WO2014091720A1 - Contour correction device and image processing device - Google Patents
Contour correction device and image processing device Download PDFInfo
- Publication number
- WO2014091720A1 WO2014091720A1 PCT/JP2013/007126 JP2013007126W WO2014091720A1 WO 2014091720 A1 WO2014091720 A1 WO 2014091720A1 JP 2013007126 W JP2013007126 W JP 2013007126W WO 2014091720 A1 WO2014091720 A1 WO 2014091720A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- correction
- correction amount
- degree
- oblique
- unit
- Prior art date
Links
- 238000012937 correction Methods 0.000 title claims abstract description 185
- 238000012545 processing Methods 0.000 title claims description 9
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims description 10
- 230000007423 decrease Effects 0.000 claims description 8
- 230000001186 cumulative effect Effects 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 abstract 1
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/14—Picture signal circuitry for video frequency region
- H04N5/142—Edging; Contouring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
- G06T5/94—Dynamic range modification of images or parts thereof based on local image properties, e.g. for local contrast enhancement
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20172—Image enhancement details
- G06T2207/20192—Edge enhancement; Edge preservation
Definitions
- the present disclosure relates to image processing, and particularly relates to contour correction processing for correcting the contour of an image.
- contour correction is performed in the horizontal direction and the vertical direction. Therefore, when there is a diagonal line in the image, the contour correction is performed in both the horizontal direction and the vertical direction with respect to the diagonal line. It will take. As a result, the contour correction for the oblique line is overcorrected, and jaggies and shoots are excessively emphasized. As a result, there is a problem that the quality of the image quality is deteriorated.
- This disclosure is intended to appropriately perform contour correction even when there is a diagonal line in an image.
- a contour correction device that corrects a contour of an image represented by a luminance signal calculates a first correction amount for performing contour correction in a horizontal direction and a vertical direction from the luminance signal.
- a second correction unit that calculates a second correction amount for performing contour correction in a direction orthogonal to the diagonal line at a predetermined angle from the luminance signal, and an image from the luminance signal to the diagonal line at the predetermined angle.
- An inclination degree detecting unit that detects an inclination degree that represents the degree of approximation, the first correction amount and the second correction amount are adjusted according to the inclination degree, and the luminance signal is used using the adjusted correction amount.
- a signal correction unit for correcting is used using the adjusted correction amount.
- the oblique degree detecting unit detects the oblique degree representing the degree to which the image approximates the oblique line of the predetermined angle. Then, in the signal correction unit, a first correction amount for performing contour correction in the horizontal direction and the vertical direction and a second correction amount for performing contour correction in a direction orthogonal to the oblique line of a predetermined angle are detected. Adjustment is made according to the degree of inclination, and the luminance signal is corrected using the corrected amount after adjustment. As a result, it is possible to apply the contour correction in the oblique direction while avoiding the overcorrection applied to the oblique line while applying the contour correction in the horizontal direction and the vertical direction to the vertical line and the horizontal line in the image. . Therefore, even when there is a diagonal line in the image, the contour correction can be appropriately executed.
- FIG. 1 is a specific configuration example of a contour correction apparatus according to an embodiment.
- (A), (b) is a figure for demonstrating the inclination degree detection.
- (A), (b) is a figure for demonstrating the inclination degree detection.
- (A), (b), (c) is the example of an image which shows the effect of an embodiment.
- FIG. 1 is a block diagram showing a configuration example of a contour correction apparatus according to this embodiment.
- the contour correction apparatus according to the present embodiment corrects the contour of an image represented by an input luminance signal so as to be sharper, for example.
- the contour correction apparatus shown in FIG. 1 includes a horizontal / vertical contour correction unit 11 as a first correction unit, an oblique contour correction unit 12 as a second correction unit, an oblique degree detection unit 13, and a signal correction unit 20. ing.
- the horizontal / vertical contour correction unit 11 calculates a correction amount for performing contour correction in the horizontal direction and the vertical direction from the input luminance signal. Horizontal lines in the image are emphasized by contour correction in the vertical direction, and vertical lines are emphasized by contour correction in the horizontal direction.
- the oblique degree detection unit 13 detects the degree of obliqueness indicating how close an image is to an oblique line of a predetermined angle, that is, a so-called oblique line.
- the degree of obliqueness is an evaluation value that represents the degree to which an image approximates an oblique line with a predetermined angle.
- the oblique contour correction unit 12 calculates a correction amount for performing contour correction in a direction orthogonal to the oblique line of a predetermined angle from the input luminance signal.
- the predetermined angle at this time is preferably the same as the predetermined angle of the oblique line when the oblique degree is detected by the oblique degree detection unit 13.
- the signal correction unit 20 adjusts the correction amount output from the horizontal / vertical contour correction unit 11 and the correction amount output from the oblique contour correction unit 12 in accordance with the oblique degree detected by the oblique degree detection unit 13. . Then, the input luminance signal is corrected using the adjusted correction amount and output as an output luminance signal. In other words, horizontal and vertical contour correction and oblique contour correction are blended according to the degree of obliqueness and applied to the luminance signal.
- the horizontal line in the image is emphasized by the contour correction in the vertical direction, and the vertical line is emphasized by the contour correction in the horizontal direction.
- the diagonal line in the image is emphasized by both the contour correction in the vertical direction and the contour correction in the horizontal direction, so that only the horizontal and vertical contour correction is overcorrected. Therefore, the signal correction unit 20 decreases the effect of the correction amount output from the horizontal / vertical contour correction unit 11 and increases the effect of the correction amount output from the diagonal contour correction unit 12 as the degree of inclination increases. Further, the lower the degree of inclination, the greater the effect of the correction amount output from the horizontal / vertical contour correction unit 11 and the smaller the effect of the correction amount output from the oblique contour correction unit 12. Thereby, the oblique line in the image is appropriately corrected by the oblique contour correction without being overcorrected by the horizontal / vertical contour correction.
- the 1 includes a first adjustment unit 14, a second adjustment unit 15, and a correction amount addition unit 16.
- the first adjustment unit 14 adjusts the correction amount output from the horizontal / vertical contour correction unit 11 according to the degree of inclination.
- the second adjustment unit 15 adjusts the correction amount output from the oblique contour correction unit 12 according to the degree of inclination.
- the correction amount addition unit 16 adds the correction amount after adjustment by the first adjustment unit 14 and the correction amount after adjustment by the second adjustment unit 15 to the input luminance signal.
- the 1st adjustment part 14 adjusts the correction amount output from the horizontal / vertical outline correction
- the second adjustment unit 15 adjusts the correction amount output from the oblique contour correction unit 12 so that the correction amount increases as the degree of obliqueness increases and decreases as the degree of obliqueness decreases. Thereby, the horizontal / vertical contour correction and the diagonal contour correction are blended in accordance with the diagonal degree and applied to the luminance signal.
- FIG. 2 is a diagram showing a specific configuration example of the contour correction apparatus according to the present embodiment.
- the horizontal / vertical contour correction unit 11 of FIG. 1 is configured by a horizontal contour correction unit 11a and a vertical contour correction unit 11b
- the first adjustment unit 14 of FIG. 1 is configured by multiplication units 14a and 14b.
- the second adjustment unit 15 in FIG. 1 is configured by a multiplication unit 15a.
- the oblique degree detection unit 13 detects an oblique degree relating to an oblique line in the 45 degree direction (upward to the right) or 135 degree direction (upward to the left), and is normally in the range of 0 to 1 as an index indicating the oblique degree.
