposite side and causing the platinum plate to absorb the near infrared rays.
  • the atmosphere, heating temperature (surface temperature), heating rate, and holding time in the heating step are as listed in Table 1.
  • the thickness of the single crystal film after the heating step is also listed in Table 1.
  • In-plane rocking curve (XRC) measurement A multi-functional high-resolution X-ray diffractometer (Bulker AXS Co., Ltd., D8 DISCOVER) is used for the C-plane of various evaluation samples that have undergone the above heating step. In-plane rocking curve (XRC) measurements were made using under conditions. When a (100) peak was detected, it was judged that a single crystal was obtained satisfactorily.
  • Tube voltage 40kV ⁇ Tube current 40mA ⁇ Anti-scattering slit: 3 ° ⁇ Step width: 0.001 ° ⁇ Scanning speed: 0.5 seconds / step ⁇ Incident angle: 1 °
  • Resistivity measurement by four-probe method A low resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., Loresta-AX, Loresta four-probe PSP probe (MCP-TP06P)) ) was used to measure resistivity by the four-probe method. Measurements were generally made in accordance with JIS K 7194. The electrode spacing was 1.5 mm, the sample area was 10 mm ⁇ 10 mm, and the measurement location was only the center of the sample. The resistivity was calculated based on the following formula (1).
  • represents resistivity [ ⁇ ⁇ cm]
  • F represents resistivity correction coefficient
  • t represents film thickness [cm]
  • R represents resistance [ ⁇ ].
  • the resistivity correction coefficient F was calculated using the formula described in JIS K 7194.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

In a single-crystal production device wherein a spraying means and a heating means are disposed facing each other with a seed substrate therebetween, a single crystal is produced from a powder by implementing: a film formation step in which the spraying means is used to spray the starting material powder towards the seed substrate to form a film upon a surface of the seed substrate; and a heating step in which the heating means is used to heat the film formed upon the surface of the seed substrate. As a result, a single-crystal production device is provided which exhibits excellent productivity, and which is capable of producing high-quality single crystals having few pores, even when using materials with which molten starting material is difficult to obtain.

Description

単結晶製造装置、当該装置を用いる単結晶製造方法、及び当該方法によって製造される単結晶Single crystal manufacturing apparatus, single crystal manufacturing method using the apparatus, and single crystal manufactured by the method
 本発明は、単結晶製造装置に関する。より具体的には、本発明は、気孔が少なく均質な単結晶を高い生産性にて製造することができる単結晶製造装置に関する。また、本発明は、かかる単結晶製造装置を用いる単結晶製造方法にも関する。更に、本発明は、かかる単結晶製造方法によって製造される単結晶にも関する。 The present invention relates to a single crystal manufacturing apparatus. More specifically, the present invention relates to a single crystal manufacturing apparatus capable of manufacturing a homogeneous single crystal with few pores with high productivity. The present invention also relates to a single crystal manufacturing method using such a single crystal manufacturing apparatus. Furthermore, the present invention also relates to a single crystal manufactured by such a single crystal manufacturing method.
 例えば、圧電ポンプ、インクジェットプリンタのインクヘッド等の種々の用途において使用される圧電アクチュエータに用いられる圧電体材料や、例えば、発光ダイオード(LED)、レーザーダイオード(LD)等の種々の半導体素子に用いられる半導体材料として、セラミックスを始めとする種々の無機材料が利用されている。かかる無機材料の性能を向上させるためには、これらの無機材料における結晶配向度を高くすることが重要であることが知られている。 For example, piezoelectric materials used for piezoelectric actuators used in various applications such as piezoelectric pumps and ink-jet printer ink heads, and various semiconductor elements such as light-emitting diodes (LEDs) and laser diodes (LDs). As the semiconductor material to be used, various inorganic materials such as ceramics are used. In order to improve the performance of such inorganic materials, it is known that it is important to increase the degree of crystal orientation in these inorganic materials.
 例えば、圧電セラミックスにおいて、より高い圧電効果を発揮させるためには、圧電セラミックスに電界を印加することによって結晶中の電気双極子の向きを揃える処理(分極処理)が施されるが、この際、結晶配向度が高い程、より分極され易くなり、その結果、高い圧電性能を得ることができる。 For example, in piezoelectric ceramics, in order to exert a higher piezoelectric effect, a process for aligning the direction of electric dipoles in the crystal by applying an electric field to the piezoelectric ceramics (polarization process) is performed. The higher the degree of crystal orientation, the easier it is to polarize. As a result, high piezoelectric performance can be obtained.
 ところで、単結晶膜や、結晶がある程度配向されている膜を含む配向膜(以降、「配向性膜」と称する場合がある)を形成する方法として、作製しようとする単結晶や配向性多結晶膜の原料融液を調製し、種となる単結晶上で結晶化させる方法がある。しかしながら、かかる方法において使用される酸化物(例えば、酸化亜鉛(ZnO)等)や窒化物(例えば、窒化ガリウム(GaN)等)や炭化物(例えば、炭化珪素(SiC)等)等の原料が非常に高い融点を有したり、もしくは分解し易かったりする場合がある。このような原料については原料融液を得ることが困難であり、かかる材料系に上記方法を適用することは困難であった。そこで、例えば、GaNの単結晶を作製しようとする場合において、ナトリウム(Na)をフラックスとして原料を溶解し、種に析出させて単結晶を得るNaフラックス法が提案されている(例えば、特許文献1を参照)。また、サファイア等の異種基板上にハイドライド気相成長法(Hydride Vapor Phase Epitaxy)を用いてGaN層を形成し、GaN層の成長後に異種基板を除去することにより、自立したGaNの単結晶基板を得る方法が提案されている(例えば、特許文献2を参照)。しかしながら、これらの従来技術に係る方法は、結晶の成長速度が遅いという問題を有する。 By the way, as a method of forming a single crystal film or an alignment film including a film in which crystals are oriented to some extent (hereinafter sometimes referred to as “orientation film”), a single crystal or an oriented polycrystal to be produced is prepared. There is a method in which a raw material melt for a film is prepared and crystallized on a seed single crystal. However, raw materials such as oxides (such as zinc oxide (ZnO)), nitrides (such as gallium nitride (GaN)), and carbides (such as silicon carbide (SiC)) used in such a method are extremely May have a high melting point or may be easily decomposed. For such a raw material, it is difficult to obtain a raw material melt, and it has been difficult to apply the above method to such a material system. Therefore, for example, when a single crystal of GaN is to be produced, a Na flux method has been proposed in which a raw material is dissolved using sodium (Na) as a flux and precipitated into seeds to obtain a single crystal (for example, Patent Documents). 1). In addition, a GaN layer is formed on a heterogeneous substrate such as sapphire using a hydride vapor phase epitaxy, and the heterogeneous substrate is removed after the growth of the GaN layer, whereby a self-standing GaN single crystal substrate is formed. A method of obtaining is proposed (see, for example, Patent Document 2). However, these prior art methods have the problem that the crystal growth rate is slow.
 一方、固相成長法によって単結晶膜及び配向性膜を製造することもできる(例えば、特許文献3を参照)。具体的には、例えば、ペロブスカイト構造を有する酸化物からなり0.01~8体積%の気孔率を有する単結晶又は配向性多結晶が圧電材料等として優れた特性を発揮することができることが開示されている。また、特定の組成を有する酸化物粉末の成形体又は焼結体を所定の温度において熱処理することにより、配向性多結晶又は単位面積当たりに所定個数の小傾角粒界を形成する結晶粒子を含む単結晶から実質的に構成される良質な酸化物イオン伝導性結晶体を効率的に製造することが開示されている(例えば、特許文献4を参照)。 On the other hand, a single crystal film and an orientation film can also be manufactured by a solid phase growth method (see, for example, Patent Document 3). Specifically, for example, it is disclosed that a single crystal or oriented polycrystal composed of an oxide having a perovskite structure and having a porosity of 0.01 to 8% by volume can exhibit excellent characteristics as a piezoelectric material or the like. Has been. In addition, it includes oriented polycrystals or crystal grains that form a predetermined number of low-angle grain boundaries per unit area by heat-treating a compact or sintered body of oxide powder having a specific composition at a predetermined temperature. It has been disclosed to efficiently produce a high-quality oxide ion conductive crystal substantially composed of a single crystal (see, for example, Patent Document 4).
 加えて、上記特許文献3及び4においては、結晶体を製造する1つの方法として、焼結体と単結晶(種基板)とを接触させた状態で、接触部分を加熱すると共にそれ以外の末端部分を冷却する温度制御を行うことにより所定の温度勾配を生じさせて、種基板を起点として多結晶の焼結体を単結晶化又は配向化することが開示されている(例えば、特許文献3の図4、特許文献4の図4を参照)。 In addition, in Patent Documents 3 and 4, as one method for producing a crystal, the contact portion is heated while the sintered body and the single crystal (seed substrate) are in contact with each other, and the other ends are also produced. It is disclosed that a predetermined temperature gradient is generated by performing temperature control for cooling a portion, and a polycrystalline sintered body is single-crystallized or oriented starting from a seed substrate (for example, Patent Document 3). 4 and FIG. 4 of Patent Document 4).
 しかしながら、かかる固相成長による結晶の配向化においては、以下に示すような問題が懸念される。先ず、上記のように焼結体と種基板とを接触させて接触部分を加熱することにより焼結体の粒子を種基板の単結晶に取り込ませて固相成長させるためには、例えば、種基板の表面を鏡面研磨したり、焼結体と種基板とを加圧接触したり、両者の界面に空隙が生じないように、界面に液相材料を充填したりして、両者を密着させることが重要である。そのため、製造工程及び製造装置が複雑になる。特に、大面積の焼結体と種基板とを均一に密着させることは極めて困難である。 However, there are concerns about the following problems in the orientation of crystals by such solid phase growth. First, in order to bring the sintered body particles into the single crystal of the seed substrate by bringing the sintered body and the seed substrate into contact with each other and heating the contact portion as described above, solid phase growth is performed. The substrate surface is mirror-polished, the sintered body and the seed substrate are pressed into contact with each other, or a liquid phase material is filled in the interface so that there is no void at the interface between the two, and the two are brought into close contact with each other. This is very important. This complicates the manufacturing process and the manufacturing apparatus. In particular, it is extremely difficult to make a large-area sintered body and the seed substrate adhere to each other uniformly.
 また、
上記従来技術においては、多結晶の焼結体と種基板との接触部分を加熱すると共に当該焼結体の他の末端領域を冷却することにより所定の温度勾配を発生させているが、温度勾配が小さい場合は、焼結体と種基板との界面では固相成長するものの、当該界面から離れた焼結体の内部では個々の粒子において別個に粒成長が進む。この結果、固相成長が進むにつれて種結晶に取り込まれる粒子が粗大となり、最終的には固相成長が停止する。また、粗大粒子が別個に種結晶に取り込まれるため、膜中に気孔が残留しやすい。一方、このような問題を防ぐために温度勾配を過大にするとワークそのものが破損する虞がある。
Also,
In the above prior art, a predetermined temperature gradient is generated by heating the contact portion between the polycrystalline sintered body and the seed substrate and cooling the other end region of the sintered body. Is small, solid phase growth occurs at the interface between the sintered body and the seed substrate, but grain growth progresses separately for each individual particle within the sintered body away from the interface. As a result, as the solid phase growth proceeds, the particles taken into the seed crystal become coarse, and finally the solid phase growth stops. Further, since coarse particles are separately taken into the seed crystal, pores are likely to remain in the film. On the other hand, if the temperature gradient is excessive to prevent such a problem, the workpiece itself may be damaged.
 そこで、当該技術分野においては、原料の粉体(原料粉)の粒径が種基板から離れるに従って次第に大きくなるようにエアロゾルデポジション法(以降、「AD法」と称する場合がある)によって粒径の異なる原料粉を種基板上に噴射し、種基板上に堆積させ、斯くして形成された原料を含む膜を熱処理することにより、良質な単結晶膜又は配向性多結晶膜を製造する技術が開示されている(例えば、特許文献5を参照)。 Therefore, in this technical field, the particle size of the raw material powder (raw material powder) is increased by the aerosol deposition method (hereinafter sometimes referred to as “AD method”) so that the particle size gradually increases with distance from the seed substrate. Of producing a high-quality single crystal film or oriented polycrystalline film by spraying raw material powders of different quality onto a seed substrate, depositing on the seed substrate, and heat-treating the film containing the raw material thus formed Is disclosed (for example, see Patent Document 5).
 しかしながら、上記従来技術に係る単結晶膜及び配向性多結晶膜の製造方法は、上記のように非常に複雑であり、且つ手間がかかる。また、固相成長の進行方向を制御して結晶粒の配向を制御するために原料粉に混入される固溶不純物及び配向化温度をより低温側にシフトさせるために原料粉の膜に添加される焼結助剤の膜内での濃度分布を狙い通りに正確に制御することは極めて困難であり、均質な結晶を得ることが難しい。また、特許文献3及び4に記載の方法と同様に、膜と種基板との界面から離れた領域に存在する粒子は熱処理によって粒成長して粗大粒子となるため、固相成長には多大なエネルギーが必要となり、最終的には固相成長が停止する。また、粗大粒子が別個に種結晶に取り込まれるため、膜中に気孔が残留しやすい。また、上述した何れの従来技術に係る単結晶膜及び配向性多結晶膜の製造方法においても、膜の作製と当該膜の加熱とが別個の装置によって行われる。従って、単結晶膜の製造工程及び製造手段が複雑になり、例えば、製造コストの増大等の問題を招く虞がある。 However, the manufacturing method of the single crystal film and the oriented polycrystalline film according to the above prior art is very complicated as described above and takes time. In addition, it is added to the film of raw material powder to shift the solid solution impurities mixed in the raw material powder and the orientation temperature to the lower temperature side in order to control the direction of solid phase growth and control the orientation of crystal grains. It is extremely difficult to accurately control the concentration distribution of the sintering aid in the film as intended, and it is difficult to obtain homogeneous crystals. Similarly to the methods described in Patent Documents 3 and 4, since particles existing in a region away from the interface between the film and the seed substrate grow into coarse particles by heat treatment, they are very large for solid phase growth. Energy is required and eventually solid phase growth stops. Further, since coarse particles are separately taken into the seed crystal, pores are likely to remain in the film. Further, in any of the above-described methods for producing a single crystal film and an oriented polycrystalline film, the production of the film and the heating of the film are performed by separate apparatuses. Therefore, the manufacturing process and the manufacturing means of the single crystal film become complicated, and there is a possibility of causing problems such as an increase in manufacturing cost.
 ところで、当該技術分野においては、AD法を用いてセラミックス膜構造体を基板上に形成する方法であって、AD法による成膜(以降、「AD成膜」と称する場合がある)後又はAD成膜中に、赤外線レーザー照射による熱処理を行うことにより、基板への熱処理の影響を抑えつつ、膜質を改善する方法が提案されている(例えば、特許文献6及び非特許文献1を参照)。 By the way, in this technical field, it is a method of forming a ceramic film structure on a substrate using the AD method, and after film formation by the AD method (hereinafter sometimes referred to as “AD film formation”) or AD A method for improving film quality while suppressing the influence of heat treatment on a substrate by performing heat treatment by infrared laser irradiation during film formation has been proposed (see, for example, Patent Document 6 and Non-Patent Document 1).
 上記方法は、エピタキシャル成長法による単結晶化ではなく、例えば、結晶性等の膜質の改善を目的とするものである。また、上記方法においては、熱源となる赤外線レーザーが膜の表面側(基板とは反対側)から照射されるため、基板に近付くにつれて低温となるような温度勾配がセラミックス膜構造体の内部に生ずる。しかしながら、このような方法では膜と種基板との界面における固相成長よりも(当該界面から離れた)膜の表面側での粒成長が優先して生じるため、固相成長には多大なエネルギーが必要となり、最終的には固相成長が停止する。また、粗大粒子が別個に種結晶に取り込まれるため、膜中に気孔が残留しやすい。即ち、上記方法における加熱様式は、原料粉の単結晶化には必ずしも適していない。 The above method is not intended to be single crystallization by the epitaxial growth method, but for the purpose of improving film quality such as crystallinity, for example. Further, in the above method, since an infrared laser as a heat source is irradiated from the surface side of the film (opposite side of the substrate), a temperature gradient is generated inside the ceramic film structure so as to become a low temperature as it approaches the substrate. . However, in such a method, grain growth on the surface side of the film (distant from the interface) is given priority over solid phase growth at the interface between the film and the seed substrate. Will eventually be required and solid phase growth will eventually cease. Further, since coarse particles are separately taken into the seed crystal, pores are likely to remain in the film. That is, the heating mode in the above method is not necessarily suitable for single crystallization of the raw material powder.
 加えて、上記方法においては、AD成膜中に赤外線レーザー照射による加熱を行うことが可能であるものの、成膜中に赤外線レーザー照射を行おうとする場合、成膜室内がエアロゾルで充満しており、レーザー光が散乱しやすいため、原料粉にレーザー光を効果的に照射することが難しいという問題がある。 In addition, in the above method, heating by infrared laser irradiation can be performed during AD film formation, but when the infrared laser irradiation is performed during film formation, the film formation chamber is filled with aerosol. Since the laser light is easily scattered, there is a problem that it is difficult to effectively irradiate the raw material powder with the laser light.
 以上のように、当該技術分野においては、原料融液を得ることが困難な材料系においても気孔が少ない高品質な単結晶を作製可能な生産性に優れた単結晶製造装置に対する要求が存在する。 As described above, there is a need in the art for a single crystal manufacturing apparatus with excellent productivity that can produce a high-quality single crystal with few pores even in a material system in which it is difficult to obtain a raw material melt. .