- the normalized value DD is calculated.
- the value DD is “1” when the diagonal degree is the highest and “0” when the diagonal degree is the lowest.
- the multipliers 14a and 14b multiply the correction amount by the value (1-DD), and the multiplier 15a multiplies the correction amount by the value DD. As a result, the correction amount is adjusted.
- FIG. 3A shows a part of the image represented by the luminance signal, and includes an oblique line in the 45 degree direction.
- a cumulative value of luminance differences of pixels that are continuous in the diagonal direction is used for the calculation of the diagonal degree. This is based on the premise that the pixels constituting the diagonal line have a small luminance difference.
- the oblique degree related to the oblique line in the 45 degree direction or the 135 degree direction is calculated using five consecutive pixels.
- the pixel marked with (3) be the pixel of interest.
- ABS represents an absolute value calculation, and the numbers in parentheses and alphabets indicate the luminance value of the pixel.
- a value DD is calculated from the smaller value of MIN (DIFF45, DIFF135), that is, DIFF45 and DIFF135.
- the function f (x) is a function in which the DD value approaches “1” as the MIN (DIFF45, DIFF135) decreases, and the DD value approaches “0” as the MIN (DIFF45, DIFF135) increases.
- the diagonal line is 135 degrees. The determination result is sent from the oblique degree detection unit 13 to the oblique contour correction unit 12.
- DIFF45 becomes very small because a diagonal line rising to the right is included. Therefore, the value of DD is “1”. Further, since DIFF45 ⁇ DIFF135, it is determined as a 45-degree oblique line.
- FIG. 4A shows another example of the image indicated by the luminance signal, which includes a diagonal line in the direction of 22.5 degrees, although it goes up to the right.
- DIFF45 since DIFF45 ⁇ DIFF135, it is determined that the line is an oblique line of 45 degrees.
- the value of DIFF 45 is larger than that in the case of FIG. That is, if DIFF 45 when a 45-degree diagonal line is included is DIFF 45 (45), and DIFF 45 when a 22.5-degree diagonal line is included is DIFF 45 (22.5), DIFF45 (45) ⁇ DIFF45 (22.5) It becomes.
- DIFF45 (45) ⁇ DIFF45 (22.5) It becomes.
- DD by adjusting the function f (x), DD can be set to “0.5” when the diagonal line is 22.5 degrees, for example.
- the shape of the function f (x) is not limited to that shown in FIGS. 3 and 4, and may have a curve, for example. Further, a known method may be used so that the shape of the function f (x) can be adjusted from the outside of the apparatus.
- the oblique degree detection unit 13 determines that the image shown in FIG.
- the correction amount is calculated in a direction orthogonal to the 45 degree direction, that is, in the 135 degree direction. For example, assuming that the pixel marked with (3) is the pixel of interest, the correction amount is calculated using the luminance value of the pixel surrounded by the broken line in the figure.
- the oblique BPF is a method in which a BPF (Band Pass Filter) is applied in an oblique direction, here a 135 degree direction, and a chute is added to the edge.
- BPF Band Pass Filter
- a 5-tap filter with filter coefficients (a, b, c, d, e) is used, the filter output of the pixel of interest (3) is a ⁇ A + b ⁇ B + c ⁇ (3) + d ⁇ C + e ⁇ D It becomes.
- the oblique transient correction is a method in which the edge is sharpened by subtracting the correction signal from the input luminance signal in the oblique direction, here, in the direction of 135 degrees. Note that the contour correction in the oblique direction is not limited to these methods.
- FIG. 6 is a diagram illustrating an example of a blending method of horizontal / vertical contour correction and oblique contour correction in the present embodiment.
- the value DD indicating the degree of obliqueness is “0”.
- the value “1” is given to the multipliers 14a and 14b, while the value “0” is given to the multiplier 15a.
- the value DD indicating the degree of inclination is “1”.
- the value “0” is given to the multipliers 14a and 14b, while the value “1” is given to the multiplier 15a.
- the value DD indicating the diagonal degree is “0”. .5 ".
- the value “0.5” is given to the multipliers 14a and 14b, while the value “0.5” is given to the multiplier 15a.
- the correction amount added to the input luminance signal is (Horizontal correction amount + vertical correction amount) ⁇ 0.5 + oblique correction amount ⁇ 0.5 It becomes. That is, the horizontal and vertical contour correction and the diagonal correction are performed with reduced intensity.
- FIG. 7 shows the effect of this embodiment.
- the conventional method applies both horizontal contour correction and vertical contour correction to the input image including the 45-degree oblique line shown in FIG.
- the line is overcorrected, and jaggies and shoots are overemphasized and image quality is degraded.
- the horizontal and vertical contour correction is not performed on the diagonal line, and only the diagonal contour correction is performed. Contour correction is realized.
- the normalized value DD is calculated as an index value indicating the degree of inclination, and the correction amount is multiplied by the value DD and the value (1-DD).
- the correction according to the degree of inclination is performed.
- the method of adjusting the amount is not limited to this.
- the inclination degree detection unit 13 may set a value to be multiplied by each correction amount according to the detected inclination degree. In this case, the relationship between the skew degree and the correction amount adjustment may be controlled from the outside of the apparatus.
- the oblique degree detection unit 13 gives the detected oblique degree to the first adjustment unit 14 and the second adjustment unit 15, and the first adjustment unit 14 and the second adjustment unit 15 respectively correct the correction amount according to the oblique degree. You may adjust it.
- the angle of the oblique line when detecting the oblique degree is set to 45 degrees or 135 degrees.
- the present invention is not limited to this.
- a plurality of oblique contour correcting units 12 and oblique degree detecting units 13 may be provided, and a plurality of types of oblique contour correction may be executed in combination.
- the internal configuration of the signal correction unit 20 is not limited to that shown in FIGS. 1 and 2, and the horizontal / vertical contour correction and the diagonal contour correction are blended in accordance with the diagonal degree to obtain a luminance signal. Any configuration is applicable as long as it is applicable.
- each unit shown in the present embodiment may be configured by a circuit or hardware, or may be realized by executing software by a processor.
- the contour correction device is used in, for example, an image processing device that displays an image or outputs an image to a monitor.
- the image processing device include a tablet, a smartphone, a TV device, and various video players.
- the contour correction can be appropriately executed even when there is a diagonal line in the image, which is effective for displaying the image more clearly on the screen, for example, on a tablet or a smartphone.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Picture Signal Circuits (AREA)
- Image Processing (AREA)
Abstract
The present invention enables contour correction to be suitably executed even when an image contains an oblique line. A first correction unit (11) calculates a first correction amount for correcting contours in horizontal and vertical direct ions, and a second correction unit (12) calculates a second correction amount for correcting a contour in a direction orthogonal to an oblique line at a prescribed angle. A degree-of-obliqueness detection unit (13) detects a degree of obliqueness representing the extent to which the image approxima tes the oblique line at the prescribed angle. A signal correction unit (20) adjusts the first correction amount and the second correction amount according to the degree of obliqueness, and corrects a luminance signal by using the adjust ed correction amounts.
Description
本開示は、画像処理に関するものであり、特に、画像の輪郭を補正する輪郭補正処理に関する。
The present disclosure relates to image processing, and particularly relates to contour correction processing for correcting the contour of an image.
従来から、画像内のエッジを視覚的により鮮明にするために、画像の輪郭を強調表示する技術が用いられている。特許文献1では、輝度信号の変化に応じて輪郭信号のゲインを非線形に切り替えて、視覚的に違和感の少ない輪郭補正を実現している。また特許文献2のように、水平方向の輪郭補正信号及び垂直方向の輪郭補正信号を映像信号に加算することによって、2次元的に画像の輪郭を強調し、鮮鋭度を向上することが可能となる。
Conventionally, a technique for highlighting the contour of an image has been used in order to make the edges in the image visually clearer. In Japanese Patent Laid-Open No. 2004-228561, contour correction with a visually low sense of incongruity is realized by switching the gain of the contour signal in a non-linear manner according to a change in luminance signal. Further, as in Patent Document 2, by adding a horizontal contour correction signal and a vertical contour correction signal to the video signal, it is possible to enhance the contour of the image two-dimensionally and improve the sharpness. Become.
しかしながら、従来の方法では、水平方向および垂直方向において輪郭補正が行われるため、画像内に斜め方向の線がある場合には、この斜め線に対して、水平方向と垂直方向の両方において輪郭補正がかかってしまう。これにより、斜め線に対する輪郭補正が過補正になってしまい、ジャギーやシュートが過度に強調され、この結果、画質の品位が低下してしまうという問題があった。
However, in the conventional method, contour correction is performed in the horizontal direction and the vertical direction. Therefore, when there is a diagonal line in the image, the contour correction is performed in both the horizontal direction and the vertical direction with respect to the diagonal line. It will take. As a result, the contour correction for the oblique line is overcorrected, and jaggies and shoots are excessively emphasized. As a result, there is a problem that the quality of the image quality is deteriorated.
本開示は、画像内に斜め方向の線がある場合でも、輪郭補正を適切に実行可能にすることを目的とする。
This disclosure is intended to appropriately perform contour correction even when there is a diagonal line in an image.
本開示の一態様では、輝度信号が表す画像の輪郭を補正する輪郭補正装置は、前記輝度信号から、水平方向および垂直方向における輪郭補正を行うための第1補正量を算出する第1補正部と、前記輝度信号から、所定角度の斜め線に直交する方向における輪郭補正を行うための第2補正量を算出する第2補正部と、前記輝度信号から、画像が前記所定角度の斜め線に近似している程度を表す斜め度合を検出する斜め度合検出部と、前記第1補正量および前記第2補正量を前記斜め度合に応じて調整し、調整後の補正量を用いて前記輝度信号を補正する信号補正部とを備えている。
In one aspect of the present disclosure, a contour correction device that corrects a contour of an image represented by a luminance signal calculates a first correction amount for performing contour correction in a horizontal direction and a vertical direction from the luminance signal. A second correction unit that calculates a second correction amount for performing contour correction in a direction orthogonal to the diagonal line at a predetermined angle from the luminance signal, and an image from the luminance signal to the diagonal line at the predetermined angle. An inclination degree detecting unit that detects an inclination degree that represents the degree of approximation, the first correction amount and the second correction amount are adjusted according to the inclination degree, and the luminance signal is used using the adjusted correction amount. And a signal correction unit for correcting.
この態様によると、斜め度合検出部において、画像が所定角度の斜め線に近似している程度を表す斜め度合が検出される。そして信号補正部において、水平方向および垂直方向における輪郭補正を行うための第1補正量と、所定角度の斜め線に直交する方向における輪郭補正を行うための第2補正量とが、検出された斜め度合に応じて調整され、調整後の補正量を用いて輝度信号が補正される。これにより、画像内の縦線や横線には水平方向および垂直方向における輪郭補正をかけつつ、斜め線には、過補正がかかることを回避して適切な斜め方向の輪郭補正をかけることができる。したがって、画像内に斜め方向の線がある場合でも、輪郭補正を適切に実行可能になる。
According to this aspect, the oblique degree detecting unit detects the oblique degree representing the degree to which the image approximates the oblique line of the predetermined angle. Then, in the signal correction unit, a first correction amount for performing contour correction in the horizontal direction and the vertical direction and a second correction amount for performing contour correction in a direction orthogonal to the oblique line of a predetermined angle are detected. Adjustment is made according to the degree of inclination, and the luminance signal is corrected using the corrected amount after adjustment. As a result, it is possible to apply the contour correction in the oblique direction while avoiding the overcorrection applied to the oblique line while applying the contour correction in the horizontal direction and the vertical direction to the vertical line and the horizontal line in the image. . Therefore, even when there is a diagonal line in the image, the contour correction can be appropriately executed.
本開示によると、画像内に斜め方向の線がある場合でも、輪郭補正を適切に実行可能になる。
According to the present disclosure, it is possible to appropriately perform contour correction even when there is a diagonal line in the image.
以下、本開示の実施形態を図面に基づいて詳細に説明する。
Hereinafter, embodiments of the present disclosure will be described in detail based on the drawings.
図1は本実施形態に係る輪郭補正装置の構成例を示すブロック図である。本実施形態に係る輪郭補正装置は、入力された輝度信号が表す画像の輪郭を、例えばよりシャープになるように、補正するものである。
FIG. 1 is a block diagram showing a configuration example of a contour correction apparatus according to this embodiment. The contour correction apparatus according to the present embodiment corrects the contour of an image represented by an input luminance signal so as to be sharper, for example.
図1に示す輪郭補正装置は、第1補正部としての水平垂直輪郭補正部11と、第2補正部としての斜め輪郭補正部12と、斜め度合検出部13と、信号補正部20とを備えている。水平垂直輪郭補正部11は、入力輝度信号から、水平方向および垂直方向における輪郭補正を行うための補正量を算出する。画像中の横線は垂直方向における輪郭補正によって強調され、縦線は水平方向における輪郭補正によって強調される。斜め度合検出部13は、画像が所定角度の斜め線にどの程度近いか、いわゆる斜め線らしさを示す斜め度合を検出する。すなわち、斜め度合は、画像が所定角度の斜め線に近似している程度を表す評価値である。斜め輪郭補正部12は、入力輝度信号から、所定角度の斜め線に直交する方向における輪郭補正を行うための補正量を算出する。このときの所定角度は、斜め度合検出部13によって斜め度合が検出された際の斜め線の所定角度と同一であることが好ましい。
The contour correction apparatus shown in FIG. 1 includes a horizontal / vertical contour correction unit 11 as a first correction unit, an oblique contour correction unit 12 as a second correction unit, an oblique degree detection unit 13, and a signal correction unit 20. ing. The horizontal / vertical contour correction unit 11 calculates a correction amount for performing contour correction in the horizontal direction and the vertical direction from the input luminance signal. Horizontal lines in the image are emphasized by contour correction in the vertical direction, and vertical lines are emphasized by contour correction in the horizontal direction. The oblique degree detection unit 13 detects the degree of obliqueness indicating how close an image is to an oblique line of a predetermined angle, that is, a so-called oblique line. In other words, the degree of obliqueness is an evaluation value that represents the degree to which an image approximates an oblique line with a predetermined angle. The oblique contour correction unit 12 calculates a correction amount for performing contour correction in a direction orthogonal to the oblique line of a predetermined angle from the input luminance signal. The predetermined angle at this time is preferably the same as the predetermined angle of the oblique line when the oblique degree is detected by the oblique degree detection unit 13.