米国特許第5868837号明細書US Pat. No. 5,868,837 特開2003-178984号公報JP 2003-178984 A 特開2003-267796号公報JP 2003-267996 A 特許第3985144号明細書Japanese Patent No. 3985144 特許第4682054号明細書Japanese Patent No. 4668254 特許第4538609号明細書Japanese Patent No. 4538609
 上述のように、当該技術分野においては、原料融液を得ることが困難な材料系においても気孔が少ない高品質な単結晶を作製可能な生産性に優れた単結晶製造装置に対する要求が存在する。本発明は、かかる要求に応えるために為されたものである。即ち、本発明は、原料融液を得ることが困難な材料系においても気孔が少ない高品質な単結晶を作製可能な生産性に優れた単結晶製造装置を提供することを1つの目的とする。 As described above, there is a need in the art for a single crystal manufacturing apparatus with excellent productivity that can produce a high-quality single crystal with few pores even in a material system in which it is difficult to obtain a raw material melt. . The present invention has been made to meet such a demand. That is, an object of the present invention is to provide a single crystal production apparatus excellent in productivity capable of producing a high-quality single crystal having few pores even in a material system in which it is difficult to obtain a raw material melt. .
 本発明の上記1つの目的は、
 原料の粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させ、膜を形成する噴射手段、及び
 前記種基板の表面上に堆積された前記膜を加熱する加熱手段、
を備え、
 前記噴射手段により、前記粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させ、膜を形成する成膜ステップ、及び
 前記加熱手段により、前記種基板の表面上に形成された前記膜を加熱する加熱ステップ、
を実行することにより、前記粉体から単結晶を作製する単結晶製造装置であって、
 前記噴射手段と前記加熱手段とが前記種基板を挟んで互いに対向するように配置されていること、
を特徴とする単結晶製造装置によって達成される。
One object of the present invention is to
A raw material powder is sprayed toward the seed substrate to deposit the powder on the surface of the seed substrate, and an injection means for forming a film, and the film deposited on the surface of the seed substrate is heated. Heating means,
With
A film forming step of forming a film by spraying the powder toward the seed substrate by the spraying means to deposit the powder on the surface of the seed substrate, and a surface of the seed substrate by the heating means A heating step for heating the film formed thereon;
A single crystal production apparatus for producing a single crystal from the powder by executing
The spraying means and the heating means are arranged to face each other across the seed substrate;
It is achieved by a single crystal manufacturing apparatus characterized by the following.
 本発明に係る単結晶製造装置によれば、原料融液を得ることが困難な材料系においても、気孔が少ない高品質な単結晶を高い生産性にて作製することができる。 The single crystal manufacturing apparatus according to the present invention can produce a high-quality single crystal with few pores with high productivity even in a material system in which it is difficult to obtain a raw material melt.
本発明の1つの実施態様に係る単結晶製造装置20の構成の概略を示す模式的な構成図の一例である。It is an example of the typical block diagram which shows the outline of a structure of the single crystal manufacturing apparatus 20 which concerns on one embodiment of this invention.
 前述のように、当該技術分野においては、原料融液を得ることが困難な材料系においても気孔が少ない高品質な単結晶を作製可能な生産性に優れた単結晶製造装置に対する要求が存在する。本発明は、かかる要求に応えるために為されたものである。即ち、本発明は、原料融液を得ることが困難な材料系においても気孔が少ない高品質な単結晶を作製可能な生産性に優れた単結晶製造装置を提供することを1つの目的とする。 As described above, there is a need in the art for a single crystal manufacturing apparatus with excellent productivity that can produce a high-quality single crystal with few pores even in a material system in which it is difficult to obtain a raw material melt. . The present invention has been made to meet such a demand. That is, an object of the present invention is to provide a single crystal production apparatus excellent in productivity capable of producing a high-quality single crystal having few pores even in a material system in which it is difficult to obtain a raw material melt. .
 本発明者は、上記目的を達成すべく鋭意研究の結果、噴射手段により原料の粉体を種基板に向かって噴射して種基板の表面上に粉体を堆積させ、膜を形成する成膜ステップと、種基板の表面上に形成された膜を加熱手段により加熱する加熱ステップとを実行することにより、粉体から単結晶を作製する単結晶製造装置において、噴射手段と加熱手段とを種基板を挟んで互いに対向するように配置することにより、原料融液を得ることが困難な材料系においても、気孔が少ない高品質な単結晶を高い生産性にて作製することができることを見出し、本発明を想到するに至ったものである。 As a result of diligent research to achieve the above object, the present inventor sprays raw material powder onto the seed substrate by spraying means to deposit the powder on the surface of the seed substrate, thereby forming a film. In the single crystal manufacturing apparatus for producing a single crystal from powder by executing the step and the heating step of heating the film formed on the surface of the seed substrate by the heating means, the injection means and the heating means are seeded. By arranging them so as to face each other across the substrate, we found that even in a material system where it is difficult to obtain a raw material melt, a high-quality single crystal with few pores can be produced with high productivity, The present invention has been conceived.
 即ち、本発明の第1の実施態様は、
 原料の粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させ、膜を形成する噴射手段、及び
 前記種基板の表面上に堆積された前記膜を加熱する加熱手段、
を備え、
 前記噴射手段により、前記粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させ、膜を形成する成膜ステップ、及び
 前記加熱手段により、前記種基板の表面上に形成された前記膜を加熱する加熱ステップ、
を実行することにより、前記粉体から単結晶を作製する単結晶製造装置であって、
 前記噴射手段と前記加熱手段とが前記種基板を挟んで互いに対向するように配置されていること、
を特徴とする単結晶製造装置である。
That is, the first embodiment of the present invention is:
A raw material powder is sprayed toward the seed substrate to deposit the powder on the surface of the seed substrate, and an injection means for forming a film, and the film deposited on the surface of the seed substrate is heated. Heating means,
With
A film forming step of forming a film by spraying the powder toward the seed substrate by the spraying means to deposit the powder on the surface of the seed substrate, and a surface of the seed substrate by the heating means A heating step for heating the film formed thereon;
A single crystal production apparatus for producing a single crystal from the powder by executing
The spraying means and the heating means are arranged to face each other across the seed substrate;
Is a single crystal manufacturing apparatus.
 上記のように、本実施態様に係る単結晶製造装置は、原料の粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させ、膜を形成する噴射手段、及び前記種基板の表面上に形成された前記膜を加熱する加熱手段を備える。これにより、本実施態様に係る単結晶製造装置においては、前記噴射手段により、前記粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させ、膜を形成する成膜ステップと、前記加熱手段により、前記種基板の表面上に形成された前記膜を加熱する加熱ステップとを実行することにより、前記粉体から単結晶を作製することができる。尚、本実施態様に係る単結晶製造方法によって単結晶を得る物質の主成分は、特に限定されないが、例えば、種々のセラミックス、酸化亜鉛(ZnO)等の酸化物、及び窒化ガリウム(GaN)等の窒化物等を挙げることができる(詳しくは後述する)。 As described above, the single crystal manufacturing apparatus according to the present embodiment includes a spraying unit that sprays a raw material powder toward a seed substrate, deposits the powder on the surface of the seed substrate, and forms a film. And heating means for heating the film formed on the surface of the seed substrate. Thereby, in the single crystal manufacturing apparatus according to this embodiment, the powder is deposited on the surface of the seed substrate by spraying the powder toward the seed substrate by the spraying means to form a film. A single crystal can be produced from the powder by performing a film forming step and a heating step of heating the film formed on the surface of the seed substrate by the heating means. The main component of the substance for obtaining a single crystal by the method for producing a single crystal according to this embodiment is not particularly limited. For example, various ceramics, oxides such as zinc oxide (ZnO), gallium nitride (GaN), etc. (The details will be described later).
 尚、上記噴射手段は、原料の粉体を種基板に向かって噴射して種基板の表面上に粉体を堆積させることが可能である限り、如何なる構成を有するものであってもよい。具体的には、上記噴射手段は、例えば、エアロゾルデポジション法(AD法)、パウダージェットデポジション法(PJD法)等において、原料の粉体を種基板に向けて噴射するための噴射ノズル等を含むことができる。 The injection means may have any configuration as long as the raw material powder can be injected toward the seed substrate to deposit the powder on the surface of the seed substrate. Specifically, the injection means is, for example, an injection nozzle for injecting the raw material powder toward the seed substrate in the aerosol deposition method (AD method), the powder jet deposition method (PJD method), or the like. Can be included.
 また、上記加熱手段は、種基板の表面上に形成された膜を加熱して、当該膜から単結晶を成長させることができる限り、如何なる構成を有する加熱手段であってもよい。典型的には、上記加熱手段としては、例えば、赤外線ランプ(例えば、近赤外線ランプ等)、各種レーザー(例えば、COレーザー、YAGレーザー、エキシマーレーザー、半導体レーザー等)、及び高周波加熱装置等を挙げることができる。 Further, the heating means may be a heating means having any configuration as long as the film formed on the surface of the seed substrate can be heated to grow a single crystal from the film. Typically, the heating means includes, for example, an infrared lamp (for example, a near infrared lamp), various lasers (for example, a CO 2 laser, a YAG laser, an excimer laser, a semiconductor laser, etc.), a high-frequency heating device, and the like. Can be mentioned.
 上記のような構成を有する本実施態様に係る単結晶製造装置は、成膜ステップにおいて上記噴射手段により原料の粉体を種基板に向かって噴射して種基板の表面上に粉体を堆積させ、膜を形成し、加熱ステップにおいて種基板の表面上に形成された膜を上記加熱手段により加熱して、原料の粉体から単結晶を作製する。 In the single crystal manufacturing apparatus according to this embodiment having the above-described configuration, the raw material powder is sprayed toward the seed substrate by the spraying means in the film forming step to deposit the powder on the surface of the seed substrate. Then, a film is formed, and the film formed on the surface of the seed substrate in the heating step is heated by the heating means to produce a single crystal from the raw material powder.
 この際、前述のように、加熱ステップにおいて熱源となるエネルギー(例えば、赤外線、レーザー光等)が噴射手段が配設されている側から照射される従来技術に係る単結晶製造装置においては、種基板の表面上に形成された膜の内部において、種基板に近付くにつれて低温となるような温度勾配が生ずることに加え、熱源となるエネルギーが粉体に到達する経路となる空間に噴射手段から噴射された粉体が充満しているため、熱源となるエネルギーが散乱される等して、熱源となるエネルギーが粉体に有効に到達することが困難である。その結果、膜を種基板の単結晶に取り込ませて、単結晶を有効に固相成長させることが難しい。 At this time, as described above, in the single crystal manufacturing apparatus according to the prior art in which energy (for example, infrared rays, laser light, etc.) serving as a heat source in the heating step is irradiated from the side where the injection means is disposed, Inside the film formed on the surface of the substrate, in addition to a temperature gradient that becomes lower as it gets closer to the seed substrate, it is injected from the injection means into a space that becomes a path for the energy that becomes the heat source to reach the powder. Since the applied powder is full, it is difficult for the energy serving as the heat source to reach the powder effectively, for example, by scattering the energy serving as the heat source. As a result, it is difficult to incorporate the film into the single crystal of the seed substrate and to effectively solid-phase grow the single crystal.
 しかしながら、本実施態様に係る単結晶製造装置においては、上述のように、前記噴射手段と前記加熱手段とが前記種基板を挟んで互いに対向するように配置されている。これにより、本実施態様に係る単結晶製造装置においては、熱源となるエネルギー(例えば、赤外線、各種レーザー光、高周波電磁波等)が膜への到達経路において充満する粉体によって散乱されることが防止されると共に、膜と種基板との接触部分側から膜を加熱することができる。その結果、本実施態様に係る単結晶製造装置においては、熱源となるエネルギーを膜に有効に到達させることができると共に、種基板に近付くにつれて高温となるような温度勾配を種基板の表面上に形成された膜の内部に生じさせることができるので、良質な単結晶を効率的に固相成長させることができる。尚、例えば、加熱手段と噴射手段とが完全に独立しておらず、噴射手段から噴射される粉体の量が著しく多い場合等において、加熱手段周辺に粉体が侵入し、熱源となるエネルギー(例えば、赤外線、各種レーザー光、高周波電磁波等)が膜への到達経路において粉体によって散乱される可能性がある。また、例えば赤外線ランプ等の加熱手段へ粉体が付着することにより、当該加熱手段において故障が生ずる場合がある。かかる場合は、噴射手段の周囲や加熱手段から膜への到達経路の周囲を、例えば多孔質フィルター等によって遮蔽してもよい。この場合、多孔質フィルターの気孔率及び気孔径については特に限定されないが、粉体の放散を抑制しつつ、キャリアガスは透過させるものを選んでもよい。また、多孔質フィルターの材質についても特に限定されないが、多孔質フィルターを熱源付近に設置する場合は耐熱性を有する材質を適用する必要がある。 However, in the single crystal manufacturing apparatus according to the present embodiment, as described above, the spraying unit and the heating unit are arranged to face each other with the seed substrate interposed therebetween. Thereby, in the single crystal manufacturing apparatus according to the present embodiment, energy (for example, infrared rays, various laser beams, high-frequency electromagnetic waves, etc.) serving as a heat source is prevented from being scattered by the powder filling in the route to the film. In addition, the film can be heated from the contact portion side between the film and the seed substrate. As a result, in the single crystal manufacturing apparatus according to the present embodiment, energy that becomes a heat source can be effectively reached the film, and a temperature gradient that becomes higher as the seed substrate is approached is formed on the surface of the seed substrate. Since it can be generated inside the formed film, a high-quality single crystal can be efficiently solid-phase grown. In addition, for example, when the heating means and the injection means are not completely independent and the amount of powder injected from the injection means is extremely large, etc., the powder enters the vicinity of the heating means and becomes an energy that becomes a heat source. There is a possibility that (for example, infrared rays, various laser beams, high-frequency electromagnetic waves, etc.) are scattered by the powder in the path to reach the film. Moreover, when powder adheres to heating means, such as an infrared lamp, a failure may occur in the heating means. In such a case, the periphery of the injection unit and the route of reaching the film from the heating unit may be shielded by, for example, a porous filter. In this case, the porosity and the pore diameter of the porous filter are not particularly limited, but those that allow the carrier gas to permeate while suppressing the dispersion of the powder may be selected. Also, the material of the porous filter is not particularly limited, but when the porous filter is installed near the heat source, it is necessary to apply a material having heat resistance.
 ところで、前述したように、従来技術に係る単結晶の製造方法においては、膜の作製と当該膜の加熱とが別個の装置によって行われるのが一般的である。従って、従来技術に係る単結晶製造方法においては、単結晶の製造工程及び製造手段が複雑になり、例えば、製造コストの増大等の問題を招く虞がある。しかしながら、本実施態様に係る単結晶製造装置においては、上述のように、膜の作製と当該膜の加熱とを同一の装置によって行うことができる。その結果、本実施態様に係る単結晶製造装置によれば、単結晶の製造工程及び製造手段の複雑化を回避して、例えば、製造コストの増大等の問題を低減することができる。 Incidentally, as described above, in the method for producing a single crystal according to the prior art, the production of the film and the heating of the film are generally performed by separate apparatuses. Therefore, in the single crystal manufacturing method according to the prior art, the manufacturing process and the manufacturing means of the single crystal become complicated, and there is a possibility of causing problems such as an increase in manufacturing cost. However, in the single crystal manufacturing apparatus according to this embodiment, as described above, the production of the film and the heating of the film can be performed by the same apparatus. As a result, according to the single crystal manufacturing apparatus according to the present embodiment, it is possible to avoid the complexity of the manufacturing process and manufacturing means of the single crystal, and to reduce problems such as an increase in manufacturing cost, for example.
 尚、本発明に係る単結晶製造装置が備える加熱手段は、種基板の表面上に形成された膜から単結晶を固相成長させるために必要な条件にて当該膜を加熱することが可能である限り、特に限定されるものではない。但し、詳しくは後述するように、加熱ステップにおいて単結晶を得る過程における気孔の発生をより確実且つ容易に抑制して良質な単結晶を効率的に固相成長させるためには、例えば、成膜ステップ及び加熱ステップを逐次的に実行する場合、高い昇温速度を実現可能な(即ち、高い加熱効率を有する)加熱手段を採用することが望ましい。かかる観点からも、本発明に係る単結晶製造装置が備える加熱手段としては、上述のように、例えば、赤外線ランプ(例えば、近赤外線ランプ等)、各種レーザー(例えば、COレーザー、YAGレーザー、エキシマーレーザー、半導体レーザー等)、及び高周波加熱装置等を挙げることができる。 The heating means provided in the single crystal manufacturing apparatus according to the present invention can heat the film under the conditions necessary for solid-phase growth of the single crystal from the film formed on the surface of the seed substrate. As long as it is, it is not particularly limited. However, as will be described in detail later, in order to more reliably and easily suppress the generation of pores in the process of obtaining a single crystal in the heating step and to efficiently solid-phase a good quality single crystal, for example, film formation When the step and the heating step are sequentially performed, it is desirable to employ a heating means that can realize a high temperature increase rate (that is, has a high heating efficiency). Also from this viewpoint, as the heating means provided in the single crystal manufacturing apparatus according to the present invention, as described above, for example, an infrared lamp (for example, a near infrared lamp), various lasers (for example, a CO 2 laser, a YAG laser, Excimer laser, semiconductor laser, etc.), high-frequency heating device, and the like.
 従って、本発明の第2の実施態様は、
 本発明の前記第1の実施態様に係る単結晶製造装置であって、
 前記加熱手段が、赤外線ランプ、レーザー、及び高周波加熱装置からなる群より選ばれる何れかの熱源を利用して前記膜を加熱する加熱手段であること、
を特徴とする単結晶製造装置である。
Accordingly, the second embodiment of the present invention provides:
A single crystal manufacturing apparatus according to the first embodiment of the present invention,
The heating means is a heating means for heating the film using any heat source selected from the group consisting of an infrared lamp, a laser, and a high-frequency heating device;
Is a single crystal manufacturing apparatus.
 上記のように、本実施態様に係る単結晶製造装置においては、前記加熱手段が、赤外線ランプ、レーザー、及び高周波加熱装置からなる群より選ばれる何れかの熱源を利用して前記膜を加熱する加熱手段である。結果として、本実施態様に係る単結晶製造装置によれば、加熱ステップにおいて、種基板の表面上に形成された膜から良質な単結晶を固相成長させるのに好適な条件にて当該膜を加熱することができる。 As described above, in the single crystal manufacturing apparatus according to this embodiment, the heating unit heats the film using any one of heat sources selected from the group consisting of an infrared lamp, a laser, and a high-frequency heating apparatus. It is a heating means. As a result, according to the single crystal manufacturing apparatus according to the present embodiment, in the heating step, the film is formed under conditions suitable for solid-phase growth of a good quality single crystal from the film formed on the surface of the seed substrate. Can be heated.
 ところで、本実施態様に係る単結晶製造装置によって単結晶化しようとする膜は、必ずしも、上述した熱源から供給されるエネルギーを効率良く吸収して熱に変換して、その温度を効率良く上昇させることができる材料であるとは限らない。換言すれば、本実施態様に係る単結晶製造装置によって単結晶化しようとする膜が、上述した熱源から供給されるエネルギーを効率良く吸収して熱に変換することができない材料である場合も想定される。 By the way, the film to be single-crystallized by the single-crystal manufacturing apparatus according to this embodiment does not necessarily efficiently absorb the energy supplied from the above-described heat source and convert it into heat, thereby efficiently increasing the temperature. It is not necessarily a material that can be used. In other words, it is assumed that the film to be single-crystallized by the single-crystal manufacturing apparatus according to this embodiment is a material that cannot efficiently absorb the energy supplied from the heat source described above and convert it into heat. Is done.
 かかる膜を本実施態様に係る単結晶製造装置によって単結晶化しようとする際には、上述した熱源から供給されるエネルギーを効率良く吸収して熱に変換することができる部材(以降、「発熱部材」と称する場合がある)を利用して、加熱ステップを実行可能とすることができる。具体的には、本実施態様に係る単結晶製造装置において、種基板の膜が形成される側とは反対側に、上述した熱源から供給されるエネルギーを効率良く吸収して熱に変換する発熱部材を配置して、当該発熱部材から生ずる熱エネルギーにより、種基板の表面上に形成された膜を加熱して、当該膜から単結晶を固相成長させることができる。 When a single crystal manufacturing apparatus according to this embodiment is used to crystallize such a film, a member that can efficiently absorb the energy supplied from the above-described heat source and convert it into heat (hereinafter “heat generation”). The heating step can be performed using a “member” in some cases. Specifically, in the single crystal manufacturing apparatus according to this embodiment, heat generated by efficiently absorbing energy supplied from the above-described heat source and converting it to heat on the side opposite to the side on which the seed substrate film is formed. A member is disposed, and a film formed on the surface of the seed substrate is heated by thermal energy generated from the heat generating member, so that a single crystal can be solid-phase grown from the film.
 即ち、本発明の第3の実施態様は、
 本発明の前記第2の実施態様に係る単結晶製造装置であって、
 前記エネルギーを吸収して発熱する発熱部材を更に備えること、及び
 前記発熱部材が、前記種基板の前記膜が形成される側とは反対側に配置されること、
を特徴とする単結晶製造装置である。
That is, the third embodiment of the present invention
A single crystal manufacturing apparatus according to the second embodiment of the present invention,
A heat generating member that absorbs the energy and generates heat; and the heat generating member is disposed on the opposite side of the seed substrate from the side on which the film is formed.
Is a single crystal manufacturing apparatus.
 上記のように、本実施態様に係る単結晶製造装置においては、前記エネルギーを吸収して発熱する発熱部材が、前記種基板の前記膜が形成される側とは反対側に配置される。これにより、本実施態様に係る単結晶製造装置においては、本実施態様に係る単結晶製造装置によって単結晶化しようとする膜が上述した熱源から供給されるエネルギーを効率良く吸収して熱に変換することができない材料である場合においても、種基板の膜が形成される側とは反対側に配置された発熱部材が上述した熱源から供給されるエネルギーを効率良く吸収して熱に変換し、当該発熱部材から生ずる熱により、種基板を経由して、種基板の表面上に形成された膜を加熱し、当該膜から単結晶を固相成長させることができる。 As described above, in the single crystal manufacturing apparatus according to this embodiment, the heat generating member that absorbs the energy and generates heat is disposed on the opposite side of the seed substrate from the side on which the film is formed. Thereby, in the single crystal manufacturing apparatus according to the present embodiment, the film to be single crystallized by the single crystal manufacturing apparatus according to the present embodiment efficiently absorbs the energy supplied from the heat source and converts it into heat. Even in the case of a material that cannot be done, the heating member arranged on the side opposite to the side on which the seed substrate film is formed efficiently absorbs the energy supplied from the heat source described above and converts it into heat, The film formed on the surface of the seed substrate can be heated by the heat generated from the heat generating member via the seed substrate, and a single crystal can be solid-phase grown from the film.
 ところで、上記発熱部材を構成する材料としては、例えば、上述した熱源から供給されるエネルギーを効率良く吸収して熱に変換することができ、且つ当該発熱部材から生ずる熱エネルギーを、種基板を経由して、種基板の表面上に形成された膜に均一に効率良く伝えることができる材料が望ましい。かかる材料としては、例えば、高い熱伝導率を有する金属、セラミックス等を挙げることができる。 By the way, as the material constituting the heat generating member, for example, the energy supplied from the heat source described above can be efficiently absorbed and converted into heat, and the heat energy generated from the heat generating member passes through the seed substrate. Thus, a material that can be uniformly and efficiently transmitted to a film formed on the surface of the seed substrate is desirable. Examples of such materials include metals and ceramics having high thermal conductivity.
 即ち、本発明の第4の実施態様は、
 本発明の前記第3の実施態様に係る単結晶製造装置であって、
 前記発熱部材が、金属又はセラミックスを含んでなること、
を特徴とする単結晶製造装置である。
That is, the fourth embodiment of the present invention is
A single crystal manufacturing apparatus according to the third embodiment of the present invention,
The heat generating member comprises metal or ceramics;
Is a single crystal manufacturing apparatus.
 上記のように、本実施態様に係る単結晶製造装置が備える発熱部材は、金属又はセラミックスを含んでなる。発熱部材に含まれる材料として好適な金属の具体例としては、例えば、白金、ニオブ、タングステン、及びモリブデン等の高融点金属を挙げることができる。また、発熱部材に含まれる材料として好適なセラミックスの具体例としては、例えば、アルミナ、窒化アルミニウム、炭化珪素、及び窒化珪素等を挙げることができる。発熱部材は、種基板と直接接触するため種基板との反応性が無いことが必要であり、且つ所望の熱処理温度に耐え、熱伝導率が高いものを利用することが望ましい。より好ましくは、種基板の熱膨張率に近い熱膨張率を有する発熱部材を利用することが更に望ましい。 As described above, the heat generating member included in the single crystal manufacturing apparatus according to this embodiment includes metal or ceramics. Specific examples of the metal suitable as the material included in the heat generating member include refractory metals such as platinum, niobium, tungsten, and molybdenum. Specific examples of ceramics suitable as a material included in the heat generating member include alumina, aluminum nitride, silicon carbide, and silicon nitride. Since the heat generating member is in direct contact with the seed substrate, it is necessary that the heat generating member has no reactivity with the seed substrate, and it is desirable to use a member that can withstand a desired heat treatment temperature and has high thermal conductivity. More preferably, it is further desirable to use a heat generating member having a thermal expansion coefficient close to that of the seed substrate.
 ところで、本明細書の冒頭において述べたように、本発明は、気孔が少なく均質な単結晶を高い生産性にて製造することができる単結晶製造装置に関するのみならず、かかる単結晶製造装置を用いる単結晶製造方法にも関する。 By the way, as described at the beginning of the present specification, the present invention is not only related to a single crystal manufacturing apparatus capable of manufacturing a homogeneous single crystal with few pores with high productivity. It also relates to the single crystal production method used.
 従って、本発明の第5の実施態様は、
 本発明の前記第1乃至第4の実施態様の何れか1つに係る単結晶製造装置を用いて、前記成膜ステップ及び前記加熱ステップを逐次的に実行することにより、前記粉体から単結晶を作製する単結晶製造方法である。
Accordingly, the fifth embodiment of the present invention provides:
Using the single crystal manufacturing apparatus according to any one of the first to fourth embodiments of the present invention, the film forming step and the heating step are sequentially performed, so that the single crystal is formed from the powder. Is a method for producing a single crystal.
 上述した単結晶製造装置としての各種実施態様に関する説明からも明らかであるように、本実施態様に係る単結晶製造方法によれば、気孔が少なく均質な単結晶を高い生産性にて製造することができる。 As is clear from the description of the various embodiments as the single crystal manufacturing apparatus described above, according to the single crystal manufacturing method according to the present embodiment, a homogeneous single crystal with few pores can be manufactured with high productivity. Can do.
 ところで、本発明に係る単結晶製造方法に含まれる成膜ステップにおいて原料の粉体を種基板の表面上に堆積させ、膜を形成する方法は、種基板との良好な密着性を有し且つ膜内に(ミクロンオーダー(即ち、大きさが1μm以上)の)気孔が生じない緻密な膜を種基板上に形成することが可能である限り、特に限定されるものではない。しかしながら、前述のように、本発明に係る単結晶製造装置は、原料の粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させ、膜を形成する噴射手段を備える。従って、本発明に係る単結晶製造方法に含まれる成膜ステップにおいて原料の粉体を種基板の表面上に堆積させ、膜を形成する方法は、噴射手段を使用して、原料の粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させる方法であることが望ましい。かかる方法の具体例としては、例えば、エアロゾルデポジション法(AD法)、パウダージェットデポジション法(PJD法)等を挙げることができる。 By the way, in the film forming step included in the single crystal manufacturing method according to the present invention, the raw material powder is deposited on the surface of the seed substrate, and the film forming method has good adhesion to the seed substrate and There is no particular limitation as long as it is possible to form a dense film on the seed substrate that does not generate pores (micron order (that is, a size of 1 μm or more)) in the film. However, as described above, the single crystal manufacturing apparatus according to the present invention is an injection unit that forms a film by spraying raw material powder toward a seed substrate to deposit the powder on the surface of the seed substrate. Is provided. Therefore, in the film forming step included in the method for producing a single crystal according to the present invention, the raw material powder is deposited on the surface of the seed substrate to form a film. It is desirable that the powder is deposited on the surface of the seed substrate by spraying toward the seed substrate. Specific examples of such a method include an aerosol deposition method (AD method) and a powder jet deposition method (PJD method).
 従って、本発明の第6の実施態様は、
 本発明の前記第5の実施態様に係る単結晶製造方法であって、
 前記成膜ステップにおいて前記種基板の表面上に前記膜を形成する方法が、エアロゾルデポジション法(AD法)及びパウダージェットデポジション法(PJD法)からなる群より選ばれる何れかの方法であること、
を特徴とする単結晶製造方法である。
Accordingly, the sixth embodiment of the present invention provides:
A method for producing a single crystal according to the fifth embodiment of the present invention, comprising:
The method for forming the film on the surface of the seed substrate in the film forming step is any method selected from the group consisting of an aerosol deposition method (AD method) and a powder jet deposition method (PJD method). thing,
Is a method for producing a single crystal.
 上記のように、本実施態様に係る単結晶製造方法においては、前記成膜ステップにおいて前記種基板の表面上に前記膜を形成する方法として、エアロゾルデポジション法(AD法)又はパウダージェットデポジション法(PJD法)の何れかの方法が採用される。その結果、本実施態様に係る単結晶製造方法によれば、種基板との良好な密着性を有し且つ膜内に(ミクロンオーダーの)気孔が生じない緻密な膜を種基板上に確実に形成することができる。尚、エアロゾルデポジション法(AD法)及びパウダージェットデポジション法(PJD法)の各々の詳細については当業者に周知であるので、本明細書においては説明を省略する。 As described above, in the method for producing a single crystal according to the present embodiment, an aerosol deposition method (AD method) or a powder jet deposition is used as a method for forming the film on the surface of the seed substrate in the film forming step. Any of the methods (PJD method) is adopted. As a result, according to the method for producing a single crystal according to this embodiment, a dense film having good adhesion to the seed substrate and having no pores (on the order of microns) in the film is reliably formed on the seed substrate. Can be formed. The details of each of the aerosol deposition method (AD method) and the powder jet deposition method (PJD method) are well known to those skilled in the art, and thus the description thereof is omitted in this specification.
 ところで、単結晶の固相成長においては、膜と種基板との接触部分を加熱して、種基板に近付くにつれて高温となるような温度勾配を膜内に生じさせることにより、膜を種基板の単結晶に取り込ませて固相成長させることが望ましい。即ち、本発明に係る単結晶製造方法に含まれる加熱ステップにおいては、膜を種基板の側から加熱することが望ましい。 By the way, in the solid-phase growth of a single crystal, the contact portion between the film and the seed substrate is heated, and a temperature gradient is generated in the film so that the temperature becomes higher as it approaches the seed substrate. It is desirable to incorporate it into a single crystal for solid phase growth. That is, in the heating step included in the single crystal manufacturing method according to the present invention, it is desirable to heat the film from the seed substrate side.
 即ち、本発明の第7の実施態様は、
 本発明の前記第6の実施態様に係る単結晶製造方法であって、
 前記加熱ステップにおいて前記膜が前記種基板の側から加熱されること、
を特徴とする単結晶製造方法である。
That is, the seventh embodiment of the present invention is
A method for producing a single crystal according to the sixth embodiment of the present invention, comprising:
The film is heated from the seed substrate side in the heating step;
Is a method for producing a single crystal.
 上記のように、本実施態様に係る単結晶製造方法においては、前記加熱ステップにおいて前記膜が前記種基板の側から加熱される。これにより、本実施態様に係る単結晶製造方法においては、種基板に近付くにつれて高温となるような温度勾配が、膜内に生ずる。その結果、本実施態様に係る単結晶製造方法によれば、原料融液を得ることが困難な材料系においても、気孔が少ない高品質な単結晶を高い生産性にて作製することができる。 As described above, in the single crystal manufacturing method according to this embodiment, the film is heated from the seed substrate side in the heating step. Thereby, in the single crystal manufacturing method according to the present embodiment, a temperature gradient is generated in the film so as to become a high temperature as it approaches the seed substrate. As a result, according to the method for producing a single crystal according to this embodiment, a high-quality single crystal with few pores can be produced with high productivity even in a material system in which it is difficult to obtain a raw material melt.
 ところで、本発明者らは、鋭意研究の結果、所定値以下の厚みとなるように種基板の表面上に形成された膜を種基板側から所定値以上の昇温速度にて加熱することにより、気孔が少ない高品質な単結晶を高い生産性にて作製することができることを見出した。かかる知見は、本実施態様に係る単結晶製造方法にも適用することができる。 By the way, as a result of intensive studies, the present inventors have heated a film formed on the surface of the seed substrate so as to have a thickness of a predetermined value or less from the seed substrate side at a heating rate of a predetermined value or more. The inventors have found that a high-quality single crystal with few pores can be produced with high productivity. Such knowledge can also be applied to the single crystal manufacturing method according to the present embodiment.
 即ち、本発明の第8の実施態様は、
 本発明の前記第7の実施態様に係る単結晶製造方法であって、
 前記成膜ステップにおいて前記種基板の表面上に形成される前記膜の前記種基板の表面に直交する方向における厚みである膜厚が100μm以下であること、及び
 前記加熱ステップにおける前記膜の昇温速度が30℃/分以上であること、
を特徴とする単結晶製造方法である。
That is, the eighth embodiment of the present invention is
A method for producing a single crystal according to the seventh embodiment of the present invention, comprising:
The film formed on the surface of the seed substrate in the film forming step has a thickness that is 100 μm or less in a direction perpendicular to the surface of the seed substrate, and the temperature of the film is increased in the heating step The speed is 30 ° C./min or more,
Is a method for producing a single crystal.
 上記のように、本実施態様に係る単結晶製造方法においては、前記成膜ステップにおいて前記種基板の表面上に形成される前記膜の前記種基板の表面に直交する方向における厚みである膜厚が100μm以下であり、且つ前記加熱ステップにおける前記膜の昇温速度が30℃/分以上である。これにより、本実施態様に係る単結晶製造方法においては、原料融液を得ることが困難な材料系においても、気孔が少ない高品質な単結晶を高い生産性にて作製することができる。 As described above, in the single crystal manufacturing method according to this embodiment, the film thickness that is the thickness in the direction perpendicular to the surface of the seed substrate of the film formed on the surface of the seed substrate in the film formation step. Is 100 μm or less, and the temperature rising rate of the film in the heating step is 30 ° C./min or more. Thereby, in the single crystal manufacturing method according to this embodiment, a high-quality single crystal with few pores can be produced with high productivity even in a material system in which it is difficult to obtain a raw material melt.