信号補正部20は、水平垂直輪郭補正部11から出力された補正量と、斜め輪郭補正部12から出力された補正量とを、斜め度合検出部13によって検出された斜め度合に応じて調整する。そして、調整後の補正量を用いて、入力輝度信号を補正し、出力輝度信号として出力する。言いかえると、水平垂直輪郭補正と斜め輪郭補正とを、斜め度合に応じてブレンドして、輝度信号に適用している。
The signal correction unit 20 adjusts the correction amount output from the horizontal / vertical contour correction unit 11 and the correction amount output from the oblique contour correction unit 12 in accordance with the oblique degree detected by the oblique degree detection unit 13. . Then, the input luminance signal is corrected using the adjusted correction amount and output as an output luminance signal. In other words, horizontal and vertical contour correction and oblique contour correction are blended according to the degree of obliqueness and applied to the luminance signal.
画像中の横線は垂直方向における輪郭補正によって強調され、縦線は水平方向における輪郭補正によって強調される。一方、画像中の斜め線は、垂直方向における輪郭補正と水平方向における輪郭補正との両方によって強調されてしまうため、水平垂直輪郭補正のみでは過補正になってしまう。そこで、信号補正部20は、斜め度合が高いほど、水平垂直輪郭補正部11から出力された補正量の効果を小さく、斜め輪郭補正部12から出力された補正量の効果を大きくする。また、斜め度合が低いほど、水平垂直輪郭補正部11から出力された補正量の効果を大きく、斜め輪郭補正部12から出力された補正量の効果を小さくする。これにより、画像中の斜め線は、水平垂直輪郭補正によって過補正されることなく、斜め輪郭補正によって適切に補正される。
The horizontal line in the image is emphasized by the contour correction in the vertical direction, and the vertical line is emphasized by the contour correction in the horizontal direction. On the other hand, the diagonal line in the image is emphasized by both the contour correction in the vertical direction and the contour correction in the horizontal direction, so that only the horizontal and vertical contour correction is overcorrected. Therefore, the signal correction unit 20 decreases the effect of the correction amount output from the horizontal / vertical contour correction unit 11 and increases the effect of the correction amount output from the diagonal contour correction unit 12 as the degree of inclination increases. Further, the lower the degree of inclination, the greater the effect of the correction amount output from the horizontal / vertical contour correction unit 11 and the smaller the effect of the correction amount output from the oblique contour correction unit 12. Thereby, the oblique line in the image is appropriately corrected by the oblique contour correction without being overcorrected by the horizontal / vertical contour correction.
図1の信号補正部20は、第1調整部14、第2調整部15、および補正量加算部16を備えている。第1調整部14は、水平垂直輪郭補正部11から出力された補正量を、斜め度合に応じて調整する。第2調整部15は、斜め輪郭補正部12から出力された補正量を、斜め度合に応じて調整する。補正量加算部16は、入力輝度信号に、第1調整部14による調整後の補正量と、第2調整部15による調整後の補正量とを加算する。ここで、第1調整部14は、水平垂直輪郭補正部11から出力された補正量を、斜め度合が高いほど小さくなり、斜め度合が低いほど大きくなるように、調整する。また、第2調整部15は、斜め輪郭補正部12から出力された補正量を、斜め度合が高いほど大きくなり、斜め度合が低いほど小さくなるように、調整する。これにより、水平垂直輪郭補正と斜め輪郭補正とが、斜め度合に応じてブレンドされて、輝度信号に適用される。
1 includes a first adjustment unit 14, a second adjustment unit 15, and a correction amount addition unit 16. The first adjustment unit 14 adjusts the correction amount output from the horizontal / vertical contour correction unit 11 according to the degree of inclination. The second adjustment unit 15 adjusts the correction amount output from the oblique contour correction unit 12 according to the degree of inclination. The correction amount addition unit 16 adds the correction amount after adjustment by the first adjustment unit 14 and the correction amount after adjustment by the second adjustment unit 15 to the input luminance signal. Here, the 1st adjustment part 14 adjusts the correction amount output from the horizontal / vertical outline correction | amendment part 11 so that it becomes small, so that an inclination degree is high, and it becomes large, so that an inclination degree is low. Further, the second adjustment unit 15 adjusts the correction amount output from the oblique contour correction unit 12 so that the correction amount increases as the degree of obliqueness increases and decreases as the degree of obliqueness decreases. Thereby, the horizontal / vertical contour correction and the diagonal contour correction are blended in accordance with the diagonal degree and applied to the luminance signal.
図2は本実施形態に係る輪郭補正装置の具体的な構成例を示す図である。図2の構成では、図1の水平垂直輪郭補正部11が水平輪郭補正部11aおよび垂直輪郭補正部11bによって構成されており、図1の第1調整部14が乗算部14a,14bによって構成されている。また、図1の第2調整部15が乗算部15aによって構成されている。さらに、斜め度合検出部13は、45度方向(右上がり)または135度方向(左上がり)の斜め線に関する斜め度合を検出するものとし、斜め度合を示す指標として、0~1の範囲に正規化された値DDを算出するものとする。値DDは、斜め度合が最も高いとき「1」、斜め度合が最も低いとき「0」になる。そして、乗算部14a,14bは、補正量に値(1-DD)を乗じ、乗算部15aは、補正量に値DDを乗じる。これにより、補正量の調整が行われる。
FIG. 2 is a diagram showing a specific configuration example of the contour correction apparatus according to the present embodiment. In the configuration of FIG. 2, the horizontal / vertical contour correction unit 11 of FIG. 1 is configured by a horizontal contour correction unit 11a and a vertical contour correction unit 11b, and the first adjustment unit 14 of FIG. 1 is configured by multiplication units 14a and 14b. ing. Further, the second adjustment unit 15 in FIG. 1 is configured by a multiplication unit 15a. Further, the oblique degree detection unit 13 detects an oblique degree relating to an oblique line in the 45 degree direction (upward to the right) or 135 degree direction (upward to the left), and is normally in the range of 0 to 1 as an index indicating the oblique degree. Assume that the normalized value DD is calculated. The value DD is “1” when the diagonal degree is the highest and “0” when the diagonal degree is the lowest. Then, the multipliers 14a and 14b multiply the correction amount by the value (1-DD), and the multiplier 15a multiplies the correction amount by the value DD. As a result, the correction amount is adjusted.
図3を用いて、斜め度合検出部13における信号処理の例について説明する。図3(a)は輝度信号が表す画像の一部であり、45度方向の斜め線が含まれている。ここでは、斜め度合の算出に、斜め方向に連続する画素の輝度差分の累積値を用いるものとする。これは、斜め線を構成する画素同士は輝度の差分が小さい、ということを前提としている。
An example of signal processing in the oblique degree detection unit 13 will be described with reference to FIG. FIG. 3A shows a part of the image represented by the luminance signal, and includes an oblique line in the 45 degree direction. Here, it is assumed that a cumulative value of luminance differences of pixels that are continuous in the diagonal direction is used for the calculation of the diagonal degree. This is based on the premise that the pixels constituting the diagonal line have a small luminance difference.
図3(a)において、45度方向または135度方向の斜め線に関する斜め度合を、連続する5画素を用いて算出する。いま、(3)が記された画素を着目画素とする。このとき、45度方向の輝度差分累積値DIFF45は、
DIFF45
=ABS((1)-(2))+ABS((2)-(3))+ABS((3)-(4))+ABS((4)-(5))
135度方向の輝度差分累積値DIFF135は、
DIFF135
=ABS(A-B)+ABS(B-(3))+ABS((3)-C)+ABS(C-D)
となる。なお、ABSは絶対値演算を表し、括弧入り数字およびアルファベットは当該画素の輝度値を示す。 In FIG. 3A, the oblique degree related to the oblique line in the 45 degree direction or the 135 degree direction is calculated using five consecutive pixels. Now, let the pixel marked with (3) be the pixel of interest. At this time, the luminance difference cumulative value DIFF45 in the 45 degree direction is
DIFF45
= ABS ((1)-(2)) + ABS ((2)-(3)) + ABS ((3)-(4)) + ABS ((4)-(5))
The luminance difference cumulative value DIFF135 in the 135 degree direction is
DIFF135
= ABS (AB) + ABS (B- (3)) + ABS ((3) -C) + ABS (CD)
It becomes. Note that ABS represents an absolute value calculation, and the numbers in parentheses and alphabets indicate the luminance value of the pixel.
DIFF45
=ABS((1)-(2))+ABS((2)-(3))+ABS((3)-(4))+ABS((4)-(5))
135度方向の輝度差分累積値DIFF135は、
DIFF135
=ABS(A-B)+ABS(B-(3))+ABS((3)-C)+ABS(C-D)
となる。なお、ABSは絶対値演算を表し、括弧入り数字およびアルファベットは当該画素の輝度値を示す。 In FIG. 3A, the oblique degree related to the oblique line in the 45 degree direction or the 135 degree direction is calculated using five consecutive pixels. Now, let the pixel marked with (3) be the pixel of interest. At this time, the luminance difference cumulative value DIFF45 in the 45 degree direction is
DIFF45
= ABS ((1)-(2)) + ABS ((2)-(3)) + ABS ((3)-(4)) + ABS ((4)-(5))
The luminance difference cumulative value DIFF135 in the 135 degree direction is
DIFF135
= ABS (AB) + ABS (B- (3)) + ABS ((3) -C) + ABS (CD)
It becomes. Note that ABS represents an absolute value calculation, and the numbers in parentheses and alphabets indicate the luminance value of the pixel.
そして、図3(b)に示すような関数f(x)を用いて、MIN(DIFF45,DIFF135)すなわちDIFF45およびDIFF135のうち小さい方の値から、値DDを算出する。関数f(x)は、MIN(DIFF45,DIFF135)が小さいほどDDの値が「1」に近づき、MIN(DIFF45,DIFF135)が大きいほどDDの値が「0」に近づくような関数である。また、
DIFF45 < DIFF135
(すなわち、MIN(DIFF45,DIFF135)=DIFF45)
のときは、45度の斜め線と判断し、
DIFF45 > DIFF135
(すなわち、MIN(DIFF45,DIFF135)=DIFF135)
のときは、135度の斜め線と判断する。この判断結果は、斜め度合検出部13から斜め輪郭補正部12に送られる。 Then, using a function f (x) as shown in FIG. 3B, a value DD is calculated from the smaller value of MIN (DIFF45, DIFF135), that is, DIFF45 and DIFF135. The function f (x) is a function in which the DD value approaches “1” as the MIN (DIFF45, DIFF135) decreases, and the DD value approaches “0” as the MIN (DIFF45, DIFF135) increases. Also,
DIFF45 <DIFF135
(That is, MIN (DIFF45, DIFF135) = DIFF45)
When it is, it is judged as a 45 degree diagonal line,
DIFF45> DIFF135
(That is, MIN (DIFF45, DIFF135) = DIFF135)
In this case, it is determined that the diagonal line is 135 degrees. The determination result is sent from the obliquedegree detection unit 13 to the oblique contour correction unit 12.
DIFF45 < DIFF135
(すなわち、MIN(DIFF45,DIFF135)=DIFF45)
のときは、45度の斜め線と判断し、
DIFF45 > DIFF135
(すなわち、MIN(DIFF45,DIFF135)=DIFF135)
のときは、135度の斜め線と判断する。この判断結果は、斜め度合検出部13から斜め輪郭補正部12に送られる。 Then, using a function f (x) as shown in FIG. 3B, a value DD is calculated from the smaller value of MIN (DIFF45, DIFF135), that is, DIFF45 and DIFF135. The function f (x) is a function in which the DD value approaches “1” as the MIN (DIFF45, DIFF135) decreases, and the DD value approaches “0” as the MIN (DIFF45, DIFF135) increases. Also,
DIFF45 <DIFF135
(That is, MIN (DIFF45, DIFF135) = DIFF45)
When it is, it is judged as a 45 degree diagonal line,
DIFF45> DIFF135
(That is, MIN (DIFF45, DIFF135) = DIFF135)
In this case, it is determined that the diagonal line is 135 degrees. The determination result is sent from the oblique
図3(a)の画像の例では、右上がりの斜め線が含まれているため、DIFF45の値は非常に小さくなる。このため、DDの値は「1」となる。また、DIFF45<DIFF135であるため、45度の斜め線と判断される。
In the example of the image in FIG. 3 (a), the value of DIFF45 becomes very small because a diagonal line rising to the right is included. Therefore, the value of DD is “1”. Further, since DIFF45 <DIFF135, it is determined as a 45-degree oblique line.
図4(a)は輝度信号が示す画像の他の例であり、右上がりではあるが22.5度方向の斜め線が含まれている。図4(a)の場合も、DIFF45<DIFF135であるため、45度の斜め線と判断される。ただし、DIFF45の値は、図3(a)の場合よりも大きくなる。すなわち、45度の斜め線が含まれているときのDIFF45をDIFF45(45)とし、22.5度の斜め線が含まれているときのDIFF45をDIFF45(22.5)とすると、
DIFF45(45) < DIFF45(22.5)
となる。このため、図4(b)に示すように、関数f(x)を調整することによって、例えば22.5度の斜め線のときはDDを「0.5」にすることが可能となる。 FIG. 4A shows another example of the image indicated by the luminance signal, which includes a diagonal line in the direction of 22.5 degrees, although it goes up to the right. In the case of FIG. 4A as well, since DIFF45 <DIFF135, it is determined that the line is an oblique line of 45 degrees. However, the value ofDIFF 45 is larger than that in the case of FIG. That is, if DIFF 45 when a 45-degree diagonal line is included is DIFF 45 (45), and DIFF 45 when a 22.5-degree diagonal line is included is DIFF 45 (22.5),
DIFF45 (45) <DIFF45 (22.5)
It becomes. For this reason, as shown in FIG. 4B, by adjusting the function f (x), DD can be set to “0.5” when the diagonal line is 22.5 degrees, for example.
DIFF45(45) < DIFF45(22.5)
となる。このため、図4(b)に示すように、関数f(x)を調整することによって、例えば22.5度の斜め線のときはDDを「0.5」にすることが可能となる。 FIG. 4A shows another example of the image indicated by the luminance signal, which includes a diagonal line in the direction of 22.5 degrees, although it goes up to the right. In the case of FIG. 4A as well, since DIFF45 <DIFF135, it is determined that the line is an oblique line of 45 degrees. However, the value of
DIFF45 (45) <DIFF45 (22.5)
It becomes. For this reason, as shown in FIG. 4B, by adjusting the function f (x), DD can be set to “0.5” when the diagonal line is 22.5 degrees, for example.
この関数f(x)の形状は、図3および図4に示したものに限られるものではなく、例えば曲線を有していてもよい。また、公知の手法を利用して、関数f(x)の形状を装置外部から調整可能なように構成してもかまわない。
The shape of the function f (x) is not limited to that shown in FIGS. 3 and 4, and may have a curve, for example. Further, a known method may be used so that the shape of the function f (x) can be adjusted from the outside of the apparatus.