 尚、上記のように所定値以下の厚みを有する膜を所定値以上の昇温速度にて加熱することにより気孔が少ない高品質な単結晶が得られる詳細なメカニズムについては未だ解明されていない。しかしながら、上記のように所定値以下の厚みを有する膜を所定値以上の昇温速度にて加熱することにより、膜の内部に適度な温度勾配が発生して、膜内の粒成長を抑えつつ膜と種基板との界面から固相成長が順次進むため、気孔の発生が抑制されたものと考えられる。 It should be noted that a detailed mechanism for obtaining a high-quality single crystal with few pores by heating a film having a thickness of a predetermined value or less as described above at a heating rate of a predetermined value or more has not yet been elucidated. However, by heating a film having a thickness below a predetermined value as described above at a rate of temperature increase above a predetermined value, an appropriate temperature gradient is generated inside the film, while suppressing grain growth in the film. It is considered that the generation of pores is suppressed because solid-phase growth proceeds sequentially from the interface between the film and the seed substrate.
 尚、前述のように種基板の表面上に形成された膜を種基板側から加熱することが可能な加熱手段としては、例えば、セラミックスヒーター等の一般的なステージヒーターを挙げることもできる。しかしながら、かかるステージヒーターでは、例えば、本実施態様に係る単結晶製造方法において規定される昇温速度を実現することは困難である。かかる観点からも、前述したように、本発明に係る単結晶製造装置が備える加熱手段としては、例えば、赤外線ランプ(例えば、近赤外線ランプ等)、各種レーザー(例えば、COレーザー、YAGレーザー、エキシマーレーザー、半導体レーザー等)、及び高周波加熱装置等が望ましい。 In addition, as a heating means which can heat the film | membrane formed on the surface of a seed substrate as mentioned above from the seed substrate side, common stage heaters, such as a ceramic heater, can also be mentioned, for example. However, with such a stage heater, for example, it is difficult to realize a temperature increase rate defined in the single crystal manufacturing method according to the present embodiment. Also from this viewpoint, as described above, as the heating means provided in the single crystal manufacturing apparatus according to the present invention, for example, an infrared lamp (for example, a near infrared lamp), various lasers (for example, a CO 2 laser, a YAG laser, Excimer laser, semiconductor laser, etc.) and a high-frequency heating device are desirable.
 尚、本実施態様に係る単結晶製造方法に含まれる成膜ステップにおいて種基板の表面上に形成される膜の(種基板の表面に直交する方向における厚みである)膜厚は100μm以下であることが望ましく、より好ましくは30μm以下であることが望ましい。また、本実施態様に係る単結晶製造方法に含まれる加熱ステップにおける膜の昇温速度は30℃/分以上であることが望ましく、より好ましくは300℃/分以上であることが望ましい。 In addition, the film thickness (which is the thickness in a direction perpendicular to the surface of the seed substrate) formed on the surface of the seed substrate in the film forming step included in the method for manufacturing a single crystal according to this embodiment is 100 μm or less. It is desirable that the thickness is 30 μm or less. In addition, the temperature rising rate of the film in the heating step included in the method for producing a single crystal according to this embodiment is desirably 30 ° C./min or more, and more desirably 300 ° C./min or more.
 従って、本発明の第9の実施態様は、
 本発明の前記第8の実施態様に係る単結晶製造方法であって、
 前記成膜ステップにおいて前記種基板の表面上に形成される前記膜の膜厚が30μm以下であること、
を特徴とする単結晶製造方法である。
Accordingly, the ninth embodiment of the present invention provides:
A method for producing a single crystal according to the eighth embodiment of the present invention, comprising:
A film thickness of the film formed on the surface of the seed substrate in the film forming step is 30 μm or less;
Is a method for producing a single crystal.
 また、本発明の第10の実施態様は、
 本発明の前記第8又は第9の実施態様の何れか1つに係る単結晶製造方法であって、
 前記加熱ステップにおける前記膜の昇温速度が300℃/分以上であること、
を特徴とする単結晶製造方法である。
The tenth embodiment of the present invention is
A method for producing a single crystal according to any one of the eighth or ninth embodiments of the present invention,
The heating rate of the film in the heating step is 300 ° C./min or more,
Is a method for producing a single crystal.
 ところで、一般に酸化物又は窒化物(例えば、酸化亜鉛(ZnO)、窒化ガリウム(GaN)等)を主成分とする単結晶を作製しようとする場合、加熱ステップにおいて過剰な熱エネルギーが与えられると、材料の分解や昇華により、得られる結晶膜に組成ずれ及び気孔が発生し易くなる。一方、成膜ステップ及び加熱ステップを逐次的に実行する本発明に係る単結晶製造方法は、上述のように所定値以下の厚みを有する膜を所定値以上の昇温速度にて加熱することにより、膜の内部に適度な温度勾配を発生させて、得られる単結晶における気孔の発生を抑制することができる。即ち、成膜ステップ及び加熱ステップを逐次的に実行する本発明に係る単結晶製造方法は、酸化物又は窒化物を主成分とする単結晶を得ようとする場合に、特に好適に適用することができる。 By the way, in general, when an attempt is made to produce a single crystal mainly composed of oxide or nitride (for example, zinc oxide (ZnO), gallium nitride (GaN), etc.), if excessive thermal energy is given in the heating step, Due to decomposition and sublimation of the material, composition deviation and pores are likely to occur in the obtained crystal film. On the other hand, the single crystal manufacturing method according to the present invention that sequentially executes the film forming step and the heating step is performed by heating a film having a thickness of a predetermined value or less at a temperature rising rate of a predetermined value or more as described above. By generating an appropriate temperature gradient inside the film, it is possible to suppress the generation of pores in the obtained single crystal. That is, the single crystal manufacturing method according to the present invention, in which the film forming step and the heating step are sequentially performed, is particularly preferably applied when trying to obtain a single crystal mainly composed of oxide or nitride. Can do.
 従って、本発明の第11の実施態様は、
 本発明の前記第5乃至前記第10の実施態様の何れか1つに係る単結晶製造方法であって、
 前記膜の主成分が、酸化物及び窒化物からなる群より選ばれる何れか1種の材料であること、
を特徴とする単結晶製造方法である。
Accordingly, the eleventh embodiment of the present invention is
A method for producing a single crystal according to any one of the fifth to tenth embodiments of the present invention,
The main component of the film is any one material selected from the group consisting of oxides and nitrides;
Is a method for producing a single crystal.
 尚、本実施態様に係る単結晶製造方法において種基板の表面上に形成される膜の主成分として使用することができる酸化物及び窒化物の具体例としては、それぞれ酸化亜鉛(ZnO)及び窒化ガリウム(GaN)を挙げることができる。 Note that specific examples of oxides and nitrides that can be used as the main components of the film formed on the surface of the seed substrate in the method for producing a single crystal according to this embodiment include zinc oxide (ZnO) and nitridation, respectively. An example is gallium (GaN).
 従って、本発明の第12の実施態様は、
 本発明の前記第11の実施態様に係る単結晶製造方法であって、
 前記酸化物が酸化亜鉛(ZnO)であり、前記窒化物が窒化ガリウム(GaN)であること、
を特徴とする単結晶製造方法である。
Thus, the twelfth embodiment of the present invention is
A method for producing a single crystal according to the eleventh embodiment of the present invention, comprising:
The oxide is zinc oxide (ZnO) and the nitride is gallium nitride (GaN);
Is a method for producing a single crystal.
 尚、上記のように、例えば、酸化亜鉛(ZnO)及び窒化ガリウム(GaN)等の昇華性が高い材料を膜の主成分として使用する場合、かかる材料が加熱ステップにおいて昇華して、結果として得られる単結晶に組成ずれ又は気孔が発生する等の問題を招くことを抑制することが望ましい。かかる目的を達成するための方策としては、例えば、加熱ステップにおける最高到達温度に上限を設けたり、最高到達温度での保持時間に上限を設けたりすることが挙げられる。但し、この場合、膜の主成分として使用する物質の融点、膜の厚み等を十分に考慮して、これらの上限を定める必要がある。 As described above, for example, when a material with high sublimation properties such as zinc oxide (ZnO) and gallium nitride (GaN) is used as the main component of the film, the material is sublimated in the heating step, resulting in the result. It is desirable to suppress the occurrence of problems such as compositional deviation or pore formation in the single crystal. As a measure for achieving this object, for example, an upper limit is set for the maximum temperature reached in the heating step, or an upper limit is set for the holding time at the maximum temperature. However, in this case, it is necessary to set these upper limits with due consideration of the melting point of the substance used as the main component of the film, the thickness of the film, and the like.
 ところで、本発明に係る単結晶製造方法は、エピタキシャル成長法による単結晶の製造方法であるが、当該単結晶製造方法によって作製される単結晶の主成分と種基板の主成分とは、同じであっても、あるいは異なっていてもよい。換言すれば、本発明に係る単結晶製造方法は、ホモエピタキシャル成長法であっても、あるいはヘテロエピタキシャル成長法であってもよい。 Incidentally, the single crystal manufacturing method according to the present invention is a method for manufacturing a single crystal by an epitaxial growth method, and the main component of the single crystal and the main component of the seed substrate manufactured by the single crystal manufacturing method are the same. Or it may be different. In other words, the single crystal manufacturing method according to the present invention may be a homoepitaxial growth method or a heteroepitaxial growth method.
 本発明に係る単結晶製造方法がホモエピタキシャル成長法である場合、当該単結晶製造方法によって作製される単結晶の主成分と種基板の主成分とは同じである。この場合、例えば、種基板の表面上に形成される膜の主成分が酸化亜鉛(ZnO)又は窒化ガリウム(GaN)であるとすると、種基板の主成分もまた、それぞれ酸化亜鉛(ZnO)又は窒化ガリウム(GaN)である。一方、本発明に係る単結晶製造方法がヘテロエピタキシャル成長法である場合、当該単結晶製造方法によって作製される単結晶の主成分と種基板の主成分とは異なる。この場合、例えば、種基板の表面上に形成される膜の主成分が酸化亜鉛(ZnO)又は窒化ガリウム(GaN)であっても、種基板の主成分は、それぞれ酸化亜鉛(ZnO)ではない物質又は窒化ガリウム(GaN)ではない物質である。尚、種基板の主成分として使用可能な、酸化亜鉛(ZnO)又は窒化ガリウム(GaN)の何れでもない物質の具体例としては、例えば、サファイアを挙げることができる。 When the single crystal manufacturing method according to the present invention is a homoepitaxial growth method, the main component of the single crystal and the main component of the seed substrate produced by the single crystal manufacturing method are the same. In this case, for example, if the main component of the film formed on the surface of the seed substrate is zinc oxide (ZnO) or gallium nitride (GaN), the main component of the seed substrate is also zinc oxide (ZnO) or Gallium nitride (GaN). On the other hand, when the single crystal manufacturing method according to the present invention is a heteroepitaxial growth method, the main component of the single crystal manufactured by the single crystal manufacturing method is different from the main component of the seed substrate. In this case, for example, even if the main component of the film formed on the surface of the seed substrate is zinc oxide (ZnO) or gallium nitride (GaN), the main component of the seed substrate is not zinc oxide (ZnO), respectively. It is a substance that is not a substance or gallium nitride (GaN). A specific example of a substance that can be used as a main component of the seed substrate and is not zinc oxide (ZnO) or gallium nitride (GaN) is sapphire, for example.
 従って、本発明の第13の実施態様は、
 本発明の前記第5乃至前記第12の実施態様の何れか1つに係る単結晶製造方法であって、
 前記種基板の主成分が、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、及びサファイアからなる群より選ばれる何れか1種の材料であること、
を特徴とする単結晶製造方法である。
Accordingly, the thirteenth embodiment of the present invention provides:
A method for producing a single crystal according to any one of the fifth to twelfth embodiments of the present invention,
The main component of the seed substrate is any one material selected from the group consisting of zinc oxide (ZnO), gallium nitride (GaN), and sapphire,
Is a method for producing a single crystal.
 上記のように、本実施態様に係る単結晶製造方法においては、前記種基板の主成分が、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、及びサファイアからなる群より選ばれる何れか一種の材料である。従って、種基板の表面上に形成される膜の主成分及び種基板の主成分が何れも酸化亜鉛(ZnO)であるか又は窒化ガリウム(GaN)である場合、本実施態様に係る単結晶製造方法はホモエピタキシャル成長法となる。一方、種基板の表面上に形成される膜の主成分と種基板の主成分との組み合わせが上記以外である場合、本実施態様に係る単結晶製造方法はヘテロエピタキシャル成長法となる。 As described above, in the single crystal manufacturing method according to the present embodiment, any one material selected from the group consisting of zinc oxide (ZnO), gallium nitride (GaN), and sapphire is the main component of the seed substrate. It is. Therefore, when the main component of the film formed on the surface of the seed substrate and the main component of the seed substrate are both zinc oxide (ZnO) or gallium nitride (GaN), the single crystal manufacturing according to this embodiment is performed. The method is a homoepitaxial growth method. On the other hand, when the combination of the main component of the film formed on the surface of the seed substrate and the main component of the seed substrate is other than the above, the single crystal manufacturing method according to this embodiment is a heteroepitaxial growth method.
 また、本発明に係る単結晶製造方法において、種基板上に形成される膜は、結果として得られる単結晶の特性等に悪影響を及ぼさない限りにおいて、上述した種々の主成分の他に、不純物(ドーパント)を含有していてもよい。具体的には、膜を構成する成分として、例えば、酸化亜鉛(ZnO)にアルミニウム(Al)、ガリウム(Ga)、インジウム(In)、窒素(N)、硼素(B)、リン(P)、砒素(As)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、カーボン(C)、硫黄(S)、シリコン(Si)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、カドミウム(Cd)、セレン(Se)、テルル(Te)、銀(Ag)、及び銅(Cu)からなる群より選ばれる少なくとも何れか1種以上の元素をドープした材料等を使用してもよい。 Further, in the method for producing a single crystal according to the present invention, the film formed on the seed substrate is not limited to the above-mentioned various main components as long as it does not adversely affect the properties of the resulting single crystal. (Dopant) may be contained. Specifically, as a component constituting the film, for example, zinc oxide (ZnO), aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), Arsenic (As), Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I), Carbon (C), Sulfur (S), Silicon (Si), Lithium (Li), Sodium (Na), At least one element selected from the group consisting of potassium (K), magnesium (Mg), cadmium (Cd), selenium (Se), tellurium (Te), silver (Ag), and copper (Cu). A doped material or the like may be used.
 即ち、本発明の第14の実施態様は、
 本発明の前記第5乃至前記第13の実施態様の何れか1つに係る単結晶製造方法であって、
 前記膜が、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、窒素(N)、硼素(B)、リン(P)、砒素(As)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、カーボン(C)、硫黄(S)、シリコン(Si)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、カドミウム(Cd)、セレン(Se)、テルル(Te)、銀(Ag)、及び銅(Cu)からなる群より選ばれる少なくとも何れか1種以上の元素を不純物として含むこと、
を特徴とする単結晶製造方法である。
That is, the fourteenth embodiment of the present invention is
A method for producing a single crystal according to any one of the fifth to thirteenth embodiments of the present invention,
The film is made of aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), arsenic (As), fluorine (F), chlorine (Cl), bromine. (Br), iodine (I), carbon (C), sulfur (S), silicon (Si), lithium (Li), sodium (Na), potassium (K), magnesium (Mg), cadmium (Cd), selenium Containing at least one element selected from the group consisting of (Se), tellurium (Te), silver (Ag), and copper (Cu) as an impurity;
Is a method for producing a single crystal.
 上記のように、本実施態様に係る単結晶製造方法においては、前記膜が、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、窒素(N)、硼素(B)、リン(P)、砒素(As)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、カーボン(C)、硫黄(S)、シリコン(Si)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、カドミウム(Cd)、セレン(Se)、テルル(Te)、銀(Ag)、及び銅(Cu)からなる群より選ばれる少なくとも何れか1種以上の元素を不純物として含む。これにより、本実施態様に係る単結晶製造方法においては、例えば、結果として得られる単結晶の導電性を所望のレベルに調整することができる。尚、本実施態様に係る単結晶製造方法において、種基板の表面上に形成される膜の主成分としてアルミニウム(Al)又はガリウム(Ga)を含有する物質を使用する場合は、それぞれアルミニウム(Al)又はガリウム(Ga)を不純物(ドーパント)として含有することはできないことは言うまでもない。 As described above, in the single crystal manufacturing method according to this embodiment, the film is made of aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P). Arsenic (As), Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I), Carbon (C), Sulfur (S), Silicon (Si), Lithium (Li), Sodium (Na) , Potassium (K), magnesium (Mg), cadmium (Cd), selenium (Se), tellurium (Te), silver (Ag), and at least one element selected from the group consisting of copper (Cu) As an impurity. Thereby, in the single crystal manufacturing method according to the present embodiment, for example, the conductivity of the resulting single crystal can be adjusted to a desired level. In the single crystal manufacturing method according to the present embodiment, when a substance containing aluminum (Al) or gallium (Ga) is used as the main component of the film formed on the surface of the seed substrate, aluminum (Al It goes without saying that gallium (Ga) cannot be contained as an impurity (dopant).