次に、図5を用いて、斜め輪郭補正部12における信号処理について説明する。いま、図5に示す画像に対して、斜め度合検出部13によって45度の斜め線と判断されたものとする。このとき、この45度方向に直交する方向すなわち135度方向において、補正量を算出する。例えば、(3)が記された画素を着目画素とすると、図中の破線で囲まれた画素の輝度値を用いて、補正量を計算する。
Next, signal processing in the oblique contour correcting unit 12 will be described with reference to FIG. Now, it is assumed that the oblique degree detection unit 13 determines that the image shown in FIG. At this time, the correction amount is calculated in a direction orthogonal to the 45 degree direction, that is, in the 135 degree direction. For example, assuming that the pixel marked with (3) is the pixel of interest, the correction amount is calculated using the luminance value of the pixel surrounded by the broken line in the figure.
ここで行う処理としては例えば、斜めBPF、斜めトランジェント補正などがある。斜めBPFは、BPF(Band Pass Filter)を斜め方向ここでは135度方向にかけて、エッジにシュートを付加する方法である。フィルタ係数が(a,b,c,d,e)の5タップフィルタを用いる場合、着目画素(3)のフィルタ出力は、
a×A+b×B+c×(3)+d×C+e×D
となる。斜めトランジェント補正は、斜め方向ここでは135度方向において、入力輝度信号から補正信号を減じることによってエッジを急峻にする方法である。なお、斜め方向の輪郭補正は、これらの方法に限られるものではない。 Examples of processing performed here include oblique BPF and oblique transient correction. The oblique BPF is a method in which a BPF (Band Pass Filter) is applied in an oblique direction, here a 135 degree direction, and a chute is added to the edge. When a 5-tap filter with filter coefficients (a, b, c, d, e) is used, the filter output of the pixel of interest (3) is
a × A + b × B + c × (3) + d × C + e × D
It becomes. The oblique transient correction is a method in which the edge is sharpened by subtracting the correction signal from the input luminance signal in the oblique direction, here, in the direction of 135 degrees. Note that the contour correction in the oblique direction is not limited to these methods.
a×A+b×B+c×(3)+d×C+e×D
となる。斜めトランジェント補正は、斜め方向ここでは135度方向において、入力輝度信号から補正信号を減じることによってエッジを急峻にする方法である。なお、斜め方向の輪郭補正は、これらの方法に限られるものではない。 Examples of processing performed here include oblique BPF and oblique transient correction. The oblique BPF is a method in which a BPF (Band Pass Filter) is applied in an oblique direction, here a 135 degree direction, and a chute is added to the edge. When a 5-tap filter with filter coefficients (a, b, c, d, e) is used, the filter output of the pixel of interest (3) is
a × A + b × B + c × (3) + d × C + e × D
It becomes. The oblique transient correction is a method in which the edge is sharpened by subtracting the correction signal from the input luminance signal in the oblique direction, here, in the direction of 135 degrees. Note that the contour correction in the oblique direction is not limited to these methods.
図6は本実施形態における水平垂直輪郭補正と斜め輪郭補正とのブレンド方法の例を示す図である。まず、画像の絵柄に横線や縦線が含まれている場合には、斜め度合を示す値DDは「0」になる。このとき、乗算器14a,14bには値「1」が与えられる一方、乗算器15aには値「0」が与えられる。この結果、入力輝度信号に加算される補正量は、
(水平補正量+垂直補正量)×1+斜め補正量×0
=水平補正量+垂直補正量
となる。 FIG. 6 is a diagram illustrating an example of a blending method of horizontal / vertical contour correction and oblique contour correction in the present embodiment. First, when the pattern of the image includes a horizontal line or a vertical line, the value DD indicating the degree of obliqueness is “0”. At this time, the value “1” is given to the multipliers 14a and 14b, while the value “0” is given to the multiplier 15a. As a result, the correction amount added to the input luminance signal is
(Horizontal correction amount + vertical correction amount) × 1 + oblique correction amount × 0
= Horizontal correction amount + vertical correction amount.
(水平補正量+垂直補正量)×1+斜め補正量×0
=水平補正量+垂直補正量
となる。 FIG. 6 is a diagram illustrating an example of a blending method of horizontal / vertical contour correction and oblique contour correction in the present embodiment. First, when the pattern of the image includes a horizontal line or a vertical line, the value DD indicating the degree of obliqueness is “0”. At this time, the value “1” is given to the
(Horizontal correction amount + vertical correction amount) × 1 + oblique correction amount × 0
= Horizontal correction amount + vertical correction amount.
また、画像の絵柄に所定角度、ここでは45度または135度の斜め線が含まれている場合には、斜め度合を示す値DDは「1」になる。このとき、乗算器14a,14bには値「0」が与えられる一方、乗算器15aには値「1」が与えられる。この結果、入力輝度信号に加算される補正量は、
(水平補正量+垂直補正量)×0+斜め補正量×1
=斜め補正量
となる。つまり、水平方向および垂直方向の輪郭補正は行われず、斜め方向の輪郭補正のみが行われる。 In addition, when the image pattern includes a diagonal line of a predetermined angle, here 45 degrees or 135 degrees, the value DD indicating the degree of inclination is “1”. At this time, the value “0” is given to the multipliers 14a and 14b, while the value “1” is given to the multiplier 15a. As a result, the correction amount added to the input luminance signal is
(Horizontal correction amount + vertical correction amount) × 0 + oblique correction amount × 1
= Oblique correction amount. That is, the contour correction in the horizontal direction and the vertical direction is not performed, and only the contour correction in the oblique direction is performed.
(水平補正量+垂直補正量)×0+斜め補正量×1
=斜め補正量
となる。つまり、水平方向および垂直方向の輪郭補正は行われず、斜め方向の輪郭補正のみが行われる。 In addition, when the image pattern includes a diagonal line of a predetermined angle, here 45 degrees or 135 degrees, the value DD indicating the degree of inclination is “1”. At this time, the value “0” is given to the
(Horizontal correction amount + vertical correction amount) × 0 + oblique correction amount × 1
= Oblique correction amount. That is, the contour correction in the horizontal direction and the vertical direction is not performed, and only the contour correction in the oblique direction is performed.
さらに、画像の絵柄に所定角度の斜め線に近い絵柄、例えば図4(a)に示すような22.5度の斜め線が含まれている場合には、斜め度合を示す値DDは「0.5」になる。このとき、乗算器14a,14bには値「0.5」が与えられる一方、乗算器15aには値「0.5」が与えられる。この結果、入力輝度信号に加算される補正量は、
(水平補正量+垂直補正量)×0.5+斜め補正量×0.5
となる。つまり、水平方向および垂直方向の輪郭補正と、斜め方向の補正とが、強度が弱められて行われる。 Further, when the image pattern includes a pattern close to a diagonal line at a predetermined angle, for example, a 22.5 degree diagonal line as shown in FIG. 4A, the value DD indicating the diagonal degree is “0”. .5 ". At this time, the value “0.5” is given to the multipliers 14a and 14b, while the value “0.5” is given to the multiplier 15a. As a result, the correction amount added to the input luminance signal is
(Horizontal correction amount + vertical correction amount) × 0.5 + oblique correction amount × 0.5
It becomes. That is, the horizontal and vertical contour correction and the diagonal correction are performed with reduced intensity.