 ところで、本発明に係る単結晶製造方法においては、前述のように、原料の粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させ、膜を形成する噴射手段と、前記種基板の表面上に形成された前記膜を加熱する加熱手段とを備える単結晶製造装置において、前記噴射手段により前記粉体を種基板に向かって噴射して前記種基板の表面上に前記膜を形成させる成膜ステップと、前記種基板の表面上に形成された前記膜を前記加熱手段により加熱する加熱ステップとを実行することにより、前記粉体から単結晶を作製する。この際、本発明に係る単結晶製造方法においては、従来技術に係る単結晶製造方法と同様に、成膜ステップを実行した後に加熱ステップを実行することにより、原料の粉体から単結晶を作製することができる。 By the way, in the single crystal manufacturing method according to the present invention, as described above, the raw material powder is sprayed toward the seed substrate, and the powder is deposited on the surface of the seed substrate to form a film. And a heating means for heating the film formed on the surface of the seed substrate, wherein the powder is sprayed toward the seed substrate by the spraying means. A single crystal is produced from the powder by executing a film forming step for forming the film thereon and a heating step for heating the film formed on the surface of the seed substrate by the heating means. At this time, in the single crystal manufacturing method according to the present invention, a single crystal is produced from the raw material powder by executing the film forming step and then the heating step, as in the conventional single crystal manufacturing method. can do.
 しかしながら、本発明に係る単結晶製造装置においては、前述のように、膜の作製(成膜ステップ)と当該膜の加熱(加熱ステップ)とを同一の装置によって実行することができる。加えて、本実施態様に係る単結晶製造装置においては、前述のように、噴射手段と加熱手段とが種基板を挟んで互いに対向するように配置されている。従って、かかる単結晶製造装置を用いる本発明に係る単結晶製造方法においては、成膜ステップを実行しながら、加熱ステップを実行することもできる。 However, in the single crystal manufacturing apparatus according to the present invention, as described above, the production of the film (deposition step) and the heating of the film (heating step) can be performed by the same apparatus. In addition, in the single crystal manufacturing apparatus according to the present embodiment, as described above, the spraying means and the heating means are arranged so as to face each other with the seed substrate interposed therebetween. Therefore, in the single crystal manufacturing method according to the present invention using such a single crystal manufacturing apparatus, the heating step can be performed while the film forming step is performed.
 即ち、本発明の第15の実施態様は、
 本発明の前記第1乃至第4の実施態様の何れか1つに係る単結晶製造装置を用いて、前記成膜ステップ及び前記加熱ステップを並行して実行することにより、前記粉体から単結晶を作製する単結晶製造方法である。
That is, the fifteenth embodiment of the present invention is
By using the single crystal manufacturing apparatus according to any one of the first to fourth embodiments of the present invention, the film forming step and the heating step are performed in parallel, so that the single crystal is formed from the powder. Is a method for producing a single crystal.
 上記のように、本実施態様に係る単結晶製造方法においては、前記成膜ステップ及び前記加熱ステップを並行して実行する。即ち、本実施態様に係る単結晶製造方法においては、成膜ステップを実行しながら、加熱ステップを実行する。従って、本実施態様に係る単結晶製造方法によれば、より高い生産性を達成することができる。 As described above, in the single crystal manufacturing method according to this embodiment, the film forming step and the heating step are executed in parallel. That is, in the single crystal manufacturing method according to this embodiment, the heating step is performed while the film forming step is performed. Therefore, according to the single crystal manufacturing method according to the present embodiment, higher productivity can be achieved.
 尚、本実施態様に係る単結晶製造方法においては、加熱手段による加熱温度を一定に保ったまま成膜することができるため、昇温速度が遅いステージヒーター等を用いることができる。しかしながら、このように加熱手段による加熱温度を一定に保ったまま成膜する場合であっても、噴射によって種基板に粒子が衝突した際には衝突粒子内に温度勾配を生じさせる必要がある。従って、雰囲気全体を均質に加熱する方法は望ましくない。 In the single crystal manufacturing method according to this embodiment, a film can be formed while the heating temperature by the heating means is kept constant, so that a stage heater or the like having a slow temperature rise rate can be used. However, even when the film is formed while the heating temperature by the heating means is kept constant, it is necessary to generate a temperature gradient in the collision particles when the particles collide with the seed substrate by jetting. Therefore, a method of heating the entire atmosphere uniformly is not desirable.
 ところで、本実施態様に係る単結晶製造方法に含まれる成膜ステップにおいて原料の粉体を種基板の表面上に堆積させ、膜を形成する方法もまた、噴射手段を使用して、原料の粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させる方法であることが望ましい。かかる方法の具体例としては、例えば、エアロゾルデポジション法(AD法)、パウダージェットデポジション法(PJD法)等を挙げることができる。 By the way, in the film forming step included in the method for producing a single crystal according to the present embodiment, the raw material powder is deposited on the surface of the seed substrate to form a film. It is desirable that the powder is deposited on the surface of the seed substrate by spraying a body toward the seed substrate. Specific examples of such a method include an aerosol deposition method (AD method) and a powder jet deposition method (PJD method).
 従って、本発明の第16の実施態様は、
 本発明の前記第15の実施態様に係る単結晶製造方法であって、
 前記成膜ステップにおいて前記種基板の表面上に前記膜を形成する方法が、エアロゾルデポジション法(AD法)及びパウダージェットデポジション法(PJD法)からなる群より選ばれる何れかの方法であること、
を特徴とする単結晶製造方法である。
Accordingly, the sixteenth embodiment of the present invention provides:
A method for producing a single crystal according to the fifteenth embodiment of the present invention, comprising:
The method for forming the film on the surface of the seed substrate in the film forming step is any method selected from the group consisting of an aerosol deposition method (AD method) and a powder jet deposition method (PJD method). thing,
Is a method for producing a single crystal.
 また、本実施態様に係る単結晶製造方法においても、単結晶の固相成長においては、成膜と同時に固相成長する場合もあるが、固相成長速度が成膜速度よりも遅い場合もある。後者の場合(即ち、固相成長速度が成膜速度よりも遅い場合)、成膜ステップ及び加熱ステップを逐次的に実行する場合と同様に、膜と種基板との接触部分を加熱して、種基板に近付くにつれて高温となるような温度勾配を膜内に生じさせることにより、膜を種基板の単結晶に取り込ませて固相成長させることが望ましい。即ち、本実施態様に係る単結晶製造方法においても、膜を種基板の側から加熱することが望ましい。 Also in the single crystal manufacturing method according to the present embodiment, in solid phase growth of a single crystal, solid phase growth may occur simultaneously with film formation, but the solid phase growth rate may be slower than the film formation rate. . In the latter case (that is, when the solid-phase growth rate is slower than the film formation rate), the contact portion between the film and the seed substrate is heated as in the case of sequentially performing the film formation step and the heating step, It is desirable to cause the film to be incorporated into the single crystal of the seed substrate for solid-phase growth by generating a temperature gradient in the film that increases in temperature as it approaches the seed substrate. That is, also in the single crystal manufacturing method according to this embodiment, it is desirable to heat the film from the seed substrate side.
 従って、本発明の第17の実施態様は、
 本発明の前記第16の実施態様に係る単結晶製造方法であって、
 前記加熱ステップにおいて前記膜が前記種基板の側から加熱されること、
を特徴とする単結晶製造方法である。
Accordingly, the seventeenth embodiment of the present invention provides:
A method for producing a single crystal according to the sixteenth embodiment of the present invention, comprising:
The film is heated from the seed substrate side in the heating step;
Is a method for producing a single crystal.
 ところで、前述のように、一般に酸化物又は窒化物(例えば、酸化亜鉛(ZnO)、窒化ガリウム(GaN)等)を主成分とする単結晶を作製しようとする場合、加熱ステップにおいて過剰な熱エネルギーが与えられると、材料の分解や昇華により、得られる結晶膜に組成ずれ及び気孔が発生し易くなる。一方、成膜ステップ及び加熱ステップを並行して実行する本発明に係る単結晶製造方法においても、上述のように膜の内部に適度な温度勾配を発生させて、得られる単結晶における気孔の発生を抑制することができる。即ち、成膜ステップ及び加熱ステップを並行して実行する本発明に係る単結晶製造方法もまた、酸化物又は窒化物を主成分とする単結晶を得ようとする場合に、好適に適用することができる。 By the way, as described above, when a single crystal mainly composed of an oxide or nitride (for example, zinc oxide (ZnO), gallium nitride (GaN), etc.) is generally formed, excessive thermal energy is used in the heating step. , Compositional deviation and pores are likely to occur in the obtained crystal film due to decomposition and sublimation of the material. On the other hand, in the single crystal manufacturing method according to the present invention in which the film forming step and the heating step are performed in parallel, generation of pores in the single crystal obtained by generating an appropriate temperature gradient inside the film as described above. Can be suppressed. That is, the single crystal manufacturing method according to the present invention in which the film forming step and the heating step are performed in parallel is also preferably applied to obtain a single crystal mainly composed of oxide or nitride. Can do.
 従って、本発明の第18の実施態様は、
 本発明の前記第15乃至前記第17の実施態様の何れか1つに係る単結晶製造方法であって、
 前記膜の主成分が、酸化物及び窒化物からなる群より選ばれる何れか一種の材料であること、
を特徴とする単結晶製造方法である。
Accordingly, the eighteenth embodiment of the present invention provides:
A method for producing a single crystal according to any one of the fifteenth to seventeenth embodiments of the present invention,
The main component of the film is any one material selected from the group consisting of oxides and nitrides;
Is a method for producing a single crystal.
 また、本実施態様に係る単結晶製造方法において種基板の表面上に形成される膜の主成分として使用することができる酸化物及び窒化物の具体例としては、それぞれ酸化亜鉛(ZnO)及び窒化ガリウム(GaN)を挙げることができる。 Further, specific examples of oxides and nitrides that can be used as the main components of the film formed on the surface of the seed substrate in the single crystal manufacturing method according to this embodiment include zinc oxide (ZnO) and nitridation, respectively. An example is gallium (GaN).
 従って、本発明の第19の実施態様は、
 本発明の前記第18の実施態様に係る単結晶製造方法であって、
 前記酸化物が酸化亜鉛(ZnO)であり、前記窒化物が窒化ガリウム(GaN)であること、
を特徴とする単結晶製造方法である。
Accordingly, the nineteenth embodiment of the present invention provides:
A method for producing a single crystal according to the eighteenth embodiment of the present invention, comprising:
The oxide is zinc oxide (ZnO) and the nitride is gallium nitride (GaN);
Is a method for producing a single crystal.
 ところで、成膜ステップ及び加熱ステップを並行して実行する本発明に係る単結晶製造方法においても、当該方法によって作製される単結晶の主成分と種基板の主成分とは、同じであっても、あるいは異なっていてもよい。換言すれば、成膜ステップ及び加熱ステップを並行して実行する本発明に係る単結晶製造方法もまた、ホモエピタキシャル成長法であっても、あるいはヘテロエピタキシャル成長法であってもよい。即ち、成膜ステップ及び加熱ステップを並行して実行する本発明に係る単結晶製造方法において使用される種基板の主成分もまた、成膜ステップ及び加熱ステップを逐次的に実行する本発明に係る単結晶製造方法において使用される種基板の主成分と同様に、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、及びサファイアからなる群より選ぶことができる。 By the way, also in the single crystal manufacturing method according to the present invention in which the film forming step and the heating step are executed in parallel, the main component of the single crystal and the main component of the seed substrate manufactured by the method are the same. Or it may be different. In other words, the single crystal manufacturing method according to the present invention in which the film forming step and the heating step are performed in parallel may also be a homoepitaxial growth method or a heteroepitaxial growth method. That is, the main component of the seed substrate used in the single crystal manufacturing method according to the present invention in which the film forming step and the heating step are performed in parallel also relates to the present invention in which the film forming step and the heating step are sequentially performed. Similar to the main component of the seed substrate used in the single crystal manufacturing method, it can be selected from the group consisting of zinc oxide (ZnO), gallium nitride (GaN), and sapphire.
 従って、本発明の第20の実施態様は、
 本発明の前記第15乃至前記第19の実施態様の何れか1つに係る単結晶製造方法であって、
 前記種基板の主成分が、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、及びサファイアからなる群より選ばれる何れか一種の材料であること、
を特徴とする単結晶製造方法である。
Accordingly, the twentieth embodiment of the present invention provides:
A method for producing a single crystal according to any one of the fifteenth to nineteenth embodiments of the present invention,
The main component of the seed substrate is any one material selected from the group consisting of zinc oxide (ZnO), gallium nitride (GaN), and sapphire,
Is a method for producing a single crystal.
 また、成膜ステップ及び加熱ステップを並行して実行する本発明に係る単結晶製造方法において、種基板上に形成される膜もまた、結果として得られる単結晶の特性等に悪影響を及ぼさない限りにおいて、上述した種々の主成分の他に、不純物(ドーパント)を含有していてもよい。具体的には、膜を構成する成分として、例えば、酸化亜鉛(ZnO)にアルミニウム(Al)、ガリウム(Ga)、インジウム(In)、窒素(N)、硼素(B)、リン(P)、砒素(As)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、カーボン(C)、硫黄(S)、シリコン(Si)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、カドミウム(Cd)、セレン(Se)、テルル(Te)、銀(Ag)、及び銅(Cu)からなる群より選ばれる少なくとも何れか1種以上の元素をドープした材料等を使用してもよい。 In the single crystal manufacturing method according to the present invention in which the film formation step and the heating step are performed in parallel, the film formed on the seed substrate also has no adverse effect on the properties of the resulting single crystal. In addition to the above-mentioned various main components, an impurity (dopant) may be contained. Specifically, as a component constituting the film, for example, zinc oxide (ZnO), aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), Arsenic (As), Fluorine (F), Chlorine (Cl), Bromine (Br), Iodine (I), Carbon (C), Sulfur (S), Silicon (Si), Lithium (Li), Sodium (Na), At least one element selected from the group consisting of potassium (K), magnesium (Mg), cadmium (Cd), selenium (Se), tellurium (Te), silver (Ag), and copper (Cu). A doped material or the like may be used.
 即ち、本発明の第21の実施態様は、
 本発明の前記第15乃至前記第20の実施態様の何れか1つに係る単結晶製造方法であって、
 前記膜が、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、窒素(N)、硼素(B)、リン(P)、砒素(As)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、カーボン(C)、シリコン(Si)、硫黄(S)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、カドミウム(Cd)、セレン(Se)、テルル(Te)、銀(Ag)、及び銅(Cu)からなる群より選ばれる少なくとも何れか1種以上の元素を不純物として含むこと、
を特徴とする単結晶製造方法である。
That is, the twenty-first embodiment of the present invention
A method for producing a single crystal according to any one of the fifteenth to twentieth embodiments of the present invention,
The film is made of aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), arsenic (As), fluorine (F), chlorine (Cl), bromine. (Br), iodine (I), carbon (C), silicon (Si), sulfur (S), lithium (Li), sodium (Na), potassium (K), magnesium (Mg), cadmium (Cd), selenium Containing at least one element selected from the group consisting of (Se), tellurium (Te), silver (Ag), and copper (Cu) as an impurity;
Is a method for producing a single crystal.
 ところで、本発明の種々の実施態様に係る単結晶製造方法のうち成膜ステップと加熱ステップとを逐次的に行う方法においては、種基板の表面上に膜を形成する成膜ステップにおいて、前記種基板の表面に直交する方向における厚みである膜厚が100μm以下である膜を形成し、次いで、前記種基板の表面上に形成された前記膜を加熱して単結晶を得る加熱ステップにおいて、前記膜を前記種基板の側から加熱して、30℃/分以上の昇温速度にて昇温させることにより、原料融液を得ることが困難な材料系においても気孔が少ない高品質な単結晶を高い生産性にて作製することを可能とする。 By the way, in the method of sequentially performing the film forming step and the heating step among the single crystal manufacturing methods according to various embodiments of the present invention, in the film forming step of forming a film on the surface of the seed substrate, the seed In the heating step of forming a film having a thickness of 100 μm or less in a direction perpendicular to the surface of the substrate, and then heating the film formed on the surface of the seed substrate to obtain a single crystal, A high-quality single crystal having few pores even in a material system in which it is difficult to obtain a raw material melt by heating the film from the seed substrate side and raising the temperature at a temperature rising rate of 30 ° C./min or more. Can be produced with high productivity.
 即ち、本発明の種々の実施態様に係る単結晶製造方法のうち成膜ステップと加熱ステップとを逐次的に行う方法においては、当該方法を1サイクルのみ実行する場合、得られる単結晶の厚みは概して100μm以下、より好ましくは30μm以下となる。従って、例えば、単結晶ウェハー等、より大きい厚みを有する単結晶を作製しようとする場合には、かかる単結晶製造方法を複数サイクルに亘って繰り返し実行することが必要である。また、本発明に係る単結晶製造方法のうち成膜ステップと加熱ステップとを並行して行う方法においても、所望の大きい厚みを有する単結晶を作製することが困難である場合がある。かかる場合においても、本発明に係る単結晶製造方法を複数サイクルに亘って繰り返し実行することが必要である。 That is, in the method of sequentially performing the film forming step and the heating step among the single crystal manufacturing methods according to various embodiments of the present invention, when the method is executed for only one cycle, the thickness of the obtained single crystal is Generally, it is 100 μm or less, more preferably 30 μm or less. Therefore, for example, when a single crystal having a larger thickness such as a single crystal wafer is to be manufactured, it is necessary to repeatedly execute the single crystal manufacturing method over a plurality of cycles. Moreover, even in the method of performing the film forming step and the heating step in parallel in the single crystal manufacturing method according to the present invention, it may be difficult to manufacture a single crystal having a desired large thickness. Even in such a case, it is necessary to repeatedly execute the single crystal manufacturing method according to the present invention over a plurality of cycles.