(水平補正量+垂直補正量)×0.5+斜め補正量×0.5
となる。つまり、水平方向および垂直方向の輪郭補正と、斜め方向の補正とが、強度が弱められて行われる。 Further, when the image pattern includes a pattern close to a diagonal line at a predetermined angle, for example, a 22.5 degree diagonal line as shown in FIG. 4A, the value DD indicating the diagonal degree is “0”. .5 ". At this time, the value “0.5” is given to the
(Horizontal correction amount + vertical correction amount) × 0.5 + oblique correction amount × 0.5
It becomes. That is, the horizontal and vertical contour correction and the diagonal correction are performed with reduced intensity.
図7は本実施形態の効果を示す。図7(a)に示す45度斜め線が含まれた入力画像に対して、従来の方法では、図7(b)に示すように、水平輪郭補正と垂直輪郭補正の両方がかかるため、斜め線に対して過補正となってしまい、ジャギーやシュートが強調され過ぎて、画質品位が劣化する。これに対して本実施形態では、図7(c)に示すように、斜め線に対して、水平方向および垂直方向の輪郭補正は行われず、斜め方向の輪郭補正のみが行われるので、適切な輪郭補正が実現される。
FIG. 7 shows the effect of this embodiment. As shown in FIG. 7B, the conventional method applies both horizontal contour correction and vertical contour correction to the input image including the 45-degree oblique line shown in FIG. The line is overcorrected, and jaggies and shoots are overemphasized and image quality is degraded. On the other hand, in this embodiment, as shown in FIG. 7C, the horizontal and vertical contour correction is not performed on the diagonal line, and only the diagonal contour correction is performed. Contour correction is realized.
なお、本実施形態では、斜め度合を示す指標値として正規化された値DDを算出し、値DDと値(1-DD)とを補正量に乗じるものとしたが、斜め度合に応じた補正量の調整方法はこれに限られるものではない。例えば、斜め度合検出部13が、検出した斜め度合に応じて、各補正量に乗じる値をそれぞれ設定してもよい。またこの場合に、斜め度合と補正量調整との関係性を、装置外部から制御可能なようにしてもかまわない。あるいは、斜め度合検出部13が、検出した斜め度合を第1調整部14および第2調整部15に与えて、第1調整部14および第2調整部15がそれぞれ、斜め度合に応じて補正量を調整するようにしてもかまわない。
In the present embodiment, the normalized value DD is calculated as an index value indicating the degree of inclination, and the correction amount is multiplied by the value DD and the value (1-DD). However, the correction according to the degree of inclination is performed. The method of adjusting the amount is not limited to this. For example, the inclination degree detection unit 13 may set a value to be multiplied by each correction amount according to the detected inclination degree. In this case, the relationship between the skew degree and the correction amount adjustment may be controlled from the outside of the apparatus. Alternatively, the oblique degree detection unit 13 gives the detected oblique degree to the first adjustment unit 14 and the second adjustment unit 15, and the first adjustment unit 14 and the second adjustment unit 15 respectively correct the correction amount according to the oblique degree. You may adjust it.
また、本実施形態では、斜め度合を検出する際の斜め線の角度を45度または135度としたが、これに限られるものではない。また例えば、斜め輪郭補正部12および斜め度合検出部13を複数個設けて、斜め方向の輪郭補正を複数種類組み合わせて実行してもかまわない。
In the present embodiment, the angle of the oblique line when detecting the oblique degree is set to 45 degrees or 135 degrees. However, the present invention is not limited to this. Further, for example, a plurality of oblique contour correcting units 12 and oblique degree detecting units 13 may be provided, and a plurality of types of oblique contour correction may be executed in combination.
また、信号補正部20の内部構成は、図1や図2に示したものに限られるものではなく、水平垂直輪郭補正と斜め輪郭補正とを、斜め度合に応じてブレンドして、輝度信号に適用できる構成であれば、どのようなものであってもよい。
Further, the internal configuration of the signal correction unit 20 is not limited to that shown in FIGS. 1 and 2, and the horizontal / vertical contour correction and the diagonal contour correction are blended in accordance with the diagonal degree to obtain a luminance signal. Any configuration is applicable as long as it is applicable.
また、本実施形態で示した各部の全てまたは一部は、回路またはハードウェアで構成されていてもよいし、あるいは、ソフトウェアをプロセッサで実行することによって実現してもかまわない。
Further, all or a part of each unit shown in the present embodiment may be configured by a circuit or hardware, or may be realized by executing software by a processor.
また、本実施形態に係る輪郭補正装置は、例えば、画像を表示したり、画像をモニターに出力したりする画像処理装置に用いられる。画像処理装置の例としては、タブレット、スマートフォン、TV装置、各種の映像プレーヤー等が挙げられる。
Also, the contour correction device according to the present embodiment is used in, for example, an image processing device that displays an image or outputs an image to a monitor. Examples of the image processing device include a tablet, a smartphone, a TV device, and various video players.
本開示では、画像内に斜め方向の線がある場合でも輪郭補正を適切に実行可能であるので、例えば、タブレットやスマートフォン等において、画像をより鮮明に画面に表示するのに有効である。
In the present disclosure, the contour correction can be appropriately executed even when there is a diagonal line in the image, which is effective for displaying the image more clearly on the screen, for example, on a tablet or a smartphone.