 従って、本発明の第22の実施態様は、
 本発明の前記第5乃至前記第21の実施態様の何れか1つに係る単結晶製造方法を繰り返し実行することによって単結晶を得ること、
を特徴とする単結晶製造方法である。
Accordingly, the twenty-second embodiment of the present invention provides:
Obtaining a single crystal by repeatedly executing the method for producing a single crystal according to any one of the fifth to twenty-first embodiments of the present invention,
Is a method for producing a single crystal.
 上記のように、本実施態様に係る単結晶製造方法によれば、これまで説明してきた種々の実施態様を始めとする本発明に係る単結晶製造方法を複数サイクルに亘って繰り返し実行することにより、所望の厚みを有する単結晶を得ることができる。 As described above, according to the single crystal manufacturing method according to the present embodiment, the single crystal manufacturing method according to the present invention including the various embodiments described so far is repeatedly executed over a plurality of cycles. A single crystal having a desired thickness can be obtained.
 ところで、前述のように、本発明は、本発明に係る単結晶製造方法によって製造される単結晶にも関する。また、本実施態様に係る単結晶製造方法によって単結晶を得る物質の主成分は、特に限定されないが、例えば、種々のセラミックス、酸化亜鉛(ZnO)等の酸化物、及び窒化ガリウム(GaN)等の窒化物等を挙げることができる。これらの中でも、酸化亜鉛(ZnO)及び窒化ガリウム(GaN)の単結晶化に、本発明に係る単結晶製造方法を適用することが望ましく、特に酸化亜鉛(ZnO)の単結晶化に、本発明に係る単結晶製造方法を適用することが望ましい。 Incidentally, as described above, the present invention also relates to a single crystal manufactured by the single crystal manufacturing method according to the present invention. In addition, the main component of the substance for obtaining a single crystal by the single crystal manufacturing method according to the present embodiment is not particularly limited. For example, various ceramics, oxides such as zinc oxide (ZnO), gallium nitride (GaN), and the like And nitrides thereof. Among these, it is desirable to apply the single crystal manufacturing method according to the present invention to single crystallization of zinc oxide (ZnO) and gallium nitride (GaN), and in particular to the single crystallization of zinc oxide (ZnO), the present invention. It is desirable to apply the single crystal manufacturing method according to the above.
 即ち、本発明の第23の実施態様は、
 本発明の前記第5乃至前記第22の実施態様に係る単結晶製造方法によって得られること、
を特徴とする酸化亜鉛(ZnO)単結晶である。
That is, the twenty-third embodiment of the present invention is
Obtained by the single crystal manufacturing method according to the fifth to twenty-second embodiments of the present invention,
A zinc oxide (ZnO) single crystal characterized by
 また、前述のように、本発明に係る単結晶製造方法のうち、成膜ステップ及び加熱ステップを逐次的に実行する方法を1サイクルのみ実行する場合は、得られる単結晶膜の厚みは概して100μm以下、より好ましくは30μm以下となる。また、成膜ステップと加熱ステップとを並行して実行する方法においても、所望の大きい厚みを有する単結晶を作製することが困難である場合がある。しかしながら、用途によっては、30μmを超える厚みを有する単結晶が望ましい場合もある。 Further, as described above, in the single crystal manufacturing method according to the present invention, when only one cycle of the method of sequentially performing the film forming step and the heating step is performed, the thickness of the obtained single crystal film is generally 100 μm. Hereinafter, more preferably 30 μm or less. Even in a method in which the film forming step and the heating step are performed in parallel, it may be difficult to produce a single crystal having a desired large thickness. However, depending on the application, a single crystal having a thickness exceeding 30 μm may be desirable.
 従って、本発明の第24の実施態様は、
 本発明の前記第23の実施態様に係る酸化亜鉛(ZnO)単結晶であって、
 前記成膜ステップにおいて形成される前記膜の前記種基板の表面に直交する方向における当該結晶の厚みである結晶厚が30μmを超えること、
を特徴とする酸化亜鉛(ZnO)単結晶である。
Accordingly, the twenty-fourth embodiment of the present invention provides:
A zinc oxide (ZnO) single crystal according to the twenty-third embodiment of the present invention,
A crystal thickness that is a thickness of the crystal in a direction orthogonal to the surface of the seed substrate of the film formed in the film forming step exceeds 30 μm;
A zinc oxide (ZnO) single crystal characterized by
 更に、用途によっては、100μmを超える厚みを有する単結晶が望ましい場合もある。しかしながら、前述のように、本発明に係る単結晶製造方法のうち、成膜ステップ及び加熱ステップを逐次的に実行する方法を1サイクルのみ実行する場合は、得られる単結晶膜の厚みは概して100μm以下となる。また、成膜ステップと加熱ステップとを並行して実行する方法においても、所望の大きい厚みを有する単結晶を作製することが困難である場合がある。従って、例えば、単結晶ウェハー等、より大きい厚みを有する単結晶を作製しようとする場合には、本発明に係る単結晶製造方法を複数サイクルに亘って繰り返し実行することが必要である。 Furthermore, depending on the application, a single crystal having a thickness exceeding 100 μm may be desirable. However, as described above, in the single crystal manufacturing method according to the present invention, when the method of sequentially executing the film forming step and the heating step is executed for only one cycle, the thickness of the obtained single crystal film is generally 100 μm. It becomes as follows. Even in a method in which the film forming step and the heating step are performed in parallel, it may be difficult to produce a single crystal having a desired large thickness. Therefore, for example, when a single crystal having a larger thickness such as a single crystal wafer is to be manufactured, it is necessary to repeatedly execute the single crystal manufacturing method according to the present invention over a plurality of cycles.
 即ち、本発明の第25の実施態様は、
 本発明の前記第24の実施態様に係る酸化亜鉛(ZnO)単結晶であって、
 請求項22に記載の単結晶製造方法によって得られること、及び
 前記成膜ステップにおいて形成される前記膜の前記種基板の表面に直交する方向における当該結晶の厚みである結晶厚が100μmを超えること、
を特徴とする酸化亜鉛(ZnO)単結晶である。
That is, the twenty-fifth embodiment of the present invention is
A zinc oxide (ZnO) single crystal according to the twenty-fourth embodiment of the present invention,
It is obtained by the single crystal manufacturing method according to claim 22, and a crystal thickness that is a thickness of the crystal in a direction orthogonal to a surface of the seed substrate of the film formed in the film forming step exceeds 100 μm. ,
A zinc oxide (ZnO) single crystal characterized by
 更に、前述のように、本発明に係る単結晶製造方法において、種基板の表面上に形成される膜は、結果として得られる単結晶の特性等に悪影響を及ぼさない限りにおいて、前述した種々の主成分の他に、不純物(ドーパント)を含有していてもよい。具体的には、膜を構成する成分として、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、窒素(N)、硼素(B)、リン(P)、砒素(As)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、カーボン(C)、シリコン(Si)、硫黄(S)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、カドミウム(Cd)、セレン(Se)、テルル(Te)、銀(Ag)、及び銅(Cu)からなる群より選ばれる少なくとも何れか1種以上の元素を酸化亜鉛(ZnO)等の主成分にドープした材料等を使用してもよい。これらのドーパントを含有させることにより、例えば、n型化、p型化、又はバンドギャップ制御等、所望の特性を単結晶に付与することができる。 Further, as described above, in the method for producing a single crystal according to the present invention, the film formed on the surface of the seed substrate does not adversely affect the characteristics of the resulting single crystal. In addition to the main components, impurities (dopants) may be contained. Specifically, as a component constituting the film, for example, aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), arsenic (As), fluorine (F), chlorine (Cl), bromine (Br), iodine (I), carbon (C), silicon (Si), sulfur (S), lithium (Li), sodium (Na), potassium (K), magnesium (Mg), cadmium (Cd), selenium (Se), tellurium (Te), silver (Ag), at least one element selected from the group consisting of copper (Cu), zinc oxide (ZnO), etc. A material doped with the main component may be used. By containing these dopants, for example, desired characteristics such as n-type conversion, p-type conversion, or band gap control can be imparted to the single crystal.
 これらの中では、n型ドーパントとしてアルミニウム(Al)、ガリウム(Ga)、インジウム(In)、硼素(B)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、及びシリコン(Si)が望ましく、アルミニウム(Al)、ガリウム(Ga)、及びインジウム(In)が特に望ましい。尚、これらの不純物(ドーパント)の含有率は0.02at%以上、より好ましくは0.1at%以上であることが望ましい。これらの不純物(ドーパント)の含有率が0.02at%未満である場合、例えば、高い導電性(低い電気抵抗)等、目的とする所望の特性を達成する効果を得ることが困難となるので望ましくない。 Among these, aluminum (Al), gallium (Ga), indium (In), boron (B), fluorine (F), chlorine (Cl), bromine (Br), iodine (I), and n-type dopants Silicon (Si) is desirable, and aluminum (Al), gallium (Ga), and indium (In) are particularly desirable. The content of these impurities (dopants) is preferably 0.02 at% or more, more preferably 0.1 at% or more. When the content of these impurities (dopants) is less than 0.02 at%, it is difficult to obtain the desired desired characteristics such as high conductivity (low electrical resistance), for example. Absent.
 従って、本発明の第26の実施態様は、
 本発明の前記第23乃至前記25の実施態様の何れか1つに係る酸化亜鉛(ZnO)単結晶であって、
 アルミニウム(Al)、ガリウム(Ga)、及びインジウム(In)からなる群より選ばれる少なくとも何れか1種以上の元素を不純物として含むこと、並びに
 前記不純物の含有率が0.02at%以上であること、
を特徴とする酸化亜鉛(ZnO)単結晶である。
Accordingly, the twenty-sixth embodiment of the present invention provides:
A zinc oxide (ZnO) single crystal according to any one of the twenty-third to twenty-fifth embodiments of the present invention,
Containing at least one element selected from the group consisting of aluminum (Al), gallium (Ga), and indium (In) as impurities, and the impurity content is 0.02 at% or more. ,
A zinc oxide (ZnO) single crystal characterized by
 また、本発明の第27の実施態様は、
 本発明の前記第26の実施態様に係る酸化亜鉛(ZnO)単結晶であって、
 前記不純物の含有率が0.1at%以上であること、
を特徴とする酸化亜鉛(ZnO)単結晶である。
The twenty-seventh embodiment of the present invention provides
A zinc oxide (ZnO) single crystal according to the twenty-sixth embodiment of the present invention,
The impurity content is 0.1 at% or more,
A zinc oxide (ZnO) single crystal characterized by
 ところで、上述したように、本発明に係る単結晶を構成する主成分にn型ドーパントを含有させることによって達成することができる特性としては、例えば、高い導電性(低い電気抵抗)等を挙げることができる。この場合、例えば、LED等のp-n接合を用いる電子デバイスの基板として酸化亜鉛単結晶を用いるときに、単結晶自体をn型層側の電極(カソード)として使用するには、結果として得られる単結晶が有する抵抗率は1×10-3Ω・cm以下であることが望ましい。このように基材として導電性の酸化亜鉛単結晶を用いることによりカソードが不要となるばかりでなく、LED等の発光素子において縦型構造を実現することができる。 By the way, as described above, examples of the characteristics that can be achieved by adding an n-type dopant to the main component constituting the single crystal according to the present invention include high conductivity (low electrical resistance) and the like. Can do. In this case, for example, when a zinc oxide single crystal is used as a substrate of an electronic device using a pn junction such as an LED, the result is obtained when the single crystal itself is used as an electrode (cathode) on the n-type layer side. The resistivity of the obtained single crystal is desirably 1 × 10 −3 Ω · cm or less. Thus, by using a conductive zinc oxide single crystal as a base material, not only a cathode is unnecessary, but also a vertical structure can be realized in a light emitting element such as an LED.
 即ち、本発明の第28の実施態様は、
 本発明の前記第23乃至前記27の実施態様の何れか1つに係る酸化亜鉛(ZnO)単結晶であって、
 抵抗率が1×10-3Ω・cm以下であること、
を特徴とする酸化亜鉛(ZnO)単結晶である。
That is, the twenty-eighth embodiment of the present invention is
A zinc oxide (ZnO) single crystal according to any one of the twenty-third to twenty-seventh embodiments of the present invention,
Resistivity is 1 × 10 −3 Ω · cm or less,
A zinc oxide (ZnO) single crystal characterized by
 以下、本発明の幾つかの実施態様に係る単結晶製造装置及び当該装置を用いる単結晶製造方法の構成等につき更に詳しく説明する。但し、以下に述べる説明はあくまでも例示を目的とするものであり、本発明の範囲が以下の説明に限定されるものと解釈されるべきではない。 Hereinafter, the configuration of a single crystal manufacturing apparatus and a single crystal manufacturing method using the apparatus according to some embodiments of the present invention will be described in more detail. However, the following description is for illustrative purposes only, and the scope of the present invention should not be construed as being limited to the following description.
《単結晶製造装置の構成》
 図1は、前述のように、本発明の1つの実施態様に係る単結晶製造装置20の構成の概略を示す模式的な構成図の一例である。図1に示すように、本実施例に係る単結晶製造装置20は、大気圧より低い気圧の雰囲気下において、原料成分を含む粉体(原料粉)を種基板21の表面上に噴射して堆積させ、膜を形成するエアロゾルデポジション法(AD法)に用いられる装置として構成されている。かかる単結晶製造装置20は、原料粉のエアロゾルを生成するエアロゾル生成部22と、原料粉を種基板21に噴射して原料成分を含む膜を形成すると共に、当該膜を単結晶化させる結晶生成部30と、種基板21上に形成された膜を照射熱によって加熱する加熱用光源(加熱手段)40と、種基板21の温度を測定するための熱電対35を備えている。
<Configuration of single crystal manufacturing equipment>
FIG. 1 is an example of a schematic configuration diagram showing an outline of the configuration of the single crystal manufacturing apparatus 20 according to one embodiment of the present invention as described above. As shown in FIG. 1, the single crystal manufacturing apparatus 20 according to the present embodiment injects powder (raw material powder) containing raw material components onto the surface of the seed substrate 21 in an atmosphere at atmospheric pressure lower than atmospheric pressure. It is configured as an apparatus used in an aerosol deposition method (AD method) for depositing and forming a film. The single crystal manufacturing apparatus 20 includes an aerosol generation unit 22 that generates an aerosol of raw material powder, and a crystal generation that injects the raw material powder onto the seed substrate 21 to form a film containing the raw material component, and single crystallization of the film The unit 30 includes a heating light source (heating means) 40 for heating the film formed on the seed substrate 21 with irradiation heat, and a thermocouple 35 for measuring the temperature of the seed substrate 21.
 エアロゾル生成部22は、原料粉11を収容し、ガスボンベ(図示せず)から供給されるキャリアガス12,13によって、エアロゾルを生成するエアロゾル生成室23と、生成したエアロゾルを結晶生成部30へ供給する原料供給管24とを備えている。結晶生成部30は、種基板21を内包し、種基板21に減圧条件下でエアロゾルを噴射する成膜室31と、成膜室31の内部に配設され、種基板21を固定する基板設置ステージ34と、基板設置ステージ34をX軸-Y軸方向に移動するX-Yステージ33と、を備えている。また、結晶生成部30は、先端に形成された矩形状のスリット37を介してエアロゾルを種基板21へ噴射する噴射ノズル(噴射手段)36と、成膜室31を減圧する真空ポンプ38と、を備えている。 The aerosol generation unit 22 accommodates the raw material powder 11 and supplies the generated aerosol to the crystal generation unit 30 by the aerosol generation chamber 23 that generates the aerosol by the carrier gases 12 and 13 that are supplied from a gas cylinder (not shown). The raw material supply pipe 24 is provided. The crystal generation unit 30 includes a seed substrate 21, a film formation chamber 31 that sprays aerosol on the seed substrate 21 under reduced pressure conditions, and a substrate installation that is disposed inside the film formation chamber 31 and fixes the seed substrate 21. A stage 34 and an XY stage 33 that moves the substrate installation stage 34 in the X-axis-Y-axis directions are provided. The crystal generation unit 30 includes an injection nozzle (injection means) 36 that injects aerosol onto the seed substrate 21 through a rectangular slit 37 formed at the tip, a vacuum pump 38 that decompresses the film formation chamber 31, It has.
 基板設置ステージ34及びX-Yステージ33の内部は空洞になっており、その中に加熱用光源40が配設されている。加熱用光源40からの光(例えば、赤外光)が種基板21の下側(即ち、膜とは反対側)に設置された発熱部材32に照射され、発熱部材32が発熱することにより、種基板21の裏面から膜を加熱することが可能となっている。尚、前述のように、膜を加熱するための熱源は特に限定されるものではなく、例えば、赤外線ランプ、COレーザー、YAGレーザー、エキシマーレーザー、半導体レーザー等の各種レーザーに加え、高周波加熱装置等を使用してもよい。また、これらの加熱源によって種基板を直接加熱することができる場合は発熱部材32を設置しなくてもよい。 The substrate placement stage 34 and the XY stage 33 are hollow, and a heating light source 40 is disposed therein. Light (for example, infrared light) from the heating light source 40 is irradiated to the heat generating member 32 installed on the lower side of the seed substrate 21 (that is, the side opposite to the film), and the heat generating member 32 generates heat. The film can be heated from the back surface of the seed substrate 21. As described above, the heat source for heating the film is not particularly limited. For example, in addition to various lasers such as an infrared lamp, a CO 2 laser, a YAG laser, an excimer laser, and a semiconductor laser, a high-frequency heating device is used. Etc. may be used. Further, when the seed substrate can be directly heated by these heating sources, the heat generating member 32 may not be provided.