11 水平垂直輪郭補正部(第1補正部)
11a 水平輪郭補正部
11b 垂直輪郭補正部
12 斜め輪郭補正部(第2補正部)
13 斜め度合検出部
14 第1調整部
14a,14b 乗算部
15 第2調整部
15a 乗算部
16 補正量加算部
20 信号補正部 11 Horizontal / vertical contour correction unit (first correction unit)
11a Horizontalcontour correcting unit 11b Vertical contour correcting unit 12 Oblique contour correcting unit (second correcting unit)
13 Degree ofDegree Detection Unit 14 First Adjustment Units 14a and 14b Multiplication Unit 15 Second Adjustment Unit 15a Multiplication Unit 16 Correction Amount Addition Unit 20 Signal Correction Unit
11a 水平輪郭補正部
11b 垂直輪郭補正部
12 斜め輪郭補正部(第2補正部)
13 斜め度合検出部
14 第1調整部
14a,14b 乗算部
15 第2調整部
15a 乗算部
16 補正量加算部
20 信号補正部 11 Horizontal / vertical contour correction unit (first correction unit)
11a Horizontal
13 Degree of
Claims (6)
- 輝度信号が表す画像の輪郭を補正する輪郭補正装置であって、
前記輝度信号から、水平方向および垂直方向における輪郭補正を行うための第1補正量を算出する第1補正部と、
前記輝度信号から、所定角度の斜め線に直交する方向における輪郭補正を行うための第2補正量を算出する第2補正部と、
前記輝度信号から、画像が前記所定角度の斜め線に近似している程度を表す、斜め度合を検出する斜め度合検出部と、
前記第1補正量および前記第2補正量を、前記斜め度合に応じて調整し、調整後の補正量を用いて、前記輝度信号を補正する信号補正部とを備えた
ことを特徴とする輪郭補正装置。 An outline correction apparatus for correcting the outline of an image represented by a luminance signal,
A first correction unit that calculates a first correction amount for performing contour correction in the horizontal direction and the vertical direction from the luminance signal;
A second correction unit that calculates a second correction amount for performing contour correction in a direction orthogonal to a diagonal line of a predetermined angle from the luminance signal;
An oblique degree detection unit for detecting an oblique degree, which represents the degree to which the image approximates the oblique line of the predetermined angle from the luminance signal;
A contour comprising: a signal correction unit that adjusts the first correction amount and the second correction amount according to the degree of inclination, and corrects the luminance signal using the corrected correction amount. Correction device. - 請求項1において
前記信号補正部は、
前記斜め度合が高いほど、前記第1補正量の効果を小さく前記第2補正量の効果を大きくし、前記斜め度合が低いほど、前記第1補正量の効果を大きく前記第2補正量の効果を小さくする
ことを特徴とする輪郭補正装置。 The signal correction unit according to claim 1,
The higher the oblique degree, the smaller the effect of the first correction amount, and the larger the effect of the second correction amount, and the lower the oblique degree, the larger the effect of the first correction amount, the effect of the second correction amount. A contour correction apparatus characterized by reducing the size of the image. - 請求項1または2において、
前記斜め度合検出部は、前記所定角度の方向における輝度差分累積値を算出し、この輝度差分累積値から、前記斜め度合を算出する
ことを特徴とする輪郭補正装置。 In claim 1 or 2,
The contour correction apparatus, wherein the oblique degree detection unit calculates a luminance difference cumulative value in the direction of the predetermined angle, and calculates the oblique degree from the luminance difference cumulative value. - 請求項1~3のうちいずれか1項において、
前記信号補正部は、
前記第1補正量を、前記斜め度合に応じて調整する第1調整部と、
前記第2補正量を、前記斜め度合に応じて調整する第2調整部と、
前記輝度信号に、前記第1調整部による調整後の前記第1補正量と、前記第2調整部による調整後の前記第2補正量とを、加算する補正量加算部とを備え、
前記第1調整部は、前記第1補正量を、前記斜め度合が高いほど小さくなり、前記斜め度合が低いほど大きくなるように、調整し、
前記第2調整部は、前記第2補正量を、前記斜め度合が高いほど大きくなり、前記斜め度合が低いほど小さくなるように、調整する
ことを特徴とする輪郭補正装置。 In any one of claims 1 to 3,
The signal correction unit is
A first adjustment unit that adjusts the first correction amount according to the degree of inclination;
A second adjustment unit that adjusts the second correction amount according to the degree of inclination;
A correction amount addition unit that adds the first correction amount after adjustment by the first adjustment unit and the second correction amount after adjustment by the second adjustment unit to the luminance signal;
The first adjustment unit adjusts the first correction amount so that the first correction amount decreases as the oblique degree increases and increases as the oblique degree decreases.
The contour correction apparatus according to claim 2, wherein the second adjustment unit adjusts the second correction amount so that the second correction amount increases as the oblique degree increases and decreases as the oblique degree decreases. - 請求項4において、
前記斜め度合検出部は、前記斜め度合として、0~1の範囲に正規化された値DDを出力するものであり、
前記第1調整部は、前記第1補正量に、値(1-DD)を乗じるものであり、
前記第2調整部は、前記第2補正量に、値DDを乗じるものである
ことを特徴とする輪郭補正装置。 In claim 4,
The oblique degree detection unit outputs a value DD normalized to a range of 0 to 1 as the oblique degree,
The first adjustment unit multiplies the first correction amount by a value (1-DD);
The second adjustment unit multiplies the second correction amount by a value DD. - 請求項1~5のうちいずれか1項記載の輪郭補正装置を備えた画像処理装置。 An image processing apparatus comprising the contour correction apparatus according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014551880A JPWO2014091720A1 (en) | 2012-12-10 | 2013-12-04 | Outline correction apparatus and image processing apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-269754 | 2012-12-10 | ||
JP2012269754 | 2012-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014091720A1 true WO2014091720A1 (en) | 2014-06-19 |
Family
ID=50934028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/007126 WO2014091720A1 (en) | 2012-12-10 | 2013-12-04 | Contour correction device and image processing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2014091720A1 (en) |
WO (1) | WO2014091720A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001128031A (en) * | 1999-10-30 | 2001-05-11 | Fujitsu General Ltd | Method and circuit for emphasizing outline |
JP2001144995A (en) * | 1999-11-12 | 2001-05-25 | Fujitsu General Ltd | Contour correction method and circuit |
JP2004213415A (en) * | 2003-01-06 | 2004-07-29 | Ricoh Co Ltd | Image processor, image processing program and storage medium |
JP2007336384A (en) * | 2006-06-16 | 2007-12-27 | Canon Inc | Image processor and processing method |
JP2008167027A (en) * | 2006-12-27 | 2008-07-17 | Olympus Corp | Image processor, image processing method and image processing program |
-
2013
- 2013-12-04 JP JP2014551880A patent/JPWO2014091720A1/en active Pending
- 2013-12-04 WO PCT/JP2013/007126 patent/WO2014091720A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001128031A (en) * | 1999-10-30 | 2001-05-11 | Fujitsu General Ltd | Method and circuit for emphasizing outline |
JP2001144995A (en) * | 1999-11-12 | 2001-05-25 | Fujitsu General Ltd | Contour correction method and circuit |
JP2004213415A (en) * | 2003-01-06 | 2004-07-29 | Ricoh Co Ltd | Image processor, image processing program and storage medium |
JP2007336384A (en) * | 2006-06-16 | 2007-12-27 | Canon Inc | Image processor and processing method |
JP2008167027A (en) * | 2006-12-27 | 2008-07-17 | Olympus Corp | Image processor, image processing method and image processing program |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014091720A1 (en) | 2017-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021120790A1 (en) | Image enhancement method and apparatus, and computer-readable storage medium | |
US20050162620A1 (en) | Image processing apparatus | |
US20080199101A1 (en) | Image Processing Apparatus and Image Processing Program | |
US9727984B2 (en) | Electronic device and method for processing an image | |
TWI519151B (en) | Image processing method and image processing apparatus | |
JP2007142500A (en) | Display device, signal processing circuit, program, and display method | |
JP5257108B2 (en) | Projector, projection system, image display method, and image display program | |
US8005313B2 (en) | Edge enhancing device and method | |
KR20120132416A (en) | Contour correction apparatus | |
US9542617B2 (en) | Image processing device and image processing method for correcting a pixel using a corrected pixel statistical value | |
WO2017006619A1 (en) | Image processing device, display device, and program | |
EP2315431A1 (en) | Image signal processing device and image display device | |
JP4246178B2 (en) | Image processing apparatus and image processing method | |
US9530223B2 (en) | Image correction method and image correction device | |
WO2014091720A1 (en) | Contour correction device and image processing device | |
US20100091195A1 (en) | De-ringing Device and Method | |
WO2014129209A1 (en) | Image processing device, image processing method | |
JP2011250238A (en) | Image processing system and image processing method | |
JP5247633B2 (en) | Image processing apparatus and method, and image display apparatus and method | |
JP5349204B2 (en) | Image processing apparatus and method, and image display apparatus and method | |
US8639052B2 (en) | Image projection apparatus, control method, and program | |
US8346021B2 (en) | Content adaptive scaler based on a farrow structure | |
TWI390958B (en) | Video filter and video processor and processing method using thereof | |
JP6201634B2 (en) | Image processing apparatus and image processing method | |
WO2016031598A1 (en) | Image-processing device and method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13862741 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014551880 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13862741 Country of ref document: EP Kind code of ref document: A1 |