 本実施例に係る単結晶製造装置20においては、種基板21の表面上に原料粉を堆積させて膜を形成した後に、単結晶化を行うための加熱ステップを逐次的に行ってもよく、あるいは加熱用光源40からの光によって種基板21を裏面から加熱しつつエアロゾルを種基板21へ噴射して種基板21の表面上に膜を形成することにより、成膜ステップと加熱ステップ(単結晶化)とを同時並行的に行ってもよい。 In the single crystal manufacturing apparatus 20 according to the present embodiment, after the raw material powder is deposited on the surface of the seed substrate 21 to form a film, a heating step for performing single crystallization may be sequentially performed. Alternatively, a film formation step and a heating step (single crystal) are performed by spraying aerosol onto the seed substrate 21 while heating the seed substrate 21 from the back surface with light from the heating light source 40 to form a film on the surface of the seed substrate 21. May be performed simultaneously in parallel.
1.各種評価用試料の作製
(1)膜及び種基板の材料
 本実施例においては、以下に示す表1に列挙した各種成膜用原料粉(成膜粉)及び種基板を使用して、各種評価用試料を作製した。尚、本実施例においては、何れの実験例についても、種基板としては、ZnO単結晶基板(10mm×10mm平方、厚さ0.5mm、c面)を用いた。尚、本実施例においては、成膜ステップと加熱ステップとを逐次的に実行する実施形態を採用した。
1. Preparation of Samples for Various Evaluations (1) Materials for Film and Seed Substrate In this example, various evaluations were made using various raw material powders for film formation (film formation powders) and seed substrates listed in Table 1 below. A sample was prepared. In this example, a ZnO single crystal substrate (10 mm × 10 mm square, thickness 0.5 mm, c-plane) was used as a seed substrate for any of the experimental examples. In this embodiment, an embodiment in which the film forming step and the heating step are sequentially executed is adopted.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)成膜用原料粉の調製
 実験例01及び02において成膜用原料粉(成膜粉)として使用した、アルミニウム(Al)が固溶している酸化亜鉛(ZnO)は、以下のようにして調製した。先ず、酸化亜鉛(ZnO)粉末(体積基準メジアン径(D50)=0.8μm)と酸化アルミニウム(Al)粉末(体積基準D50=0.5μm)とを、アルミニウム(Al)の原子モル比率が0.2at%となるように秤量し、混合した。斯くして得られた混合粉末を、ポットミルにて湿式混合した。
(2) Preparation of film forming raw material powder The zinc oxide (ZnO) in which aluminum (Al) is used as the film forming raw material powder (film forming powder) in Experimental Examples 01 and 02 is as follows. It was prepared as follows. First, zinc oxide (ZnO) powder (volume basis median diameter (D50) = 0.8 μm) and aluminum oxide (Al 2 O 3 ) powder (volume basis D50 = 0.5 μm) are converted into atomic moles of aluminum (Al). They were weighed and mixed so that the ratio was 0.2 at%. The mixed powder thus obtained was wet mixed in a pot mill.
 このようにして湿式混合した粉末を、大気中で1400℃において5時間に亘って焼成して、アルミニウム(Al)が固溶している酸化亜鉛(ZnO)粉末を合成した。斯くして得られた合成粉末を、体積基準D50が2.6μmとなるように、ポットミル中で、ジルコニアボールを用いて、5時間に亘って湿式粉砕した。以上のようにして得られた、アルミニウム(Al)が0.2at%固溶している酸化亜鉛(ZnO)を、実験例01及び02において、成膜用原料粉(成膜粉)として使用した。 The powder thus wet-mixed was fired in air at 1400 ° C. for 5 hours to synthesize zinc oxide (ZnO) powder in which aluminum (Al) was dissolved. The synthetic powder thus obtained was wet-ground for 5 hours in a pot mill using zirconia balls so that the volume standard D50 was 2.6 μm. The zinc oxide (ZnO) in which aluminum (Al) was dissolved in 0.2 at% obtained as described above was used as a film forming raw material powder (film forming powder) in Experimental Examples 01 and 02. .
(3)成膜ステップ
 本実施例においては、何れの実験例についても、図1に示す単結晶製造装置を用いて、AD法により、上記各種成膜用粉体をそれぞれの種基板の表面上に堆積させ、膜を形成した。具体的には、窒素(N)ガスを6L/分の流量にてキャリアガスとして流し、エアロゾル生成室の圧力は50~70kPaとし、成膜室内の圧力は0.1kPa以下とし、成膜粉の噴射ノズル(SUS製)の開口サイズは10mm×0.8mmとした。また、成膜時のノズルの走査方法としては、表1に列挙した走査距離、走査速度、及び走査回数にて、成膜と同時に走査した。
(3) Film-forming step In this example, in any of the experimental examples, the above-mentioned various film-forming powders were deposited on the surface of each seed substrate by the AD method using the single crystal manufacturing apparatus shown in FIG. To form a film. Specifically, nitrogen (N 2 ) gas is flowed as a carrier gas at a flow rate of 6 L / min, the pressure in the aerosol generating chamber is 50 to 70 kPa, the pressure in the film forming chamber is 0.1 kPa or less, and the film forming powder The opening size of the injection nozzle (manufactured by SUS) was 10 mm × 0.8 mm. Further, as a nozzle scanning method during film formation, scanning was performed simultaneously with film formation at the scanning distance, scanning speed, and number of scans listed in Table 1.
(4)加熱ステップ
 加熱ステップもまた、図1に示す単結晶製造装置を使用して、上記各種膜を加熱した。尚、光加熱のための光源としては、近赤外線ランプを使用した。また、上記各種膜は近赤外線の吸収係数が低いため、種基板の膜を形成する面とは反対側の面に発熱部材として白金板を配設し、種基板の膜を形成する面とは反対側から近赤外線を照射して、当該近赤外線を上記白金板に吸収させることにより、膜を種基板側から加熱した。尚、加熱ステップにおける雰囲気、加熱温度(表面温度)、昇温速度、及び保持時間については、表1に列挙した通りである。加熱ステップ後の単結晶膜の厚みについても、表1に列挙した。
(4) Heating step In the heating step, the various films were heated using the single crystal manufacturing apparatus shown in FIG. A near-infrared lamp was used as a light source for light heating. Also, since the above various films have a low near-infrared absorption coefficient, a platinum plate is disposed as a heating member on the surface opposite to the surface on which the seed substrate film is formed, and the surface on which the seed substrate film is formed. The film was heated from the seed substrate side by irradiating near infrared rays from the opposite side and causing the platinum plate to absorb the near infrared rays. The atmosphere, heating temperature (surface temperature), heating rate, and holding time in the heating step are as listed in Table 1. The thickness of the single crystal film after the heating step is also listed in Table 1.
2.各種評価用試料の評価方法
(1)断面SEM観察
 上記加熱ステップを経た各種評価用試料を種基板の主面に直交する面に沿って研磨し、走査型電子顕微鏡(日本電子株式会社製、JSM-6390)を使用して、5000倍の倍率にて当該研磨面(断面)における膜の端部から40視野を観察した。かかる断面SEM観察の結果、ミクロンオーダー(即ち、大きさが1μm以上)の気孔が無く、サブミクロンオーダー(即ち、大きさが1μm未満)の気孔が検出された箇所が10箇所未満であり、且つ膜と種基板との間の界面が加熱ステップ後に消失している場合、緻密な単結晶が良好に得られたと判断した。尚、加熱ステップ前の膜の状態を同様の手法によって観察したところ、全ての実験例において、ミクロンオーダー(即ち大きさが1μm以上)の気孔は観察されず、アルキメデス法によって測定された相対密度は95%以上であった。
2. Evaluation Method for Various Evaluation Samples (1) Cross-sectional SEM Observation The various evaluation samples that have undergone the above heating step are polished along a surface orthogonal to the main surface of the seed substrate, and a scanning electron microscope (JSM Co., Ltd., JSM) -6390), 40 fields of view were observed from the edge of the film on the polished surface (cross section) at a magnification of 5000 times. As a result of the cross-sectional SEM observation, there are no micron-order (ie, 1 μm or more) pores, and sub-micron order (ie, less than 1 μm) pores are detected in less than 10 locations, and When the interface between the film and the seed substrate disappeared after the heating step, it was judged that a dense single crystal was successfully obtained. In addition, when the state of the film before the heating step was observed by the same method, in all the experimental examples, pores on the order of microns (that is, a size of 1 μm or more) were not observed, and the relative density measured by the Archimedes method was It was 95% or more.
(2)面内ロッキングカーブ(XRC)測定
 上記加熱ステップを経た各種評価用試料のC面につき、多機能高分解能X線回折装置(ブルカー・エイエックスエス株式会社製、D8 DISCOVER)を、以下の条件下で使用して、面内ロッキングカーブ(XRC)測定を行った。(100)ピークが検出された場合、単結晶が良好に得られたと判断した。
(2) In-plane rocking curve (XRC) measurement A multi-functional high-resolution X-ray diffractometer (Bulker AXS Co., Ltd., D8 DISCOVER) is used for the C-plane of various evaluation samples that have undergone the above heating step. In-plane rocking curve (XRC) measurements were made using under conditions. When a (100) peak was detected, it was judged that a single crystal was obtained satisfactorily.
 ・管電圧:40kV
 ・管電流40mA
 ・アンチスキャッタリングスリット:3°
 ・ステップ幅:0.001°
 ・スキャンスピード:0.5秒/ステップ
 ・入射角:1°
・ Tube voltage: 40kV
・ Tube current 40mA
・ Anti-scattering slit: 3 °
・ Step width: 0.001 °
・ Scanning speed: 0.5 seconds / step ・ Incident angle: 1 °
(3)二次イオン質量分析(D-SIMS)
 上記加熱ステップを経た各種評価用試料につき、二次イオン質量分析計(アメテック株式会社カメカ事業部製、IMS-6f)を以下の条件下で使用して、単結晶化膜内における不純物(ドーパント)としてのアルミニウム(Al)の濃度及び分布状態を評価した。分布状態については、膜内のAl濃度が0.1~0.3at%の範囲にあれば均質とした。
(3) Secondary ion mass spectrometry (D-SIMS)
For each sample for evaluation that has undergone the above heating step, a secondary ion mass spectrometer (IMS-6f, manufactured by Ametec Corporation, Kameka Division) is used under the following conditions, and impurities (dopants) in the single crystallized film: As a result, the concentration and distribution state of aluminum (Al) were evaluated. The distribution state was uniform if the Al concentration in the film was in the range of 0.1 to 0.3 at%.
 ・イオン種:Cs
 ・イオンエネルギー14.5keV
 ・帯電補償:白金(Pt)コート
・ Ion species: Cs +
・ Ion energy 14.5 keV
・ Charge compensation: Platinum (Pt) coating
(4)四探針法による抵抗率測定
 上記加熱ステップを経た各種評価試料につき、低抵抗率計(株式会社三菱化学アナリテック製、ロレスタ-AX、ロレスタ用四探針PSPプローブ(MCP-TP06P))を用いて四探針法による抵抗率測定を行った。JIS K 7194に概ね準拠して測定を行ったが、電極間隔は1.5mm、試料面積は10mm×10mmとし、測定箇所は試料中央部のみとした。抵抗率は以下の式(1)に基づいて算出した。
(4) Resistivity measurement by four-probe method A low resistivity meter (manufactured by Mitsubishi Chemical Analytech Co., Ltd., Loresta-AX, Loresta four-probe PSP probe (MCP-TP06P)) ) Was used to measure resistivity by the four-probe method. Measurements were generally made in accordance with JIS K 7194. The electrode spacing was 1.5 mm, the sample area was 10 mm × 10 mm, and the measurement location was only the center of the sample. The resistivity was calculated based on the following formula (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上式中、ρは抵抗率[Ω・cm]、Fは抵抗率補正係数、tは膜厚[cm]、及びRは抵抗[Ω]をそれぞれ表す。尚、抵抗率補正係数Fは、JIS K 7194に記載されている式を用いて計算した。 In the above formula, ρ represents resistivity [Ω · cm], F represents resistivity correction coefficient, t represents film thickness [cm], and R represents resistance [Ω]. The resistivity correction coefficient F was calculated using the formula described in JIS K 7194.
3.各種評価用試料の評価結果
 上記加熱ステップを経た各種評価用試料についての上記評価方法(1)乃至(3)の結果についても、表1に列挙されている。表1に示された評価結果からも明らかであるように、実験例01及び02の何れについても、膜内における気孔の抑制、単結晶化の促進、及び不純物(ドーパント)の均質な分布という観点から見て、極めて良好な品質を有する単結晶を得ることができた。尚、不純物としてのアルミニウム(Al)が0.1~0.3at%の濃度範囲にて膜内に均質に含まれることが確認され、1×10-3Ω・cm以下の非常に低い抵抗率を有する単結晶を得ることができた。
3. Evaluation Results of Various Evaluation Samples The results of the evaluation methods (1) to (3) for the various evaluation samples that have undergone the heating step are also listed in Table 1. As is clear from the evaluation results shown in Table 1, in each of Experimental Examples 01 and 02, the viewpoint of suppression of pores in the film, promotion of single crystallization, and homogeneous distribution of impurities (dopant) As a result, a single crystal having extremely good quality could be obtained. Incidentally, it was confirmed that aluminum (Al) as an impurity was uniformly contained in the film in a concentration range of 0.1 to 0.3 at%, and a very low resistivity of 1 × 10 −3 Ω · cm or less. A single crystal having
 以上、本発明を説明することを目的として、特定の構成有する幾つかの実施態様について説明してきたが、本発明の範囲は、これらの例示的な実施態様に限定されるものではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることができることは言うまでも無い。 Although several embodiments having specific configurations have been described above for the purpose of illustrating the present invention, the scope of the present invention is not limited to these exemplary embodiments, and It goes without saying that appropriate modifications can be made within the scope of the above and the matters described in the specification.
 11…原料の粉体、12…キャリアガス、13…圧力調整ガス、20…単結晶製造装置、21…種基板、22…エアロゾル生成部、23…エアロゾル生成室、24…原料供給管、30…結晶生成部、31…成膜室、32…サセプタ(発熱部材)、33…X-Yステージ、34…基板設置ステージ、35…熱電対、36…噴射ノズル(噴射手段)、37:矩形状スリット、38…真空ポンプ、及び40…加熱用光源(加熱手段)。 DESCRIPTION OF SYMBOLS 11 ... Raw material powder, 12 ... Carrier gas, 13 ... Pressure adjusting gas, 20 ... Single crystal manufacturing apparatus, 21 ... Seed substrate, 22 ... Aerosol production part, 23 ... Aerosol production chamber, 24 ... Raw material supply pipe, 30 ... Crystal generating section 31 ... Film forming chamber 32 ... Susceptor (heat generating member) 33 ... XY stage 34 ... Substrate setting stage 35 ... Thermocouple 36 ... Injection nozzle (injecting means) 37: Rectangular slit 38 ... Vacuum pump and 40 ... Light source for heating (heating means).

Claims (28)

  1.  原料の粉体を種基板に向かって噴射して前記種基板の表面上に前記粉体を堆積させ、膜を形成する噴射手段、及び
     前記種基板の表面上に形成された前記膜を加熱する加熱手段、
    を備え、
     前記噴射手段により、前記粉体を種基板に向かって噴射して前記種基板の表面上に前記膜を形成する成膜ステップ、及び
     前記加熱手段により、前記種基板の表面上に形成された前記膜を加熱する加熱ステップ、
    を実行することにより、前記粉体から単結晶を作製する単結晶製造装置であって、
     前記噴射手段と前記加熱手段とが前記種基板を挟んで互いに対向するように配置されていること、
    を特徴とする単結晶製造装置。
    A raw material powder is sprayed toward a seed substrate to deposit the powder on the surface of the seed substrate, and an injection means for forming a film, and the film formed on the surface of the seed substrate are heated. Heating means,
    With
    A film forming step of forming the film on the surface of the seed substrate by spraying the powder toward the seed substrate by the spraying means, and the film formed on the surface of the seed substrate by the heating means. A heating step to heat the membrane;
    A single crystal production apparatus for producing a single crystal from the powder by executing
    The spraying means and the heating means are arranged to face each other across the seed substrate;
    A single crystal manufacturing apparatus characterized by the above.
  2.  請求項1に記載の単結晶製造装置であって、
     前記加熱手段が、赤外線ランプ、レーザー、及び高周波加熱装置からなる群より選ばれる何れかの熱源を利用して前記膜を加熱する加熱手段であること、
    を特徴とする単結晶製造装置。
    The single crystal manufacturing apparatus according to claim 1,
    The heating means is a heating means for heating the film using any heat source selected from the group consisting of an infrared lamp, a laser, and a high-frequency heating device;
    A single crystal manufacturing apparatus characterized by the above.
  3.  請求項2に記載の単結晶製造装置であって、
     前記エネルギーを吸収して発熱する発熱部材を更に備えること、及び
     前記発熱部材が、前記種基板の前記膜が形成される側とは反対側に配置されること、
    を特徴とする単結晶製造装置。
    The single crystal manufacturing apparatus according to claim 2,
    A heat generating member that absorbs the energy and generates heat; and the heat generating member is disposed on the opposite side of the seed substrate from the side on which the film is formed.
    A single crystal manufacturing apparatus characterized by the above.
  4.  請求項3に記載の単結晶製造装置であって、
     前記発熱部材が、金属又はセラミックスを含んでなること、
    を特徴とする単結晶製造装置。
    The single crystal manufacturing apparatus according to claim 3,
    The heat generating member comprises metal or ceramics;
    A single crystal manufacturing apparatus characterized by the above.
  5.  請求項1乃至4の何れか1項に記載の単結晶製造装置を用いて、前記成膜ステップ及び前記加熱ステップを逐次的に実行することにより、前記粉体から単結晶を作製する単結晶製造方法。 A single crystal manufacturing method for manufacturing a single crystal from the powder by sequentially executing the film forming step and the heating step using the single crystal manufacturing apparatus according to any one of claims 1 to 4. Method.
  6.  請求項5に記載の単結晶製造方法であって、
     前記成膜ステップにおいて前記種基板の表面上に前記膜を形成する方法が、エアロゾルデポジション法(AD法)及びパウダージェットデポジション法(PJD法)からなる群より選ばれる何れかの方法であること、
    を特徴とする単結晶製造方法。
    A method for producing a single crystal according to claim 5,
    The method for forming the film on the surface of the seed substrate in the film forming step is any method selected from the group consisting of an aerosol deposition method (AD method) and a powder jet deposition method (PJD method). thing,
    A method for producing a single crystal.
  7.  請求項6に記載の単結晶製造方法であって、
     前記加熱ステップにおいて前記膜が前記種基板の側から加熱されること、
    を特徴とする単結晶製造方法。
    The method for producing a single crystal according to claim 6,
    The film is heated from the seed substrate side in the heating step;
    A method for producing a single crystal.
  8.  請求項7に記載の単結晶製造方法であって、
     前記成膜ステップにおいて前記種基板の表面上に形成される前記膜の前記種基板の表面に直交する方向における厚みである膜厚が100μm以下であること、及び
     前記加熱ステップにおける前記膜の昇温速度が30℃/分以上であること、
    を特徴とする単結晶製造方法。
    A method for producing a single crystal according to claim 7,
    The film formed on the surface of the seed substrate in the film forming step has a thickness that is 100 μm or less in a direction perpendicular to the surface of the seed substrate, and the temperature of the film is increased in the heating step The speed is 30 ° C./min or more,
    A method for producing a single crystal.
  9.  請求項8に記載の単結晶製造方法であって、
     前記成膜ステップにおいて前記種基板の表面上に形成される前記膜の膜厚が30μm以下であること、
    を特徴とする単結晶製造方法。
    A method for producing a single crystal according to claim 8,
    A film thickness of the film formed on the surface of the seed substrate in the film forming step is 30 μm or less;
    A method for producing a single crystal.
  10.  請求項8又は9の何れか1項に記載の単結晶製造方法であって、
     前記加熱ステップにおける前記膜の昇温速度が300℃/分以上であること、
    を特徴とする単結晶製造方法。
    A method for producing a single crystal according to any one of claims 8 and 9,
    The heating rate of the film in the heating step is 300 ° C./min or more,
    A method for producing a single crystal.
  11.  請求項5乃至10の何れか1項に記載の単結晶製造方法であって、
     前記膜の主成分が、酸化物及び窒化物からなる群より選ばれる何れか一種の材料であること、
    を特徴とする単結晶製造方法。
    A method for producing a single crystal according to any one of claims 5 to 10,
    The main component of the film is any one material selected from the group consisting of oxides and nitrides;
    A method for producing a single crystal.
  12.  請求項11に記載の単結晶製造方法であって、
     前記酸化物が酸化亜鉛(ZnO)であり、前記窒化物が窒化ガリウム(GaN)であること、
    を特徴とする単結晶製造方法。
    The method for producing a single crystal according to claim 11,
    The oxide is zinc oxide (ZnO) and the nitride is gallium nitride (GaN);
    A method for producing a single crystal.
  13.  請求項5乃至12の何れか1項に記載の単結晶製造方法であって、
     前記種基板の主成分が、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、及びサファイアからなる群より選ばれる何れか一種の材料であること、
    を特徴とする単結晶製造方法。
    A method for producing a single crystal according to any one of claims 5 to 12,
    The main component of the seed substrate is any one material selected from the group consisting of zinc oxide (ZnO), gallium nitride (GaN), and sapphire,
    A method for producing a single crystal.
  14.  請求項5乃至13の何れか1項に記載の単結晶製造方法であって、
     前記膜が、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、窒素(N)、硼素(B)、リン(P)、砒素(As)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、カーボン(C)、シリコン(Si)、硫黄(S)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、カドミウム(Cd)、セレン(Se)、テルル(Te)、銀(Ag)、及び銅(Cu)からなる群より選ばれる少なくとも何れか1種以上の元素を不純物として含むこと、
    を特徴とする単結晶製造方法。
    A method for producing a single crystal according to any one of claims 5 to 13,
    The film is made of aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), arsenic (As), fluorine (F), chlorine (Cl), bromine. (Br), iodine (I), carbon (C), silicon (Si), sulfur (S), lithium (Li), sodium (Na), potassium (K), magnesium (Mg), cadmium (Cd), selenium Containing at least one element selected from the group consisting of (Se), tellurium (Te), silver (Ag), and copper (Cu) as an impurity;
    A method for producing a single crystal.
  15.  請求項1乃至4の何れか1項に記載の単結晶製造装置を用いて、前記成膜ステップ及び前記加熱ステップを並行して実行することにより、前記粉体から単結晶を作製する単結晶製造方法。 The single crystal manufacturing which manufactures a single crystal from the said powder by performing the said film-forming step and the said heating step in parallel using the single crystal manufacturing apparatus of any one of Claim 1 thru | or 4. Method.
  16.  請求項15に記載の単結晶製造方法であって、
     前記成膜ステップにおいて前記種基板の表面上に前記膜を形成する方法が、エアロゾルデポジション法(AD法)及びパウダージェットデポジション法(PJD法)からなる群より選ばれる何れかの方法であること、
    を特徴とする単結晶製造方法。
    The method for producing a single crystal according to claim 15,
    The method for forming the film on the surface of the seed substrate in the film forming step is any method selected from the group consisting of an aerosol deposition method (AD method) and a powder jet deposition method (PJD method). thing,
    A method for producing a single crystal.
  17.  請求項16に記載の単結晶製造方法であって、
     前記加熱ステップにおいて前記膜が前記種基板の側から加熱されること、
    を特徴とする単結晶製造方法。
    The method for producing a single crystal according to claim 16,
    The film is heated from the seed substrate side in the heating step;
    A method for producing a single crystal.
  18.  請求項15乃至17の何れか1項に記載の単結晶製造方法であって、
     前記膜の主成分が、酸化物及び窒化物からなる群より選ばれる何れか一種の材料であること、
    を特徴とする単結晶製造方法。
    A single crystal manufacturing method according to any one of claims 15 to 17,
    The main component of the film is any one material selected from the group consisting of oxides and nitrides;
    A method for producing a single crystal.
  19.  請求項18に記載の単結晶製造方法であって、
     前記酸化物が酸化亜鉛(ZnO)であり、前記窒化物が窒化ガリウム(GaN)であること、
    を特徴とする単結晶製造方法。
    The method for producing a single crystal according to claim 18,
    The oxide is zinc oxide (ZnO) and the nitride is gallium nitride (GaN);
    A method for producing a single crystal.
  20.  請求項15乃至19の何れか1項に記載の単結晶製造方法であって、
     前記種基板の主成分が、酸化亜鉛(ZnO)、窒化ガリウム(GaN)、及びサファイアからなる群より選ばれる何れか一種の材料であること、
    を特徴とする単結晶製造方法。
    A single crystal manufacturing method according to any one of claims 15 to 19,
    The main component of the seed substrate is any one material selected from the group consisting of zinc oxide (ZnO), gallium nitride (GaN), and sapphire,
    A method for producing a single crystal.
  21.  請求項15乃至20の何れか1項に記載の単結晶製造方法であって、
     前記膜が、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、窒素(N)、硼素(B)、リン(P)、砒素(As)、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)、カーボン(C)、シリコン(Si)、硫黄(S)、リチウム(Li)、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、カドミウム(Cd)、セレン(Se)、テルル(Te)、銀(Ag)、及び銅(Cu)からなる群より選ばれる少なくとも何れか1種以上の元素を不純物として含むこと、
    を特徴とする単結晶製造方法。
    A method for producing a single crystal according to any one of claims 15 to 20,
    The film is made of aluminum (Al), gallium (Ga), indium (In), nitrogen (N), boron (B), phosphorus (P), arsenic (As), fluorine (F), chlorine (Cl), bromine. (Br), iodine (I), carbon (C), silicon (Si), sulfur (S), lithium (Li), sodium (Na), potassium (K), magnesium (Mg), cadmium (Cd), selenium Containing at least one element selected from the group consisting of (Se), tellurium (Te), silver (Ag), and copper (Cu) as an impurity;
    A method for producing a single crystal.
  22.  請求項5乃至21の何れか1項に記載の単結晶製造方法を繰り返し実行することによって単結晶を得ること、
    を特徴とする単結晶製造方法。
    A single crystal is obtained by repeatedly executing the single crystal manufacturing method according to any one of claims 5 to 21;
    A method for producing a single crystal.
  23.  請求項5乃至22の何れか1項に記載の単結晶製造方法によって得られること、
    を特徴とする酸化亜鉛(ZnO)単結晶。
    Obtained by the method for producing a single crystal according to any one of claims 5 to 22,
    A zinc oxide (ZnO) single crystal characterized by
  24.  請求項23に記載の酸化亜鉛(ZnO)単結晶であって、
     前記成膜ステップにおいて形成される前記膜の前記種基板の表面に直交する方向における当該結晶の厚みである結晶厚が30μmを超えること、
    を特徴とする酸化亜鉛(ZnO)単結晶。
    A zinc oxide (ZnO) single crystal according to claim 23,
    A crystal thickness that is a thickness of the crystal in a direction orthogonal to the surface of the seed substrate of the film formed in the film forming step exceeds 30 μm;
    A zinc oxide (ZnO) single crystal characterized by
  25.  請求項24に記載の酸化亜鉛(ZnO)単結晶であって、
     請求項22に記載の単結晶製造方法によって得られること、及び
     前記成膜ステップにおいて形成される前記膜の前記種基板の表面に直交する方向における当該結晶の厚みである結晶厚が100μmを超えること、
    を特徴とする酸化亜鉛(ZnO)単結晶。
    A zinc oxide (ZnO) single crystal according to claim 24,
    It is obtained by the single crystal manufacturing method according to claim 22, and a crystal thickness that is a thickness of the crystal in a direction orthogonal to a surface of the seed substrate of the film formed in the film forming step exceeds 100 μm. ,
    A zinc oxide (ZnO) single crystal characterized by
  26.  請求項23乃至25の何れか1項に記載の酸化亜鉛(ZnO)単結晶であって、
     アルミニウム(Al)、ガリウム(Ga)、及びインジウム(In)からなる群より選ばれる少なくとも何れか1種以上の元素を不純物として含むこと、並びに
     前記不純物の含有率が0.02at%以上であること、
    を特徴とする酸化亜鉛(ZnO)単結晶。
    A zinc oxide (ZnO) single crystal according to any one of claims 23 to 25,
    Containing at least one element selected from the group consisting of aluminum (Al), gallium (Ga), and indium (In) as impurities, and the impurity content is 0.02 at% or more. ,
    A zinc oxide (ZnO) single crystal characterized by
  27.  請求項26に記載の酸化亜鉛(ZnO)単結晶であって、
     前記不純物の含有率が0.1at%以上であること、
    を特徴とする酸化亜鉛(ZnO)単結晶。
    A zinc oxide (ZnO) single crystal according to claim 26,
    The impurity content is 0.1 at% or more,
    A zinc oxide (ZnO) single crystal characterized by
  28.  請求項23乃至27の何れか1項に記載の酸化亜鉛(ZnO)単結晶であって、
     抵抗率が1×10-3Ω・cm以下であること、
    を特徴とする酸化亜鉛(ZnO)単結晶。
    A zinc oxide (ZnO) single crystal according to any one of claims 23 to 27,
    Resistivity is 1 × 10 −3 Ω · cm or less,
    A zinc oxide (ZnO) single crystal characterized by
PCT/JP2013/082495 2012-12-14 2013-12-03 Single-crystal production device, single-crystal production method using said device, and single crystal produced using said method WO2014091969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551994A JPWO2014091969A1 (en) 2012-12-14 2013-12-03 Single crystal manufacturing apparatus, single crystal manufacturing method using the apparatus, and single crystal manufactured by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-273562 2012-12-14
JP2012273562 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014091969A1 true WO2014091969A1 (en) 2014-06-19

Family

ID=50934261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082495 WO2014091969A1 (en) 2012-12-14 2013-12-03 Single-crystal production device, single-crystal production method using said device, and single crystal produced using said method

Country Status (2)

Country Link
JP (1) JPWO2014091969A1 (en)
WO (1) WO2014091969A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442853A (en) * 1990-06-08 1992-02-13 Vacuum Metallurgical Co Ltd Formation of high-temperature superconductive thick film by gas-deposition method and forming device therefore
JPH07138094A (en) * 1993-11-16 1995-05-30 Ngk Insulators Ltd Method for growing single crystal of zinc oxide
JPH11199393A (en) * 1998-01-16 1999-07-27 Fuji Xerox Co Ltd Production of ferroelectric thin film element
JP2000087223A (en) * 1998-09-11 2000-03-28 Japan Science & Technology Corp Laser heating device
WO2005031036A1 (en) * 2003-09-26 2005-04-07 National Institute Of Advanced Industrial Science And Technology Ceramic film structure and forming method and device therefor
JP2006188046A (en) * 2004-12-09 2006-07-20 Fuji Photo Film Co Ltd Method for producing ceramic film and structure including ceramic film
JP2006298747A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Manufacturing method for crystal-aligned film and manufacturing method for liquid discharging head
WO2012060309A1 (en) * 2010-11-02 2012-05-10 日本碍子株式会社 Crystal production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442853A (en) * 1990-06-08 1992-02-13 Vacuum Metallurgical Co Ltd Formation of high-temperature superconductive thick film by gas-deposition method and forming device therefore
JPH07138094A (en) * 1993-11-16 1995-05-30 Ngk Insulators Ltd Method for growing single crystal of zinc oxide
JPH11199393A (en) * 1998-01-16 1999-07-27 Fuji Xerox Co Ltd Production of ferroelectric thin film element
JP2000087223A (en) * 1998-09-11 2000-03-28 Japan Science & Technology Corp Laser heating device
WO2005031036A1 (en) * 2003-09-26 2005-04-07 National Institute Of Advanced Industrial Science And Technology Ceramic film structure and forming method and device therefor
JP2006188046A (en) * 2004-12-09 2006-07-20 Fuji Photo Film Co Ltd Method for producing ceramic film and structure including ceramic film
JP2006298747A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Manufacturing method for crystal-aligned film and manufacturing method for liquid discharging head
WO2012060309A1 (en) * 2010-11-02 2012-05-10 日本碍子株式会社 Crystal production method

Also Published As

Publication number Publication date
JPWO2014091969A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
CN101896647B (en) Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot
JP6758527B1 (en) Silicon Carbide Ingot Growth Powder and Method for Manufacturing Silicon Carbide Ingot Using It
KR101235772B1 (en) Method for growing silicon carbide single crystal
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
CN108026663B (en) P-TYPE 4H-SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING P-TYPE 4H-SiC SINGLE CRYSTAL
CN101583745A (en) Process for production of GaN crystals, GaN crystals, GaN crystal substrate, semiconductor devices, and apparatus for production of GaN crystals
CN114761629B (en) Biaxially oriented SiC composite substrate and composite substrate for semiconductor device
WO2014091968A1 (en) Single-crystal production method, and single crystal produced using said method
KR101152857B1 (en) Method for growing silicon carbide single crystal
CN110857476A (en) Growth method of n-type SiC single crystal with low resistivity and low dislocation density
CN103531447B (en) A kind of method reducing defect density of gallium nitride nanowire array crystal
Hsu et al. Vertical single-crystal ZnO nanowires grown on ZnO: Ga/glass templates
CN114269972A (en) Semiconductor film
EP3929336A1 (en) Gan crystal and substrate
JP2021070620A (en) Production method of silicon carbide ingot, production method of silicon carbide wafer, and growth system thereof
CN101805885B (en) Method for preparing MgZnO ternary compound ordered film
Song et al. Physically processed Ag-doped ZnO nanowires for all-ZnO p–n diodes
US20120104557A1 (en) Method for manufacturing a group III nitride crystal, method for manufacturing a group III nitride template, group III nitride crystal and group III nitride template
JP7176099B2 (en) semiconductor film
WO2014091969A1 (en) Single-crystal production device, single-crystal production method using said device, and single crystal produced using said method
US20210355602A1 (en) Underlying substrate
Zhang et al. Space-confined growth of large-mismatch CsPb (Br x CI 1− x) 3/GaN heterostructures with tunable band alignments and optical properties
JP2016172677A (en) Silicon carbide single crystal, and production method therefor
TW202210669A (en) GaN crystal and GaN substrate
Nakamura et al. Influence of Sb on a controlled-growth of aligned ZnO nanowires in nanoparticle-assisted pulsed-laser deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551994

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863161

Country of ref document: EP

Kind code of ref document: A1